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Abstract

In order to mitigate the impacts of climate change, the international community
envisages significant investments in electricity generation from renewable energy

sources (RES). The integration of this decentralized and fluctuating type electricity
generation poses several challenges to planning, operation, and economics of power
systems. The established energy systems were originally designed for a centralized
electricity generation that follows the uncontrolled but well predictable demand.
However, for large shares of RES, relying only on the flexibility of the generation
side would be economically inefficient. Furthermore, the environmental benefits of
using RES would be depleted by additional carbon emissions from ramping highly
flexible fossil-fueled power plants. An appealing alternative to facilitate the efficient
integration of large shares of RES is to exploit the so far mainly passive demand side
as an additional source of flexibility. The established centralized approaches can
hardly handle the fine-grained and decentralized nature of demand side flexibility.
Therefore, the intermediation between centralized control and decentralized demand
will play a major role in future energy markets, which constitutes the overarching
topic of this dissertation.
Typically electricity generation from RES is capital-intensive but has near zero

marginal costs. On this account, novel services need to be offered in order to trans-
mit the right economic signals. To this end, the concept of the differentiable good
electricity is refined in this dissertation. Embedded into the so-called energy service,
characteristics such as temporal and spatial price differentiation or the risk of inter-
ruption can be specified to differentiate the so far homogeneous good. Based on the
morphological design theory a framework for the notion of energy services is estab-
lished and subsequently implemented as a decision support system. This supports a
systematic and structured product development process to design innovative energy
services.
Such an innovative energy service is, e.g., the charging of electric vehicles in car

parks, where prices are differentiated by job completion deadline. This allows the
car park operator to control the aggregated load of all charging jobs to follow local
RES generation. Based on this energy service the downstream activity of an inter-
mediary is formally modeled as an optimization problem and evaluated by means of
an empirical simulation experiment. The results provide insights on pricing policy
and the value of demand side flexibility with regard to both the integration of local
RES generation and operative profit optimization. In order to illustrate another in-
novative energy service the presented model is extended by the upstream activity of
the intermediary. Household consumers are offered monetary incentives if they allow



ii

the intermediary to control their appliances. The results indicate the cost saving po-
tential from demand side flexibility for the intermediary’s procurement of electricity.
Beyond that, this model formulation constitutes the foundation for further examina-
tions, e.g., to study the strategic behavior of intermediaries on real-time electricity
markets that are prone to market power abuse due to low market liquidity.
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Chapter 1

Introduction

Sustainability is one of the major concerns of today’s world. At the Paris cli-
mate conference in December 2015, the international community agreed to keep

the increase in global average temperature to 2◦C above pre-industrial levels in order
to mitigate the impacts of climate change. Being at the forefront of international
efforts the European Union (EU) set itself ambitious goals to this end. Its mem-
ber states committed to reduce greenhouse gas emissions by 20% until 2020 (EU
Commission, 2010), by 40% until 2030 (EU Commission, 2014), and ultimately by
80-95% until 2050 (EU Commission, 2011) compared to 1990 levels. To achieve these
goals the EU Energy Roadmap envisages “significant investments in [...] renewable
energy.” The German legislator embodied this in a separate “Renewable Energy
Sources Act” (EEG): At least 80% of electricity consumption shall be produced
from renewable energy sources (RES) by 2050 (§1 II 3 EEG 2017) supporting it with
several incentives. Several other countries have taken similar actions (Notenboom
et al., 2012).
RES integration poses several challenges to planning, operation, and economics

of energy systems that were originally designed for centralized conventional and
controllable energy generation (Perez-Arriaga et al., 2012; Bird et al., 2013). In
contrast, energy generation from RES is distributed, volatile and intermittent and
cannot offer the supply flexibility needed to guarantee grid stability by balancing
demand and supply. Traditionally, utilities have treated the demand side as inelastic
and renewable energy generation is seen as negative demand. To account for sudden
changes in demand or forecast errors the required flexibility has historically been
provided by conventional generation units, such as (limited available) pumped hydro
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storage, or (costly) gas-fired power plants (e.g. Ortega-Vazquez and Kirschen, 2010).
However, for large shares of RES, relying only on the generation-side flexibility would
require a large number of backup units, which is both economically inefficient and
could hinder the environmental benefits of using RES (IEA, 2014). This affects the
energy trilemma by endangering the energy system’s efficiency that is determined
by its reliability, sustainability, and costs.

An appealing alternative to facilitate the efficient integration of large shares of
RES is to exploit the so far mainly passive demand side as an additional source of
flexibility (Strbac, 2008; Schuller et al., 2015; Gärttner et al., 2016). Rather than
assuming load being inelastic, demand can be shaped to follow supply. Demand Side
Management (DSM) has been in focus of many researchers and the power industry
lately (Strüker and van Dinther, 2012; Chua-Liang and Kirschen, 2009). The demand
side can be shaped in two fundamentally different ways: either through direct load
scheduling or by Demand Response (DR) that engages consumers to adapt their
energy usage pattern by means of monetary or non-monetary incentives (Albadi and
El-Saadany, 2008). Exploiting demand side flexibility improves economic outcomes
compared to a “supply follows demand” paradigm but concurrently increases power
system complexity — at least at first sight. From an infrastructural point of view it
is the bidirectional communication between distributed actors and resources in the
power system that becomes an essential prerequisite for this kind of applications.
Therefore, the Smart Grid is rolled out nowadays to facilitate the activation of the
demand side. In addition to that, concepts offering appropriate economic incentives
encapsulated in attractive energy services need to be designed.
The fine-grained and decentralized nature of DSM calls for an intermediation

between supply (generators, grid operators) and demand (consumers, businesses).
Managing demand side flexibility is much more complex than the traditional genera-
tion capacity dispatch on the supply side. In case of direct load scheduling coordina-
tion of decentralized individuals is computationally expensive or in mass market DR
applications avalanche effects can endanger grid stability (Ramchurn et al., 2012;
Gottwalt et al., 2011). Intermediaries can better exploit flexibility as they can pool
this potential and offer the net total on wholesale markets in a processable form (EU
Commission, 2015b). Lately, the market has recognized this need: Municipal utilities
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and start-ups acting as intermediaries in the energy sector are increasingly emerging.

Even though the activation of the demand side is technically implemented nowa-
days, “engineering” a techno-economically evolved energy system is crucial to consti-
tute a disruptive innovation to the energy sector (Roth, 2002). The market engineer-
ing framework proposed by Weinhardt et al. (2003) provides a principled approach
to structure the economic transformation and isolate individual challenges in such a
system. It helps to break down a market outcome into market structure, transacted
objects, and actions of market participants.
In the case of an energy system the desired market outcome is a reliable, sustain-

able and economic power system. This pursuit is directly affected by actions and
behavior of market participants embedded in a socio-economic and legal environ-
ment. Market structure and transaction objects (e.g., energy services) can nudge
participant behavior, that are both the only directly controllable elements for inter-
mediaries in the market environment. The market engineering discipline is complex
and offers many fields of research because the cause-effect relationship between these
controllable elements and the market outcome is indirect, e.g., due to to bounded
rationality or cognitive biases of participant behavior (Bazerman and Neale, 1993).
The work at hand focuses on transaction objects from the point of view of market

participants on the intermediation level assuming this to be a building block of
future energy markets. The development of new transaction objects rather than the
adaption of cautiously protected market structures by traditional energy utilities
will play a major role for emerging intermediaries. A multitude of approaches in
form of energy service products were and are to be designed in research and industry
to tackle the aforementioned challenges. To this end, the main objective of this
dissertation is to investigate the most important challenges intermediaries will face
in the period of transformation towards future energy markets: (a) establishing a
structured approach for the development of transactions objects, (b) understanding
the agent behavior of the intermediaries’ end-consumers, and finally (c) marketing
the end consumers’ flexibilities on wholesale markets.



4 Introduction

1.1 Research Outline

The fundamental basis of this dissertation is the existence of infrastructure in the
form of a Smart Grid that facilitates bidirectional communication between suppliers
and consumers. This creates the opportunity to develop new product solutions in
contrast to the former perception of electricity being a homogeneous good. Conse-
quently, the first research question aims at defining the energy service concept and
how to assist the product development process in a structured way.

Research Question 1 – Quality Differentiation

What characterizes the energy service concept and what is a structured way to
design differentiated energy services?

The notion of “energy services” is specified and the concept of “quality differenti-
ation” is presented building on existing literature and adapting its theories. Based
on these foundations and the morphological design theory (Zwicky, 1967) design di-
mensions for energy services are explored. The morphological methodology is further
extended to assist the product development process and illustrated by means of a
prototypical decision support system.
Having established the fundamentals for the understanding and design of energy

services, the following research questions instantiate a deep dive into the application
of energy services in DR scenarios. A case in point is electric vehicle (EV) charging
which is considered as a prime case of load flexibility (Goebel et al., 2014; Shao
et al., 2011). Thereby, the deadline differentiated pricing scheme (Bitar and Low,
2012) is applied to an EV charging use case. A car park operator in the role of
an intermediary offers the service of EV charging to end-consumers during their car
park stay. The car park operator elicits demand side flexibility through deadline
differentiated prices to match the emerging energy demand to local photovoltaic
(PV) generation located on its rooftop. To this end, charging requests contributing
flexibility are incentivized through energy price reductions subject to user-chosen
charging completion deadlines.

The second research question investigates the value of flexibility in this setting.
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Research Question 2 – Value of Flexibility

What is the value of EV charging flexibility and how should a deadline differen-
tiated price menu be determined to optimally elicit it?

Focusing on the operational management of EV charging a stochastic mixed-
integer optimization model is formulated and evaluated. Empirical driving profiles,
real-world operational data from a car park, and recorded solar generation data pro-
vide a realistic input setting. The impact of customer flexibility on the car park
operator profit is measured to determine the value of flexibility.
A car park operator’s scheduling freedom increases the more fine-grained the price

menu is. This, in turn, increases complexity for end-consumers since the number of
options to choose from increases.

The third research question addresses the impact of simplifying the structure of
the price menu on the operator profit.

Research Question 3 – Value of Complexity

What is the impact of reducing the price menu complexity on the intermediary’s
profits?

Electricity generation from PV panels can be very volatile and intermittent, espe-
cially on a local level. Hence, regional forecasts commonly deviate from the realized
electricity generation. The following research question aims at answering this issue
and examines whether demand side flexibility elicited through deadline differentiated
pricing can mitigate PV forecast errors.

Research Question 4 – Mitigating Forecast Errors

To what extent can deadline differentiated pricing help mitigate PV forecast
errors?

Instead of assuming perfect information on local PV generation, real-world fore-
casts from responsible transmission system operators are employed. These forecasts
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provide a general trend for regional PV generation but do not reflect local fluctu-
ations. The mitigation potential is analyzed in terms of loss of profit compared to
the perfect information scenario.
Car parks will be frequented by heterogeneous EV customers with varying require-

ments either regarding their energy demand or more fundamentally their economic
valuation. Taking into account customer diversity instead of e.g. assuming homo-
geneity in theoretical models can have a major impact on real world applications.
This effect is analyzed in the deadline differentiated pricing application case by ex-
amining the impact of different customer diversity models.

Research Question 5 – Modeling Customer Diversity

How do different customer diversity models impact the intermediary’s profits?

The final part placed a stronger focus on the upstream activity of intermedi-
aries. Relevant wholesale markets to procure end-consumers while leveraging their
flexibility to counter RES volatility are day-ahead markets and real-time markets.
End-consumers in this scenario are households providing shiftable loads at diverse
disutility levels.

Research Question 6 – Wholesale Procurement

To what extent can a demand response intermediary benefit from consumers’
household flexibility with respect to the wholesale procurement of electricity?

This research question is addressed by means of a three-stage bi-level electricity
market model encompassing an intermediary interacting with both end-consumers on
the downstream and a system operator on the upstream. The intermediary interacts
with end-consumers to establish a long-term DR contract. To serve this demand the
intermediary procures electricity from wholesale markets managed by the system
operator. The results of several numerical simulations allow to quantify the value of
flexibility under consideration of realistic wholesale procurement situations and the
impacts of modeling end-consumer preferences on DR programs.
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1.2 Structure of the Dissertation

The outline of this dissertation is illustrated in Figure 1.1. The remainder is divided
into three parts. Part I establishes the foundations: Chapter 2 introduces the fun-
damentals of power systems and energy markets and applies the market engineering
framework to the power sector. After developing a linked perspective on the notions
of “energy service” and “quality differentiation” in Smart Grids in the first part of
Chapter 3 the aforementioned three important challenges intermediaries are facing
are investigated. The first challenge of developing transaction objects is addressed in
this chapter by establishing an extended morphological approach and instantiating
it in a prototypical decision support system.

1 Introduction

I Foundations

2 Market Engineering in the Power Sector

3 Quality Differentiation of Energy Services

II Intermediation of Energy Services

4 Deadline Differentiated Pricing for EV Charging

5 Market Transaction Objects on Wholesale Markets

III Finale

6 Conclusion

Figure 1.1: Structure of this work

Part II examines specific demand response energy services from the point of view
of an intermediary. Chapter 4 introduces and applies the deadline differentiated pric-
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ing scheme on an EV charging use case by formulating a stochastic mixed-integer
optimization problem. Hereby, the second challenge of understanding the agent be-
havior is investigated. Within Chapter 5 the upstream activity of an intermediary
is taken into account additionally yielding a three-stage bi-level stochastic optimiza-
tion problem. This addresses the intermediaries’ third challenge of interacting with
wholesale markets. Finally, Part III with Chapter 6 concludes by summarizing the
key contributions of this dissertation and provides an outlook on open research ques-
tions.



Part I

Foundations





Chapter 2

Market Engineering in the Power
Sector

The industrialized world considers an operational electrical power system as a
basic service. The economies and societies throughout the world rely on power

systems for everyday operation. This is demonstrated by the effects of the very
few historic outages, e.g., in New York in 1977 and 2003. The city-wide outage in
1977 resulted in looting, vandalism, and other disorders. In 2003 a regional two-day
outage accounted for a cost of approximately six billion US dollars (Minkel, 2008).
Therefore, it is no surprise that large-scale power systems are historically established
in a hierarchical approach: Few centrally operated large power plants generated
electricity that had to be transmitted to distribution nodes via high voltage and
from there on via low voltage distribution grids to end consumers. In the 1990s
environmental concerns and depleting fossil energy sources triggered the need to
generate electricity from renewable energy sources. This poses several challenges
to the centralized approach due to the distributed and volatile nature of renewable
generators (Ramchurn et al., 2012).
This chapter first presents a concise overview of the historically established struc-

ture of the power system in Section 2.1. Section 2.2 provides a synopsis on the
structure and characteristics of energy markets. Lastly, Section 2.3 closes this chap-
ter by introducing and applying the market engineering framework (Weinhardt et al.,
2003) to the energy market.

11
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Figure 2.1: Structure of a conventional electricity value chain (based on Hoitsch et al.,
2001).

2.1 Power System Fundamentals

The fundamental functions of an electricity value chain consist of generation, trans-
mission, distribution and consumption of power as depicted in Figure 2.1. Before
the liberalization of electricity markets that has been accomplished in all EU coun-
tries and others (Joskow, 2008b), utility companies were in charge of the whole value
chain and thus vertically integrated. Even though the functions contain very hetero-
geneous tasks, an integration was beneficial for energy utilities due to the need for an
unobstructed interplay between the elements of the value chain. In 1998 the liberal-
ization in Germany forced the unbundling of utility companies: They had to separate
the competitive functions — generation and sales — from grid operation, which is
a natural monopoly (Train, 1991). Since then the markets for power transmission
and distribution are regulated by the German Federal Network Agency (Jamasb and
Pollitt, 2000).

2.1.1 Generation

As already noted mostly large-scale generators were historically constructed to secure
the electricity provision of countries. The portfolio of generators is heterogeneous
for different reasons: lowering the dependency from specific primary energy sources,
increasing the operational flexibility due to various technical characteristics, and
adapting to regional circumstances. Coal and nuclear power plants typically serve
the base load as they have low marginal costs, but high ramping costs. On the other
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Figure 2.2: The evolution of electricity generation portfolios from 1990 to 2015 (based on
Agora, 2016; AGEB, 2017; Eurostat, 2016b).

hand gas, pumped hydro, and in developing nations still common oil power plants
have low investment and ramping costs and are therefore used to react to short-term
state changes of the electricity system. Hence, portfolios differ around the world.
This is not only due to energy-political reasons but also to diverse present conditions
such as availability of fossil fuels.
Figure 2.2 depicts the evolution of the electricity generation portfolios and re-

gional differences by means of a comparison of the portfolio of today’s European
Union countries and Germany. To date, fossil fuels are the dominating resource for
electricity generation despite their carbon footprint and limited supply. After the
Second World War, the idea of a peaceful use of nuclear energy in the form of nuclear
power plants thrilled the fast-growing industry nations such as USA, Russia, France,
and Japan. After the oil crisis of the 1970s at the latest, nuclear power was seen as
the best long-term solution for a reliable power supply. Due to the major nuclear
accidents 1986 in Tschernobyl and 2011 in Fukushima, as well as the unresolved
problem of final storage, the broad public acceptance for nuclear power was lost and
many countries decided to phase out of nuclear power generation. Enabled by critical
research developments in alternative generation technologies, mostly wealthy nations
bet on electricity generation from renewable energy sources as the long-term solution
for a clean power supply. To this end, the EU countries have increased the share of
electricity generation from RES to 29% by offering subsidies to the construction and
operation of generation units.
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In contrast to conventional power plants, RES generation has near zero marginal
costs and is always running but has a volatile generation pattern due to weather
stochasticity and a low capacity utilization. Typically the dispatch of a generation
portfolio follows the marginal cost structure that considers availability and ramping
constraints yielding the merit order curve depicted in Figure 2.3 (Stoft, 2002). The
intersection between the (typically inflexible and therefore steep) demand curve and
the supply curve is the market clearing price. The merit order effect describes the
impact of generation portfolio development towards integrating renewables (Sensfuß
et al., 2008). Since renewables have near zero marginal costs the original merit order
is shifted to the right. Assuming an unchanged demand curve the market clearing
price decreases the more renewables are integrated into the power system.
Currently, generation from RES is constantly growing worldwide. Due to the

stochastic nature of renewables flexible generation capacity is needed to balance
times of low wind or photovoltaic power generation. Gas power plants are flexible
enough to mitigate the volatility of renewables. Unfortunately, price spikes that
are needed to amortize the capacity investments of these generators occur less often
due to the merit order effect: Coal power plants are recently most of the time
the market clearing price setters. This “missing money problem” (Joskow, 2008a)
can not stimulate investments for flexible generators and has even led to several
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power plant shut downs in Germany according to the German Federal Network
Agency (Bundesnetzagentur and Bundeskartellamt, 2016, p. 52). This problem
is further compounded by political decisions such as feed-in tariffs and investment
rebates for renewable generators (Haas et al., 2004). Economists are discussing
whether the common energy-only markets will fail to massively integrate renewables
and thus new market designs need to be established that can better incentivize
capacity provision (Cramton and Ockenfels, 2012). In 2015, Germany decided to
stick to the energy-only market design and encouraged the industry to find innovative
solutions to react flexibly to short-term changes of the generation side (BMWi, 2015).
This is the central topic if this dissertation.

2.1.2 Transmission and Distribution

The transmission and distribution grid structure logically follows the historically
centralized power system to deliver electricity from a low number of large-scale gen-
erators to a multitude of widespread consumers. Transmission lines transport elec-
tricity over long distances from generators to substations. To limit the power loss
to a minimum the electricity transport is carried out on extra high voltage on either
220 or 380 kilovolts (kV) overhead, undersea, or underground (El-Hawary, 2008).1

The substations, being the point of transition from transmission to distribution grid,
transform electricity to lower voltage levels and distribute it to consumers. The dis-
tribution grid is divided into three different levels: high voltage (35-110 kV), medium
voltage (10-30 kV), and finally low voltage (230-400 V) (Brunekreeft et al., 2015).
Large consumers, e.g., industrial companies, obtain electricity from medium or even
high voltage levels, while small consumers, typically households, are connected to
the low voltage level.
In Germany, the power grid is managed by the transmission system operators

(TSO) and the distribution system operators (DSO), respectively. They are respon-
sible for grid operation, maintenance, stability, and reliability. DSOs are in addition
responsible to connect new consumers and small generators to the grid. These may
be households, industrial consumers, or RES generators. The N-1 criterion, that only
applies to the transmission grid, requires a redundant system setup (Schwab, 2009).

1The reported voltage numbers apply for Germany and most of Europe. Some countries might
employ deviating voltage levels for their transmission and distribution grids.
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Table 2.1: Circuit length and other characteristics of the German electricity grid in
2015 (Bundesnetzagentur and Bundeskartellamt, 2016).

TSO DSO Total
System operators (number) 4 817 821
Total circuit length (km) 36,001 1,780,856 1,816,857
Extra high voltage 35,610 360 35,970
High voltage 391 96,267 96,658
Medium voltage 0 511,164 511,164
Low voltage 0 1,173,065 1,173,065

Since electricity grids require high investment costs and rather low operating costs,
TSOs and DSOs are considered natural monopolies (Train, 1991) and are therefore
regulated by the German Federal Network Agency (Jamasb and Pollitt, 2000). In
Europe, the system operators usually own the grid whereas, e.g., in the USA in-
dependent system operators (ISO) only operate the grid. Brunekreeft et al. (2005)
argue that the separation of ownership and operation is a more flexible solution to
react to possible changes in the market area.
Before the liberalization in Germany, the energy sector was dominated by only four

large utilities: RWE, E.ON, Vattenfall, and EnBW. Large enterprises were in favor
because large-scale generators and the power grid require high investments. This
grid partitioning remained with regards to the TSOs whereby unbundling forced the
utilities to found new companies that were subsequently mostly sold to foreign share-
holders: Amprion, Tennet TSO, 50Hertz Transmission, and TransnetBW. While the
TSO unbundling according to Directive 2009/72/EG requires a strict separation of
organizations, the DSO unbundling is less restrictive. In contrast to the German TSO
market, Table 2.1 shows that in the distribution grid more than 800 DSOs exist that
manage approximately 500 times more circuit length than the TSOs (Bundesnetza-
gentur and Bundeskartellamt, 2016).
As already mentioned the structure of the power system originates from the idea

of centralized, large-scale electricity generation. However, RES generators that cur-
rently constitute the main part of generation expansion are small and decentralized.
Therefore, it is the task of the DSOs to feed-in generation from RES at the low and
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medium voltage level. Obviously in case of more generation than demand in a grid
region the direction of power flow changes. A bidirectional power flow in combina-
tion with uncertain and fluctuating renewable generation poses a challenge for the
distribution grid. The volatility in grid expansion planning suggests that DSOs in
Germany are still in the progress to understand how to cope with this issue: While
the DSOs reported in 2014 to invest 6.6bn Euros in future grid expansions they
corrected this number to 9.3bn Euros one year later. In 2015, expenditures for redis-
patch measures and curtailment of renewable output to ensure grid stability nearly
tripled compared to 2014 to a total of 890m Euros (Bundesnetzagentur and Bun-
deskartellamt, 2016). These numbers document the currently present potential for
unused flexibility that could be exploited by introducing demand side management
measures. Obviously, this potential has an upward tendency because the ratio of
electricity generation from RES will further increase. In particular, the work pre-
sented in Chapters 4 and 5 suggest energy services that address the above-outlined
challenges.

2.1.3 Consumption

Electricity is the third largest source of final energy consumption in Germany. In
2015 electricity accounted for 20.8% of final energy consumption following fuel with
29% and gas with 25.1% (BMWi, 2017). Figure 2.4 depicts the development of
energy sources since 1990. Fuel oil, coal, and lignite mainly used for space heating
decreased from 31.6% in 1990 to 12.8% in 2015. Environmental aspects driving
alternative methods for space heating as well as temporally increased oil prices are
possible reasons for that development. Meanwhile, gas and electricity consumption
increased moderately from 37% in 1990 to 45.9% in 2015. It can be expected that the
importance of electricity increases significantly in the next decades. The irresistible
market penetration of electric vehicles will cause a substantial energy source shift
from fuel towards electricity increasing the importance of the power sector in general
and in particular for the sake of climate goals.
Households typically use electricity for space and water heating, work, e.g., cooling,

motion, or information and communication, and lighting (Erdmann and Zweifel,
2016). Comparing the development of electricity consumption from Figure 2.4 with
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Figure 2.4: Final energy consumption divided by energy source from 1990 until
2015 (BMWi, 2017).

the German (DE) electricity price increase over the years depicted in Figure 2.5,
the economic assumption of an inelastic demand for electricity particularly from
households is evident. Based on this assumption synthetic load profiles were defined
for different small- to medium-sized consumer types in households and industry.
DSOs report the demand forecast, calculated with the help of these load profiles
of connected consumers, to the supplying utilities that have to procure electricity
accordingly.

Households that are connected on low voltage levels usually receive a simple elec-
tricity tariff consisting of a fixed connection fee and a constant rate per kilowatt-hour
(kWh). Industrial consumers, usually connected to the medium voltage level, pay a
connection fee as a function of maximum load of a billing period. Larger consumers
can be equipped with an advanced metering infrastructure in order to individually
optimize the procurement of electricity.
Fueled by the constant operation state of nuclear power plants the simplest form

of time-of-use tariffs (TOU) was introduced in the 60s mainly addressing storage
water heaters (Torriti et al., 2010). Having a (high) daytime rate and a (low) night-
time rate, the start of the nighttime rate is typically signaled via ripple control to
appliances. Due to the nuclear power phase-out, this early form of DR hast lost
its importance. Other types of demand response have not yet been established for
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Figure 2.5: Average electricity price for a medium-sized household in EU-28 countries in
2005, 2012, and 2016 in Eurocent per kWh (Eurostat, 2016a).

households in Germany. Even though research on incentivization of electricity usage
adaptations started in the 1980s (Schweppe et al., 1988) and was intensified lately
due to the market penetration of RES generation (Strbac, 2008), implementation in
the real world is still reluctant. However, the roll-out of smart meters (§21, EnWG)
sets the infrastructural requirements for the introduction of DR products. This is
elucidated in detail in Chapter 3.

Figure 2.5 depicts a comparison of electricity prices for households between the
EU-28 countries and its development over the last years. Apart from a few ex-
ceptions, electricity price increased substantially in all countries in the EU due to
increased commodity prices and subsidies for RES generators. Prices differ signifi-
cantly between EU countries: E.g., in Denmark a medium-sized household paid more
than three times as much as in Bulgaria in 2016. Germany has the second highest
prices for electricity with 29.7 ct/kWh (Eurostat, 2016a).
The development of the composition of the electricity price in Germany is illus-

trated in Figure 2.6. The costs for generation, transmission, and sales were the
dominating driver for changes in the electricity price until 2009. Since then, these
costs were stable and even dropped in the last five years due to the merit order effect
of RES generation that was explained in Section 2.1.1. However, the merit order
effect is only based on the marginal costs. RES generation has high investment costs
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Figure 2.6: Composition of the average German electricity price for a medium-sized house-
hold from 1998 until 2017 in Eurocent per kWh (BDEW, 2017).

compared to their expected electricity output. This leads to higher full costs for RES
generation compared to conventional generation2. To reduce risks for investors and
ease the market integration of RES generators, the German legislator introduced a
fixed feed-in remuneration. It is paid to RES generation owners and financed through
the EEG levy by consumers. Since this EEG levy is proportional to the share of RES
generation, it continuously increased up to nearly 25% of the total electricity price
in 2017. Therefore, since 2009 the EEG levy has been the dominating driver for the
development of the electricity price. It is expected that from 2023 onwards the EEG
levy will decrease due to the phase-out of remunerations for early built generators
and lower feed-in remunerations for later built generators (Graichen et al., 2015).

2.2 Energy Market Structure

Electricity is assumed to be a homogeneous good for traders since wholesale buyers
are typically neither interested in the generator type nor the seller’s identity. How-
ever, it can not be treated like other commodities since it cannot be stored without
high losses or costs. Electricity can be exchanged via different distribution channels
that differ in time of exchange, settlement, and pricing mechanism eventually yield-

2Due to reduced production costs, RES generators, particularly PV panels, recently reached full
costs that undercut the full costs of a couple of conventional generators (TAZ, 2015).
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Figure 2.7: Structure of the German electricity market and traded products with their
corresponding time frame (Judith et al., 2011).

ing different prices. Figure 2.7 gives an overview of available distribution channels
for electricity trading in Germany. While platforms for ancillary services mainly
address the short-term needs of TSOs, wholesale markets cover mainly long- and
medium-term and to some extent short-term products. Wholesale markets are orga-
nized in bilateral, so-called over-the-counter (OTC) trading and exchange markets
(e.g., the European Energy Exchange) that are usually interconnected between each
other. An alternative to this structure is the pool market model that is currently
present in few countries. In contrast to exchange markets, pool markets are centrally
organized and require all trades to be executed on this market platform. It originates
from the strictly regulated market architectures for vertically integrated utilities and
therefore has disadvantages regarding competitiveness (Ockenfels et al., 2008).
Most generated electricity in Germany is traded OTC: In 2015 OTC brokers re-

ported3 a traded volume of 5,724 TWh, while only 1,247 TWh were traded on

3Due to the decentralized nature of OTC trading, accurate monitoring is impossible. Only a
subset of all OTC brokers reported traded volumes to Bundesnetzagentur and Bundeskartellamt
(2016). In addition to brokered trades, OTC trades can as well be executed directly between
parties. For 2010 Bundesnetzagentur and Bundeskartellamt (2011) provides an estimation of
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exchanges in the German-Austrian market region (Bundesnetzagentur and Bun-
deskartellamt, 2016). Ockenfels et al. (2008) point out that the advantages of bilat-
eral trading come particularly into effect at futures market where transaction speed
is neglectable. Therefore, centralized bilateral trading and centralized exchange mar-
kets typically coexist (Stoft, 2002). The following subsections introduce each market
type.

2.2.1 Over-the-Counter

OTC contracts are non-anonymous, bilateral, non-standardized trades between
wholesale entities and possibly supported by brokers. Since no central market exists,
trading happens over undefined communication means, e.g., telephone and not on
a physical trading floor. Thus, it is not listed on an exchange. Generally, risk of
default is existent in contrary to exchanges but can be hedged by clearing banks.
The overwhelming bulk of electricity is traded years in advance (up to six years) via
OTC contracts due to the high flexibility in terms of products offered and often lower
prices compared to exchange markets (Rademaekers et al., 2008; Lijesen, 2007).
Due to the nature of OTC trades, mostly every type of trade is possible: short-

term contracts via a spot market, long-term contracts via a futures market, financial
or physical settlement. If traders agree on a financial instead of a physical settlement,
a cash settlement (difference between the forward price and the spot market price) is
carried out between parties at an agreed fixed date. Historically, OTC trading was
mainly settled physically as most market participants were generators and large con-
sumers. Recently, many speculators have participated on OTC markets increasing
the importance of financial settlement (Judith et al., 2011). Financial settlement is
particularly chosen in case of a long-term contract, while on the spot market physical
settlement still dominates. Popular long-term products are quarterly or yearly time
bands of a specific amount of electricity.

the total volumes of OTC trades (10,670 TWh) and trades on exchanges (678 TWh). Therefore,
it can be assumed, that the total volumes of OTC trades in 2015 are far higher.
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gentur and Bundeskartellamt, 2016).

2.2.2 Exchange

In contrast to OTC contracts, on exchanges, standardized products are traded anony-
mously and free of default risk. The European Energy Exchange (EEX) manages the
exchange for electricity in the joint market region of Germany and Austria. While
the German futures market is directly operated by the EEX, the spot market is
handled by its 50% subsidiary EPEX SPOT and to a small degree by the Austrian
EXAA. Settlement on the spot market is solely physical, whereas on the futures
market it is mainly financial.
In Figure 2.8 the traded volumes on futures and spot markets is depicted. The

traded volume on the futures market exceeds the electricity generation because fi-
nancial settlement allows to trade electricity multiple times. In all reported years
more volume is traded on the futures market than on the spot market. Even though
the gap increased in the last years, spot markets have an important reference func-
tion to evaluate arbitrage situations in a competitive environment. Traders usually
only accept bilateral trades if they believe that this trade is more advantageous than
selling or buying at the spot market (Ockenfels et al., 2008). In addition, the spot
market directly affects the dispatch of power plants.

On futures markets, forwards and options are traded continuously and mainly
financially. In continuous auctions, each incoming bid is checked and matched if
possible or otherwise entered in an order book that is ordered by price and time for
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a later match (Madlener and Kaufmann, 2002). Therefore, settled contract prices
can differ between transactions. Due dates for tradeable month, quarter, and year
products can be up to ten months, eleven quarters, and six years in case of forwards
or five months, six quarters, and three years in case of options after the trade,
respectively.
The purpose of these products is for both generators and distributors to hedge

against price risks that are present on spot markets due to the low storability of
electricity. Besides these participants, a large number of the market participants
is constituted by speculators. They are mainly interested to benefit from volatility
and differing market expectations. In 2015 more than one third of the market par-
ticipants at the EEX were financial service institutes or banks. This explains the
popularity of financial settlement (Bundesnetzagentur and Bundeskartellamt, 2016).
The interaction of mainly financially interested parties with futures markets increases
the trading volume and is therefore important to ensure a high market liquidity.

At the spot market in Germany products can be traded day-ahead or with shorter
lead times (intraday trading). The most common products that can be traded
are hourly contracts, standardized block contracts, and individual combinations of
hourly contracts. Typical block contracts are “baseload” (a full day), “peakload”
(from 8 a.m. until 8 p.m.), and “off-peak” contracts (all other non-peak hours of
a day). In addition to that, quarter hours can be traded intraday, which is an
important product to complement the typical ramps of RES generation that incur
mostly during morning and evening hours. Day-ahead products are traded within
call auctions, while intraday products were purely traded in continuous auction until
2014 (Madlener and Kaufmann, 2002). In December 2014 the EPEX SPOT in-
troduced an opening call auction for the intraday4 market taking into account the
development of RES generation. This step should increase market liquidity5 of the
intraday market by concentrating the trades to one moment of the day. Figure 2.9
compares the traded volumes on the EPEX SPOT market platform. Even though
this data might signify a remarkably higher importance of the day-ahead market,

4The word “intraday” might be misleading because the intraday opening auction takes place on
the day before the products are delivered. However, the word “intraday” is used as a synonym
for quarter-hour products in the trading jargon, which justifies the confusing wording.

5This issue is further addressed in Chapter 5.
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Figure 2.9: Comparison of the traded volumes on spot markets from 2009 until 2015 in the
market region of Germany and Austria (Bundesnetzagentur and Bundeskartel-
lamt, 2016).

the intraday market is crucial for an efficient market integration of RES genera-
tion (Grimm, Ockenfels, and Zöttl, Grimm et al.). The introduction of the intraday
auction supported a volume growth of approximately 50% from 2014 to 2015.
The day-ahead auction is a double-sided, sealed-bid, uniform price auction that

takes place at 12 p.m. every day. Until then, bids need to be transmitted from
market participants to the market platform. The bids consist of up to 200 price-
volume combinations between -3,000 up to 3,000 Euro/Megawatt-hour (MWh) for
each product. After the auction closes, all bids are aggregated into linear interpo-
lated6 demand and supply curves for each hour of the day (Judith et al., 2011).
Applying the uniform pricing rule (Madlener and Kaufmann, 2002), the intersection
of both curves (compare Figure 2.3) yields the market clearing price that is pub-
lished approximately 1 hour later. This bid matching ignores constraints from block
bids or grid limitations. Therefore, block bids are eliminated if the average market
price is not suitable and price calculation is repeated until all remaining block bids
can be fulfilled. Afterwards, generators calculate the dispatch of their generating
units and transmit it until 2:30 p.m. to the responsible TSO. Subsequently, the
TSO performs load flow calculations based on these dispatches to identify possible
congestions in the transmission grid and eventually instructs redispatch measures.
Remunerations for redispatch measures that are paid for ramping-up and -down

6Other markets use additional rules for the price determination in case of multiple price levels at
the intersection.
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Figure 2.10: Overview of trading processes at the spot market in Germany based on illus-
trations of EPEX (2017).

of affected generators are determined by the German Federal Network Agency in
an adequate manner. However, the remuneration calculations are currently under
investigation (BNA, 2015).
The intraday market consists of several components. Figure 2.10 depicts the

chronological context of these components with the aforementioned day-ahead trad-
ing. After the day-ahead auction that determined the reference market price, at 3
p.m. the continuous auction of hourly products starts and simultaneously the in-
traday opening call auction for quarter-hour products takes place. This call auction
works similar to the day-ahead auction but offers a reduced set of products. Market
participants can only transmit bids on 96 single quarter-hour products of a day. Due
to the low trade volume and less product complexity, calculating the market clear-
ing prices is usually finished after approximately 10 minutes. From 4 p.m. onwards
the quarter-hour products can be traded continuously in single form, standardized
blocks, or individual blocks until 30 minutes before delivery. In contrast to call auc-
tions, in continuous auctions market participants have access to an open order book
and bids are checked and matched — if possible immediately — using the pas-as-bid
pricing rule (Madlener and Kaufmann, 2002). If bids can not be executed immedi-
ately they are entered into the order book. The order book lists all bids that could
not yet be matched. They are ranked primarily by price and secondarily by time.



Energy Market Structure 27

2.2.3 Ancillary Services

Short-term imbalances between demand and supply, e.g., due to inaccurate forecasts
or unforeseen events, are addressed by different types of ancillary services. Besides
the central ancillary service of balancing power, that will be explained in detail in
the next paragraphs, many other services such as voltage control services or power
system stabilizers are important to ensure a reliable power system. Voltage con-
trol services, e.g., offered from generators by producing or absorbing reactive power
while producing active power, are used to maintain a defined voltage band. Power
system stabilizers adjust the output of generators to dampen oscillations. Thus,
they increase the amount of power that can be transmitted through the grid. In
case of an imminent system fault, intertrip schemes automatically disconnect gener-
ators and loads to maintain system stability. Despite these measures, power system
collapses can occur. In these rare events, generators with black-start capabilities,
e.g., hydropower plants or diesel generators, are crucial to restore the power sys-
tem (Kirschen and Strbac, 2004).
Balancing power is managed by TSOs based on measuring the frequency in its

control zone that consists of multiple balancing groups. If demand and supply are
not balanced, firstly kinetic energy is used to neutralize the imbalance. This limited
available kinetic energy comes unselectively and automatically from all connected
flywheel mass. In case of a power deficit, flywheels are slowed down to release
kinetic energy and in case of a power surplus, flywheels are accelerated to store
kinetic energy. Obviously, the release and storing of kinetic energy changes the
rotation speed and, therefore, induces a difference in frequency. In order to comply
with technical quality standards of the power supply, balancing power is utilized
and triggered by these frequency deviations (Consentec, 2014). Therefore, TSOs
demand both positive and negative balancing power in case the power system has a
power deficit or a power surplus. Balancing power can be distinguished based on its
activation time. In Germany, three different quality types of balancing power have
been established: primary control reserve, secondary control reserve, and tertiary or
minute reserve (Klobasa, 2010). Consentec (2014) provides a detailed description for
these balancing power types:

• Primary control reserve facilitates a fast stabilization of the frequency after an
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incident. For the sake of an efficient operability, it is activated automatically
and decentrally by frequency deviations. This takes place in a solidary manner
regardless of control zones7. Offering primary control reserve requires a full
activation in less than 30 seconds. Possible generators that can offer this type
of balancing power are hydraulic and thermal large power plants. Due to low
storage capacities, primary control reserve needs to be replaced rapidly.

• Secondary control reserve is activated automatically but in contrast to primary
control reserve in a selective manner. Therefore, it is only activated in the con-
trol zone responsible for the incident. By means of a power-frequency control,
the TSO continuously calculates the discrepancy between target and actual
power transmission to interconnected control zones. According to that, the
TSO requests secondary control reserve directly from power plants based on
a merit order of activation costs. Secondary control reserve is activated until
primary control reserve is fully deactivated and restored. Typically thermal
and pumped-storage power plants that can be activated in less than 5 minutes
can offer secondary control reserve.

• Tertiary (minute) reserve is utilized in cases of a long-running system failure,
e.g., a power plant outage. Requirements to qualify for tertiary reserve are
rather low since the maximum activation time is 15 minutes and execution is
not automatic. Instead, the activation is requested via a central platform based
on a merit order list. Gas turbines, demand flexibility, or biomass power plants
can offer tertiary reserve. Recently, small generators that struggle in meeting
the prequalification requirements started offering tertiary reserve based on the
idea of virtual power plants Mashhour and Moghaddas-Tafreshi (2011); Lom-
bardi et al. (2009).

Following §6 I StromNZV TSOs are obligated to procure balancing power through
a shared anonymous tender across control zones that is implemented on the Inter-
net platform www.regelleistung.net. Tenders for primary and secondary control
reserve are executed weekly and for tertiary reserve daily. To participate in tenders,
potential bidders need to prequalify their units with the responsible TSO. Bidders

7Therefore, transmission grid capacities need to be reserved to guarantee provision of primary
control reserve from other control zones.

www.regelleistung.net
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compete in a pay-as-bid call auction based on a demand rate. Winning bids, deter-
mined by the merit order of demand rates, receive their indicated demand rate. In
case of secondary control and tertiary reserve, a bid additionally includes the spec-
ification of an energy rate. These reserve types are scheduled by ascending energy
rate, that is paid out in case of activation (Swider, 2008).
On a monthly basis, TSOs financially settle their costs for balancing power. Sym-

metrical prices for balancing energy are calculated historically for each quarter hour
accounting for all incurred expenses for balancing power. Balancing groups that
are part of a TSO’s control zone pay or receive these prices based on deviations
from their previously forecasted target power balance (Consentec, 2014). In the last
years, cost for balancing power increased dramatically and reached one billion euro
in Germany 2015 (SPON, 2016; Welt, 2016). The growing market penetration of re-
newables will increase the amount of uncontrollable generators in the German power
system. Therefore, the need for balancing power will further increase in the next
years. However, the introduction of the opening call auction for the intraday mar-
ket reduced the market volume for minute reserve in 2016. Demand side flexibility
could meet at least part of this need if the balancing mechanism design was mod-
ified (Stadler, 2008; Koliou et al., 2014) in order to reduce costs for the expensive
provision of balancing power.

2.3 Applying the Market Engineering Framework

Markets are the basis of our economies as they offer a platform for the allocation
and distribution of goods or services. According to Weinhardt and Gimpel (2007),
a market is defined as follows:

Definition 1 – Market

“A market is a set of humanly devised rules that structure the interaction and
exchange of information by self-interested participants in order to carry out
exchange transactions at a relatively low cost.” (Weinhardt and Gimpel, 2007)

The design of markets has been of great interest for economists. Theoretical liter-
ature dates back to the 1960s (e.g., Vickrey, 1961; Gale and Shapley, 1962) that laid
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the groundwork for practical applications in the 1990s (e.g. McMillan, 1994; Roth
and Peranson, 1999). Especially in case of electricity markets, a good design of mar-
kets is important due to the high complementarity between tradeable services, e.g.,
generation, transmission, and ancillary services (Roth, 2002). The market engineer-
ing framework proposed by Weinhardt et al. (2003) provides a principle structure
that supports achieving a good market design. They define market engineering as
follows:

Definition 2 – Market Engineering

“Market engineering is the process of consciously setting up or re-structuring
market mechanisms and market infrastructure in order to make it an effec-
tive and efficient means for carrying out negotiations and exchange transac-
tions.” (Weinhardt and Gimpel, 2007)

In contrast to traditional market design approaches, the market engineering frame-
work takes a holistic view on markets. The market design itself, as referred to, e.g.,
by Roth (2002), only represents one element of the market engineering framework
that is explained in detail in Section 2.3.1. Generally, markets originate from two
main sources: conscious design and undirected evolution (Smith, 2003a). Since de-
tails can matter (Roth and Ockenfels, 2002) and determine success or failure of a —
especially electronic — market, Weinhardt and Gimpel (2007) propose a conscious
design approach based on a five-stage process as depicted in Figure 2.11. Existing
markets should be maintained by iterating this process in order to ensure that the
market design adapts to changes in its environment.
The market engineering process is based on the typical waterfall model from soft-

ware engineering. The environmental analysis is the first stage of this process. By
means of surveys, interviews, and reviews in present literature, the market engineer
should become aware of stakeholders, legal and social frameworks, and market seg-
ments. A thorough characterization of the environment provides the input for the

Environmental
analysis

Design Evaluation
Implemen-

tation
Introduction

Figure 2.11: Market engineering process (based on Weinhardt and Gimpel, 2007).
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design stage. In that stage, the market engineering framework is employed. The
design of a market is chosen to lead to a specific market objective. Methods from
the field of mechanism design are applied during this stage. Even though the process
is based on the waterfall model, there is usually a frequent exchange between results
from the design and the evaluation stage. Design ideas are theoretically modeled and
simulated or empirically analyzed for the sake of evaluation. Subsequently, changes
in the design are required implying a stage back in the process. Before implementa-
tion, an intensive testing with stakeholders based on a prototype can be examined
to assess whether the desired behavior achieved by the market design. Finally, the
market design is implemented electronically or even physically and subsequently
introduced by training participants and advertising its launch.

2.3.1 Market Engineering Framework

The pivotal elements of a market are outlined by the market engineering framework
that is depicted in Figure 2.12. It is a static view on a market that should be kept
in mind by a market engineer. Some of these elements are directly modifiable by
the market engineer, e.g., the whole market structure and the transaction objects.
Others can hardly be influenced, e.g., the agent behavior and socio-economic and
legal environment or, in case of the market outcome, can only indirectly be affected.
The latter is the final result of a market that usually plays a central role in the
discipline of market engineering.
A market is embedded into a socio-economic and legal environment. It determines

the cultural background and norms of market participants that have an effect on
their behavior. Besides, existing national or international law can be a constraint
for the choice of transaction objects that can be offered or specific market structure
elements. Both can be treated as external parameters to the market engineer that
can evolve over time. Although, legal frameworks or political goals are sometimes
influenced to some extent through lobbying of large companies.
The ultimate goal of a market engineer is to generate a specific market outcome.

In contrast to the engineering of products, a market engineer can not define the
quality directly (Weinhardt et al., 2003). Instead, the market outcome is the sum of
all elements in the market engineering framework but mostly affected by the market
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Figure 2.12: Market engineering framework (based on Weinhardt et al., 2003).

participant’s behavior on a given market structure. Typically a market engineer
wants to design a market that is accepted and used by market participants addressed
by key measures such as market activity or liquidity. However, measuring the market
outcome is difficult because it is often multi-dimensional and depends on the context,
as Maskin (2008) remarked in his Nobel prize lecture.
Agent behavior is the reason why market engineering is a complex discipline: There

is no direct cause-effect relationship between the designed market structure and the
market outcome (Weinhardt and Gimpel, 2007). A common fundament to implicate
a given behavior, e.g., towards the desired market outcome, is an incentive compat-
ible mechanism (Hurwicz, 1973). In contrast to the abstraction in game-theoretic
models, agent behavior in real world is biased by bounded rationality (Bazerman
and Neale, 1993) and therefore difficult to predict. In the market engineering frame-
work it is treated as an exogenous factor of a market that is not perfectly known to
the market engineer (Weinhardt et al., 2003). Since it plays an important role in a
market by directly affecting the market outcome, it should be anticipated as good
as possible by means of experimental methods. After understanding agent behavior
it can be formally represented by analytic methods to be able to estimate reactions
to specific market elements.
The market structure is one element that can directly be formed by a market
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engineer. It consists of the microstructure, the infrastructure, and the business
structure. The microstructure deals with the market mechanism that is usually seen
as the central element of market design (Smith, 2003b). For instance, in case of
auctions, the bidding language is defined within this element. A robust and reliable
infrastructure is the basis for communication between market participants and the
market. Due to the increasing importance of electronic markets, this element is often
reduced to the information technology aspects even though physical markets are
addressed as well. This element has particularly driven by the developments in the
financial market industry, e.g., by the increasing demand for high-frequency trading.
Lastly, the business structure defines the business model of a market provider. It
comprises setting fees for admission to the market and transactions, that can both
be critical with respect to agent behavior. These three elements cannot be designed
separately as there is a strong interdependency among them Weinhardt and Gimpel
(2007).
Finally, the transaction object deals with the resources that are to be allocated on

the market. This resource can be a good, a service, or even a right or certificate. It
is the central object that is sold and bought on markets and therefore entitles the
existence of a market.

2.3.2 The Energy Trilemma

In order to apply the market engineering framework to the energy market, a market
engineer should start with specifying the desired market outcome. Usually, the effi-
ciency of an energy market is assessed along three dimensions: ecologic sustainabil-
ity, economic efficiency, and supply security. Since these dimensions are competing
against each other, Sautter et al. (2009) refer to them as the “energy trilemma”8 that
is depicted in Figure 2.13. For instance, coal power plants produce electricity at low
cost and are usually reliable but generate high emissions. Therefore, a trade-off be-
tween these dimensions needs to be made in terms of energy policy and investment
decisions. Currently, supply security is a hard constraint in the energy policy while
compromises are accepted in terms of sustainability and costs.
The supply security is mainly determined by three factors (compare Section 2.1):

8In Germany, the energy trilemma is called “Energiepolitisches Zieldreieck”.
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Figure 2.13: The energy trilemma

generation adequacy, transmission capacity, and distribution capacity. Generation
adequacy is currently not critical in Germany because many conventional power
plants are in reserve due to the construction of new RES generators. However, ex-
ternal effects can put the generation adequacy at risk, as happened in France in
2016: Due to a design flaw and the high dependency on affected nuclear power
plants, France was prone to power cuts in the winter (Reuters, 2016). In contrast,
transmission capacities are scarce in Germany, especially between Northern Ger-
many with a surplus of electricity from offshore wind power plants and Southern
Germany that has more demand than (RES) supply. However that is not a threat
to supply security, as in cases of overloaded transmission lines, conventional power
plants can generate enough electricity to supply the South. Most of the time the dis-
tribution capacities are the reason for a reduced supply security, e.g., local blackouts
or voltage band deviations. As the N-1 criterion does not apply to the distribution
grid, lightning strokes, outages of outdated transformers, or damages to lines from
constructions can cause such events.
The economic efficiency considers costs for capacities, e.g., generators and the

grid infrastructure, and marginal costs, e.g. fuel for generators. Even though market
prices have fallen on wholesale markets that mainly represent marginal costs, the end
consumer prices have increased recently (compare Figure 2.5). This is because the
investment in RES generators is subsidized through end consumer prices, while RES
generators have nearly no marginal costs. Obviously, this is a situation, where the
both dimensions economic efficiency and ecologic sustainability clash and trade-offs
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are actively made by policy makers.
Ecologic sustainability is endangered by carbon emissions from fossil power plants,

by the radiation of uranium that fuels nuclear power plants, by land usage from
generation sites and overhead lines, and by water contamination from underground
or undersea lines. Ecologic sustainability needs to be cared for from two perspectives:
From a long-term perspective, the investment in generation and grid capacities needs
to consider sustainability factors, which is already taken care of by the German policy
maker. These investments only pay off if the short-term perspective is considered:
It is important to ensure, that the intermittent RES generation is consumed, e.g.,
by flexible loads, which is the main topic of this dissertation.
Recently the integration of all stakeholder interests, e.g., citizens, has been dis-

cussed particularly in Germany. The so-called “not in my backyard” attitude delayed
the construction of wind power plants and transmission lines (DIE ZEIT, 2014).
Therefore, the energy trilemma is sometimes expanded by the dimension of “social
acceptance” to a rectangle. However, this dimension has not broadly been adopted
as an additional dimension but rather as a soft criterion that needs to be taken care
of at planning stage. Legitimation of such large projects has not yet and should not
become grassroots democratic (Schröter, 2016).

2.3.3 Engineering the Energy Market

Historically, the power system and market regime were designed for centralized gen-
erators run by monopolists. Recent and future developments in the power sector call
for an adaption, as depicted in the previous sections of Chapter 2. Legislators and
market participants have lately reacted to these developments. This is discussed in
the following and supplemented by corresponding research activities focusing on the
German energy market particularly from an intermediation perspective. Since the
market outcome has already been discussed in detail in Section 2.3.2, it is left out
in this section.

Socio-Economic and Legal Environment

The EU set itself ambitious goals to reduce greenhouse gas emissions by 20% until
2020 (EU Commission, 2010) in order to reduce global warming. These emissions
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should be reduced gradually by ultimately 80-95% until 2050 (EU Commission, 2011)
while the electricity should play a major role to achieve that. To this end, electricity
generation should be generated by nearly 100% in 2050. Several actions were taken
by the EU to achieve the challenging goals. In 2005 the EU emissions trading
system was introduced by setting a cap on the overall emissions but leaving the task
of allocating the emission allowances to a market. Probably due to an oversupply
of emission rights, prices for certificates decreased dramatically undermining the
incentive to reduce carbon emissions. At least 50% of the money raised from these
certificates should be invested into projects to increase energy efficiency or improve
climate protection (EU Commission, 2016). Besides, the EU passed a regulation9 in
2014 that sets an average carbon emission target for new passenger cars to 130 gram
carbon dioxide per kilometer that will be reduced to 95 gram in 2020. Car makers
have added new car models to their fleets — partially electric vehicles — in order to
conform with this regulation that is binding for all EU nations.
Recently the EU started the consultation phase for a new market design ensur-

ing that innovative companies and reliable intermediaries across Europe can compete
against established utilities (EU Commission, 2015a). They should be incentivized to
utilize new technology and focus on consumers to develop and deploy new products
and services. Additionally, it should be ensured that electricity markets — espe-
cially long-term markets — are open to all market participants, namely providers
for flexible demand and new energy services to effectively signal what and where
to invest. In 2015, the German government established its vision of an “electricity
market 2.0” (BMWi, 2015). It clearly dissociates from the idea of a capacity market
and instead strengthens long-term market signals to finance investments. Besides,
a new design of the grid fees is considered to allow for market-based demand side
management.
This concise overview of the German socio-economic and legal environment re-

veals the opportunities for intermediaries and new energy services in the fields of
demand response in the future energy market. However, it can be expected that
legal frameworks will be adapted frequently and therefore companies should prepare
to be flexible with regards to regulations.

9Regulation (EU) No. 333/2014
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Agent Behavior

The top-down architecture of the power system and the homogeneity of electricity
rubbed off on the utilities’ knowledge about their customers. Customers were only
seen as homogeneous power consumers without caring for their characteristics. How-
ever, a proper assessment of their behavior is important to be able to design energy
services and market structures that induce the desired market outcome. Especially
if the demand side should become flexible it is important to understand how to
stimulate consumers.
Current research suggests demand response programs that rely on monetary incen-

tives, e.g., for load shifting (Albadi and El-Saadany, 2008; Strbac, 2008). Monetary
incentives can be program based or ultimately price based (Albadi and El-Saadany,
2007). User behavior can be influenced by setting up appropriate graphical user
interfaces, e.g., depicting a market. Such a hidden market user interface can reduce
the complexities of a real market and support consumer participation (Seuken et al.,
2010). Taking on the idea of sharing economy (Hawlitschek et al., 2016), peer-to-peer
platforms for virtually transacting, e.g., PV electricity (Liu et al., 2015) have become
business models of interest (buzzn, 2017). Implementing this idea on the blockchain
technology that became popular with the virtual currency “Bitcoin” gained interest
in the power sector (LO3, 2017). Recently, gamification approaches became increas-
ingly popular to promote energy efficiency or even load shifting (Gnauk et al., 2012;
Grossberg et al., 2015), but has been applied as well beyond the power sector (Deter-
ding et al., 2011; Huotari and Hamari, 2012). These approaches could be promising
in the power sector, particularly when considering the society’s willingness to accept
additional costs for the sake of sustainability (Borchers et al., 2007).
This work mainly focuses on the idea of monetary incentives triggering agent be-

havior. While Section 4 assumes consumer rationality, Section 5 will further discuss
and apply the concept of bounded rationality (Simon, 1955).

Market Structure

The market structure of the power sector has already seen dramatic changes through-
out the world due to the liberalization of energy markets (Joskow, 2008b). Policy
makers in Germany (BMWi, 2015) and the EU (EU Commission, 2015a) call for new
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market structures to facilitate the energy transition. Within the loosened expectable
legal boundaries new market structures could enhance the market opportunities for
intermediaries offering innovative energy services.
The downstream microstructure in the power sector has been dominated by fixed

power supply contracts. The upstream market activity has focused on the allocation
of electricity products. In order to enhance the integration of RES electricity, the
microstructure should be adapted to include the trade of flexibility. An obvious
approach to activate the demand side is passing price signals from wholesale markets
to end consumers. Recently, new companies have emerged in Germany offering new
price mechanisms to customers, e.g., variable prices (NEXT Kraftwerke, 2017) or
even a flat fee regardless of usage (beegy, 2017; innogy, 2017). Turning the view on
research, Ramchurn et al. (2011) present a decentralized agent-based mechanism that
reduces efforts for consumers by automation technology while tackling the danger of
avalanche effects (Gottwalt et al., 2011). Samadi et al. (2012) propose to model user
preferences and energy consumption patterns as user-specific utility functions and
optimize the aggregation of all utility functions. They show that both consumers
and suppliers would benefit from such a pricing mechanism. Turning the view on
flexibility products, (Dauer et al., 2015) design a bidding language to allocate load
flexibility from aggregators and consumers. They show that load flexibility auction
could reduce costs for balancing power emerging from the increased share of RES
generation. Lamparter et al. (2010) propose a mechanism that efficiently elicits
truthful preferences and constraints of consumers and suppliers. Based on a highly
flexible market platform an optimal solution for the overall system is determined.
The physical infrastructure that is available in the current power system ensured

a reliable grid operation in the top-down architecture that is recently being adapted.
The gradually rolled-out Smart Grid is a fundamental and critical infrastructure
that enables communication with consumers (Sioshansi, 2011). This communication
must be secured by both hardware-based and software-based firewalls and encryp-
tion mechanisms (Metke and Ekl, 2010; Moslehi and Kumar, 2010) to guarantee
a reliable grid operation further on. Since smart meters measure the household
consumption in real-time and at fine granularity, it is possible to extract complex
usage patterns (Molina-Markham et al., 2010) or even identify single appliances
by disaggregating the consumption data (Parson et al., 2012). Therefore, it is in-
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evitable to encrypt (Mármol et al., 2012) or aggregate (Efthymiou and Kalogridis,
2010) individual measurements to preserve privacy. In order to reduce deployment
obstacles for smart appliances industry standards for a proper interoperability are
required (Gungor et al., 2011).
The business structure of a wholesale market usually consists of fixed access fees

and transactions fees for the trading itself. Quality differentiation with respect to
the connection type to the market can be realized via service levels. For instance, the
EEX in Germany offers three different qualities of connection: “internet”, “virtual
private network”, and “leased line”. Obviously, this fee structure is designed for full-
time wholesale traders. Either intermediaries need to represent small consumers or
new business structures to run these wholesale markets are necessary. Asmus (2010)
discusses several possible business structures for the future and envisions two possible
scenarios: Either utilities will become purely “smart energy integrators” by offering
to operate the energy delivery and an information network or they will become
“energy service utilities” and sell applications of energy, e.g., heat or lighting. The
latter scenario will be further discussed in Chapter 3. As already mentioned, several
aggregating companies have emerged in Germany (e.g., Next Kraftwerke, beegy, or
Lumenaza) usually combining revenue streams from hardware, e.g., communication
infrastructure or PV panels, and a profit-share from trading activities with demand
side capacities.

Transaction Objects

Often, market engineering focuses on the market structure (cf. Gimpel et al., 2008)
even though market engineers can design transaction objects as well. Especially
in the power sector, where market structures are either cautiously protected by
powerful utilities or regulated, emerging companies should concentrate on offering
new transaction objects. Since the power sector was liberalized not long ago, a great
deal of hidden potential can be elicited by new product offerings.
Innovating the transaction object in case of the power sector has its limits because

per se electricity is a homogeneous good. However, Schweppe et al. (1988) propose
a differentiation by time and location, even though the technical properties such as
voltage and frequency are quasi-equal. He et al. (2013) examine different contract
types with regards to their ability to engage consumers in demand response. They
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conclude that a variety of contract types is necessary for demand response to be
appealing to a variety of consumers. In Chapter 3 a structured product development
process for transaction objects will be presented including a further discussion of
related literature.
Being a potentially the largest future single-application consumer, specialized

transaction objects for EV charging should be considered. Sioshansi (2012) compares
different tariff types by their potential to reduce generation costs and emissions. The
results show that real-time pricing performs worst due to the inability of linear prices
to signal convex generator costs and instead suggests to offer rebates to consumers
to delay a charging job. Comparable to the latter tariff concept, the BMW Charge-
Forward program offers a one-time payment to EV owners who accept occasional
charging delays that can manually be declined reducing the payment (BMW, 2017).
In Chapter 4 this concept is further examined and discussed.



Chapter 3

Quality Differentiation of Energy
Services

Currently, system stability is primarily ensured by supply side operations,
in particular load balancing through conventional generators and system re-

serves (see Section 2.2.3). This traditional control approach may become increasingly
uneconomical and unreliable due to uncertainty of intermittent renewable energy
sources and decommissioning of conventional power plants. The increase of inter-
mittent renewable energy sources on the supply side effectively decreases the share
of controllable elements in the power system. The arising imbalance can be com-
pensated through activation of the so far mainly passive demand side. The Smart
Grid enables bidirectional communication between distributed actors and resources
in the power system. It meets the infrastructural requirement to activate the demand
side and is rolled out nowadays. In addition to that, concepts offering appropriate
economic incentives need to be designed.1

However, these economic incentives need to be embedded in attractive service of-
ferings corresponding to the individual application scenarios for different customer
groups. This, in turn, requires the development of new products and services and
considerations about the appropriate market environment. Fundamentally, these
service offerings need to pave the way towards a value-oriented pricing paradigm
instead of relying on the current marginal-cost-based assessment for the value of

1Please note that this chapter builds on a previously published research paper in Energy Pol-
icy (Salah et al., 2017) and previously published conference papers (Schuller et al., 2015; Flath
et al., 2015).

41
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electricity. Marginal-cost-pricing will fail in the long-run if power systems are in-
creasingly governed by zero-marginal-cost generation with high output volatility.
The objective of this chapter is to characterize the corresponding energy service

concept and to provide a structured approach to design energy service products for
end customers under consideration of the key product characteristics. To this end,
the morphological approach following Zwicky (1967) is adapted to explore design di-
mensions for energy services encompassing the four categories of risk, pricing options,
infrastructural requirements and product properties.
First, the notion of energy services is specified by building on and adapting ex-

isting definitions of this term in Section 3.1. Additionally, previous work regarding
product differentiation in the electricity sector and more general in the service sector
is considered. From these foundations the methodology built on Zwicky’s framework
is derived in Section 3.2. Section 3.3 presents the morphological box for energy
services while Section 3.4 elaborates on interdependencies between design options
and the complexity related to energy service features. Furthermore, the method
is illustrated by characterizing real-world service configurations and a prototypical
decision support system for service designers. Section 3.5 concludes and discusses
policy implications for regulators to support the process of advancing energy services.

3.1 Related Work

This section revisits existing definitions of energy services and looks into general
service design properties to guide the morphological approach for service innovation
in the energy domain.

3.1.1 Energy Services

The term energy service has different meanings in literature. These meanings can be
classified into three main streams: Understanding the classic business of utilities as a
service, planning, installation and financing of small power plants (e.g., photovoltaic
power plants) and services enabled by the use of energy.
Hill (1977, p. 317) defines a good as “a physical object which is appropriable

and, therefore, transferable between economic units”. In contrast, “one economic



Related Work 43

unit performing some activity for the benefit of another” and thereby changing the
condition of a person or a good is the idea of a service (Hill, 1977, p. 318). In line with
this reasoning, Kloubert (2000) identifies two components in the classic core offering
of utilities: The energy carrier (e.g., coal, gas) itself is a typical good. Transmitting
this good in a possibly modified form to customers adds the characteristics of a
service. Utility companies extend the so-called dual core offering by auxiliary services
such as metering, consumption optimization, and emergency services.
Following Vine (2005), energy services consist of developing, installing and funding

multi-year projects that enhance the energy efficiency or load reduction of customer
facilities. Especially in the US, the literature employs the term “ESCO” (energy
service company) to refer to this definition (Dayton et al., 1998; Goldman et al.,
2005; Satchwell, 2010; Vine et al., 1999). This is in line with the notion of energy
services as defined by Rosmanith et al. (2007) and the EU Directive 2006/32/EC: An
energy service is “the physical benefit, utility or good derived from a combination
of energy with energy efficient technology and/or with action, which may include
the operations, maintenance and control necessary to deliver the service, which is
delivered on the basis of a contract and in normal circumstances has proven to
lead to verifiable and measurable or estimable energy efficiency improvement and/or
primary energy savings.”2

In contrast to Vine’s and Hill’s understanding, Sorrell (2007) focuses on the service
itself: “Energy service contracting involves the outsourcing of one or more energy-
related services to a third party”. This includes, e.g., basic services like hot water
supply or more sophisticated service offerings, such as illumination levels, room tem-
peratures etc. Seizing the three-stage-framework of offering a service due to Kloubert
(2000), Sorrell adds the result stage — transforming energy to something valuable
for the customer — to the first two stages. These consist of (1) setting up infras-
tructures and procuring primary energy carriers and (2) producing and transmitting
the energy, which is the base for the following considerations.
Building on Sorrell’s definition, in this work, energy services are understood as

services that are facilitated by energy, in particular for energy-intensive applications,
offered on the mass market. This notion introduces a new facet that facilitates to
provide a value-based assessment of the utilization of energy that is differentiated by

2Article 3(e), Directive 2006/32/EC of the European Parliament and of the council
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the end-use application. In turn, this enables new options to harness demand side
flexibility potentials which are of great importance in future energy systems with
large shares of intermittent generation sources (IEA, 2014).

3.1.2 Product Differentiation in the Power Sector

Electricity is typically considered a homogeneous good. Therefore, product dif-
ferentiation has mainly concentrated on dynamic pricing so far (Tan and Varaiya,
1993). Real-time pricing (RTP) and other variable pricing schemes are well-known
and studied examples (Albadi and El-Saadany, 2008; Woo et al., 2014; Borenstein,
2005). Direct load control (DLC) is another way to manage the balance of demand
and supply. In DLC programs utilities offer incentives to customers in exchange for
accepting pre-specified curtailment options (Albadi and El-Saadany, 2008). Both
approaches induce uncertainty and complexity for individual customers that can be
reduced by automation technology (Dütschke and Paetz, 2013). Further work con-
centrates on differentiation of electricity with regard to conventional attributes like
the generation source (Kaenzig et al., 2013). Recently, the willingness to pay for
green generation options has been extensively studied (Roe et al., 2001; Borchers
et al., 2007; Yoo and Kwak, 2009; Hansla et al., 2008). Depending on the scenario,
most studies find a higher willingness to pay for electricity from renewable sources.
Other network-based industries, e.g., telecommunication, evolved in a comparable

way (Rinaldi, 2004). Deregulation of the telecommunication market induced com-
petition which forced the development of innovative and heterogeneous products to
account for individual customer needs (Kenyon and Cheliotis, 2001). In analogy
to that, product differentiation in the electricity sector should not only concentrate
on pricing but also consider different customer usage scenarios. The ongoing im-
plementation of smart grids forms the technical basis for this development (Woo
et al., 2014). This way, the (physically) homogeneous good electricity becomes a
differentiable transaction object in economic terms (Weinhardt et al., 2003).

3.1.3 Product Differentiation in the Service Sector

Since the notion of energy services builds on the service concept, differentiation can,
in particular, be attained by a variation of service quality attributes. Service quality
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has been subject to extensive research mainly building on top of quality indicators
established in the SERVQUAL framework (Parasuraman et al., 1988). This frame-
work focuses on “traditional” services performed by humans, e.g., in stores, banks, or
other businesses. The relevant service quality dimensions include the perception of
tangibles, reliability, responsiveness, assurance, and empathy. Some of these concepts
are also applicable to energy services but have a different facet in their implemen-
tation. Tangibles, for example, are not as relevant or cannot be influenced, as well
as empathy, and to some extent assurance, since the service is delivered through a
device or appliance according to clearly defined technical specifications.
Parasuraman et al. (2005) have also put forward an important modification of the

SERVQUAL concept to reflect the rise of electronic or e-services. The E-S-QUAL
framework incorporates insights from numerous studies employing the Theory of
Planned Behavior (TPB) and the Technology Acceptance Model (TAM). Its objec-
tive is to measure the “extent to which a website facilitates efficient and effective
shopping, purchasing, and delivery.” The general attitude towards the technological
means that deliver a service can also be of importance for the energy services depicted
later, since they rely on technical interfaces too. However, the focus of this work is to
first define and characterize differentiation concepts, rather than assessing a partic-
ular implementation of one. The following main indicators employed in E-S-QUAL
measure the quality of a service: reliability (correct technical function of a site),
responsiveness (low latency and fast customer support), access (easy and timely),
flexibility (choice of payment, shipping etc; rather referred to the delivery process),
ease of navigation, efficiency (simple and effective usage design), assurance/trust
(reputation of the site), security/privacy (data security level of the provider), price
knowledge (price determination transparency during the purchasing process), site
aesthetics, customization/personalization (user profiles).
Several of these indicators are directly applicable to energy service evaluation, in

particular assurance/trust and security/privacy. Others like reliability and respon-
siveness can be adapted in a straightforward manner: The reliability of an energy
service is intrinsically connected to the appliance that provides the service. Its reli-
ability will typically be governed by the availability of energy to the appliance. The
responsiveness dimension depends on user service quality expectations and behavior,
e.g., frequency and required immediateness of service delivery. This plays a crucial
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role in Section 3.3.
Service access, flexibility, and efficiency require a nuanced interpretation in the

energy domain: Access, for instance, may be restricted due to technical constraints
(e.g., insufficient fuse capacity), or because the respective infrastructure (e.g., smart
meter) is unavailable. Flexibility is employed differently in this work (see Sec-
tion 3.3.1). The efficiency of an energy service is the energy consumption relative
to a similar service. Naturally, most of the other dimensions also play a role for
energy services when they are marketed or controlled. Furthermore, future energy
services can be attributed to the e-service domain as well. This is because such novel
services are enabled by the smart grid information and communication technology
(ICT) layer extending standard grids. Consequently, the e-service dimensions apply
as well and do not require a specific domain adaptation.

3.2 Methodology Fundamentals

This section aims at approaching energy service design in a methodical fashion.
Therefore, it is linked with economics literature on quality differentiated products
and the morphological design theory established by Zwicky (1948). In a nutshell,
the economic framing illustrates the fundamental potential of energy service differ-
entiation and thus establishes the answers to the “why” energy service innovation
is required. Conversely, the morphological theory provides a structured approach
for design processes and thus facilitates a better understanding of “how” service
innovation can be managed in an effective manner.

3.2.1 Economics of Quality Differentiation

At the economic core of offering energy services stands the idea of companies ex-
ercising price discrimination between customers to extract profit. This subsection
provides a concise overview of the subject matter while for an in-depth treatise the
extensive industrial organization literature in this field is recommended (e.g., Varian,
1989; Tirole, 1988). The standard definition of Pigouvian price discrimination con-
siders perfect price discrimination (first-degree), direct price discrimination based on
observable customer characteristics (third-degree) and indirect price discrimination
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based on customer self-selection (second-degree). Highly customized energy services
facilitate second-degree price discrimination.3 Product differentiation through ver-
sioning is the key building block for this approach. To proceed, it is helpful to
establish additional concepts:

• Differentiated products: The products in an industry are differentiated if cus-
tomers consider them as (close but) imperfect substitutes.

• Vertically differentiated products: A vertically differentiated product space is
characterized by a common preference ordering of the product offerings across
customers.4

• Horizontally differentiated products: In a horizontally differentiated product
space the consumers do not agree on the preference ordering.5

In the following, options of establishing quality discrimination in electricity pro-
vision through distinct energy service offerings are explored. These differentiation
options allow for both vertical (e.g., reliability level) and horizontal differentiation
(time-of-use brackets) of electricity products.

Product Differentiation in Power Systems Electricity is a fundamentally ho-
mogeneous good characterized by relevant physical properties (e.g., voltage or cur-
rent). After all, it was this standardization that paved the way for the electrical age.
Consequently, there is no such thing as differentiated electricity. However, product
differentiation is enabled by wrapping the homogeneous commodity in a service of-
fering that is marketing “energy services” instead of a commodity. This reflects the
simple observation that “an end use device uses electric energy to provide a service to
the customer” (Schweppe et al., 1989). It is this service which customers ultimately
benefit from and which explains their willingness to pay. This differentiated view on
electricity consumption paves the way for different forms of product differentiation

3Naturally, third-degree price discrimination also applies when targeting clearly identifiable seg-
ments such as industrial customers or residential customers with special equipment such as PV
generation, electric vehicles or micro-CHP heating.

4If all products sell for the same price, all consumers choose the same product (the one with the
highest quality).

5If all products are sold at the same price the optimal choice depends on the particular consumer.
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Figure 3.1: A stylized model of energy service differentation

through establishing various quality of service classes, e.g., time of service delivery
or reliability guarantees.

A Stylized Example The canonical example for product differentiation of energy
services is due to Chao and Wilson (1987) and reflects a reliability-price trade-off.
A simplified version to illustrate the potential of increased efficiency by virtue of
differentiated energy services is presented in the following. It is assumed that there
are just two dimensions that customers care about when selecting an energy service
offering—price and service reliability. The customer population is heterogeneous
with respect to their quality requirements and their willingness-to-pay. Such a styl-
ized market is illustrated in Figure 3.1. Often, an energy provider may offer a single
homogeneous and hence non-differentiated product to this customer population. In
the figure, this example product is shown with a 99.9% reliability level at a price of
25 cent/kWh. Only the customers in the top-left quadrant will consume this service.
Customers in the right quadrants require a higher service quality, whereas customers
in the bottom quadrants are priced out of the market.
While this may be the profit-maximizing single service offering for the provider,

it is obvious that it simultaneously leads to inefficient over- and underprovision of
quality. Consequently, differentiated service offerings (e.g., high reliability-high price,
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low reliability-low price) can increase allocative efficiency. The customer pools that
the supplier potentially reaches are labeled A and B — the former group is interested
in less costly offers with lower reliability guarantees, the latter group is willing to
pay a premium for higher reliability.

3.2.2 Morphological Analysis

The morphological approach is a creativity technique for developing different de-
signs for a certain artifact. It facilitates both surveying the problem area as well
as the generation of concrete solution approaches. Morphological analysis is due to
Zwicky who summarized the approach as a structured analysis of systems (Zwicky,
1948). While historically rooted in engineering and the design of physical products,
the method has also spread into the service design domain. For example, Lay et al.
(2009) apply morphological analysis to explore service-oriented business models in
the business-to-business context. Similarly, Aurich et al. (2010) develop service offer-
ings for industrial goods. Recent contributions use the technique to develop service
offerings for electric vehicle ecosystems (Kley et al., 2011; Stryja et al., 2015).
First, one compiles a comprehensive list of design dimensions (parameters) de-

scribing generic aspects of the analyzed system. Subsequently, one needs to identify
concrete design options (elements) for each parameter. The following stylized exam-
ple illustrates this idea: When designing an office chair important parameters could
be upholstery, frame, height adjustment, and backrest. The upholstery can consist
of the elements leather, cotton, or plastic. The design elements for the frame are
column, tripod, or quadpod. There may be no height adjustment, one with discrete
levels, or a continuous adjustment. Finally, the back rest can be absent, fixed, or
retractable. This information is arranged in matrix form — the so-called morpho-
logical box (Zwicky, 1967) — with parameters as rows and elements as columns. By
selecting one element per parameter (one matrix cell per row) one can recombine
design options to create distinct solution instances. Finally, one needs to evaluate
the individual solution candidates to determine the final choice(s).
It should be noted that the option space exhibits combinatorial growth in parame-

ters and elements with the gross number of solution options obtaining as ∏p∈P |E(p)|.
In the example, there are 34 = 81 design options for the chair. To limit this solution
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space explosion, one should search for interdependencies between different elements
from different parameters which facilitate reducing the solution space. In the chair
example, a reasonable assumption is that height adjustment is only available for the
case of a column frame. This reduces the number of possible solutions to 45. This
observation relates to the two-stage product-line selection problem where in the first
stage infeasible configurations and dominant features are removed to improve the
performance of the subsequent optimization (Schön, 2010).

3.3 A Morphological Box for Smart Grid Services

In the past, product differentiation in the energy service sector was somewhat ne-
glected due to both a lack of need as well as inadequate technological capabilities
given the absence of ICT. In the following, a morphological box is constructed for
designing differentiated energy service offerings (see Figure 3.2). The morphological
approach facilitates a more systematic identification of design options for transac-
tion objects in future retail energy services. Design parameters are grouped into four
categories — risk, pricing, infrastructure, and product properties. Similar to the ap-
proach described by Kley et al. (2011), effectively four distinct morphological boxes
are obtained to be able to map different service characteristics. These individual
boxes are further described and, subsequently, interdependencies between them are
explored.

3.3.1 Risk Parameters

The design elements in the first category enable the service provider to reduce,
interrupt, or shift the amount of delivered energy services and therefore transfer
the respective risks to the customer. Reducing the up-time requirement for specific
energy services potentially reduces overall system costs by increasing demand side
flexibility. In practice, an unlimited risk is unusual because it can result in a complete
execution stop. A reasonable service offering should therefore usually include any
type of risk limitation.
Risk in quantity addresses the paradigm of load curtailment. If the risk is limited,

it results in a partial execution of the energy service. Similarly, the service provider
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Figure 3.2: Overview of the morphological design options

could interrupt an already started energy service in a limited manner in terms of
frequency and duration of the interruption occurrences. For instance in BMW’s
first pilot stage of the ChargeForward program(BMW, 2017) customers received up
to $1,540 per year if they allowed interruptions of their charging processes for up
to one hour. To account for the load shifting paradigm that directly addresses the
volatile character of renewable energy generation, an energy service can be uncertain
about its time of delivery. Service providers can guarantee their consumers to fulfill
the energy service until a specified deadline instead of immediately executing the
service. In accordance with Chao and Wilson (1987) the three risk parameters are
closely related as they converge in their extremes: Reducing the quantity to zero is
equal to an unlimited interruption or shift in time of delivery.

3.3.2 Pricing Parameters

The second group of parameters addresses well-known differentiation features for
current standard electricity products and their design elements for the energy service
concept.
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Prices of energy services can be uncertain depending on the employed pricing con-
cept. Therefore, besides having no change announcements, service providers can
announce changes with a predefined lead time or, in the most complex case, as
real-time prices in the short-term or potentially even instantaneous. Beside price
changes, the calculation concept defines how an energy service is assessed in eco-
nomic terms. The design elements included are flat, linear and non-linear price
calculation concepts. The calculation concept refers in particular to every additional
or marginal unit of a service. In this case, a flat concept imposes a fixed fee (again
disregarding the variable usage) that is only limited by the technical line limits to
supply the service device and the ability to actually use the energy service. Every
individual can only consume a certain amount of a service since the outside options
or other requirements of daily life usually oppose its continuous and unlimited use.
Nevertheless, since energy has to be produced, this concept is diminishing energy
efficiency efforts and will most likely only play a role when excess renewable supply
is available. Linear calculation concepts relate to the price per unit consumed and
are well-known from traditional electricity rates. Finally, non-linear pricing can ad-
dress, e.g., shortage situations by imposing non-constant marginal costs of service
provision. Thereby, higher usage intensity (e.g., fast EV charging — 20 kWh in 30
min) results in higher service fees than lower usage intensity (slow charging — 20
kWh in 3 h), independent of the total amount.
As mentioned before, energy services can, in particular, be differentiated from

“traditional” energy provision by virtue of the calculation unit. Thereby, usage
payments are no longer based on energy consumption (i.e., kWh) but rather a service
purpose-based metric. For electric vehicles, this is, e.g., the usage time or the distance
driven. For an air-conditioning service, one could imagine some service level related
to lighting and HVAC performance in an office building. This type of contracting
will only be plausible if a service provider installs the service equipment, e.g., a
car-sharing operator (LeVine et al., 2014) or an energy service company offering
performance contracting (Davis, 2012). This way device efficiency is not a user
decision and the service provider can appropriately calculate the business case.
Further differentiation parameters can be temporal and spatial differentiation.

Prices that have no temporal differentiation are static and do not depend on the
time of service delivery. For variable prices, the underlying price menu may be
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static (time-of-use pricing) or dynamic (RTP). This is reflected by the corresponding
choice of the change announcement parameter. Spatial differentiation captures that
different regions can have specific demand and supply features or network limitations
which need to be accounted for in the price, as is currently discussed in the form of
nodal pricing schemes. In contrast to this regional differentiation, roaming allows
customers to use a service at predefined locations for the same (roaming) price.
Finally, the most straight forward design element is a uniform price for the energy
service.

3.3.3 Infrastructure Parameters

Novel price and risk elements in a smart grid service offering will often entail corre-
sponding infrastructure requirements which in turn may become part of the service
bundle themselves. These will primarily include metering, communication, and con-
trol devices which are supplied by service providers to their contracted customers.
This is analogous to the telecommunication sector where cell phones, routers, or
modems are often provided for the duration of the contract.
Concerning metering equipment, simple service offerings may be realized using

legacy Ferraris meters which facilitate only cumulative meter readings. A first ex-
tension of metering capabilities was historically established using dual meters for
different time periods (e.g., night vs day) or usage classes (e.g., interruptible vs
non-interruptible). Additional measurement of peak power is widely used for large
industrial customers to penalize power spikes. The recent introduction of smart
meters allows quasi-continuous metering with arbitrary granularity. Still, in most
commercial realizations so far suppliers opt for 15 min metering intervals.
Historically, meters are offline and cannot directly communicate with suppli-

ers. However, communication capabilities can augment the metering infrastructure
for novel service approaches. Unidirectional communication channels allow service
providers to push price updates to customers. Going one step further, bidirectional
communication enables customers to actively communicate with the service provider.
These customer messages may specify current availability requirements or transmit
market orders.
Finally, customers may install device automation to improve the interaction with
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novel service offerings. This way automation can help reduce the perceived complex-
ity of these services. Automation options range from simple timed or threshold-based
switches (e.g., maximum payments) to pro-active bid agents adapting to observed
and predicted user behavior.

3.3.4 Product Property Parameters

This group of characteristics introduces specific product category parameters. Fol-
lowing the guiding example of services for electric loads, candidate parameters in-
clude the energy source (primary energy), the possibility to alter the power profile,
and power quality features.
Currently, electricity is mostly differentiated for marketing purposes by the pri-

mary energy source that is converted to electricity in the respective plant type.
Utilities hereby guarantee the energy balance from a specific energy source for the
demand of the customer. This is one of the two design options that emphasize
this product property. Well-known examples for differentiation by energy source
are green energy products. The other design option enhances this idea by guaran-
teeing the power balance with a specific energy source. This incorporates a more
direct coupling of the energy service with the current availability of electricity from
a specific type of generator. In general, the energy source parameter is added to
an energy service by explicitly defining a specific power plant (e.g., wind turbine)
or a group of power plants that virtually supplies the energy service in either of
the above-mentioned shapes. As a consequence, this can imply an increased risk of
service availability if the energy source is unavailable.
The second parameter contains the ability to alter the power profile. Following the

taxonomy of Petersen et al. (2013) design elements are established in line with their
notion of bakery, batteries, and buckets. The bakery is representative for appliances
with a fully fixed power profile. Batteries allow an alteration of the (energy fixed)
power profile as long as a target energy level is eventually met. An EV charging
service is a perfect match for this group. Fully variable characterize the bucket class
facilitating any load shape and any total energy amount. An example for the bucket
class is heat pumps, relaxing not only the power but also the energy constraint in
the given time frame. Ideally, the service provider can perform these power profile



Use Cases for the Morphological Box 55

alterations without affecting the energy service delivered by the appliances.
The final, more technical parameter is power quality. This refers to physical char-

acteristics of electrical power which particularly addresses the needs of commercial
and industrial customers. To allow for a general classification this characteristic has
binary design elements. For instance, customers could require a guaranteed voltage
interval for their energy service, that can be assured by voltage regulated distribution
transformers. Or the customer’s electrical consumers generate an abnormal amount
of reactive power that needs to be compensated by the service provider to support
overload local grids.

3.4 Use Cases for the Morphological Box

Since its theoretical solution space is rather big possibilities to assist future product
designers will be presented in the following. After introducing a formalization needed
for the consecutive steps, interdependencies between design elements are discussed
in Section 3.4.1 and a way to describe them mathematically is presented. With
the creation of diversified products, complexity for the end consumers becomes an
important topic. After discussing product complexity in Section 3.4.2 introduce
a complexity scoring rule as an extension of the morphological box is introduced.
Finally, the functionality of the proposed morphological box is illustrated by mapping
exemplary energy services to it (Section 3.4.3) as well as presenting a prototypical
decision support system for service designers (Section 3.4.4).
For the following discussions, a formalization of the morphological box from Sec-

tion 3.3 is proposed. As indicated in Figure 3.2 energy services can be described by
instantiating each parameter with a specific design element. For ease of exposition,
an instantiation of the morphological box can be represented by means of binary
matrices

A =


α1,1 · · · α1,n
... . . . ...

αm,1 · · · αm,n

 , B =
(
· · ·
)
,Γ =

(
· · ·
)
,∆ =

(
· · ·
)
. (3.1)

Rows reflect design parameters and columns represent the corresponding design el-
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ements. If a design option is chosen, the respective binary variable is one and all
other design option variables associated with the characteristic are zero. Clearly, for
any valid configuration, all row sums must equal one.

3.4.1 Interdependencies Between Design Options

As discussed in Section 3.3 there are interdependencies between specific sets of design
options. Determining those is key to increase computational efficiency of the product
design problem. In the following a way of handling their occurrences is presented to
simplify the process of designing energy services by reducing the theoretical solution
space (compare Section 3.2). The intention is not to present a complete enumeration
of interdependencies but rather to show that mathematical expressions can describe
invalid combinations of design options based on illustrative examples.
Most interdependencies exist between either risk (A) or pricing (B) parameters

and infrastructure (Γ) parameters. If for example one designs an energy service
including temporal differentiation with variable rate periods, necessary metering
equipment needs to be considered: Evidently, such a rate scheme will require contin-
uous metering for correct billing. This is the simplest form of interdependency and
can be formulated as follows:

β4,2︸︷︷︸
variable temporal differentiation

≤ γ1,4 .︸ ︷︷ ︸
continuous metering

(3.2)

The inequality formulation provides the flexibility to choose non-necessary infrastruc-
ture, e.g., to preemptively install sophisticated metering for possible future usage.
In the design phase, it is also possible to formulate more complex relations. For

example, any type of risk limitation requires interactions between the service provider
and the customer. Depending on the use case the customer’s willingness to take risks
might change, which he or she should communicate to the service provider. Vice
versa, during service delivery the provider needs to inform an appliance about when
to start, pause or stop. In this case, the infrastructure has to support bidirectional
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communication:

max(α1,2, α2,2, α3,2)︸ ︷︷ ︸
limited risk of any A-parameter

≤ γ2,3 .︸ ︷︷ ︸
bidirectional communication

(3.3)

It should be noted that for unlimited risk unidirectional communication is suffi-
cient as the service provider only has to signal service interruptions to the consumer
without confirmation from the customer side. Following Equation (3.3) this can be
expressed as follows:

max(α1,3, α2,3, α3,3)︸ ︷︷ ︸
unlimited risk of any A-parameter

≤ γ2,2︸︷︷︸
unidirectional
communication

+ γ2,3 .︸ ︷︷ ︸
bidirectional

communication

(3.4)

Lastly, there exists a group of interdependencies where one (or more) design ele-
ments require the existence of multiple other design elements. In case designing an
energy service with price changes that is either announced with a lead time or even
instantaneous, it is necessary to meter its usage properly and of course to commu-
nicate these changes to the customer. On the other hand tariffs without an explicit
change announcement, as in the case of TOU pricing, do not require communication
and are therefore excluded in the following constraint:

β1,2 + β1,3︸ ︷︷ ︸
price changes with lead
time or instantaneous

≤ min

 γ1,4︸︷︷︸
continuous
metering

, γ2,2 + γ2,3︸ ︷︷ ︸
uni- or bidirectional

communication

 . (3.5)

As illustrated above, most interdependencies of energy service parameters refer
to infrastructure. Still, there do exist interdependencies that are not motivated
by infrastructural requirements. For instance, determining a specific (renewable)
energy source δ1,3 implicates an unlimited interruption risk of the energy service α2,3

(compare Section 3.3.4):

δ1,3︸︷︷︸
power balanced energy
source (here: green)

≤ α2,3 .︸ ︷︷ ︸
unlimited

interruption risk

(3.6)
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3.4.2 Complexity of Energy Services

As electricity products are becoming more refined to reflect a changing generation
market the complexity of such tariffs is another dimension to be considered. In
this work complexity is understood as the perceived cognitive strain experienced by
(potential) users of such a tariff and the ensuing difficulty of assessing their energy
costs, rather than the technical challenge of its implementation (cf. Layer et al.,
2017). Chao and Wilson (1987) already observed, that “a practical difficulty with
spot pricing is that the sample space may be so complex that it would be impossible
to implement the spot price in every contingency.” Note that this is primarily a
contracting dimension and not a risk aversion phenomenon. Consequently, isolating
complexity from risk aversion is essential.
To this end, complexity analyses require an assessment of users’ satisfaction with

a tariff or their purchase behavior. In an early study Goett et al. (2000) discovered
small businesses’ considerable preference for fixed electricity rates as compared to
the more complex TOU pricing, which is, in turn, preferred to RTP. However, it
remains unclear if this preference is really a consequence of cognitive strain or of
risk aversion. Dütschke and Paetz (2013) extend this conclusion to private users
who are skeptic towards more dynamic tariffs but may reconsider after additional
experience with such tariffs. Employing an extensive conjoint analysis, Gerpott and
Paukert (2013) meanwhile find the incentive size of smart tariffs to be a more im-
portant determinant of users’ tariff choice rather than the granularity of temporal
differentiation or the lead time. In an extensive empirical study with a sample size
of 664 participants, Layer et al. (2017) determine increasing dynamics as a funda-
mental driver of perceived complexity. Communication of subscription rebates in
percentages is not found to have a significant impact. Furthermore, the authors find
evidence, that increased complexity leads to an overestimation of costs. Therefore,
it may have a detrimental effect when it comes to choosing such tariffs (cf. Homburg
et al., 2014).
In essence, tariff complexity negatively influences customer acceptance of an energy

service and this should be considered when applying the morphological box for energy
service design (cf. Section 3.4.4). In the morphological design approach, perceived
complexity arises from individual design choices. Each design option xi,j in the
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morphological boxes X ∈ {A,B,Γ,∆} can contribute to the perceived complexity
of an energy service. To express these scores complexity matrices need to be defined
analogously to the design matrices from Equation (3.1):

CX =


cX1,1 · · · cX1,n
... . . . ...

cXm,1 · · · cXm,n

 , ∀X ∈ {A,B,Γ,∆} . (3.7)

Using ratio scales for the individual weights facilitates the calculation of an aggre-
gate complexity score of a given energy service. Multiplying a given energy service’s
morphological matrices for each design category with the corresponding transposed
complexity matrices yields a square matrix per design category. The traces of these
matrices (sum of diagonal elements) are then the category complexity scores of the
given service design configuration. The sum of all the category traces can, in turn,
be interpreted as a measure of the total complexity of a specified energy service:

Complexity(Energy Service) =
∑
X

tr(X ·
(
CX

)T
) , ∀X ∈ {A,B,Γ,∆} . (3.8)

The linear structure of the complexity score proposed above is meant for illus-
tration purposes. One can easily imagine a convex function of the total sum or a
category score to reflect complexity complementarity. Similarly, the highest individ-
ual complexity score could determine the total score.
Clearly, any meaningful evaluation of the complexity score will critically hinge on

the measurement of each design option’s relative contribution to perceived complex-
ity. Measuring these values will be challenging and potentially subjective. However,
for a relative comparison of multiple service configurations under the same com-
plexity premises, the ratio scales can be relaxed to interval scales. Eventually, the
outlined method can help support service marketing activities by providing the foun-
dation to estimate user response to a tariff created.

3.4.3 Exemplary Products

To demonstrate the application and suitability of the morphological approach il-
lustrative examples of differentiated energy service products are presented in this
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section.

Interruptible Load

As a first example, an interruptible electricity service is chosen as studied by Oren
(2013) that was first implemented by Southern California Edison and several other
utilities in the 1980s and has since been further refined (Jazayeri et al., 2005). In such
an energy service the utility may interrupt power supply to the customer in response
to cost considerations due to unexpected demand spikes or in times of imminent
system imbalance. In a particular implementation presented in Oren (2013, Fig. 1)
the service provider compensates a customer for both guaranteeing to be able to
interrupt the load and for each time of actually executing the interruption. The
number of periods of interruptions is limited to a specific number of times and hours
per year.

A =


1 0 0
0 1 0
1 0 0

 , B =



1 0 0
0 0 1
0 1 0
1 0 0
1 0 0


,Γ =


0 1 0 0
0 0 1 0
1 0 0 0

 ,∆ =


1 0 0
1 0 0
1 0 0

 . (3.9)

The matrices in Eq. (3.9) reflect the formal description of this energy service6.
It carries only a limited interruption risk, both in duration and frequency. Pricing
is non-linear since a reward for each interruption is added to the traditional linear
and static energy rate. There is no temporal or spatial differentiation. Metering can
be implemented in the classic cumulative manner, while in practice an additional
interruption switch can be installed.
On the one hand, the customer can manually respond to a signal of the utility

as implemented by the Electric Reliability Council of Texas (Jazayeri et al., 2005).
On the other hand, the utility can access the switch remotely by means of an unidi-
rectional communication channel as implemented by Minnesota Power (Minnesota
Power, 2012). As suggested in Section 3.4.1 customers should be able to dynamically

6Note that zeros shown greyed out in Eq. (3.9) to (3.12) are preset as these design options are
undefined (see Figure 3.2).
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change the risk limit through a bidirectional communication channel. In contrast to
the introductory example, both latter implementations have a simple linear calcula-
tion concept (β2,2 = 1).

Real-time Electricity Pricing

Conveying scarcity by means of price signals is another option to achieve system-
wide power balance. Real-time pricing was first studied by Vickrey (1971) and later
applied to electricity in the 1980s (Schweppe et al., 1989). Advocates argue for the
long-run efficiency gains of real-time pricing (Borenstein, 2005) compared to static
prices even though electricity demand is rather inelastic. Besides the ability to reduce
peak demand cost-effectively, economists claim that real-time prices would mitigate
market power and reduce price volatility on wholesale markets.
Real-time pricing programs were first introduced in the early 1990s and already

counted more than 70 offerings in the 2000s (Barbose et al., 2004). In these —
mostly voluntary — programs, retail customers must pay prices that vary over short
time intervals (e.g., hourly) and are published a day or less in advance by utilities.
An advanced and puristic program is offered by the utility Commonwealth Edison
(ComEd) in Illinois7. ComEd simply passes along the average hourly market price
with no mark-up to customers who can thus even partake in negative prices.

A =


1 0 0
1 0 0
1 0 0

 , B =



0 0 1
0 1 0
0 1 0
0 1 0
1 0 0


,Γ =


0 0 0 1
0 1 0 0
1 0 0 0

 ,∆ =


1 0 0
1 0 0
1 0 0

 . (3.10)

The matrices in Eq. (3.10) show the formal representation of the morphological box
for real-time pricing. Customers do not carry any risk of service quality or availability
since pricing aspects address the risk component. In the ComEd example, temporally
variable prices are quoted instantaneously. Other programs, on the other hand,
might have a lead time. Real-time pricing necessitates continuous metering which

7https://hourlypricing.comed.com/

https://hourlypricing.comed.com/
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is one of the biggest obstacles for its market launch (Costello, 2004). Additionally,
most programs include a form of unidirectional communication to push prices to the
metering system.

Deadline Differentiated Pricing for EV Charging

This service product example captures more complexity and thus explores further
options in energy service design. In particular, the deadline differentiated pricing
(DDP) approach is applied to an electric vehicle charging service that is further
described in Chapter 4. Under DDP, energy services are differentiated by the lat-
est time of service delivery. To compensate delayed service execution, the service
provider offers discounts to consumers. Consumer rebates are increasing in the de-
mand flexibility offered, i.e. a longer accepted delay until completion of the charging
job.

A =


1 0 0
1 0 0
0 1 0

 , B =



0 1 0
0 1 0
0 1 0
0 1 0
1 0 0


,Γ =


0 0 0 1
0 0 1 0
0 0 1 0

 ,∆ =


1 0 0
1 0 0
1 0 0

 . (3.11)

Following the parameters and design elements in Figure 3.2 the DDP energy service
can be formally described by the matrices in Eq. (3.11). This energy service entails
no quantity risk, but a limited, in this case, deadline-induced, risk for the particular
time of delivery. Since to date, most electric vehicles reject arbitrary power profiles
or even interruptions, the energy service features no interruption risk and a fully
fixed power profile (δ2,1 = 1). The service provider announces price changes at latest
at the time of arrival at the car park and therefore with lead time. The calculation
concept is linear, while the calculation unit will typically be charging energy. Price
levels are subject to change depending on grid and generation conditions. A given
charging service will typically be location-bound (e.g., a given parking complex) and
hence does not facilitate spatial differentiation.
Continuous metering is necessary to facilitate DDP due to possible price changes.
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Likewise, bidirectional communication will be required to exchange and confirm price
information. Besides the physical connection between grid and vehicle, the charging
process is automated according to the established specifications with service deliv-
ery being terminated as soon as the agreed charging level is reached. Finally, the
electricity properties will typically exclude both differentiation by energy source and
extended power quality requirements.
Bitar and Low (2012), Nayyar et al. (2014) and Chen et al. (2015) present gener-

alized versions of this energy service that abstracts from the EV charging context.
In these cases restrictions on interruption (α2,2 = 1) and power profile alteration
(δ2,3 = 1) of contracted loads are loosened.

Local Energy Market

Unlike regular tariff relationships where suppliers and customers agree on conditions
for several transactions, local energy markets are characterized by repeated spot
transactions with allocation and prices arising from bids and asks of market partic-
ipants. Consequently, a sizable share of system risk is transferred to the demand
side — either in the form of price risk (guaranteed delivery may be risky in the
presence of price spikes) or quantity risk (limit prices curtail price risk but may lead
to non-execution).
In the 1980s the seminal work on optimal spot pricing (Schweppe et al., 1981;

Schweppe, 1988) conceptualized local energy markets as an advanced form of en-
ergy service intermediation. Diverse research projects (e.g., Hammerstrom et al.,
2007; Giordano et al., 2013) showcased prototypical implementations. A wide-scale
adoption of smart grids will create the technological basis for establishing energy
marketplaces outside of small-scale experimental settings. Consequently, recent re-
search in energy and computational economics has revisited the design challenges
embedded in creating and rolling out such local energy markets (Ketter et al., 2013;
Lund et al., 2012; Ströhle and Flath, 2016) or how to adapt them to specific scenarios
like electric vehicle charging (De Craemer and Deconinck, 2012; Dauer et al., 2013).
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A =


0 0 1
0 1 0
0 0 1

 , B =



0 0 1
0 1 0
0 1 0
0 1 0
0 0 1


,Γ =


0 0 0 1
0 0 1 0
0 0 0 1

 ,∆ =


1 0 0
1 0 0
1 0 0

 . (3.12)

Again, the morphological approach can help to characterize this energy service. A
market with limit orders on (partial) service completion is assumed, i.e. customers
specify the maximum price which they are willing to pay for a tendered energy
service (fragment). If prices exceed this reservation limit orders will not be executed
resulting in unlimited quantity risk. This unlimited quantity risk also corresponds
to unlimited delivery time risk. In this market setup, there is no interruption risk of
an individual market transaction. However, repeated transactions are uncertain to
be repeatedly allocated leading to a limited amount of interruption risk.
Price changes are instantaneous after each market clearing with a linear relation-

ship between price and energy. Prices vary over time and apply only to the given
marketplace. As noted above, local energy markets have significant infrastructure
requirements. Continuous metering and bi-directional communication are neces-
sary to facilitate and monitor market transactions. At the same time, customers
will most likely be relying on trading agents to pursue their energy trading activ-
ity (Vytelingum et al., 2010; Gottwalt et al., 2011). Finally, local marketplaces will
need sufficient market liquidity to be successful. Consequently, commoditized energy
services with minimal specifications should be traded (Ströhle and Flath, 2016).

3.4.4 Prototypical Decision Support System

The above formalization of the morphological box lends itself to facilitating a decision
support system for energy service designers. Such a system should guide practition-
ers by dynamically restricting design choices according to feasibility constraints and
thereby improves the focus of the product development process. To illustrate this
idea a prototype for such a decision support system was implemented using Microsoft
Excel and Visual Basic (left side of Figure 3.3). Users can interactively select service
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design elements in the morphological box. Furthermore, they can specify a maxi-
mum complexity level for the final energy service. After any decision, the system
dynamically updates dependencies arising from this decision, updates the current
complexity level, and restricts future choices in accordance with dependencies and
remaining complexity “budget.”
The right side of Figure 3.3 illustrates the system functionality by means of two

exemplary user journeys through the tool. The upper branch highlights the effect
of interdependencies between design elements: After selecting “limited quantity risk
(partial execution)” the system disables the “no communication” and “unidirectional
communication” infrastructure design elements and automatically sets the only re-
maining infrastructure design element “bidirectional communication”. Furthermore,
after choosing to use a renewable energy source on a “power balance” level, in which
case an unlimited interruption risk is inherent (compare Equation (3.6)), the param-
eter “interruption risk” is fixed to “unlimited”. Besides, both choices deplete a minor
part of the complexity allowance.
The lower branch demonstrates the effect of the energy service complexity limit.

Selecting “variable temporal differentiation” of the price induces the deactivation of
both design elements “non-linear calculation concept” and “fully variable” because
selecting one of them would exceed the previously set maximum complexity. Further-
more, an interdependency occurs fixing the design element “continuous metering” in
accordance with Eq. (3.2). After selecting “nodal pricing” the maximum complexity
level is reached. Therefore, the tool deactivates all other complexity driving design
elements. It should be noted that complexity weights are exemplary in this case.
These user journeys illustrate how decision support systems for energy service de-

sign can utilize the morphological box. The presented prototype focuses on reducing
the choice through constraint and interdependency propagation. A proper implemen-
tation in practice should also consider the benefit side of the various design elements
(additional profits or cost reductions) to help in determining the most beneficial
service offering. To that end, the system should be connected with other corporate
information systems (CRM, ERP) and augmented by suitable benefit-assessment-
components, e.g., a simulation tool as presented by Gottwalt et al. (2011).
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3.5 Discussion

Energy services play a central role to empower the currently mostly passive demand
side. This demand side activation is crucial to cope with the risk that arises from a
growing share of electricity supply from intermittent renewable energy sources (Pa-
paefthymiou and Dragoon, 2016). Utility companies have started to increase efforts
for product development that addresses the new situation in the power system, but
there is still a lack of experience and effective methods and tools to support this
development (Richter, 2013).
The work presented in this chapter is a first step to guide the structured design

of energy services. It proposes a systematic and standardized way to address dif-
ferent product characteristics and their design options, with a particular focus on
differentiation options with respect to quality of service attributes. This way, new
and innovative combinations of service design options can support activating the
flexibility potential of the demand side in a Smart Grid environment and ameliorate
some of the supply risk inherent to intermittent generation.
Pricing options for these (new) energy service products were illustrated which im-

proves setting the correct incentives for a desired customer behavior. In addition,
infrastructural needs and additional product properties which depend on the specific
use case were outlined. The constructed morphological box thereafter was applied
by modeling exemplary reference energy service products. How the morphological
approach can be formalized by means of a mathematical programming formulation
was furthermore discussed: Formally describing interdependencies between product
design elements increases efficiency by removing incompatible design options. Addi-
tionally, a complexity measure was introduced which facilitates assessing potential
adoption obstacles for end customers. Finally, the theoretical concepts are illustrated
by means of a prototypical decision support system for service designers.

The economic viability of cost-based electricity pricing with respect to generation
adequacy is lively debated in the face of growing renewable generation shares. So
far, the debate has mainly focused on supply side initiatives, e.g., the establishment
of capacity markets (Boute, 2012; Browne et al., 2015; Hall, 2014). However, near
zero variable costs also call for a value-based pricing of energy services as a new
paradigm. To this end, pricing should be determined by individual customers’ val-
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uation for particular service characteristics. Quality-based energy service product
differentiation facilitates efficient customer self-selection in response to a change in
product characteristics. This enables better participation of numerous flexible loads
which jointly can help to stabilize the power system (Gottwalt et al., 2016). The
micro-transactions arising from these micro-flexibilities are facilitated by ICT capa-
bilities offered in smart grid environments. The central idea is to (partially) limit
supply security by means of active, demand-side risk sharing to stabilize supply se-
curity in the long term. Note that such an approach may loosen the current barriers
between grids and energy markets in unbundled markets (Greening, 2010).
While it may take some more time until extreme RES penetration scenarios are

realized, power markets and infrastructures will have to prepare for these challenges
in advance (Mathiesen et al., 2011). Consequently, regulators must pave the way
for an environment where a flexible demand side can choose from a richer set of dif-
ferentiated energy services. This requires establishing a technological infrastructure
that enables such a shift. These smart grid platforms must be non-discriminatory
and equally accessible for established and new actors to allow for efficient compe-
tition. Similarly, some basic energy service with predefined quality characteristics
should still be offered for those customers unable or unwilling to respond to quality
differentiated energy service products. To foster this kind of innovation, regulators
may need to adopt a more tolerant regulation regime and thus lower the barriers for
new market entrants.
The telecommunication sector developed in an analogous way to the energy sec-

tor after liberalization (Hertzog, 2010; Smith, 2012). Telecommunication companies
with varying scope (full service operators and niche players) have emerged to ac-
count for the customers’ different valuations for service quality. Both the range
of service quality differentiation options and the robust adaption of the regulatory
frame in the telecommunication sector should inspire the energy sector (Bourreau
and Doǧan, 2001). One of the ideas that needs further investigation with respect
to its implications in the energy service sector is flat rate pricing. A theoretically
unconstrained energy consumption for a particular service could be envisioned while
only a fixed, consumption-independent rate is paid. At the same time, the quality of
supply or in particular the availability of energy from an intermittent source can be
a quality differentiation characteristic that only allows flexible consumers (or appli-
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ances) to utilize this flat rate energy service. Further work must thus be dedicated
to the comparison between the telecommunication and energy sector.

This work elaborated that product differentiation is important to retain economic
viability of power systems dominated by renewable energy sources while focusing
on the conceptual side of service innovation. However, going forward, the economic
viability as well as suitable regulatory frameworks have to be evaluated and designed.
Therefore, future work should seek to better understand the costs and benefits of
individual design options. This will facilitate a proper service design optimization
as envisioned in Section 3.4.
Introducing interactive decision support systems as illustrated in Section 3.4.4

will allow product designers to focus on creative aspects rather than thinking about
formal limitations and interdependencies. To help practitioners transfer the ideas
of this chapter into industry applications the prototypical decision support system
needs to be expanded and adapted to specific use cases. Ideally, the tool should
allow designers to start by developing and parameterizing the morphological box
and specify interdependencies in a higher level description language.
Another key question is how fast and to what extent service providers can face cus-

tomers with product differentiation of an originally homogeneous good. Surveys and
experimental approaches are needed to assess customer acceptance and to develop
robust estimates of the complexity scores introduced in Section 3.4.2. Additionally,
customer risk aversion will influence the acceptance of energy services designed with
the aforementioned methodology. To formulate promising business cases, practition-
ers would benefit from a way to take the risk preferences of specific customer groups
into account.
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Part II

Intermediation of Energy Services





Chapter 4

Deadline Differentiated Pricing for
EV Charging

Electric vehicles are one of the most important options to enable sustainable
individual mobility given that the electricity used to charge EVs originates from

renewable energy sources. Concurrently, EV charging is considered to be a crucial
part of demand side flexibility in future smart grids (Shao et al., 2011). Additional
charging infrastructure is planned to be installed at public parking locations (German
National Platform for Electric Mobility, 2015) in order to reduce range anxiety and
to increase the availability of EVs to respond to fluctuations in the power grid. Car
parks then constitute new load clusters that aggregate the demand of a considerable
number of vehicles. To harness the potential of load flexibility in terms of time
(temporal flexibility), it is necessary to understand and govern the heterogeneous
charging behavior of EV users. It is constrained by many varying parameters, e.g.,
energy demand, parking duration, and monetary valuation. Price incentives are one
major mechanism to exploit the heterogeneous flexibility potential. Furthermore,
understanding the habits and the economic behavior of EV owners makes it possible
to optimize the utilization of local fluctuating renewable energy generators like PV
systems. These local generators can be installed on, or in proximity to the new load
clusters to reduce the impact on the distribution grid (Salah et al., 2015) and thus
address the objective to facilitate sustainable individual mobility.1

1Please note that parts of this chapter build on previously published research papers (Salah and
Flath, 2016; Salah, Schuller, and Weinhardt, 2016; Salah, Schuller, Maurer, and Weinhardt,
2016)

73
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In this chapter, a scenario is examined in which heterogeneous EV users charge
their vehicles at a public car park. Users reveal their flexibility by indicating up-
front their parking duration. This allows the car park operator to schedule EV
charging activity in accordance with local generation from PV panels on the car park
rooftop at zero marginal costs. Alternatively, the vehicles can be charged by using
costly conventional generation acquired from the grid. To ensure truthful revelation
of the drivers’ departure time, a car park operator offers a DDP scheme to EV
users following Bitar and Low (2012). DDP follows the assumption of rational EV
customers who aim for the cheapest option to charge their EV as long as their parking
behavior stays unaffected. Hence, lower charging prices are offered for customers that
are willing to provide a higher level of temporal flexibility by interrupting or shifting
their charging processes. Only considering charging fees (i.e. parking per se is
assumed to be an independent problem), the car park operator needs to determine a
profit-maximizing price menu under uncertainty with respect to customer preferences
and generation availability.
The focus of this chapter is the operational management of EV charging in car

parks with integrated PV generation. Investment costs, e.g. for PV installations
are not considered. A simulation based analysis is performed that incorporates the
formulation and evaluation of a stochastic mixed-integer optimization model. It is
instantiated with mostly empirical input data to obtain realistic conditions for the
following assessment: EV customers are modeled based on the following data sets:
empirical driving profiles from the representative German mobility panel (Zumkeller
et al., 2011), real-world data from an operational car park in southern Germany,
and PV generation data from installed PV panels in southern Germany. Besides a
central examination, this work establishes the foundations for the implementation of
an energy informatics decision support artifact that integrates existing demand side
flexibility of EVs.
The remainder of this chapter is structured as follows: The next section is fur-

ther evaluating existing work in the area of demand side management and customer
modeling in EV charging management. In Section 4.2, the stochastic optimization
problem is introduced and formalized. Empirical data used to derive answers to re-
search questions and the standard scenario instantiation are presented in Section 4.3.
Section 4.4 examines the car park charging case from a general point of view and
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derives answers regarding the value of information and complexity. After examining
to what extent DDP is able to mitigate RES uncertainty in Section 4.5 the impact of
customer diversity is explored in Section 4.6. Section 4.7 concludes and summarizes
future research opportunities.

4.1 Related Work

This section revisits existing concepts for demand side management and incentive
mechanisms to activate it. Furthermore, implementations of these concepts in the
field of charging coordination of electric vehicles are highlighted.

4.1.1 Demand Side Management and Pricing

In California, the integration of renewables requires doubling the load-following ca-
pacity following recent studies (CAISO, 2010). This will significantly raise electricity
cost and diminish the net carbon benefit from RES (Ortega-Vazquez and Kirschen,
2010; Meyn et al., 2010). The central concepts of the smart grid, DR and DSM, are
crucial to deeply integrate RES by supplying zero-emission regulation services con-
sidering the broad acknowledgment in recent research (Callaway and Hiskens, 2011;
Cochran et al., 2014; Juul et al., 2015; Meyn et al., 2015; Palensky and Dietrich,
2011; Siano, 2014; Subramanian et al., 2013). However, proper assessments of its
value and research on minimum marketable flexibility levels are still limited.
Information technology alleviates one of the major flaws of electricity markets:

It enables the demand side to react in a dynamic fashion to changes in the sup-
ply situation (Strbac, 2008; Strüker and van Dinther, 2012). Following Albadi and
El-Saadany (2007), DR can be categorized into incentive-based programs and price-
based programs. Incentive-based approaches are common for large industrial cus-
tomers and often involve direct load control of large loads at the customer site. This
traditional approach has been extended by market-oriented DR programs that allow
customers to participate in demand bidding on the respective markets (Chua-Liang
and Kirschen, 2009). Small customers, e.g. the commercial and residential sector,
in turn, would rather participate in a price-based program that includes different
levels of dynamic prices, starting with simple two-staged time-of-use tariffs, extend-
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ing up to real-time prices based on the wholesale development situation (Albadi and
El-Saadany, 2008). The applicability of price-based programs may be endangered
by herding effects if not explicitly taken care of (Flath and Gottwalt, 2016). The
approach discussed in this Chapter builds on the notion of dynamic pricing with a
special focus on local generation.

4.1.2 Charging Coordination of Electric Vehicles

EV charging is considered as a prime case of load flexibility (Shao et al., 2011;
Goebel et al., 2014). Therefore, charging coordination of EVs received considerable
attention of scholars in recent years. Most literature focuses on aspects of efficient
grid integration, e.g., Acha et al. (2010); Caramanis and Foster (2009); Fan (2012);
Green II et al. (2011), and on the assessment of economic implications in different
market environments, cf. Flath et al. (2014); Grahn and Soder (2011). Other scholars
assess the potential to balance renewable energy (Galus and Andersson, 2011) and
to reduce the operative carbon footprint of charging (Schuller et al., 2015).
Different architectures for coordination and control of EV demand have been pro-

posed (Schuller, 2015). Most approaches rely on centralized (hierarchical) coordina-
tion mechanisms in order to integrate EVs in DSM programs. Hierarchical mecha-
nisms are prominent particularly in the context of commercial EV fleets. Eisel et al.
(2015) investigate the economic effects of ICT-mediated DR programs for EV car
sharing fleets. They find that demand side flexibility could further improve the oper-
ative costs of EVs in fleet applications. In addition to the mediation of DR programs,
information systems have also been employed to support planning decisions for the
optimal deployment of charging infrastructure (Wagner et al., 2014).
Car parks can be seen as local EV charging aggregators, which can employ re-

newable energy sources like PV to satisfy the demand requirements of contracted
EVs. Ma and Mohammed (2014), e.g., investigate a plug-in hybrid electric vehicle
(PHEV) car park with 75 kilowatt-peak (kWp) PV capacity and a fuzzy logic price
determination algorithm considering RES generation and grid supply costs. How-
ever, customers are only modeled w.r.t. their arrival and departure times, not with
respect to their economic preferences. Steuer et al. (2014) investigate a car park
scenario but remain limited to the economic assessment under the current German
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regulation regime instead of evaluating the options to activate EV demand side flex-
ibility. Further work from Chen et al. (2013) also proposes online deadline oriented
scheduling for parking garages but does not consider renewable energy in the coordi-
nation objective. In addition, the service level assumed for customers is different (the
operator has to compensate unserved load) than in this Chapter’s work, where cus-
tomers with an insufficient valuation are not served. Sánchez-Martín and Sánchez
(2011) consider a parking garage scenario for 50 PHEVs and EVs and develop a
charging heuristic that minimizes the share of unserved vehicle load given grid con-
nection capacity constraints. They do not consider renewable energy generation and
only purchase electricity from the grid in a simple two-part tariff. Recalde Melo et al.
(2014), in turn, consider a car park in Singapore under different charging strategies
and compare the effects on the total costs of the car park operator. Wagner et al.
(2013) investigate the economic profitability of EV fleets for the provision of fre-
quency regulation in the case of Germany. They find that negative regulation —
offering to draw energy from the grid e.g. in situations where supply is greater than
demand — can be profitable for an EV aggregator. Despite the similar investigation
scenarios, no work in literature addresses the economic preferences to the extent that
will be presented in the following sections.
This work extends existing centralized approaches to assess the demand side flex-

ibility of EVs in a car park or fleet environment. The addressed gap includes the
consideration of local PV generation and the combination with a variable pricing
scheme while considering heterogeneous economic preferences of EV customers. In
particular, an easy to use, robust economic incentive scheme is implemented consid-
ering different sources of uncertainty.

4.2 Model Formulation

The generic workflow of a simulation analysis is illustrated in Figure 4.1. First of
all the external data sources need to be wrapped to generate simulation sample sets
(see Section 4.3). After defining parameter instances for each scenario the model,
which is defined in this section, is can be optimized and validated. Optimization
and validation are executed based on two independently generated data sets: a



78 Deadline Differentiated Pricing for EV Charging

wrap external data
sources

generate simulation
sample sets

define scenario
parameter sets

optimize model validate solutionoptimize model validate solutionoptimize model validate solution
optimal instance

n runs for each scenario
m scenarios

optimize model validate solutionoptimize model validate solutionoptimize model validate solution
optimal instance

n runs for each scenario

optimize model validate solutionoptimize model validate solutionoptimize model validate solution
optimal instance

n runs for each scenario

evaluate simulation
results

Figure 4.1: Program workflow

training sample and a validation sample. Each scenario passes multiple2 runs to
control for data coincidences. Lastly the obtained simulation results are evaluated
(see Sections 4.4 ff.).
As noted in the introduction of this Chapter, the proposed model is based on (Bitar

and Low, 2012) by adopting their notion of DDP. This paradigm is illustrated in Fig-
ure 4.2: Flexible demand, a set of deferrable loads, is scheduled to cost-efficiently
match a given supply portfolio consisting of volatile, free of cost renewable genera-
tion and conventional backup generation. To incentivize the revelation of customer
departure times, the operator quotes deadline differentiated prices, i.e. each possible
delivery time has a specific price.
This pricing regime is cast to an EV car park scenario which is a natural fit.3

Besides the concrete instantiation, the original model is extended by allowing for
price menus with a limited number of price levels. The latter allows to explore the

2If not further specified, the number of runs is 100 .
3Bitar and Low (2012) note, that deadline differentiated pricing “would naturally complement the
proliferation of plug-in electric vehicles in the US transportation fleet.”
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Figure 4.2: Scenario overview

value of varying tariff granularity levels (Watson et al., 2010) and e.g. to isolate the
minimal, binary case flexible vs. inflexible.
The model’s constraints can be grouped into three parts: The price menu con-

straints, the customer decision constraints, and the dispatch constraints. Formally,
the customer decision is a separate optimization problem for each customer that
maximizes the consumer surplus while choosing the amount of energy charged and
the extent of flexibility provided. It will be shown that this optimization problem can
be expressed with linear constraint terms. Hence, it can be integrated into the car
park operators maximization problem. To limit the notational burden, first, the de-
terministic model is presented and afterwards the stochastic extension is introduced.
The complete stochastic program is provided in Appendix A. Table 4.1 provides an
overview of the sets, variables, and parameters used in this model.

4.2.1 Price Menu

The price menu is at the heart of deadline differentiated pricing. It connects flex-
ibility offered by the customers with the electricity price they have to pay. Here,
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Table 4.1: Model decision variables, parameters, and sets

Decision variable Unit Domain

Price at flexibility level f pf ct/kWh R+
0

Discount from pf to pf+1 ∆f ct/kWh R+
0

Price jump from pf to pf+1 jf binary
Buy decision of c for ec,f δc,f binary
Maximum consumer surplus of c umaxc ct R+

0

Latest possible start of charging loads in t of
customer segment Ca,f

σa,f,t binary

Charging load of customer c λc,t kWh [0,λmax]
Energy bought in time slot t ηgt kWh R+

0

Parameter

Maximum number of price levels Jmax N

Minimum extent of a price jump ∆min ct/kWh R+
0

Energy demand of c at flexibility level f ec,f kWh R+
0

Arrival time slot of c ac N0

Max. flexibility of c f̄c N0

Min. charging duration of c t̄λc N0

Parking duration of c dc N0

Max. charging amount per time slot λmax kWh R+
0

PV generation in t ηpt kWh R+
0

Conventional energy cost in t ct ct/kWh R+
0

Weight for scenario s ws R+
0

Sets

Arrival time slot a ∈ A
Temporal flexibility f ∈ F
Time slot t ∈ T
Customers with identical a and f c ∈ Ca,f
Scenario s ∈ S
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flexibility offered by a customer opens the possibility to the car park operator to
defer her load by a specific duration.
The array [p0, p1, ..., pn] represents the price menu for a set F of n different dura-

tions of flexibility. In this work, flexibility is understood as the possibility to defer
load by a specific duration. The standard time interval is set to 15 minutes.4 To pre-
serve incentive compatibility with respect to flexibility reports, the price menu needs
to be strictly decreasing in flexibility (Bitar and Xu, 2013). For reasons of practi-
cal applicability, the set of permitted price-flexibility-pairs needs to be restricted.
To this end, the number of assignable prices is limited by adopting the rate jump
specification presented by Flath (2014):

pf = pf−1 −∆f−1 , ∀f ∈ F>0 (4.1)

∆f−1 ≤ jf−1 · ξ , ∀f ∈ F>0 (4.2)
n−1∑
f=0

jf ≤ Jmax − 1 . (4.3)

Here, ∆f−1 specifies the extent of jumps between adjacent price levels. The maximum
number of price levels is given by Jmax and ξ denotes a sufficiently large positive
number. Equation (4.1) ensures that the price level pf is consistent with pf−1 and
jump amount ∆f−1. Equation (4.2) enforces ∆f−1 to be zero if there is no jump.
Equation (4.3) ensures the maximum number of jumps.
To enhance customer friendliness a minimum jump amount can be set to obtain

perceivable price differences. This is implemented by the constraint

∆f−1 ≥ jf−1 ·∆min , ∀f ∈ F>0 , (4.4)

where ∆min is the minimum jump amount.
Besides limiting the number of price levels, a restriction on the time resolution of

the price menu is introduced. This is accompanied by coarser intervals for flexibility
reports over the underlying quarter-hourly time model.5 Therefore a subset of price

4Consequently, p0 denotes the energy price without flexibility, p1 for a flexibility of 15 minutes,
and pn for a flexibility of n× 15 minutes.

5This is done for reasons of practical applicability as well as to limit computational complexity
leading to a more limited price menu.



82 Deadline Differentiated Pricing for EV Charging

jump variables jf is disabled:

jf−1 = 0 , ∀f ∈ F>0 ∩ f mod ρ > 0 , (4.5)

where ρ is the time resolution parameter for the price menu — here: every ρ-th
quarter a price jump is permitted.

4.2.2 Customer Decision

As noted earlier the customer decision formally reflects a separate optimization prob-
lem and therefore after integrating it into the car park operator’s problem the whole
model would result in a bi-level problem. Before explaining how to (linearly) inte-
grate it, the customer’s lower level problem is defined separately first.
A customer’s objective is to maximize her consumer surplus

max
d
PLL =

∑
f∈F

Uc (ec,f )− pf · ec,f , ∀c ∈ C , (4.6)

where Uc(ec,f ) is the customer’s utility from energy amount ec,f and pf · ec,f are her
expenses. To transform Equation (4.6) into a linear formulation, the utility function
needs to be examined in more detail. Previous research on deadline-differentiated
pricing assumes that customers’ utility functions are strictly concave and continu-
ous (Bitar and Low, 2012). Under these assumptions, it follows that the first order
optimality condition ∇Uc(e∗c) = p is a sufficient condition for a maximum, while
meeting the requirement to be insertable as a linear expression into the upper level
problem.
However, the strict concavity assumption on utility functions is not appropriate

for the car park case. A natural way to determine the utility function is to employ
costs for an outside option, i.e., the alternative to EV charging at the car park. EV
drivers normally have the ability to charge their vehicle, e.g., at home. So, a good
way to estimate a customer’s utility for EV charging at a car park in this case is
the energy rate she pays at home to charge her EV. As the battery has a predefined
capacity, her utility function grows linearly until E kWh and stays constant beyond
since the battery cannot be overcharged. Hence, the relevant interval is 0 ≤ x ≤ E.
Accounting for payments the consumer surplus is obtained as depicted in Figure 4.3.
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Figure 4.3: Exemplary consumer surplus functions of car park customers

The consumer surplus functions can exhibit two distinct shapes based on the
difference between the price and the slope of the customer’s utility function. As
both price and utility function are (piecewise) linear, the resulting consumer surplus
function is as well. To determine the optimum, it is sufficient to compare the interval
boundaries of the consumer surplus function due to its monotonicity. Each consumer
surplus function of this structure has at the most two edges: x = 0 and x = E. By
introducing the binary variable δc,f reflecting the customer’s decision to request an
ahead known amount of energy ec,f (here: E) at flexibility level f , the customer
maximization problem (4.6) can be reformulated to

max
δ
PLL =

∑
f

(Uc (δc,f · ec,f )− pf · δc,f · ec,f ) , ∀c ∈ C. (4.7)

As the price menu is monotonically decreasing in the flexibility level, a customer will
quote her total demand at her maximum flexibility f̄c which is

f̄c = dc︸︷︷︸
Parking duration

− ¯tλc ,︸︷︷︸
Min. charging duration

(4.8)

while

t̄λc =
⌈
ec,f
λmax

⌉
(4.9)
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calculates the minimum required charging duration. Hence, Equation (4.7) can be
reduced6 to

max
δ
PLL = Uc(δc · ec)− pf̄c · δc · ec , ∀c ∈ C . (4.10)

Since the maximization problem has been reduced to a comparison of two discrete
values, Equation (4.10) can then be replaced by the following constraints assuming
Uc(0) = 0:

umaxc ≥ Uc (ec)− pf̄c · ec , ∀c ∈ C (4.11)

umaxc ≤ δc ·
(
Uc (ec)− pf̄c · ec

)
, ∀c ∈ C . (4.12)

The new continuous variable umaxc ≥ 0 reflects the customer’s maximum attainable
consumer surplus. Equation (4.11) ensures umaxc to be greater or equal to the con-
sumer surplus in case δc = 1. The customer only has to decide whether or not she
purchases the amount E. Equation (4.12) ensures that δc takes the correct value to
represent the customer’s optimal decision. If purchasing E has a negative consumer
surplus, umaxc is zero due to its non-negativity constraint and fulfilling Equation (4.12)
is only possible with δc = 0. Otherwise umaxc takes the value of consumer surplus for
purchasing E and therefore Equation (4.12) forces δc = 1.
One may notice, that the term pf̄c · δc is non-linear as both factors are decision

variables. Since this is a multiplication of one binary and one continuous variable,
the term pf̄c ·δc can be replaced by a new continuous variable y and linearized by the
following additional constraints ∀c ∈ C in accordance with Bisschop (2012, p. 84):

y ≤ pmax · δc
y ≤ pf̄c

y ≥ pf̄c − p
max · (1− δc)

y ≥ 0 .

while pf̄c is bounded by zero and a constant pmax. To increase comprehensibility the

6For ease of exposition, ec,f̄c
and δc,f̄c

are replaced by ec and δc from now on.
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term pf̄c · δc is maintained in this Chapter and only replaced in the implementation.
In Section 4.2.1 the possibility to limit the number of price jumps was introduced.

Therefore, the price menu is no longer strictly decreasing in flexibility. It is believed
that at identical prices, customers prefer earlier energy delivery as this resonates
with the aversion of low battery levels (Eberle and von Helmolt, 2010). To ensure
this, energy demands are shifted to the shortest flexibility duration with the same
price which is considered in the constraints introduced in the next section.

4.2.3 Dispatch

In order to serve the customers’ demand for energy in the specified flexibility range
while optimizing for the company’s profit, the demand needs to be aggregated and
subsequently matched with available energy generation. To this end, two additional
temporal dimensions besides flexibility are necessary: Customers arrive at a partic-
ular time slot ac ∈ A and are accordingly seen as active jobs in a number of time
slots t ∈ T subject to ac and f̄c. From a dispatch point of view customers arriving
at the same time a and having the same flexibility f can be treated identical and
are therefore grouped into customer segments Ca,f ⊂ C.
To dispatch energy to charging requests new variables need to be defined. The

binary variable σa,f,t signs the starting slot t of charging loads from all customers
c of customer segment Ca,f with identical arrival ac and load shifting flexibility f̄c.
Each charging process has exactly one latest possible starting point (4.13) which can
only occur within the flexibility range after arrival (4.14):

∑
t∈T

σa,f,t = 1 , ∀a ∈ A, ∀f ∈ F (4.13)
∑

t∈T\{a,...,a+f}
σa,f,t = 0 , ∀a ∈ A, ∀f ∈ F . (4.14)

λc,t carries the real valued charging loads in each time slot t of customer c. To
ensure that the requested energy demand is met while the EV is connected — which
is between arrival time slot ac and departure time slot ac + dc + 1 for customer c —
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obviously the following must apply:

ac+dc+1∑
t=ac

λc,t = δc · ec , ∀c ∈ C . (4.15)

To preserve incentive compatibility in the presence of limited price menus, demand
will only arise at flexibility levels offered with a discount. E.g. if the operator sets
no discount for providing one time slot of flexibility and a customer has a maximum
flexibility of one time slot she would provide no flexibility since there is no incentive.
Therefore, Equation (4.16) prevents from starting a charging process after a specific
amount of flexibility time slots if the corresponding price jump does not exist. If
there is no price jump jt−1 charging processes of customer group Ca,f should not be
started as late as t time slots after arrival a but instead at t− 1 (or less) time slots
after arrival a (cf. last paragraph of Section 4.2.2).

σa,f,a+t ≤ jt−1 , ∀a ∈ A,∀f ∈ F>0,∀t ∈ {1, . . . , f} (4.16)
t+t̄λc∑
τ=ac

λc,τ ≥ σa,f,t · δc · ec , ∀a ∈ A, ∀f ∈ F, ∀c ∈ Ca,f , ∀t ∈ T . (4.17)

Equation (4.17) ensures that the requested energy for the particular flexibility level
is allocated within the allowed time window. E.g., if σ0,1,1 = 1 and the minimum
charging duration t̄λc = 3 the charging load variables need to allocate δc · ec units
of energy within arrival ac = 0 and (not including) time slot (t + t̄λc ) = (1 + 3) =
4. The non-linearity σa,f,t · δc in Equation (4.17) is typically already dissolved by
mathematical solvers during model construction since a multiplication of two binary
variables can easier be handled than a linearization of one binary and one continuous
variable as shown in the last subsection.
Finally, allocation commitments need to be covered by generation dispatch:

∑
c∈C

λc,t ≤ ηpt + ηgt , ∀t ∈ T . (4.18)

where ηpt denotes the local renewable energy supply and ηgt denotes the (residual)
energy procured from conventional sources via the grid.
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4.2.4 Objective Function

The company’s goal is to maximize profits by determining an optimal price menu as
well as specifying corresponding dispatch policies. Profits are realized as revenues
(selling energy to EVs at the prices specified in the price menu) minus costs for
conventional generation:

max
p,δ,η,∆,j,u,σ

PUL =
∑
c∈C

(
pf̄c · δc · ec

)
−
∑
t∈T

(ηgt · ct) . (4.19)

The deterministic model is transformed into a stochastic model by optimizing over
multiple (weighted) scenarios s ∈ S with different sets of customer and generation
data while only allowing to specify one single price menu for all scenarios. Therefore,
the company has to define a price menu not knowing which of the scenarios will but
only that any of the scenarios could occur with probability ws:

max
p,δ,η,∆,j,u,σ

PUL =
∑
s∈S

ws ·
(∑
c∈C

(
pf̄s,c · δs,c · es,c

)
−
∑
t∈T

(
ηgs,t · cs,t

))
. (4.20)

The complete stochastic model is provided in Appendix A. If not further specified
the presented optimization problem is solved using the optimization solver Gurobi
5.6.3 with an optimality gap of 1 % between the solution’s objective value and the
best bound.

4.3 General Data and Application Scenario

In order to answer the proposed research questions simulations are conducted. To
ensure the representativity the simulations are built on different real sets of data
where applicable. Demand data (Section 4.3.1) consists of technical EV characteris-
tics and driving / parking behavior and the customer’s utility function. To account
for realistic generation data (Section 4.3.2) measured power signals of a PV panel
are used.
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4.3.1 Demand Data

Relevant EV characteristics for the model proposed in the last section are electricity
consumption, battery capacity, and charging speed. To this end, original car specifi-
cations of a Nissan Leaf with 24 kWh battery capacity (equivalent to the maximum
battery state of charge SOC) and a consumption of 0.18 kWh/km determining a
maximum range of 133 km are used. A charging speed limitation of 11 kilowatt
(kW) is considered, as nowadays charging stations with at least 11 kW are widely
available7. Since direct current charging with higher charging powers requires addi-
tional and potentially more costly infrastructure, the focus is set on standard three
phase alternating current charging.
In order to model EV charging activity in car parks, it is necessary to know

their energy demand and time window of the car park stay. To this end, driving
profiles providing information about a car’s location or status (e.g., at home, at
work, at shopping, driving) and distance traveled over time are used. The German
Mobility Panel (Zumkeller et al., 2011), a representative survey of mobility behavior
in Germany that is continuously recorded since 1997, provides necessary data for
the aforementioned.8 The survey data is wrapped in driving profiles that consist of
driving status, distance driven and location of cars in a 15-minute resolution over a
whole week. Overall 5079 driving profiles are available from this data source.
It is assumed that EV owners have access to a charger at home and therefore

selected trips from the data source start at home and park for one of the following
activities before they return home: shopping, leisure, work, or business trip. Since
most trips of the attained driving profiles clearly undercut the battery capacity, it
is assumed that EV owners do not charge their EVs every time they return home,
which is, e.g., in line with the expected usage behavior of Opel Ampera-e.9 To
account for this, the starting state of charge (SOC0) is set to 75 %. From the 5079
driving profiles, that describe car movement over a whole week each, 9488 individual
trips could be identified that follow the above-mentioned structure (home - parking

7See www.goingelectric.de/stromtankstellen/ for a comprehensive listing of fast charging
stations.

8From MOP data the file “W” is selected. Data description and code plans are available at
mobilitaetspanel.ifv.kit.edu/english/92.php

9http://www.stern.de/auto/fahrberichte/opel-ampera-e-500-kilometer-reichweite--
opels-elektroauto-fuer-jedermann-7235726.html

www.goingelectric.de/stromtankstellen/
mobilitaetspanel.ifv.kit.edu/english/92.php
http://www.stern.de/auto/fahrberichte/opel-ampera-e-500-kilometer-reichweite--opels-elektroauto-fuer-jedermann-7235726.html
http://www.stern.de/auto/fahrberichte/opel-ampera-e-500-kilometer-reichweite--opels-elektroauto-fuer-jedermann-7235726.html
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Figure 4.4: Derived trip data from the German Mobility Panel (Zumkeller et al., 2011)

- home) and are feasible with regards to the simulation length of 24 hours and range
limitation of the assumed EV specifications. The relevant data derived from these
trips representing the EV charging requirements in a car park are time of arrival,
parking duration, and energy demand, depicted in Figure 4.4.
On average around 1000 customers per day visit the examined exemplary car park

in the center of a major city in southern Germany. The left-hand side of Figure 4.5
shows that visits occur mainly during daytime. The German National Platform
for Electric Mobility predicts that EVs will represent approximately 2.5 % of all
passenger cars in Germany in 2020. Commuting from rural into urban areas with
EVs will be one of the most common use cases (Nationale Plattform Elektromobilität,
2012). Since this type of commuters represent a large target group at the analyzed
car park, an above-average EV customer share of 10 % is assumed which results in
100 EV customers per day.
For each of the 100 customers, one of the aforementioned extracted trips is sequen-

tially and randomly drawn with replacement to represent a complete customer data
set for a day. The random drawing is manipulated such that the parking duration
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Figure 4.5: Distribution of empirical data on arrivals, departures and the corresponding
parking duration

of a complete customer data set matches the parking duration distribution of the
exemplary car park (compare parking duration data of Figure 4.5 with Figure 4.4).
The process of generating complete customer data sets for an exemplary day is re-
peated 100 times to ensure statistical reliability. Besides, two separate data sets —
a training and a validation data sample — are generated for the later analysis on
imperfect demand information.
The right-hand side of Figure 4.5 reveals that the customer’s average parking

duration exceeds the necessary average EV charging time (3.5 hours vs. 45 minutes
at 11 kW). This is an indicator that load shifting is a potentially promising use
case in this application scenario. While the applied data source for driving profiles
was recorded mainly with conventional combustion engine vehicle, they can still
be used to create EV models (e.g., Metz and Doetsch, 2012; Schuller et al., 2014).
Fundamental mobility needs can be considered to be fairly stable.
Finally, the customer utility function needs to be added to the customer data

sets. Following Section 4.2.2, the utility function is parameterized with both the
customer’s individual energy demand and the cost for the outside option. The latter
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Figure 4.6: Bimodal distribution of the customers’ cost for the outside option

parameter has a direct effect whether or not to charge at the car park given a specific
price menu. The energy demand is SOC−SOCt, that is derived from the customer’s
attached trip data. Since it is assumed that EV owners own a charger at home they
will therefore consider charging at home as their outside option that can be quantified
with the household electricity rate.
To retain analytic tractability and in lieu of an appropriate data set the customers’

household electricity rate (outside option) is assumed to be normally distributed with
µ = 35 ct/kWh and σ = 5 ct/kWh for two thirds of the population. It is assumed that
the other third is equipped with PV panels at home supplying a major part of their
charging energy at lower costs. The cost for the outside option of this customer group
is modeled to be normally distributed with µ = 10 ct/kWh and σ = 2 ct/kWh. In
total a bimodal distribution is obtained (see Figure 4.6).10 Each customer is assigned
a randomly drawn cost for the outside option from this distribution.

4.3.2 Supply Data

Available energy at the car park consists of renewable energy generated by PV panels
on the car park rooftop and conventional energy supplied by an energy provider.
Measured data from an exemplary PV panel located in the South West of Germany
are used to account for fluctuations in renewable energy generation. Figure 4.7
illustrates the potential influence: Generation data of three exemplary days in July
10Section 4.6 further investigates to what extent the customers’ cost for the outside option affects

the obtained results.
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Figure 4.7: Chosen generation scenario data from exemplary days in July 2013

2013 with appropriate weather conditions were chosen to highlight the extent of
deviations. If not further specified, the optimization is run over the selected unsettled
weather condition scenario. This weather condition is common in Germany and
challenging for the energy system due to the high volatility.
To obtain concrete energy values the dimension of the PV panels fitting on the

car park rooftop needs to be determined. The examined car park has a usable, shad-
owless rooftop space of approximately 2000 square meters. Assuming a generation
power density of 125 Wpeak/m2 (Steuer et al., 2014) PV panels of up to 250 kWp
could be installed. A good balance between supply and demand in terms of provided
energy over the whole year is achieved at 100 kWp, which is defined as the standard
scenario.
In contrast, the conventional energy supplied by an energy provider is stable and

unlimited but not free of charge. It is assumed that this energy can be procured
by the operator at 30 ct/kWh, which — in case of no private PV energy supply —
undercuts the average household electricity rate (compare Figure 4.6). This reflects
reality since commercial or industrial customers consume higher quantities than pri-
vate households which results in lower prices.
A complete overview of all parameters introduced in this and the previous subsec-

tion is depicted in Figure 4.8. The denoted values represent the base case scenario
either based on empirical data or assumptions as aforementioned. These parameters
are sequentially altered in the following subsections.
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4.4 General Results

Cyber-physical systems with ubiquitous sensor-actor infrastructures facilitate new
planning paradigms. A case in point is pricing decisions: Novel dynamic and in-
dividual pricing schemes may enhance profitability by more effectively tapping into
customer willingness-to-pay and by improving capacity utilization levels.
At first, Section 4.4.1 examines the capacity utilization topic with a sensitivity

analysis of the model’s supply side (see the lower part of Figure 4.8). The central as-
pect of this examination is the pricing scheme determination, since the determination
of other decision variables, e.g., scheduling variables, is straight forward. Bitar and
Low (2012) show that the earliest-deadline-first paradigm provides an optimal solu-
tion for the scheduling policy without requiring knowledge about the intermittent
supply process.
While theoretic models allow the determination of “optimal” pricing schemes for

sandbox situations, application to real cases is often impossible to be directly imple-
mented due to computational or memory requirements. Yet, companies will still seek
to exploit the available data in a near-optimal way. In big data analytics, dimension-
reduction techniques are a standard approach to handle large data availability and
extract as much information as possible. As a foundation, Section 4.4.2 investigates
whether the pricing scheme determination in the car park EV charging application
scenario follows a consistent learning process.
Companies generally deal with pricing decisions from two points of view to im-

prove profitability: Both, increased product choice which leverages the degree of
self-selection and increased knowledge about demand can improve profitability. This
reasoning is explored in Section 4.4.3.

4.4.1 Supply-Side Sensitivity Analysis

The objective of this subsection is to examine the impact of the supply side on the
optimal price determination. To perform this sensitivity analysis two parameters
on the supply side are altered: The PV generation capacity that has a direct effect
on the locally produced electricity ηpt and the procurement cost for conventional
electricity ct. The range of values of these parameters are as follows:
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• The PV generation capacity — being a scaling factor for the electricity gen-
eration ηpt — is altered between 25 and 250 kWp with a step size of 5 kWp.
This parameter range covers possible rooftop installations of the examined car
park.

• The cost ct for conventional electricity procured from the grid ηgt is altered
between 25 and 35 ct/kWh with a step size of 1 ct/kWh. In addition, ex-
treme cases with 15, 20, 45 and 50 ct/kWh are selected. A static-in-time cost
structure is assumed: c0 = c1 = ... = ctn .

Each of the latter two parameter setups is simulated 100 times in accordance
with Figure 4.1 with varying customer data to guarantee statistical reliability. The
respective parameter not in alteration is constant (ct = 30 ct/kWh and 100 kWp
for the PV generation capacity). To isolate effects a deviation from the base case
scenario presented in Figure 4.8 is required resulting in the following parameter
setup:

• Regarding the price menu setup, the most restrained case with only two price
levels Jmax is leveraged. Thereby, it is possible to differentiate the customer
decision regarding the provision of flexibility in a binary way. The minimum
extent of a price jump ∆min is set to 0.1 ct/kWh to account for a realistic
setting for the awareness of price differences.

• From the generation scenarios depicted in Figure 4.7 the “unsettled” scenario is
chosen to instantiate ηpt . It is a prototype for a challenging generation scenario.

• Perfect knowledge of demand (see the left side of Figure 4.2) is assumed yielding
a theoretical benchmark.

Figure 4.9 shows the resulting optimal price menus averaged over the 100 reiter-
ations for each simulated parameterization. If a customer chooses the normal price,
she receives a charging service that starts immediately after plugging in the EV. To
qualify for a reduced price, the customer must accept a possible shift in time for her
requested charging service. The car park operator presets a specific duration that
applies to all customers by which the charging service can be shifted at most. Even
though the generation scenario is static, this duration may differ slightly from run
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to run. The price reduction is based on a qualification feature. Hence, the deadline
differentiated pricing scheme can be used to segment customers. Since customer
data is altered from run to run the change in needed duration for the reduced price
is explained. The left-hand side of the figure represents the sensitivity analysis on
the PV generation capacity while the procurement cost is fixed to 30 ct/kWh. Vice
versa, on the right-hand side the PV generation capacity equals 100 kWp.
The prices chosen by the car park operator take values between approximately 29

and 37 ct/kWh. Comparing this value range with the distribution of the customer
valuation determined by her outside option yields a first finding. Customers equipped
with PV panels at home have a valuation for a charging service that is far below
this price range. None of them will request a charging service from the car park
operator. Since this holds in extreme scenarios with low procurement costs or a
high PV generation capacity this cannot be explained by the cost structure of the
car park operator. Instead, the absence of price discrimination causes this behavior.
Providing charging services for this customer group would necessitate considerably
lower prices resulting in a lower overall profit since revenues from the the other
customer group would diminish.
In case of alteration of the PV generation capacity a logistic decrease of both the

high and the low price can be identified. A decrease of prices is a measure to increase
the volume of electricity sold to customers. The car park operator conducts this to
allocate the produced electricity that would otherwise not generate any cash flow.
The gradient moves towards zero after approximately 130 kWp because a saturation
of profitable customers is reached. Further price decreases would increase the sold
volume but not the profit following similar considerations as in the last paragraph.
Based on the normally distributed valuation of customers the amount of gained
additional customers through price decreases diminishes beyond 35 ct/kWh while
the amount of lost profits increases exponentially.
The right-hand side of Figure 4.9 shows the effect of altering the procurement cost.

Obviously, the car park operator sets the prices higher to reduce sales the more he
has to pay for additional electricity procured from the grid. The dependency of both
the normal and the reduced price from procurement cost is linear. The gradient is
significantly lower than one because for a constant PV generation capacity of 100
kWp only a short proportion of the demand is covered by procured electricity (see
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Figure 4.9: Supply-side parameter effects on deadline differentiated prices with two price
levels (Jmax = 2)11

Section 4.5 for more details).

The gradient of the normal price if substantially greater than the gradient of the
reduced price. This difference is connected to the source of electricity used to supply
the charging services. In case of the normal price, the associated charging services
are supplied by procured electricity to a higher extent than the shiftable charging
services that are associated with the reduced price. A greater proportion of the
latter can be supplied by the intermittent but free of cost PV electricity. Hence, the
reduced price is more independent from the procurement cost than the normal price.
Besides, this analysis gives a hint towards answering Research Question 2 from the

customer point of view. The difference between the normal and the reduced price can
be understood as the value the customer gains from offering her temporal flexibility.
This relative discount is depicted on the left plot and its required flexibility on the
right plot respectively in the following two figures. Figure 4.10 presents these key
figures for the sensitivity analysis of the PV generation capacity, whereas Figure 4.12
does for the sensitivity analysis of the procurement cost.

The mean relative price discount ranges between 6 and 9 % ct/kWh of the normal

11If not further specified the following holds for all figures in this section: Error bars denote the
90 % two-sided confidence interval based on 100 observations for each visible data point.
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Figure 4.10: Effect of the car park operator’s PV generation capacity on the relative dis-
count and its required flexibility of deadline differentiated prices in a two price
level setting (Jmax = 2)

price for different PV generation capacities. Significant effects12 of differences in
the PV generation capacity on the relative price discount can only be observed
between 60 and 120 kWp. This may be due to a good balance between demand and
supply in this PV generation capacity region. A good balance exists, if neither the
electricity generated from PV panels superimposes the demand or vice versa. In this
situation temporal flexibility has a high value since shaping demand to the volatile
PV generation is critical for profit maximization (see Figure 4.11). Therefore, the car
park operator offers higher discounts to elicit more shiftable charging services. In a
superimposition situation flexibility has a lower value because demand does not need
to be shaped to be supplied by the free of cost PV electricity. The remaining price
discount in superimposition situations exists due to customer segmentation reasons.
A distinct group of customers with a low valuation can be addressed via the reduced
price without lowering profits from normal price customers. Besides, lowering the
required flexibility while maintaining the price levels is a measure to increase sales
to match surplus of electricity generated from the increased PV capacity.
12A significant difference between two statistical populations exists if the mean value of one pop-

ulation is beyond the confidence interval of the other population at a specific significance level.
For that, the populations represented by the analyzed samples are assumed to be normally
distributed. This condition has been verified with the Shapiro-Wilk test.
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Figure 4.11: Detailed view on specific runs from selected parameter instances based on
Figure 4.10 highlighting superimposition situations.

The impact of the PV generation capacity on the required flexibility to qualify for
the reduced price is linear. Both the mean and its confidence interval width decrease
with increasing capacity. The range of required flexibility is between 2 and 3.5 hours.
This means that a charging service requested by a customer for the reduced price may
be postponed for up to the required amount of temporal flexibility. Comparing the
structure of this plot with the left-hand side of the figure points towards a counter-
intuitive relation. One would expect the same structure for both key figures for the
reason of load shaping. However, load shaping is not the driving factor for low or
high PV generation capacities (cf. Figure 4.11). As before, customer segmentation
might be of higher interest in these parameter ranges, indicated by the difference
in confidence interval widths. By increasing the required flexibility, the number of
possible customers that meet this requirement decreases. This is in line with less
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Figure 4.12: Effect of the car park operator’s procurement cost for conventional energy on
the discount and its required flexibility of deadline differentiated prices in a
two price level setting (Jmax = 2)

available free of cost PV electricity for low PV capacity parameter values. On the
other hand, for high PV capacity parameter values, more customers can be supplied
with free of cost PV electricity. Therefore, the required flexibility is reduced to
increase sales.
These findings motivate another important aspect for a car park operator. Capac-

ity planning for the PV generation and the installation capacity of charging points
— directly affecting the potential number of customers per day — has to be done
jointly for two reasons: First, the car park operator can draw more operative profits
(ignoring investment costs at this point) the higher he sets the PV capacity and the
number of charging points. Second, the non-rationality of consumers that induces
entry barriers should be considered: Increasing the required amount of flexibility
beyond a specific level by setting too low capacities for PV electricity generation
could discourage customers to consume the reduced price charging service.

Finally, Figure 4.12 presents a deep dive into the effects of procurement costs. As
already indicated in Figure 4.9 the price discount increases with the procurement
cost. This effect is significant from 25 ct/kWh onwards. The constant price discount
level at procurement costs between 15 and 25 ct/kWh points towards the previous
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findings. For the reason of customer segmentation, a price discount between 6 and
8 % is chosen that is independent of the analyzed supply-side parameters. On the
other hand, the required flexibility does not depend significantly on procurement
costs in the entire analyzed parameter range. From a theoretical point of view
procurement costs mostly have an effect on the ratio from which energy source the
demand is supplied. Therefore, the required flexibility should always be fairly stable
if the procurement cost is significantly higher than the free of cost PV electricity.
The decreasing trend for lower procurement costs indicates that flexibility becomes
less important if costs for both energy sources converge.
This section already partly addressed Research Question 2. From the point of

view of a customer, the difference between the normal price and the reduced price
represents the value of flexibility. Depending on the concrete parameter setting,
the value amounts to a range between 6 and 12 % of the price customers face for
charging their EVs at a car park. It should be noted that this is only the value
passed to the customer side and that the model considers a monopolist car park
operator. Hence, the customers are offered minimal savings. These savings can be
expected to be higher in a more competitive environment. The value that stays with
the car park operator is highlighted in detail in Section 4.4.3. Secondly, to isolate
supply-side effects the number of price levels has been limited to two. Removing
this restriction will increase the value of flexibility since the possibilities to adapt to
diverse customer properties increase. Across scenarios, the required flexibility can
be fulfilled in most cases by the majority of customers when comparing it with the
empirical parking duration distribution (Figure 4.5).

4.4.2 Consistency of Learning Process

The analysis conducted in the last section is based on perfect knowledge regarding
demand yielding a theoretic benchmark. For the real-world implementation, it is
unusual to assume perfect knowledge. Even with growing digitization it is unlikely
that all demand data will be present to the car park operator to calculate an optimal
price menu for a specific group of customers.13 Instead, it can be assumed, that

13However, scheduling and purchasing of electricity can nearly be decided in real-time. Customers
will have transmitted the critical information needed to conduct these operational actions (e.g.,
parking duration, battery SOC, ...)
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companies will conduct market research to gain indications on valuation, customer
volume etc. Depending on the extent of market research, knowledge of demand will
be vague or more detailed.
In order to simulate this situation, two separate data sets have been constructed

from the same distributions: a training and a validation data set. Each data set
consists of 100 possible demand realizations of a day the car park operator could face
in terms of each customer’s valuation, energy demand, parking duration etc. Since
both data sets are generated from the same distributions they would converge if the
realizations were drawn endlessly. It is assumed that 100 is a sufficiently high number
of realizations to approximate the conversion. Differing levels of demand knowledge
can then be represented by defining the number of randomly drawn realizations from
the training data set used for the stochastic optimization to determine one optimal
price menu. The performance of the resulting price menu is subsequently determined
by applying it to all possible realizations of the validation data set.
Whether a gain of information can be translated into better decisions of the car

park operator depends on the consistency of the learning process. Here, the learning
process is the determination of the price menu conducted by solving the stochastic
optimization model presented in Section 4.2. Following Vapnik (1999) the model of
learning consists of three components applicable to the price menu determination
problem:

• A generator that independently draws a realization vector of customer data ~x
from a fixed but unknown distribution P (~x).

• A supervisor returning the optimal price menu ~p for every realization vector ~x
through a fixed but unknown function.

• A learning machine that implements a set of functions f(~x, α), α ∈ A that
return possible price menus.

The problem of learning is to choose the function that best predicts the supervisor’s
response. The discrepancy between the supervisor’s response and the function’s
determined price menu provided by the learning machine can be measured by a loss
function L(~p, f(~x, α)). The goal is to find a function f(~x, α∗) that minimizes the
expected value of the loss given the training data set. Following the empirical risk
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minimization induction principle, the learning process given the function f(~x, α∗) is
consistent if the empirical expected value of the loss converges to the actual expected
value of the loss.
Applying this concept to the car park operator problem allows identifying whether

the constructed stochastic optimization problem — one specific function f(~x, α) —
is a consistent learning process. If this is given one can be certain that feeding the
problem with more training data improves decision making. The loss function can be
formulated as the relative difference between the profits earned from a stochastically
determined price menu and the profits earned from deterministically determined
price menus being the theoretic optimums. Let p̂(X t) be the stochastically deter-
mined optimal price menu based on the set X t of realization vectors ~xt from the
training data set and p∗(~xt) be the deterministically determined optimal price menu
based on one specific realization vector ~xt from the training data set. Then, the
empirical loss function is

Lemp = 1−

∑
~xt∈Xt

Π(p̂(X t), ~xt)∑
~xt∈Xt

Π(p∗(~xt), ~xt)
,

where Π(p, ~x) is the car park operator profit that results from applying price menu p
to the demand realization ~x. Following Section 4.2.4 the stochastic problem equals
the deterministic problem if only one scenario exists in the stochastic case. Subse-
quently, in that case X t = {~xt} and hence p̂(X t) will be equal to p∗(~xt) yielding
Lemp = 0.
The actual loss function is formulated as follows:

Lact = 1−

∑
~xv∈Xv

Π(p̂(X t), ~xv)∑
~xv∈Xv

Π(p∗(~xv), ~xv)
,

where ~xv ∈ Xv denotes a demand realization of the validation data set and p∗(~xv)
is its deterministically determined optimal price menu. Hence, the denominator is
again a theoretic benchmark for p̂(X t) that is the same stochastically determined
optimal price menu based on the set X t as above. Since the training data set X t and
the validation data set Xv originate from the same distributions the gap between
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the empirical loss Lemp and the actual loss Lact should diminish for an increasing set
X t if the learning process is consistent.

As introduced earlier both the training data set and the validation data set con-
sist of 100 demand realizations each. To avoid random effects each scenario run
is repeated until all training data is utilized and each of these repetitions is val-
idated with the available 100 realizations from the validation data set. E.g., for
a 5 % demand knowledge scenario five of the 100 available realizations from the
training data set are randomly chosen to instantiate the model. This procedure is
repeated 20 times and each time the resulting optimal price menu is validated with
the 100 available realizations from the validation data set. Figure 4.13 depicts the
mean and its 99% confidence interval of the resulting empirical and actual losses
for each demand knowledge scenario plotted on the horizontal axis. Seven instances
of the deadline differentiated pricing scheme with differing numbers of price levels
are simulated. They are grouped into price menus with one price level and price
menus with multiple price levels. As price menus with one price level do not elicit
the temporal flexibility they differ significantly from price menus with multiple price
levels. Since computational expenses to perform the stochastic optimization increase
with the sample size, simulations with demand knowledge up to a maximum of ten
samples (each representing one possible realization) from the training data set were
performed. Additionally, a time limit of 6000 seconds for each optimization is intro-
duced due to the difficulty to prove optimality in certain situations.14

Both plots in Figure 4.13 show the same typical loss structure. The empirical loss
increases with the demand knowledge while the actual loss decreases. Applying a
demand knowledge of one sample from the training data set results in no empirical
loss. With the belief that this one sample represents the population the car park
operator calculates a solution that is optimal for that specific sample. Believing that
only this realization can occur, no better solution exists and therefore the empirical
loss equals zero. When the sample size increases the car park operator needs to
determine one price menu that is adequate for any realization of the applied samples
14Analyzing the solving structure in a sample of difficult problems of this type shows that the

optimal solution is usually found after 10 % of the overall optimization time. The following
90 % of the time the solver is searching for a bound to prove optimality. Therefore, calculated
solutions of optimization problems canceled due to the time limit are most likely optimal but
not proven.
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Figure 4.13: Convergence of the learning process regarding the company profit: Depicted
are the mean losses and the corresponding 99% confidence interval split up
into instantiations of deadline differentiated pricing with one price level and
an aggregation of two to seven price levels.

since he believes that any of these samples could occur. Obviously, an optimized
price menu for each sample (the theoretical optimum) would outperform this solution
yielding an increased empirical loss. The actual loss curve behaves contrary to the
empirical loss curve. The actual loss is high for small sample sizes because the
calculated price menu is optimal for a small training sample but chances are high that
this small sample deviates from a perfect representation of the complete validation
population. The bigger the training sample size, the better the validation population
is represented and therefore the actual loss decreases with demand knowledge. Both
effects cause a decreasing difference between the empirical and the actual risk for a
growing demand knowledge.
In both plots in Figure 4.13 the relative losses do not converge completely. This

is related to limitations on both the convergence gap of the optimization solver and
the sample size that can be processed. However, a convergence for higher sample
sizes is evident which confirms the consistency of the learning process. This means
that gathering more data to increase the demand knowledge and processing it is
beneficial for a car park operator as it increases the decision quality to earn more
profits. A price menu with only one price level converges faster than a price menu
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with multiple price levels. This behavior can be observed because in case of one
price level fewer decision variables need to be determined. Therefore, fewer errors
can be made compared to the multiple price levels where not only more levels but
also the flexibility levels of price jumps need to be determined to meet the volatile
supply profile. In addition, the overall converging loss level in case of multiple price
levels is approximately twice as big as compared to price menus with one price
level. Differences between price menus with multiple price levels are neglectable as
indicated by the narrow confidence intervals.
These findings can explain why complex pricing schemes have not yet been intro-

duced massively to retailing in the energy sector. More information and processing
capabilities are needed to benefit from complex pricing schemes. Either these ca-
pabilities were not available or they were too expensive compared to the potential
gain of applying these pricing schemes. This may change in the following decades
due to several reasons: The information gathering becomes easier because improved
big data approaches are being introduced. Information processing capabilities will
continue to improve due to current developments in the hardware (CPU power) and
software (dramatic solver improvements) industry. Lastly, the reason with probably
the highest leverage is that with a higher RES ratio and lower flexible conventional
supply the need for and the value of demand response applications increase.

4.4.3 Value of Information and Complexity

Before studying the value of information and the value of complexity it is important
to understand the motivation for an aggregator to offer complex pricing schemes
like deadline differentiated pricing. As already partly mentioned earlier, this pricing
concept uses price discounts based on the offered flexibility

(a) to elicit the flexibility potential from customers to shift loads to times of PV
production surplus,

(b) to skim as much customer valuation as possible by segmenting the customers,

(c) or to address different possible demand realizations in case of a deficit in market
information.
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Obviously, the original motivation of this work is to address (a), while (c) is as well
of interest regarding the real-world implementation where perfect information is not
available. Being a consequence of pricing schemes that foster self-selection, (b) is
analyzed in terms of the effect’s magnitude but is not the focus of this work. Since all
of these actions maximize the company profit, actions taken in the simulations using
deadline differentiated pricing will always be the result of a mix of them. In order
to evaluate which of these actions are dominant specific scenarios are defined and
simulated as depicted in Figure 4.14 that isolate the above-mentioned motivations.
The difference between these scenarios is based on fundamental settings regarding
the rationality of customers and the car park operators knowledge about his demand.

Rationality Deviating from the base case scenario with normal rationality a lim-
ited rationality concept is implemented into the model. It intends that customers
are truth-telling regarding their flexibility irrespective of price signals. Thereby mo-
tivation (a) to use deadline differentiated pricing is suppressed. Note that in the
base case scenario customers only offer as much flexibility as needed to qualify for a
lower price level. Therefore, Equation 4.16 is eliminated from the model allowing the
charging to be shifted freely as long as the job is completed during the customer’s
stay. Additionally, since a price menu does not need to be incentive compatible if cus-
tomers are truth-telling the restriction on the minimum jump amount is eliminated
by setting ∆min = −∞ deviating from the base case of 0.1 ct/kWh.

Knowledge Two types of knowledge about demand are assumed: One scenario
without uncertainty at all and another with uncertainty. In the latter case, the car
park operator knows five randomly drawn demand realizations from the training
data set. The resulting price menu is validated with all 100 demand realizations
from the validation data set. Thus, motivation (c) is suppressed in case of imperfect
demand information. PV generation is assumed to be known.

Apart from that, deadline differentiated pricing is performed in different extents
articulated by the number of price levels. Allowing one price level yields a simple
pricing scheme without any discounts. Two price levels satisfy the lowest scaled
version of a deadline differentiated pricing scheme, while five price levels offer a nearly
full coordination freedom as shown later. Figure 4.14 shows the mean company profit
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Figure 4.14: The effect of pricing capabilities under different rationality and knowledge
settings. The average values are enriched by error bars and colored violins
representing the confidence interval and the distribution respectively.

and its distribution depicted by colored violins. Values are relative to the mean
company profit of the best case scenario with limited rationality, perfect knowledge,
and five price levels. Each scenario data point is calculated based on simulation
results from 100 demand realizations.
The upper-left quadrant shows the isolated effect of customer segmentation (b)

on the company profit since both motivations (a) and (c) are suppressed in this
scenario setting. The results show that a significant but minor segmentation effect
exists. It yields a maximum profit increase of less than 3% (from blue to red). More
than two thirds of this segmentation effect can be achieved with two price levels.
In the lower-left quadrant, the effect from (c) is added by introducing uncertainty

to the model. Uncertainty decreases profits by approximately 25% in the simple
pricing setting (blue). With a maximum coordination freedom (red) the profit loss
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from uncertainty is cut by half. Setting a two price levels menu (green) instead
of a one price level menu has no significant effect. Since the effect from (b) is
small in the upper-left quadrant effect and the only parameter that changes is the
knowledge about demand most of the effect seen here is driven by (c). This is based
on the assumption that customer segmentation does not become more attractive
under imperfect knowledge.
Overall a typical effect of imperfect knowledge can be observed: With uncertainty,

the violins that depict the distribution of all observed company profits becomes
longer and less concentrated. The impact of imperfect knowledge is lower in the
normal rationality setting. In case of a maximum coordination freedom (red), it is
approximately 4 % lower even though customers need to be incentivized to elicit
their flexibility. This can be explained by an over-specification phenomenon. While
the limited rationality case is performing better than the normal rationality case on
the training sample that is used to obtain a price menu, this better performance
diminishes when applying this price menu to the complete validation data set. Ap-
parently, the customer segmentation exactly fits the price menu to specific customer
segments that are not exactly matched in the validation data set while the flexibility
elicitation is more robust.
Company profits do not differ significantly if comparing the results of limited and

normal rationality in case of no uncertainty and full coordination freedom. That
means, that the company is able to elicit the needed flexibilities to shift charging
loads to match the generation pattern by monetarily incentivizing customers with a
deadline differentiated pricing scheme with five price levels without loosing profits.
Note that in the limited rationality case by definition all loads are fully flexible and
in the normal rationality case price menus have to be monotone decreasing with flex-
ibility to be incentive compatible. Using the deadline differentiated pricing concept
yields a profit increase of up to 20% (from blue to red) in the normal rationality
case, lowered slightly in case of imperfect knowledge. The profit gain is drastic even
with only two price levels implying that the company can only partition between
customers who want their charging jobs to be started immediately and customers
who accept a limited load shift.

After understanding the basic impact of a deadline differentiated pricing scheme
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Figure 4.15: Average profit gains based on different demand knowledge and price menu
settings.

the following analysis takes a deep dive into the impact of both information and com-
plexity expressed by the simulation parameters demand knowledge and the number
of allowed price levels Jmax. Figure 4.15 is another representation of the simulation
runs performed in Section 4.4.2 and at the same time a detailed view on the lower-
right quadrant of Figure 4.14. Here, the company profits that can be realized with
the validation population are presented. The applied price menus are determined
based on differently-sized samples from the training data set depicted on the hori-
zontal axis. The values of the left plot denote the relative increase in company profit
compared to the simulation scenario with 1% demand knowledge and one price level
representing the bottom line. On the right plot, each price menu scenario has its
own bottom line: the average company profit obtained with a demand knowledge
of 1% with the respective price levels setting. Therefore, Figure 4.15 expresses the
profit gain from more information based on demand knowledge and in case of the
left-hand side increased complexity through more price levels.
From a theoretic point of view allowing more price levels should increase profits

because the car park operator can elicit more load flexibility. The left-hand side
of Figure 4.15 supports this hypothesis, even though contradicting corner cases are
possible because price menus are determined based on a training sample and not
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on the validation population. Controlling the demand knowledge the effect of the
maximum allowed number of price levels Jmax can account for a profit increase up to
30%. The relative increase in company profit from one price menu to another price
menu with an incrementally increased number of allowed price levels drops with more
complex price menus. While the gaps between neighboring pairs of price menus with
up to four price levels are notable, the profit increase with more price levels nearly
diminish. In this model setup, profit gains from increased pricing complexity in low-
to-medium complexity cases clearly outperform increased demand knowledge. For
high complexity cases, this relation does not hold. Instead, for price menus with four
up to seven price levels profit gains are higher from an increased demand knowledge
than from an increased number of price levels. Turning the view to the right-hand
side of Figure 4.15 it can be seen that the impact of the demand knowledge decreases
with higher sample sizes in analogy to the aforementioned effect of the number of
price levels. Controlling the number of price levels the effect of increased demand
knowledge can account for a profit increase between 2 and 8%. Even though this
figure seems to be low compared to the effect of price levels, comparing it with other
industry standards puts it into perspective. E.g., revenue management in the airline
industry increases revenues by 4 to 5% (Talluri and Van Ryzin, 2005, p. 10). The
potential profit gain from an increased demand knowledge is driven by the number of
price levels. It is somewhat logical that the potential from an increased coordination
freedom can better be exploited with more available information. Another indica-
tor that points towards this logic is that the yielded profits for Jmax ∈ {4, 5, 6, 7}
are identical at a demand knowledge of 1% (see the left-hand side of Figure 4.15).
A detailed examination of the resulting price menus reveals that in this case, the
additionally available price levels remain unused in nearly all runs.

Figure 4.16 depicts a detailed view the price menu scenario with four price levels
that exploits most of the coordination potential as shown above. The confidence
intervals indicate that the demand knowledge improves profits significantly. Even
though the gradient does not converge to zero, it is not recommended to apply
a high amount of samples from the training data set. Besides emerging costs to
gather training data in a real-world setting the computational expenditures grow
exponentially. Considering this, a demand knowledge between 2 and 5% should be
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Figure 4.16: Average profit gains in the price menu scenario with four price levels based
on different demand knowledge settings.

chosen depending on the concrete use case.

Another possibility to determine the amount of required information to calculate
reliable price menus based on a limited set of training data is to measure the variabil-
ity of price menus between different samples of the same size. In style of the stability
requirement in stochastic optimization (Kaut and Wallace, 2007), demand knowledge
is perfect if the resulting price menus are stable subject to sampling. Figure 4.17
depicts the highest and the lowest price levels of each price menu15. The reported
values are standard errors of the amounts of the respective price levels and therefore
adjusted for the number of simulated runs that differ due to the limited training data
set16. Results show that the highest price is relatively stable and does not depend
on the sample size. This explains the low dependency of the profit in a price menu
setting with one price level from the demand knowledge (see Figure 4.15). Since
the highest price does not require any flexibility from the customer it addresses the
biggest proportion of the customers. Therefore, one sample already serves enough
data to get a good estimate on the whole population’s willingness-to-pay irrespective
of the flexibility potential.
In contrast, the lowest price represents the price level that elicits most flexibility

from the customers. Therefore, only a small proportion of the customers qualify for
15The price menu setting with one price level is left out for that analysis.
16To recall this natural limitation: With a demand knowledge of 1% 100 samples can be drawn

while, e.g., with a demand knowledge of 5% only 20 samples can be drawn. The number of
simulation runs therefore differ.
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Figure 4.17: Standard error of the highest and lowest price of multi-price-level menues due
to different demand knowledge settings.

this price level yielding a higher variability, at least for price menus with four or more
price levels. The higher the number of price levels, the more demand knowledge is
needed to reduce the variability of the lowest price of a price menu to a satisfying
level. This is in line with the findings from Figure 4.15. An artifact that can be seen
in Figure 4.17 are increasing standard errors with increasing demand knowledge
in case of six or seven price levels up to a demand knowledge of 3%. As already
mentioned there are situations where the maximum allowed number of price levels
are not used because no customers exist in the employed training samples that could
be further addressed by price incentives. In this case, the customers that are not
already addressed by higher price levels have either a too low parking duration or
willingness to pay, or they simply do not matter in relation to the preset optimality
gap. Therefore, the variability first increases until a specific demand knowledge level
at which all runs contain enough information so that setting the lowest price becomes
a relevant decision variable for the sake of optimization.

4.5 Mitigating Renewable Energy Generation
Uncertainty

As introduced earlier, EVs have the ability to make individual mobility sustainable.
In order to leverage this potential, the electricity for EV charging needs to be pro-
vided by RES. The utilization of RES, e.g. wind power for charging can reduce
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lifetime carbon emissions of EVs by more than 75% compared to conventional vehi-
cles (Helms et al., 2010). However, the volatility of this energy source poses several
challenges.
As shown in the last section, through deadline differentiated pricing a car park op-

erator can shape his load curve from EV chargings to follow a volatile supply pattern
with the help of coordinating information systems. Another challenge that has not
yet been addressed in this work is the difficulty to forecast the local generation curve
of RES. In this work’s application scenario this information is needed to determine
suitable prices since the served demand should align with the quantity of costless,
locally produced PV electricity. In case of a deadline differentiated pricing scheme
not only the quantity but also the type of pattern of the generation curve influences
the price determination, e.g., the minimum needed flexibility. To this end, this sec-
tion investigates the following questions given the EV car park scenario comparing
an instantiation of the deadline differentiated pricing scheme approach with a simple
pricing approach:

• How sensitive is the company profit regarding PV generation forecast errors?

• Which share of EV charging demand is satisfied by PV energy in profit optimal
scenarios?

After presenting the case study in Section 4.5.1 highlighting deviations from the
base case (see Section 4.3) the above questions are evaluated in Section 4.5.2.

4.5.1 Case Study Description

Since the focus of this work is on the effects of forecast errors of PV generation,
energy ηp generated by local PV installations is chosen to be the only stochastic
variable. Figure 4.18 depicts the links between the two stages of this instantiation of
the stochastic problem presented in Section 4.2. The price menu, decision variable
of the first stage, is independent of specific realizations of the PV generation. The
car park operator sets a price menu p based on a belief of possible realizations for
the PV generation. Decision variables of the second stage — scheduling of jobs λ
and purchasing missing energy ηg from the grid — are recourse variables, meaning
that they are decided after the realization of the stochastic variable ηp is revealed.
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Figure 4.18: Deadline differentiated pricing as a two-stage stochastic problem.

For the analysis real-world meteorological data from the complete year 2013 is
employed. Measured data from an exemplary PV panel located in the South West
of Germany is used to represent each supply realization of the 365 days of the
year 2013. The transmission system operator responsible for this region, Transnet
BW (Schierenbeck et al., 2010), provides the corresponding forecast. This single
forecast is assumed to represent the whole range of supply realizations of a day.
Therefore, the car park operator determines the first stage decision variables based
on the belief that this single forecast will be realized. The employed forecast data
provides a general trend for the expected PV generation in the region but does not
reflect local fluctuations in the availability of solar irradiation (see Figure 4.19). The
car park’s rooftop could accommodate PV panels of up to 250 kWp which could
exceed the energy demand of 100 EV customers per day. Thus, scenarios with 20,
50, 100, 150, and 200 kWp are investigated.
Deviating from the base case scenario perfect knowledge of demand is assumed in

this case study since the interest is focused on the effect of forecast errors regarding
PV generation. Still, each day of the year is assigned a randomly chosen customer
data realization from the training data set in order to balance any possible customer
data effects.
Considering that customers have limited time to decide which price and shift du-

ration to choose, the number of allowed price levels in a deadline differentiated price
menu is limited. Obviously, this lowers profits for the car park operator, as customers
will only offer the duration required to qualify for a cheaper price level. While this
imposes a constraint on operator profits, its effects are minor. The simulation results
in Section 4.4.3 have shown that allowing the car park operator to set four differ-
ent price levels yields almost optimal profits. The minimum extent of a price jump
∆min is set to 0.1 ct/kWh to account for a realistic setting for the awareness of price
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Figure 4.19: PV generation forecast and realization of an exemplary day in summer 2013.

differences. Hereafter, this instantiation is called DDP. As a benchmark scenario,
a simple pricing approach is chosen that induces “as fast as possible” charging by
omitting price incentives for job shifting. This is based on the current practice where
fixed and mostly linear tariffs are employed for EV charging.
Besides the aforementioned deviations, all other parameters from the base case

scenario presented in Section 4.3 hold.

4.5.2 Evaluating the Impact of RES Uncertainty

This section investigates to what extent the operator profit is affected by forecast
errors of PV generation in DDP and simple pricing regimes. In addition, the impact
of different generation capacities on profit and the ability to utilize local PV to satisfy
EV charging demand is evaluated. For sake of statistical reliability, every day of the
year 2013 is simulated and the resulting profits are compared. Since PV generation
and customer data do differ from day to day, profits are normalized with a best case
benchmark, which is DDP assuming perfect knowledge of the PV generation.

Operator Profit In the following, the effect of forecast errors and PV generation
capacities on the operator profit is evaluated. Forecast errors are assessed by the
dynamic time warping (DTW) distance (Berndt and Clifford, 1994). This error
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Table 4.2: Comparison of the profit loss in different scenarios with the perfect knowledge
benchmark.

Photovoltaic peak power (kWp)
Scenario 20 50 100 150 200
DDP 0.04% 1.09% 3.73% 4.15% 3.88%
Simple Pricing 7.85% 11.59% 15.08% 15.61% 15.77%

measure allows the comparison of time series while accounting for simple differences
as time lags. In contrast to other common measures such as the mean absolute
percentage error, DTW allows to better assess the relative similarity of compared
time series. Applying other metrics (e.g. Euclidian distance) the reported relation
is still consistent.
The results show that DDP reduces the profits losses from inaccurate PV forecasts

in all investigated scenarios by at least 8% in relation to the simple pricing approach
that does not elicit the customer’s demand side flexibility (see Table 4.2). Excluding
the 20 kWp case, that is later shown to be a too pessimistic capacity planning, the
profit losses in the simple pricing approach are more than 4 times higher than DDP
on average. Figure 4.20 shows the comparison between DDP and simple pricing and
the resulting loss relative to the overall benchmark profit per day for all investigated
scenarios. One dot represents the total profit loss generated in the respective pricing
regime for one day. The plot thus allows an assessment of how well the applied
pricing regime exploits the available demand flexibility of served EV customers. On
the x-axis, the forecast error of that simulated day, expressed by the DTW distance,
is depicted.
Both pricing regimes degrade in their performance in the forecast error. The

highest sensitivity regarding the forecast error is observed at a capacity of 100 kWp
expressed by the slope of the trend line. At this capacity, a substantial part of the
available EV charging demand can be covered in an efficient manner. At further
capacity increases forecast errors do not affect the profit loss as much since PV
energy is generated in excess on many days. This is in line with the findings in
Section 4.4.1, where the highest discounts are offered at 100 kWp signaling a good
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Figure 4.20: Effect of forecast errors on optimal profits per day in different scenarios.
Shaded area represents the standard error of the linear trend in the respective
pricing regime.

demand-supply-balance. Similarly, for smaller capacities, energy demand exceeds PV
generation which leads to low forecast error effects. In the 20 and 50 kWp scenarios,
simple pricing is more sensitive to forecast errors than DDP, which is surprising
since setting prices with DDP generally requires more information. Simple pricing
is mainly interested in the overall produced amount of energy to know how many
customers to serve and therefore what price to set. In contrast, DDP additionally
needs to know what length of flexibility is needed to bridge generation gaps. The
ability of DDP to react to forecast errors by rescheduling loads apparently outweighs
this.
With increasing PV capacity this advantage diminishes. Job shifting becomes less

important since the PV generation exceeds energy demand on many days. At 200
kWp simple pricing appears to be less dependent on forecast errors than DDP, but
this effect is not statistically supported.
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Figure 4.21: Load curves on the example day in summer in different generation scenarios.

Load Shape Characteristics The effect of different pricing regimes on the load
shape of the EV chargings in a car park is depicted in Figure 4.21. One can observe
that simple pricing leads to similar, non-responsive load shapes that are mainly
driven by the arrival time at the car park (see Figure 4.5). Differences in the load
shape in the same pricing regime are due to the differing number of customers served
in every scenario and to slight deviations in the resulting schedule that is determined
by the optimization procedure.
At 20 kWp (79 kWh electricity from PV generated on this day) both DDP and

simple pricing lead to a quite similar load pattern and met demand (307 kWh at
DDP vs. 296 kWh at simple pricing). The only difference is the slight shifting of the
EV charging load from the generation minimum on midday to the two generation
shoulders. For higher capacities, this phenomenon is more accentuated.
For 50 kWp (198 kWh electricity from PV generated on this day), the peak in the
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Figure 4.22: Season type differentiated overview of generation scenarios depicted regarding
the share of EV charging demand covered by PV, share of utilized energy, and
share of served energy demand.

low generation times is reduced by DDP resulting in lower served demand (320 kWh
at DDP vs. 474 kWh at simple pricing). In the 150 kWp case (594 kWh electricity
from PV generated on this day), DDP clearly shifts EV charging load from the initial
arrival time to the afternoon hours where PV generation is more abundant while
similarly meeting demand (557 kWh at DDP vs. 550 kWh at simple pricing). The
resemblance in the morning hours with the load shape induced by simple pricing can
be explained by constrained customers that do not offer enough flexibility to make
use of the second generation maximum and are thus served directly at the beginning
of their stay.

Renewable Energy Utilization The scenarios investigated differ in their ability
to effectively utilize the available renewable energy. Figure 4.22 shows the results
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with respect to share of EV charging demand covered by PV generation, the relative
utilization of the generated electricity, and the energy demand share that is being
served overall. The results are faceted with respect to different seasons of a year
that range from summer days with the highest generation over transition days that
can have high energy production but also an increased variation in their generation
pattern up to winter days that exhibit an overall low availability of PV energy. It can
be observed, that DDP increases the share of EV charging demand that is covered by
PV in every scenario. DDP has the highest improvement potential on summer days
in the 50 kWp scenario where it increases the EV charging demand share served
by RES by 30%. The overall utilized share of PV energy decreases in generation
capacity. DDP always has a higher RES utilization rate than simple pricing due
to the possibility to shift jobs to times of high RES generation. In most scenarios,
simple pricing serves a higher share of customers at the expense of procuring energy
from the grid which reduces the potential profit and sustainability gain respectively.
DDP, in turn, can accommodate more customers only when considerable amounts
of PV energy are available.

4.6 Exploring the Impact of Electric Vehicle
Customer Diversity

In order to harness the flexibility potential of EV charging loads, it is necessary to
understand how to influence the charging behavior of EV users. EV charging in car
parks with integrated PV generation will constitute new substantial load clusters in
the near future. These car parks will be frequented by heterogeneous EV customers
who have varying requirements for their energy demand, but also an individual
economic valuation to cover this demand. This heterogeneity can be addressed by
price incentives, e.g., offered through the investigated deadline differentiated pricing
scheme. Furthermore, understanding the habits and the economic behavior of EV
owners facilitates to optimize the utilization of local fluctuating renewable energy
generators like PV systems. In particular, the limiting assumption regarding the
customer valuation introduced in Section 4.3.1 is relaxed, allowing to analyze the
impact of different economic valuation models. Additionally, different levels of timely
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flexibility, expressed by the parking duration in the car park are considered. To
contribute to the existing body of work this section presents answers to the following
question regarding the EV car park case under a deadline differentiated pricing
scheme:

• What is the quantified effect of different utility diversity models on the com-
pany profit?

• What is the quantified effect of different car park types expressed through
deviating parking durations on the company profit?

After presenting the case study in Section 4.6.1 highlighting deviations from the
base case scenario (see Section 4.3) the above questions are evaluated in Section 4.6.2.

4.6.1 Case Study Description

Recapping Section 4.3.1, the utility function of EV owners is determined by their
outside option to EV charging in a car park. As noted in Section 4.2.2 the cost of the
outside option directly affects the customer’s decision to charge at the car park given
a specific price menu. EV owners will consider charging at home as their outside
option as they most probably have a home charging station. Tapping into the concept
of heterogeneity each customer outside option is sampled from a normal distribution
fitted to the home electricity rate in the aforementioned base case scenario. Since
structural influences of the customer’s outside option are investigated in this section,
several statistical distributions to model the diversity of customers’ charging cost at
home are chosen. Besides considering a homogeneous modeling (each customer has
a valuation of 35 ct/kWh), heterogeneous customer bases are modeled based on a
uniform and a normal distribution both with the parameters µ = 35 ct/kWh and
σ = 5 ct/kWh as shown in Fig. 4.23.
Additionally, the influence of different parameter specifications within the hetero-

geneous models is investigated. To this end, additional customer sets are generated
by varying the standard deviation in the normal distribution and the uniform dis-
tribution of the outside option from σ = 1 to σ = 20 ct/kWh.

The customer data is complemented by time specifications regarding the stay at
the car park and energy demands. Both, the arrival times and energy demands are
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Figure 4.23: Distribution scenarios of customers’ outside option for EV charging.

derived from the German mobility panel (Zumkeller et al., 2011) to gain a realistic
behavior. The parking duration is the most important parameter regarding flexibility
potential. Thus, it is parameterized with car park data from a major city in Southern
Germany in the base case scenario. This specific car park is mainly used to park a
car for a mix of shopping, working, and private activities yielding an average parking
duration of 3.5 hours.
This scenario is compared to two other typical car park type models in terms of

the parking duration parameter: Boltze et al. (1994) studied the parking behavior
in Frankfurt where more than 85% of the customers use car parks for shopping and
private activities. The average parking duration amounts to only 2.5 hours while
approximately 20% of customers stay more than 1 hour and only 10% stay more
than 5 hours in a car park. This parking behavior can be described by a Weibull
distribution (λ = 0.3571 and k = 1.5)17.
In contrast, a study of a car park at Ohio State University mainly used by its

employees discovered three typical parking habits (Tulpule et al., 2013): Either em-
ployees park the whole work day which results in a parking range of approximately
8 hours or they leave for lunch resulting in two stays per day each lasting approx-
imately 4 hours. Both habits are modeled as normal distributions with a standard

17The cumulative Weibull distribution function is F (x) = 1− e(−x/λ)k .



124 Deadline Differentiated Pricing for EV Charging

Benchmark Shopping Workplace

0.00

0.03

0.06

0.09

0.12

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Parking duration (h)

R
e
la

tiv
e
 s

h
a
re

Figure 4.24: Parking duration distributions of the different car park types.

deviation of 0.5 hours. The remaining stays are uniformly distributed between 0
and 4 hours possibly being explained by stays of visitors. The parking duration
distributions of the three aforementioned car park types are depicted in Fig. 4.24.
To span the potential car park type impact two artificial scenarios are added: The

first one assumes that each stay lasts just as long as needed to serve the requested
energy demand and the second assumes that each stay lasts until the end of the
simulation day aiming for no flexibility and maximum flexibility respectively.

Since the focus of this section is on analyzing the general effects of customer diver-
sity on deadline differentiated prices and the car park operator profit it is assumed
that he has perfect knowledge of demand and his PV production. The results nev-
ertheless allow important insights into reality as Sections 4.4.2 and 4.5 have shown
that the deadline differentiated pricing concept delivers robust results with respect
to the aforementioned factors under uncertainty. For reasons of statistical relevancy,
each scenario is repeated 100 times with randomly drawn values.
In accordance with the last section, the number of allowed price levels is limited to

four and the minimum price jump ∆min is set to 0.1 ct/kWh. From the generation
scenarios depicted in Figure 4.7 the “unsettled” scenario is chosen to instantiate ηpt .
The PV capacity on the car parks rooftop is assumed to have a peak power of 100
kWp which has proven to be a good balance between demand and supply in terms
of provided energy over the whole year. The remaining unmentioned parameters
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Table 4.3: Mean profits per day and respective 95% confidence intervals under different
customer utility diversity models (µ = 35 ct/kWh) and non-homogeneous sce-
narios (σ = 5 ct/kWh).

Profit per day (EUR)
Scenario Mean CI2.5% CI97.5%

Homogeneous 157.38 156.72 158.05
Uniform distribution 133.56 132.38 134.73
Normal distribution 133.98 132.97 135.00

remain as presented in the base case scenario.

4.6.2 Evaluating Customer Diversity Models

Table 4.3 shows that there are substantial differences between the homogeneous and
heterogeneous modeling of the outside option diversity. In the homogeneous scenario,
the car park operator has an easy to solve situation: He can either set a price slightly
below the valuation level inducing all customers to charge their EV in the car park
and additionally offer minimum discounts for the allowance of load shifting. Or he
can set prices above the homogeneous valuation and only pick flexible customers
through setting the discounted prices slightly below the valuation level.
In the heterogeneous scenario setting the price to the mean (35 ct/kWh) would

result in loosing approximately half of the customers. Therefore the car park oper-
ator needs to decide whether it is more profitable to meet the mass demand or to
focus on the high-value customers at the expense of either margins or sales volume
respectively. This implies that the — especially in macroeconomics — widely ac-
cepted homogeneous modeling of customer utilities is inaccurate for such an analysis.
The significant influence shows that it is inevitable to precisely model the diversity
of customer outside options in order to achieve meaningful and accurate results.
Regarding the different investigated types of distribution for heterogeneous model-
ing, no significant differences can be identified if controlled for mean and standard
deviation. This holds for other typical symmetric distribution types.
Analyzing different heterogeneous distribution parameterizations, dependencies
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Figure 4.25: Intradistributional analysis of customer utility diversity with µ = 35 ct/kWh
and varying σ. Profits are normalized to the maximum profit of all runs.

between the extent of heterogeneity and the outcomes can be identified. Fig. 4.25
shows the results of the intradistributional analysis. The simulation outcomes highly
depend on the distribution spread (standard deviation) in both heterogeneous utility
diversity models. This implies that besides using a heterogeneous model it is crucial
to accurately model the customer base in order to obtain precise results.
Interestingly, the effect of the distribution spread is non-linear. While the company

benefits from a customer base with a low utility diversity spread approximating the
homogeneous case because it is easier to allocate the mass, the company as well
benefits from a very heterogeneous customer base. This can be explained best by
recalling Fig. 4.23: The more widespread the distribution, the higher the amount of
customers that have a valuation far above the cost level for the energy mix of the
car park. When this ratio of customers exceeds a specific threshold of approximately
7 ct/kWh, the company benefits from heterogeneity in a polynomial function by
switching the aforementioned strategies of margins and sales volume.
Additionally, in high-heterogeneous settings the investigated heterogeneous utility

diversity models substantially differ in terms of the relative company profit, showing
a higher outcome for the uniform distribution. A reason for that behavior is the
characteristic difference between these distribution types. While the normal distri-
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Figure 4.26: Car park type analysis regarding the parking duration. Profits are normalized
to the median profit of the maximum flexibility scenario.

bution has a strong unimodal character and therefore still has big mass in the area
around µ = 35 ct/kWh even for high values of σ, the uniform distribution possesses
a higher ratio of customers in high price regions. Therefore the car park operator is
in the position to set high prices while serving more customers than in the normal
distribution case.

Focusing on the other parameter variation, Fig. 4.26 highlights the effect of differ-
ent car park types which highly affects the characteristic parking duration. In me-
dian, the potential of flexibility exploited by deadline differentiated prices amounts
to approximately 40% in profit if comparing the two most extreme scenarios of no
flexibility and full flexibility. Since longer time frames result in more freedom for
the operator to allocate fluctuating PV energy to charging jobs, the amount of con-
ventional energy acquisition and therefore respective costs for the energy mix of the
car park decrease. This is the reason why profits positively correlate with higher
flexibility.
Furthermore, the results show that all non-artificial car park scenarios significantly

differ from the bottom line of having no flexibility respectively offering no pricing
scheme that elicits flexibility. The ranking of profits earned between the car park
types is in line with the parking durations depicted in Figure 4.24. Since these
differences are substantial, car park operators should be aware of using suitable data
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when evaluating a demand side management approach for EV charging and invest
considerable resources in EV customer modeling and insight.

4.7 Discussion

Electric vehicle charging is considered a prime case of load flexibility in future smart
grids being a large, but also a quite flexible load. With the expected increasing
market penetration of electric vehicles, car parks will constitute major future load
clusters. In order to enable a sustainable individual mobility, electricity for charging
of electric vehicles needs to be provided by renewable energy sources. Considering
economic efficiency, the electricity should be generated locally to impede costs for
grid expansions. To this end, charging requests from electric vehicles need to be
coordinated according to local grid and supply conditions. Temporal charging flex-
ibility can be leveraged to increase utilization of local generation. Price incentives
are one major mechanism to achieve this goal.

This chapter examines a scenario where electric vehicles are charged in a city car
park with local photovoltaic generation. A deadline differentiated pricing approach
is employed to create incentives for electric vehicles customers to offer their load
flexibility to the car park operator. Prices are set by the car park operator in a
profit-maximizing manner considering both his free of cost electricity from photo-
voltaic generators and additionally purchased electricity from the grid. Simulations
are conducted based on the formulation of a stochastic mixed-integer optimization
problem and empirical mobility and generation data. The results of the analysis
on the value of flexibility show that using a deadline differentiated pricing approach
increases profits by up to 30% on average comparing it with a simple pricing ap-
proach. In most cases, the value of complexity outperforms the value of information.
However, being confronted with a price menu with various options could be too time-
consuming, e.g., in a setting where a car enters a car park. Reducing the number
of price levels to four, still, allows exploiting most of the flexibility potential in the
analyzed simulation setting.
Forecast errors regarding energy generation from photovoltaic sources are common

but can be addressed by the temporal flexibility of electric vehicle charging. It is
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shown that deadline differentiated pricing is resilient to inaccurate forecasts for pho-
tovoltaic energy generation. Profit losses due to forecast errors are four times higher
in a simple pricing approach compared to deadline differentiated prices. Addition-
ally, deadline differentiated pricing increases the share of charging demand covered
by renewable energy by up to 30%.
For an effective grid integration, it is necessary to understand how to influence the

charging behavior of EV customers. The car park operator might set price menus —
besides incentivizing customers to reveal their flexibility — to divide customers into
low- and high-value customer segments to better skim margins using the diversity
of customer flexibility. It is shown that customer segmentation plays a tangential
role compared to the load flexibility potential, especially in a realistic setting with
imperfect knowledge. Regarding modeling EV customers, e.g., for the reason of an
ex-ante profit estimation, there are diverse ways including homogeneous and diverse
heterogeneous models. Therefore, the effect of different utility diversity models and
car park types on EV charging in a car park is analyzed. The results indicate that
a homogeneous customer utility model overestimates the car park operator profits
by more than 17% as compared to a realistic heterogeneous model. Different types
of symmetric heterogeneous customer utility models do not significantly differ from
each other in all but extreme parameter settings. Besides, it can be observed that the
car park type, and thus the customer parking duration drives the attained profits.
Therefore car park operators should be aware of using suitable data when evaluating
price models and invest considerable resources in EV customer modeling and insight.

Further work should investigate sensitivity analyses and imperfect knowledge of
other parameters depicted in Figure 4.8 regarding the potential profit of the car park
operator. Especially increasing the EV penetration scenario with up to 100% EV
shares and assessing the resulting flexibility potential would be of great interest to
investigate the long-term vision of a sustainable individual mobility. Besides, the
customer acceptance of the studied type of pricing regime should be explored to
validate the parameterization (e.g. Dütschke and Paetz, 2013).
The presented model focuses on the operational level of EV charging. Future

work could focus on the strategic level and consider the investment costs for PV
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generators as a decision variable in the optimization. This would implicate increasing
the model complexity by adding a pre-stage for the investment decision yielding a
multi-stage stochastic problem. Since this would most probably be computationally
too expensive the presented simulation model could serve as a basis to understand
the customer behavior and model it by parameters for a strategic simulation.
The presented model abstracts from the energy market by assuming that supply

consists of local photovoltaic generation and an unlimited but costly conventional
supply from the grid. This modeling has a good fit for the short-term but could be
obsolete for an energy system approximating a 100% RES share. It is still an open
discussion whether renewables should be integrated on a local level constituting local
markets or assuming a giant copper plate one global market for an interconnected
power grid (e.g., Lund and Münster, 2006). To be more precise the aggregator could
purchase electricity from an explicit model representation of a market capturing
the effect on market prices. A model that addresses these issues is developed and
presented in Chapter 5.
Recalling the morphological box from Chapter 3 there are different ideas how to

further develop the deadline differentiated pricing scheme. The presented scheme
“only” addresses the temporal flexibility. Since electric vehicles have batteries they
can also offer a form of quantity flexibility. One could think of a situation where a
customer does not urgently need a full battery but instead a specific state of charge
for the next trip. This would open up the solution space for the car park operator
by adding the option of load shedding while still considering the current challenge
of EV range anxiety. Other extensions could address a differentiation on the job
duration (e.g., Negrete-Pincetic et al., 2016) or limited reliability for a charging
request (e.g., Siddiqi and Baughman, 1993).



Chapter 5

Market Transaction Objects on
Wholesale Markets

All over the world, motivated by environmental, political and economic reasons,
large shares of RES are being integrated into energy systems. This trend is

expected to continue, as many countries have set ambitious goals of 80% or more
of their electricity to be produced by RES by 2050 (Notenboom et al., 2012). As
extensively reported in the literature, the integration of RES poses several challenges
to the operation, planning, and markets of power and energy systems (Perez-Arriaga
et al., 2012; Bird et al., 2013). Many of these challenges are related to the inherent
volatility and uncertainty of some RES (e.g., wind and solar energy), which require
adequate levels of flexibility to handle sudden changes in power generation (Lannoye
et al., 2012).1

Historically, this flexibility has been provided by conventional generation units,
such as pumped hydro storage plants, or gas-fired power plants; however, for large
shares of RES, relying only on the supply side flexibility would require a large num-
ber of backup units, which is both economically inefficient and could hinder the
environmental benefits of using RES (Cochran et al., 2014). In this setting, ex-
ploiting the demand as an additional source of flexibility through DR mechanisms
becomes an appealing alternative to facilitate the efficient integration of large shares
of RES (IEA, 2014).
This chapter studies the impact of consumer preferences on both the portfolio and

1Please note that this chapter builds on a paper that is currently under review at the IEEE
Transactions on Smart Grid (Salah et al., 2017).
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surplus of a DR aggregator. Elements of the satisficing theory are used in order
to model consumer behavior in a tractable way. Hence, consumer preferences are
incorporated into electricity markets models, facilitating the design of DR programs
and incentive schemes. A model to determine the incentives offered by an aggregator
to consumers for joining different DR contracts is proposed. The aggregator partici-
pates in both day-ahead and real-time markets with the objective of maximizing its
operational surplus.
In specific, the main contributions of this chapter include:

• Modeling of consumers in electricity markets using elements of the satisficing
theory as an alternative to welfare maximizing consumers.

• Three-stage electricity market model encompassing interactions between con-
sumers and aggregators for calculating premiums for the participation of con-
sumers as DR providers.

• Several numerical simulations which quantify the value of flexibility and the
impacts of modeling consumers’ preferences on DR programs.

The remainder of this chapter is organized as follows. The next section is fur-
ther evaluating existing work in the area of modeling DR aggregators and consumer
preferences. Section 5.2 presents the model structure and mathematical formulation
of this work. Section 5.3.1 details the scenario setup and data used. Section 5.3.2
presents and discusses several case studies with numerical results. Finally, conclu-
sions are depicted in Section 5.4.

5.1 Related Work

This section revisits existing aggregation concepts for demand response. Further-
more, possible options to represent consumer preferences are presented with respect
to their applicability and reality approximation.

5.1.1 Demand Response Schemes and Aggregators

Several works explore different dimensions of DR from the perspective of the system
operator, aggregators, and consumers. Vardakas et al. (2015) and Deng et al. (2015)
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present detailed surveys of DR in which different problems of DR are studied. These
surveys detail how to model different DR problems, what type of mathematical
problem and which approaches can be used to solve them. In the context of a
DR aggregator and its interaction with wholesale markets and consumers, different
characteristics have been studied in recent papers. Nguyen and Le (2015) study a
microgrid DR aggregator participating in wholesale markets. The aggregator serves
energy to its customers using the grid and several distributed energy resources inside
the microgrid. Also, a risk management scheme is used to control uncertainty.
Parvania et al. (2013) present a scheduling scheme for DR resources, based on

day-ahead prices, whereas Parvania et al. (2014) directly include DR resources in the
system operator’s day-ahead scheduling problem. Henriquez et al. (2017) develop a
bi-level optimization problem that analyzes the interaction between the aggregator
and the system operator while considering a portfolio of DR contracts to modify the
aggregator’s load generated by its customers. These works study distinct aspects of
a DR aggregator, however, the behavior of consumers is neglected since it is assumed
that the DR resources are already available (i.e. the contracts are already signed).
Gkatzikis et al. (2013) present a three-level hierarchical DR scheme, in which the

aggregator interacts with the system operator and its consumers in a non-cooperative
pattern. The consumer objective is to maximize his surplus, considering a compen-
sation received by the aggregator minus its incurred dissatisfaction for modifying his
load. However, in this model, a disutility is considered in an aggregated way ex-
pressed as a deviation from a reference consumption, and not on an appliance level
neglecting a key parameter for dissatisfaction.

5.1.2 Consumer Preferences

In addition to several technical challenges related to the implementation of DR
schemes, e.g., control, communications, grid upgrades, there is a particularly chal-
lenging key issue of DR: Bringing user preferences into consideration. In order to
address this issue, modeling how consumers make decisions when it comes to elec-
tricity consumption is a requirement.
In this regard, a large part of the available literature of DR focuses on model-

ing consumers behavior using the homo-economicus perspective: welfare maximizer
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agents with infinite abilities to perform rational decisions. However, there is ex-
tensive evidence in behavioral economics (Henrich et al., 2001; Frank, 1987; Kluver
et al., 2014), psychology (Todd and Gigerenzer, 2003; Yamagishi et al., 2014) and
biology (Fehr and Fischbacher, 2003) against this canonical assumption for consumer
behavior.
An alternative way of modeling user behavior is the satisficing theory (Simon, 1955,

1956). According to this theory, users have bounded rationality for making decisions;
thus, unlike the widely used perspective, satisficing consumers just choose options
that satisfy a certain aspiration level. The applications of satisficing theory have
spanned several disciplines including economics (Bansal and Maglaras, 2009; Bolton
and Faure-Grimaud, 2010), decision making (Nakayama and Sawaragi, 1984; Stirling,
2003; Peng, 2013), industrial organization (Spiegler, 2011) and control problems
(Goodrich et al., 1998; Ren et al., 2002; Binazadeh and Shafiei, 2013). To date,
there are no explicit applications of satisficing theory elements to demand response
problems.

5.2 Model Formulation

This section presents an optimization model to design the optimal portfolio of con-
tracts of a DR aggregator. Table 5.1 provides an overview of the sets, variables,
and parameters used in this model. The proposed model, illustrated in Figure 5.1,
considers the interactions between players in three categories: the consumers, the
DR aggregator, and the wholesale energy markets represented by the ISO. These
interactions occur in 3 different stages: 1) a planning stage, 2) a day-ahead stage,
and 3) a real-time market stage.
The aggregator-market interactions are characterized by the bidding of energy in

the day-ahead market, and subsequent bidding of up- and down-regulation in the
real-time market for the sake of profit maximization, while the market is cleared by
the ISO on a minimum-cost basis.2 This interaction, depicted on the right side of
Figure 5.1, is modeled using the bi-level formulation proposed by Henriquez et al.

2Since the model presented in this chapter refers to the US energy market, the applied market
structure and used terms might slightly deviate from illustrations in Section 2.2. Notwithstand-
ing, the main idea is transferable to the German market.
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(2017), which is described in detail in Subsection 5.2.1 and extended by modeling
the aggregator-consumer interaction described next.
In the long term, the interaction between the aggregator and his consumers is

characterized by the contracting of a supply option: Consumers either arbitrarily
purchase energy at a fixed price per kWh, or they agree on a DR contract for a
reward. The DR contract allows the aggregator to shift the consumers’ loads in
a limited time range. Consumers choose a supply contract based on the reward
offered by the aggregator, their aspiration level, and their disutility function. The
consumers’ decision-making process yields an additional lower level problem, which
is completely integrated into the aggregator’s profit-maximization problem as a set
of constraints using satisficing theory. This formulation is described in detail in
Subsection 5.2.2.
In basic terms, the trade-off faced by the aggregator is as follows: The higher

the premiums offered to consumers, the more consumers decide to participate in a
DR scheme. At the same time, the bigger the portfolio of consumers of the DR
aggregator, the more revenue it can obtain from its market participation. In this
regard, the purpose of the model is to calculate the optimal premiums to be offered
to consumers for their participation in different DR schemes, in order to maximize
the total profits of the aggregator.

Table 5.1: Model decision variables, parameters, and sets

Decision variable Unit Domain

Premium for signing a DR contract ρDR,δ $/MWh R+
0

Premium for permitting to dispatch by
window τ

ρDR,τ $/(MWh·τ) R+
0

Consumer c’s decision to sign an energy
load contract

δc binary

Permitted dispatch window of consumer c τc N0

Permitted dispatch window of consumer c,
before original time slot

τBc N0

Permitted dispatch window of consumer c,
after original time slot

τAc N0
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Dispatch restriction variable for DR con-
tracts

RDR
tc binary

Auxiliary dispatch variable (switch up) for
non-preemption

SU
tc binary

Auxiliary dispatch variable (switch down)
for non-preemption

SD
tc binary

Dispatch power variable for DR contracts PDR
dωtc MW R+

0

Power purchased in the day-ahead market
for the aggregator’s resources

PA,D
dt MW R+

0

Up adjustment cleared in real-time mar-
ket of generator g with respect to the day-
ahead schedule

PU
dωgt MW R+

0

Down adjustment cleared in real-time mar-
ket of generator g with respect to the day-
ahead schedule

PD
dωgt MW R+

0

Real-time market price λRdωt $/MW R+
0

Maximum adjustment offered to the real-
time auction by the aggregator

P̄A,R
dωt MW R+

0

Adjustment clearance of aggregator re-
sources at real-time stage

PA,R
dωt MW R+

0

Bid of the aggregator for offering additional
production at the real-time stage (if PA,R

dωt

positive) or bid for repurchase at the real-
time stage (if PA,R

dωt negative)

biddωt $/MW R+
0

Parameter Unit Domain

Disutility of consumer c for permitting dis-
patch

U τ−
c $/(MWh·f(τ)) R+

0

Aspiration level of consumer c including his
disutility to sign an energy load contract

Ac $/MWh R+
0

Time slot where consumer c’s appliance
should originally run

τOc N0
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Earliest time slot where consumer c’s ap-
pliance can start running

τSc N0

Latest time slot where consumer c’s job
should end

τEc N0

Total energy needed for the job of con-
sumer c

TEc MWh R+
0

End consumer price for energy λC $/MWh R+
0

Power demand from fixed load contracts PFL
dt MWh R+

0

Weight of day d κd R+
0

Day-ahead market price λDdt $/MWh R

Available capacity for up-regulation of gen-
erator g offered at real-time stage

P̄U
dgt MW R+

0

Available capacity for down-regulation of
generator g offered at real-time stage

P̄D
dgt MW R+

0

Price offer of generator g for up-regulation
at real-time stage

cUdgt $/MW R+
0

Price offer of generator g for down-
regulation at real-time stage

cDdgt $/MW R+
0

Weight of scenario ω in day d γdω R+
0

Net balance (actual net demand minus
day-ahead forecasted net demand) at real-
time stage

PN
dωt MW R+

0

Set

Set of days {d0, . . . , dj} d ∈ D
Set of scenarios {ω0, . . . , ωk} ω ⊆ Wd

Set of simulation time slots {t0, ..., tl} t ∈ T
Set of consumers {c0, ..., cm} c ∈ C
Set of generators {g0, ..., gn} g ∈ G
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5.2.1 Aggregator-Market Interaction

The DR aggregator must procure the energy needed to meet its consumers’ demands
(from both fixed-load contracts and DR contracts) by participating in two different
energy markets: The day-ahead market and the real-time market. As discussed
by Henriquez et al. (2017), DR aggregators can obtain profits from participating in
these two markets by strategically bidding their consumption to buy energy during
low-price hours, and sell their surplus during high-price hours. Such results rest on
the assumption of the aggregator being a price taker entity in a large day-ahead
market with high liquidity, and a price maker entity in the much smaller real-time
market, where the aggregator is the only participant with shifting capabilities.3

In this work, a similar approach is used to model market interactions. Thus,
the following results are subject to the same assumptions. As a price taker entity
in the day-ahead market, the DR aggregator bids a desired quantity (energy) at a
known market price. On the other hand, it can act strategically in the real-time
market, bidding blocks of energy at different prices, where the competitors’ bids are
assumed to be known, and the cleared price and quantities are determined by a
cost-minimizing ISO.
In order to consider the aforementioned characteristics, a bi-level optimization

model is used in which the upper level (UL) represents the problem of profit maxi-
mization of the aggregator, while the lower level (LL) problem represents the real-
time market clearing process performed by the ISO in a single-price auction setting.
For the sake of simplicity, ∀g means ∀g ∈ G, ∀t means ∀t ∈ T , ∀d means ∀d ∈ D,
and ∀ω means ∀ω ∈ Wd.

The Aggregator’s UL Problem PUL:

max
∑
d∈D

κd

 ∑
ω∈Wd

[
γdω

∑
t∈T

(
λDdtP

A,D
dt + λRdωtP

A,R
dωt

)]
+R(ρDR,τ , ρDR,δ)

 (1a)

3This is the case, e.g., in Germany as illustrated in Section 2.2.2.
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subject to:

PA,D
dt + PA,R

dωt = −(PFL
dt +

∑
c∈C

PDR
dωtc), ∀d,∀ω,∀t (1b)

δc, τc ∈ K(ρDR,δ, ρDR,τ ) (consumer constraints) (1c)

PDR
dwtc ∈ S(δc, τc) (scheduling constraints) (1d)

P̄A,R
dωt ≥ 0, ∀ω,∀t (1e)

λRdωt, P
A,R
dωt ∈ arg{PLL,R

dω }, ∀d,∀ω,∀t (1f)

The decision variables of the DR aggregator are PA,D
dt , P̄A,R

dωt , biddωt and PDR
dωtc. The

UL objective function (1a) includes the expected surplus of the aggregator in the
day-ahead and real-time markets and revenues generated by consumer contracts
(R), detailed in Section 5.2.2. Equation (1b) ensures that the load of the aggre-
gator’s consumers is supplied by the energy purchased in both markets. Consumer
constraints (1c) and contract scheduling constraints (1d) are presented in detail in
the following Sections 5.2.2 and 5.2.2. Equation (1e) enforces non-negativity of
P̄A,R
dωt , which represents a symmetrical offer in the real-time market. Finally, real-

time prices and cleared quantities are the results of solving the ISO’s LL problem
(real-time market clearing), as represented by equation (1f).

The ISO’s LL Problem PLL,R
dω , ∀d, ω:

min
∑
t∈T

 ∑
g∈G

(
cUdgtP

U
dgt − cDdgtPD

dgt

)
+ biddωtPA,R

dωt

 (2a)

subject to:

∑
g∈G

[PU
dωgt − PD

dωgt] + PA,R
dωt = PN

dωt : λRdωt, ∀t (2b)

0 ≤ PU
dωgt ≤ P̄U

dgt, ∀g,∀t (2c)

0 ≤ PD
dωgt ≤ P̄D

dgt, ∀g,∀t (2d)

−P̄A,R
dωt ≤ PA,R

dωt ≤ P̄A,R
dωt , ∀t (2e)

where PU
dgt, PD

dgt and P
A,R
dωt are the ISO’s decision variables and λRdωt is the real-time
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market clearing price. The LL objective function (2a) includes the total cost to
set balance in the real-time market; that is, the cost of providing up- or down-
regulation from available balancing generators and the DR aggregator. The cost of
up-regulation will be positive since it represents the purchase of energy not cleared in
the day-ahead market, whereas the cost of down-regulation is a negative value since
it represents energy that is repurchased by the producers with respect to their cleared
quantities in the day-ahead market. Equation (2b) represents the demand-supply
balance, and equations (2c)-(2e) limit the output generation of each participant to
its offered quantities.
The complete stochastic programs are provided in Appendix B. This bi-level for-

mulation is recast as a single level problem using the Karush-Kuhn-Tucker optimality
conditions of the LL problem in a similar way as presented by Henriquez et al. (2017).

5.2.2 Aggregator-Consumer Interaction

In the long-term, the DR aggregator and the consumers negotiate the terms of the DR
contracts. By entering into a DR contract, consumers allow the aggregator to shift
their load within a given time window and receive a two-part reward. It is assumed
that the consumers’ decision strategies follow the satisficing theory, introduced by
Herbert A. Simon in 1956 (Simon, 1956). Thus, instead of maximizing a consumer’s
utility function, consumer decisions are determined by a welfare threshold, known
as the aspiration level, which can be different from consumer to consumer. The idea
behind this approach is that consumers normally lack either sufficient information
or time to make welfare maximizing decisions, and therefore they are satisfied with
any solution that yields a welfare exceeding their aspiration level.

Consumer Constraints

Equation (1c) of the aggregator’s UL problem represents the set of constraints re-
lating the premiums offered by the aggregator and the consumers’ decisions. For
welfare maximizing consumers, this would correspond to the optimality conditions
of the consumers’ problems; however, in the case of satisficing consumers, this is
reduced to a set of linear constraints. For the sake of simplicity, ∀c means ∀c ∈ C in
the consumers’ LL problems PLL,C

dω .
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The consumer’s welfare is defined as the premiums minus the disutility introduced
by the DR contracts. For a consumer to join the contract (δc = 1), its welfare must be
greater than or equal to a non-negative aspiration level Ac, as represented by equation
(1c-a). The premium consists of two terms; the first term represents a premium for
joining a DR contract, regardless of its characteristics, whereas the second term
represents a premium proportional to the size of the time window (integer) in which
the consumer allows the aggregator to shift its load. The aggregator is assumed
to offer a premium proportional to the size of the window; however, the disutility
of consumers increase nonlinearly with this size4. Note that Equation 1c-a is not
a binding inequality for all consumers since premiums are determined once for all
consumers. The set K(ρDR,δ, ρDR,τ ) is defined as:

premium for consumer c︷ ︸︸ ︷
ρDR,δ · δc + ρDR,τ · τc−

disutility of c︷ ︸︸ ︷
f(τc) · U τ−

c ≥ δc · Ac, ∀c (1c-a)
τS
c −1∑
t=0

RDR
dωtc = 0, ∀d,∀ω,∀c (1c-b)

tl∑
t=τE

c +1
RDR
dωtc = 0, ∀d,∀ω,∀c (1c-c)

τBc ≤M · δc, ∀c (1c-d)

τAc ≤M · δc, ∀c (1c-e)

τBc ≤ τOc − τSc , ∀c (1c-f)

τAc ≤ τEc − τOc , ∀c (1c-g)

τc ≥ τBc + τAc , ∀c (1c-h)

δc, R
DR
dωtc ∈ {0, 1}, ∀d,∀ω,∀t,∀c (1c-j)

τc, τ
B
c , τ

A
c ∈ N, ∀c (1c-k)

Equations (1c-b) and (1c-c) restrict the feasible window in which a consumer’s
appliance can run due to technical constraints or consumer preferences. Parameter
τBc represents the time that the load under contract c can be advanced with respect
to the original time of operation τOc . Similarly, τAc represents the time that the load

4At this stage the abstract formulation f(·) for the non-linear disutility function is used. In
Section 5.3.1 this function is specified for the presented application scenario.
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can be delayed. Equations (1c-d) and (1c-e) force the dispatch window to zero if the
DR contract is not taken. Equations (1c-f) and (1c-g) limit the feasible sizes of the
dispatch windows. Equation (1c-h) establishes the relation between τc, τAc , and τBc .

Scheduling Constraints S(δc, τc)

The set S(δc, τc) is defined as follows:

RDR
dωτO

c c
= 1 ∀d,∀ω,∀c (1d-a)

τO
c −1∑
t=0

RDR
dωtc ≤ τBc ∀d,∀ω,∀c (1d-b)

tl∑
t=τO

c +1
RDR
dωtc ≤ τAc ∀d,∀ω,∀c (1d-c)

M ·RDR
dωtc ≥ PDR

dωtc ∀d,∀ω,∀t,∀c (1d-d)∑
t∈T

PDR
dωtc = δc · TEc ∀d,∀ω,∀c (1d-e)

RDR
dωtc −RDR

dω,t+1,c ≤ SD
tc ∀d,∀ω,∀c,∀t ∈ T \ tl (1d-f)

RDR
dω,t+1,c −RDR

dωtc ≤ SU
tc ∀d,∀ω,∀c,∀t ∈ T \ tl (1d-g)∑

t∈T
SD
tc ≤ 1 ∀c (1d-h)

∑
t∈T

SU
tc ≤ 1 ∀c (1d-i)

SD
tc, S

U
tc, R

DR
dωtc ∈ {0, 1} ∀d,∀ω,∀t,∀c (1d-j)

Equation (1d-a) ensures that the load can be served at the original time of operation,
irrespective of τc. Equations (1d-b) and (1d-c) constrain the time window in which
the consumer’s load can be dispatch (RDR

dωtc) according to the contract agreement.
PDR
dωtc stands for the actual power being delivered to the consumer at each time,

which can only be positive within the dispatchable time window, as indicated in
Equation (1d-d). Equation (1d-e) ensures that the total demand of each consumer is
met. The rest of the equations are needed to guarantee a non-preemptive, continuous
time window around the original time step τOc in which the consumer’s load can be
served.
The revenues and costs associated with realized contracts, included in the objective
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function of the aggregator’s profit maximization problem, can be expressed as:

R(ρDR,τ , ρDR,δ) = λC · PFL
dt +

∑
c∈C

TEc ·
[
(λC − ρDR,δ) · δc − ρDR,τ · τc

]
,

adding ρDR,δ and ρDR,τ as decision variables for the aggregator. The first term
corresponds to the revenues from fixed-load contracts at a standard price, whereas
the second term corresponds to the revenues from DR contracts at discounted prices.

Linearization of Non-Linear Terms

Several of the previously presented equations contain non-linear terms and therefore
need to be linearized in order to take advantage of robust and efficient mixed-integer
programming solvers.
The central term ρDR,δ · δc, representing the premium for entering a DR contract,

is a multiplication of a continuous and a binary variable. Since ρDR,δ is bounded
by zero and an arbitrarily chosen upper bound M the term can be replaced by the
variable U δ+

c following some simple rules (Bisschop, 2012):

U δ+
c ≤M · δc, U δ+

c ≤ ρDR,δ

U δ+
c ≥ ρDR,δ −M · (1− δc), U δ+

c ≥ 0

The term for calculating the consumer’s premium is based on the size of the
dispatchable time window. This contains the bilinear term ρDR,τ · τc, which is a mul-
tiplication of two continuous variables. The only viable option to linearize this term
is to approximate it using a piece-wise linear function. Therefore, two additional,
continuous variables are defined:

U τ+
c,1 = 1

2(ρDR,τ + τc) U τ+
c,2 = 1

2(ρDR,τ − τc)

Now the above-mentioned term can be replaced by the separable function

(U τ+
c,1 )2 − (U τ+

c,2 )2

which can be approximated by replacing the quadratic terms by piece-wise linear
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3rd Stage: scenario clustering
 Decide Real-Time purchase

Summer Winter Mid-season

Week Weekend Week Weekend Week Weekend

1st Stage: once per year
 Decide premiums

2nd Stage: day clustering
 Decide Day-Ahead energy

Year
d ∈ {1, . . . , 6}

ω ∈ Wd

W1 = {1, . . . , 4} W2 = {1, 2} W3 = {1, . . . , 4} W4 = {1, 2} W5 = {1, . . . , 4} W6 = {1, 2, 3}

Figure 5.2: Stage structure of the complete and integrated optimization problem from the
viewpoint of the DR aggregator.

functions.
Lastly, the term f(τc) in Equation (1c-a) is a non-linear function. However, due

to the discrete nature of τc, it can be linearly implemented using a lookup table.

5.3 Simulations

In this section extensive simulations highlighting the key impact of consumer be-
havior are reported. The simulations follow the stage structure of the overall model
depicted in Figure 5.2. On a yearly basis, the DR aggregator defines premiums that
apply for all of his consumers. These premiums come into consideration, whenever
a consumer chooses to enter a DR contract. Before each day of the year, the DR
aggregator decides on how much energy to purchase at the day-ahead market. The
overall simulation length will be one year to cover seasonal effects. Representative
days are chosen and projected to represent a whole year based on a cluster analysis.
On the last stage, the DR aggregator decides on energy purchase from the real-time
market within each day. Here, different scenarios for each representative day to
account for information uncertainty at the day-ahead stage, e.g., intermittency of
renewables, are considered.

5.3.1 Data and Scenario Setup

Data inputs and the scenario composition that will be used to run the simulations
are specified in the following.
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Figure 5.3: Representative day-ahead market prices generated from local marginal prices
of the node MIDWAY_5_B1 in California from the year 2014 (OASIS).

Construction of Energy Market Data

For day-ahead market prices publicly available historical data on local marginal
prices in the CAISO region from the year 2014 are employed. 5 From this data,
one node is chosen (MIDWAY_5_B1 ) and six typical scenarios based on seasonal
(summer, winter, mid-season) and behavioral (weekend, during week) effects are
defined. For each manually defined cluster, the average prices per hour are calculated,
as depicted in Figure 5.3. The corresponding weight, κd, of the day-ahead market
price λDdt equals the number of days that each representative day stands for. Thus,
the sum of weights results in 365 days.
Similarly, net balance data is produced from the difference of day-ahead forecast

data and actual data on energy demand minus wind and solar energy generation of
the same data source as above (OASIS). For this, data of the year 2014 is separated
analogously into the 6 above-defined day-clusters. For each representative day, an-
other clustering approach is implemented to define net balance scenarios. The DTW
algorithm (Berndt and Clifford, 1994; Liao, 2005) is applied to define appropriate
clusters and calculate their means. Figure 5.4 exemplarily shows the net balance
scenarios for the representative day during a mid-season week. The number of net
balance scenarios depends on the heterogeneity of the net balance accuracy for each
day-cluster. Obviously, weekend clusters need fewer scenarios as they represent fewer

5Data is available at http://oasis.caiso.com (California ISO Open Access Same-time Informa-
tion System (OASIS))

http://oasis.caiso.com
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Figure 5.4: Representative net balance scenarios (here for the representative day during
a mid-season week) generated from day-ahead forecasted and actual data on
demand and renewable energy generation in California in 2014 (OASIS).

days of a year. For each scenario, the corresponding weight γdω is calculated equiv-
alently to the day-ahead price except that they sum up to 1 for each day-cluster.
Table 5.2 represents the defined generator data following the high cost competitor

scenario from Henriquez et al. (2017). These generators reflect the ability of different
balancing generators to adjust their power level in real time. For example, g1 can
adjust the power level at low costs (spread to day-ahead market price equals 1) while
g6 is acting as the last option.

Table 5.2: Generator capacity and cost data

P̄U
dgt P̄D

dgt cUdgt cDdgt

MW MW $/MW $/MW
g1 350 350 λDdt + 1 λDdt − 1
g2 350 350 λDdt + 5 λDdt − 5
g3 350 350 λDdt + 8 λDdt − 8
g4 350 350 λDdt + 11 λDdt − 11
g5 350 350 λDdt + 15 λDdt − 15
g6 ∞ ∞ 300 1
Remark: Values for P̄U

dgt and P̄D
dgt apply ∀d, t.
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Consumer and Contract Data

For simulation purposes, consumers are aggregated into four representative consumer
types, each of which is represented by an appliance and some parameters. Thus,
consumers of the same type are assumed to respond in the same way to incentives
for participating in DR programs.
Suitable appliances for load shifting in Germany have been identified by Gottwalt

et al. (2016). The consumption share data from a subset of these appliances are
employed to represent consumer types: storage water heaters (4%), washing ma-
chines (3.6%) and dishwashers (3.7%). Pool pumps are additionally considered as
they hold a large share of residential electricity consumption in California (3%).
Data for pool pumps is calculated from the number of households with swimming
pools (The Association of Pool & Spa Professionals, 2013), average pool pump elec-
tricity consumption (Rivera et al., 2008) and overall residential electricity consump-
tion in California (California Energy Commission, 2013). These ratios are applied to
the total daily energy employed by Henriquez et al. (2017), ∑t∈T P

FL
dt = 4307 MWh

and PFL
dt ∈ [132, 239.2] Megawatt (MW). The daily energy of each appliance (except

the pool pump) is allocated in two time slots, according to the probabilities of start
time and general pattern plots from Stamminger et al. (2008). The pool pump’s
energy is concentrated in one time slot, at noon. The parameterization of the base
case following the aforementioned considerations is given in Table 5.3.

Table 5.3: Base case for consumer data

Consumer TEc τOc τSc - τEc U τ−
c Ac

Type MWh hh:mm hh:mm $
MWh·f(τ)

$
MWh

SWHa 1 85 02:00 01:00 - 04:00 0.1 1.01
SWHa 2 85 22:00 21:00 - 24:00 0.1 1.01
WMb 1 78 08:00 07:00 - 11:00 0.3 1.53
WMb 2 78 20:00 17:00 - 21:00 0.3 1.53
DWc 1 60 13:00 13:00 - 15:00 0.2 1.32
DWc 2 100 19:00 18:00 - 22:00 0.2 1.32
PPd 130 12:00 01:00 - 24:00 0.0 1.00
Abbreviations: aStorage Water Heater, bWashing Machine,
cDishwasher, dPool Pump
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The relative magnitudes of the disutility and aspiration level of consumers are de-
termined using the consumer acceptance questions presented from Stamminger et al.
(2008). Their absolute magnitude is subject to a sensitivity analysis around values
that accomplish the inclusion of DR contracts because they affect the premiums
for each consumer. This sensitivity analysis is instantiated by scaling the base case
parameterization.
In the presented application scenario, f(·) in equation 1c-a is chosen as the square-

root function, and implemented with a look-up table due to the discrete nature of
its argument τ . This particular function is chosen because it is assumed that once
a consumer agrees to participate in a DR scheme, for each extra τ the disutility
impact is smaller than the previous one, for which an increasing-concave function as
the square-root is suitable.

5.3.2 Results

This section incorporates the analysis of numerical results of the model for the base
case presented previously along with several new scenarios. Simulations show that
the disutility parameter only slightly affects results. Therefore, the remainder rather
concentrates on analyzing the effect of the aspiration level.
The contractual participation in scenarios with altering aspiration factor (α) are

shown in Table 5.4. Since premiums are paid equally to appliances participating in
a DR contract, some devices like WM2 and DW2 are never contracted due to higher

Table 5.4: Contractual participation of consumers

Aspiration factor (α)
1 2 4 6 8 10 12 14 16

SWH 1 • • • • • • ◦ ◦ ◦
SWH 2 • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
WM 1 • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
WM 2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DW 1 • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
DW 2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
PP • • • • • • • • ◦

• = contracted, ◦ = not contracted



150 Market Transaction Objects on Wholesale Markets

0

10

20

30

40

0 5 10

Aspiration level amplification

A
v
e
ra

g
e
 D

R
 v

a
lu

e
 [
$
/M

W
]

Consumer surplus 

Aggregator surplus 

Consumer costs 

Aggregator costs 

Figure 5.5: Average value breakdown with demand response under aspiration levels ampli-
fied from the base case given in Table 5.3.

aspiration and disutility levels that make them not attractive for the aggregator. On
the other hand, other types of appliances, like PP or SWH1, participate most of the
times since they provide cheaper flexibility (see Table 5.3).
Higher aspiration implies that consumers demand a higher premium to participate

(see Equation 1c-a). When increasing α, either the total premium the aggregator is
paying for each appliance grows or the highest premium demanding appliance falls
out. The aggregator increases premium as long as it does not exceed the added value
that results from flexibility. This is depicted in Figure 5.5 and Table 5.4.
Figure 5.5 shows the average value breakdown of energy contracted within a DR

contract. It is assumed that the average value of energy, that consists of costs and
surplus, is equal to the market price consumers would pay for a supply contract that
is not subject to any type of demand side management. From the input data, this
market price is calculated at 46.10 $/MW, matching the aggregator’s average cost
to supply inflexible load. In case of DR contracts, the aggregator has reduced costs
since he benefits from flexibility, while the consumer costs increase for offering that
flexibility (U τ−

c and Ac). The arising surplus is apportioned among both the aggre-
gator and the consumer. Obviously, the consumer cost increases with an increasing
aspiration level since it is part of the consumer cost.6 Simultaneously, the aggregator
surplus shrinks until costs of both parties would outstrip the average value of energy

6One could argue that at least a part of the aspiration level should be assigned to the consumer
surplus since it can be understood as the minimum surplus needed for a consumer to become
active considering taking part in a DR contract.
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(46.10 $/MW) leading to no contracted DR resources.
The aggregator’s average costs per MW decrease with an increase of the aspiration

level. In case of low aspiration levels, the aggregator can offer low premiums and
therefore contracting DR resources with a low or unsuitable flexibility potential is
profitable. By increasing the aspiration level, the aggregator has to pay higher pre-
miums and the first DR resources become unprofitable ending up in no contraction
(compare Table 5.4). The remaining DR resources have a higher flexibility poten-
tial. Hence, the aggregator’s average cost to supply these remaining DR contracts
decrease.
As mentioned earlier, the part of the model that describes the DR aggregator-

market interaction is based on the work of Henriquez et al. (2017). However,
while Henriquez et al. (2017) assumes that the DR resources are always available
for the aggregator not considering any costs, the work at hand explicitly models
the aggregator-consumer contract interaction. Therefore, the value of DR resources
obtained in the aforementioned related work serves as an upper bound for the nu-
merical results presented in this section. This can be confirmed since the differ-
ence between the average aggregator costs (≥30 $/MW) and the average energy
value (46.10 $/MW) in Figure 5.5 is subjacent to the calculated value of flexibility
from Henriquez et al. (2017) (18.83 $/MWh), which underlines the validity of the
presented model.
The value and surplus breakdown in absolute numbers normalized to the “zero

cost” scenario (α = 0) is depicted in Figure 5.6. Both graphs show that the aspiration
level highly impacts the volume of DR contracts and especially the surplus. The
aspiration level can be understood as a barrier to consumers (expressed in consumer
value) subscribing to a DR contract. For practitioners7 this implies that barriers
to take part in DR scenarios are critical and should be lowered to increase market
acceptance (e.g., simpler contracts, reliable and non-invasive technology).
Apparently, with increasing premium requirements, the surplus decreases. This is

driven by two factors: First by higher costs to activate demand resources and second
by less sold energy through consumers’ dropping out. In the case of increasing
the aspiration factor α, consumers demand a higher premium to participate which

7Practitioners could be companies offering DR products, traditionally utilities, or even policy
makers.
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Figure 5.6: Normalized absolute value and surplus breakdown of the demand response
aggregator-consumer interaction.

reduces the margin the DR aggregator can get as observed on the left side of Figure
5.6, until no DR contracts participate.

5.4 Discussion

This chapter proposes a model for analyzing the impacts of consumer preferences
on DR portfolio design for a DR aggregator. It presents a three-stage electricity
market model which considers the interaction of the aggregator with both consumers
and wholesale electricity markets. Consumer behavior is modeled using elements of
satisficing theory assuming bounded rationality. The DR aggregator determines
incentives offered to consumers for joining different DR programs based on their
aspiration levels and disutilities.
Several numerical experiments are presented to investigate the impacts of con-

sumer characteristics on the value of the DR resources. Data from actual flexible
loads are used. Results show that premiums for participating in DR programs in-
crease with the aspiration level of consumers and therefore reduce the surplus of the
aggregator imposing a limit for the cost of contracting DR: The point in which the
potential profit for exploiting load flexibility equals the contract costs. Addition-
ally, these results provide insights for designing DR programs. In particular, the use
of satisficing theory for modeling consumers might facilitate the implementation of
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surveys and polls to investigate threshold levels of different types of consumers.
Future work should include the consideration of DR contracts with other features

such as rate-constrained services, load curtailment, and storage. The parameters
chosen for the disutility and aspiration level of each consumer type constitute a short-
coming of this work. Even though their relative magnitude is based on a consumer
acceptance survey and their absolute values are subject to a sensitivity analysis, they
should be validated by means of an updated consumer survey. Finally, alternative
ways to model consumer behavior are to be explored and validated.
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Chapter 6

Conclusion

The constantly growing share of renewable energy generation in the electricity
generation mix is a consequence of actions to achieve climate goals. The in-

tegration of this uncontrollable generation poses several challenges for the power
system that was originally designed to control centralized generators to follow de-
mand. Relying solely on generation-side flexibility would be economically inefficient
and even undermine the environmental benefits RES generation. Instead, the so far
mainly passive demand side must be activated to become an additional source of
flexibility. Due to the distributed nature of the demand side, directly managing its
flexibility with established, mostly centralized approaches is probably too intricate.
On this account, intermediation will become a pivotal task in future energy markets
constituting the overarching topic of this dissertation.
The first main contribution of this work addresses the product development pro-

cess for energy services. The presented morphological approach proposes a sys-
tematic and standardized way to guide the structured design of energy services. It
facilitates developing new and innovative combinations of service design options that
can support the activation of the demand side flexibility potential. A prototypical
decision support system is implemented by means of formally describing the mor-
phological approach that simplifies the product development process. Hereby, the
basis for the other main contributions of this work is formed. Firstly, an energy
service eliciting the demand side flexibility from EV charging is presented focusing
on the downstream activity of an intermediary. Car parks will constitute major fu-
ture load clusters pooling the flexibility from an increasing mass of electric vehicles.
RES generation in proximity to these future load clusters, e.g., rooftop PV pan-
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els, further increases the value of flexibility since grid limitations can be neglected.
Deadline differentiated pricing sets incentives for EV customers to offer their load
flexibility to the car park operator who can then schedule the aggregate load to
follow PV generation. Analyzing this setting with real-world data, profit increases
by up to 30% can be reached compared to a simple pricing approach. The results
show that deadline differentiated pricing is resilient to the inaccuracy of forecasts
for PV generation, that commonly occur in reality. In addition, the analysis of the
intermediation function is expanded by addressing the upstream activity in a com-
prehensive three-stage bi-level model formulation. In this model, a DR aggregator
offers incentives to household consumers to join a DR program. The DR aggregator
utilizes the flexibility from household appliances to reduce costs for procuring elec-
tricity from a day-ahead and a real-time market. The results show that depending
on the appliance type the DR aggregator can reduce his procurement costs by up to
one third. Besides, this model formulation lays the foundation to further study the
strategic bidding behavior of DR aggregators. The following subsection is organized
in accordance with the research questions and the structure of this work presented
in Chapter 1.

6.1 Summary and Implications

The structure of the power system and the energy market is introduced in Chapter 2.
The power system was historically designed to transmit electricity from few, large
power plants to a multitude of small power consumers. Its top-down architecture is
not predestined for the integration of distributed generators that play an important
role to reduce the carbon footprint of electricity generation. The missing money
problem and the exploding costs for redispatch and ancillary services are only two of
many examples that illustrate the need for a redesigned market structure. Guided
by the market engineering framework this chapter closes with an overview how to
structure the economic transformation and finally argues setting the focus of this
dissertation on transaction objects from an intermediary point of view.
A system with a high share of generators with nearly no marginal costs requires

new services that facilitate transmitting the right economic signals to the system
stakeholders. To this end, the notion of energy services — the central transaction
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object in future energy markets — is refined in Chapter 3. While this answers the
first part of Research Question 1, its second part is addressed by proposing a frame-
work to systematically design quality differentiated energy services for consumers.
This approach facilitates a value-based economic assessment of energy services that
deviates from the marginal-cost-paradigm. Besides, pricing options, infrastructural
needs, and additional use case-specific product properties for these new energy ser-
vice products are outlined. To illustrate the practical applicability of this framework
a prototypical decision support system is implemented. To this end, the morpho-
logical approach is formalized using a mathematical programming formulation. It is
complemented by a complexity measure that facilitates assessing potential adoption
obstacles for end consumers.
Having established the fundamentals for the understanding and design of energy

services, Chapter 4 provides a deep dive into the application of a promising energy
service. EV charging is considered a prime provider of load flexibility in future en-
ergy markets. It forms the basis for the following case study. A scenario where EVs
are charged in a car park with local PV generation is examined. The car park oper-
ator applies a deadline differentiated pricing scheme to incentivize the provision of
flexible loads. With respect to Research Question 2 a stochastic mixed-integer opti-
mization problem is formulated that solves the price menu determination problem of
the car park operator based on empirical mobility and generation data. It is shown
that the learning process of the implemented stochastic optimization is consistent
and therefore yields a better solution the more training data is available. Depending
on the level of available information about customers, the value of flexibility ranges
between 20 and 30% of the company profit in a realistic scenario setting. Address-
ing Research Question 3, the reduction of product complexity is implemented by
limiting the number of price levels the consumer can choose from. The simulation
results indicate that reducing the product complexity can account for a profit loss
of more than 10%. Even though, limiting the price menu with a maximum of four
price levels seems to be a practical solution since such a price menu setting elicits
most of the flexibility potential while substantially reducing the product complexity
for customers. With respect to Research Question 4 the analyses address the main
obstacle of RES electricity generation: inaccurate forecasts. The results show that
the temporal flexibility elicited by deadline differentiated pricing can reduce the vul-



160 Conclusion

nerability of the car park operator profits to forecast errors. Profit losses due to
forecast errors are four times higher in a simple pricing approach compared to dead-
line differentiated prices. In addition, deadline differentiated pricing increases the
share of charging demand covered by renewable energy by up to 30%. All results are
based on a realistic representation of customer diversity with respect to their outside
option and parking duration. Still, the assumed outside option might differ in other
markets or car park types might have a deviating typical parking duration eventually
affecting the findings. On this account, based on Research Question 5 the defined
model is examined with regards to different utility diversity models and car park
types. The results show that different types of symmetric heterogeneous customer
utility models do not significantly differ from each other in all but extreme parameter
settings. However, further results show that the — especially in macroeconomics —
widely accepted homogeneous modeling of customer utilities overestimates profits
by more than 17% compared to a realistic heterogeneous model. Besides, it can be
observed that the car park type, and thus the customer parking duration, affects the
attained profits.
Finally, Chapter 5 puts a stronger focus on the upstream activity of intermediaries.

A scenario is examined in which a DR aggregator offers incentives to household con-
sumers to elicit the flexibility of their household appliances. The aggregated flexibil-
ity is utilized to reduce the intermediary’s costs to procure the demanded electricity
from wholesale markets, namely a day-ahead and a real-time market. Consumer
behavior is modeled using elements of satisficing theory assuming bounded rational-
ity. The scenario is analyzed by means of a three-stage bi-level model formulation
that solves the DR contract problem and determines the procurement strategy. The
results illustrate the potential of flexibility with regards to wholesale procurement.
The costs of the DR aggregator can be reduced by up to one third compared to a
scenario with only fixed-load consumers. Furthermore, the formulated model serves
as a basis for further research, e.g., examining the strategic bidding behavior of an
aggregator in different market types.
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6.2 Outlook and Further Research Opportunities

Even though this dissertation addresses several research gaps in literature on innova-
tive energy services, research is never complete. Therefore, the following paragraphs
identify drawbacks of the proposed approaches and provide an overview of prospec-
tive research opportunities.
In the foundations of this work, it is elaborated that product differentiation is

important to retain the economic feasibility of power systems that are dominated
by renewable energy sources. The proposed framework focuses on the conceptual
side to innovate energy services. To effectively realize this approach the economic
implications have to be evaluated and designed. Therefore, future work should refine
the design options with respect to costs and benefits. Subsequently, the service design
optimization suggested in Section 3.4 could be realized.
Section 3.4.4 illustrates the morphological approach as a prototypical interactive

decision support system. The main idea of such a tool is to free product designers
from any formal limitations or implicit interdependencies and to put their focus on
creative aspects. This prototype needs to be further developed and transferred to a
specific use case to increase the probability that this idea is applied by practitioners.
As a next step, the design of an individualized morphological box should be simplified
by defining a higher level description language.
For decades until today, the good electricity has been seen as a homogeneous good

by both providers and consumers. It remains an open question when and to what
extent consumers can be faced with differentiated energy services. Assessing the
consumer acceptance of such product ideas by means of surveys or experimental
approaches is crucial to pick the right moment for product releases. Besides, the
concept of risk aversion is important when dealing with energy services that pass
uncertainties to the demand side. Surveying the risk preferences of specific customer
groups and integrating it into the framework would facilitate formulating promising
business cases.
Turning the gaze towards the proposed deadline differentiated pricing scheme a

bunch of parameters depicted in Figure 4.8 are addressed by this work. Still, there
remain critical parameters that need to be further assessed by means of sensitivity
analyses. Investigating the long-term vision of a sustainable individual mobility
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system, scenarios with up to 100% EV shares should be examined. Furthermore, the
assumed customer acceptance of this pricing regime should be scrutinized.
The presented analyses are limited to the operational level of EV charging in a

car park. The model could be expanded in terms of the strategic level to be able
to map investment costs for PV generators while probably reducing the detail level
on the consumer side of the model. Parameter values for a reduced consumer model
could be defined by using the model formulation presented in this dissertation.
Even though solution quality improves with information about customers, the

quantity of information to be utilized by the optimization can not arbitrarily be
increased due to computational limitations as noted in Chapter 4. Heuristic ap-
proaches could tackle the computational complexity while still benefiting from an
increased exploitable quantity of information. First implementations of hybrid ap-
proaches that primitively combine solutions from optimizations of subsets of the
available information show promising results. The progressive hedging algorithm
proposed by Rockafellar and Wets (1991) is a comparable approach that could per-
fectly match the presented model: According to Watson and Woodruff (2011) it is
an appropriate heuristic for very large or difficult mixed integer stochastic problems,
while effective techniques exist for solving the individual scenarios.
In the style of the morphological approach from Chapter 3, the deadline differen-

tiated pricing scheme could be rethought in many directions: This work focuses on
the temporal flexibility, even though in case of electric vehicles an energetic flexibil-
ity is usually present. This would dramatically expand the solution space of viable
load curves of the car park yielding additional improvements. However, the ener-
getic flexibility should not be exploited to the limits, since range anxiety is currently
one of the major concerns of potential EV owners. Duration differentiation or lim-
ited reliability of charging requests are further possible and already touched research
topics (e.g., Negrete-Pincetic et al., 2016; Siddiqi and Baughman, 1993).
Finally, the complex model formulation presented in Chapter 5 leaves space for a

multitude of additional analyses. The features in the applied DR contracts could be
extended or replaced, e.g., by a constraint on the maximum rate, by load curtailment
or by adding the operation of stationary batteries. One major drawback is the
parameterization of the consumer utility function that is based on resources of a
consumer acceptance survey. However, the absolute magnitude is chosen arbitrarily
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and is therefore subject to a sensitivity analysis. Further research should critically
question this or validate it by means of an updated consumer survey. Furthermore,
the market liquidity for short-term electricity products is low (compare Section 2.2)
and therefore exercising market power can constitute an issue. This issue could even
become more severe with both supply volatility and demand side flexibility expected
to increase in the future. Regulators could simulate potential future scenarios based
on the formulated simulation model.
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Appendix A

Deadline Differentiated Pricing
Model

max
p,δ,η,∆,j,u,σ

PUL =
∑
s∈S

ws ·
(∑
c∈C

(
pf̄s,c · δs,c · es,c

)
−
∑
t∈T

(
ηgs,t · cs,t

))

subject to

pf = pf−1 −∆f−1, ∀f ∈ F>0

∆f−1 ≤ jf−1 · ξ, ∀f ∈ F>0

∆f−1 ≥ jf−1 ·∆min, ∀f ∈ F>0

n−1∑
f=0

jf ≤ Jmax − 1

jf−1 = 0, ∀f ∈ F>0 ∩ f mod ρ > 0

umaxs,c ≥ Us,c (es,c)− pf̄s,c · es,c, ∀s ∈ S,∀c ∈ C

umaxs,c ≤ δs,c ·
(
Us,c (es,c)− pf̄s,c · es,c

)
, ∀s ∈ S,∀c ∈ C∑

t∈T
σs,a,f,t = 1 , ∀s ∈ S,∀a ∈ A,∀f ∈ F

∑
t∈T\{a,...,a+f}

σs,a,f,t = 0 , ∀s ∈ S,∀a ∈ A,∀f ∈ F

as,c+ds,c+1∑
t=as,c

λs,c,t = δs,c · es,c , ∀s ∈ S,∀c ∈ C

σs,a,f,a+t ≤ jt−1 , ∀s ∈ S,∀a ∈ A,

∀f ∈ F>0,∀t ∈ {1, . . . , f}
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t+ ¯tλs,c∑
τ=as,c

λs,c,τ ≥ σs,a,f,t · δs,c · es,c , ∀s ∈ S,∀a ∈ A, ∀f ∈ F,

∀c ∈ Ca,f ,∀t ∈ T∑
c∈C

λs,c,t ≤ ηps,t + ηgs,t , ∀s ∈ S,∀t ∈ T
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Demand Response Aggregator
Model

The Aggregator’s UL Problem PUL:

max
PA,D
dt

,P̄A,R
dωt

,biddωt,PDRdwtc

∑
d∈D

κd

 ∑
ω∈Wd

[
γdω

∑
t∈T

(
λDdtP

A,D
dt + λRdωtP

A,R
dωt

)]

+ λC · PFL
dt +

∑
c∈C

TEc ·
[
(λC − ρDR,δ) · δc − ρDR,τ · τc

]
subject to

PA,D
dt + PA,R

dωt = −(PFL
dt +

∑
c∈C

PDR
dωtc), ∀d,∀ω,∀t

ρDR,δ · δc + ρDR,τ · τc − f(τc) · U τ−
c ≥ δc · Ac, ∀c

τS
c −1∑
t=0

RDR
dωtc = 0, ∀d,∀ω,∀c

tl∑
t=τE

c +1
RDR
dωtc = 0, ∀d,∀ω,∀c

τBc ≤M · δc, ∀c

τAc ≤M · δc, ∀c

τBc ≤ τOc − τSc , ∀c

τAc ≤ τEc − τOc , ∀c
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τc ≥ τBc + τAc , ∀c

δc, R
DR
dωtc ∈ {0, 1}, ∀d,∀ω,∀t,∀c

τc, τ
B
c , τ

A
c ∈ N, ∀c

RDR
dωτO

c c
= 1 ∀d,∀ω,∀c

τO
c −1∑
t=0

RDR
dωtc ≤ τBc ∀d,∀ω,∀c

tl∑
t=τO

c +1
RDR
dωtc ≤ τAc ∀d,∀ω,∀c

M ·RDR
dωtc ≥ PDR

dωtc ∀d,∀ω,∀t,∀c∑
t∈T

PDR
dωtc = δc · TEc ∀d,∀ω,∀c

RDR
dωtc −RDR

dω,t+1,c ≤ SD
tc ∀d,∀ω,∀c,∀t ∈ T \ tl

RDR
dω,t+1,c −RDR

dωtc ≤ SU
tc ∀d,∀ω,∀c,∀t ∈ T \ tl∑

t∈T
SD
tc ≤ 1 ∀c

∑
t∈T

SU
tc ≤ 1 ∀c

SD
tc, S

U
tc, R

DR
dωtc ∈ {0, 1} ∀d,∀ω,∀t,∀c

P̄A,R
dωt ≥ 0, ∀ω,∀t

λRdωt, P
A,R
dωt ∈ arg{PLL,R

dω }, ∀d,∀ω,∀t

The ISO’s LL Problem PLL,R
dω , ∀d, ω:

min
PU
dgt
,PD
dgt
,PA,R
dωt

∑
t∈T

 ∑
g∈G

(
cUdgtP

U
dgt − cDdgtPD

dgt

)
+ biddωtPA,R

dωt


subject to:

∑
g∈G

[PU
dωgt − PD

dωgt] + PA,R
dωt = PN

dωt : λRdωt, ∀t

0 ≤ PU
dωgt ≤ P̄U

dgt, ∀g,∀t

0 ≤ PD
dωgt ≤ P̄D

dgt, ∀g,∀t

−P̄A,R
dωt ≤ PA,R

dωt ≤ P̄A,R
dωt , ∀t
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