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Abstract

Using multiple models to describe a software system, often poses the challenge to keep

them consistent automatically. While there is much research on preserving consistency of

two models, fewer works address the speci�cs of keeping more than two models consistent.

This thesis proposes a new programming language, allowing to create transformations for

consistency preservation of more than two models. The language uses an intermediate

metamodel, such that any transformation is �rst executed from an existing model into an

intermediate model, and then into other models.

We start by looking at di�erent possibilities of how consistency of multiple models

can be preserved using only binary transformations. Subsequently, we show advantages

of introducing an intermediate metamodel to the consistency preservation process. To

support consistency preservation with intermediate metamodels, we thereupon introduce

the Commonalities Language. It allows developers to declare metaclasses of the interme-

diate metamodel together with their attributes and references. The mappings from the

intermediate model to other models and back are given directly at the mapped intermediate

metaclasses, attributes, and references. To avoid duplication of logic, bidirectional expres-

sions can be used for the mappings. The language is declarative to make understanding

the transformations easy.

We have developed a prototypical implementation of it for the Vitruvius framework,

which can be used in Eclipse for EMF models. The implementation serves as a proof

of concept but is not yet su�ciently mature to be used in practice. The idea of using

intermediate metamodels to achieve scalable and modular consistency preservation for

multiple models was already applied successfully to realistic scenarios in other works.

To the best of our knowledge, no existing approach allows de�ning an intermediate

metamodel together with the transformations for it in the same language.
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Zusammenfassung

Der Einsatz mehrerer Modelle zur Beschreibung eines Softwaresystems birgt oftmals

die Herausforderung, diese konsistent zu halten. Während es viel Forschung zur Kon-

sistenzhaltung zweier Modelle gibt, untersuchen nur wenige Arbeiten die Spezi�ka der

Konsistenzhaltung mehrerer Modelle. In dieser Bachelorarbeit wird eine neue Program-

miersprache vorgestellt, die es erlaubt, Transformationen zu erstellen, die mehr als zwei

Modelle konsistent halten. Die Sprache verwendet ein Zwischen-Metamodell, sodass alle

Transformationen zuerst von einem existierenden Modell in das Zwischenmodell und

dann erst in die anderen Modelle ausgeführt werden.

Zunächst betrachten wir verschiedene Möglichkeiten, wie Modelle mit ausschließlich

binären Transformationen konsistent gehalten werden können. Im Weiteren demons-

trieren wir Vorteile davon, ein Zwischen-Metamodell in den Konsistenzhaltungsprozess

einzuführen. Im nächsten Schritt präsentieren wir die Gemeinsamkeiten-Sprache als eine

Möglichkeit der Konsistenzhaltung mittels Zwischen-Metamodellen. Sie ermöglicht Ent-

wicklern, Metaklassen des Zwischen-Metamodells gemeinsam mit deren Attributen und

Referenzen zu deklarieren. Die Abbildungen vom Zwischenmodell in die Modelle, die kon-

sistent gehalten werden sollen, und zurück, können direkt in den Zwischen-Metaklassen,

-Attributen und -Referenzen festgelegt werden. Um Logik nicht zu duplizieren, können bi-

direktionale Ausdrücke für die Abbildungen verwendet werden. Die Sprache ist deklarativ

und soll auf diese Weise eine hohe Nachvollziehbarkeit der Transformationen ermöglichen.

Wir haben ein prototypische Implementierung der Sprache für Vitruvius erstellt, die in

Eclipse für EMF-Modelle verwendet werden kann. Die Implementierung kann als Mach-

barkeitsnachweis gesehen werden, eignet sich allerdings noch nicht für den Praxiseinsatz.

Die Idee, Zwischen-Metamodelle für die skalierbare und modulare Konsistenzhaltung

mehrerer Modelle einzusetzen, wurde in anderen Arbeiten in realistische Szenarien bereits

erfolgreich umgesetzt. Soweit uns bekannt ist, existiert noch kein Ansatz, der es erlaubt,

ein Zwischen-Metamodell und die Transformationen für dieses in der selben Sprache zu

de�nieren.
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1 Introduction

When developing software systems, modelling the developed software helps to tackle the

process’ inherent complexity. By creating models of the targeted system, it is possible

to analyse it or execute simulations for it, even before the system has been fully real-

ised [Sel03]. Because developing software covers many activities and stakeholders, there

are many di�erent types of models, often tailored to �t the needs of a speci�c domain.

This allows experts of a domain to focus on their concerns and to use models that have

the abstraction and concepts required for their activities, without needing a “one size �ts

all”-solution [VS06, p. 15]. In e�ect, the same software system might be developed using

multiple, di�erent models.

Meanwhile, using multiple models means having multiple representations of the soft-

ware. Because even though the models are speci�c to a domain, they still describe the same

system. Therefore, some information will be contained in multiple models. We say that the

models overlap with each other. If di�erent domain experts edit them simultaneously, the

models might contradict each other afterwards. This raises the need to actively keep them

consistent. Consistency preservation—the process of keeping models consistent—identi�es

spots where models overlap with each other and transforms changes to such spots into

other models [Kra17, p. 38 f.]. It ensures that changes to one model are represented in the

other models and that the models hence do not contradict each other.

There are many works on model transformations that could be used for consistency

preservation [MJC17]. However, the approaches are often only concerned with preserving

consistency between two models [MJC17; Ste17]. As others have already shown [NER01;

Ste17], and as we will also explore in chapter 4, preserving consistency of more than

two models using only binary model transformations has shortcomings. It may make it

di�cult to add new models to the system or require an inadequate amount of development

e�ort. Having explicit mechanisms to support more than two models might lead to a

more modular and scalable approach. This thesis contributes to that goal by covering the

following questions:

Q1 Given a set of multiple models, which artefacts (like transformations) should be created

to preserve the models’ consistency, such that the approach

• allows adding models to or removing models from the set,

• and scales well when adding models to the set?

Q2 How can a domain-speci�c language for specifying model transformations be designed,

such that it

• allows realising multi-model consistency preservation with the approach de-

termined for Q1,

• and supports developers in understanding and verifying transformation rules?

1



1 Introduction

We will propose a new programming language for consistency preservation of more than

two models. It introduces an intermediate model to the consistency preservation process,

which models the relevant semantic overlap of models. The language allows developers to

declare such intermediate models together with transformations from existing models to

the intermediate model and vice versa.

The thesis will be structured as follows: We begin by giving background and introducing

relevant terms in chapter 2. We will introduce the paradigm of Model-Driven Software

Development, describe basic concepts of models and their consistency and introduce

relevant technology. Chapter 3 will introduce a running example, to which we will refer

throughout the thesis.

In chapter 4, we compare di�erent possibilities of how consistency of multiple models

could be preserved using only binary model transformation. We will then describe our

approach, using an intermediate metamodel, and compare it to the presented possibilities.

Chapter 5 will introduce the Commonalities Language, the programming language we have

developed to support the approach. We will explain the goals that we had when designing

the language and explain its features in detail. We have also developed a prototypical

implementation of the language; chapter 6 will present features of the Commonalities

Language that have been designed to solve problems that are speci�c to the framework

we implemented the language in and also show notable properties of our prototype.

We evaluate the results of this thesis in chapter 7. Chapter 8 will give an overview of

other publications related to multi-model consistency preservation. Where it is appropriate,

we will compare our results with these works. Finally, chapter 9 gives an outlook on where

and how our results could be improved before chapter 10 concludes the thesis.
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2 Foundations

2.1 Model-Driven So�ware Development

Software engineering su�ers from a gap between the concepts of the problem and the

implementation domain. Even highly evolved programming languages like Java o�er

comparably little abstraction and require developers to think in di�erent terms than those

of the problem they are trying to solve [FR07]. Model-Driven Software Development is a

paradigm trying to make this gap smaller by allowing developers to describe software in

the problem domain. It can be seen as the next step in an ever continuing attempt to raise

the abstraction level in programming [AK03].

In Model-Driven Software Development, models are at the centre of the development

process and specify the software system. They can be general-purpose models for aspects

like software architecture, but also be tailored for the speci�c domain the software is being

built for. Either way, they do not merely document the software but are made a part of it,

for example by automatically transforming them into executable code [FR07]. Thereby,

models get equal to programming languages. In fact, a programming language can be

regarded as just another model that is used to describe and form the software. The software

development process becomes similar to the practice in other engineering disciplines:

Analogous to how a mechanical engineer can feed a model from its Computer Aided Design

software directly into a computer-controlled mill to create a physical workpiece, software

engineers are enabled to create executable software by modelling it. The comparison goes

further: using their model of the system software engineers can execute analyses, predict

properties of the system and evaluate its design before it was built—just like mechanical

engineers can [VS06, p. 6].

Using Model-Driven Software Development promises several advantages. First, it can

increase development productivity. By working on a higher level of abstraction, developers

can ignore details and focus on the software’s “core”. Studies suggest that this productivity

boost occurs in practice, but only if adequate tooling and code generators are available

[Kap+09; MCM12; WHR14]. Second, Model-Driven Software Development is a method

to ensure that requirements and speci�cations from di�erent stakeholders are met. As

programming still forces developers to solve problems on a detailed and technical level,

they can lose sight of the “bigger picture”. Without an integrated view of the software,

they are then forced to implement suboptimal solutions: The system’s architecture might

be violated, or a feature may fail to meet its requirements precisely [Sch06]. If the system’s

architecture, its requirements or other domain-speci�c properties are explicitly modelled

using Model-Driven Software Development, they are thereby enforced. Moreover, because

they can be formulated in a domain-speci�c way, it is often easier to reason about their

correctness.

3



2 Foundations

2.2 Models and Metamodels

What is a model? Models are used throughout the sciences to make complex situations

manageable. Stachowiak [Sta73] thus created a “general model theory”, describing the

fundamental characteristics of any model: representation, reduction and pragmatics.

According to it, a model �rst and foremost represents an original. There is no restriction of

what that original can be. In particular, it can be another model. Secondly, a model captures

attributes of its original, usually selecting only a subset of them (reduction). Which of the

original’s attributes should be represented is dictated by the model’s pragmatics. That

means that the reduction should be carried out in the way that serves the model’s purpose

best. Particularly the target audience and the time and context of use should be taken into

account when selecting attributes [Sta73, pp. 131 f.].

Being an integral part of it, models used in Model-Driven Software Development have

further typical characteristics; the most obvious being that they are represented in a

computer—they could not be integrated into a software development process otherwise.

Selic [Sel03] presents further traits models should possess to be “useful and e�ective” in

Model-Driven Software Development. These criteria are concerned with the pragmatics

applied to the model’s reduction, to put it in Stachowiak’s [Sta73] terms. Similar to

Stachowiak, Selic discusses that leaving out irrelevant information from the model is often

the only option to make it possible to cope with “ever-more sophisticated functionality [of]

software systems”. Models should only contain the essence of what is required from their

viewpoint and abstract from everything else. However, abstraction alone is not enough;

the model should secondly be understandable. That is the conveyed information should

be intuitively perceivable by the target audience. Source code, Selic argues, is not very

expressive because it requires the reader to invest a signi�cant amount of intellectual e�ort

to translate the syntactic constructs into meaning. Models o�er a possibility of a more

direct access to the modelled concepts, which should be exploited. Somewhat antipodal

to this are the next characteristics, accuracy and predictiveness. A model’s contained

information should be su�ciently accurate to make it useful. In particular, it should be

possible to perform predictions about interesting but unknown properties of the original

based on the model. Finally, models should be inexpensive. They should be signi�cantly

cheaper to create and analyse than constructing the modelled system [Sel03].

Whenever operating on a model—for instance when generating executable code from

them, transforming them into other models or running analyses on them—tools need

to know the permissible elements and values they may encounter in it. The set of rules

de�ning what can occur in a model can be a model of its own, called the model’s metamodel.
Consequently, a metamodel also has a metamodel, which could be called the initial model’s

meta-metamodel. This chain needs to stop somewhere, of course: not every metamodel

can have a new metamodel. It is understood that at some point, metamodels reach a level

of “metaness” that makes them self-explanatory.

In this thesis, we will only look at metamodels that are speci�ed in an object-oriented

way. This means that it declares a set of metaclasses that have arbitrarily typed attributes

and cardinalities and can also reference other metaclasses. Models conforming to such a

metamodel consist of objects that are instances of one of the metaclasses and have the

4



attributes declared in their metaclass. To say that a model object o is an instance of a

metaclass M , we will brie�y write o : M .

2.3 Domain-Specific Languages

Programming languages can be roughly categorised by two extremes: general-purpose

languages and domain-speci�c ones. The former describes languages that can be used for

almost any problem. Domain-speci�c languages, on the other hand, target only use cases

that occur in a speci�c domain. They deliberately sacri�ce claims of generality to �t the

requirements of their usage context better.

The C programming language, for instance, is a general-purpose language. It was

designed with no restriction on what it will be used for in mind [Ker88, p. xi]. It can be,

and has been, used to create all kinds of computer programs. Latex, in opposition to C, is

a domain-speci�c language that was created with one particular goal in mind: typesetting

documents. To do so, Latex o�ers several commands and syntactic features tailored for

typical tasks when writing documents. While documents could be created with C, too, it

would be signi�cantly more di�cult and require a multitude of code lines compared to

Latex. For example, Latex allows writing the document’s text directly into the �le, without

any further markup. Text and commands can be mixed freely. Arguments to commands

can, but do not always have to, be enclosed by special characters. Strings in C, on the

other hand, must always be contained in double quotes. Arguments to functions must be

given in double quotes, and the return value of functions must be combined with strings

text by the + operator. To put it in a nutshell, Latex o�ers functionality that is useful for

creating documents and makes this task easier. C may often require more e�ort to solve a

task than a domain-speci�c language, but can in return be used in any context.

Domain-speci�c languages have successfully been applied to various areas of informa-

tion technology. HTML to create web pages, CSS to style them, Make to build software,

Perl-style regular expressions for pattern matching or SQL to query databases are just a few

of the numerous popular examples [MHS05; FP10, p. xxi]. They are especially important in

the context of Model-Driven Software Development: A model can be seen as being written

in a domain-speci�c language. That language’s abstract syntax is it the model’s meta-

model, the language’s concrete syntax is the model’s—graphical or textual—representation.

From that point of view, abstract syntax trees can be seen as a meta-metamodel. These

observations are true for any language, not just for domain-speci�c ones. However, as

Model-Driven Software Development focuses on using domain-speci�c models, domain-

speci�c languages are of particular interest. Because both concepts are so closely related,

metamodels are often referred to as (domain-speci�c) “modelling languages”.

A fundamental distinction can be made regarding the implementation of domain-speci�c

languages: there are internal and external domain-speci�c languages. The former type does

not specify an entirely new syntax, but re-uses an existing language, the host language.

Code written in an internal domain-speci�c language is still valid code in the host language.

It is merely a speci�c way to use the host language. External domain-speci�c languages,

on the other hand, use their own parser, type system, etcetera [FP10, p. 28]. There are

good arguments for using either type of domain-speci�c language. For example, internal

5



2 Foundations

domain-speci�c are often cheaper to realise, and existing tools can be used for them.

External domain-speci�c languages, on the other hand, can choose syntactic constructs

that make the most sense and are not limited by the syntax of the host language [FP10,

pp. 105 �.]. The best decision between the two types will often depend on the use case

[FP10, p. 29].

2.4 Model Consistency

When multiple models describe the same original, it is possible that the same piece of

information is contained in multiple models. In conformance with Burger et al.’s [Bur14]

nomenclature, this situation will be called “semantic overlap” in this thesis. If a model shares

semantic overlap with other models, those models will be called the model’s overlapping
models. Semantic overlap does not imply that a piece of information is contained as a

syntactic copy in the concerned models. It can be represented in very di�erent ways, even

just implicitly.

Problems arise when a model which shares semantic overlap with other models is edited.

The model might then become out of synchronisation with the other models; in other words,

the models are expected to share the same piece of information, but, in fact, contradict

each other. If this happens, the models are called inconsistent. If no model contradicts

another—either because no models share semantic overlap or because all models having

semantic overlap are in unison—a set of models is called consistent. Consistency is not a

feature that could be de�ned in the metamodel, as it spans over multiple models (that will

often be from di�erent metamodels). It is an external property. In addition, there is no

inherent or unique de�nition of when a set of models is consistent, although there may be

an intuitive one. Consistency is relative to a consistency speci�cation [Kra17, p. 38].

2.4.1 Handling Inconsistency

Can inconsistency be avoided? As there can be no inconsistency if there is no semantic

overlap, a possible solution might be to remove any semantic overlap from all models.

Any piece of information would then be contained in at most one model, and other models

could just point at that instance, which would remove any semantic overlap. Atkinson

et al. realised this in their approach by only using one central model, see section 2.6.1. It

might however not always be practical (see section 2.6.2, for instance).

2.4.2 Consistency Preservation

If neither eliminating any semantic overlap nor su�ciently restricting model editing is an

option, consistency has to be actively enforced [Kra17, pp. 5 f.]. This means propagating

changes from an edited model to its overlapping models. If done manually, the task is

time-consuming, prone to error and requires knowledge about all overlapping models.

Experts may not be capable of consistently making changes to models because it would

require modifying models of a domain which they do not have su�cient knowledge of.

All of this motivates the need for automatic enforcement of consistency [Kra17, p. 6].

6



This process is not bound only to act when consistency has been violated but may also

modify already consistent models to avoid inconsistency in the future. Because of that

Kramer [Kra17] calls it consistency preservation. The term does not militate against that

inconsistency might be tolerated in some cases.

There are di�erent ways how consistency can be preserved in practice. It is for example

possible to exhaustively search the space of all possible models for a combination that

ful�ls all consistency rules [Kra17, p. 39]. A more direct approach, which was also chosen

for this thesis, is to specify appropriate model transformations that are executed after a

model was edited.

How can model transformations look like? Fundamentally, a model transformation is an

algorithm taking models as its input and returning a model as its output. It is speci�ed at

metamodel level and executed on model instances. Often, the models conform to di�erent

metamodels, and the output model will be a modi�ed version of a pre-existing one. Because

of that, it is common for transformations to also have the pre-existing model as part of

their input. It allows them to react to what is already in the model, and to not change

more than necessary and avoid unpleasant surprises [Che+15; Che+17].

Most commonly, a transformation will act on two models and will be called binary.

This is, however, not necessary; a transformation could also transform multiple models,

in which case it is called n-ary if it acts on n models, or multiary if the value of n is

irrelevant [Ste17]. In the binary case, a fundamental distinction can be made between

unidirectional and bidirectional transformations. Unidirectional transformations only

support transforming the source models into the target model, but not the other way around.

Compilation of high-level languages is a typical example for them [Ste07]. In Model-Driven

Software Development it is, however, more likely that both sides of a transformation can

be edited. This calls for bidirectional transformations; i.e. transformations in which both

participating models can be the source of transformation. Bidirectionality does not imply

bijectivity. Requiring bidirectional transformations to be bijective is too restrictive for

many applications [Ste07].

Realising consistency preservation through transformations also establishes a consis-

tency speci�cation; in the sense that every state of the models reachable through the

transformations is consistent and any other state is not. When working with model trans-

formation languages, we assume that this will be the usual case: Instead of creating any

form of explicit consistency speci�cation for the models, developers create transformations

that express their implicit understanding of how consistent models should look like.

2.5 Metamodelling Technology

2.5.1 Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) o�ers an infrastructure for working with metamod-

els. It provides means to create tooling for Model-Driven Software Development and lowers

the barrier to develop domain-speci�c model assets. Metamodels can be created in a graph-

ical editor. Based on such a metamodel de�nition, EMF creates Java classes representing

the metamodel. These Java classes can be used like regular classes in Java code, but also
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carry additional metadata from the metamodel. They also feature a noti�cation mechan-

ism, making it possible for Java code to be noti�ed of any change to the model objects.

EMF can furthermore generate a graphical editor allowing to edit model instances of the

metamodel. On the whole, EMF lays the foundations for adopting Model-Driven Software

Development: The generated graphical editors o�er an easy way to create models and the

generated Java code can be used to write model transformations and code generators for

them or use them directly in an application.

Metamodels for EMF are de�ned using Ecore, EMF’s meta-metamodel. It provides

metaclasses to de�ne metamodels using concepts known from object orientation, like

packages, which contain other packages and classes, which again can have attributes,

references and operations. Ecore is aware of the Java programming language: It de�nes the

meta-metaclass “EDataType”, which describes an existing Java class in a metamodel. Such

data types can be used for attribute types or the type of the parameters or the return type

of an operation. This mechanism allows integrating existing Java classes into metamodels,

which eases the usage of Ecore models in Java applications.

Another relevant feature of EMF is built-in support for model serialisation. Any Ecore

model can be serialised without any further code needed. The default serialisation uses

XMI as exchange format. However, EMF is not restricted to XMI but can be extended to use

any serialisation format. One interesting application is to de�ne a programming language

as a serialisation format of an EMF metamodel. Instances of the metamodel can then be

serialised to code in the language, and code written in the language can be deserialised to

an instance of the metamodel. This approach realises the close relation of languages and

metamodels laid out in section 2.3. It is used by Xtext and Jamopp, see sections 2.5.5 and

2.5.4.

Model objects must eventually be persisted. In EMF, every model object is therefore

contained in an EMF Resource, which is an abstraction from a �le. An EMF Resource

contains a tree of objects. Only the root node has to be placed in a Resource explicitly,

all other model elements in the tree will be included when serialising an EMF Resource.

When creating a metamodel in Ecore, references to other metaclasses can be marked as

being a containment reference. These references are considered edges of the model tree

in an EMF Resource. Every model object may participate in at most one containment

reference. In e�ect, every model object is either in one Resource—because it is the root of

a containment tree or in exactly one containment reference—or in no Resource.

2.5.2 Unified Modelling Language

The Uni�ed Modelling Language (UML) o�ers a standardised [Obj15] and widely-used

[Pet13] metamodel for various aspects of software development, together with a graphical

syntax for it. The metamodel covers areas like architecture description, object-oriented

design and business processes. For graphical representation, UML knows �fteen diagram

types, seven for describing structural and eight for describing behavioural circumstances

[Obj15, p. 683]. The best-known diagram type is probably the class diagram, which is also

used in this thesis. UML has been described as the “lingua franca” of software engineering

(as cited by Petre [Pet13]). It is known by most practitioners, although practical use is often
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informal and limited to speci�c parts of the metamodel [Pet13]. The UML speci�cation

also proposes a format for data exchange of UML-conform models [Obj15, pp. 685 �.].

2.5.3 Palladio Component Model

Modelling software has more to o�er than merely being a better abstraction for the

implementation. It also allows simulating a software system before it has been implemented.

This is, for example, possible by using the Palladio Component Model (PCM), proposed

by Becker et al. [BKR09]. It is a metamodel for component-based software architecture,

which also captures software’s abstract behaviour and context of use. This allows the

so-called Palladio-Bench to predict non-functional properties of the software. Architects

can, therefore, carry out experiments on a PCM model, predict its behaviour and thereby

compare di�erent architectures or deployments [BKR09].

2.5.4 Java Model Parser and Printer

As already mentioned in section 2.1, it is desirable to treat source code as just another

model describing the software system in Model-Driven Software Development. The Java

Model Parser and Printer (Jamopp) (own spelling: “JaMoPP”) de�nes an Ecore-metamodel

of the Java programming language, together with an appropriate deserialiser (parser)

and serialiser (printer) for EMF [Hei+09]. Using Jamopp, tools developed for Ecore-

metamodels can be used for Java code, too, without the need for any special handling. It

is, for example, possible to transform a PCM model to Java source code and back using

solely the mechanisms provided by EMF, as Langhammer showed [Lan17]. Jamopp only

de�nes the Java language at version �ve and does not support handling �les written in

more recent versions of Java [Dev16].

2.5.5 Xtext

De�ning a new programming language includes several steps: after devolving the lan-

guage’s grammar, a lexer is required to split input �les into tokens, and a parser needs to

be created to process the tokens and create an abstract syntax tree from them. To simplify

writing in the language, it is often desired to create an editor in an integrated development

environment, which supports syntax highlighting, code completion, annotating errors in

the source code and so on.

Xtext, a framework for developing external domain-speci�c languages, automates a

lot of this tasks [EV06]. Language developers start creating a new language by de�ning

its concrete and abstract syntax together in one grammar speci�cation. Based on the

speci�cation, Xtext generates various artefacts for the language, including a parser, an

abstract syntax tree and editors for the integrated development environments Eclipse and

Intellij. These editors already include syntax highlighting for keywords, error annotation,

autocompletion for referenced elements, and more. All of these artefacts are designed in a

way that makes extending or overriding them easily possible. All classes use dependency

injection, allowing developers to provide their own implementation for any aspect of a

generated parser, compiler and editor [ES17]. Because of that, the framework reduces the
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e�ort to create a domain-speci�c language signi�cantly, without restricting developers’

possibilities.

The abstract syntax tree generated by Xtext is an Ecore metamodel [ES17]. This is

another example of the close relation of domain-speci�c programming languages and

metamodels, which we described in 2.3. It also means that Xtext can be used to create a

textual concrete syntax for Ecore metamodels and that tools from Model-Driven Software

Development can be used to process the metamodel, for example to create code from it.

This thesis uses Xtext to implement the Commonalities Language and exploits many of its

advanced features, like importing existing grammars.

2.6 View-Based Modelling

The software development process includes a variety of stakeholders, all having their

speci�c concerns and thus speci�c views on the software. View-based software develop-

ment attempts to represent this observation in the tools used for software development.

While there are di�erent understandings of what a view should exactly be [ATM15], it is

su�cient for this thesis to imagine it as an “object which encapsulates partial knowledge

about the system and domain” [Fin+92]. The concept relates well to domain-speci�c

models in Model-Driven Software Development, as a model can represent a certain view

on its original [Bur14, p. 31]. A distinction can be made for how a view model relates to

other models. A synthetic view is �rst de�ned and then integrated with the other models

by de�ning appropriate transformations. A projective view, on the other hand, is derived

from existing models through some extraction procedure [ISO11]. This allows the view to

automatically transform modi�cations back to the source models based on the information

from the extraction procedure.

2.6.1 Orthographic So�ware Modelling

Atkinson et al. [ASB10] presented Orthographic Software Modelling, an approach using

only projective views. It is inspired by the orthographic projections used in technical

drawing. At its core, it uses a single underlying model (SUM) containing all information

about the system. This model is kept free of semantic overlap [ASB10; ATM15]. Views are

created on demand like spokes around a hub, transforming the information edited in them

back into the SUM. The approach thus does not need consistency preservation.

2.6.2 Vitruvius

The language presented in this thesis was implemented in Vitruvius, a framework for view-

based modelling presented by Kramer et al. [KBL13]. Vitruvius is inspired by Orthographic

Software Modelling, but uses a virtual single underlying model (VSUM) that is formed

by multiple models. A SUM has to be de�ned up front and must not contain semantic

overlap, which makes extending it di�cult. Vitruvius’ VSUM, on the other hand, combines

metamodels in a modular manner, meaning that metamodels can be added and removed

from it. This has the advantage that existing, well-tried metamodels and their tools and

10



editors can be used. In consequence, the models making up the VSUM can share semantic

overlap and must actively be kept consistent.

Like Orthographic Software Modelling, Vitruvius permits changes to the models only

through projective views. These can, for example, be existing editors for the models in

the VSUM. Views can also be de�ned using a domain-speci�c language, Modeljoin, and

can combine information from multiple models of the VSUM [Bur+14; Bur14]. In e�ect,

Vitruvius has a hybrid structure: It uses projective views for model editing, but active

consistency preservation for the VSUM.

Vitruvius is implemented as an extension to the integrated development environment

Eclipse. It uses EMF as its metamodelling infrastructure. While the approach was developed

with software engineering in mind, it can be applied to various �elds that use computer-

aided modelling. It has, for example, been used to build a uni�ed model of the so-called

smart grid to provide better electricity outage management [BMK16]. To support Model-

Driven Software Development, Langhammer presented an approach to co-evolve Java code

and an architectural model in PCM using Vitruvius. Recent works used the framework to

de�ne consistency preservation rules between PCM and UML [Kla17] as well as between

UML and Java [Che17].

2.7 Consistency Preservation in Vitruvius

As outlined above, the Vitruvius framework needs to actively preserve consistency for the

models contained in its VSUM. The language presented in this thesis is meant to support

this task in Vitruvius and builds upon another consistency preservation language already

developed for it. This last section of this chapter will, therefore, give an overview of how

consistency preservation is realised in Vitruvius and introduce said language.

Consistency preservation in Vitruvius is change-driven. The framework monitors the

views presented to the user and records changes made to them. These changes are then

applied to the correct models in the VSUM. Based on each changed element’s type and the

nature of the corresponding change, the framework selects transformations that declare

to handle this combination. These transformations then execute consistency preservation

logic reacting to the changes [KBL13; Kra17, p. 20].

2.7.1 Correspondences

Consistency preservation rules are speci�ed at metamodel level but executed to keep

model instances consistent. To document that two model elements are consistent with

each other, Vitruvius allows transformations to store correspondences. A correspondence

relates a set of model elements to another set of model elements and thereby witnesses their

consistency. This information can be queried by transformations to act in conformance

with the system’s state. Correspondences are more than a cache, they witness decisions

made earlier in the consistency preservation process, that might not be reproducible from

the current model state. We assume, for example, that consistency is to be preserved for

two metaclasses A and B, such that for every instance of A there is an instance of B, and

vice versa. Additionally, both metaclasses have an attribute, and its value should be the
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same for every pair of corresponding instances of A and B. After an instance a of A is

created, the transformations create a corresponding instance b of B. At a later point, the

attribute of a is modi�ed and needs to be updated in b. The transformations now need

to know which instance of B corresponds to a. This information can only be derived

from current state if A and B both declare a set of attributes that uniquely identify their

instances and a transformation between those attribute sets is available. This will not

be the case in general, so the correspondence information must be stored explicitly in

the correspondence model instead. Correspondences can additionally carry string tags to

di�erentiate the context they were created for [Kra17, p. 102].

2.7.2 The Reactions Language

Vitruvius contains a domain-speci�c language, the Reactions Language, which can be used

to create transformation for consistency preservation. The Reactions Language follows the

paradigm of reactive programming. Programming includes three steps: First, the developer

sets up triggers, that describe changes to models which should be reacted to. Second, the

developer retrieves model elements. Third, the developer speci�es a transformation that

should be executed in reaction to the trigger’s changes. The transformation uses the model

objects retrieved in the second step [Kra17, pp. 107, 115]. In all steps, the language o�ers

suitable abstractions to relieve the programmer from dealing with technical concerns,

like how to retrieve and store model elements [Kra17, p. 119]. Kramer showed that the

Reactions Language is complete in terms of the events it can react to and that the executed

routines are Turing complete. In other words, the Reactions Language can react to every

possible change to a model and execute every computable reaction to such changes [Kra17,

pp. 211 f.].
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3 Running Example

Throughout the thesis, we will illustrate �ndings with examples. One scenario such

examples will particularly often stem from is consistency preservation for the notion

of a component in component-based software. We will assume a software project that

uses UML to create its architecture, PCM to model its quality of service, and Java for

the implementation. For the sake of simplicity, the consistency preservation will only be

concerned with a very basic version of component-based architecture: The software is

made out of components which have a name and can contain other components. Every

component is contained in a repository, which collects components. A repository also has

a name and no further properties (see �gure 3.1).

The project wants to preserve consistency of their di�erent models of the software.

To do so, they decide to apply the conventions proposed by Langhammer [Lan17], Chen

[LK15; Che17], and Klatte [Kla17]. PCM and UML already contain metaclasses for com-

ponents. Those should be kept consistent with each other. To represent components

in source code, a Java package together with a public, �nal class is created for every

component [Lan17, pp. 68-70]. The project wants to use UML also for modelling their

object-oriented classes and therefore wants to apply the equivalent transformation from a

component to UML packages and classes. Naturally, consistency must also be preserved

between the representations in UML and Java, which can be done using the intuitive

equivalents of a package and a class in both metamodels [Che17, pp. 26 f.].

A repository of components is represented using the repository metaclass in PCM. In

UML, which does not have an explicit class for repositories, it is mapped a metaclass called

“Model” [Kla17, p. 9]. For Java, the conventions established by Langhammer are used again:

Every repository is represented by three Java packages: One main package, containing the

packages created for components, a package for contracts, that will contain interfaces and

a package for data types [Lan17, p. 68]. The packages have the name of the repository, with

“.main”, “.contracts” or “.datatypes” appended to it. Once again, the analogous conversion

rules are applied to UML.

To keep the example simple and manageable, we ignore some speci�cs of the used

metamodels. For example, every Java class must be contained in a compilation unit and

PCM di�erentiates between composite components (which can have subcomponents but

no behaviour of their own) and basic components (which cannot have subcomponents but

can have behaviour of their own) [Reu+11, p. 127].
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Figure 3.1: The metaclasses of the running example.
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4 Transformation Layout

This thesis presents a language to specify consistency preservation rules for multiple

models. It is concerned with the case that one consistency speci�cation applies to more

than two models. Usually, these models will conform to di�erent metamodels. In this

chapter, we will explain the fundamental approach that was chosen to specify multi-model

consistency using binary model transformations. We will look at di�erent transformation

layouts; that is, which transformations should be created to preserve consistency for a

given set of models. We will �rst explore solutions that only use binary transformations

and then explain what this thesis’ chosen solution is and why it was selected. When

discussing constellations of models and transformations, we will look at the graph that

is intuitively formed by them: The involved models form the graph’s nodes, and there

is an edge between two nodes if there is a transformation between the models. The

edges’ directions indicate the transformations’ directions. We will call this graph the

transformation graph.

We will assume a set of models, of which any pair shares semantic overlap. This

simpli�cation is without loss of generality: If a solution can preserve consistency for an

arbitrary set of models with pairwise semantic overlap, it can preserve consistency for any

set of models if it is applied to any subset of models sharing pairwise semantic overlap. In

practice, the models will likely conform to di�erent metamodels, but we never use this

assumption. Transformations are, however, speci�ed at metamodel level (see 2.4.2).

We will additionally assume that only one model is edited before transformations are

executed. Because of that, executing the transformations will always start from only one

model, and all other models may be modi�ed. This assumption is not realistic, however,

executing a transformation graph starting from multiple nodes leads to several principle

problems that shall not be discussed in this thesis. Stevens [Ste17] discusses this situation

from a theoretical point of view and analyses under which circumstances a transformation

graph can successfully be executed if more than one model may not be modi�ed freely.

Dam et al. [Dam+16] present a practical approach showing how edited models can be

merged while respecting a consistency speci�cation. The process is automated to a high

degree and asks the user to decide on con�icts when an automated decision cannot be

made. Because Dam et al. pose no requirements on how the consistency speci�cation

must look like, their approach could be used with the language developed in this thesis.

Regarding only one changed model is thus not an insuperable restriction.

The following criteria will be used to assess di�erent solutions:

Rule Confirmability Developing consistency rules is a non-trivial task. The solution

should, therefore, support developers in con�rming that the set of transformations is

correct; that is, it actually preserves consistency as de�ned by consistency speci�cation

for any allowed edit.
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Generality The solution should be feasible for any set of models. It should not require

the metamodels or models to have a speci�c structure. We assume, though, that the models

can be kept consistent using only binary transformations. This might not always be the

case in reality [Ste17], but that is discussed separately in section 8.4.

Model Modularity It should be possible to modify the set of models of which consistency

is preserved. To di�erentiate the criterion from the others, we only set two requirements

at this point: First, adding a new metamodel to the system should only require to add

transformations that have the added metamodel at one end. Second, removing a model

should be possible without having to change the transformations.

Development E�ort Developing the necessary transformations for a set of models should

require the least e�ort possible. At this chapter’s level of abstraction, at which no concrete

consistency preservation language is considered, this criterion is only concerned with

how many transformations need to be speci�ed.

4.1 Multiary Consistency Preservation Using Only Binary
Transformations

Given that there are already languages to preserve consistency from one model to another,

it suggests itself also to use these tools for the multiary case. Multi-model consistency

shall then be achieved by creating binary transformations for two metamodels multiple

times. If enough transformations are provided, any change can be propagated to all other

models, possibly passing through di�erent models on the way. However, as will be shown

in the following, this approach introduces complications in practice. We will present

three solutions that only use binary transformations and discuss their advantages and

disadvantages.

4.1.1 Fully Connected With Bidirectional Transformations

A simple approach to preserving consistency of multiple models is to specify bidirectional

transformations for all pairs of metamodels. The transformation graph hence is fully

connected (�gure 4.1). If one model is changed, the changes can be transformed directly

to any other model.

Rule Confirmability If they must be de�ned between every pair of models, transforma-

tions can become incompatible to each other. It is possible that any single bidirectional

transformation helps to preserve consistency when looked at in isolation, while the combin-

ation of all transformations still fails to preserve consistency. This leads to the unfortunate

situation that the consistency preservation transformations are inconsistent on their own.

As a consequence, developers can never concentrate on one transformation in isolation

but are forced to always consider the system as a whole. This makes it challenging to

both develop correct transformations and con�rm the correctness of a given system of

transformations.
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Figure 4.1: A fully connected transformation graph, kept consistent by bidirectional trans-

formations.

To illustrate, we look at a set of consistency transformations for the running example.

The speci�cations are concerned with keeping the name of a component consistent in all

models. The process is straightforward, with one restriction: The permissible values for

names di�er between the models. Neither PCM nor UML restricts the values for names

[Obj15, p. 47-50][Reu+11, p. 99], but Java does. In particular, Java class names must not

contain symbols like spaces or hyphens [Gos+15, pp. 20 f.]. Our example’s project wants

to use such symbols, especially spaces and hyphens, in the models to make them more

readable. Thus, the names need to be modi�ed when being transformed into the Java

model. For the sake of simplicity, we ignore the packages created for components in this

example. The following bidirectional transformations are used to preserve consistency:

• For every UML component, there is a corresponding PCM component with the same

name. For every PCM component, there is a corresponding UML component with

the same name.

• For every UML component, there is a corresponding Java class. The class is public

and �nal and has the UML component’s name, but with all impermissible characters

removed, characters after spaces in uppercase, and “Impl” appended to it. For every

public, �nal Java class whose name ends in “Impl” there is a corresponding UML

component. The component has the name that is obtained by removing the su�x

“Impl” from the Java class’ name and by adding a space before every uppercase letter

but the �rst.

• PCM components are transformed to Java classes and back in the same manner.

• For every UML component, there is a corresponding UML class. The class is public

and �nal and has the UML component’s name, with “Implementation” appended to
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it. For every public, �nal UML class whose name ends in “Implementation”, there is

a corresponding UML component. The component has the name that is obtained by

removing the su�x “Implementation” from the UML class’ name.

• PCM components are transformed to UML classes and back in the same manner.

• For every public, �nal UML class that ends in “Implementation”, there is a corres-

ponding, public, �nal Java class with the same name, but with all impermissible

characters removed, characters after spaces in uppercase, and the su�x “Implement-

ation” changed to “Impl”. For every public, �nal Java class whose name ends in

“Impl”, there is a corresponding, public, �nal UML class. The UML class’ name is

obtained by changing the su�x “Impl” of the Java class’ name to “Implementation”

and by adding a space before every uppercase letter but the �rst.

These transformation rules correctly transform the models and preserve consistency

according to the consistency speci�cation implied by them. However, as described above,

the transformations are closely interrelated and can not be veri�ed in isolation. Imagine,

for example, that the developers used the same function to transform names of UML classes

to names of Java classes as they do to transform names of UML and PCM components

to names of Java classes. When looked at in isolation, the transformation would be

meaningful and correct. But because the transformations to a UML class already add

the su�x “Implementation”, a Java class created for a UML class would have the su�x

“ImplementationImpl”. Such Java classes would then be inconsistent to the UML and PCM

components, because transforming the name between the components and the class would

not obtain the same name. In our small example, the mistake would, of course, be easy

to discover and �x. However, in larger projects, with multiple developers working on

the transformations, the duplication of similar logic means that no transformation can be

changed without also looking at the others. The system is di�cult to verify and maintain.

Generality The solution can be applied to any set of models. As consistency can be

preserved for the models per assumption, the models can be kept consistent using a fully

connected transformation graph, too. Because if there is a transformation graph using

only binary transformations that can keep the models consistent, this graph either already

is fully connected, or it requires multiple transformation steps after changes for at least

one pair of models. In the latter case, a new transformation can be added that realises the

same transformation that occurred by the multi-step transformation.

Model Modularity The approach is modular by the de�nition given for this criterion:

Removing models never requires modi�cation because there still exists a transformation

for any pair of models. Adding a new metamodel to preserve consistency of requires

creating as many transformations as there were models in the set before.

Development E�ort This solution has the highest development e�ort possible, as it re-

quires writing the maximal number of bidirectional transformations possible for n models:

n−1∑
i=1

i =
n2 − n

2
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Figure 4.2: Bidirectional transformations, forming a transformation graph that is a tree.

The e�ort is quadratic in the number of participating metamodels. Our example above

already showed that many transformations were required although the example was

simple.

4.1.2 Spanning Tree with Bidirectional Transformations

The main disadvantage of the previous solution stems from the number of transformations

that need to be de�ned. To �x this, we might stick to using bidirectional transformations, as

they are well understood, but reduce the number of them. For n metamodels, we obviously

need at least n − 1 transformations, as at least one model would never be kept consistent

otherwise. The solution might thus be to de�ne n − 1 bidirectional transformations which

then form a spanning tree in the transformation graph.

As there is no direct transformation for every pair of models, transformations must now

be executed transitively. After a model was changed, it is recursively transformed using

all applicable transformations, but only if the target model has not already been changed

during the current transformation execution. This realises a breadth-�rst search on the

transformation graph, which must ultimately reach every node because it is an undirected

tree.

Rule Confirmability This approach is easier to verify than the last one. There is a unique

path the transformation will take for any given edited model. There are no circles in the

transformation paths, which avoids that the pathological dependencies between trans-

formations of the fully connected solution. This means that developers trying to verify a

set of transformations can concentrate on whether one binary transformation correctly

preserves consistency for its two metamodels. If this is the case for all transformations, the

whole system will correctly preserve consistency. It can, however, be di�cult to answer

how editing one model will impact the others, as a change might pass through several
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transformations after one change. This factor is in�uenced by the graph’s layout. If the

graph consists of only leaves except for one root node, the longest transformation path

will always include only two steps.

Generality When applying this solution to a set of models, there will always be a unique

path of transformations that will be taken to transform one model into another. To make

the transformations work, it is required that no information is lost along that path. In

other words, the non-leaf models in the transformation graph must be able to store all

information that is transformed between any pair of models. This cannot be guaranteed

in general. If the information that is transformed between the models can be divided

into di�erent parts, such that for every part there is at least one model for which no

other model contains more information about that part, then this model could be made

the only root of the “sub-transformation tree” that only preserves consistency for this

part of information. All other models could be made the leaves and consistency could be

preserved for this part of information. However, there will usually not be one model that

contains all the transformed information, so a subdivision of the models into di�erent

“information parts”—if possible at all—would lead to multiple parts. For every part, the

transformation graph would look di�erent. So for every part, the transformations would

need to be speci�ed for di�erent model pairs. To summarise, the solution can be applied to

a set of models with a good-natured structure. Other sets of models could maybe be kept

consistent using this solution from a technical point of view, but the need to subdivide the

models’ information into di�erent parts and create a di�erent transformation graph for

each part would make it impractical.

Model Modularity Adding a metamodel only requires writing another bidirectional trans-

formation. However, if any metamodel that is not a leaf in the graph formed by the

metamodels and transformations, is removed, the graph falls into two components (as it

was a tree before). Certain models will not be updated if certain other models are edited,

even though they share semantic overlap. New transformations have to be created to

preserve consistency of the system. The solution is thus not modular, as it prescribes a set

of metamodels that have to be in use if consistency is to be preserved.

Development E�ort Assuming that there is one transformation graph that can be used

to preserve consistency of the models, the solution requires developers to create one

bidirectional transformation for any metamodel added to the system. This is a reasonable

amount of required e�ort.

4.1.3 Circle With Unidirectional Transformations

The least amount of transformations in one direction are needed if only using unidirec-

tional transformations that form a circle containing all models present in the system

(�gure 4.3). That way, the number of transformations equals the number of models to

preserve consistency for. Any lower number of transformations would mean that changes

to at least one model cannot be transformed into at least one other model. Like the last

solution, this one requires executing the transformations transitively. In this case, the only
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Figure 4.3: Binary, unidirectional transformations preserving consistency in a circle.

applicable transformation is executed in every step until it would change the model that

was initially edited.

Rule Confirmability Like the last one, this solution has the advantage that only one

transformation needs to be considered at a time when con�rming that the system correctly

preserves consistency. Veri�cation is furthermore made a little easier by the fact that

only unidirectional transformations are used. What makes con�rmability worse, however,

is the fact that with this solution, the longest transformation path will always have

n − 1 transformation steps for n participating metamodels. Understanding how a change

to a model will a�ect the model furthest away from it requires accounting for n − 1

transformations. This becomes impractical when there are more than just a few metamodels

involved.

Generality This solution can only be applied to special constellations of metamodels;

namely those were no necessary information is lost in any transformation. If a consistency

speci�cation requires one transformation to have information that is present in the changed

model, but was lost it a previous transformation, consistency cannot be preserved with

this solution. For a simple example, we assume three metamodels A, B and C, all having

only one metaclass, called A, B or C , respectively. A and B have a number attribute using

a �oating point number, C has an integer attribute. The consistency speci�cation requires

that the number attribute of corresponding instances of A and B must be equal, while

corresponding instances of A andC or B andC must have number attributes that are equal

when rounded to the next integer. These metamodels cannot be kept consistent using this

approach. Because regardless of how the graph is built, there will be one metamodel of

A or B that can reach the other only through C in the transformation graph. Because

no other facilities than unidirectional, binary transformations are available, the decimal
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4 Transformation Layout

places of the respective model element’s number attribute’s value will be lost when being

transformed into the corresponding instance of C .

Model Modularity Adding a metamodel to the system is easily possible. Removing a

model, on the other hand, will always break the transformation cycle, meaning that new

transformations have to be created to preserve consistency. This solution thus is the least

modular one.

Development E�ort We assume that a set of models can be kept consistent without losing

information. In that case, this solution needs the least amount of e�ort, because the least

transformations need to be de�ned.

4.1.4 Other Solutions

There are, of course, other transformation graphs that could be used to preserve consistency

for multiple models using only binary transformations. We looked at the most minimal and

most maximal possible solutions (regarding the number of transformations), as well as one

solution “in between”. We would like to argue that any other solution will have properties

along the lines of those presented in this section. As a general rule of thumb, using

more transformations per metamodel makes a solution more modular, while using fewer

improves development e�ort. Con�rmability pro�ts from using fewer transformations,

although understanding how the transformations a�ect the models gets more complicated

with fewer transformations. Overall, it seems like restricting ourselves to using nothing

more than binary transformations does not lead to satisfactory results.

4.2 Multiary Consistency Preservation Using an Intermediate
Model

Inconsistency can only occur if models share semantic overlap (see section 2.4). In usual

transformation algorithms, overlap is never made explicit but implicitly assumed. It

could be derived by looking at what model elements and attributes are being modi�ed.

Imagine, for example, that a set of transformations makes sure that the name attribute

of corresponding instances of di�erent metaclasses always has the same value. We could

then rightfully conclude that these metaclasses share semantic overlap, at least for the

name attribute.

As semantic overlap is the cause of inconsistency, it might be worthwhile to �nd an

explicit representation of it before transforming it between models. The solution proposed

by this thesis is to introduce a model of the semantic overlap that model instances of

metamodels can have. This model is called the intermediate metamodel. It is a metamodel

of the semantic overlap that a set of model instances of metamodels have. In our example

above, the intermediate metamodel would contain at least a metaclass with a name attribute,

to represent the semantic overlap we have found.

When preserving consistency, transformations �rst transform changes into an inter-

mediate model, which is an instance of the intermediate metamodel of the participating
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Figure 4.4: Preserving consistency using an intermediate metamodel and bidirectional

transformations.

metamodels. The intermediate model is then transformed into the other models. There are

no direct transformations between the models that are kept consistent. The transformation

graph of this solution is thus a tree that has all models for which consistency should be

preserved as leaves and the intermediate models as non-leaf nodes (�gure 4.4). All nodes

are connected by bidirectional transformations. In a system with multiple instances of

di�erent semantic overlap, there will be multiple intermediate models. Maybe contrary to

intuition, we do not demand that the intermediate metamodel is free of semantic overlap.

Instead, tolerating semantic overlap in it might sometimes make it easier to maintain

and allow a better separation of concerns. Because developers have complete freedom in

designing an intermediate metamodel—which they have not for the existing metamodels

they want preserve consistency of—consistency can be preserved for intermediate models

using tree-structured transformations, as discussed in section 4.1.2. Model modularity

is not an issue for intermediate models, as they only contain information coming from

other models. Users thus never need to interact with the intermediate models, and there

are no reasons why they would want to remove an intermediate model from the system.

Nevertheless, intermediate metamodels should be designed in a way that makes preserving

consistency easier, which includes keeping the amount of semantic overlap to a minimum.

To illustrate, we apply the solution to our running example. Here, our semantic overlap

is a common notion of a repository, corresponding to a PCM repository, a UML model,

three UML packages, and three Java packages, as well as a common notion of a component,

corresponding to a PCM component, a UML component, a UML class in a UML package

and a Java class in a Java package. We might thus create a metaclass called “Repository”

and a metaclass called “Component” in the intermediate metamodel (see �gure 4.5).

We would then create the bidirectional transformations between the intermediate

metamodel and the existing metamodels. These would realise the relationships as explained
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name: String

Repository

name: String

Component

*

Intermediate Metamodel

name: String

Repository

name: String

Component

*

PCM

name: String

Model

name: String

Component

*

name: String

Package

name: String

Class

*

UML

name: String

Package

name: String

Class

*

Java

Figure 4.5: The metaclasses for consistency preservation with an intermediate metamodel

in our running example. The coloured arrows suggest the bidirectional trans-

formations that would be created. The di�erent colours are only used for better

readability and have no further meaning.
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name = Examplerepo

: Repository

PCM UML

Intermediate Model Java

name = Examplerepo

: Repository

PCM UML

name = Examplerepo

: Repository

Intermediate Model Java

name = Examplerepo

: Repository

PCM

name = Examplerepo

: Repository

Intermediate Model

name = Examplerepo

: Model

name = examplerepo.main

: Package

name = examplerepo.contracts

: Package

name = examplerepo.datatypes

: Package

UML

name = examplerepo.main

: Package

name = examplerepo.contracts

: Package

name = examplerepo.datatypes

: Package

Java

Figure 4.6: An example of how the transformations in our running example would act

after a PCM repository was created. New model objects are coloured green in

each step. The arrows suggest the transformations that were executed in the

respective step.
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in chapter 3. For example, a PCM Repository would be transformed into a corresponding

repository in the intermediate model with the same name. A repository in the intermediate

model would be transformed into three packages in the Java model, having the repository’s

name with “.main”, “.contracts” or “.dataypes” appended to it. All transformations are

bidirectional. Figure 4.6 shows how the transformations in our example would act if no

model objects existed and a PCM repository would be created. We ignore the fact that

components can contain subcomponents for this example.

How does consistency preservation using an intermediate metamodel compare to the

other solutions? We again use the criteria developed at the beginning of this chapter:

Rule Confirmability The situation for this property is similar to the solution using only

bidirectional transformations that form a tree. When trying to understand how changes

impact other models, developers have to take at least two steps, as all information passes

through the intermediate models. While there may also be transformations between

intermediate models, we think that they will be rare and if they occur, they will only

include few steps.

Generality The solution can be applied to any set of models. A set of models can be

kept consistent using a fully connected transformation graph with only bidirectional

transformations (see 4.1.1). Each of those transformations can be made to pass through

the intermediate models by adding all information needed by to the intermediate models.

This already leads to the desired tree structure, with the existing metamodels as leaves.

However, the intermediate models would then share much semantic overlap and require

a considerable amount of consistency preservation rules for themselves. Yet, all inform-

ation contained in the intermediate models stems from the existing models, and there

are transformations to keep the latter consistent per assumption. We can thus remove

duplicated information from the intermediate models and append the transformations

that were required to keep the intermediate models consistent to the transformations

that transform the existing models into the intermediate models. Ultimately, we obtain a

set of intermediate models with no or little semantic overlap, together with appropriate

transformations, that can be used for consistency preservation of the existing models.

Model Modularity Using intermediate models is a modular solution. Removing models

will never require further work. When adding models, either one bidirectional transforma-

tion or two bidirectional transformations and a new intermediate model have to be created

per set of overlapping models that is not a subset of another set of overlapping models.

Development E�ort Given that de�ning the intermediate model is su�ciently easy, the

development e�ort for this solution is comparable to the last two solutions. It requires to

create n bidirectional transformations to preserve consistency of n models.

Intermediate models have been applied successfully to preserve multi-model consistency

in the past. Di Ruscio et al. even describe star-arranged models that are being kept

consistent through a central notation as “recently getting consensus in di�erent application

domains” [Di +12]. Nevertheless, there are also di�erences between existing applications

of the solution and this thesis’ approach, which will be laid out in section 8.3.
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Using an intermediate metamodel for multi-model consistency preservation is a solu-

tion that combines the generality and modularity of the fully connected solution with the

reduced development e�ort and improved con�rmability of solutions with less transforma-

tions. Compared to the other solutions, developers have the additional e�ort of creating the

intermediate metamodel. However, the metamodel does not introduce new information.

As already discussed in section 2.4.2, model transformations already contain an implicit no-

tion of the semantic overlap. The intermediate metamodel makes this implicit knowledge

explicit. Nevertheless, the di�culty and e�ort of creating the intermediate metamodel

seem to be crucial for the e�ort required for the whole solution. In the next chapter, we

will present a domain-speci�c language for creating consistency preservation rules, which

combines the speci�cation of the model transformations with the speci�cation of the

intermediate metamodel. It aims to make consistency preservation using an intermediate

model a straightforward process.
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5 The Commonalities Language

The main contribution of this thesis is the introduction of a new, domain-speci�c language,

the Commonalities Language. We designed it to support the consistency preservation pro-

cess with intermediate metamodels. Its primary goal is to make consistency preservation

rules de�ned in it intuitive and easily understandable.

The Commonalities Language, as presented in this chapter, is not bound to any particular

technology. It could be used in any context in which consistency preservation for models

is desired; the only conceptual requirements are that the models need to conform to

object-oriented metamodels and that a facility to store correspondences of model objects

must be available (see section 2.7.1). The language is designed to create transformations

that can be used to update models as they change over time. It assumes that at most one

model was edited before consistency preservation is executed. The implications of this

assumption have already been discussed at the beginning of chapter 4. We call the model

instance that was edited and must thus not be changed while its changes are propagated

to the other models the authoritative instance [Ste17].

This chapter will unfold as follows: First, we will explain what we wanted to achieve

when designing the language. We will then provide a brief glance at how the language

looks like and what its central constructs are. Subsequently, we will introduce necessary

terms and constructs and then describe the language’s features in detail. The chapter

concludes with an overview of the language’s features. Not all designed features of the

Commonalities Language could be realised in the prototypical implementation developed

for this thesis. Details about the implementation follow in chapter 6, but such not-yet-

implemented features will already be marked with a star (
∗
) in this chapter.

5.1 Design Goals

5.1.1 A Declarative Language

The Commonalities Language is designed to be declarative and problem-oriented. De-

velopers specify only how consistency looks like, not what needs to be done to preserve it.

“Declarative” is a vague term and there is no hard line to be drawn between “declarative”

and “imperative”. Instead, most languages will �nd themselves on a spectrum between

those extremes. Nevertheless, an often-cited de�nition from the internet paraphrases our

goal: With declarative programming, we mean

“the act of programming in languages that conform to the mental model of

the developer rather than the operational model of the machine”

(as cited in [McG16]). The mental model of consistency preservation we want to build is that

models have something in common, which the developer wants to describe. Programming
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5 The Commonalities Language

with the Commonalities Language is describing the commonalities of models—hence the

language’s name.

On a more formal level, the Commonalities Language lets developers de�ne an inter-

mediate metamodel and how existing metamodels map to it. Developers do not need to

de�ne when transformations need to be executed. Neither must they concern themselves

with details of the transformation realisation, like execution order, which changes were

made to models, how to retrieve and store models, and the like.

5.1.2 Implicitly Defining the Intermediate Metamodel

Creating an intermediate metamodel is a new and additional step for transformation

developers; one that is not present in other work�ows. Metamodels are usually built with

di�erent tools than transformations. However, the processes of designing the intermediate

metamodel and creating the transformations are closely interrelated. It is unlikely that

developers will �rst create the intermediate metamodel they need and then specify the

transformations. On the contrary, we expect that specifying the transformations will often

reveal additional requirements for the intermediate metamodel or unveil semantic overlap

of which the developers were not aware. So the intermediate model will not be in its �nal

form when the transformations are created. It is, on the other hand, not possible to specify

the transformations without an existing intermediate metamodel. Hence, transformations

and intermediate metamodel will evolve together. A language for the process should

account for that.

Ideally, specifying the transformations and de�ning the intermediate metamodel will

not feel like two di�erent steps for developers, but like one process. We thus aimed for a

language that does not impose constant context switching on developers. This can only

be achieved if developers do not have to switch technologies for the two tasks. Both the

intermediate metamodel and the transformations should be created through the language.

Because changing one of the two artefacts will usually require adapting the other, it would

be even better if both could be speci�ed together in the same �le. We realised that with

the Commonalities Language.

5.1.3 Keeping the Basic Case Simple

When designing features and the syntax of the language, we aimed to make specifying the

simplest case of consistency preservation as easy as possible. This primarily means that

the programmer has to handle the least amount of concepts as possible, but also to provide

a compact syntax for it. In particular, the Commonalities Language should be �t to be

used for cases where consistency only needs to be preserved for two models. The features

that make multi-model consistency possible should not make two-model consistency

preservation more complicated—or at least not more than necessary. The vision for the

Commonalities Language is that it can be applied to any consistency preservation problem,

not just the multiary case.
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concept Components

commonality Component {

with UML:Component

with ObjectOrientation:(Class in Package)

has name {

= UML:Component.name

= ObjectOrientation:Package.name

= prefix(ObjectOrientation:Class, "Impl")

}

has subcomponent referencing Components:Component {

= UML:Component.packagedElement

= ObjectOrientation:Package.subpackages

}

}

Concept

Commonality

Participation

Attribute

Reference

Commonality File

Figure 5.1: A simple Commonality File. Annotated are the most important classes from

the language’s abstract syntax.

5.2 Overview

Figure 5.1 provides a �rst impression of the Commonalities Language. It shows code in

the Commonalities Language that could be used to preserve consistency of components

in the running example. Without going into detail about the exact semantics, we can see

that a common notion of a “component” is established. Such a metaclass of objects which

are common in multiple models is called a Commonality. We can furthermore see from

the statements starting with “with” that the component Commonality is shared with the

metaclass “Component” from UML and a class and a package from object orientation.

These statements starting with “with” are called Participations. They declare how instances

of metaclasses map to an instance of a Commonality. In this case, there should be a UML

component as well as a package and a class from object orientation for every component

Commonality. The metaclasses listed in a Participation are called Participation Classes.
The second Participation has two Participation Classes that reference a “Class” and a

“Package” from “ObjectOrientation”. These are two other Commonalities which are not

shown in the example. “ObjectOrientation” is the Commonalities’ Concept. Our component

Commonality also has a Concept. It is called “Components” and declared at the top of the

Commonality File.

After the Participations, the Commonality contains an attribute and a reference. The

attribute is called “name”. The block surrounded by braces contains attribute mapping
speci�cations. These de�ne how attribute values of model objects map to attribute values

of the Commonality. In our case, the component Commonality’s name is equal to the

name of the participating UML component and the package from object orientation. The

su�x “Impl” is appended to a component’s name to form the name of the participating
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object-oriented class. The equals sign used in the attribute mapping speci�cation declares

that the relation between the attributes should be kept consistent in both directions.

Finally, the reference in our example is called “subcomponent” and references the very

component Commonality we are declaring. It also contains mapping speci�cations, so-

called reference mapping speci�cations. They de�ne model objects whose corresponding

Commonalities should be contained in the reference. In our case, the “subcomponent”

reference points to those Commonalities that correspond to UML components that are in

the “packagedElement” reference of the participating UML component as well as to the

object-oriented packages that are in the “subpackages” reference of the participating object-

oriented package. Like the attribute mapping speci�cations, these reference mapping

speci�cations create bidirectional transformations.

5.3 Common Constructs

5.3.1 Comments andWhitespace Handling

The Commonalities Language allows developers to include comments in Commonality

Files. This makes it possible to annotate non-obvious ideas behind de�nitions, mark places

where more work is needed, or quickly disable a declaration without deleting it. The

language uses the well-known syntax from C-like languages: “//” starts a comment that

reaches until the next newline symbol, and “/*” starts a comment that reaches until the

next occurrence of “*/” and may contain newline symbols.

Comments starting with “//” are the only instance in the Commonalities Language

where a newline symbol has semantics. Apart from that, newlines and whitespace charac-

ters—like spaces and tab characters—are only needed to separate identi�ers and keywords.

They carry no further semantics. Whitespace characters, as well as “/*,*/”-comments,

may be inserted wherever an identi�er or keyword starts or ends.

5.3.2 Referencing Metaclasses and Properties

When de�ning mappings for properties, metaclasses and their properties need to be

referenced. The Commonalities Language uses a uniform syntax for such references,

depicted in �gure 5.2. This syntax is used for three di�erent cases: Referencing existing

metaclasses, referencing Commonalities, and referencing Participation Classes. In all cases,

the �rst part provides the name of a metamodel-like object and the second part the name

of a class-like object that is contained in the �rst object. If referencing properties, the third

part gives the name of a property of the second element. The three di�erent cases are

shown in table 5.3.

5.4 Expressions∗

Throughout the Commonalities Language, expressions are used to de�ne mappings or to

express conditions. Before the language’s features are introduced, we will look at how such

can look like. The Commonalities Language knows three di�erent types of expressions:
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Metamodel = ID;

Metaclass = ID;

Property = ID;

�alified Metaclass = Metamodel, ':', Metaclass;

Fully �alified Property = �alified Metaclass, '.', Property;

Figure 5.2: The syntax to reference a metaclass or Commonality, or a property thereof,

given in the extended Backus-Naur Form [ISO96]. The rule “ID” is the rule for

valid identi�ers.

FirstPart : SecondPart . ThirdPart

existing metaclass metamodel : metaclass .

property

thereof
Commonality Concept : Commonality .

Participation Class Participation : Participation Class .

Table 5.3: The di�erent cases of the reference syntax and what is referenced by name in

each case. The third part is only given when referencing properties.

invertible expressions, enforceable condition expressions, and predictable expressions. The

�rst type can be executed “in both directions”; that is, input and output parameters can

switch their roles. The second type are expressions that can be interpreted as a condition

if all variables are given, but also as an expression generating values for the variables. The

third type, predictive expressions, are “normal” expressions, like they are known from

general-purpose programming languages, with one relatively small restriction: the result

of an expression may only change if its input parameters change.

The Commonalities Language does not prescribe any speci�c syntax or semantics for

any expression type. Instead, it builds on existing expression languages with the desired

properties and integrates their syntax and semantics. For this thesis, we will focus on

expression languages developed by Kramer [Kra17], but other languages could be used.

The method of using foreign code for expressions in domain-speci�c languages is common

practice [Kar+09; FP10, pp. 309 �.]. It helps to keep the speci�cation of a domain-speci�c

language small and prevents it from “reinventing the wheel”. If the used expression

languages are well-known or imitate the syntax of popular languages, the technique

makes it easier for programmers to adopt the domain-speci�c language: they only have to

learn the other concepts of the domain-speci�c language and can use their experience from

other languages to write expressions. Because we expect the Commonalities Language to

be mainly used by programmers, embedding well-known expression languages follows

the general goal of domain-speci�c languages to adopt existing notations [MHS05]. For

example, the expression languages by Kramer, which we present in this thesis, use a syntax

that is a subset of Java’s syntax.
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5.4.1 Simple but Extendible Expressions

One central goal in the development of the Commonalities Language was to provide

developers clarity about created transformations. Creating Commonalities should be

straightforward, but it was more important for us to ensure that understanding them is

possible e�ortlessly. The Commonalities Language consists of relatively few elements and

is thus, hopefully, easy to understand. However, this expressiveness could be undermined

by allowing arbitrary statements from general-purpose languages to be embedded in the

language. Because of this, expression languages in the Commonalities Language are simple

but extensible.

In particular, the Commonalities Language does not o�er any way to de�ne routines

or functions. It is also not possible to create multiple statements or code blocks in an

expression. This is deliberate. The language encourages developers to keep Commonality

Files compact and readable, because we regard this to be the most e�ective way to ensure

consistency preservation rules stay maintainable and, ultimately, correct. Specifying

consistency rules is inherently domain-speci�c. Thus, developers will need the possibility

to implement custom logic. We argue that this should never happen in Commonality

Files, but in external �les. Instead of allowing the declaration of new functions or complex

expressions in the language, the Commonalities Language enables developers to use

operators that are de�ned in a general-purpose programming language in external �les.

All expression languages o�er the possibility to extend their set of operators. This way,

developers can use existing libraries or implements their own helper functions.

In 4.1.1, we presented an example where component names, which can be arbitrary

strings, need to be transformed into valid Java identi�ers. Although the conversion is

not particularly complex, it requires several steps: To obtain a valid Java identi�er, any

impermissible character must be removed. It will usually also be desirable also to convert

the string to camel case notation; that is, to convert every letter after a space to uppercase.

This might lead to the situation that two di�erent names are mapped to the same value,

so a de-duplication strategy must also be applied. When converting Java names back to

component names, a best-e�ort strategy might be applied to obtain a more readable name.

A space could be added in front of every uppercase letter, for example.

Adding the logic for these conversions to a Commonality would distract from the trans-

formations that are de�ned in the Commonality. Instead, developers should program the

logic in an external �le, give it a descriptive name, and then use it as an operator in attribute

mappings. This is how the development process is envisioned for the Commonalities

Language: Developers use existing, mature programming languages to de�ne operators;

which they then use to create expressive Commonality declarations.

5.4.2 Invertible Expressions

Intuitively, de�ning how a property of a metaclass maps to a property of a Commonality

often already includes all information needed to determine how to transform values

of the Commonality’s property back to the metaclass. For example, we might have a

metaclass that stores an execution time in seconds in a propertym. However, we decide

to store that time in the Commonality’s corresponding attribute c in milliseconds (for
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example because all other participating metamodels also use milliseconds). Hence, we

declare that c = m · 1000. Using a simple equivalence transformation, we directly see

thatm = c
1000

follows. However, usual expression languages force us to write down both

versions explicitly. Using them would thus mean that programmers have to create a lot of

super�uous expressions.

This problem presents itself in any language for bidirectional transformations that

uses expressions. Therefore, Kramer and Rakhman [KR16] present a set of 30 invertible

operators that address the issue. The operators cover fundamental operations used in

programming languages—like arithmetic, boolean operators and string processing—and

all have an according inverter. By combining the inverters, a given expression build out of

the operators can be transformed into an inverted expression. The inverted expression

has the source expression’s output parameters as input parameters, and vice versa.

The operators are not only concerned with bijective cases, where no information is

lost, but also handle operations that lose information. Kramer and Rakhman show that,

wherever possible, the operators perform well-behaved transformations, as introduced by

Foster et al. [Fos+07]. That means that a round trip through an operator op and its inverse

op
−1

in either direction does not change a value: op
−1 (op (s) , s) = s for all source values s

(Get-Put law), and op

(
op
−1 (t , s)

)
= t for all source values s and target values t (Put-Get

law). The inverted operator op
−1

has two arguments and takes the initial model as its

second parameter to realise the principle described in section 2.4.2, that one direction of

bidirectional transformations takes its target model as input to better adapt to existing

values.

If an operator’s transformation cannot be well-behaved due to its nature—i.e. it is not

surjective—Kramer and Rakhman make sure that it is a best-possible behaved transforma-
tion. That means it ful�ls the Get-Put law in every case and the Put-Get law whenever

possible [KR16]. 14 out of the 30 operators are well-behaved, the others are best-possible

behaved.

To illustrate, we look at some of the operators. For the �oating point operations addition,

multiplication, subtraction and division can easily be realised as well-behaved invertible

operators, as already discussed above. Even integer division intdivison (s1, s2) =
⌊
s1
s2

⌋
with

integer arguments s1, s2 is well-behaved, despite the loss of the decimal places, because

the target value can be taken into account. The inverse operator for the �rst argument s1
is de�ned as:

intdivision
−1
1
(t , s1, s2) =

{
s1 if

⌊
s1
s2

⌋
= t

t · s2 otherwise

and the inverse operator for the second argument s2 is given by:

intdivision
−1
2
(t , s1, s2) =

{
s2 if

⌊
s1
s2

⌋
= t⌊ s1

t

⌋
otherwise

Finally, we look at the string concatenation operator concat (s1, s2) = s1 · s2 for two

string parameters s1 and s2 (|·| shall denote the word concatenation), for which we will

brie�y write s1
_
s2. The operator cannot be well-behaved, because there is, for example, no
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string x such that "solution" = "bad"
_
x . The inverters are therefore only best-possible

behaved. The inverse operators for the arguments s1 and s2 are respectively given by:

concat
−1
1
(t , s1, s2) =

{
s′
1

if t = s′
1

_
s2

⊥ otherwise

concat
−1
2
(t , s1, s2) =

{
s′
2

if t = s1
_
s′
2

⊥ otherwise

c1 = x
_
c2 or c1 = c2

_
x is, if solvable, unambiguous for constant strings c1, c2 and variable

string x . What to do in the error case ⊥ is up to the implementation of the operators and

will vary by use case [KR16]. In interactive scenarios, the user could be asked.

5.4.3 Enforceable Conditions

An expression that can be true or false can be interpreted in two di�erent ways. On the

one hand, it can be seen as a condition: If the expression is �lled with values, it evaluates

to either true or false. On the other hand, it can also be seen as prescribing the values of

variables used in the expression. The second form is common in maths, in sentences like

“let there be an ε > 0”. The expression “ε > 0” is not used as a condition in that case, but

rather to describe the valid values of ε .

In consistency preservation, this duality can be helpful when de�ning bidirectional

transformations. If a certain condition must apply to a model object before it is transformed

into the other object, that condition should also be true at the end of transformations from

the other model. For example, if only public Java classes are considered in the running

example when looking whether a new component needs to be created in UML or PCM,

then classes that are created for UML or PCM components should also be public. Kramer

[Kra17] has created an expression language consisting of operators that can be checked
to see if a variable ful�ls a condition, and enforced to generate a value for the variable

according to the conditions. Most of the operators have a form similar to our “ε > 0”

example: One operand must be a literal value, while the other operand is a feature of

a metaclass [Kra17, pp. 143-146]. The simplest operator is the equals operator: When

checked, it returns true if a metaclass feature is equal to the literal value. When enforced,

the metaclass feature is set to the literal value. The set of operators also covers more

complicated use cases, like containment in a list, checking and enforcing a condition for

all elements in a list and number inequality. Number inequality is enforced by adding

the smallest value possible to the attribute, such that the condition holds. So for our

“ε > 0”-example, the operator would set the attribute ε to the smallest number greater than

0 that is supported by the runtime system [Kra17, pp. 148-150].

5.4.4 Predictable Expressions

Invertible expressions can be used in the Commonalities Language for all bidirectional

cases. But if only unidirectional mappings are needed, or the intended cannot be expressed

with the invertible expression language, developers can use predictable expressions. These
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Commonality File

name: String

Concept

name: String

. . .

Commonality

11

1 *

Figure 5.4: Abstract Syntax of a Commonality File, a Commonality and a Concept.

are expressions, preferably in a syntax known from general-purpose languages, with only

one restriction: An expression’s result only changes if its input arguments’ values change.

Notably, this is less restrictive than demanding the expressions to be pure functional:

predictable expressions may have side e�ects. Predictable expressions guarantee that

the Commonalities Language can be used for incremental consistency preservation. It is

important to know up front which expressions have to be evaluated after changes to a

model. For predictive expressions, the implementation knows that it is only necessary to

evaluate them if their input arguments changed.

5.5 Commonalities

The central element of the Commonalities Language is a Commonality. It is used to both

declare metaclasses of the intermediate metamodel and host the transformations from the

existing models to the intermediate model. A Commonality is declared in a Commonality

File. A Commonality File must contain exactly one Commonality, and its �le name must

match the Commonality’s name (ignoring the �le extension). These constraints were

copied from Java to make Commonalities easy to discover.

A Commonality File must also declare a Concept (see �gure 5.4). Concepts create a

namespace but have no further semantics from a technical point of view. Instead, they

are meant as a way for developers to organise Commonalities and better communicate

their intentions. In this chapter’s introductory example we already showed how concepts

could be used for the running example: We might intuitively see the two concepts of

component-based software architecture on the one hand and object orientation on the

other hand. The former would contain Commonalities that concern themselves with

mappings to PCM and the component-related parts of UML and the latter would contain

mappings to Java and the object-oriented parts of UML.

5.5.1 Visibility

Every Commonality is visible to every other Commonality. Commonalities can be refer-

enced using the reference syntax, without requiring any form of imports. This is because
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we think that there will never be more than a few hundred Commonalities de�ned for the

same system, so they can easily be managed using the namespacing provided by Concepts.

A global namespace and no requirement for imports simpli�es the languages further.

5.5.2 Deriving the Intermediate Model

A Commonality constitutes a metaclass in the intermediate metamodel. This metaclass

has the same properties as a Commonality has. There is, however, a noteworthy di�erence

between attributes and references in the Commonalities Language and attributes and

references in other metamodelling tools like Ecore. In Ecore, everything holding scalar

values or plain Java objects is an attribute, while everything pointing to another Ecore

model object is a reference. In the Commonalities Language, an attribute can hold both

scalar values, Java objects (if applicable) and model objects. References in the Common-

alities Language, on the other hand, point to other Commonalities. So a Commonality

attribute would be translated to an Ecore attribute or an Ecore reference, depending on

whether it holds a non-Ecore object or an Ecore model object. Commonality references

would always be translated to Ecore references that point to the respective metaclass of

the Commonality the Commonality reference points to.

As we described in the design goals (section 5.1), declaring the intermediate model

should blend in the process of creating transformations. We thus do not want developers

to think of Commonalities as a way of declaring metaclasses, but rather as a mean to group

transformations.

5.6 Participations

After a Commonality has been declared, it needs to be speci�ed how metaclasses from the

metamodels for which consistency is to be preserved map from and to the Commonality.

The �rst part of this task, de�ning which instances correspond to each other, is done

through Participations. Participations are declared inside of a Commonality and relate

the Commonality to other metaclasses. One Participation captures the metaclasses of one

metamodel that together share the semantic overlap described by the Commonality. The

meaning of the most basic form of a Participation, with one metaclass, is:

For every instance of the metaclass, there should be a corresponding instance

of the Commonality. For every instance of the Commonality, there should be

a corresponding instance of the metaclass.

Such Participations hence realise a one-to-one relationship for model objects. Because

transformation is executed transitively through the intermediate metamodel, one-to-one

relationships between model objects are realised by creating a Participation for each of

the objects’ metaclass in the same Commonality.

One metaclass mentioned in a Participation is called a Participation Class. A Participation

can declare more than one Participation Class, but all Participation Classes’ metaclasses

in a Participation must come from the same metamodel. In particular, it is possible to

declare the same metaclass multiple times in one Participation using di�erent Participation
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Classes. This realises a one-to-n relationship (with �xed arity n) between the Commonality

and that metaclass. Through transitive propagation, the technique allows creating m-to-n

relationships (with �xed m and n) between model objects. The meaning of a Participation

with n ∈ N+ Participation Classes, where the i-th Participation Class references the

metaclass Mi , is:

For every combination (o1, . . . ,on) ∈ {x | x : M1} × · · · × {x | x : Mn} of in-

stances of the the metaclasses M1, . . . ,Mn there should be a corresponding

instance of the Commonality. For every instance of the Commonality, there

should be a corresponding combination (o1, . . . ,on) ∈ {x | x : M1} × · · · ×

{x | x : Mn} of instances of the metaclasses M1, . . . ,Mn .

The de�nition is further restricted: First, the same model object may only be used once in

a Participation. So in all occurrences in the above de�nition, it follows that oi , oj for 1 ≤

i, j ≤ n and i , j . Second, all model objects used in a combination must come from the same

model. Third, the same model object may only correspond to one Commonality instance

of a speci�c Commonality. So if C is a Commonality, ci , cj ∈ {c | c : C}, ci , cj di�erent

instances of this Commonality, and Oi and Oj the sets of model objects that correspond to

ci and cj , thenOi∩Oj = ∅. These restrictions realise the important parts of the semantics of

Participation Classes: They are meant to give the participating model objects a particular

role (like the di�erent Java packages used to represent a repository in the running example).

One model object should only ever have one role for one Commonality. Furthermore, the

restrictions are necessary to make references (see section 5.8) unambiguous.

Other Commonalities can also participate in a Commonality. This feature can be used as

a technique to split Commonality Files and separate concerns. For example, the component

Commonality in the example at the beginning of this chapter has two other Commonality

from the concept “ObjectOrientation” as a Participation, instead of directly using the

appropriate classes from UML and Java. That way, the component Commonality is only

concerned with how a component translates to elements from the concept of object

orientation. The (often technical) details of how these elements are represented in concrete

metamodels can be encapsulated in the concept “ObjectOrientation”. The graph formed

by Participation relations must, however, be free of circles, as creating a Commonality

instance would cause endless recursion otherwise.

Attribute and reference mapping speci�cations need to reference the metaclasses that

participate in a Commonality; i.e. the Participation Classes. If nothing else is speci�ed,

Participation Classes are referenced by the name of the metamodel and the name of the

metaclass they represent. Nevertheless, because the same metaclass can be mentioned

multiple times in a Participation, a di�erent name can also be assigned to a Participation

Class. There can also be more than one Participation in a Commonality that has Parti-

cipation Classes referencing the same metamodel. This covers use cases in which the

same metamodel plays di�erent roles. Because of that, Participations also have a name,

which can also be changed. A Participation’s name is is the quali�er when referencing its

Participation Classes (see section 5.3.2). Examples of di�erent combinations of Participa-

tions and Participations Classes having or not having an explicit name set can be found in

table 5.6.
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concept Components

commonality Repository {

with Java:(

Package called "MainPackage",

Package called "ContractsPackage",

Package called "DataTypePackage"

)

...

}

Listing 5.5: Three Participation Classes for a Java package.

Participation Class referenced as

Java:Class Java:Class

Java:(Class called "Implementation") Java:Implementation

Java:Class as "Language" Language:Class

Java:(Class called "Implementation") as "Language" Language:Implementation

Table 5.6: Examples of Participation Classes and how to reference them in mapping spe-

ci�cations. The reference syntax is explained in general in section 5.3.2.

Participations are declared by starting with the keyword “with”, followed by the name

of the metamodel the Participation’s Participation Classes come from and a colon. If the

Participation has only one Participation Class, its metaclass can follow directly. Otherwise,

the names of the Participation Classes’ metaclasses follow in a comma-separated list

surrounded by brackets (see, for example, listing 5.5).

If we were, for instance, to create a Commonality for a repository in our running example,

it might have a Participation with three Participation Classes for the three Java packages

a repository is represented by. Each Participation Class would be for the Java package

metaclass: One for the main package, one for the contracts package and one for the data

type package. Consequently, we might name the Participation Classes “MainPackage”,

“ContractsPackage” and “DataTypePackage” (listing 5.5). They would be referenced as

“Java:MainPackage”, “Java:ContractsPackage” or “Java:DataTypePackage”, respectively.

5.6.1 Optional Participation Classes∗

In some situations, not all instances of a metaclass share semantic overlap with other

model objects. In that case, they should only participate in a Commonality under certain

conditions. To support this, Participation Classes can be marked optional. The concrete

syntax for that is to place a question mark behind them. Unlike for non-optional Participa-

tion Classes, no instance of the Participation Class’ metaclass is created by default when

a Commonality is created. Instead, expressions in mapping speci�cations or conditions
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can use the existence of the Participation Class as a predicate. If true is assigned to the

predicate, an instance of the Participation Class is created. Optional Participation Classes

are declared by appending a question mark to the name of the metaclass. In expressions,

the existence of an optional Participation Class can be queried and set by appending a

question mark to a Participation Class reference.

5.6.2 Enforceable Conditions∗

A Participation can have a condition that de�nes under which circumstances there should

be a corresponding Commonality for it. These conditions are declared by using the

keyword “whereat” after a Participation. They are expressed through enforceable condition

expressions (see 5.4.3). The operators of the enforceable condition expression language can

be combined using the logical and-operator, or-operator or xor-operator. The enforceable

condition expressions combined in such a way will be enforced until the whole condition

is ful�lled. All metaclass features used with the operators must come from metaclasses

that have a Participation Class in the same Participation. Because it is clear from the

context, the metamodel of metaclasses referenced in the expressions does not need to be

given. The semantics of enforceable conditions is:

There should only be an instance of the Commonality corresponding to the

Participation if the condition holds true.

When a model of the Participation is authoritative, the enforceable condition is checked to

see whether or not there should be an instance of the Commonality for a given combination

of model objects. If another model is authoritative, and new model objects are being created

to preserve consistency, the enforceable condition is enforced to make sure that the new

model objects conform to it.

In our running example, components are, amongst others, represented by UML classes.

These UML classes are public and �nal. Consequently, all UML classes corresponding

to a component Commonality must be public and �nal. On the other hand, only �nal

and public classes need to be considered to create new Commonality instances. This can

be expressed in an enforceable condition, as shown in listing 5.7. The equals operator

was introduced in section 5.4.3. The constant “public” would need to be imported by an

implementation-speci�c mechanism.

5.6.3 Participation Class Relations

When more than one Participation Class is declared in a Participation, these Participation

Classes are often related in a speci�c way. The Commonalities Language honours this by

allowing to declare relations between Participations directly. So-called Participation Class
relations are declared by placing a relation operator between two Participation Classes

in a Participation. The operator replaces the comma that would usually separate the

Participation Classes. A relation then applies to the Participation Classes left and right of

it. If a relation should apply to more than two Participation Classes, the whole expression

can be put in parentheses. The semantics of Participation Class relations are the same as

enforceable conditions: When creating new model objects to map the Commonality to,
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concept ObjectOrientation

commonality Component {

with UML:Class

whereat Class.visbitiy equals public

and Class.isFinalSpecialization equals true

...

}

Listing 5.7: A Participation with an enforceable condition, specifying that the participating

UML class must be public and �nal.

concept ObjectOrientation

commonality Component {

with ObjectOrientation:(Class in Package)

...

}

Listing 5.8: A class and a package related with the “in”-operator, specifying that the class

must be contained in the package.

the relation is enforced. When considering model objects for creating a new Commonality,

the relation is checked. Relation operators can, like all operators, be provided by the user.

We present two Participation Class relation operators that we assume to be helpful

for typical use cases. The �rst is the “in”-operator. It prescribes that the instance of

the left Participation Class must be contained in the instance of the right Participation

Class. In Ecore metamodels, this would mean that the left instance is in a containment

reference of the right instance. “Contained in” will not always be uniquely de�ned, as

there could be multiple matching containment references. The “in”-operator can only be

used if “contained in” is unambiguous. In our running example, the notion of a component

is translated into object-oriented constructs by representing it with a class and a package,

such that the class is contained in the package The “in”-operator could be used to express

this relation between the Participation Classes in a compact manner.

The other operator we present, the “xor”-operator, can be used when two exclusive

alternatives are given for a Participation. It requires that the Participation Classes related

by it are both optional. Somewhere in the Commonality, there will be a speci�cation

declaring when each of the Participation Classes should exist. Without the operator (or

an equivalent enforceable condition), it would be necessary to specify two very similar

expressions, one for the existence of one of the Participation Classes and one for the

existence of the other. Because one Participation Class should only be present if the other

is not, the two expressions would express the same condition, with one being the negation

of the other. The “xor”-operator now declares that if one Participation Class is present,

the other is not. Because of that, it is su�cient to give an expression for the existence of

one of the Participation Classes, and the other will always be present when the �rst is not.
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Keyword

Changes

Commonality

Changes

Participation Classes Expression Type

-> x predictive

<- x predictive

= x x bidirectional

Table 5.9: The di�erent types of attribute mapping speci�cations, how they a�ect the

language elements and which type of expressions may be used with them.

5.7 Attributes

A Commonality can contain attributes. An attribute is introduced by the keyword “has”,

followed by the attribute’s name. After an attribute’s name follows a block of attribute

mapping speci�cations, which de�ne how values from the Participation Classes map to

the attribute and back. There are three types of attribute mapping speci�cations: From the

Commonality to the Participation, from a Participation to a Commonality, and equality

speci�cations. The �rst type, to the Participation, can set one attribute of a Participation

Class. It is introduced with the keyword “->”, followed by a predictable expression that

can only use the attribute’s name as variable. The result of the expression is assigned to

a property of a Participation Class, which must be given after the expression, separated

by another “->”. The second type, to the Commonality, also uses a predictable expression

and is only used to set the attribute. It is introduced with the keyword “<-”, followed

by a predictable expression that may use the Participation Classes of one Participation

as variables. The result of the expression is assigned to the attribute. The last type, the

equality speci�cation, uses an invertible expression and is used to both set the attribute’s

values and set values on the Participation Class.

The semantics of an equality attribute mapping speci�cation is that the relation which

is expressed by the invertible expression should be upheld all the time. In other words,

if at any state of the models the variables are �lled in with their current values, the

expression should evaluate to the current value of the attribute. For the one-directional

versions, this is weakened: the expression is only evaluated and applied if the side the

mapping speci�cation is “pointing away from” is authoritative. This means for an attribute

mapping speci�cation to the Commonality that it is evaluated and its result is set on the

attribute when, and only when, any instance of one of the Participation Classes used

in the expression becomes authoritative. An attribute mapping speci�cation from the

Commonality is evaluated if the instance it would set an attribute on is not authoritative

and the attribute’s value has been modi�ed because of changes to another model.

Attributes have a type and multiplicity, which are both derived from its attribute

mapping speci�cations. The attribute mapping speci�cations are invalid if the type or

multiplicity cannot be derived without causing contradictions. Attributes can not only

hold scalar values but also other model objects (see also section 5.5.2 for the distinction

between attributes in the Commonalities Language and other metamodelling tools).
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5.7.1 Checked Attribute Mappings∗

Attribute mapping speci�cations can be marked to be checked when considering whether

a new Commonality has to be created. In that case, the attribute mappings also function as

conditions. The semantics is as follows: When a combination of model objects is considered

for a Participation of a Commonality and passed all previous conditions, the Commonality

is virtually created, and the checked attribute mappings are executed. Only if all checked

attribute mappings can be executed—that is, the invertible operator is always de�ned, see

section 5.4.2—and all checked attribute mappings of the same attribute yield the same

result, an instance of the Commonality is created. The short, informal description of this

behaviour would be: “Only create the Commonality if all checked mappings are de�ned

and do not contradict each other”. Checked attribute mappings prevent duplication of

logic in Commonality declarations.

In our running example, we want to create a Java class whose name ends with “Impl” for

every component. At the same time, only Java classes ending with “Impl” are considered

to form a new component. We could already express this in the Commonalities Language

by giving a condition for the Java class Participation, assuming we have or de�ne an

according operator. This operator would, one way or another, express that the class’

name must end with “Impl”. We would furthermore create an attribute “name” in the

Commonality and specify that it is equal to the Java class’ name when removing “Impl”

(listing 5.10 (a)—we assume that this always yields a valid Java identi�er for the moment).

This solution works, but has a practical �aw: We have de�ned very similar logic at two

di�erent points. This makes the code harder to maintain. If we were, for instance, to

change the su�x of the Java class from “Impl” to “Implementation”, we would have to

remember to change it at both places. Using a checked attribute mapping instead removes

the duplication (listing 5.10 (b)). In listing 5.10, the operator “pre�x” is meant to be de�ned

as pre�x (s1, s2) = t ⇐⇒ t = concat
−1
1
(s1,x , s2) for an arbitrary string x and concat

−1
1

as

introduced in section 5.4.2. The operator is not de�ned if s1 (here: the Java class’ name)

does not end with s2 (here: “Impl”). So when using a checked attribute mapping like in

listing 5.10 (b), no Commonality instance would be created for Java classes that do not

end with “Impl”.

5.7.2 Error Handling

Checked attribute mapping speci�cations are not the default case but have to be explicitly

requested by the programmer by writing “check” in front of a mapping speci�cation. This

is a deliberate feature. If all attribute mappings were checked by default, mistakes made by

the programmer could be hidden. If mappings that are contradictory or not de�ned in all

cases were speci�ed by accident, a checked attribute mapping would lead to a Commonality

instance not being created under certain circumstances. This would be di�cult to detect in

automated tests. Even if it was detected, the cause for the missing Commonality instances

could not be tracked down easily. Because of that, mapping speci�cations are not checked

per default. If normal attribute mapping speci�cations yield unde�ned or contradictory

results, an error is raised at runtime. This eases debugging.
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concept Components

commonality Component {

with Java:(Class in Package)

whereat Class.name endsWith "Impl"

...

has name {

= prefix(Java:Class.name, "Impl")

}

...

}

(a) without a checked attribute mapping.

concept Components

commonality Component {

with Java:(Class in Package)

...

has name {

check = prefix(Java:Class.name, "Impl")

}

...

}

(b) with a checked attribute mapping.

Listing 5.10: Checked attribute mappings remove duplicated information.

5.8 References

Additionally to attributes, a Commonality can contain references, which point to other

Commonalities. References make it possible to connect model elements that are managed

by the consistency preservation process. Model objects are not kept consistent in isolation.

Indeed, the goal of consistency preservation is usually to transform a whole graph of model

objects. Not only the graph’s nodes—the model objects—but also its edges—references

between the model objects—need to be addressed.

A reference in a Commonality has a name and a converting Commonality. Like an at-

tribute, a reference can contain mapping speci�cations. Expressions in reference mapping

speci�cations must always return model objects. The semantics of an equality reference

mapping speci�cation is that the value of the reference is always the Commonality in-

stance(s) that correspond(s) to the model object(s) that are returned by the invertible

expression. There are also reference mapping speci�cations from and to the Commonality,

which have the same execution semantics as they have for attributes.

We have already used a reference in the example used in the introduction of this chapter.

In our running example, a reference would also be used for the components in a component

repository (listing 5.11). Here, the reference has the Commonality for a Component as

converting Commonality. An instance of the repository Commonality will reference all

component Commonalities that correspond to UML components that are placed in the

“packagedElement” reference of the UML Model that corresponds to the current repository

Commonality instance. If, on the other hand, a new component Commonality instance

is placed in the “components” reference of a repository Commonality instance, the UML

component corresponding to it will be placed in the “packagedElement” reference of

the UML Model that corresponds to the repository Commonality instance. The same

mechanism applies to the PCM components in the “components__Repository” reference,

of course.

Metaclasses can participate in a Commonality multiple times. Sometimes, a reference

should only hold those Commonalities that correspond to model objects that have the role

of a speci�c Participation Class in the correspondence. For such cases, a reference mapping
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concept Components

commonality Repository {

with UML:Model

with PCM:Repository

has components referencing Components:Component {

= UML:Model.packagedElement

= PCM:Repository.components__Repository

}

...

}

Listing 5.11: Excerpt of a Commonality for a component repository. It uses a reference to

preserve consistency of the pointers to the contained components.

speci�cation can be appended with the keyword “via” and the name of a Participation

Class. Only model objects that correspond to the converting Commonality because of this

Participation Class will then be used for the reference.

Unlike for attributes, no type is inferred for references. Instead, the converting Com-

monality and, thus, the reference’s type, must be stated explicitly. This violates our design

goal of “keeping the basic case simple”: If the combination of metaclasses that are the

types of the reference’s mapping speci�cations uniquely identi�es a Commonality, the

converting Commonality could be inferred. However, if another Commonality was added

that also included matching Participation Classes, the language would be forced to raise an

error for the reference, as it is now not clear which Commonality should be used. In e�ect,

adding code—like an alternative implementation—could break (possibly a lot of) existing

code. This is a situation that should be avoided. Because of that, the Commonalities

Language requires developers to always specify the converting Commonality, even if it

could be inferred. Nevertheless a reference’s multiplicity is inferred. Reference mapping

speci�cations can also be checked, with the same semantics it has for attribute mapping

speci�cations. The error handling of unchecked references is also the same. Additionally, it

is a compile-time error if a reference mapping speci�cation returns a type which is neither

a subtype nor a supertype of any Participation Class in the converting Commonality.

5.9 Design Decisions

5.9.1 External Domain-Specific Language

The Commonalities Language is implemented as an external domain-speci�c language,

meaning that it de�nes its syntax and semantics completely independently instead of

using a host language (see section 2.3). This decision is deliberate, but not self-evident.

For example, Hinkel et al. show how model transformation languages can be realised as

internal domain-speci�c languages without a signi�cant loss of conciseness. The solution
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has the advantage that existing tooling can be used for the languages, which eases their

adoption [Hin+17].

We decided to use an external domain-speci�c language mainly for two reasons: it

allows creating more sophisticated compile-time checks and o�ers greater syntactical

freedom. There are multiple instances where compile-time checks should be introduced in

the Commonalities Language. For instance, Participations between Commonalities must

never form a circle. Internal domain-speci�c languages are limited to the compile-time

checks that can be realised in their host language. All other errors can only be detected at

runtime, which we think is less user-friendly. Regarding syntactical freedom, we think

that the Commonalities Language pro�ts from bespoke syntactic features. The syntax for

de�ning Participations, for example, has many di�erent cases and could probably not be

realised in any existing host language.

It is often mentioned in favour of internal domain-speci�c languages that they are

cheaper and less time-consuming to build [Hin+17; FP10, pp. 106 f.]. While still true, this

argument is extenuated by the advances of language workbenches like Xtext. Generating

required artefacts for a given grammar can be automated largely, which makes realising

an external domain-speci�c language signi�cantly easier. We have pro�ted from Xtext in

our implementation.

5.9.2 Collecting Mappings at one Point

The development process for consistency preservation rules does not only involve spe-

cifying transformations but also understanding and verifying existing ones, as already

discussed in chapter 4. This includes comprehending how changes to one model will a�ect

other models. Over time, more and more metamodels will be added to the transforma-

tion rules. So the challenge might start even sooner, with identifying which models are

in�uenced by an attribute of the intermediate metamodel. The Commonalities Language

therefore collects the mappings of all metamodels to a Commonality in the same Common-

ality File. Because of that, it is easy to see which metamodels share semantic overlap
1
. It is

also easy to verify that the mapping speci�cations realise a coherent notion of consistency,

because they are gathered at the same place.

Yet, this decision comes with a price. It means that one metamodel will be referenced

from many di�erent places. We assume it likely that work on transformations will be

shared between developers by making developers responsible for a speci�c metamodel.

Metamodels being spread across �les will thus make merge con�icts in version control

systems more likely. It will also be more complicated to remove a metamodel from

Commonality Files, because all �les referencing it must be found. The latter process

can, however, be completely automated by appropriate refactoring functionality in an

integrated development environment. Overall, we think that the advantages of collecting

related consistency preservation rules at one place exceed the disadvantages this brings in

practice.

1
Commonalities can also participate in other Commonalities, which makes discovering the metamodel

sharing semantic overlap a little bit more involved. However, we expect such hierarchies to be comparably

�at. When using an integrated development environment, developers can also easily jump from a

Commonality to a participating Commonality.
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5 The Commonalities Language

5.10 Feature Overview

The previous sections have presented the features of the Commonalities Language. We

conclude the chapter with an overview of all constructs available in the Commonalities

Language. Table table 5.12 lists all constructs in an informal way and references the

sections which describe the respective feature.
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Table 5.12: An overview of the Commonalities Language’s features. Names that can be

freely chosen are marked green, identi�ers referencing existing elements are

marked blue. Brown text in italics is a placeholder for an expression in the

denoted expression language (see section 5.4).

Construct Concrete Syntax

Commonality named Name in a Concept named

ConceptName

see section 5.5

concept ConceptName

commonality Name {

...

}

—inside a Commonality—

Participation Classes for the metaclasses

Metaclass1 and Metaclass2 from the

metamodel Metamodel

see section 5.6

with Metamodel:(Metaclass1, Metaclass2)

Optional Participation Class for Metaclass1 and

two Participation Classes for Metaclass2 (both

from the metamodel Metamodel), named

ClassName1 and ClassName2

see section 5.6.1

with Metamodel:(

Metaclass1?,

Metaclass2 called "ClassName1",

Metaclass2 called "ClassName2"

)

Participation with an enforceable condition

see section 5.4.3

with Metamodel:Metaclass

whereat <enforceable condition expr.>

Two Participation Classes for the metaclasses

MC1 and MC2 from the metamodel MM, related by

the Participation Relation Operator <op>

see section 5.6.3

with MM:(MC1 <op> MC2)

Attribute called AttributeName

see section 5.7

has AttributeName {

...

}

Reference called ReferenceName, having the

Commonality Commonality from the Concept

Concept as referencing Commonality

see section 5.8

has ReferenceName

referencing Concept:Commonality {

...

}

—inside an Attribute—

Equality attribute mapping speci�cation

see section 5.7

= <invertible expression>
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5 The Commonalities Language

Construct Concrete Syntax

Attribute mapping speci�cation to the

Commonality

see section 5.7

<- <predictive expression>

Attribute mapping speci�cation from the

Commonality, setting the property prop on the

Participation Class PC from the Participation P

see section 5.7

-> <predictive expression> -> P:PC.prop

Checked attribute mapping speci�cations

see section 5.7.1

check = <invertible expression>

check <- <predictive expression>

check -> <invertible expression>

-> P:PC.prop

—inside a Reference—

Equality reference mapping speci�cation

see section 5.8

= <invertible expression>

Reference mapping speci�cation to the

Commonality

see section 5.8

<- <predictive expression>

Reference mapping speci�cation from the

Commonality, setting the reference ref on the

Participation Class PC from the Participation P

see section 5.8

-> <predictive expression> -> P:PC.ref

Checked reference mapping speci�cations

see section 5.8

check = <invertible expression>

check <- <predictive expression>

check -> <invertible expression>

-> P:PC.ref
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6 Implementation

We have developed a prototypical implementation of the Commonalities Language for this

thesis. It realises the language’s core features and allows to preserve consistency of Ecore

models in Eclipse using Vitruvius. It contains a compiler that generates an intermediate

metamodel and transformations in the Reactions Language out of Commonality Files. The

implementation also contains an editor for Eclipse with syntax highlighting and extended

functionality like code suggestions. The language is implemented using Xtext.

Our implementation does not cover the whole Commonalities Language as it was de-

scribed in the previous chapter, but only a subset of integral features. The implementation

can be used for consistency preservation of simple cases (see section 7.2). Speci�cally, the

implementation allows to declare Commonalities, concepts, Participation, attributes and

references. Participations can only contain one Participation Class. Optional Participations

and conditions are not supported. In attribute or reference mapping speci�cations, the

only supported expression is referencing a feature of a Participation Class. All presented

directions of mapping speci�cations are supported, but not checked mapping speci�cations.

6.1 Platform Requirements

As explained in chapter 5, the Commonalities Language does not prescribe any speci�c

technology, as long as object-oriented metamodels are available. The language speci�cation

does, however, imply that certain mechanisms need to be provided to implement it. We

make those technical requirements explicit by listing them here and describe how they

were realised in the prototypical implementation:

• Machine-readable metamodels. The compiler and the editor (if developed) need

to access information about the available metaclasses and their attributes. This is

provided by EMF with Ecore metamodels.

• Code-accessible model instances. The model instances the consistency preservation

is executed on must be accessible from the language the Commonalities Language

has been translated to. In particular, it must be possible to know at compilation

time how to read and write model instances’ properties at runtime. The presented

implementation compiles the Commonalities Language to the Reactions Language,

which compiles to Java code, which uses the Java classes EMF generates for Ecore

metamodels. These generated Java classes o�er methods that allow access to model

instance’s property by providing the property’s name.

• Consistency preservation execution. The Commonalities Language does not de�ne

how and when consistency preservation routines are executed. There must be a facil-

ity that actually executes the code generated from the Commonalities Language. The
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facility must also provide the model instances to the preservation rules and handle

their results. Our implementation targets Vitruvius, which executes consistency

preservation rules after models in the VSUM have been changed.

• Correspondence Model. If incremental preservation of consistency is desired (and

this will likely be the case), the platform must provide means to store which tuples

of model elements are already consistent with each other (see section 2.7.1). The Vit-

ruvius framework provides the correspondence model that is used by code generated

by our implementation.

• Extending expression languages’ set of operators through general-purpose languages.

As discussed in section 5.4.1, the expression languages used in the Commonalities

Language should be extendible, so users can provide custom operators tailored to

their domain. Our implementation realises an extension mechanism that allows

developers to create new operators in Java.

6.2 Platform-Specific Language Features

We described the Commonalities Language independent of any concrete platform for

metamodelling and consistency preservation. There are, however, features we have created

for the Commonalities Language that address issues speci�c to Vitruvius and EMF. We

suspect that any implementation would have to solve similar tasks in one way or another.

6.2.1 Vitruvius Domains

A number of technical issues arise when trying to operate on models in a uniform manner.

For instance, it is necessary to be able to uniquely identify model elements in order to

store correspondences for them. Furthermore, model information eventually needs to be

stored in a �le system. These and some other technical tasks are dependent on information

about the metamodel at hand and the system and user preferences the transformations

are being executed in. The Vitruvius framework hides these implementation speci�cs and

o�ers transformations to solely operate on so-called Vitruvius Domains. They represent

one or more metamodels that are closely related and provide information which is speci�c

for these metamodels. Thereby, they allow Vitruvius to handle the aforementioned tasks

transparent to clients.

In the implementation of the Commonalities Language, metamodels are exclusively

referenced through Vitruvius Domains. Metaclass references have the name of a Vitruvius

Domain as the �rst part and the name of a metaclass as the second part. Not only does

this solve technical problems, it also has advantages for users of the language. Ecore

models are identi�ed using Uniform Resource Identi�ers (URIs). The URIs’ authority is

usually set to a internet domain that is owned by the metamodel’s creators. This avoids

name clashes between metamodels. EMF has become relatively popular in the Eclipse

community, and as a consequence, there exist a lot of Ecore metamodels which are used

by various plugins. Developers in Model-Driven Software Development usually have a

lot of Ecore metamodels installed in their development environment. Using URIs makes
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path: String

name: String

�le extension: String

Resource

. . .

Metaclass
*

Figure 6.1: The virtual resource metaclass added to every Vitruvius Domain.

this situation technically manageable. In consistency preservation languages, however,

it would be impractical to always use a lengthy URI when referencing metamodels. A

common solution is thus to �rst import metamodels and give them an alias. None of this

is necessary in the Commonalities Language, because all Vitruvius Domains are always

accessible. This simpli�es development and has the advantage that the same identi�er

always refers to the same set of metamodels because there is no mechanism need to give

aliases to metamodels, which could be di�er between di�erent �les.

6.2.2 Resource HandlingTu

Because our implementation acts on Ecore metamodels, every created model object must

eventually be placed in a Resource, either by putting in a Resource or in a containment

reference. Model objects not contained in any Resource would not be persisted and thus

lost. For objects that are created during consistency preservation and not placed in a

containment reference, an appropriate Resource needs to be determined. Hence, the

implementation of the Commonalities Language must o�er means to place model objects

in Resources.

Like model objects, Resources can also share semantic overlap with other elements.

For example, �les containing a public Java class must be named according to the class’

name and be placed in a folder hierarchy representing the class’ package [Gos+15, p. 189].

Because of that, we chose to make Resources model objects that can also be used in the

Commonalities Language. The implementation adds a virtual metaclass called “Resource”

to every Vitruvius Domain (�gure 6.1). This metaclass can be used like any other metaclass

inside the language. If an instance of this resource metaclass is created by the Commonal-

isies Language at runtime, and a name is set on it, it will persist all model elements in its

containment tree. Vitruvius determines the actual folder the Resource will be placed in

and makes sure the �le is updated with changes to the contained objects. The framework

also chooses an appropriate �le extension for the Resource if no �le extension was set

explicitly.
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6.3 Expressions

Developing the concrete expression languages to be used by the Commonalities Language

(see section 5.4) was not in the scope of this thesis. The current implementation does not

support any expression apart from property references and the “in” Participation Relation

Operator. However, we show how the implementation could be extended by an easily

extendible system of operators to form an expression language. We have already applied

this mechanism to the implementation of the “in” Participation Relation Operator.

6.3.1 Embedding Languages in Xtext

The Xtext framework allows to integrate existing language grammars into new languages.

This mechanism is called Grammar Mixins. Because Xtext grammar speci�cations also

contain mappings to the abstract syntax model, the abstract syntax model of the import-

ing language is automatically extended [ES17]. Both the invertible expressions and the

enforceable conditions expressions developed by Kramer were implemented in Xtext

[Kra17, p. 178]. They can hence be added to the Commonalities Language through Xtext’s

Grammar Mixins feature. Of course, extending the concrete and abstract syntax of the

Commonalities Language with the expression languages is not su�cient. The languages

need to link references in the language against the actual objects. Furthermore, the code

generated for the expression languages must be integrated with the code generated for the

Commonalities Language to inherit the expression language’s dynamic semantics. Both

expression languages were used by Kramer in the Mappings Language, a language for bid-

irectional model transformations (more on the Mappings Language follows in section 8.1.1)

[Kra17]. The Mappings Language also operates on Ecore models and is translated into the

Reactions Language. Because of that, the expression languages already link against the

same types the Commonalities Language uses. Furthermore, the code generated by the

expression languages is already integrated with the Reactions Language. This makes the

process of integrating the expression languages easier. The main work will be to provide

an appropriate scope of objects which the expression languages can link against and to

adapt the code generated for them, such that it is integrated in the Reactions that are

created for the Commonalities Language.

Predictive expressions, on the other hand, can be added to the Commonalities Language

using the Xbase grammar developed by E�tinge et al. [E�+12]. It is written with Xtext

and realises an expression language that is very similar to Java. Once again, the grammar

could be imported into the Commonalities Language. The expressions must then also be

given a scope of objects to link against. Xbase links against Java objects, so the expressions

could link against the Java types [E�+12] that are generated for the Ecore metamodels.

There would be, however, no guarantee that the expressions that can be expressed with

this implementation are predictable. Instead, developers would need to take care to only

specify predictable expressions. Whether predictiveness of Xbase expressions can be

checked statically or be enforced by a well-de�ned scope requires further research.
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6.3.2 Extending Operators through Java Classes

In section 5.4.1 we explained why it is important for the Commonalities Language to

have expression languages whose operators can be extended by developers to match their

speci�c needs. In our implementation, such operators can be de�ned in Java (or Xtext,

a programming language which compiles to Java). We have already implemented the

principle for Participation Relation Operators and provided the “in” operator using it.

Providing a new operator for one of the expression languages in our implementation

is done by implementing an interface. The interface o�ers template methods for the

di�erent cases in which the operator needs to be applied. For Participation Relation

operators, for example, the interface contains a template method that will be called when

a new combination of model objects has been found and must be checked for whether

a Commonality instance should be created for it. The interface also contains a template

method for the other direction, which can modify newly created model instances to realise

the operator’s semantics. Operators implemented that way are called at runtime. However,

the language implementation has to have certain information about the operator at compile

time, like, for example, its name. This compile-time information is provided through Java

annotations, which are provided on the annotation. There is, for example, the annotation

“RelationName”, which provides the name by which a Participation Relation Operator can

be referenced. Consequently, our implementation of the “in”-operator is annotated with

“@RelationName('in')”.

To use this mechanism for invertible expressions and enforceable condition expressions,

those expression languages need to be adapted to call the Java implementations of the

operators. In particular, the inversion mechanism of invertible expressions needs to be

adapted to call appropriate template methods instead of inverting pre-de�ned operat-

ors directly. Xbase, on the other hand, is already constructed in a way that allows to

provide new operations that can be linked against. Even the built-in operators could be

overwritten [E�+12].

6.4 Compilation

The implementation developed for this thesis compiles consistency preservation rules

written in the Commonalities Language into the Reactions Language and creates an Ecore

metamodel for the intermediate metamodel de�ned by the Commonalities. We have taken

care to make the generated code as readable as possible. We have restraint from calling

only library functions from the Reactions Language—which would be easier to implement,

but harder to read—and left much code in the reactions. The reason is that we want to

enable developers to use the generated code as an artefact on its own. In particular, we

want to make it possible to extend the generated code with other reactions.
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7 Evaluation

7.1 Validity

As we have shown in chapter 4, the approach of using an intermediate model for multi-

model consistency preservation can be applied to any set of models that could also be kept

consistent using only binary transformations. Applying it will thus not restrict transform-

ation developers in their possibilities. If there are a lot of—i.e. more than three—models

sharing semantic overlap, the approach has remains scalable without compromising the

possibility to add models to or remove models from the system. If there are not that many

models with semantic overlap yet. The approach can still be applied. It may require more

e�ort, but assures that transformations are prepared for future requirements. We have

explained that identifying semantic overlap will always be part of the process of specifying

transformations. To use intermediate metamodels, the overlap only needs to be made

explicit. Additionally, the Commonalities Language aims to minimise the e�ort to declare

an intermediate model.

The Commonalities Language itself has been designed based on assumptions of how it

will be used and what typical tasks will be. It does not claim to be suitable for every use

case. Nevertheless, we have provided small examples that suggest that there are use cases

in which it will be a helpful tool. We focused on explaining how the designed features

allow to create compact de�nitions that remain understandable and do not duplicate logic.

Our implementation translates the Commonalities Language to the Reactions Language.

If the Commonalities Language proves to be only useful for a subset of the problems of

declaring model transformations, the generated reactions can be combined with reactions

written directly in the Reactions Language. Kramer already used this approach for a

declarative language that is also translated to the Reactions Language. He argued that the

declarative language can be used were appropriate, and the reactions generated from it

can be extended with reaction written in the Reactions Language where necessary [Kra17,

pp. 90 f.].

7.2 Implementation Functionality

Our implementation of the Commonalities Language allows to keep models consistent if

the consistency speci�cation only requires one-to-one correspondences of instances and

only equality relations between attributes.

The implementation we have created for this thesis has been tested with unit tests

for basic functionality. Our implementation thus shows that it is possible to derive an

Ecore metamodel from Commonality Files and to use it as an intermediate model in the

consistency preservation process. It also shows that it is possible to realise the basic
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semantics of the Commonalities Language by generating reactive consistency preservation

rules in the Reactions Language.

In the tests, we have executed the code generated for two Commonalities on four

metamodels. We asserted that corresponding model instances were created as expected

and that changes to values on either of them are correctly represented in the corresponding

instances. We also checked that references work as expected; that is, that model objects

contained in a property were translated to the correct corresponding model objects and

then set on the respective participation object’s property. All tests were executed for both

single and multi valued attributes and references. There were some cases that could not

be covered, namely removing created model objects and setting attributes that are marked

as identifying in the metamodel. This was due to unexpected behaviour in the Vitruvius

framework, which has to be �xed �rst.

7.3 Threats to Validity

The Commonalities Language has not yet been used for consistency preservation of models

in a realistic scenario. Because of that, there exists no veri�cation that the assumptions

we made about the language’s usage match reality. While we gave arguments why the

language’s features solve problems in a desirable manner, these problems could not be

the ones that are important in practice. Models that are used in practice, like UML, PCM

or Jamopp’s abstract syntax tree cover many use cases and therefore consist of many

metaclasses, attributes and reference. Only a case study can provide certainty on whether

the Commonalities Language is suitable to create understandable transformations for such

metamodels.

In section 4.2 we explained that intermediate models do not need to be free of semantic

overlap. We also showed how a fully connected graph of bidirectional transformations can

be converted to use intermediate models without having direct transformations between

the existing models. However, we do not have a prove that such a conversion would

yield an intermediate model that is free of semantic overlap. We assume that it will

always be feasible to �nd intermediate models with only a reasonable amount of semantic

overlap. This assumption is supported by the fact that Atkinson et al. have already created

semantic-overlap-free SUMs for real-life applications in software engineering [Atk+13] and

Malavolta et al. created a central metamodel to preserve consistency of architecture models

[Mal+10]. Nevertheless, it is possible that, if our language is applied to a large amount of

metamodels, it will become impossible or infeasible to de�ne useful intermediate models

and preserve their consistency. The e�ort to keep the intermediate models consistent

might, for example, exceed advantages they bring. In that case, our approach and language

would not be applicable for systems at such scale.
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The fundamental problem of managing consistency of models has been extensively studied

in various publications, albeit using di�ering terminology [MJC17]. Macedo et al. [MJC17]

recently published an overview of the many works on the topic. This chapter will hence

not look at consistency preservation and model transformations in general—with the

exception of the Mappings Language, which this thesis lent several ideas from. Instead, we

�ll focus on publications that explicitly address multidirectional consistency preservation

of more than two models.

8.1 Transformation Languages

8.1.1 The Mappings Language

Additionally to the Reactions Language, the Vitruvius framework contains another lan-

guage to specify consistency preservation rules, the Mappings Language. It is a problem-

oriented language for bidirectional transformations and was also presented by Kramer

[Kra17, pp. 137 �.]. The Commonalities Language proposed in this thesis was heavily

inspired by the Mappings Language. For instance, both the idea and the implementation

of invertible expressions and enforceable condition expressions were developed for the

Mappings Language (see section 5.4). In the Mappings Language, consistency preservation

rules are declared between two metamodels. A rule starts by listing the metaclasses that

will be used for each metamodel and assigning names to them. Next, developers can

declare one-sided conditions for the metaclasses using enforceable condition expressions,

which may only access the metaclasses of one metamodel. Finally, developers can provide

invertible expressions to transform properties of one metamodel into the other and back.

For both the conditions for each side and the transformations, developers can also provide

unidirectional expressions if the bidirectional expressions are not su�ciently expressive

[Kra17, pp. 137 f.].

Although the Commonalities Language uses solutions from the Mappings Language,

it also introduces new ideas; the most obvious being that consistency can be speci�ed

for more than two metamodels at once. The Commonalities Language also introduces

an explicit model of the consistency speci�cation—the intermediate model—while this

information is only contained implicitly in transformations written in the Mappings

Language. We also think that it is an advantage that the Commonalities Languages

allows to specify transformations in a more structured way: In the Mapping Language, all

bidirectional transformations for a given pair of combinations of metaclasses are speci�ed

in one list. In the Commonalities Language, on the other hand, the transformations are

automatically grouped by the attribute or reference of the Commonality they apply to.
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Finally, the Commonalities Language discourages the excessive use of expressions more

than the Mapping Language does. While conditions and transformations are speci�ed in

code blocks in the Mapping Language, the Commonalities Language does not allow code

blocks and encourages developers put logic in a new operator rather than specifying it

directly in the transformation �le.

8.1.2 QVT-R

The the Object Management Group (OMG) de�nes a metamodelling infrastructure, the

Meta Object Facility (MOF) [Obj16b]. To complement it, the Object Management Group

(OMG) speci�es QVT, a set of transformation languages for MOF-metamodels [Obj16a].

QVT consists of a rather technical “core” language, which can be compared to Java bytecode,

and two developer-targeting languages: the declarative, bidirectional “relations” language

and the imperative, unidirectional “operational” language [Obj16a, p. 9 f.]. Both languages

can take an unlimited amount of model objects as input or output parameters [Obj16a,

pp. 13, 91] and could hence be used for multi-model consistency preservation. We will

focus on the declarative language, QVT-R, in this section, as we only cover multidirectional

languages in this chapter.

Fundamentally, QVT-R allows declaring relations between models. These relations

specify when the targeted model objects are to be considered consistent. The relations

have to modes: they can be checked and enforced. The check mode checks whether model

instances are consistent according to the consistency speci�cation the QVT-R relations

express. In enforce mode, on the other hand, a transformation is executed in one direction

to restore this consistency.

Macedo et al. have studied the implications of using QVT-R for multiary consistency

preservation [MCP14]. They found that the language as it is speci�ed is not su�ciently

expressive. They give an example of a simple consistency speci�cation that cannot be

expressed in QVT-R. They show that the essential problem, which prevents the example

from being speci�ed, is that QVT-R all-quanti�es all input models for conditions. Con-

sequently, Macedo et al. propose an extension to QVT-R and show how it would allow

to specify relations for their example and similar situation. They conclude that more

research and case studies are required to understand QVT-R’s capabilities for multiary con-

sistency preservation [MCP14]. This statement certainly also applies to the Commonalities

Language.

8.1.3 Triple Graph Grammars

Models can be interpreted as a graph, with the model objects as nodes and the refer-

ences between them as edges. Because of that, Triple Graph Grammars, introduced by

Schürr [Sch94], can also be used for bidirectional model transformations. Triple Graph

Grammars are graph-based grammars that can be used to produce two graphs and an

according correspondence graph. The correspondence graph has a function that is very

similar to the correspondences used in model transformations (see section 2.7.1): it relates

the nodes of the two graphs. The graphs are constructed in productions, which de�ne

a pattern to match and modi�cation to apply if the pattern matches. Productions are
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monotonic; that is, they cannot remove existing edges or nodes. There are, however, also

approaches that remove this limitation [Lau+12].

Additionally to producing graphs, Triple Graph Grammars can also be used to generate

one of the two graphs if the other is given, which makes them suitable to be used as

model transformation de�nitions. It has even been shown that QVT core (the bytecode-

like transformation language, see section 8.1.2) can be implemented using Triple Graph

Grammars [GK10]. A main di�erence of Triple Graph Grammars to other transformation

languages is that they are usually de�ned graphically. If tools o�er a textual syntax at all,

it is a fallback solution [Hil+13].

Trollmann and Albayrak have extended Triple Graph Grammars so they can also be

used to preserve consistency of multiple models [TA16]. They show how their approach

preserves the strong formal understanding of classical Triple Graph Grammars. In partic-

ular, they are able to prove its correctness in terms of the existing de�nitions for Triple

Graph Grammars.

8.2 Orthographic So�ware Modelling

We already introduced Orthographic Software Modelling, an approach presented by Atkin-

son et al. [ASB10], in section 2.6.1. It uses a single underlying model (SUM) that holds all

information about a software system and is only edited through projective views. Because

the SUM is free of semantic overlap per construction [ASB10; ATM15], Orthographic

Software Modelling has no need for consistency preservation. Nevertheless, the SUM

seems to be similar to the intermediate models we propose, which is why we will explore

some of the di�erences. First, intermediate models do not contain all information about the

system, but only those parts that have semantic overlap in the models and are addressed by

the consistency preservation process. Any other informations remains exclusively in the

existing models. Furthermore, the data in the intermediate models is never authoritative.

While a SUM is a single source of truth, intermediate models only contain deliberately

introduced copies of information. Second, even though it seems to be desirable not to have

much semantic overlap in intermediate models, our approach allows it. We even assume

that sometimes, semantic overlap can be helpful to separate concerns. A SUM, on the other

hand, must not contain any semantic overlap. Finally, a virtual single underlying model

(VSUM) that is kept consistent using intermediate models has the advantages described by

Kramer et al., namely that existing metamodels and editors can be re-used [KBL13].

8.3 Preserving Consistency through a Central Model

Malavolta et al. use a central metamodel for consistency preservation of architecture

description languages; i.e. modelling languages for the domain of software architecture

[Mal+10]. They de�ne a central metamodel, called A0, for software architecture and build

a framework, Dually, around it to integrate existing metamodels. The approach does not

prescribe any speci�c technology for the transformations, although it contains a generic

mechanism to preserve consistency. The A0 metamodel does not contain all semantic
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overlap of the metamodels that are kept consistent. It only models a speci�c kernel of

architecture description languages. This kernel is frozen—meaning that it is not meant

to be changed in the future—but extensible. Malavolta et al. argue that because of that,

the approach remains scalable, as the A0 does not have to be modi�ed for every added

metamodel. On the other hand, the small kernel means that important information could

be lost because it is not represented in the kernel. In those cases, the kernel should be

extended, but not modi�ed, which allows to retain backwards-compatibility [Mal+10].

Di Ruscio et al. add to this idea by describing how a kernel metamodel like A0 can

be extended in a systematic process. They de�ne four extension operators and and

show that when using their process, extensions can be combined and also be applied to

di�erent kernels [Di +12]. These considerations might also enrich our approach of using

intermediate models. While there are notable di�erences between a kernel metamodel and

an intermediate metamodel, the initial situation is similar in both approaches: Multiple

metamodels need to be kept consistent, but it is not known up front which metamodels

might be added to the consistency preservation process in the future. Being able to evolve

intermediate metamodels using reusable extensions and without breaking backwards

compatibility is also desirable for our approach.

8.4 Theoretical Work

The theoretical properties of multiary consistency preservation were recently discussed

by Stevens [Ste17]. She takes a general look at the expressiveness of consistency preser-

vation rules and gives an example for a consistency speci�cation for which consistency

preservation is not possible if only binary transformations are used. She then shows that

consistency preservation is related to “constraint networks” known from the constraint

satisfactory problem. The constraint network problem searches for an assignment to a

number of variables that ful�ls all of a given set of constraints. For this problem, it is

known that any network of multiary constraints can be reduced to a network of binary

constraints if new variables are introduced [RPD90]. Stevens hence suggests that adding

new models allows binary transformations to also preserve consistency for arbitrary

multiary consistency speci�cations. It is worth studying whether this also applies to the

intermediate metamodels as they can be de�ned with the Commonalities Language.
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The results presented in this thesis add to the overall goal of being able to preserve

consistency of multiple models. They are, however, far from su�cient to achieve the goal.

This chapter shows the areas where we already identi�ed shortcomings and outlines steps

that could be taken to overcome them.

9.1 Implementation

To improve our implementation of the Commonalities Language and make it usable in

practice, the foremost goal should be to bring it on par with the feature set described

in this thesis. We regard the lack of invertible expressions and enforceable condition

expressions as the most pressing issue. Nevertheless, there are other features that we

could not approach but developers would pro�t from. There could be, for example, more

sophisticated compile-time checks. For instance, it would be worth introducing checks that

Participations between Commonalities never form a circle, that there is no Participation

Class which can never be in a Resource (because it is never put in a Resource or containment

relation), that used properties are not marked as deprecated, and so forth. The editors

should also support more advanced features which developers have come to expect form

other languages. The editors should, for example, propose valid identi�ers wherever

possible and allow to jump from a property or metaclass reference to the de�nition of that

property or metaclass.

9.2 Evaluation in Practical Use Cases

Once an acceptable implementation of the Commonalities Language is available, it could

be applied to use cases that have already been identi�ed by other publications. There

have been, for example, a doctoral thesis by Langhammer [Lan17] and two Bachelor’s

theses by Chen [Che17] and Klatte [Kla17] about consistency preservation with Vitruvius

for UML, PCM and Java models. Each thesis focuses on one of the three combinations

of two of the metamodels. The rules were all implemented in the Reactions Language.

Realising them with the Commonalities Language could be bene�cial for two reasons:

First, implementing rules created by others assures that the Commonalities Language can

solve problems in a meaningful way. Second, the implementation in the Commonalities

Language could be compared to those in the Reactions Language. It could then be assessed

whether the Commonalities Language actually outperforms the other approach in terms

of development e�ort. Further properties, like runtime, could be compared, too.
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9.3 Language Evolution

What functionality is needed additionally in the Commonalities Language will likely reveal

itself when the language is used in practice. Nevertheless, we already see one feature

that might be worth adding: Commonality inheritance. As Commonalities translate

directly to metaclasses, it seems intuitive to also introduce inheritance, a key feature

of object orientation, for them. De�ning inheritance for Commonalities is, however,

not straightforward, because a meaningful strategy regarding how transformations are

inherited and overridden needs to be found. Inheritance could help to further reduce

duplicated transformation logic. For example, models often have a notion of a “named

element” [Obj15, pp. 47 f.][Reu+11, p. 99] from which most metaclasses inherit. In the

Commonalities Language’s current state, practically every Commonality would need to

de�ne the attribute “name” and map it to the Participation Classes’ name. Inheritance

could help here by allowing developers to de�ne the transformation once for all “named

elements” of a metamodel and inherit from this de�nition. However, any solution should

also allow overriding inherited behaviour.

9.4 Theoretical Evaluation

Once the feature set of the Commonalities Language is su�ciently mature and has proven

itself in case studies, it would be interesting to explore the language’s theoretical cap-

abilities. We see two areas that could be studied in particular: First, it has already been

discovered that binary consistency rules, like they are for example created by bidirectional

transformations, are not su�cient to preserve every desirable consistency speci�cation

(see section 8.4). However, Stevens already showed that this shortcoming can be overcome

if new models are introduced [Ste17]. Thus, the question arises if the intermediate models

as they can be de�ned through the Commonalities Language also allow to preserve consis-

tency for any multiary consistency speci�cation. Studying this question might also gain

new insight into how intermediate metamodels should be designed to require no or only a

few changes when new requirements arise in the future.

Second, it could be examined whether the Commonalities Language can be used to

transform arbitrary change sequences. For example, Kramer showed for the Reactions

Language that reactions can be triggered to for any possible change and that reactions can

execute any computable transformation [Kra17, p. 211 f.]. The Commonalities Language

can also execute Turing complete programs through the extensible operator mechanism.

However, operators should never have to modify the models directly, as we explained in

section 5.4. So for an evaluation of the language’s completeness, it should preferably be

studied whether arbitrary changes to models can be transformed to arbitrary changes

to other models under the restriction that operators never modify the models that are

kept consistent directly and that they also conform to the speci�c restrictions that were

introduced for them.
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This thesis presented an approach and an accompanying, new programming language

to preserve consistency of multiple models. We argued that it is desirable to preserve

consistency of multiple models using binary transformations. We then analysed di�erent

approaches to specify multi-model consistency using binary transformations. Subsequently,

we explained how consistency of multiple models can be preserved using an intermediate

metamodel. It makes the semantic overlap of metamodels explicit. All transformations

go “through” it, such that there are no direct transformations between the models that

are kept consistent. We analysed which advantages this solution has. We came to the

conclusion that, unlike the other solutions, using an intermediate metamodel allows to

add and remove models without needing to modify existing transformations, while still

requiring only a reasonable amount of development e�ort.

To support the approach, we thereupon presented a novel, domain-speci�c, declarative

programming language, the Commonalities Language. It can be used to declare an inter-

mediate metamodel together with the transformations from existing metamodels to the

intermediate metamodel. Developers can use the language to create the metaclasses of the

intermediate metamodel—so-called Commonalities—and their properties. The mapping

of existing metaclasses to these constructs is provided directly with the declaration of

each construct. We presented the language’s syntax and semantics and explained how we

expect it to be used. We also showed how we aimed to design the language in a way that

makes transformation rules written in it understandable and free of logic duplication.

Finally, we have developed a prototypical implementation of the Commonalities Lan-

guage, which supports an essential subset of the language’s features. It uses the Vitruvius

framework and transforms the Commonalties Language into a pre-existing, reactive lan-

guage for model consistency, the Reactions Language.

All in all, we have shown how an approach for multi-model consistency with desirable

properties can look like. We have presented a programming language that is designed to

support developers in realising this approach and create easily understandable transform-

ation rules. We implemented the language’s essential features.

The contributions of this thesis are one step towards an all-encompassing solution for

consistency preservation of multiple models. Using an intermediate metamodel together

with bidirectional transformations promises to be a scalable solution. It is supported

by the fact that similar strategies have already been successfully applied to real-world

scenarios [Mal+10; Atk+13]. The Commonalities Language already incorporates numerous

features to handle speci�cs of consistency preservation problems that we deem typical. It

will, however, likely need further research and development to become a tool that equips

developers for all requirements real-life applications pose. Our implementation of the

language is only rudimentary. It can be seen as a proof of concept but will require further

development before it will be useful in practice.
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Glossary

compiler
Software that translates code written in one programming language into another

programming language.

consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A state of a set of models in which the set does not contain contradictory inform-

ation.

dependency injection
A design pattern, stating that classes do not obtain or create their dependencies

by themselves, but rather have them provided by a central facility.

domain
“A bounded �eld of interest or knowledge” [VS06, p. 56].

domain-specific language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A (programming) language that is tailored to be used for a particular domain.

Eclipse
An open-source integrated development environment that is very extensible

because of its modular architecture.

Eclipse Modelling Framework (EMF) . . . . . . . . . . . . . . . . . . . . . . . . . . 7

An infrastructure to de�ne metamodels and generate code for them, including

graphical editors.

Ecore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The meta-metamodel used in EMF.

Java
A statically typed, object-oriented programming language. In this thesis, Java is

most of the time manipulated through a model, like it is possible with Jamopp.

Java Model Parser and Printer (Jamopp) . . . . . . . . . . . . . . . . . . . . . . . . 9

An Ecore metamodel of the Java programming language, allowing to treat Java

source code as a model.

metaclass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Part of an object-oriented metamodel, de�nes which properties model objects

can have.

metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A model describing the permissible values of a model.
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Glossary

Model-Driven So�ware Development . . . . . . . . . . . . . . . . . . . . . . . . . 3

A paradigm putting models at the centre of the software development process.

Palladio Component Model (PCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A metamodel for component-based software architecture. By also capturing

software’s abstract behaviour and context of use, it allows to run simulations and

carry out experiments on models conforming to it.

Reactions Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A domain-speci�c, reactive language that is used to specify transformations for

consistency preservation in Vitruvius.

semantic overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

When multiple models—explicitly or implicitly—contain the same piece of inform-

ation about their common original.

serialisation
The process of reversibly converting objects in memory into a stream of bytes,

usually to save them to disk or to transmit them to another machine.

single underlyingmodel (SUM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A central model, without semantic overlap, holding all information about the

system it describes.

Turing completeness
Property of a programming language or system meaning that any computable

function can be computed with it.

Unified Modelling Language (UML) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A metamodel for di�erent aspects of software development, like use cases, archi-

tecture, object-oriented design or business processes.

Uniform Resource Identifier (URI)
A syntax to identify arbitrary resources, standardised by the Internet Engineer-

ing Task Force (IETF) [RFC3986]. Addresses used in the world wide web, like

“https://sdqweb.ipd.kit.edu/wiki/Vitruvius”, are an example.

version control system
Software that manages versions of �les, allowing multiple users to edit the same

set of �les. Usually contains means to combine (“merge”) changes. Popular version

control systems are git and SVN.

virtual single underlyingmodel (VSUM) . . . . . . . . . . . . . . . . . . . . . . . . 10

A single underlying model tha

Vitruvius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A tool for Model-Driven Software Development, o�ering a framework to specify

consistency preservation for models and to rapidly create on-the-�y views on

them. Uses a virtual single underlying model.

Xtext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A framework to create domain-speci�c languages, generating various artefacts

like the lexer, the parser, an abstract syntax model, editors, and more for it.
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