M^{a} Ve phenomena
 analysis and numerics

Unified error analysis for non-conforming space discretizations of wave-type equations

David Hipp, Marlis Hochbruck, Christian Stohrer

CRC Preprint 2017/29, November 2017

KARLSRUHE INSTITUTE OF TECHNOLOGY

CRC 1173

Participating universities

Universität Stuttgart

Funded by
DFG

Unified error analysis for non-conforming space discretizations of wave-type equations

David Hipp \dagger, Marlis Hochbruck \ddagger, Christian Stohrer§
Karlsruhe Institute of Technology
Institute for Applied and Numerical Mathematics
Englerstr. 2, 76131 Karlsruhe, Germany

[Received on 15 November 2017]

Abstract

This paper provides a unified error analysis for non-conforming space discretizations of linear wave equations in time-domain. We propose a framework which studies wave equations as first-order evolution equations in Hilbert spaces and their space discretizations as differential equations in finite dimensional Hilbert spaces. A lift operator maps the semi-discrete solution from the approximation space to the continuous space. Our main results are a priori error bounds in terms of interpolation, data and conformity errors of the method. Such error bounds are the key to the systematic derivation of convergence rates for a large class of problems. To show that this approach significantly eases the proof of new convergence rates, we apply it to an isoparametric finite element discretization of the wave equation with acoustic boundary conditions in a smooth domain. Moreover, our results reproduce known convergence rates for already investigated conforming and non-conforming space discretizations in a concise and unified way. The examples discussed in this paper comprise discontinuous Galerkin discretizations of Maxwell's equations and finite elements with mass lumping for the acoustic wave equation.

Keywords: wave equation, non-conforming space discretization, abstract error analysis, a priori error bounds, linear evolution equations, operator semigroups, linear monotone operators in Hilbert spaces, dynamic boundary conditions, isoparametric finite elements

1. Introduction

In this paper we investigate the convergence behavior of possibly non-conforming space discretizations of wave equations written as first-order or as second-order partial differential equations in time and space. Both types of equations arise as mathematical models for wave phenomena in elastodynamics, electromagnetics and acoustics, cf. Joly (2003). In the last few decades, there has been a remarkable progress in understanding and analyzing such numerical approximations. Despite sharing the main ideas of proof, most contributions focus on a particular wave-type equation and a particular space discretization method, cf. e.g. Baker (1976), Zhao (2004), Cohen \& Pernet (2017).

Only a few papers proceed in a unified way and harness the analogies shared between the individual studies. Among them are several works which develop a unified error analysis for a particular class of space discretization methods for wave equations, cf. Fujita et al. (2001), Joly (2003), Burman et al. (2010). On the other hand, abstract approximation theory for evolution equations mostly shows convergence but does not provide error bounds or convergence rates, e.g. Ito \& Kappel (2002), Guidetti et al.

[^0](2004), Bátkai et al. (2012). The few abstract error estimates available in the literature are not ready-to-apply such that information about basic approximation properties of the numerical method lead to a convergence rate, cf. for example Brenner et al. (1982) and Hussein \& Kappel (2002). Finally, there is the framework of gradient discretization methods which was designed for a unified error analysis, but only covers elliptic and parabolic problems so far, cf. Droniou et al. (2017).

In order to systemize the derivation of convergence rates for other wave-type equations or new space discretizations thereof, we proceed in three steps. First, we propose a unified and abstract framework for wave-type equations and their space discretizations. Second, within this framework, we show that wavetype equations are well-posed and that the errors of their abstract space discretizations are bounded by a sum of interpolation errors, data errors and discretization errors. Third, we use more specific properties of the numerical method to prove the final a priori estimates. These a priori estimates allow to infer convergence rates by inserting known information about the numerical method in a modular way. We demonstrate the easy handling of our results by deriving new convergence results for an isoparametric bulk-surface finite element discretization of the wave equation with acoustic boundary conditions in a smooth domain Ω. Such discretization are non-conforming since the computational domain does not coincide with Ω. In Hochbruck et al. (2017), the authors apply our a priori bounds to prove convergence rates of a heterogeneous multiscale discretization of Maxwell's equations using edge elements. Moreover, our results generalize former error estimates as they successfully reproduce convergence rates for several examples as the discontinuous Galerkin method for linear Maxwell's equations and finite elements with mass lumping for the acoustic wave equation.

The paper is organized as follows. In Sections 2.1 and 2.2, we introduce and analyze quasi-monotone evolution equations. For a unified treatment, we consider their space discretizations as differential equations in finite dimensional Hilbert spaces, as described in Section 2.3. In Section 2.4, we provide an overview of the tools and main ideas of the error analysis. Then, we prove a general error bound for stable space discretizations of quasi-monotone evolution equations in Section 2.5 and show a convergence result in the spirit of the Lax equivalence theorem in Section 2.6. The general error bound consistss of data and discretization errors of the method. Under more specific assumptions on the structure of the wave equation and the numerical method, the discretization errors can be further analyzed against a sum of interpolation and conformity errors. The resulting error bounds then ultimately provide convergence rates. We discuss this for first-order wave-type equations in Section 3 and for second-order wave-type equations in Section 4. In order to provide a guideline for the reader who wants to find a concrete bound, or to prove convergence rates for a new application, we collected the most important assumptions, results and examples in two reference cards on the next page. In total, we show that our error analysis is able to reproduce state-of-the-art convergence results for four applications. These examples are supplements by a novel application presented in Section 5. There we use our a priori estimates to
derive new convergence rates for an isoparametric bulk-surface finite element discretization of the wave equation with acoustic boundary conditions.

Reference card for first-order wave-type equations

Assumption	The variational formulation of the pde can be written as (2.1) and Assumption 3.1 is fulfilled.
	Follows from Theorem 2.4, see also (3.1)
Well-posedness	Advection equation in Example 2.6 and Maxwell's equation in Examples
	Section 3.2

O	Assumption	The space discretization is given by (2.7) and stable in the sense of Assumption 2.7.	
	Error bounds	Non-conforming: Theorem 3.2	Non-conforming: Theorem 3.4
		Conforming: Corollary 3.3	Conforming: Remark 3.5
	Examples	Edge elements for Maxwell in Section 3.2.1	DG method for Maxwell in Section 3.2 .2

We emphasize that we focus on linear, inhomogeneous wave-type equations and error bounds in the energy norm. Error estimates in discrete norms, as derived for interior penalty discontinuous Galerkin discretizations in Grote et al. (2006), and convergence rates for parabolic problems, as given in Kovács \& Lubich (2017) and Thomée (2006), are not covered. Moreover, we obtain sub-optimal convergence rates for discontinuous Galerkin discretizations stabilized with upwind fluxes as in Hochbruck \& Pažur (2015). We further remark that the examples provided in this paper discuss finite element and discontinuous Galerkin methods, since they can deal with complex domains and provide high order approximations. However, we are convinced that our abstract estimates can also be used to derive convergence rates for other methods, e.g. finite difference or pseudospectral methods.

Reference card for second-order wave-type equations

Assumption	The variational formulation of the pde can be written as (4.1) and Assumption 4.1 is fulfilled.	
Well-posedness	Follows from Theorem 4.3 Examples	Acoustic wave equation with Dirichlet bcs in Section 4.5 and with acoustic bcs in Section 5
Assumption	The space discretization is given by (4.8) and stable in the sense of Assumption 4.4.	
Error bounds	Non-conforming: Theorem 4.8 and Remark 4.9 Conforming: Corollary 4.10	
Examples	Lagrange elements with mass lumping in Section 4.5 and isoparametric bulk-surface finite elements in Section 5	

Notation

In this section we collect the notation used throughout this paper. By C we denote a generic constant independent of time t and the space discretiziation parameter h. We consider problems on finite time intervals $[0, T], T>0$.

Spaces, NORMS, AND INNER PRODUCTS Let X, Y be two real Hilbert spaces with corresponding norms $\|\cdot\|_{X},\|\cdot\|_{Y}$, respectively. By $\mathscr{L}(X, Y)$ we denote the space of all bounded linear operators from X to Y endowed with the operator norm

$$
\|M\|_{Y \leftarrow X}:=\sup _{\substack{x \in X \\ x \neq 0}} \frac{\|M x\|_{Y}}{\|x\|_{X}}=\sup _{\substack{x \in X \\\|x\|_{X}=1}}\|M x\|_{Y}, \quad M \in \mathscr{L}(X, Y)
$$

If $Y=\mathbb{R}$, then $X^{*}:=\mathscr{L}(X, \mathbb{R})$ is the dual space of X and $\|\cdot\|_{X^{*}}:=\|\cdot\|_{\mathbb{R} \leftarrow X}$. Moreover, for $\varphi \in X^{*}$ we define the duality pairing between X^{*} and X as

$$
\langle\varphi, x\rangle_{X}:=\varphi(x), \quad x \in X
$$

Let $b: Y \times X \rightarrow \mathbb{R}$ be a continuous bilinear form. Fixing the first argument of b yields an operator $b(y):=b(y, \cdot) \in X^{*}$ whose norm is given by

$$
\|b(y)\|_{X^{*}}:=\sup _{\substack{x \in X \\\|x\|_{X}=1}}|b(y, x)|, \quad y \in Y
$$

Let $A: D(A) \rightarrow X$ be a linear operator defined on the subspace $D(A)$ of X. Then we denote by $[D(A)]$ the space $D(A)$ equipped with the graph norm of A (which is a Banach space if A is closed). In product spaces, we write

$$
(u, v):=\left[\begin{array}{l}
u \\
v
\end{array}\right] \in X^{2}=X \times X
$$

The diagonal operator $\operatorname{diag}\left(A_{1}, A_{2}\right): X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ for $A_{i}: X_{i} \rightarrow Y_{i}, i=1,2$ is defined by

$$
\operatorname{diag}\left(A_{1}, A_{2}\right)\left[\begin{array}{l}
u \\
v
\end{array}\right]:=\left[\begin{array}{l}
A_{1} u \\
A_{2} v
\end{array}\right]
$$

Let $U \subset \mathbb{R}^{d}$ be a non-empty set. We define the supremums norm of $f: U \rightarrow X$ as

$$
\|f\|_{\infty, U \rightarrow X}:=\sup _{\mathrm{x} \in U}\|f(\mathrm{x})\|_{X}
$$

and use the short notation $\|f\|_{\infty, X}:=\|f\|_{\infty,[0, T] \rightarrow X}$ for X-valued functions defined on $U=[0, T]$.
DOMAINS, BOUNDARIES, MESHES, AND DISCRETE SPACES The partial differential equations in this paper are considered in an open and bounded domain $\Omega \subset \mathbb{R}^{d}$. We denote its boundary by $\Gamma:=\partial \Omega$ and the outer unit normal by $n: \Gamma \rightarrow \mathbb{R}^{d}$. For the scalar product in \mathbb{R}^{d} we write $\mathrm{x} \cdot \mathrm{y}$ for $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{d}$ and $|\mathrm{x}|:=\sqrt{\mathrm{x} \cdot \mathrm{x}}$ denotes the Euclidean norm. We write $\gamma: H^{1}(\Omega) \rightarrow L^{2}(\Gamma)$ for the trace operator and $\partial_{n} f: \Gamma \rightarrow \mathbb{R}$ is the normal derivative of $f: \Omega \rightarrow \mathbb{R}$. We use \mathscr{P}_{k} for the space of polynomials of maximal degree k. If not specified differently, we consider space discretizations based on an admissible mesh sequence $\mathscr{T}_{\mathscr{H}}=\left\{\mathscr{T}_{h} \mid h \in \mathscr{H}\right\}$ of Ω where the index h in \mathscr{T}_{h} denotes the maximal diameter of all the elements $K \in \mathscr{T}_{h}$ and $\Omega_{h}:=\cup_{K \in \mathscr{T}} K$ is the computational domain. An admissible mesh sequence is shape-regular, contact-regular and satisfies an optimal polynomial approximation property, cf. (Di Pietro \& Ern, 2012, Def. 1.57). We assume that \mathscr{T}_{h} consists of triangles or tetrahedra for $d=2$ or $d=3$, respectively, but our theory is not restricted to simplicial elements.

2. Evolution equations with linear monotone operators

We start the presentation of the unified framework by introducing evolution equations with linear monotone operators as an abstract formulation for wave-type equations. Such problems were already considered and analyzed by Showalter (1994), Showalter (1997) and Zeidler (1990a). After recalling conditions for their well-posedness, we then develop a theory for non-conforming space discretizations of evolution equations with linear monotone operators. For an overview of similar abstract approaches to space discretizations, we refer to Guidetti et al. (2004) and Ito \& Kappel (2002).

2.1 Description of the continuous problem

Given a Gelfand triple of real Hilbert spaces

$$
Y \stackrel{\mathrm{~d}}{\hookrightarrow} X \simeq X^{*} \stackrel{\mathrm{~d}}{\hookrightarrow} Y^{*}
$$

we seek a solution $x:[0, T] \rightarrow Y$ of the evolution equation

$$
\begin{align*}
x^{\prime}(t)+\mathscr{S} x(t) & =g(t) \quad \text { for } t \in[0, T], \tag{2.1a}\\
x(0) & =x^{0}, \tag{2.1b}
\end{align*}
$$

where $g:[0, T] \rightarrow Y^{*}$ is a function and $\mathscr{S} \in \mathscr{L}\left(Y, Y^{*}\right)$ is a quasi-monotone operator.
DEFINITION 2.1 (Maximal and linear quasi-monotone operators) Let $W=Y^{*}$ or $W=X$.
(i) An operator $\mathscr{S} \in \mathscr{L}(Y, W)$ is called quasi-monotone if there exists a constant $c_{\mathrm{qm}} \geqslant 0$ s.t.

$$
\begin{equation*}
\langle\mathscr{S} y, y\rangle_{Y}+c_{\mathrm{qm}}\|y\|_{X}^{2} \geqslant 0, \quad \forall y \in Y \tag{2.2a}
\end{equation*}
$$

(ii) A quasi-monotone operator $\mathscr{S} \in \mathscr{L}(Y, W)$ is called maximal w.r.t. W if there exists a $\lambda>c_{\text {qm }}$ s.t.

$$
\begin{equation*}
\operatorname{range}(\lambda+\mathscr{S})=W \tag{2.2b}
\end{equation*}
$$

REMARK 2.2 The theory of monotone operators is mostly used for non-linear functional problems. However, we feel that the term "quasi-monotone" is also suitable in our (linear) context, cf. also Showalter (1997) and Zeidler (1990a). A related notion can be found in ter Elst et al. (2015).

2.2 Well-posedness of the continuous problem

To apply semigroup theory, we restrict the operator \mathscr{S} to the Hilbert space X. The part of $\mathscr{S} \in \mathscr{L}\left(Y, Y^{*}\right)$ in X, as defined in Engel \& Nagel (2000), is given by

$$
\begin{equation*}
S: D(S) \subset Y \rightarrow X, \quad y \mapsto S y:=\mathscr{S} y \quad \text { on } \quad D(S)=\{y \in Y \mid \mathscr{S} y \in X\} \tag{2.3}
\end{equation*}
$$

The following lemma establishes a connection between quasi-monotone and dissipative operators. A similar result was shown in (Zeidler, 1990b, Sect. 31.4).

Lemma 2.3. Let $\mathscr{S} \in \mathscr{L}\left(Y, Y^{*}\right)$ and S be the part of \mathscr{S} in X as defined in (2.3).
(i) If \mathscr{S} is quasi-monotone, then $-\left(S+c_{\mathrm{qm}}\right)$ is dissipative.
(ii) If \mathscr{S} is quasi-monotone and maximal w.r.t. Y^{*}, then range $(\lambda+S)=X$ for all $\lambda>c_{\mathrm{qm}}$ and $D(S)$ is dense in X.

Proof. We only prove (ii), since (i) is obvious.
Let $f \in X$ be arbitrary. Since $X \stackrel{\text { d }}{\hookrightarrow} Y^{*}$, the maximality of \mathscr{S} ensures the existence of some $\lambda_{0}>c_{\text {qm }}$ s.t. there is a $y \in Y$ which satisfies $\left(\lambda_{0}+\mathscr{S}\right) y=f$. Hence we have $\mathscr{S} y=f-\lambda_{0} y \in X$, so that $y \in D(S)$ with $\left(\lambda_{0}+S\right) y=f$. The surjectivity of $\lambda+S$ for all $\lambda>c_{\mathrm{qm}}$ and the density of $D(S)$ follow from (Showalter, 1997, Prop. I.4.2).

To show the well-posedness of (2.1), we consider its corresponding abstract Cauchy problem in X.
THEOREM 2.4. Let $W=Y^{*}$ or $W=X$ and assume that $\mathscr{S} \in \mathscr{L}(Y, W)$ is quasi-monotone and maximal w.r.t. W. If $x^{0} \in D(S)$ and $g \in C([0, T] ;[D(S)])+C^{1}([0, T] ; X)$, then (2.1) has a unique solution

$$
x \in C^{1}([0, T] ; X) \cap C([0, T] ;[D(S)])
$$

which satisfies the stability estimate

$$
\begin{equation*}
\|x(t)\|_{X} \leqslant e^{c_{\mathrm{qm}} t}\left(\left\|x^{0}\right\|_{X}+t\|g\|_{\infty, X}\right), \quad t \in[0, T] \tag{2.4}
\end{equation*}
$$

Proof. By Lemma $2.3-\left(S+c_{\mathrm{qm}}\right)$ is dissipative and satisfies the range condition. Hence it generates a contraction semigroup due to the Lumer-Philipps theorem (Pazy, 1983, Sect. 1.3). This implies that $-S$ generates the C_{0}-semigroup $\left(e^{-t S}\right)_{t \geqslant 0}$ which satisfies

$$
\left\|e^{-t S}\right\|_{X \leftarrow X} \leqslant e^{c_{\mathrm{qm}} t}
$$

Under the assumptions on x^{0} and g, the abstract Cauchy problem

$$
\begin{equation*}
x^{\prime}(t)+S x(t)=g(t), \quad t \in[0, T], \quad x(0)=x^{0} \tag{2.5}
\end{equation*}
$$

has a unique solution $x \in C^{1}([0, T] ; X) \cap C([0, T] ;[D(S)])$ which is given by Duhamel's formula

$$
x(t)=e^{-t S} x^{0}+\int_{0}^{t} e^{-(t-s) S} g(s) \mathrm{d} s
$$

cf. (Pazy, 1983, Sect. 4.2). The stability estimate thus follows from

$$
\|x(t)\| \leqslant e^{c_{\mathrm{qm}} t}\left\|x^{0}\right\|_{X}+\int_{0}^{t} e^{c_{\mathrm{qm}}(t-s)}\|g(s)\|_{X} \mathrm{~d} s \leqslant e^{c_{\mathrm{qm}} t}\left(\left\|x^{0}\right\|_{X}+\|g\|_{\infty, X} \int_{0}^{t} 1 \mathrm{~d} s\right)
$$

Finally, since $X \simeq X^{*} \xrightarrow{\mathrm{~d}} Y^{*}$ and $S=\left.\mathscr{S}\right|_{D(S)}$, every solution of (2.5) also solves (2.1).
In the following, let $p: X \times X \rightarrow \mathbb{R}$ denote the inner product on X and $\langle\cdot, \cdot\rangle_{Y}$ the duality pairing between Y^{*} and Y. Then we have

$$
\begin{equation*}
p(z, y)=z(y)=\langle z, y\rangle_{Y} \quad \forall z \in X, y \in Y \tag{2.6}
\end{equation*}
$$

as an immediate consequence of the identification $X \simeq X^{*}$.

2.3 Space discretization

This section is dedicated to non-conforming space discretizations of (2.1). Such space discretizations seek to approximate the solution $x \in X$ in a finite dimensional Hilbert space X_{h} with inner product $p_{h}(\cdot, \cdot)$ and norm $\|\cdot\|_{X_{h}}$. Here, $h>0$ corresponds to a discretization parameter of X_{h}, e.g. the maximal diameter of all elements of a mesh. We emphasize that in general

$$
X_{h} \not \subset X
$$

A space discretization of (2.1) is a differential equation in X_{h} seeking $x_{h}:[0, T] \rightarrow X_{h}$ s.t.

$$
\begin{align*}
x_{h}^{\prime}(t)+S_{h} x_{h}(t) & =g_{h}(t) \quad \text { for } t \in[0, T], \tag{2.7a}\\
x_{h}(0) & =x_{h}^{0} \in X_{h} \tag{2.7b}
\end{align*}
$$

where $S_{h} \in \mathscr{L}\left(X_{h}, X_{h}\right)$ is a discretization of S, e.g. resulting from a finite element or dG method, and $g_{h}:[0, T] \rightarrow X_{h}$ is an approximation of g.

Following (Ciarlet, 2002, Chap. 4), we define conforming space discretizations. For that purpose, it is convenient to write the operators as bilinear forms. We denote the bilinear form associated with \mathscr{S} by

$$
\begin{equation*}
s(z, y):=\langle\mathscr{S} z, y\rangle_{Y}, \quad z, y \in Y \tag{2.8}
\end{equation*}
$$

and, analogously, the bilinear form associated with S_{h} by

$$
\begin{equation*}
s_{h}\left(z_{h}, y_{h}\right):=p_{h}\left(S_{h} z_{h}, y_{h}\right), \quad z_{h}, y_{h} \in X_{h} \tag{2.9}
\end{equation*}
$$

To motivate the criteria for a conforming method, we give the variational formulations of the continuous and the semi-discrete problem. Theorem 2.4 shows that the evolution equation (2.1) has, under suitable assumptions on the data, a solution x satisfying $x(t) \in D(S)$ and $x^{\prime}(t) \in X, t \geqslant 0$. Considering (2.1) in variational form and using (2.6), we thus obtain that x solves

$$
\begin{equation*}
p\left(x^{\prime}(t), y\right)+s(x(t), y)=p(g(t), y), \quad \forall y \in Y \tag{2.10}
\end{equation*}
$$

Analogously, the differential equation (2.7a) can be cast as

$$
p_{h}\left(x_{h}^{\prime}(t), y_{h}\right)+s_{h}\left(x_{h}(t), y_{h}\right)=p_{h}\left(g_{h}(t), y_{h}\right), \quad \forall y_{h} \in X_{h}
$$

DEFINITION 2.5 The space discretization (2.7) of the evolution equation (2.1) is called conforming if the following three conditions are satisfied.
(i) $X_{h} \subset Y$,
(ii) $p\left(z_{h}, y_{h}\right)=p_{h}\left(z_{h}, y_{h}\right)$ for all $z_{h}, y_{h} \in X_{h}$,
(iii) $s\left(z_{h}, y_{h}\right)=s_{h}\left(z_{h}, y_{h}\right)$ for all $z_{h}, y_{h} \in X_{h}$.

Space discretizations which violate at least one of these conditions are called non-conforming.
Note that these conditions are not completely independent of each other: $X_{h} \subset X$ is needed for the second and $X_{h} \subset Y$ for the third condition. An overview of examples which fit into the unified framework and a classification of their non-conformity is given in Table 1.

Table 1. Overview and classification of non-conformity of examples from the unified framework

	$X_{h} \subset Y$	$p=p_{h}$	$s=s_{h}$	Discussed in
Advection eq. with Lagrange elements	\checkmark	\checkmark	\checkmark	Example 2.6
Maxwell's eq. with Nédélec elements	\checkmark	\checkmark	\checkmark	Section 3.2.1
Maxwell's eq. with discontinuous Galerkin	x	\checkmark	x	Section 3.2.2
Heterogeneous multiscale method for Maxwell's eq.	\checkmark	x	\checkmark	Hochbruck et al. (2017)
Wave eq. with Lagrange elements	\checkmark	\checkmark	\checkmark	Section 4.5
Wave eq. with Lagrange elements with mass lumping	\checkmark	x	\checkmark	Section 4.5
Wave eq. with acoustic bc. in smooth domains	x	x	x	Section 5

Example 2.6 To illustrate our exposition we consider the advection equation as a model problem, see, e.g. (Di Pietro \& Ern, 2012, Chap. 2). Let $\Omega \subset \mathbb{R}^{d}$ be a bounded, polygonal, convex domain. We seek a function $x:[0, T] \times \Omega \rightarrow \mathbb{R}$ s.t.

$$
\begin{align*}
& x_{t}+\beta \cdot \nabla x+\mu x=f \text { in } \Omega, \tag{2.11a}\\
& x=0 \tag{2.11b}\\
& \text { on } \Gamma^{-}, \tag{2.11c}\\
& x(0)=x^{0} \\
& \text { in } \Omega .
\end{align*}
$$

Here, $\mu \geqslant 0, \beta \in \mathbb{R}^{d}, \nabla x$ denotes the gradient of x and

$$
\begin{equation*}
\Gamma^{-}=\{\mathrm{x} \in \Gamma \mid \beta \cdot n(\mathrm{x})<0\} \tag{2.12}
\end{equation*}
$$

denotes the inflow part of the boundary Γ.
Comparing the variational formulation of this problem with (2.10) shows that p is the $L^{2}(\Omega)$ inner product and

$$
\begin{equation*}
s(z, y)=\int_{\Omega} \mu z y+(\beta \cdot \nabla z) y \mathrm{dx} . \tag{2.13}
\end{equation*}
$$

Therefore, we choose $X=L^{2}(\Omega)$ and Y as the natural domain of the differential operator

$$
\begin{equation*}
Y=\left\{y \in L^{2}(\Omega)\left|\beta \cdot \nabla y \in L^{2}(\Omega), y\right|_{\Gamma^{-}}=0\right\} \tag{2.14}
\end{equation*}
$$

equipped with the graph norm

$$
\begin{equation*}
\|y\|_{Y}^{2}=p(y, y)+p(\beta \cdot \nabla y, \beta \cdot \nabla y) . \tag{2.15}
\end{equation*}
$$

It is easy to see that Y is a dense subspace of X and that the associated operator $\mathscr{S} \in \mathscr{L}(Y, X)$ of s is monotone (i.e. $c_{\mathrm{qm}}=0$) and maximal w.r.t. X, see, e.g., (Di Pietro \& Ern, 2012, Theorem 2.9). Thus the problem is well-posed for suitable initial values and source terms due to Theorem 2.4.

We consider a space discretization with linear finite elements on a triangulation \mathscr{T}_{h} of Ω. Hence X_{h} is the space of piecewise linear functions defined on \mathscr{T}_{h} equipped with the inner product $p_{h}=p$. We further have $\Omega_{h}=\Omega$ s.t. $X_{h} \subset Y$ and $s_{h}=s$, since the polygonal domain Ω is exactly triangulated. Therefore, the finite element discretization is conforming due to Definition 2.5.

Fig. 1. Overview of spaces and operators

2.4 Notation for spaces and operators

The approximation $x_{h} \in X_{h}$ obtained from a non-conforming space discretization with $X_{h} \not \subset X$ cannot be compared directly with the solution $x \in X$. Consider for example a finite element discretization of a partial differential equation in a smooth domain Ω where the computational domain $\Omega_{h} \neq \Omega$ only approximates Ω. In such a situation, we have $X_{h} \not \subset X$, since the finite element functions in X_{h} are defined in Ω_{h} and not in Ω. To deal with this issue, we assume there exists a linear operator

$$
\begin{equation*}
Q_{h}: X_{h} \rightarrow X \tag{2.16}
\end{equation*}
$$

which reconstructs the approximation $Q_{h} x_{h} \approx x$ in X. We call Q_{h} the lift operator, as it "lifts" the approximation x_{h} to the lifted discrete space

$$
X_{h}^{\ell}:=Q_{h}\left(X_{h}\right)
$$

For conforming methods, the lift operator can be chosen as $Q_{h}=\mathrm{I}$ which implies $X_{h}^{\ell}=X_{h}$. Examples of non-trivial lift operators can be found in, e.g., Elliott \& Ranner (2013), (Ciarlet, 2002, Chap. 4) and Cockburn et al. (2014).

To map from continuous function spaces into the discrete space X_{h}, we introduce $J_{h} \in \mathscr{L}\left(Z, X_{h}\right)$ where Z is a Hilbert space that is continuously embedded in X. We call J_{h} the reference operator, since we base our error bounds on the following splitting of the error:

$$
\left\|Q_{h} x_{h}-x\right\|_{X} \leqslant\left\|Q_{h}\left(x_{h}-J_{h} x\right)\right\|_{X}+\left\|\left(Q_{h} J_{h}-\mathrm{I}\right) x\right\|_{X}
$$

To obtain optimal convergence rates, the choice of J_{h} has to fit to the application. For conforming methods, we choose the standard orthogonal projection onto X_{h} (w.r.t. p). However, for non-conforming methods, we will see below that a suitable interpolation operator $I_{h}: Z \rightarrow X_{h}$ has to be used for J_{h} to prove optimal convergence rates. In this case, the space Z is typically a higher order (broken) Sobolev space which ensures that the interpolation operator I_{h} is well-defined and satisfies $I_{h} \in \mathscr{L}\left(Z, X_{h}\right)$.

The X-orthogonal projection onto the lifted discrete space X_{h}^{ℓ} is denoted by

$$
\begin{equation*}
\Pi_{h}: X \rightarrow X_{h}^{\ell}, \quad p\left(\left(\mathrm{I}-\Pi_{h}\right) z, Q_{h} y_{h}\right)=0 \quad \forall z \in X, y_{h} \in X_{h} \tag{2.17a}
\end{equation*}
$$

Moreover, we introduce the adjoint lift Q_{h}^{*} to map between these spaces via

$$
\begin{equation*}
Q_{h}^{*}: X \rightarrow X_{h}, \quad p_{h}\left(Q_{h}^{*} z, y_{h}\right)=p\left(z, Q_{h} y_{h}\right) \quad \forall z \in X, y_{h} \in X_{h} \tag{2.17b}
\end{equation*}
$$

and further set

$$
\begin{equation*}
P_{h}:=Q_{h} Q_{h}^{*}: X \rightarrow X_{h}^{\ell} \tag{2.17c}
\end{equation*}
$$

An overview of all involved mappings and spaces is given in Figure 1.

REMARK ON CONFORMING METHODS For a conforming method, where $Q_{h}=\mathrm{I}$ and $X_{h}^{\ell}=X_{h}$, many of these operators coincide. More precisely,

$$
P_{h}=\Pi_{h}=Q_{h}^{*}
$$

is just the p-orthogonal projection of X onto X_{h}.
Our error bounds will be given in terms of the remainder operator

$$
\begin{equation*}
R_{h}:=Q_{h}^{*} S-S_{h} J_{h}: D(S) \cap Z \rightarrow X_{h} \tag{2.18a}
\end{equation*}
$$

and in terms of conformity errors represented by the differences of the bilinear forms which are

$$
\begin{align*}
\Delta p\left(z_{h}, y_{h}\right) & :=p\left(Q_{h} z_{h}, Q_{h} y_{h}\right)-p_{h}\left(z_{h}, y_{h}\right), & & z_{h}, y_{h} \in X_{h} \tag{2.18b}\\
\Delta s\left(z_{h}, y_{h}\right) & :=s\left(Q_{h} z_{h}, Q_{h} y_{h}\right)-s_{h}\left(z_{h}, y_{h}\right), & & z_{h}, y_{h} \in X_{h} \tag{2.18c}
\end{align*}
$$

Note that the definition of Δs requires $X_{h}^{\ell} \subset Y$.

2.5 A priori error bounds

In applications where \mathscr{S} is a differential operator, $S_{h} \in \mathscr{L}\left(X_{h}, X_{h}\right)$ is not uniformly bounded w.r.t. h. Therefore, we assume the semi-discretization to be stable in the following sense.
AsSUMPTION 2.7 (Stability)
(i) The discrete operator $S_{h} \in \mathscr{L}\left(X_{h}, X_{h}\right)$ is quasi-monotone in X_{h} with $\widehat{c}_{\text {qm }} \geqslant 0$ s.t.

$$
p_{h}\left(S_{h} y_{h}, y_{h}\right)+\widehat{c}_{\mathrm{qm}}\left\|y_{h}\right\|_{X_{h}}^{2} \geqslant 0, \quad \forall y_{h} \in X_{h}
$$

(ii) There are constants $C_{X}>c_{X}>0$ independent of h s.t.

$$
c_{X}\left\|Q_{h} y_{h}\right\|_{X} \leqslant\left\|y_{h}\right\|_{X_{h}} \leqslant C_{X}\left\|Q_{h} y_{h}\right\|_{X}, \quad \forall y_{h} \in X_{h}
$$

REmark 2.8 Under this assumption, Theorem 2.4 (with X replaced by X_{h}) shows that there exists a unique solution x_{h} of (2.7) with

$$
\begin{equation*}
\left\|x_{h}(t)\right\|_{X_{h}} \leqslant e^{\widehat{c}_{\mathrm{qm}} t}\left(\left\|x_{h}^{0}\right\|_{X_{h}}+t\left\|g_{h}\right\|_{\infty, X_{h}}\right) \tag{2.19}
\end{equation*}
$$

Note that we will only use (2.19) for the error analysis but not Assumption 2.7 (i) directly.
REMARK ON CONFORMING METHODS For conforming methods, the stability assumptions follow directly from the monotonicity of \mathscr{S} with $\widehat{c}_{\text {qm }}=c_{\text {qm }}$. Moreover, since the inner products of X and X_{h} coincide and $Q_{h}=\mathrm{I}$, we have $c_{X}=C_{X}=1$.

We now state the most general error bound of the unified error analysis.
THEOREM 2.9. Let the assumptions of Theorem 2.4 be fulfilled and assume that the unique solution x of (2.1) satisfies $x \in C^{1}([0, T] ; Z)$. Furthermore, let x_{h} be the solution of (2.7) and Assumption 2.7 be fulfilled. Then the error of the lifted semi-discrete solution $Q_{h} x_{h}$ is bounded by

$$
\begin{equation*}
\left\|Q_{h} x_{h}(t)-x(t)\right\|_{X} \leqslant C e^{\widehat{c}_{\mathrm{qm}} t}\left(E_{\mathrm{data}}(t)+t\left\|\left(Q_{h}^{*}-J_{h}\right) x^{\prime}\right\|_{\infty, X_{h}}+t\left\|R_{h} x\right\|_{\infty, X_{h}}\right)+\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) x(t)\right\|_{X} \tag{2.20}
\end{equation*}
$$

for $t \in[0, T]$, a constant C which is independent of h and t,

$$
\begin{equation*}
E_{\mathrm{data}}(t):=\left\|x_{h}^{0}-J_{h} x^{0}\right\|_{X_{h}}+t\left\|g_{h}-Q_{h}^{*} g\right\|_{\infty, X_{h}} \tag{2.21}
\end{equation*}
$$

and R_{h} which is defined in (2.18a).
Proof. Let $e_{h}:=x_{h}-J_{h} x$ denote the discrete error. By Assumption 2.7 (ii), we find that

$$
\begin{equation*}
\left\|Q_{h} x_{h}-x\right\|_{X} \leqslant\left\|Q_{h} e_{h}\right\|_{X}+\left\|\left(Q_{h} J_{h}-\mathrm{I}\right) x\right\|_{X} \leqslant \frac{1}{c_{X}}\left\|e_{h}\right\|_{X_{h}}+\left\|\left(Q_{h} J_{h}-\mathrm{I}\right) x\right\|_{X} \tag{2.22}
\end{equation*}
$$

Hence it is sufficient to bound the discrete error.
Since $x \in C^{1}([0, T] ; Z)$ and $J_{h} \in \mathscr{L}\left(Z, X_{h}\right)$, we have $e_{h} \in C^{1}\left([0, T] ; X_{h}\right)$ and

$$
e_{h}^{\prime}=x_{h}^{\prime}-J_{h} x^{\prime}=x_{h}^{\prime}-Q_{h}^{*} x^{\prime}+\left(Q_{h}^{*}-J_{h}\right) x^{\prime}
$$

We rewrite the first part using (2.7a) and (2.5)

$$
x_{h}^{\prime}-Q_{h}^{*} x^{\prime}=-S_{h} x_{h}+g_{h}-Q_{h}^{*}(-S x+g)=-S_{h} e_{h}+g_{h}-Q_{h}^{*} g+\left(Q_{h}^{*} S-S_{h} J_{h}\right) x .
$$

Inserting this into the previous equation shows that the discrete error e_{h} satisfies the differential equation

$$
e_{h}^{\prime}+S_{h} e_{h}=g_{h}-Q_{h}^{*} g+\left(Q_{h}^{*} S-S_{h} J_{h}\right) x+\left(Q_{h}^{*}-J_{h}\right) x^{\prime}
$$

The discrete stability estimate (2.19) therefore yields

$$
\left\|e_{h}(t)\right\|_{X_{h}} \leqslant e^{\widehat{c}_{\mathrm{qm}} t}\left(\left\|e_{h}(0)\right\|_{X_{h}}+t\left(\left\|g_{h}-Q_{h}^{*} g\right\|_{\infty, X_{h}}+\left\|\left(Q_{h}^{*}-J_{h}\right) x^{\prime}\right\|_{\infty, X_{h}}+\left\|R_{h} x\right\|_{\infty, X_{h}}\right)\right) .
$$

Using this estimate in (2.22) completes the proof.
REMARK 2.10 For $J_{h}=Q_{h}^{*}$ the error bound (2.20) simplifies to

$$
\left\|Q_{h} x_{h}(t)-x(t)\right\|_{X} \leqslant C e^{\hat{c}_{\mathrm{qm}} t}\left(E_{\mathrm{data}}(t)+t\left\|R_{h} x\right\|_{\infty, X_{h}}\right)+\left\|\left(\mathrm{I}-P_{h}\right) x(t)\right\|_{X}
$$

where $R_{h}=Q_{h}^{*} S-S_{h} Q_{h}^{*}$. Since $Z=X$ in this case, the error bound is valid without further assumptions on the solution obtained by Theorem 2.4 .

2.6 Convergence

In the rest of this section, we show that $Q_{h} x_{h}$ converges to the exact solution for $h \rightarrow 0$, if the space discretization is stable and consistent in the following sense.

AsSumption 2.11 (Consistency)
(i) For all $y_{h} \in X_{h}$, we have $\left\|\Delta p\left(y_{h}\right)\right\|_{X_{h}^{*}} \rightarrow 0, h \rightarrow 0$.
(ii) For all $z \in Z$, we have $\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) z\right\|_{X} \rightarrow 0, h \rightarrow 0$.
(iii) For all $z \in D(S) \cap Z$, we have $\left\|R_{h} z\right\|_{X_{h}} \rightarrow 0, h \rightarrow 0$.

Example 2.6 (continued) For the finite element discretization of the advection equation (2.11), we have $X=L^{2}(\Omega)$ and $\Delta p=0$. Therefore, Assumption 2.11 (i) is fulfilled. If we choose J_{h} as the nodal interpolation operator $I_{h}: Z \rightarrow X_{h}$ with $Z=H^{2}(\Omega)$, then Assumption 2.11 (ii) follows from

$$
\begin{equation*}
\left\|\left(\mathrm{I}-I_{h}\right) z\right\|_{L^{2}(\Omega)} \leqslant C h^{2}|z|_{H^{2}(\Omega)}, \quad z \in H^{2}(\Omega) \tag{2.23}
\end{equation*}
$$

cf. (Brenner \& Scott, 2008, Sect. 4.4). Hence only Assumption 2.11 (iii) remains to be verified. This will be done in the course of Section 3.

The following lemma provides afundamental estimate which we will use frequently in the rest of this article. It bounds the difference between the adjoint lift operator and the reference operator by the sum of a reference error and a conformity error of the inner products.

Lemma 2.12. If Assumption 2.7 (ii) is satisfied, then

$$
\left\|\left(Q_{h}^{*}-J_{h}\right) z\right\|_{X_{h}} \leqslant c_{X}^{-1}\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) z\right\|_{X}+\left\|\Delta p\left(J_{h} z\right)\right\|_{X_{h}^{*}}, \quad z \in Z
$$

Proof. First observe that for all $z_{h} \in X_{h}$

$$
\begin{equation*}
\left\|z_{h}\right\|_{X_{h}}=\max _{\left\|y_{h}\right\|_{X_{h}}=1} p_{h}\left(z_{h}, y_{h}\right) \tag{2.24}
\end{equation*}
$$

Therefore, we have for $z \in Z$ by (2.18b)

$$
\begin{aligned}
\left\|\left(Q_{h}^{*}-J_{h}\right) z\right\|_{X_{h}} & =\max _{\left\|y_{h}\right\|_{X_{h}}=1} p_{h}\left(\left(Q_{h}^{*}-J_{h}\right) z, y_{h}\right) \\
& =\max _{\left\|y_{h}\right\|_{X_{h}}=1} p_{h}\left(Q_{h}^{*} z, y_{h}\right)-p_{h}\left(J_{h} z, y_{h}\right) \\
& =\max _{\left\|y_{h}\right\|_{X_{h}}=1} p\left(z, Q_{h} y_{h}\right)-p\left(Q_{h} J_{h} z, Q_{h} y_{h}\right)+p\left(Q_{h} J_{h} z, Q_{h} y_{h}\right)-p_{h}\left(J_{h} z, y_{h}\right) \\
& =\max _{\left\|y_{h}\right\|_{X_{h}}=1} p\left(\left(\mathrm{I}-Q_{h} J_{h}\right) z, Q_{h} y_{h}\right)+\Delta p\left(J_{h} z, y_{h}\right) \\
& \leqslant c_{X}^{-1}\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) z\right\|_{X}+\left\|\Delta p\left(J_{h} z\right)\right\|_{X_{h}^{*}} .
\end{aligned}
$$

This was the claim.
COROLLARY 2.13. Let the assumptions of Theorem 2.4 be fulfilled and assume that the unique solution x of (2.1) satisfies $x \in C^{1}([0, T] ; Z)$. Furthermore, let x_{h} be the solution of (2.7) and Assumption 2.7 be fulfilled.
(i) Then the error of the lifted semi-discrete solution $Q_{h} x_{h}$ is bounded by

$$
\begin{array}{r}
\left\|Q_{h} x_{h}(t)-x(t)\right\|_{X} \leqslant C e^{\widehat{c}_{\mathrm{qm}} t}(1+t)\left(E_{\mathrm{data}}(1)+\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) x\right\|_{\infty, X}+\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) x^{\prime}\right\|_{\infty, X}\right. \\
\left.+\left\|\Delta p\left(J_{h} x^{\prime}\right)\right\|_{\infty, X_{h}^{*}}+\left\|R_{h} x\right\|_{\infty, X_{h}}\right) \tag{2.25}
\end{array}
$$

for $t \in[0, T]$, a constant C which is independent of h and t, and where $E_{\text {data }}$ and R_{h} are defined in (2.21) and (2.18a), respectively.
(ii) If additionally the space discretization (2.7) is consistent in the sense of Assumption 2.11 and $g(t) \in Z, t \in[0, T]$ with

$$
\left\|x_{h}^{0}-J_{h} x^{0}\right\|_{X_{h}} \rightarrow 0 \quad \text { and } \quad\left\|g_{h}-J_{h} g\right\|_{\infty, X_{h}} \rightarrow 0, \quad h \rightarrow 0
$$

then the lifted semi-discrete solution converges, i.e.,

$$
\left\|Q_{h} x_{h}(t)-x(t)\right\|_{X} \rightarrow 0, \quad h \rightarrow 0
$$

for $t \in[0, T]$.
Proof. (i) The desired estimate follows directly from the general error bound (2.20) and Lemma 2.12.
(ii) Using Lemma 2.12 and Assumptions 2.11 (i)-(ii) to estimate the source term error in $E_{\text {data }}$, we obtain

$$
\begin{aligned}
\left\|g_{h}(t)-Q_{h}^{*} g(t)\right\|_{X_{h}} & \leqslant\left\|g_{h}(t)-J_{h} g(t)\right\|_{X_{h}}+\left\|\left(J_{h}-Q_{h}^{*}\right) g(t)\right\|_{X_{h}} \\
& \leqslant\left\|g_{h}(t)-J_{h} g(t)\right\|_{X_{h}}+c_{X}^{-1}\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) g(t)\right\|_{X}+\left\|\Delta p\left(J_{h} g(t)\right)\right\|_{X_{h}^{*}} \rightarrow 0
\end{aligned}
$$

for $h \rightarrow 0$, since $g(t) \in Z$. Because the initial value converges by assumption, we thus showed $E_{\text {data }} \rightarrow 0$, $h \rightarrow 0$. All other terms in the upper bound of (2.25) vanish as $h \rightarrow 0$ due to the consistency of the method. This completes the proof.

For a specific application, the a priori error estimate (2.25) still needs to be complemented with a bound on the remainder term $\left\|R_{h} x\right\|_{X_{h}}$. In the following, we will show such bounds for space discretizations of first-order wave-type equations and second-order wave-type equations.

3. First-order wave-type equations

This section is devoted to the error analysis of non-conforming space discretizations of first-order wavetype equations. We call (2.1) a first-order wave-type equation if \mathscr{S} satisfies the following assumption.
ASSUMPTION 3.1 The operator \mathscr{S} is quasi-monotone, satisfies $\mathscr{S} \in \mathscr{L}(Y, X)$ and is maximal w.r.t. X.
The class of first-order wave-type equations comprises symmetric hyperbolic systems as defined in Benzoni-Gavage \& Serre (2007) or Burazin \& Erceg (2016), but also general dissipative first-order partial differential equations. Since $\mathscr{S} \in \mathscr{L}(Y, X)$, we have $D(S)=Y$ and therefore $S=\mathscr{S}$. In particular, the bilinear form s defined in (2.8) has a continuous extension to $Y \times X$ s.t.

$$
|s(z, y)| \leqslant\|S\|_{X \leftarrow Y}\|z\|_{Y}\|y\|_{X}, \quad z \in Y, y \in X
$$

and the first-order wave-type equation (2.1) has a unique solution

$$
\begin{equation*}
x \in C^{1}([0, T] ; X) \cap C([0, T] ; Y) \tag{3.1}
\end{equation*}
$$

for suitable initial values x^{0} and source terms g. More precisely, we assume for the rest of this section that the conditions of Theorem 2.4 are satisfied with $W=X$.

3.1 A priori error bounds

Next we consider space discretizations (2.7) of first-order wave-type equations. Motivated by the applications presented in Section 3.2, we distinguish between two different classes. The finite element method leads to semidiscrete problems where $X_{h}^{\ell} \subset Y$ and the discontinuous Galerkin method to $X_{h}^{\ell} \not \subset Y$ but $X_{h}^{\ell} \subset X$. Since we can employ the estimate from Corollary 2.13 (i) in both cases, it only remains to estimate $\left\|R_{h} x\right\|_{X_{h}}$ to derive a priori error bounds in terms of interpolation and conformity errors.
3.1.1 Space discretizations with $X_{h}^{\ell} \subset Y$. In this section, we consider space discretizations where the lifted discrete space X_{h}^{ℓ} is not only contained in X but also in the smaller space Y.
THEOREM 3.2. Let the assumptions of Theorem 2.4 be fulfilled and assume that the unique solution x of the first-order wave-type equation (2.1) satisfies $x \in C^{1}([0, T] ; Z)$. Furthermore, let x_{h} be the solution of (2.7) and Assumption 2.7 be fulfilled. If $X_{h}^{\ell} \subset Y$, then the error of the lifted semi-discrete solution $Q_{h} x_{h}$ is bounded by

$$
\begin{aligned}
\left\|Q_{h} x_{h}(t)-x(t)\right\|_{X} \leqslant C e^{\widehat{c}_{\mathrm{qm}} t}(1+t)\left(e_{\mathrm{data}}+\left\|\left(\mathrm{I}-Q_{h} I_{h}\right) x^{\prime}\right\|_{\infty, X}+\right. & \left\|\left(\mathrm{I}-Q_{h} I_{h}\right) x\right\|_{\infty, Y} \\
& \left.+\left\|\Delta p\left(I_{h} x^{\prime}\right)\right\|_{\infty, X_{h}^{*}}+\left\|\Delta s\left(I_{h} x\right)\right\|_{\infty, X_{h}^{*}}\right)
\end{aligned}
$$

for $t \in[0, T]$, a constant C which is independent of h and t, and where

$$
\begin{equation*}
e_{\text {data }}:=\left\|x_{h}^{0}-I_{h} x^{0}\right\|_{X_{h}}+\left\|g_{h}-Q_{h}^{*} g\right\|_{\infty, X_{h}} . \tag{3.2}
\end{equation*}
$$

Proof. By assumption we have $X_{h}^{\ell} \subset Y$ and $\mathscr{S} \in \mathscr{L}(Y, X)$. Therefore, we obtain for $y_{h} \in X_{h}$

$$
\begin{aligned}
p_{h}\left(R_{h} x, y_{h}\right)=p_{h}\left(\left(Q_{h}^{*} S-S_{h} J_{h}\right) x, y_{h}\right) & =p\left(S x, Q_{h} y_{h}\right)-p_{h}\left(S_{h} J_{h} x, y_{h}\right) \\
& =s\left(x, Q_{h} y_{h}\right)-s_{h}\left(J_{h} x, y_{h}\right) \\
& =s\left(\left(\mathrm{I}-Q_{h} J_{h}\right) x, Q_{h} y_{h}\right)+s\left(Q_{h}\left(J_{h} x\right), Q_{h} y_{h}\right)-s_{h}\left(J_{h} x, y_{h}\right) \\
& \leqslant\|S\|_{X \leftarrow Y}\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) x\right\|_{Y}\left\|Q_{h} y_{h}\right\|_{X}+\Delta s\left(J_{h} x, y_{h}\right) \\
& \leqslant\|S\|_{X \leftarrow Y}\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) x\right\|_{Y} c_{X}^{-1}\left\|y_{h}\right\|_{X_{h}}+\Delta s\left(J_{h} x, y_{h}\right),
\end{aligned}
$$

where we used Assumption 2.7 (ii) for the last inequality. Thus it follows from (2.24) that

$$
\begin{equation*}
\left\|R_{h} x\right\|_{X_{h}}=\max _{\left\|y_{h}\right\|_{X_{h}}=1} p_{h}\left(R_{h} x, y_{h}\right) \leqslant c_{X}^{-1}\|S\|_{X \leftarrow Y}\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) x\right\|_{Y}+\left\|\Delta s\left(J_{h} x\right)\right\|_{X_{h}^{*}} \tag{3.3}
\end{equation*}
$$

Finally, we choose $J_{h}=I_{h}$. The desired estimate then follows from $Y \stackrel{\text { d }}{\hookrightarrow} X$ and Corollary 2.13 (i).
For conforming methods, we obtain an error bound independent of x^{\prime} if we choose $J_{h}=\Pi_{h}$. To prove this bound, we use that any two norms on the finite dimensional space X_{h} are equivalent. This implies that there exists a $\delta_{h}>0$ s.t.

$$
\begin{equation*}
\delta_{h}\left\|y_{h}\right\|_{Y} \leqslant\left\|y_{h}\right\|_{X}, \quad y_{h} \in X_{h} . \tag{3.4}
\end{equation*}
$$

In the context of finite element methods, such inequalities are called inverse estimates and we usually have $\delta_{h} \rightarrow 0$ as $h \rightarrow 0$.

Corollary 3.3. Let the assumptions of Theorem 2.4 be fulfilled and let x be the unique solution of the first-order wave-type equation (2.1) satisfying $x(t) \in Z, t \in[0, T]$. Furthermore, let (2.7) be a conforming space discretization with $Q_{h}=\mathrm{I}$. Then the error of the semi-discrete solution x_{h} is bounded by

$$
\left\|x_{h}(t)-x(t)\right\|_{X} \leqslant C e^{c_{\mathrm{qm}} t}(1+t)\left(e_{\mathrm{data}}+\delta_{h}^{-1}\left\|\left(\mathrm{I}-I_{h}\right) x\right\|_{\infty, X}+\left\|\left(\mathrm{I}-I_{h}\right) x\right\|_{\infty, Y}\right)
$$

for $t \in[0, T]$, a constant C which is independent of h and t, and where $e_{\text {data }}$ is defined in (3.2).

Proof. First note that conforming methods are stable with $\widehat{c}_{\mathrm{qm}}=c_{\mathrm{qm}}$ and $c_{X}=C_{X}=1$. For the error analysis of conforming methods, we choose $J_{h}=\Pi_{h}=Q_{h}^{*} \in \mathscr{L}\left(X, X_{h}\right)$ with $Z=X$ such that the simplified estimate from Remark 2.10 applies. Moreover, (3.3) and $\Delta s \equiv 0$ imply

$$
\left\|R_{h} x\right\|_{X_{h}} \leqslant C\left\|\left(\mathrm{I}-\Pi_{h}\right) x\right\|_{Y} .
$$

To obtain an estimate in terms of interpolation errors, we apply (3.4) and use that Π_{h} is the best approximation w.r.t. the X-norm.

$$
\begin{align*}
\left\|\left(\mathrm{I}-\Pi_{h}\right) x\right\|_{Y} & \leqslant\left\|\left(\mathrm{I}-I_{h}\right) x\right\|_{Y}+\left\|\left(I_{h}-\Pi_{h}\right) x\right\|_{Y} \\
& \leqslant\left\|\left(\mathrm{I}-I_{h}\right) x\right\|_{Y}+\delta_{h}^{-1}\left\|\left(I_{h}-\Pi_{h}\right) x\right\|_{X} \\
& \leqslant\left\|\left(\mathrm{I}-I_{h}\right) x\right\|_{Y}+\delta_{h}^{-1}\left(\left\|\left(I_{h}-\mathrm{I}\right) x\right\|_{X}+\left\|\left(\mathrm{I}-\Pi_{h}\right) x\right\|_{X}\right) \\
& \leqslant\left\|\left(\mathrm{I}-I_{h}\right) x\right\|_{Y}+2 \delta_{h}^{-1}\left\|\left(\mathrm{I}-I_{h}\right) x\right\|_{X} \tag{3.5}
\end{align*}
$$

Collecting terms then yields the final estimate.
EXAMPLE 2.6 (continued) For the finite element discretization of the advection equation (2.11), there exists a δ_{h} s.t. $\delta_{h}^{-1} \leqslant C h^{-1}$, cf. (Brenner \& Scott, 2008, Lem. 4.5.3). Moreover, the interpolation error converges linearly in the Y-norm, since

$$
\left\|\left(\mathrm{I}-I_{h}\right) z\right\|_{Y} \leqslant\left\|\left(\mathrm{I}-I_{h}\right) z\right\|_{H^{1}(\Omega)} \leqslant C h|z|_{H^{2}(\Omega)}, \quad z \in H^{2}(\Omega)
$$

and quadratically in $X=L^{2}(\Omega)$, as we showed in (2.23). Thus, we obtain from Corollary 3.3 that the error of the finite element approximation is bounded by

$$
\left\|x_{h}(t)-x(t)\right\|_{L^{2}(\Omega)} \leqslant C(1+t) h\|x\|_{\infty, H^{2}(\Omega)}
$$

if $x(t) \in H^{2}(\Omega), t \in[0, T]$ and $x_{h}^{0}=\Pi_{h} x^{0}, g_{h}(t)=\Pi_{h} g(t), t \in[0, T]$. For similar results, we refer to Layton (1983) and Dunca (2017).
3.1.2 Space discretizations with $X_{h}^{\ell} \not \subset Y$. In this section, we consider space discretizations where

$$
X_{h}^{\ell} \subset X \quad \text { and } \quad X_{h}^{\ell} \not \subset Y
$$

This situation appears e.g. for discontinuous Galerkin (dG) methods which approximate the solution by a function which may have discontinuities between elements of the mesh. A typical example is the discretization of an advection equation in the broken polynomial space $X_{h}=\mathscr{P}_{k}\left(\mathscr{T}_{h}\right)$ consisting of piecewise polynomials of degree k on a triangulation \mathscr{T}_{h} of Ω.

For our error analysis of such space discretizations it is necessary to insert the exact solution x into $s_{h}\left(\cdot, y_{h}\right)$ for $y_{h} \in X_{h}$. Thus we assume that $s_{h}: X_{h} \times X_{h} \rightarrow \mathbb{R}$ can be extended to

$$
\begin{equation*}
s_{h}:\left(X_{h}+Z\right) \times X_{h} \rightarrow \mathbb{R} \tag{3.6a}
\end{equation*}
$$

Furthermore, we define

$$
\begin{equation*}
\underline{\Delta s}\left(z, y_{h}\right):=s\left(z, Q_{h} y_{h}\right)-s_{h}\left(z, y_{h}\right), \quad z \in Z \cap Y, y_{h} \in X_{h} . \tag{3.6b}
\end{equation*}
$$

In this setting we can show the following error bound.

THEOREM 3.4. Let the assumptions of Theorem 2.4 be fulfilled and assume that the unique solution x of the first-order wave-type equation (2.1) satisfies $x \in C^{1}([0, T] ; Z)$. Furthermore, let s_{h} have the extension (3.6a) and let Assumption 2.7 be fulfilled. Then the error of the lifted semi-discrete solution $Q_{h} x_{h}$ of (2.7) is bounded by

$$
\begin{aligned}
\left\|Q_{h} x_{h}(t)-x(t)\right\|_{X} \leqslant C e^{\widehat{c}_{\mathrm{qm}} t}(1+t) & \left(e_{\mathrm{data}}+\left\|\left(\mathrm{I}-Q_{h} I_{h}\right) x^{\prime}\right\|_{\infty, X}+\left\|\left(\mathrm{I}-Q_{h} I_{h}\right) x\right\|_{\infty, X}\right. \\
& \left.+\left\|s_{h}\left(\left(\mathrm{I}-I_{h}\right) x\right)\right\|_{\infty, X_{h}^{*}}+\|\underline{\Delta s}(x)\|_{\infty, X_{h}^{*}}+\left\|\Delta p\left(I_{h} x^{\prime}\right)\right\|_{\infty, X_{h}^{*}}\right)
\end{aligned}
$$

for $t \in[0, T]$ and where $e_{\text {data }}$ is defined in (3.2) and C is a constant independent of h and t.
Proof. Since the solution x belongs to $Z \cap Y$, we find for $y_{h} \in X_{h}$

$$
\begin{aligned}
p_{h}\left(R_{h} x, y_{h}\right)=s\left(x, Q_{h} y_{h}\right)-s_{h}\left(J_{h} x, y_{h}\right) & =s\left(x, Q_{h} y_{h}\right)-s_{h}\left(x, y_{h}\right)+s_{h}\left(x, y_{h}\right)-s_{h}\left(J_{h} y, y_{h}\right) \\
& =\underline{\Delta s}\left(x, y_{h}\right)+s_{h}\left(\left(\mathrm{I}-J_{h}\right) x, y_{h}\right) .
\end{aligned}
$$

By (2.24), taking the maximum over all y_{h} with $\left\|y_{h}\right\|_{X_{h}}=1$ thus yields

$$
\left\|R_{h} x\right\|_{X_{h}} \leqslant\left\|s_{h}\left(\left(\mathrm{I}-J_{h}\right) x\right)\right\|_{X_{h}^{*}}+\|\underline{\Delta s}(x)\|_{X_{h}^{*}} .
$$

The claim now follows from Corollary 2.13 (i) and setting $J_{h}=I_{h}$.
REMARK 3.5 If $Q_{h}=\mathrm{I}, \Delta p \equiv 0$, and $\underline{\Delta s} \equiv 0$, and if the assumptions of Theorem 3.4 are satisfied, then similar arguments with $J_{h}=\Pi_{h}$ show

$$
\begin{equation*}
\left\|x_{h}(t)-x(t)\right\|_{X} \leqslant C e^{\widehat{c}_{\mathrm{qm}} t}(1+t)\left(e_{\mathrm{data}}+\left\|s_{h}\left(\left(\mathrm{I}-\Pi_{h}\right) x^{\prime}\right)\right\|_{\infty, X_{h}^{*}}+\left\|\left(\mathrm{I}-I_{h}\right) x\right\|_{\infty, X}\right) \tag{3.7}
\end{equation*}
$$

cf. Corollary 3.3. Note that instead of $x \in C^{1}([0, T] ; Z)$, we only need to assume $x(t) \in Z$ for this estimate.

3.2 Examples: Maxwell's equations

As the prototype of a first-order wave-type equation we consider Maxwell's equations for linear isotropic materials with perfectly conducting boundary conditions, cf. Kirsch \& Hettlich (2015).

Let $E:[0, T] \times \Omega \rightarrow \mathbb{R}^{3}$ be the electric field and $H:[0, T] \times \Omega \rightarrow \mathbb{R}^{3}$ be the magnetic field in a polyhedral domain $\Omega \subset \mathbb{R}^{3}$ given by

$$
\begin{aligned}
\mu H_{t} & =-\operatorname{curl} E & & \text { in } \Omega, \\
\varepsilon E_{t} & =\operatorname{curl} H & & \text { in } \Omega, \\
n \times E & =0 & & \text { on } \Gamma, \\
H(0) & =H^{0}, \quad E(0)=E^{0} & & \text { in } \Omega,
\end{aligned}
$$

where the permittivity and the permeability $\varepsilon, \mu \in L^{\infty}(\Omega)$ are uniformly positive. We assume that the initial values satisfy $\operatorname{div}\left(\varepsilon E^{0}\right)=\operatorname{div}\left(\mu H^{0}\right)=0$ in Ω and $n \cdot\left(\mu H^{0}\right)=0$ on Γ. Then $E(t)$ and $H(t)$ satisfy these conditions for all $t \geqslant 0$, cf. (Hochbruck et al., 2015, Prop. 3.5).

The suitable functional analytic setting for $x=[H, E]^{T}$ is given by the Hilbert space $X:=L^{2}(\Omega)^{6}$ endowed with a weighted inner product and $Y=H(\operatorname{curl}, \Omega) \times H_{0}(\operatorname{curl}, \Omega)$ which is densely and continuously embedded into X. Maxwell's equations are a first-order wave-type equation since the Maxwell operator $\mathscr{S} \in \mathscr{L}(Y, X)$ is skew-symmetric and maximal, cf., e.g. (Hochbruck et al., 2015, Sect. 3.2). Hence Maxwell's equations are well-posed due to Theorem 2.4 for $x^{0} \in Y$.

Since Ω is polyhedral in this application, we assume that the computational domain satisfies $\Omega_{h}=\Omega$ in the following examples. Moreover, we assume that $x_{h}^{0}=I_{h} x^{0}$ s.t. $e_{\text {data }}=0$.
3.2.1 Edge element discretizations. In this example, we consider a space discretization of Maxwell's equation using first order curl-conforming elements of Nédélec's second type on a quasi-uniform mesh \mathscr{T}_{h}, cf. Nédélec (1986). For such space discretizations, we have $X_{h}=V_{h}(\operatorname{curl}) \times V_{h, 0}($ curl $)$ where

$$
\begin{aligned}
V_{h}(\operatorname{curl}) & =\left\{U_{h} \in H(\operatorname{curl}, \Omega)\left|U_{h}\right|_{K} \in\left(\mathscr{P}_{1}\right)^{3} \text { for } K \in \mathscr{T}_{h}\right\}, \\
V_{h, 0}(\operatorname{curl}) & =\left\{U_{h} \in V_{h}(\operatorname{curl}) \mid v \times U_{h}=0 \text { on } \Gamma\right\},
\end{aligned}
$$

and the discrete inner product and differential form are given by $p_{h}=p$ and $s_{h}=s$. This is possible since $X_{h} \subset Y$ by construction. Moreover, there exists an interpolation operator $I_{h}: Z \rightarrow X_{h}, Z=H^{2}(\Omega)^{6}$ s.t.

$$
\left\|\left(\mathrm{I}-I_{h}\right) z\right\|_{X}+h\left\|\left(\mathrm{I}-I_{h}\right) z\right\|_{Y} \leqslant C h^{2}\|z\|_{H^{2}(\Omega)^{6}}, \quad z \in H^{2}(\Omega)^{6}
$$

cf. (Nédélec, 1986, Prop. 3), and the inverse estimate between $L^{2}(\Omega)$ and $H^{1}(\Omega)$ implies $\delta_{h}^{-1} \leqslant C h^{-1}$ if $0<h \leqslant 1$.

Therefore, we are in the situation of Section 3.1.1 and the a priori estimate from Corollary 3.3 applies. If $x=(H, E) \in C\left([0, T] ; H^{2}(\Omega)^{6}\right)$, then the approximation properties of the interpolation imply that semi-discrete solution $x_{h}=\left(H_{h}, E_{h}\right)$ converges linearly in h with

$$
\left\|x_{h}(t)-x(t)\right\|_{L^{2}(\Omega)^{6}} \leqslant C(1+t) h .
$$

A similar convergence result for elements of Nédélec's first type can be found in (Zhao, 2004, Thm. 4.1).
Observe that $x=(H, E) \in C\left([0, T] ; H^{2}(\Omega)^{6}\right)$ can only be guaranteed under additional assumptions on x^{0}, ε, μ and Ω, cf. for example (Hochbruck et al., 2015, Lem. 3.7) for sufficient conditions if Ω is a cuboid.
3.2.2 Discontinuous Galerkin discretizations. Discontinuous Galerkin methods are a very competitive approach to approximate Maxwell's equation numerically. This example investigates a discontinuous Galerkin discretization where s_{h} stems from a central (also centered) fluxes dG discretization of the Maxwell operator, cf. Di Pietro \& Ern (2012), and which seeks an approximation in the set of piecewise polynomials $X_{h}=\mathscr{P}_{k}\left(\mathscr{T}_{h}\right)^{6}, k \geqslant 0$ on \mathscr{T}_{h}. Then s_{h} is consistent in the sense that $\underline{\Delta s} \equiv 0$ on $\left(Y \cap H^{1}\left(\mathscr{T}_{h}\right)^{6}\right) \times X_{h}$ and we have by (Hochbruck \& Sturm, 2016, (5.3) and (5.5))

$$
\left\|\left(\mathrm{I}-I_{h}\right) z\right\|_{X}+h\left\|s_{h}\left(\left(\mathrm{I}-\Pi_{h}\right) z\right)\right\|_{X_{h}^{*}} \leqslant C\left(\sum_{K \in \mathscr{T}_{h}} h_{K}^{2 k+2}|z|_{H^{k+1}(K)^{6}}^{2}\right)^{1 / 2}, \quad z \in Y \cap H^{k+1}\left(\mathscr{T}_{h}\right)^{6}
$$

Here $I_{h}: H^{2}\left(\mathscr{T}_{h}\right)^{6} \rightarrow X_{h}$ is the piecewise nodal interpolation operator and $|x|_{H^{k+1}(K)^{6}}$ the $H^{k+1}(K)^{6}$ semi-norm of x. Hence $Z=Y \cap H^{2}\left(\mathscr{T}_{h}\right)^{6}$ is a suitable choice for our setting.

The convergence result then follows from (3.7). If the solution x of Maxwell's equations belongs to $C\left([0, T] ; H^{2}\left(\mathscr{T}_{h}\right)^{6}\right)$ then the dG approximation $x_{h}=\left(E_{h}, H_{h}\right)$ satisfies

$$
\left\|x_{h}(t)-x(t)\right\|_{L^{2}(\Omega)^{6}} \leqslant C(t) h^{k}
$$

This result can for example be found in (Fezoui et al., 2005, Thm. 3.5).

4. Second-order wave-type equations

In this section, we consider wave-problems formulated as second-order evolution equations. Our abstract formulation covers a wide range of problems including wave equations with dynamic boundary conditions and problems with damping or advection effects.

4.1 Description of the continuous problem

Let H and V be two Hilbert spaces with $V \stackrel{\text { d }}{\hookrightarrow} H$, i.e., there is a constant $C_{H, V}>0$ s.t.

$$
\|v\|_{H} \leqslant C_{H, V}\|v\|_{V}, \quad v \in V
$$

let $m: H \times H \rightarrow \mathbb{R}$ denote the inner product of H and identify $H \simeq H^{*}$ to form the Gelfand triple

$$
V \stackrel{\mathrm{~d}}{\hookrightarrow} H \simeq H^{*} \xrightarrow{\mathrm{~d}} V^{*} .
$$

The second-order wave-type equation then reads: Find $u:[0, T] \rightarrow V$ s.t.

$$
\begin{align*}
\left\langle u^{\prime \prime}(t), v\right\rangle_{V}+b\left(u^{\prime}(t), v\right)+a(u(t), v) & =\langle f(t), v\rangle_{V} \quad \forall v \in V, \tag{4.1a}\\
u(0) & =u_{1}^{0}, \quad u^{\prime}(0)=u_{2}^{0}, \tag{4.1b}
\end{align*}
$$

where $f:[0, T] \rightarrow V^{*}$ is a given function and where the bilinear forms a and b satisfy the following assumption.

Assumption 4.1

(i) The bilinear form $a: V \times V \rightarrow \mathbb{R}$ is continuous, symmetric and satisfies the Gårding inequality

$$
\begin{equation*}
a(v, v)+c_{G}\|v\|_{H}^{2} \geqslant \alpha\|v\|_{V}^{2}, \quad v \in V \tag{4.2}
\end{equation*}
$$

for constants $c_{G} \geqslant 0$ and $\alpha>0$.
(ii) The bilinear form $b: V \times V \rightarrow \mathbb{R}$ is continuous and there is a constant $\rho_{\mathrm{qm}} \geqslant 0$ s.t. $b+\rho_{\mathrm{qm}} m$ is monotone, i.e.,

$$
b(v, v)+\rho_{\mathrm{qm}}\|v\|_{H}^{2} \geqslant 0, \quad v \in V
$$

Since the bilinear forms a and b induce operators $\mathscr{A}, \mathscr{B} \in \mathscr{L}\left(V, V^{*}\right)$, respectively, we can write (4.1) equivalently as the evolution equation

$$
\begin{equation*}
u^{\prime \prime}+\mathscr{B} u^{\prime}+\mathscr{A} u=f \quad \text { in } V^{*} \tag{4.3}
\end{equation*}
$$

supplemented by initial conditions $u(0)=u_{1}^{0}$ and $u^{\prime}(0)=u_{2}^{0}$.
Furthermore, we introduce the bilinear form

$$
\begin{equation*}
\widetilde{a}(w, v):=a(w, v)+c_{G} m(w, v), \quad w, v \in V, \tag{4.4}
\end{equation*}
$$

which is coercive on $V \times V$ due to (4.2), and define $\widetilde{V}=(V, \widetilde{a})$ as the Hilbert space equipped with \widetilde{a}. Note that the Gårding inequality implies

$$
\begin{equation*}
\|v\|_{H} \leqslant C_{H, V}\|v\|_{V} \leqslant C_{H, V} \alpha^{-1 / 2}\|v\|_{\tilde{V}}, \quad v \in \widetilde{V} \tag{4.5}
\end{equation*}
$$

4.2 Well-posedness of the continuous problem

Introducing $u_{1}=u$ and the velocity $u_{2}=u^{\prime}$, the second order problem (4.3) can be written as a first-order in time problem (2.1) with

$$
x(t)=\left[\begin{array}{l}
u_{1}(t) \tag{4.6a}\\
u_{2}(t)
\end{array}\right], \quad \mathscr{S}=\left[\begin{array}{cc}
0 & -\mathrm{I} \\
\mathscr{A} & \mathscr{B}
\end{array}\right], \quad g(t)=\left[\begin{array}{c}
0 \\
f(t)
\end{array}\right], \quad x^{0}=\left[\begin{array}{l}
u_{1}^{0} \\
u_{2}^{0}
\end{array}\right] .
$$

A suitable Gelfand triple for this evolution equation is given via

$$
\begin{equation*}
Y=\widetilde{V} \times V \quad \text { and } \quad X=\widetilde{V} \times H \tag{4.6b}
\end{equation*}
$$

equipped with their canonical inner products. In the following, we will refer to (2.1) with (4.6) as the first-order in time formulation of the second-order wave-type equation (4.3).

Variants of the following results can be found in the proof of (Showalter, 1994, Thm. VI.2.1). A complete proof is given in (Hipp, 2017, Lem. 6.2).

Lemma 4.2. Let Assumption 4.1 be satisfied. Then $\mathscr{S} \in \mathscr{L}\left(Y, Y^{*}\right)$ is quasi-monotone with

$$
\begin{equation*}
c_{\mathrm{qm}}=\frac{1}{2} c_{G} C_{H, V} \alpha^{-1 / 2}+\rho_{\mathrm{qm}} \tag{4.7}
\end{equation*}
$$

and maximal w.r.t. Y^{*}.
Expressing Theorem 2.4 in terms of (4.6) gives the following result.
Theorem 4.3. Let Assumption 4.1 be satisfied and assume that $u_{1}^{0}, u_{2}^{0} \in V$ satisfy $\mathscr{A} u_{1}^{0}+\mathscr{B} u_{2}^{0} \in H$ and that $f \in C^{1}([0, T] ; H)$ or $(f, \mathscr{B} f) \in C([0, T] ; V \times H)$. Then (4.3) has a unique solution $u \in C^{2}([0, T] ; H) \cap C^{1}([0, T] ; V)$ which satisfies $\mathscr{A} u+\mathscr{B} u^{\prime} \in C([0, T] ; H)$ and

$$
\left(\|u(t)\|_{\widetilde{V}}^{2}+\left\|u^{\prime}(t)\right\|_{H}^{2}\right)^{1 / 2} \leqslant e^{c_{q \mathrm{~m}} t}\left(\left(\left\|u_{1}^{0}\right\|_{\widetilde{V}}^{2}+\left\|u_{2}^{0}\right\|_{H}^{2}\right)^{1 / 2}+t\|f\|_{\infty, H}\right), \quad t \in[0, T]
$$

for c_{qm} from (4.7).
If further $\mathscr{B} \in \mathscr{L}(V, H)$, then we have $u \in C^{2}([0, T] ; H) \cap C^{1}([0, T] ; V) \cap C([0, T] ;[D(A)])$ where $D(A)=\{v \in V \mid \mathscr{A} v \in H\}$ and $A=\left.\mathscr{A}\right|_{D(A)}$.

Proof. The assumptions guarantee that \mathscr{S}, x^{0} and g from (4.6) are such that Theorem 2.4 applies. More precisely, \mathscr{S} is quasi-monotone due to Lemma 4.2, $x^{0}=\left(u_{1}^{0}, u_{2}^{0}\right) \in D(S)$, and, $g \in C^{1}([0, T] ; X)$ or $S g \in C([0, T] ; X)$. By Theorem 2.4, (2.1) has the unique solution x and we obtain from (4.6) that

$$
x \in C([0, T] ;[D(S)]) \cap C^{1}([0, T] ; \widetilde{V} \times H)
$$

where

$$
D(S)=\{y \in Y \mid \mathscr{S} y \in X\}=\left\{\left(v_{1}, v_{2}\right) \in \widetilde{V} \times V \mid \mathscr{A} v_{1}+\mathscr{B} v_{1} \in H\right\}
$$

Since $x=\left(u_{1}, u_{2}\right)$ and $u_{1}=u, u_{2}=u^{\prime}$, the stability estimate follows from (2.4) and we have $u^{\prime \prime}=u_{2}^{\prime} \in$ $C([0, T] ; H)$. Moreover, $S x \in C([0, T] ; X)$ implies $t \mapsto \mathscr{A} u(t)+\mathscr{B} u^{\prime}(t) \in C([0, T] ; H)$.

If $\mathscr{B} \in \mathscr{L}(V, H)$, then $D(S)=D(A) \times V$ and therefore $u \in C([0, T] ;[D(A)])$, which gives the second claim.
D. HIPP $E T A L$.

4.3 Space discretization

The aim of this section it to derive a priori estimates for non-conforming space discretizations of (4.1) in the finite dimensional vector space V_{h}, which determine the approximation $u_{h}:[0, T] \rightarrow V_{h}$ as the solution of

$$
\begin{gather*}
m_{h}\left(u_{h}^{\prime \prime}(t), v_{h}\right)+b_{h}\left(u_{h}^{\prime}(t), v_{h}\right)+a_{h}\left(u_{h}(t), v_{h}\right)=m_{h}\left(f_{h}(t), v_{h}\right) \quad \forall v_{h} \in V_{h} \tag{4.8a}\\
u_{h}(0)=u_{h, 1}^{0}, \quad u_{h}^{\prime}(0)=u_{h, 2}^{0} \tag{4.8b}
\end{gather*}
$$

Here $u_{h, 1}^{0}, u_{h, 2}^{0} \in V_{h}, f_{h}:[0, T] \rightarrow V_{h}$ and $m_{h}, b_{h}, a_{h}: V_{h} \times V_{h} \rightarrow \mathbb{R}$ are the discrete counterparts of u_{1}^{0}, u_{2}^{0}, f and m, b, a, respectively. Since we do not assume that $V_{h} \subset V$ this ansatz covers a wide range of non-conforming space discretizations. Analogously to Section 2.4, we assume that there exists a lift operator

$$
Q_{h}^{V}: V_{h} \rightarrow V
$$

which yields the lifted approximation $Q_{h}^{V} u_{h} \in V$ of the exact solution u of (4.1).
Stability For the space discretization (4.8) to be stable, we assume that m_{h} is the inner product of the Hilbert space $H_{h}:=\left(V_{h}, m_{h}\right)$ and induces the norm $\|\cdot\|_{m_{h}}$. In addition, our error analysis is based on the following properties of the space discretization.
ASSUMPTION 4.4 (Stability) The following conditions hold for $w_{h}, v_{h} \in V_{h}$.
(i) The bilinear form a_{h} is monotone and symmetric and there is a constant $0 \leqslant \widehat{c}_{G} \leqslant 1$ s.t.

$$
\begin{equation*}
\widetilde{a}_{h}\left(w_{h}, v_{h}\right):=a_{h}\left(w_{h}, v_{h}\right)+\widehat{c}_{G} m_{h}\left(w_{h}, v_{h}\right) \tag{4.9a}
\end{equation*}
$$

is positive definite and induces the norm

$$
\left\|v_{h}\right\|_{\tilde{a}_{h}}^{2}:=\widetilde{a}_{h}\left(v_{h}, v_{h}\right)
$$

(ii) There is a constant $C_{m_{h}, \widetilde{a}_{h}}>0$ independent of h s.t. $\left\|v_{h}\right\|_{m_{h}} \leqslant C_{m_{h}, \widetilde{a}_{h}}\left\|v_{h}\right\|_{\widetilde{a}_{h}}$.
(iii) There is a constant $\widehat{\rho}_{\mathrm{qm}} \geqslant 0$ s.t. the bilinear form $b_{h}+\widehat{\rho}_{\mathrm{qm}} m_{h}$ is monotone.
(iv) There are constants $C_{H} \geqslant c_{H}>0$ independent of h s.t.

$$
c_{H}\left\|Q_{h}^{V} v_{h}\right\|_{H} \leqslant\left\|v_{h}\right\|_{m_{h}} \leqslant C_{H}\left\|Q_{h}^{V} v_{h}\right\|_{H}
$$

(v) There are constants $C_{V} \geqslant c_{V}>0$ independent of h s.t.

$$
c_{V}\left\|Q_{h}^{V} v_{h}\right\|_{\tilde{V}} \leqslant\left\|v_{h}\right\|_{\widetilde{a}_{h}} \leqslant C_{V}\left\|Q_{h}^{V} v_{h}\right\|_{\tilde{V}}
$$

REMARK 4.5 If we choose $\widehat{c}_{G}=1$, then Assumption 4.4 (i) and Assumption 4.4 (ii) with $C_{m_{h}, \widetilde{a}_{h}}=1$ are always fulfilled. However, $\widehat{c}_{G}>0$ leads to exponential growth of the constants in t, while equations where $\widehat{c}_{G}=\widehat{\rho}_{\text {qm }}=0$, only exhibit linear growth, cf. Theorem 4.8. Therefore, smaller constants c_{G} are to be favored, since they lead to sharper bounds.

If Assumption 4.4 is satisfied then we write $\widetilde{V}_{h}:=\left(V_{h}, \widetilde{a}_{h}\right)$ for V_{h} equipped with the inner product \widetilde{a}_{h}. Furthermore, since $a_{h}: \widetilde{V}_{h} \times \widetilde{V}_{h} \rightarrow \mathbb{R}$ is monotone, it satisfies

$$
\begin{equation*}
\left|a_{h}\left(w_{h}, v_{h}\right)\right| \leqslant\left\|w_{h}\right\|_{\widetilde{a}_{h}}\left\|v_{h}\right\|_{\widetilde{a}_{h}}, \quad w_{h}, v_{h} \in \widetilde{V}_{h} \tag{4.10}
\end{equation*}
$$

by construction.

FORMULATION IN THE FRAMEWORK OF MONOTONE OPERATORS To write (4.8) as a differential equation, we define the operators

$$
\begin{array}{lll}
& A_{h}: H_{h} \rightarrow H_{h}, & m_{h}\left(A_{h} w_{h}, v_{h}\right)=a_{h}\left(w_{h}, v_{h}\right),
\end{array} \quad w_{h}, v_{h} \in V_{h}, ~ 子, ~ w_{h}, v_{h} \in V_{h} .
$$

Then we can express the variational problem (4.8) as the second-order differential equation

$$
u_{h}^{\prime \prime}(t)+B_{h} u_{h}^{\prime}(t)+A_{h} u_{h}(t)=f_{h}(t), \quad u_{h}(0)=u_{h, 1}^{0}, \quad u_{h}^{\prime}(0)=u_{h, 2}^{0}
$$

or, equivalently, as the first-order differential equation (2.7) with

$$
x_{h}=\left[\begin{array}{l}
u_{h} \tag{4.11a}\\
u_{h}^{\prime}
\end{array}\right], \quad S_{h}=\left[\begin{array}{cc}
0 & -\mathrm{I}_{V_{h}} \\
A_{h} & B_{h}
\end{array}\right], \quad g_{h}=\left[\begin{array}{c}
0 \\
f_{h}(t)
\end{array}\right], \quad x_{h}^{0}=\left[\begin{array}{l}
u_{h, 1}^{0} \\
u_{h, 2}^{0}
\end{array}\right]
$$

in the Hilbert space

$$
\begin{equation*}
X_{h}=\widetilde{V}_{h} \times H_{h} \tag{4.11b}
\end{equation*}
$$

endowed with the inner product

$$
\begin{equation*}
p_{h}\left(\left(w_{h, 1}, w_{h, 2}\right),\left(v_{h, 1}, v_{h, 2}\right)\right):=\widetilde{a}_{h}\left(w_{h, 1}, v_{h, 1}\right)+m_{h}\left(w_{h, 2}, v_{h, 2}\right) . \tag{4.11c}
\end{equation*}
$$

Finally, we define the lift operator $Q_{h}: X_{h} \rightarrow X$ as

$$
Q_{h}\left[\begin{array}{l}
w_{h, 1} \\
w_{h, 2}
\end{array}\right]:=\left[\begin{array}{l}
Q_{h}^{V} w_{h, 1} \\
Q_{h}^{V} w_{h, 2}
\end{array}\right] .
$$

Note that one can also choose two different lifts for the components $w_{h, 1}$ and $w_{h, 2}$. For the ease of presentation, we refrain from investigating this here.

Notation To use the result from Section 2 for the second-order wave equations, we need to write the operators from Section 2.4 componentwise. The components of the adjoint lift $Q_{h}^{*}=\operatorname{diag}\left(Q_{h}^{V *}, Q_{h}^{H *}\right)$ are characterized by

$$
\begin{aligned}
& Q_{h}^{H *}: H \rightarrow H_{h}, \quad m_{h}\left(Q_{h}^{H *} w, v_{h}\right)=m\left(u, Q_{h}^{V} v_{h}\right), \quad w \in H, v_{h} \in V_{h}, \\
& \text { and } \\
& Q_{h}^{V *}: V \rightarrow \widetilde{V}_{h} \\
& \widetilde{a}_{h}\left(Q_{h}^{V *} w, v_{h}\right)=\widetilde{a}\left(w, Q_{h}^{V} v_{h}\right), \\
& w \in V, v_{h} \in V_{h},
\end{aligned}
$$

and the components of the orthogonal projections $\Pi_{h}=\operatorname{diag}\left(\Pi_{h}^{V}, \Pi_{h}^{H}\right)$ by

$$
\begin{array}{rlrl}
m\left(\left(\mathrm{I}-\Pi_{h}^{H}\right) w, Q_{h}^{V} v_{h}\right) & =0, & w \in H, v_{h} \in V_{h}, \\
\text { and } & \widetilde{a}\left(\left(\mathrm{I}-\Pi_{h}^{V}\right) w, Q_{h}^{V} v_{h}\right) & =0, & \\
w \in V, v_{h} \in V_{h}
\end{array}
$$

The difference between the bilinear forms is denoted by

$$
\begin{array}{rlrl}
\Delta m\left(w_{h}, v_{h}\right) & :=m\left(Q_{h}^{V} w_{h}, Q_{h}^{V} v_{h}\right)-m_{h}\left(w_{h}, v_{h}\right), & & w_{h}, v_{h} \in V_{h}, \\
\text { and } & \Delta \widetilde{a}\left(w_{h}, v_{h}\right) & :=\widetilde{a}\left(Q_{h}^{V} w_{h}, Q_{h}^{V} v_{h}\right)-\widetilde{a}_{h}\left(w_{h}, v_{h}\right), & \\
w_{h}, v_{h} \in V_{h} .
\end{array}
$$

We define the reference operator $J_{h}=\operatorname{diag}\left(J_{h}^{V}, J_{h}^{H}\right)$ using the operators $J_{h}^{V}: Z_{1} \rightarrow V_{h}$ and $J_{h}^{H}: Z_{2} \rightarrow V_{h}$ on the Hilbert spaces $Z_{1} \hookrightarrow V$ and $Z_{2} \hookrightarrow H$. Finally, since norms on finite dimensional vector spaces are equivalent, there is an $\varepsilon_{h}>0$ s.t.

$$
\begin{equation*}
\varepsilon_{h}\left\|v_{h}\right\|_{\widetilde{a}_{h}} \leqslant\left\|v_{h}\right\|_{m_{h}}, \quad v_{h} \in V_{h} . \tag{4.12}
\end{equation*}
$$

REMARK 4.6 If X_{h} is a finite element space based on a mesh \mathscr{T}_{h} of Ω with mesh width h and the discretization satisfies $\|\cdot\|_{m_{h}} \sim\|\cdot\|_{L^{2}(\Omega)}$ and $\|\cdot\|_{\widetilde{a}_{h}} \sim\|\cdot\|_{H^{1}(\Omega)}$, then we have $\varepsilon_{h}^{-1} \leqslant C h^{-1}$ due to the inverse estimate from (Brenner \& Scott, 2008, Lem. 4.5.3).

4.4 A priori error bounds

As a first step towards an a priori error bound, we estimate the remainder operator R_{h} from (2.18a).
Lemma 4.7. Let $z=\left(w_{1}, w_{2}\right) \in\left(Z_{1} \times Z_{2}\right) \cap(V \times V)$ s.t. $\mathscr{A} w_{1}+\mathscr{B} w_{2} \in H$. If Assumption 4.4 is satisfied then the remainder term is bounded by

$$
\begin{aligned}
&\left\|R_{h} z\right\|_{X_{h}} \leqslant C\left(\left\|\Delta \widetilde{a}\left(J_{h}^{H} w_{2}\right)\right\|_{\tilde{V}_{h}^{*}}+\left\|\Delta \widetilde{a}\left(J_{h}^{H} w_{1}\right)\right\|_{\widetilde{V}_{h}^{*}}+\left\|\Delta m\left(J_{h}^{H} w_{1}\right)\right\|_{H_{h}^{*}}\right. \\
&+\left\|\left(\mathrm{I}-Q_{h}^{V} J_{h}^{H}\right) w_{1}\right\|_{\tilde{V}}+\left\|\left(\mathrm{I}-Q_{h}^{V} J_{h}^{H}\right) w_{2}\right\|_{\widetilde{V}}+\varepsilon_{h}^{-1}\left\|\left(Q_{h}^{V *}-J_{h}^{V}\right) w_{1}\right\|_{\widetilde{a}_{h}} \\
&\left.+\max _{\left\|v_{h}\right\|_{m_{h}}=1}\left|b\left(w_{2}, Q_{h}^{V} v_{h}\right)-b_{h}\left(J_{h}^{H} w_{2}, v_{h}\right)\right|\right) .
\end{aligned}
$$

Proof. Recall that p and p_{h} denote the inner products on X and X_{h} respectively, that

$$
R_{h}\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{c}
-\left(Q_{h}^{V *}-J_{h}^{H}\right) w_{2} \\
Q_{h}^{H *}\left(\mathscr{A} w_{1}+\mathscr{B} w_{2}\right)-\left(A_{h} J_{h}^{V} w_{1}+B_{h} J_{h}^{H} w_{2}\right)
\end{array}\right]
$$

by $R_{h}=Q_{h}^{*} S-S_{h} J_{h}$ with (4.6) and (4.11), and that

$$
\begin{equation*}
\left\|R_{h} z\right\|_{X_{h}}=\max _{\left\|y_{h}\right\|_{X_{h}}=1} p_{h}\left(R_{h} z, y_{h}\right), \quad z \in Z \cap Y \tag{4.13}
\end{equation*}
$$

Let $y_{h}=\left(v_{h, 1}, v_{h, 2}\right) \in X_{h}$ with $\left\|y_{h}\right\|_{X_{h}}^{2}=\left\|v_{h, 1}\right\|_{\tilde{a}_{h}}^{2}+\left\|v_{h, 2}\right\|_{m_{h}}^{2}=1$. Then we have for the right hand side

$$
\begin{aligned}
p_{h}\left(R_{h} x, y_{h}\right)= & -\widetilde{a}_{h}\left(\left(Q_{h}^{V *}-J_{h}^{H}\right) w_{2}, v_{h, 1}\right)+m_{h}\left(Q_{h}^{H *}\left(\mathscr{A} w_{1}+\mathscr{B}_{2}\right)-\left(A_{h} J_{h}^{V} w_{1}+B_{h} J_{h}^{H} w_{2}\right), v_{h, 2}\right) \\
= & -\widetilde{a}_{h}\left(\left(Q_{h}^{V *}-J_{h}^{H}\right) w_{2}, v_{h, 1}\right)+\left(a\left(w_{1}, Q_{h}^{V} v_{h, 2}\right)-a_{h}\left(J_{h}^{V} w_{1}, v_{h, 2}\right)\right) \\
& +\left(b\left(w_{2}, Q_{h}^{V} v_{h, 2}\right)-b_{h}\left(J_{h}^{H} w_{2}, v_{h, 2}\right)\right)
\end{aligned}
$$

For the first term, we use the Cauchy-Schwarz inequality for \widetilde{a}_{h} and $\left\|v_{h, 1}\right\|_{\tilde{a}_{h}} \leqslant 1$ to obtain

$$
\widetilde{a}_{h}\left(\left(Q_{h}^{V *}-J_{h}^{H}\right) w_{2}, v_{h}\right) \leqslant\left\|\left(Q_{h}^{V *}-J_{h}^{H}\right) w_{2}\right\|_{\tilde{a}_{h}}\left\|v_{h}\right\|_{\widetilde{a}_{h}} \leqslant c_{V}^{-1}\left\|\left(\mathrm{I}-Q_{h} J_{h}^{H}\right) w_{2}\right\|_{\tilde{V}}+\left\|\Delta \widetilde{a}\left(J_{h}^{H} w_{2}\right)\right\|_{\widetilde{v}_{h}^{*}}
$$

where we applied Lemma 2.12 with $X_{h}=\widetilde{V}_{h}$ in the second inequality.
For the upper bound of the second term, we first add and subtract $Q_{h}^{V *}$ and then rewrite a and a_{h} in terms of \widetilde{a} and \widetilde{a}_{h} using (4.4) and (4.9a), respectively. The first difference then vanishes due to the
definition of $Q_{h}^{V *}$, while applying (4.10) and the Cauchy-Schwarz inequality for m_{h} to the remaining terms yields

$$
\begin{aligned}
& a\left(w_{1}, Q_{h}^{V} v_{h, 2}\right)-a_{h}\left(J_{h}^{V} w_{1}, v_{h, 2}\right) \\
& \leqslant \\
& \leqslant a\left(w_{1}, Q_{h}^{V} v_{h, 2}\right)-a_{h}\left(Q_{h}^{V *} w_{1}, v_{h, 2}\right)+a_{h}\left(\left(Q_{h}^{V *}-J_{h}^{V}\right) w_{1}, v_{h, 2}\right) \\
& \leqslant \\
& \quad\left(\widetilde{a}\left(w_{1}, Q_{h}^{V} v_{h, 2}\right)-\widetilde{a}_{h}\left(Q_{h}^{V *} w_{1}, v_{h, 2}\right)\right)+\left(c_{G} m\left(w_{1}, Q_{h}^{V} v_{h, 2}\right)-\widehat{c}_{G} m_{h}\left(Q_{h}^{V *} w_{1}, v_{h, 2}\right)\right) \\
& \quad \quad+\left\|\left(Q_{h}^{V *}-J_{h}^{V}\right) w_{1}\right\|_{\widetilde{a}_{h}}\left\|v_{h, 2}\right\|_{\widetilde{a}_{h}} \\
& \leqslant \max \left\{c_{G}, \widehat{c}_{G}\right\}\left|m_{h}\left(\left(Q_{h}^{V *}-Q_{h}^{H *}\right) w_{1}, v_{h, 2}\right)\right|+\left\|\left(Q_{h}^{V *}-J_{h}^{V}\right) w_{1}\right\|_{\widetilde{a}_{h}}\left\|v_{h, 2}\right\|_{\widetilde{a}_{h}} \\
& \leqslant \max \left\{c_{G}, \widehat{c}_{G}\right\}\left\|\left(Q_{h}^{V *}-Q_{h}^{H *}\right) w_{1}\right\|_{m_{h}}+\varepsilon_{h}^{-1}\left\|\left(Q_{h}^{V *}-J_{h}^{V}\right) w_{1}\right\|_{\widetilde{a}_{h}} .
\end{aligned}
$$

Here we used (4.12) and $\left\|v_{h, 2}\right\|_{m_{h}} \leqslant 1$ in the last step. To further estimate the first term, we split it into two parts, use Assumption 4.4 (ii) for the first one, and then employ the estimate from Lemma 2.12 with $X_{h}=\widetilde{V}_{h}$ and $X_{h}=H_{h}$. This yields

$$
\begin{aligned}
&\left\|\left(Q_{h}^{V *}-Q_{h}^{H *}\right) w_{1}\right\|_{m_{h}} \\
& \leqslant\left\|\left(Q_{h}^{V *}-J_{h}^{H}\right) w_{1}\right\|_{m_{h}}+\left\|\left(J_{h}^{H}-Q_{h}^{H *}\right) w_{1}\right\|_{m_{h}} \\
& \leqslant C_{m_{h}, \widetilde{a}_{h}}\left\|\left(Q_{h}^{V *}-J_{h}^{H}\right) w_{1}\right\|_{\widetilde{a}_{h}}+\left\|\left(J_{h}^{H}-Q_{h}^{H *}\right) w_{1}\right\|_{m_{h}} \\
& \leqslant C_{m_{h}, \widetilde{a}_{h}}\left(c_{V}^{-1}\left\|\left(\mathrm{I}-Q_{h}^{V} J_{h}^{H}\right) w_{1}\right\|_{\widetilde{V}}+\left\|\Delta \widetilde{a}\left(J_{h}^{H} w_{1}\right)\right\|_{\widetilde{V}_{h}^{*}}\right)+c_{H}^{-1}\left\|\left(\mathrm{I}-Q_{h}^{V} J_{h}^{H}\right) w_{1}\right\|_{H}+\left\|\Delta m\left(J_{h}^{H} w_{1}\right)\right\|_{H_{h}^{*}}, \\
& \leqslant\left(C_{m_{h}, \widetilde{a}_{h}} c_{V}^{-1}+C_{H, V} c_{H}^{-1} \alpha^{-1 / 2}\right)\left\|\left(\mathrm{I}-Q_{h}^{V} J_{h}^{H}\right) w_{1}\right\|_{V}+\left\|\Delta \widetilde{a}\left(J_{h}^{H} w_{1}\right)\right\|_{\widetilde{V}_{h}^{*}}+\left\|\Delta m\left(J_{h}^{H} w_{1}\right)\right\|_{H_{h}^{*}},
\end{aligned}
$$

where the last estimate follows from (4.5).
Inserting the above estimates in (4.13) and collecting terms yields the desired bound.
To derive an a priori error bound for non-conforming space discretizations of second-order wavetype equations, we only need to combine the general error bound for monotone evolution equations from Theorem 2.20 with the estimate of the remainder term. Since the error is bounded solely in terms of data, interpolation, and conformity errors, it directly leads to convergence rates for concrete applications. For this purpose, we introduce the continuous interpolation operator $I_{h}: Z_{\text {ip }} \rightarrow V_{h}$ which is defined on a continuously embedded Hilbert space $Z_{\text {ip }}$ in V.

THEOREM 4.8. Let the assumptions of Theorem 4.3 be fulfilled and assume that the unique solution u of (4.1) satisfies $u \in C^{2}\left([0, T] ; Z_{i p}\right)$. Furthermore, let x_{h} be the solution of (4.8) and let Assumption 4.4 be fulfilled. Then the error of the lifted semi-discrete solution $Q_{h}^{V} u_{h}$ is bounded by

$$
\left\|Q_{h}^{V} u_{h}(t)-u(t)\right\|_{\tilde{V}}+\left\|Q_{h}^{V} u_{h}^{\prime}(t)-u^{\prime}(t)\right\|_{H} \leqslant C e^{\widehat{c}_{\mathrm{qm}} t}(1+t)\left(\varepsilon_{\mathrm{data}}+\varepsilon_{\mathrm{ip}}+\varepsilon_{\mathrm{forms}}+\varepsilon_{\Delta b}\right)
$$

for $t \in[0, T]$, where C is independent of h and $t, \widehat{c}_{\mathrm{qm}}=\widehat{c}_{G} C_{m_{h}, \widetilde{a}_{h}} / 2+\widehat{\rho}_{\mathrm{qm}}$, and

$$
\begin{align*}
\varepsilon_{\mathrm{data}} & :=\left\|u_{h, 1}^{0}-Q_{h}^{V *} u_{1}^{0}\right\|_{\widetilde{a}_{h}}+\left\|u_{h, 2}^{0}-I_{h} u_{2}^{0}\right\|_{m_{h}}+\left\|f_{h}-Q_{h}^{H *} f\right\|_{\infty, H_{h}}, \tag{4.14a}\\
\varepsilon_{\mathrm{ip}} & :=\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u\right\|_{\infty, \widetilde{V}}+\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u^{\prime}\right\|_{\infty, \widetilde{V}}+\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u^{\prime \prime}\right\|_{\infty, H}, \tag{4.14b}\\
\varepsilon_{\text {forms }} & :=\left\|\Delta \widetilde{a}\left(I_{h} u\right)\right\|_{\infty, \widetilde{V}_{h}^{*}}+\left\|\Delta m\left(I_{h} u\right)\right\|_{\infty, H_{h}^{*}}+\left\|\Delta \widetilde{a}\left(I_{h} u^{\prime}\right)\right\|_{\infty, \widetilde{V}_{h}^{*}}+\left\|\Delta m\left(I_{h} u^{\prime \prime}\right)\right\|_{\infty, H_{h}^{*}}, \tag{4.14c}\\
\varepsilon_{\Delta b} & :=\left\|\max _{\left\|v_{h}\right\|_{m_{h}}=1} \mid b\left(u^{\prime}, Q_{h}^{V} v_{h}\right)-b_{h}\left(I_{h} u^{\prime}, v_{h}\right)\right\| \|_{\infty, \mathbb{R}} . \tag{4.14d}
\end{align*}
$$

Proof. Theorem 2.9 applies since (2.7) with (4.11) is stable on $X_{h}=\widetilde{V}_{h} \times H_{h}$ in the sense of Assumption 2.7: By Assumption 4.4, m_{h}, b_{h}, and a_{h} have the same properties as their continuous counterparts. Hence, Lemma 4.2 applied to S_{h} yields that S_{h} is maximal and quasi-monotone with $\widehat{c}_{\text {qm }}=$ $\widehat{c}_{G} C_{m_{h}, \widetilde{h}_{h}} / 2+\widehat{\rho}_{\text {qm }}$. Moreover, Assumptions 4.4 (iv) and 4.4 (v) imply that the lift is stable in the sense of 2.7 (ii).

Thus the error bound (2.20) holds for $x=\left(u, u^{\prime}\right)$ and $x_{h}=\left(u_{h}, u_{h}^{\prime}\right)$ where u is the solution of (4.1) and u_{h} is the solution of (4.8). Since the left-hand side of (2.20) is bounded from below by

$$
\left\|Q_{h}^{V} u_{h}-u\right\|_{\tilde{V}}+\left\|Q_{h}^{V} u_{h}^{\prime}-u^{\prime}\right\|_{H} \leqslant \sqrt{2}\left\|Q_{h} x_{h}-x\right\|_{X}
$$

it remains to provide an upper bound for the terms on the right-hand side of (2.20). First, we choose $J_{h}^{V}=Q_{h}^{V *} \in \mathscr{L}\left(V, V_{h}\right)$ and $J_{h}^{H}=I_{h} \in \mathscr{L}\left(Z_{\mathrm{ip}}, V_{h}\right)$. Then we have $E_{\text {data }} \leqslant \sqrt{2} \varepsilon_{\text {data }}$ for $E_{\text {data }}$ defined in (2.21). Second, we obtain by Lemma 2.12 with $X=H$

$$
\left\|\left(Q_{h}^{*}-J_{h}\right) x^{\prime}\right\|_{X_{h}}=\left\|\left(Q_{h}^{H *}-I_{h}\right) u^{\prime \prime}\right\|_{m_{h}} \leqslant c_{H}^{-1}\left\|\left(I-Q_{h}^{V} I_{h}\right) u^{\prime \prime}\right\|_{H}+\left\|\Delta m\left(I_{h} u^{\prime \prime}\right)\right\|_{H_{h}^{*}}
$$

and therefore $\left\|\left(Q_{h}^{*}-J_{h}\right) x^{\prime}\right\|_{X_{h}} \leqslant C\left(\varepsilon_{\text {ip }}+\varepsilon_{\text {forms }}\right)$. Third, we apply Lemma 4.7 to $\left\|R_{h} x\right\|_{X_{h}}$. Since we chose $J_{h}^{V}=Q_{h}^{V *}$ and $J_{h}^{H}=I_{h}$, the estimate simplifies to

$$
\begin{aligned}
&\left\|R_{h} x\right\|_{X_{h}} \leqslant C\left(\left\|\Delta \widetilde{a}\left(I_{h} u^{\prime}\right)\right\|_{\widetilde{V}_{h}^{*}}+\left\|\Delta \widetilde{a}\left(I_{h} u\right)\right\|_{\widetilde{v}_{h}^{*}}+\left\|\Delta m\left(I_{h} u\right)\right\|_{H_{h}^{*}}\right. \\
&\left.+\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u\right\|_{\widetilde{V}}+\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u^{\prime}\right\|_{\widetilde{V}}+\max _{\left\|v_{h}\right\|_{m_{h}}=1}\left|b\left(u^{\prime}, Q_{h}^{V} v_{h}\right)-b_{h}\left(I_{h} u^{\prime}, v_{h}\right)\right|\right)
\end{aligned}
$$

Hence, $\left\|R_{h} x\right\|_{\infty, X_{h}} \leqslant C\left(\varepsilon_{\mathrm{ip}}+\varepsilon_{\text {forms }}+\varepsilon_{\Delta b}\right)$. Fourth, Assumption 4.4 (v) and Lemma 2.12 with $X=\widetilde{V}$ yield

$$
\begin{aligned}
\left\|\left(\mathrm{I}-Q_{h}^{V} Q_{h}^{V *}\right) u\right\|_{\tilde{V}} & \leqslant\left\|\left(I-Q_{h}^{V} I_{h}\right) u\right\|_{\widetilde{V}}+c_{V}^{-1}\left\|\left(Q_{h}^{V *}-I_{h}\right) u\right\|_{\widetilde{a}_{h}} \\
& \leqslant\left(1+c_{V}^{-2}\right)\left\|\left(I-Q_{h}^{V} I_{h}\right) u\right\|_{\widetilde{V}}+c_{V}^{-1}\left\|\Delta \widetilde{a}\left(I_{h} u\right)\right\|_{\widetilde{V}_{h}^{*}}
\end{aligned}
$$

which implies that the error of the reference solution $Q_{h} J_{h} x$ is bounded by

$$
\left\|\left(\mathrm{I}-Q_{h} J_{h}\right) x\right\|_{X} \leqslant\left\|\left(\mathrm{I}-Q_{h}^{V} Q_{h}^{V *}\right) u\right\|_{\tilde{V}}+\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u^{\prime}\right\|_{H} \leqslant C\left(\varepsilon_{\mathrm{ip}}+\varepsilon_{\text {forms }}\right)
$$

We obtain the final estimate after collecting terms.
REMARK 4.9 In some situations, it is more practical to further estimate some terms of the error bound.
(i) To compare the discrete data with the interpolated exact data (instead of $Q_{h}^{V *} u_{1}^{0}$ and $Q_{h}^{H *} f$ as in $\varepsilon_{\text {data }}$, we apply Lemma 2.12 with $X_{h}=\widetilde{V}_{h}$ which shows

$$
\begin{aligned}
\left\|u_{h, 1}^{0}-Q_{h}^{V *} u_{1}^{0}\right\|_{\widetilde{a}_{h}} & \leqslant\left\|u_{h, 1}^{0}-I_{h} u_{1}^{0}\right\|_{\widetilde{a}_{h}}+\left\|\left(I_{h}-Q_{h}^{V *}\right) u_{1}^{0}\right\|_{\widetilde{a}_{h}} \\
& \leqslant\left\|u_{h, 1}^{0}-I_{h} u_{1}^{0}\right\|_{\widetilde{a}_{h}}+c_{V}^{-1}\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u_{1}^{0}\right\|_{\widetilde{V}}+\left\|\Delta \widetilde{a}\left(I_{h} u_{1}^{0}\right)\right\|_{\widetilde{V}_{h}^{*}}, \quad u_{1}^{0} \in Z_{\mathrm{ip}}
\end{aligned}
$$

Analogously, we obtain

$$
\left\|f_{h}-Q_{h}^{H *} f\right\|_{\infty, H_{h}} \leqslant\left\|f_{h}-I_{h} f\right\|_{\infty, H_{h}}+c_{H}^{-1}\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) f\right\|_{\infty, H}+\left\|\Delta m\left(I_{h} f\right)\right\|_{\infty, H_{h}^{*}}
$$

if $f(t) \in Z_{\text {ip }}$ for $t \in[0, T]$.
(ii) If $\mathscr{B} \in \mathscr{L}(\widetilde{V}, H)$ then $\varepsilon_{\Delta b}$ is bounded by an interpolation and a geometric error which contains

$$
\Delta b\left(w_{h}, v_{h}\right):=b\left(Q_{h}^{V} w_{h}, Q_{h}^{V} v_{h}\right)-b_{h}\left(w_{h}, v_{h}\right)
$$

To see this, we apply Assumption 4.4 (iv) and obtain for $u^{\prime} \in \widetilde{V}$ and $v_{h} \in V_{h}$

$$
\begin{aligned}
\left|b\left(u^{\prime}, Q_{h}^{V} v_{h}\right)-b_{h}\left(I_{h} u^{\prime}, v_{h}\right)\right| & \leqslant\left|b\left(\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u^{\prime}, Q_{h}^{V} v_{h}\right)\right|+\left|b\left(Q_{h}^{V} I_{h} u^{\prime}, Q_{h}^{V} v_{h}\right)-b_{h}\left(I_{h} u^{\prime}, v_{h}\right)\right| \\
& \leqslant\left|\left\langle\mathscr{B}\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u^{\prime}, Q_{h}^{V} v_{h}\right\rangle_{V}\right|+\left|\Delta b\left(I_{h} u^{\prime}, v_{h}\right)\right| \\
& \leqslant\|\mathscr{B}\|_{H \leftarrow \widetilde{V}}\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u^{\prime}\right\|_{\tilde{V}}\left\|Q_{h}^{V} v_{h}\right\|_{H}+\left|\Delta b\left(I_{h} u^{\prime}, v_{h}\right)\right| \\
& \leqslant\|\mathscr{B}\|_{H \leftarrow \widetilde{V}}\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u^{\prime}\right\|_{\widetilde{V}} c_{H}^{-1}\left\|v_{h}\right\|_{m_{h}}+\left|\Delta b\left(I_{h} u^{\prime}, v_{h}\right)\right| .
\end{aligned}
$$

Therefore, $\varepsilon_{\Delta b}$ is bounded by

$$
\varepsilon_{\Delta b} \leqslant C\left(\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) u^{\prime}\right\|_{\infty, \widetilde{V}}+\left\|\Delta b\left(I_{h} u^{\prime}\right)\right\|_{\infty, H_{h}^{*}}\right) .
$$

By Definition 2.5 the discretization (4.8) is conforming, if

$$
V_{h} \subset V, \quad Q_{h}^{V}=\mathrm{I}, \quad \Delta m=0, \quad \Delta b=0, \quad \Delta a=0
$$

For conforming discretizations we state an error bound which is independent of $u^{\prime \prime}$.
Corollary 4.10. Let (4.8) be a conforming discretization and consider the situation from Theorem 4.8. Then the semi-discrete solution u_{h} satisfies

$$
\left\|u_{h}(t)-u(t)\right\|_{\tilde{V}}+\left\|u_{h}^{\prime}(t)-u^{\prime}(t)\right\|_{H} \leqslant C e^{c_{\mathrm{qm}} t}(1+t)\left(\widetilde{\varepsilon}_{\mathrm{data}}+\widetilde{\varepsilon}_{\mathrm{ip}}+\widetilde{\varepsilon}_{b}\right)
$$

for $t \in[0, T]$, where C is independent of h and $t, c_{q \mathrm{qm}}=c_{G} C_{H, V} / 2+\rho_{\mathrm{qm}}$,

$$
\begin{aligned}
\widetilde{\varepsilon}_{\mathrm{data}} & :=\left\|u_{h, 1}^{0}-\Pi_{h}^{V} u_{1}^{0}\right\|_{\widetilde{a}_{h}}+\left\|u_{h, 2}^{0}-\Pi_{h}^{H} u_{2}^{0}\right\|_{m_{h}}+\left\|f_{h}-\Pi_{h}^{H} f\right\|_{\infty, H_{h}}, \\
\widetilde{\varepsilon}_{\text {ip }} & :=\left\|\left(\mathrm{I}-I_{h}\right) u\right\|_{\infty, \widetilde{V}^{\prime}}+\varepsilon_{h}^{-1}\left\|\left(\mathrm{I}-I_{h}\right) u\right\|_{\infty, H}+\left\|\left(\mathrm{I}-I_{h}\right) u^{\prime}\right\|_{\infty, \widetilde{V}^{\prime}}+\varepsilon_{h}^{-1}\left\|\left(\mathrm{I}-I_{h}\right) u^{\prime}\right\|_{\infty, H}, \\
\widetilde{\varepsilon}_{b} & :=\left\|b\left(\left(\mathrm{I}-\Pi_{h}^{H}\right) u^{\prime}\right)\right\|_{\infty, H_{h}^{*}}
\end{aligned}
$$

and ε_{h} is defined in (4.12).
Proof. In comparison to the previous proof, there are only three changes. First, we have $\widehat{c}_{\mathrm{qm}}=c_{\mathrm{qm}}$, since $\Delta m=\Delta b=\Delta a=0$. Second, we choose $J_{h}=\Pi_{h}=Q_{h}^{*}$ so that Remark 2.10 applies. Third, since $Q_{h}^{H *}=\Pi_{h}^{H}$ and $Q_{h}^{V *}=\Pi_{h}^{V}$, the estimate from Lemma 4.7 reads

$$
\begin{aligned}
\left\|R_{h} x\right\|_{X_{h}} & \leqslant C\left(\left\|\left(\mathrm{I}-\Pi_{h}^{H}\right) u\right\|_{\tilde{V}}+\left\|\left(\mathrm{I}-\Pi_{h}^{H}\right) u^{\prime}\right\|_{\tilde{V}}+\max _{\left\|v_{h}\right\|_{m_{h}}=1}\left|b\left(u^{\prime}, v_{h}\right)-b_{h}\left(\Pi_{h}^{H} u^{\prime}, v_{h}\right)\right|\right) \\
& \leqslant C\left(\left\|\left(\mathrm{I}-\Pi_{h}^{H}\right) u\right\|_{\tilde{V}}+\left\|\left(\mathrm{I}-\Pi_{h}^{H}\right) u^{\prime}\right\|_{\tilde{V}}+\max _{\left\|v_{h}\right\|_{m_{h}}=1}\left|b\left(\left(\mathrm{I}-\Pi_{h}^{H}\right) u^{\prime}, v_{h}\right)\right|\right)
\end{aligned}
$$

To further bound the two terms with H-orthogonal projection errors in the \widetilde{V}-norm, we use (3.5) with $X=H$ and $Y=\widetilde{V}$ and the best approximation property of Π_{h}^{H}. This yields

$$
\left\|\left(\mathrm{I}-\Pi_{h}^{H}\right) w\right\|_{\tilde{V}} \leqslant\left\|\left(\mathrm{I}-I_{h}\right) w\right\|_{\tilde{V}}+2 \varepsilon_{h}^{-1}\left\|\left(\mathrm{I}-I_{h}\right) w\right\|_{H}, \quad w \in Z_{\mathrm{ip}}
$$

We apply this estimate for $w=u$ and $w=u^{\prime}$ in the above bound of the remainder term. For the final bound, we estimate the orthogonal projection error $\left\|\left(\mathrm{I}-\Pi_{h}\right) x\right\|_{X}$ by interpolation errors and collect terms.

4.5 Example: Finite elements for the acoustic wave equation

In this example, we consider the acoustic wave equation with homogeneous Dirichlet boundary conditions and its space discretization using linear Lagrange finite elements with mass lumping, cf. (Cohen, 2002, Chapters 11-13). The aim is to show that our general analysis provides the same order of convergence as in the literature (Dupont (1973), Baker (1976), and Baker \& Dougalis (1976)). However, our analysis allows to account for errors resulting from numerical quadrature for mass lumping in a simple way.

We seek the solution $u:[0, T] \times \Omega \rightarrow \mathbb{R}$ of

$$
\begin{align*}
u_{t t}-\operatorname{div}\left(c_{\Omega} \nabla u\right) & =f & & \text { in } \Omega, \tag{4.15a}\\
u(t) & =0 & & \text { on } \Gamma, \tag{4.15b}\\
u(0)=u_{1}^{0}, \quad u_{t}(0) & =u_{2}^{0} & & \text { in } \Omega . \tag{4.15c}
\end{align*}
$$

Here, f is a given source term, $c_{\Omega} \in L^{\infty}(\Omega)^{d \times d}$ models the wave speed, and Ω is polygonal. We assume that $c_{\Omega}(\mathrm{x}), \mathrm{x} \in \Omega$ is symmetric, and that there are constants $c_{\Omega}^{+} \geqslant c_{\Omega}^{-}>0$ s.t.

$$
c_{\Omega}^{-}\|\xi\|^{2} \leqslant c_{\Omega}(\mathrm{x}) \xi \cdot \xi \leqslant c_{\Omega}^{+}\|\xi\|^{2} \quad \text { for a.e. } \mathrm{x} \in \Omega \text { and all } \xi \in \mathbb{R}^{d} .
$$

We can write the variational formulation of (4.15) in the form of (4.1) by making the following identifications. For the functional spaces we set $V=H_{0}^{1}(\Omega)$ and $H=L^{2}(\Omega)$. As usual, the bilinear form a is given by

$$
a(u, v):=\int_{\Omega} c_{\Omega} \nabla u \cdot \nabla v \mathrm{dx} \quad u, v \in V
$$

and b vanishes. Due to the Poincaré inequality, Assumption 4.1 holds with $c_{G}=0$ and we have $\widetilde{a}=a$. Hence we can apply Theorem 4.3 which yields for suitable u_{1}^{0}, u_{2}^{0}, and f the existence of a unique solution of (4.15) with

$$
\left.u \in C^{2}\left([0, T] ; L^{2}(\Omega)\right) \cap C^{1}\left([0, T] ; H_{0}^{1}(\Omega)\right)\right) \cap C([0, T] ;[D(A)])
$$

where

$$
D(A)=\left\{u \in H_{0}^{1}(\Omega) \mid \operatorname{div}\left(c_{\Omega} \nabla u\right) \in L^{2}(\Omega)\right\} .
$$

For the spatial discretization we restrict us to linear finite elements for this exposition. However, higher order elements can also be treated without further difficulties. Assume that the mesh \mathscr{T}_{h} is a triangulation of Ω s.t. the computational domain satisfies $\Omega_{h}=\Omega$. Then the space of linear finite elements V_{h} on \mathscr{T}_{h} is a subspace of V and the lift operator $Q_{h}^{V}=\mathrm{I}$ is trivial.

First, we study finite elements with exact integration. This means that we choose $m_{h}=m$ as the standard $L^{2}(\Omega)$ inner product and $a_{h}=a$. Hence Assumption 4.4 holds trivially since $\Delta m=\Delta \widetilde{a}=0$ and Corollary 4.10 implies

$$
\begin{aligned}
& \left\|u_{h}(t)-u(t)\right\|_{\tilde{V}}+\left\|u_{h}^{\prime}(t)-u^{\prime}(t)\right\|_{H} \\
& \quad \leqslant C(1+t)\left(\left\|\left(\mathrm{I}-I_{h}\right) u\right\|_{\infty, \tilde{V}}+\varepsilon_{h}^{-1}\left\|\left(\mathrm{I}-I_{h}\right) u\right\|_{\infty, H}+\left\|\left(\mathrm{I}-I_{h}\right) u^{\prime}\right\|_{\infty, \tilde{V}}+\varepsilon_{h}^{-1}\left\|\left(\mathrm{I}-I_{h}\right) u^{\prime}\right\|_{\infty, H}\right),
\end{aligned}
$$

if $\widetilde{\varepsilon}_{\text {data }}=0$. To obtain a convergence rate, we use that the error of the nodal interpolation operator I_{h} is bounded by

$$
\left\|\left(\mathrm{I}-I_{h}\right) \varphi\right\|_{H}+h\left\|\left(\mathrm{I}-I_{h}\right) \varphi\right\|_{\tilde{V}} \leqslant C h^{2}|\varphi|_{H^{2}(\Omega)}, \quad \varphi \in H^{2}(\Omega),
$$

cf. (Brenner \& Scott, 2008, Sect. 4.4), and that $\varepsilon_{h}^{-1} \leqslant C h^{-1}$ by inverse inequalities. Overall, we find that the difference in the energy norm between the exact solution u of (4.15) and its corresponding FEM approximation u_{h} scales like h, if $u \in C^{1}\left([0, T] ; H^{2}(\Omega)\right)$.

We next study the effect of numerical integration. The main difference to exact integration is, that now m_{h} and a_{h} differ from m and a, respectively. In this case, we apply Theorem 4.8 which yields

$$
\begin{aligned}
&\left\|u_{h}(t)-u(t)\right\|_{\widetilde{V}}+\left\|u_{h}^{\prime}(t)-u^{\prime}(t)\right\|_{H} \\
& \leqslant C(1+t)\left(\left\|\left(\mathrm{I}-I_{h}\right) u\right\|_{\infty, \widetilde{V}}+\left\|\left(\mathrm{I}-I_{h}\right) u^{\prime}\right\|_{\infty, \widetilde{V}}+\left\|\left(\mathrm{I}-I_{h}\right) u^{\prime \prime}\right\|_{\infty, H}\right. \\
&\left.+\left\|\Delta \widetilde{a}\left(I_{h} u\right)\right\|_{\infty, \widetilde{V}_{h}^{*}}+\left\|\Delta m\left(I_{h} u\right)\right\|_{\infty, H_{h}^{*}}+\left\|\Delta \widetilde{a}\left(I_{h} u^{\prime}\right)\right\|_{\infty, \widetilde{V}_{h}^{*}}+\left\|\Delta m\left(I_{h} u^{\prime \prime}\right)\right\|_{\infty, H_{h}^{*}}\right),
\end{aligned}
$$

if $\varepsilon_{\mathrm{data}}=0$. Hence it remains to quantify the differences in the bilinear form. For example in the above setting one can use the d-dimensional trapezoidal rule to approximate the integrals. More precisely, let $\left\{\mathrm{x}_{K, j}\right\}_{j=1}^{d+1}$ be vertices of the element $K \in \mathscr{T}_{h}$. Then m_{h} and a_{h} are given by the quadrature formulas

$$
m_{h}(v, w)=\sum_{K \in \mathscr{T}_{h}} \sum_{j=1}^{d+1} \frac{|K|}{d+1} v\left(\mathrm{x}_{K, j}\right) w\left(\mathrm{x}_{K, j}\right)
$$

and respectively

$$
\widetilde{a}_{h}(v, w)=\sum_{K \in \mathscr{T}_{h}} \sum_{j=1}^{d+1} \frac{|K|}{d+1} c_{\Omega}\left(\mathrm{x}_{K, j}\right) \nabla v\left(\mathrm{x}_{K, j}\right) \cdot \nabla w\left(\mathrm{x}_{K, j}\right) .
$$

Under appropriate regularity assumptions on the wave speed c_{Ω}, it is known that $\left\|\Delta \widetilde{a}\left(v_{h}\right)\right\|_{\tilde{V}_{h}^{*}} \in \mathscr{O}(h)$ and $\left\|\Delta m\left(v_{h}\right)\right\|_{H_{h}^{*}} \in \mathscr{O}(h)$ for all $v_{h} \in V_{h}$, see e.g. (Ciarlet, 2002, Section 4.1). Inserting this into the a priori bound above shows that numerical quadrature does not lead to order reduction, if $u \in C^{2}\left([0, T] ; H^{2}(\Omega)\right)$.

5. Application: Finite elements for the wave equation with acoustic boundary conditions

In this section, we use the a priori error bound from Theorem 4.8 to show new convergence rates for an isoparametric bulk-surface finite element discretization of the wave equation with acoustic boundary conditions while factoring in non-conforming error sources due to domain approximation.

We are interested in the solutions of the wave equation with acoustic boundary conditions. It models the propagation of sound waves in a fluid at rest filling a $\operatorname{tank} \Omega$, whose walls on Γ are subject to small oscillations in normal direction and elastic effects in tangential direction. Here u describes the acoustic velocity potential and δ the displacement of Γ in normal direction. The first well-posedness analysis was already given in Beale (1976), but acoustic boundary conditions continue to be a topic of research, see e.g. Gal et al. (2003), Mugnolo (2006), Frota et al. (2011), Graber (2012) and Vedurmudi et al. (2016).

For the space discretization we consider an isoparametric bulk-surface finite element method. Such finite element methods are non-conforming, since the computational domain is in general not exact, i.e. $\Omega_{h} \neq \Omega$. Therefore the error analysis requires a non-trivial lift operation. To the best of our knowledge, such an analysis has not been considered so far for hyperbolic problems. For parabolic problems, it was recently presented in Kovács \& Lubich (2017). Our general framework and our abstract results allows us to derive convergence rates almost as easy as in the previous example for a conforming discretization by using the a priori estimate from Theorem 4.8.

The problem can be stated as follows. Let $\Omega \subset \mathbb{R}^{d}$, where $d=2$ or $d=3$ and assume that $\Gamma \in C^{k+1}$ for some $k \in \mathbb{N}$. We seek $u:[0, T] \times \Omega \rightarrow \mathbb{R}$ and $\delta:[0, T] \times \Gamma \rightarrow \mathbb{R}$ s.t.

$$
\begin{align*}
u_{t t}+a_{\Omega} u-c_{\Omega} \Delta u & =f_{\Omega} & & \text { in } \Omega \tag{5.1a}\\
\mu_{\Gamma} \delta_{t t}+k_{\Gamma} \delta-c_{\Gamma} \Delta_{\Gamma} \delta+c_{\Omega} u_{t} & =f_{\Gamma} & & \text { on } \Gamma \tag{5.1b}\\
\delta_{t} & =\partial_{n} u & & \text { on } \Gamma, \tag{5.1c}
\end{align*}
$$

where we assume that $c_{\Gamma}, c_{\Omega}, \mu_{\Gamma}>0$ and $a_{\Omega}, k_{\Gamma} \geqslant 0$ are constants and that u and δ take initial values $u(0)=u_{1}^{0}, u_{t}(0)=u_{2}^{0}, \delta(0)=\delta^{0}, \delta_{t}(0)=\vartheta^{0}$. By Δ_{Γ} we denote the Laplace-Beltrami operator.

Well-posedness

Assume that u and δ are sufficiently smooth solutions of (5.1). Multiplying (5.1a) with $v \in C^{\infty}(\bar{\Omega})$, integrating over Ω, applying Gauss' Theorem and inserting the boundary condition (5.1c) yields

$$
\begin{equation*}
\int_{\Omega} u_{t t} v+a_{\Omega} u v+c_{\Omega} \nabla u \cdot \nabla v \mathrm{dx}-\int_{\Gamma} c_{\Omega} \delta_{t} v \mathrm{~d} s=\int_{\Omega} f_{\Omega} v \mathrm{dx} \tag{5.2a}
\end{equation*}
$$

Analogously, we multiply (5.1b) with $\vartheta \in C^{2}(\Gamma)$, integrate over Γ, and use Gauss' Theorem on surfaces to find

$$
\begin{equation*}
\int_{\Gamma} \mu_{\Gamma} \delta_{t t} \vartheta+k_{\Gamma} \delta \vartheta+c_{\Gamma} \nabla_{\Gamma} \delta \cdot \nabla_{\Gamma} \vartheta+c_{\Omega} u_{t} \vartheta \mathrm{~d} s=\int_{\Gamma} f_{\Gamma} \vartheta \mathrm{d} s \tag{5.2b}
\end{equation*}
$$

To obtain the variational problem for $\vec{u}(t):=(u(t), \delta(t))$, we add (5.2b) to (5.2a). Altogether, we showed that any classical solution $\vec{u} \in C^{2}(\bar{\Omega} \times[0, T]) \times C^{2}(\Gamma \times[0, T])$ of (5.1) satisfies the variational problem

$$
\begin{equation*}
m\left(\vec{u}^{\prime \prime}(t), \vec{v}\right)+b\left(\vec{u}^{\prime}(t), \vec{v}\right)+a(\vec{u}(t), \vec{v})=\langle f(t), \vec{v}\rangle \tag{5.3}
\end{equation*}
$$

for all $\vec{v}=(v, \vartheta) \in C^{\infty}(\bar{\Omega}) \times C^{2}(\Gamma)$ and where, for $\vec{w}=(w, \omega)$ and $\vec{v}=(v, \vartheta)$, the bilinear forms are given by

$$
\begin{align*}
m(\vec{w}, \vec{v}) & :=\int_{\Omega} w v \mathrm{dx}+\int_{\Gamma} \mu_{\Gamma} \omega \vartheta \mathrm{d} s \tag{5.4a}\\
b(\vec{w}, \vec{v}) & :=c_{\Omega} \int_{\Gamma} \gamma(w) \vartheta-\omega \gamma(v) \mathrm{d} s \tag{5.4b}\\
a(\vec{w}, \vec{v}) & :=\int_{\Omega} a_{\Omega} w v+c_{\Omega} \nabla w \cdot \nabla v \mathrm{dx}+\int_{\Gamma} k_{\Gamma} \omega \vartheta+c_{\Gamma} \nabla_{\Gamma} \omega \cdot \nabla_{\Gamma} \vartheta \mathrm{d} s \tag{5.4c}\\
\langle f(t), \vec{\varphi}\rangle & :=\int_{\Omega} f_{\Omega}(t) v \mathrm{dx}+\int_{\Gamma} f_{\Gamma}(t) \vartheta \mathrm{d} s, \quad t \in[0, T] \tag{5.4~d}
\end{align*}
$$

For the corresponding abstract formulation, we choose $H=\mathbb{H}^{0}$ and $V=\mathbb{H}^{1}$, where

$$
\mathbb{H}^{0}:=L^{2}(\Omega) \times L^{2}(\Gamma), \quad \text { and } \quad \mathbb{H}^{r}:=H^{r}(\Omega) \times H^{r}(\Gamma), \quad r \in \mathbb{N},
$$

and consider the continuous extensions of m and a, b to $H \times H$ and $V \times V$, respectively. Since V is a dense subspace of H and Assumption 4.1 is fulfilled with $c_{G}=\alpha=\min \left\{c_{\Omega}, c_{\Gamma}\right\}>0$ and $\rho_{\mathrm{qm}}=0$, the abstract interpretation of (5.3) is a second-order wave-type equation (4.1). Thus, if the data satisfies

$$
\begin{array}{rll}
& u_{1}^{0}, u_{2}^{0} \in V & \text { s.t. } \quad \mathscr{A} u_{1}^{0}+\mathscr{B} u_{2}^{0} \in H \\
\text { and } \quad f \in C^{1}([0, T] ; H) & \text { or } \quad(f, \mathscr{B} f) \in C([0, T] ; V \times H), \tag{5.5b}
\end{array}
$$

then Theorem 4.3 implies that (4.1) has a unique solution \vec{u}.
The following Lemma states the well-posedness result in terms of Sobolev spaces. Since our convergence result for finite elements will require higher regularity, we do not use it in the error analysis and refer to (Hipp, 2017, Cor. 6.9 (i)) for the proof. A related result can be found in Beale (1976).
Lemma 5.1. Let the above assumptions be satisfied. If the initial values $\left(u_{1}^{0}, \delta^{0}\right),\left(u_{2}^{0}, \vartheta^{0}\right) \in \mathbb{H}^{1}$ satisfy $\left(\Delta u_{1}^{0}, \Delta_{\Gamma} \delta^{0}\right) \in \mathbb{H}^{0}$ and $\vartheta^{0}=\partial_{n} u_{1}^{0}$, and $\left(f_{\Omega}, f_{\Gamma}\right) \in C^{1}\left([0, T] ; \mathbb{H}^{0}\right)$ or $f_{\Omega} \in C\left([0, T] ; H^{1}(\Omega)\right)$ with $f_{\Gamma}=0$, then (5.1) has a unique solution

$$
(u, \delta) \in C^{2}\left([0, T] ; \mathbb{H}^{0}\right) \cap C^{1}\left([0, T] ; \mathbb{H}^{1}\right), \quad\left(\Delta u, \Delta_{\Gamma} \delta\right) \in C\left([0, T] ; \mathbb{H}^{0}\right)
$$

The bulk-surface finite element method

In this section, we consider the bulk-surface finite element method from Elliott \& Ranner (2013) which was developed and analyzed for coupled bulk-surface partial differential equations of elliptic type.

COMPUTATIONAL DOMAIN Let \mathscr{T}_{h} be a mesh consisting of isoparametric elements K of degree p, where h denotes the mesh parameter, see (Elliott \& Ranner, 2013, Sect. 4.1.2) for details on the construction. We denote the computational domain by

$$
\Omega_{h}:=\bigcup_{K \in \mathscr{T}_{h}} K \approx \Omega
$$

and refer to $\Gamma_{h}:=\partial \Omega_{h}$ as the computational surface. The construction admits quasi-uniform triangulations \mathscr{T}_{h} and $\left.\mathscr{T}_{h}\right|_{\Gamma_{h}}$ of Ω_{h} and Γ_{h}, respectively.

Finite element spaces Let $\mathscr{P}_{p}(\widehat{K})$ denote the space of polynomials of degree p on the reference triangle \widehat{K}, and let F_{K} be the transformation from \widehat{K} to $K \in \mathscr{T}_{h}$. For the bulk and the surface finite element functions of degree $p \geqslant 1$, we introduce

$$
\begin{aligned}
V_{h, p}^{\Omega} & :=\left\{v_{h} \in C\left(\Omega_{h}\right)\left|v_{h}\right|_{K}=\widehat{v_{h}} \circ\left(F_{K}\right)^{-1} \text { with } \widehat{v_{h}} \in \mathscr{P}_{p}(\widehat{K}) \text { for all } K \in \mathscr{T}_{h}\right\} \\
V_{h, p}^{\Gamma} & :=\left\{\vartheta_{h} \in C\left(\Gamma_{h}\right)\left|\vartheta_{h}=v_{h}\right|_{\Gamma_{h}}, v_{h} \in V_{h, p}^{\Omega}\right\}
\end{aligned}
$$

respectively, cf. (Elliott \& Ranner, 2013, Sect. 5.1). An important property of this construction is the relation

$$
\begin{equation*}
\gamma\left(V_{h, p}^{\Omega}\right)=V_{h, p}^{\Gamma} \tag{5.6}
\end{equation*}
$$

LIFT OPERATION In general, the finite element approximations are defined in $\Omega_{h} \neq \Omega$ or $\Gamma_{h} \neq \Gamma$ and hence need to be transformed to functions being defined on Ω and Γ, respectively. This is done via the elementwise smooth homeomorphism G_{h} from (Elliott \& Ranner, 2013, Sect. 4.2) with

$$
G_{h}: \Omega_{h} \rightarrow \Omega,\left.\quad G_{h}\right|_{K} \in C^{p+1}(K) \quad \text { for } p \leqslant k \text { and } K \in \mathscr{T}_{h}
$$

Given $v_{h} \in V_{h, p}^{\Omega}$ and $\vartheta_{h} \in V_{h, p}^{\Gamma}$, we define their lifted counterparts as

$$
\begin{array}{ll}
v_{h}^{\ell}(\mathrm{x}):=v_{h}\left(G_{h}^{-1}(\mathrm{x})\right), & \mathrm{x} \in \Omega \\
\vartheta_{h}^{\ell}(\mathrm{x}):=\vartheta_{h}\left(G_{h}^{-1}(\mathrm{x})\right), & \mathrm{x} \in \Gamma . \tag{5.7b}
\end{array}
$$

Note that the bulk lifting complies with the surface lifting in the sense that

$$
\begin{equation*}
\gamma\left(v_{h}^{\ell}\right)=\gamma\left(v_{h}\right)^{\ell}, \quad v_{h} \in V_{h, p}^{\Omega} \tag{5.8}
\end{equation*}
$$

where we overload the notation with $\gamma: H^{1}(\Omega) \rightarrow L^{2}(\Gamma)$ on the left-hand side and $\gamma: H^{1}\left(\Omega_{h}\right) \rightarrow L^{2}\left(\Gamma_{h}\right)$ on the right-hand side.

REMARK 5.2 Actually, our definition of lifted surface functions differs from (Elliott \& Ranner, 2013, Def. 4.12) where a closest point mapping from Γ_{h} to Γ is used. However, it follows from Demlow (2009) that the surface functions lifted by (5.7b) have the same properties and in addition satisfy (5.8).

Interpolation As the exact solution has two components u and δ, we introduce two interpolation operators. The nodal interpolation operator $I_{h}^{\Omega}: H^{2}(\Omega) \rightarrow V_{h, p}^{\Omega}$ for bulk functions $v \in H^{r+1}(\Omega)$ satisfies

$$
\begin{equation*}
\left\|v-\left(I_{h}^{\Omega} v\right)^{\ell}\right\|_{L^{2}(\Omega)}+h\left\|v-\left(I_{h}^{\Omega} v\right)^{\ell}\right\|_{H^{1}(\Omega)} \leqslant C h^{r+1}|v|_{H^{r+1}(\Omega)}, \quad 1 \leqslant r \leqslant p \tag{5.9a}
\end{equation*}
$$

Analogously, we write $I_{h}^{\Gamma}: H^{2}(\Gamma) \rightarrow V_{h, p}^{\Gamma}$ for the nodal interpolation on the surface and the interpolation error of a function $\vartheta \in H^{r+1}(\Gamma)$ is bounded by

$$
\begin{equation*}
\left\|\vartheta-\left(I_{h}^{\Gamma} \vartheta\right)^{\ell}\right\|_{L^{2}(\Gamma)}+h\left\|\vartheta-\left(I_{h}^{\Gamma} \vartheta\right)^{\ell}\right\|_{H^{1}(\Gamma)} \leqslant C h^{r+1}|\vartheta|_{H^{r+1}(\Gamma)}, \quad 1 \leqslant r \leqslant \min \{p, k\} . \tag{5.9b}
\end{equation*}
$$

Since the nodes in the bulk and on the surface coincide by construction, it follows from (5.6) that we have $I_{h}^{\Gamma} \gamma(v)=\gamma\left(I_{h}^{\Omega} v\right)$ for any $v \in H^{2}(\Omega)$ with $\gamma(v) \in H^{2}(\Gamma)$.

A priori error bounds for the wave equation with acoustic boundary conditions

Applying the bulk-surface finite element method to (5.1) yields a differential equation of the form (4.8). The semi-discrete problem is to find the $V_{h}:=V_{h, p}^{\Omega} \times V_{h, p}^{\Gamma}$-valued function $\vec{u}_{h}:=\left(u_{h}, \delta_{h}\right):[0, T] \rightarrow V_{h}$ s.t.

$$
\begin{aligned}
m_{h}\left(u_{h}^{\prime \prime}(t), \vec{v}_{h}\right)+b_{h}\left(u_{h}^{\prime}(t), \vec{v}_{h}\right)+a\left(u_{h}(t), \vec{v}_{h}\right) & =m_{h}\left(\left(I_{h}^{\Omega} f_{\Omega}(t), I_{h}^{\Gamma} f_{\Gamma}(t)\right), \vec{v}_{h}\right) \quad \forall \vec{v}_{h} \in V_{h} \\
\vec{u}_{h}(0) & =\left(I_{h}^{\Omega} u_{1}^{0}, I_{h}^{\Gamma} \delta^{0}\right), \quad \vec{u}_{h}^{\prime}(0)=\left(I_{h}^{\Omega} u_{2}^{0}, I_{h}^{\Gamma} \vartheta^{0}\right)
\end{aligned}
$$

where , for $\vec{w}_{h}=\left(w_{h}, \omega_{h}\right), \vec{v}_{h}=\left(v_{h}, \vartheta_{h}\right) \in V_{h, p}^{\Omega} \times V_{h, p}^{\Gamma}$, the bilinear forms are defined as

$$
\begin{align*}
m_{h}\left(\vec{w}_{h}, \vec{v}_{h}\right) & :=\int_{\Omega_{h}} w_{h} v_{h} \mathrm{~d} x+\int_{\Gamma_{h}} \mu_{\Gamma} \omega_{h} \vartheta_{h} \mathrm{~d} s, \tag{5.10a}\\
b_{h}\left(\vec{w}_{h}, \vec{v}_{h}\right) & :=c_{\Omega} \int_{\Gamma_{h}} \gamma\left(w_{h}\right) \vartheta_{h}-\omega_{h} \gamma\left(v_{h}\right) \mathrm{d} s, \tag{5.10b}\\
a_{h}\left(\vec{w}_{h}, \vec{v}_{h}\right) & :=\int_{\Omega_{h}} a_{\Omega} w_{h} v_{h}+c_{\Omega} \nabla w_{h} \cdot \nabla v_{h} \mathrm{dx}+\int_{\Gamma_{h}} k_{\Gamma} \omega_{h} \vartheta_{h}+c_{\Gamma} \nabla_{\Gamma_{h}} \omega_{h} \cdot \nabla_{\Gamma_{h}} \vartheta_{h} \mathrm{~d} s . \tag{5.10c}
\end{align*}
$$

Due to the abstract error bound from Theorem 4.8, we can derive convergence rates for the above discretization in a few simple steps. Basically, we only have to insert the approximation properties of the finite element method.

THEOREM 5.3. Let $\Gamma \in C^{k+1}$ for some $k \in \mathbb{N}$ and $\left(f_{\Omega}(t), f_{\Gamma}(t)\right) \in \mathbb{H}^{2}, t \in[0, T]$. Let the assumptions of Lemma 5.1 be fulfilled and assume that the solution of (5.1) satisfies $(u, \delta) \in C^{2}\left([0, T] ; \mathbb{H}^{2}\right)$. Moreover, let $\vec{u}_{h}=\left(u_{h}, \delta_{h}\right)$ be the finite element solution as described above where $1 \leqslant p \leqslant k$ and $0<h \leqslant 1$. Then the error of lifted semi-discrete solutions u_{h}^{ℓ} and δ_{h}^{ℓ} is bounded by

$$
\left\|\left(u_{h}^{\ell}-u, \delta_{h}^{\ell}-\delta\right)(t)\right\|_{\mathbb{H}^{1}}+\left\|\left(\left(u_{h}^{\prime}\right)^{\ell}-u^{\prime},\left(\delta_{h}^{\prime}\right)^{\ell}-\delta^{\prime}\right)(t)\right\|_{\mathbb{H}^{0}} \leqslant C K_{p}(u, f) e^{\widehat{c}_{\mathrm{qm}^{\mathrm{m}}}}(1+t) h^{p}
$$

for $t \in[0, T]$, a constant C which is independent of h and t, and where $\widehat{c}_{q \mathrm{~m}}=\min \left\{c_{\Omega}, c_{\Gamma}\right\}^{1 / 2} / 2$ and

$$
K_{p}(u, f)=\|(u, \delta)\|_{\infty, \mathbb{H}^{p+1}}+\left\|\left(u^{\prime}, \delta^{\prime}\right)\right\|_{\infty, \mathbb{H}^{p+1}}+\left\|\left(u^{\prime \prime}, \delta^{\prime \prime}\right)\right\|_{\infty, \mathbb{H}^{p}}+\left\|\left(f_{\Omega}, f_{\Gamma}\right)\right\|_{\infty, \mathbb{H}^{p} p} .
$$

REMARK 5.4 Note that the conditions from Lemma 5.1 on Ω and the data are in general not sufficient for $(u, \delta) \in C^{2}\left([0, T] ; \mathbb{H}^{2}\right)$ and the proof requires further considerations, cf. (Beale, 1976, Thm. 2.2).
Proof. Assumptions 4.4 (i)-4.4 (iii) are fulfilled with $\widehat{c}_{G}=\min \left\{c_{\Omega}, c_{\Gamma}\right\}$ and $\widehat{\rho}_{\mathrm{qm}}=0$ as in the continuous case. To compare the finite element approximation with the exact solution, we choose the lift operator

$$
\begin{equation*}
Q_{h}^{V} \vec{v}_{h}:=\left(v_{h}^{\ell}, \vartheta_{h}^{\ell}\right) \tag{5.11}
\end{equation*}
$$

Since the coefficients in $\|\cdot\|_{H}$ and $\|\cdot\|_{\widetilde{V}}$ are constant, (Elliott \& Ranner, 2013, Prop. 4.9 and 4.13) imply that $Q_{h}^{V}: V_{h} \rightarrow V$ satisfies Assumptions 4.4 (iv) and 4.4 (v). Altogether the space discretization is stable in the sense of Assumption 4.4 and the error estimate from Theorem 4.8 applies. Since $\|\cdot\|_{\mathbb{H}^{0}} \sim\|\cdot\|_{H}$ and $\|\cdot\|_{\mathbb{H}^{1}} \sim\|\cdot\|_{\tilde{V}}$, it remains to bound $\varepsilon_{\text {data }}+\varepsilon_{\text {ip }}+\varepsilon_{\text {forms }}+\varepsilon_{\Delta b}$.
$\left(\varepsilon_{\text {ip }}\right)$ We choose the interpolation operator as $I_{h}:=\operatorname{diag}\left(I_{h}^{\Omega}, I_{h}^{\Gamma}\right)$ s.t. $I_{h} \in \mathscr{L}\left(Z_{\text {ip }}, V_{h}\right)$ for $Z_{\text {ip }}=\mathbb{H}^{2}$. Using (5.9), we have for $\vec{v}=(v, \vartheta) \in \mathbb{H}^{r+1}, 1 \leqslant r \leqslant p$

$$
\begin{align*}
&\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) \vec{v}\right\|_{H}+h\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right) \vec{v}\right\|_{\tilde{V}} \leqslant \| v \\
&-\left(I_{h}^{\Omega} v\right)^{\ell}\left\|_{L^{2}(\Omega)}+\mu_{\Gamma}\right\| \vartheta-\left(I_{h}^{\Gamma} \vartheta\right)^{\ell} \|_{L^{2}(\Gamma)} \\
&+\max \left\{\sqrt{a_{\Omega}+\widehat{c}_{G}}, \sqrt{c_{\Omega}}\right\} h\left\|v-\left(I_{h}^{\Omega} v\right)^{\ell}\right\|_{H^{1}(\Omega)} \\
&+\max \left\{\sqrt{k_{\Gamma}+\mu_{\Gamma} \widehat{c}_{G}}, \sqrt{c_{\Gamma}}\right\} h\left\|\vartheta-\left(I_{h}^{\Gamma} \vartheta\right)^{\ell}\right\|_{H^{1}(\Gamma)} \tag{5.12}\\
& \leqslant C h^{r+1}\|\vec{v}\|_{\mathbb{H}^{r+1}(\Omega)}
\end{align*}
$$

Applying this bound on the interpolation errors $\varepsilon_{\mathrm{ip}}$, yields

$$
\varepsilon_{\mathrm{ip}} \leqslant C h^{p}\left(\|(u, \delta)\|_{\infty, \mathbb{H}^{p+1}}+\left\|\left(u^{\prime}, \delta^{\prime}\right)\right\|_{\infty, \mathbb{H}^{p+1}}+\left\|\left(u^{\prime \prime}, \delta^{\prime \prime}\right)\right\|_{\infty, \mathbb{H}^{p}}\right) .
$$

($\varepsilon_{\text {forms }}$) To estimate the geometric errors, we use (Elliott \& Ranner, 2013, Lem. 6.2) which yields

$$
\begin{gathered}
\left|\int_{\Omega^{2}} w_{h}^{\ell} v_{h}^{\ell} \mathrm{dx}-\int_{\Omega_{h}} w_{h} v_{h} \mathrm{dx}\right| \leqslant C h^{p}\left\|w_{h}\right\|_{L^{2}\left(\Omega_{h}\right)}\left\|v_{h}\right\|_{L^{2}\left(\Omega_{h}\right)}, \\
\left|\int_{\Omega} \nabla w_{h}^{\ell} \cdot \nabla v_{h}^{\ell} \mathrm{dx}-\int_{\Omega_{h}} \nabla w_{h} \cdot \nabla v_{h} \mathrm{dx}\right| \leqslant C h^{p}\left\|\nabla w_{h}\right\|_{L^{2}\left(\Omega_{h}\right)}\left\|\nabla v_{h}\right\|_{L^{2}\left(\Omega_{h}\right)}, \\
\left|\int_{\Gamma} \omega_{h}^{\ell} \vartheta_{h}^{\ell} \mathrm{dx}-\int_{\Gamma_{h}} \omega_{h} \vartheta_{h} \mathrm{dx}\right| \leqslant C h^{p+1}\left\|\omega_{h}\right\|_{L^{2}\left(\Gamma_{h}\right)}\left\|\vartheta_{h}\right\|_{L^{2}\left(\Gamma_{h}\right)}, \\
\left|\int_{\Gamma} \nabla_{\Gamma} \omega_{h}^{\ell} \cdot \nabla_{\Gamma} \vartheta_{h}^{\ell} \mathrm{dx}-\int_{\Gamma_{h}} \nabla_{\Gamma_{h}} \omega_{h} \cdot \nabla_{\Gamma_{h}} \vartheta_{h} \mathrm{dx}\right| \leqslant C h^{p+1}\left\|\nabla_{\Gamma_{h}} \omega_{h}\right\|_{L^{2}\left(\Gamma_{h}\right)}\left\|\nabla_{\Gamma_{h}} \vartheta_{h}\right\|_{L^{2}\left(\Omega_{h}\right)} .
\end{gathered}
$$

Now consider $\Delta \widetilde{a}$ and let $\vec{w}_{h}=\left(w_{h}, \omega_{h}\right), \vec{v}_{h}=\left(v_{h}, \vartheta_{h}\right) \in V_{h, p}^{\Omega} \times V_{h, p}^{\Gamma}$. From the above geometric error bounds, we deduce

$$
\begin{aligned}
\left|\Delta \widetilde{a}\left(\vec{w}_{h}, \vec{v}_{h}\right)\right| & \leqslant C \max \left\{c_{\Omega}, a_{\Gamma}, c_{\Gamma}, k_{\Gamma}\right\}\left(h^{p}\left\|w_{h}\right\|_{H^{1}\left(\Omega_{h}\right)}\left\|v_{h}\right\|_{H^{1}\left(\Omega_{h}\right)}+h^{p+1}\left\|\omega_{h}\right\|_{H^{1}\left(\Gamma_{h}\right)}\left\|\vartheta_{h}\right\|_{H^{1}\left(\Gamma_{h}\right)}\right) \\
& \leqslant C h^{p}\left\|\vec{w}_{h}\right\|_{\widetilde{a}_{h}}\left\|\vec{v}_{h}\right\|_{\widetilde{a}_{h}} .
\end{aligned}
$$

Since for $\vec{w}_{h}=I_{h} \vec{w}$ with $\vec{w} \in \mathbb{H}^{2}$

$$
\left\|\vec{w}_{h}\right\|_{\widetilde{a}_{h}}=\left\|I_{h} \vec{w}\right\|_{\widetilde{a}_{h}} \leqslant C_{V}\left\|Q_{h} I_{h} \vec{w}\right\|_{\tilde{V}} \leqslant C_{V}\left(\left\|\left(\mathrm{I}-Q_{h} I_{h}\right) \vec{w}\right\|_{\tilde{V}}+\|\vec{w}\|_{\tilde{V}}\right) \leqslant C_{V}\left(h|\vec{w}|_{\mathbb{H}^{2}}+\|\vec{w}\|_{\tilde{V}}\right)
$$

we obtain

$$
\left\|\Delta \widetilde{a}\left(I_{h} \vec{w}\right)\right\|_{\widetilde{v}_{h}^{*}}=\max _{\left\|\vec{v}_{h}\right\|_{\tilde{a}_{h}}=1}\left|\Delta \widetilde{a}\left(I_{h} \vec{w}, \vec{v}_{h}\right)\right| \leqslant C h^{p}\|\vec{w}\|_{\widetilde{V}}+\mathscr{O}\left(h^{p+1}\right)
$$

Analogously, one can shown $\left\|\Delta m\left(I_{h} \vec{w}\right)\right\|_{H_{h}^{*}} \leqslant C h^{p}\|\vec{w}\|_{H}$ for $\vec{w} \in \mathbb{H}^{2}$. Applying these estimates yields

$$
\varepsilon_{\mathrm{forms}} \leqslant C h^{p}\left(\|(u, \delta)\|_{\infty, \tilde{V}}+\left\|\left(u^{\prime}, \delta^{\prime}\right)\right\|_{\infty, \tilde{V}}+\left\|\left(u^{\prime \prime}, \delta^{\prime \prime}\right)\right\|_{\infty, H}\right)
$$

if $u, u^{\prime}, u^{\prime \prime} \in H^{2}(\Omega)$ and $\delta, \delta, \delta^{\prime \prime} \in H^{2}(\Gamma)$.
($\varepsilon_{\text {data }}$) Since $u_{h, 1}^{0}=I_{h} u_{1}^{0}$ and $f_{h}=I_{h} f$, Remark 4.9 (i) implies

$$
\varepsilon_{\mathrm{data}} \leqslant C h^{p}\left(\left\|u_{1}^{0}\right\|_{\mathbb{H}^{p}}+\|f\|_{\infty, \mathbb{H}^{p}}\right) \leqslant C h^{p} K_{p}(u, f)
$$

where we used the upper bounds for the interpolation and consistency errors from above.
$\left(\varepsilon_{\Delta b}\right)$ First, note that b can be written as

$$
\begin{equation*}
b(\vec{w}, \vec{v})=\frac{c_{\Omega}}{\mu_{\Gamma}}(m((0, \gamma(w)),(0, \vartheta))-m((0, \omega),(0, \gamma(v)))) \tag{5.13}
\end{equation*}
$$

Hence, we obtain with (5.8) and (5.11)

$$
\begin{aligned}
\frac{\mu_{\Gamma}}{c_{\Omega}} b\left(\vec{w}, Q_{h}^{V} \vec{v}_{h}\right) & =m\left((0, \gamma(w)),\left(0, \vartheta_{h}^{\ell}\right)\right)-m\left((0, \omega),\left(0, \gamma\left(v_{h}^{\ell}\right)\right)\right) \\
& =m\left((0, \gamma(w)),\left(0, \vartheta_{h}^{\ell}\right)\right)-m\left((0, \omega),\left(0, \gamma\left(v_{h}\right)^{\ell}\right)\right) \\
& =m\left((0, \gamma(w)), Q_{h}^{V}\left(0, \vartheta_{h}\right)\right)-m\left((0, \omega), Q_{h}^{V}\left(0, \gamma\left(v_{h}\right)\right)\right) \\
& =m_{h}\left(Q_{h}^{H *}(0, \gamma(w)),\left(0, \vartheta_{h}\right)\right)-m_{h}\left(Q_{h}^{H *}(0, \omega),\left(0, \gamma\left(v_{h}\right)\right)\right) .
\end{aligned}
$$

Since b_{h} satisfies a representation analogous to (5.13), we have with $\gamma\left(I_{h}^{\Omega} v\right)=I_{h}^{\Gamma} \gamma(v)$

$$
\begin{aligned}
b_{h}\left(I_{h} \vec{w}, \vec{v}_{h}\right) & =\frac{c_{\Omega}}{\mu_{\Gamma}}\left(m_{h}\left(\left(0, \gamma\left(I_{h}^{\Omega} w\right)\right),\left(0, \vartheta_{h}\right)\right)-m_{h}\left(\left(0, I_{h}^{\Gamma} \omega\right),\left(0, \gamma\left(v_{h}\right)\right)\right)\right) \\
& =\frac{c_{\Omega}}{\mu_{\Gamma}}\left(m_{h}\left(\left(0, I_{h}^{\Gamma} \gamma(w)\right),\left(0, \vartheta_{h}\right)\right)-m_{h}\left(\left(0, I_{h}^{\Gamma} \omega\right),\left(0, \gamma\left(v_{h}\right)\right)\right)\right) \\
& =\frac{c_{\Omega}}{\mu_{\Gamma}}\left(m_{h}\left(I_{h}(0, \gamma(w)),\left(0, \vartheta_{h}\right)\right)-m_{h}\left(I_{h}(0, \omega),\left(0, \gamma\left(v_{h}\right)\right)\right)\right)
\end{aligned}
$$

Thus the difference in $\varepsilon_{\Delta b}$ is bounded by

$$
\begin{aligned}
\mid b\left(\vec{w}, Q_{h}^{V} \vec{v}_{h}\right) & -b_{h}\left(I_{h} \vec{w}, \vec{v}_{h}\right) \mid \\
& =\left|\frac{c_{\Omega}}{\mu_{\Gamma}}\left(m_{h}\left(\left(Q_{h}^{H *}-I_{h}\right)(0, \gamma(w)),\left(0, \vartheta_{h}\right)\right)-m_{h}\left(\left(Q_{h}^{H *}-I_{h}\right)(0, \omega),\left(0, \gamma\left(v_{h}\right)\right)\right)\right)\right| \\
& \leqslant \frac{c_{\Omega}}{\mu_{\Gamma}}\left(\left\|\left(Q_{h}^{H *}-I_{h}\right)(0, \gamma(w))\right\|_{m_{h}}\left\|\left(0, \vartheta_{h}\right)\right\|_{m_{h}}+\left\|\left(Q_{h}^{H *}-I_{h}\right)(0, \omega)\right\|_{m_{h}}\left\|\left(0, \gamma\left(v_{h}\right)\right)\right\|_{m_{h}}\right)
\end{aligned}
$$

where we applied the Cauchy-Schwarz inequality for m_{h} in the last step. To deal with the last term, we use the continuity of the trace operator and the inverse inequality from (Brenner \& Scott, 2008, Lem. 4.5.3), which yields

$$
\left\|\left(0, \gamma\left(v_{h}\right)\right)\right\|_{m_{h}}=\sqrt{\mu_{\Gamma}}\left\|\gamma\left(v_{h}\right)\right\|_{L^{2}\left(\Gamma_{h}\right)} \leqslant\|\gamma\|_{L^{2}\left(\Gamma_{h}\right) \leftarrow H^{1}\left(\Omega_{h}\right)}\left\|v_{h}\right\|_{H^{1}\left(\Omega_{h}\right)} \leqslant C h^{-1}\left\|v_{h}\right\|_{L^{2}\left(\Omega_{h}\right)}
$$

Thus, we showed that

$$
\begin{align*}
\varepsilon_{\Delta b} & =\max _{\left\|\vec{v}_{h}\right\|_{m_{h}}=1}\left|b\left(\vec{u}^{\prime}, Q_{h}^{V} \vec{v}_{h}\right)-b_{h}\left(I_{h} \vec{u}^{\prime}, \vec{v}_{h}\right)\right| \\
& \leqslant C\left(\left\|\left(Q_{h}^{H *}-I_{h}\right)\left(0, \gamma\left(u^{\prime}\right)\right)\right\|_{m_{h}}+h^{-1}\left\|\left(Q_{h}^{H *}-I_{h}\right)\left(0, \delta^{\prime}\right)\right\|_{m_{h}}\right) \tag{5.14}
\end{align*}
$$

Using Lemma 2.12 with $X=H$, the interpolation error estimate (5.12), and the geometric error bound of the finite element method, we obtain for $1 \leqslant r \leqslant p+1$

$$
\begin{aligned}
\left\|\left(Q_{h}^{H *}-I_{h}\right)(w, \omega)\right\|_{m_{h}} & \leqslant C\left(\left\|\left(\mathrm{I}-Q_{h}^{V} I_{h}\right)(w, \omega)\right\|_{m_{h}}+\left\|\Delta m\left(I_{h}(w, \omega)\right)\right\|_{H_{h}^{*}}\right. \\
& \leqslant C\left(h^{r}|(w, \omega)|_{H^{r}}+h^{p}\|w\|_{L^{2}(\Omega)}+h^{p+1}\|\omega\|_{L^{2}(\Gamma)}\right)
\end{aligned}
$$

If we insert this estimate (with $r=p, w=0, \omega=\gamma\left(u^{\prime}\right)$ and $r=p+1, w=0, \omega=\delta^{\prime}$) into (5.14), we obtain

$$
\begin{aligned}
\varepsilon_{\Delta b} & \leqslant C h^{p}\left|\gamma\left(u^{\prime}\right)\right|_{H^{p}(\Gamma)}+C h^{p+1}\left\|\gamma\left(u^{\prime}\right)\right\|_{L^{2}(\Gamma)}+C h^{-1}\left(h^{p+1}\left|\delta^{\prime}\right|_{H^{p+1}(\Gamma)}+h^{p+1}\left\|\delta^{\prime}\right\|_{L^{2}(\Gamma)}\right) \\
& \leqslant C h^{p}\left\|u^{\prime}\right\|_{H^{p+1}(\Omega)}+C h^{p+1}\left\|u^{\prime}\right\|_{H^{1}(\Omega)}+C h^{-1}\left(h^{p+1}\left|\delta^{\prime}\right|_{H^{p+1}(\Gamma)}+h^{p+1}\left\|\delta^{\prime}\right\|_{L^{2}(\Gamma)}\right) \\
& \leqslant C h^{p}\left(\left\|u^{\prime}\right\|_{H^{p+1}(\Omega)}+\left\|\delta^{\prime}\right\|_{H^{p+1}(\Gamma)}\right)
\end{aligned}
$$

Here we used $\gamma \in \mathscr{L}\left(H^{r+1}(\Omega), H^{r}(\Gamma)\right), 1 \leqslant r \leqslant p$ in the second inequality cf. (Atkinson \& Han, 2009, Thm. 7.3.11). This completes the proof.

Acknowledgements We thank Jan Leibold, Bernhard Maier and Roland Schnaubelt for their careful reading of this manuscript and for helpful discussions.

Funding Deutsche Forschungsgemeinschaft (DFG) through the collaborative research center CRC 1173 "Wave phenomena: analysis and numerics", Klaus Tschira Stiftung.

REFERENCES

Atkinson, K. \& Han, W. (2009) Theoretical numerical analysis. Texts in Applied Mathematics, vol. 39, third edn. Springer, Dordrecht, pp. xvi+625. A functional analysis framework.
BAKER, G. A. (1976) Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal., 13, 564-576.
Baker, G. A. \& Dougalis, V. A. (1976) The effect of quadrature errors on finite element approximations for second order hyperbolic equations. SIAM J. Numer. Anal., 13, 577-598.
Bátkai, A., Csomós, P., Farkas, B. \& Nickel, G. (2012) Operator splitting with spatial-temporal discretization. Spectral theory, mathematical system theory, evolution equations, differential and difference equations. Oper. Theory Adv. Appl., vol. 221. Birkhäuser/Springer Basel AG, Basel, pp. 161-171.
Beale, J. T. (1976) Spectral properties of an acoustic boundary condition. Indiana Univ. Math. J., 25, 895-917.
Benzoni-Gavage, S. \& Serre, D. (2007) Multidimensional hyperbolic partial differential equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, pp. xxvi+508.
Brenner, P., Crouzeix, M. \& Thomée, V. (1982) Single-step methods for inhomogeneous linear differential equations in Banach space. RAIRO Anal. Numér., 16, 5-26.
Brenner, S. C. \& Scott, L. R. (2008) The mathematical theory of finite element methods. Texts in Applied Mathematics, vol. 15, third edn. Springer, New York, pp. xviii+397.
Burazin, K. s. \& Erceg, M. (2016) Non-stationary abstract Friedrichs systems. Mediterr. J. Math., 13, 3777-3796.
Burman, E., Ern, A. \& Fernández, M. A. (2010) Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems. SIAM J. Numer. Anal., 48, 2019-2042.
Ciarlet, P. G. (2002) The finite element method for elliptic problems. Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, pp. xxviii+530.
Cockburn, B., Qiu, W. \& Solano, M. (2014) A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity. Math. Comp., 83, 665-699.
Cohen, G. C. (2002) Higher-order numerical methods for transient wave equations. Scientific Computation. Springer-Verlag, Berlin, pp. xviii +348 .
Cohen, G. \& Pernet, S. (2017) Finite element and discontinuous Galerkin methods for transient wave equations. Scientific Computation. Springer, Dordrecht, pp. xvii+381. With a foreword by Patrick Joly.
Demlow, A. (2009) Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal., 47, 805-827.
Di Pietro, D. A. \& Ern, A. (2012) Mathematical aspects of discontinuous Galerkin methods. Mathématiques \& Applications (Berlin) [Mathematics \& Applications], vol. 69. Heidelberg: Springer, pp. xviii+384.
Droniou, J., Eymard, R., GallouËt, T., Guichard, C. \& Herbin, R. (2017) The gradient discretisation method. https://hal.archives-ouvertes.fr/hal-01382358.
Dunca, A. A. (2017) On an optimal finite element scheme for the advection equation. J. Comput. Appl. Math., 311, 522-528.
DUPONT, T. (1973) L^{2}-estimates for Galerkin methods for second order hyperbolic equations. SIAM J. Numer. Anal., 10, 880-889.
Elliott, C. M. \& Ranner, T. (2013) Finite element analysis for a coupled bulk-surface partial differential equation. IMA J. Numer. Anal., 33, 377-402.
Engel, K.-J. \& NAGEL, R. (2000) One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics, vol. 194. Springer-Verlag, New York, pp. xxii+586. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.
Fezoui, L., Lanteri, S., Lohrengel, S. \& Piperno, S. (2005) Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. M2AN

Math. Model. Numer. Anal., 39, 1149-1176.
Frota, C. L., Medeiros, L. A. \& Vicente, A. (2011) Wave equation in domains with non-locally reacting boundary. Differential Integral Equations, 24, 1001-1020.
Fujita, H., Saito, N. \& Suzuki, T. (2001) Operator theory and numerical methods. Studies in Mathematics and its Applications, vol. 30. North-Holland Publishing Co., Amsterdam, pp. viii+309.
Gal, C. G., Goldstein, G. R. \& Goldstein, J. A. (2003) Oscillatory boundary conditions for acoustic wave equations. J. Evol. Equ., 3, 623-635.
Graber, P. J. (2012) The Wave Equation with Generalized Nonlinear Acoustic Boundary Conditions. Ph.D. thesis, University of Virginia.
Grote, M. J., Schneebeli, A. \& Schötzau, D. (2006) Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal., 44, 2408-2431.
Guidetti, D., Karasözen, B. \& Piskarev, S. (2004) Approximation of abstract differential equations. J. Math. Sci. (N. Y.), 122, 3013-3054. Functional analysis.
HIPP, D. (2017) A unified error analysis for spatial discretizations of wave-type equations with applications to dynamic boundary conditions. Ph.D. thesis, Karlsruhe Institute of Technology.
Hochbruck, M., Jahnke, T. \& Schnaubelt, R. (2015) Convergence of an ADI splitting for Maxwell's equations. Numer. Math., 129, 535-561.
Hochbruck, M., Maier, B. \& Stohrer, C. (2017) Heterogeneous multiscale method for maxwell's equations. To be published.
Hochbruck, M. \& Pažur, T. (2015) Implicit Runge-Kutta methods and discontinuous Galerkin discretizations for linear Maxwell's equations. SIAM J. Numer. Anal., 53, 485-507.
Hochbruck, M. \& Sturm, A. (2016) Error analysis of a second-order locally implicit method for linear Maxwell's equations. SIAM J. Numer. Anal., 54, 3167-3191.
Hussein, A. E.-R. A. \& Kappel, F. (2002) Weak stability and the Trotter-Kato theorem. Ital. J. Pure Appl. Math., 147-158.
Ito, K. \& Kappel, F. (2002) Evolution equations and approximations. Series on Advances in Mathematics for Applied Sciences, vol. 61. World Scientific Publishing Co., Inc., River Edge, NJ, pp. xiv+498.
JOLY, P. (2003) Variational methods for time-dependent wave propagation problems. Topics in computational wave propagation. Lect. Notes Comput. Sci. Eng., vol. 31. Springer, Berlin, pp. 201-264.
Kirsch, A. \& Hettlich, F. (2015) The mathematical theory of time-harmonic Maxwell's equations. Applied Mathematical Sciences, vol. 190. Springer, Cham, pp. xiv+337. Expansion-, integral-, and variational methods.
Kovács, B. \& Lubich, C. (2017) Numerical analysis of parabolic problems with dynamic boundary conditions. IMA J. Numer. Anal., 37, 1-39.
Layton, W. J. (1983) Stable Galerkin methods for hyperbolic systems. SIAM J. Numer. Anal., 20, 221-233.
Mugnolo, D. (2006) Abstract wave equations with acoustic boundary conditions. Math. Nachr., 279, 299-318.
NÉdélec, J.-C. (1986) A new family of mixed finite elements in \mathbf{R}^{3}. Numer. Math., 50, 57-81.
PaZy, A. (1983) Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York, pp. viii+279.
Showalter, R. E. (1994) Hilbert space methods for partial differential equations. Electronic Monographs in Differential Equations, San Marcos, TX, pp. iii+242 pp. Electronic reprint of the 1977 original.
Showalter, R. E. (1997) Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence, RI, pp. xiv+278.
ter Elst, A. F. M., Sauter, M. \& Vogt, H. (2015) A generalisation of the form method for accretive forms and operators. J. Funct. Anal., 269, 705-744.
Thomée, V. (2006) Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, vol. 25, second edn. Springer-Verlag, Berlin, pp. xii+370.

Vedurmudi, A. P., Goulet, J., Christensen-Dalsgatad, J., Young, B. A., Williams, R. \& van Hemmen, J. L. (2016) How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization. Physical Review Letters, 116, 028101.
Zeidler, E. (1990a) Nonlinear functional analysis and its applications. II/A. Springer-Verlag, New York, pp. xviii+467.
Zeidler, E. (1990b) Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New York, pp. i-xvi and 469-1202.
ZhaO, J. (2004) Analysis of finite element approximation for time-dependent Maxwell problems. Math. Comp., 73, 1089-1105.

[^0]: ${ }^{\dagger}$ Corresponding author. Email:david.hipp@kit.edu
 ${ }^{\ddagger}$ Email: marlis.hochbruck@kit.edu
 §Email: christian.stohrer@kit.edu

