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I. Zusammenfassung 

Monoklonale Antikörper (mAks) haben im vergangenen Jahrzehnt die Landschaft der 

biopharmazeutischen Industrie dominiert und werden diese Vormachtstellung vermutlich auch 

noch einige Zeit behaupten. Dies liegt an der Vielseitigkeit ihrer Einsatzmöglichkeiten, z.B. in 

der Krebstherapie. Typischerweise werden mAks in Säugerzellen, z.B. Chinese hamster ovary 

(CHO) Zellen, hergestellt. In der Folge haben sich biopharmazeutische Unternehmen auf dieses 

Expressionssystem fokussiert um das mittlerweile eine ganze Industrie entstanden ist. Trotzdem 

ist in den letzten Jahren festzustellen, dass das Interesse an Biopharmazeutika, die in Pflanzen 

produziert wurden, steigt. Der Grund dafür ist die wachsende Anzahl und Diversität von 

biopharmazeutischen Proteinen bei denen es sich neben mAks auch um proteinbasierte Toxine 

(z.B. Visumin aus der Mistel (Viscum album)) oder Enzyme wie Glycocerebrosidase handelt. 

Diese Substanzen können u.a. in der Krebstherapie oder zur Behandlung von 

Stoffwechselerkrankungen wie Morbus Gaucher eingesetzt werden. Im Mai 2012 erhielt eine 

in Karottenzellen von Protalix Biotherapeutics hergestellte Glycocerebrosidase als erstes 

Biopharmakum aus Pflanzen die Zulassung für die Anwendung im Menschen durch die FDA 

und konkurriert seither das erfolgreich mit dem in Säugerzellen produzierten Gegenstück. 

Zusammen mit der Veröffentlichung der ersten Richtlinien für die Herstellung von 

Biopharmazeutika in Pflanzen durch die regulatorischen Behörden der USA und der EU ist es 

wahrscheinlich, dass eine steigende Anzahl pflanzlich hergestellter Proteine in klinischen 

Phasen getestet und letztlich auch in den Markt eintreten werden. Entsprechend ist mit einem 

Bedarf an Produktionskapazitäten für diese Proteine zu rechnen, die aktuell jedoch vor allem 

nur in den USA vorhanden sind. Seit 2009 ist das Fraunhofer-Institut für Molekularbiologie 

und Angewandte Oekologie IME die einzige Einrichtung in der EU, die eine behördliche 

Genehmigung für die pflanzliche Herstellung von rekombinanten Proteinen für klinische 

Studien besitzt. Mehr als sieben Chargen des gegen HIV gerichteten mAks 2G12 wurden bereits 

erfolgreich hergestellt. 

Generell können Proteine auf zwei verschiedene Arten in Pflanzen hergestellt werden. 

Transiente Expression beruht auf dem Transfer der für das Produkt kodierenden DNA Sequenz 

in die Pflanzenzellen durch Viren oder im Prozessmaßstab häufiger verwendet durch 

Infiltration mit Agrobacterium tumefaciens. Diese Methode ermöglicht die Herstellung von 

Proteinen innerhalb von zwei Wochen nachdem ihre DNA-Sequenz bekannt ist. Außerdem sind 

die Produkttiter bei dieser Methode oft höher als bei transgenen Pflanzen. Letztere haben 

allerdings die Vorteile, dass ihr genetischer Status klar definiert ist und sogenannte Master und 
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Working Seed Banks ähnlich den Master Cell Banks bei Zellkulturen erstellt werden können. 

Außerdem zeigen transgene Pflanzen sehr reproduzierbare Produktausbeuten, was günstig für 

die Beurteilung des Prozesses durch die Behörden sein kann, da diese Konsistenz zwischen 

Produktionschargen als Qualitätskriterium der Herstellungsprozesse auffassen. Weiterhin sind 

Prozesse die auf transgenen Pflanzen basieren einfacher zu skalieren, da im Gegensatz zur 

transienten Expression nicht jede Pflanze einer speziellen Behandlung unterzogen werden 

muss, durch die eine Produktbildung initiiert wird, sondern die Pflanzen per se das Produkt 

herstellen können. Entsprechend sind transgene Pflanzen gut für die Herstellung von 

biopharmazeutischen Proteinen im Großmaßstab geeignet. Vor allem Tabak (Nicotiana 

tabacum) hat sich zu einer Standardproduktionsplattform entwickelt, wobei die Zielproteine 

typischerweise aus der Blattmasse extrahiert werden. 

 

Figure I-1: Typischer Downstreamprozess für in Pflanzen hergestellte Biopharmazeutika, 

startend mit der Extraktion aus Pflanzen. 

Bei dem resultierenden Rohextrakt (Figure I-1) handelt es sich um ein problematisches 

Prozessintermediat, da er nicht nur eine große Anzahl von Partikeln im Mikro- und 

Millimeterbereich enthält, sondern auch eine hohe Konzentration pflanzlicher Metabolite und 

Proteine aufweist. Während die Partikel die Kapazität von zur Klärung eingesetzten Filtern 

herabsetzen, können Metabolite und vor allem pflanzliche Proteine einen negativen Einfluss 

auf nachfolgende chromatographische Reinigungsschritte oder das Produkt haben, z.B. durch 

proteolytische Aktivität. Als Folge können bei pflanzenbasierten Prozessen die 

Produktreinigungskosten mehr als 80% der gesamten Prozesskosten ausmachen. Diese hohen 

Kosten haben zu Diskussionen geführt, ob pflanzlich hergestellte Biopharmazeutika überhaupt 

wirtschaftlich konkurrenzfähig hergestellt werden können. Daher beschäftigen sich die in dieser 

Dissertation beschriebenen Arbeiten mit Strategien welche die Kosten der Produktreinigung 

aus Pflanzen reduzieren und somit die Konkurrenzfähigkeit dieses Expressionssystems 

verbessern sollen. Auf der einen Seite wurde ein etablierter Filtrationsprozess optimiert, d.h. 

die Anzahl der Tiefenfiltrationsschritte wurde von drei auf einen reduziert. Dadurch konnten 
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die entsprechenden Verbrauchsmittelkosten um 50% gesenkt werden während sich die 

Handhabung des Systems und seine Abgeschlossenheit verbesserten. Der letzte Punkt wird vor 

allem auch für Prozesse die auf transiente Expression zurückgreifen wichtig sein, da dort mit 

S1-Bakterien gearbeitet werden muss. Außerdem wurden Hitzefällungsmethoden zur 

Entfernung von pflanzlichen Proteinen aus Rohextrakt standardisiert und für eine 

Maßstabsvergrößerung vorbereitet (Figure I-2). 

 

Figure I-2: Experimenteller Aufbau für die Hitzebehandlung von Pflanzenmaterial. A. 

Blanchieren von Blättern in heißem Puffer. B. Hitzebehandlung in einem Rührkessel. C. 

Erhitzen mittels Wärmetauscher. 

Auf der anderen Seite wurde ein kombinierter Ansatz aus experimentellen und 

modellgestützten Untersuchungen verfolgt mit dem eine Datenbank der häufigsten 

Tabakproteine erstellt wurde welche wiederrum zur wissensbasierten Vorhersage des 

chromatographischen Trennverhaltens dieser Proteine genutzt wurde. Dieser Ansatz wird in 

Zukunft eine vereinfachte und beschleunigte Prozessentwicklung für die Reinigung von 

biopharmazeutischen Proteinen aus Tabakextrakt ermöglichen, was wiederrum die 

Wettbewerbsfähigkeit dieses Expressionssystems verbessern wird. Die erzeugten Modelle 

können darüber hinaus auch mit solchen der Proteinexpression kombiniert werden, wie sie für 

Tabak bereits etabliert wurden und so zu einer ganzheitlichen Prozessbeschreibung im Sinne 

eines QbD Ansatzes dienen (Figure I-3). 
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Figure I-3: Die Auswahl von Prozessstrategien kann durch die Vorauswahl von 

vielversprechenden Reinigungsbedingungen beschleunigt werden. 
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II. Summary 

Monoclonal antibodies (mAbs) have dominated the biopharmaceutical landscape for the last 

decade and are likely to maintain their prevalence due to the versatility of their use, e.g. in 

cancer therapy. Such mAbs are typically produced in mammalian cell cultures, most often 

Chinese hamster ovary (CHO) cells. This has caused biopharmaceutical companies to focus on 

this expression system around which an entire industry has emerged. However, interest in plant 

derived biopharmaceuticals has increased over the last years, with an increasing diversity in 

active pharmaceutical ingredients (API) being one of the major drivers for this development. 

Apart from mAbs, such APIs can include protein-based toxins, e.g. viscumin originally found 

in mistletoe (Viscum album), or enzymes like glucocerebrosidase, which can be used to treat 

different types of cancer or Gaucher´s disease respectively. Additionally, subunit vaccines 

directed against diseases like Malaria or HPV are now being developed in different plant-based 

expression systems. In May 2012, recombinant glucocerebrosidase produced in carrot cell 

culture by Protalix Biotherapeutics has received the full regulatory approval as the first plant-

derived biopharmaceutical protein and since then successfully competed with the mammalian 

cell culture-derived counter part of the API. In concert with the regulatory guidelines that have 

been drafted by the according authorities in the US and EU for the production of 

biopharmaceutical proteins in plants, this development is likely to fuel the pipeline with plant-

derived APIs to be tested in clinical phase trials ultimately entering the biopharmaceutical 

market. Therefore, production capacity is required to manufacture the corresponding plant-

derived proteins in the milligram to gram quantities necessary for clinical phase trials. 

Currently, these capacities are mostly located in the US with only one site in the EU, i.e. the 

Fraunhofer Institute for Molecular Biology and Applied Ecology IME in Aachen, being 

operational and a second site being currently commissioned in the UK. Since 2009 the 

Fraunhofer IME has the permission to produce recombinant proteins in plants for clinical phase 

trials and has already manufactured more than 12 batches (seven under GMP conditions) of 

clinical-grade mAbs such as 2G12, a mAb with the potential to block the transmission of 

Human immunodeficiency virus (HIV). 

Protein expression in plants can be achieve via two major techniques. Transient expression 

relies on the transfer of the DNA sequence encoding the gene of interest into the plant cell 

which is typically achieved by viruses or more frequently in a scalable process by infiltration 

with recombinant Agrobacterium tumefaciens. This method facilitates rapid protein production 

within less than two weeks after obtaining the DNA sequence of the protein of interest. 
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Additionally, protein expression levels are often higher compared to the other method, 

transgenic plants. However, transgenic plants offer the advantage of a more defined genetic 

status and the creation of master and working seed banks which is similar to well-known cell 

culture and microorganism-based approaches where master cell banks are established. 

Furthermore, the expression levels are highly reproducible which can be beneficial for 

regulatory approval where inter-batch consistency can be regarded as a quality attribute of the 

manufacturing process. Additionally, processes using transgenic plants are simpler compared 

to transient expression because the target protein is per se expressed by the plants, whereas 

transient expression requires that each plant of every batch is treated with the bacteria to induce 

target protein synthesis, which is associated with an increased handling effort and process 

complexity as well as additional labor and costs. Therefore, transgenic plants are the more 

suitable method for large scale production of biopharmaceutical proteins such as mAbs. 

Nicotiana tabacum (tobacco) has emerged as a standard production platform due to its short life 

cycle and high biomass output with target proteins being typically extracted from the leaves by 

blade-based homogenizers (Figure I-1). 

The resulting raw extract is a challenging process intermediate because it contains a large 

number of micro- to millimeter particles, a high concentration of plant metabolites and host cell 

proteins. The former can induce premature blocking of the filters used to clarify the extract 

before chromatographic purification, which can substantially increase the consumables costs 

for the according filters, whereas the latter two can interfere with this purification or even cause 

product degradation, e.g. due to protease activity. As a consequence, more than 80% of the total 

production costs for plant-derived biopharmaceutical can be associated with downstream 

processing. These potentially excessive costs have raised questions about the economic 

viability of plant-based biopharmaceuticals in general. The work in this thesis has therefore 

focused on strategies aiming to reduce downstream processing costs and thus contribute to the 

competitiveness of plants as a production platform for biopharmaceutical proteins. Therefore, 

an established but costly filtration train was optimized by reducing the number of depth 

filtration steps from three to one, thereby reducing the consumables costs by more than 50% 

and simultaneously cutting operator handling and improving process containment. This 

simplification of the process was achieved by a three stage approach consisting of i) screening 

for more efficient filters, ii) testing of flocculants to promote aggregation of dispersed particles 

and thus facilitate their separation from the liquid process stream and iii) the use of filters aids 

to delay the clogging of depth filters. For the latter two stages a statistical experimental 

approach (design of experiments) was selected in order to obtain predictive models for the 
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flocculation and filter coating processes, which are currently too complex to be simulated by 

mechanistic models. The initial filter capacity of ~25 L m-2 was increased to more than 1000 

L m-2 when flocculants and filter aids were used in combination. Polyethylene imine (Polymine 

P) was found to be the most effective flocculant and was best complemented with the cellulose-

based filter aid LuvoZell C200. The effectiveness of the flocculants was confirmed in a 100-L 

pilot scale process. In total, these improvements have the potential to reduce the filtration 

associated costs by more than 75%. 

In the context of filtration, a novel design for a single-use bag filter was developed which can 

replace current multi-use stainless-steel solutions. This will be a major improvement for 

upcoming processes using Agrobacterium-mediated transient expression, which will require 

cautious handling of plant extracts due to the safety class 1 (or higher) rating of the bacteria. 

The new bag filter will not only increase the process containment, i.e. prevent bacteria from 

contaminating surfaces of the production equipment, e.g. during cleaning, but will render 

cleaning and cleaning validation obsolete for this process step, reducing costs for labor, 

validation and monitoring accordingly. 

Additionally, previously reported heat treatment methods (Figure I-2) that reduce the host cell 

protein concentration in tobacco extracts before purification have been standardized for easy 

scalability. For this purpose heat treatment by blanching (submersion of intact leaves into a hot 

buffer), a heat exchanger and a heated vessel (Figure 2) were compared in terms of host cell 

protein removal, product recovery and effect on filter capacity. Blanching at 65°C was found 

to be most effective in this respect and compatible with existing purification processes whereas 

all methods were able to remove more than 90% of the host cell proteins. This has the potential 

to significantly reduce the overall purification effort, e.g. reduce the number of 

chromatographic purification steps, and to increase the product stability due to the inactivation 

of host proteases. Of course, this method is only applicable to products that can withstand 

temperatures around 65°C without relevant conformational changes or even denaturation. 

The second part of this thesis describes a combined experimental and modeling approach which 

was chosen (i) to establish a dataset of host cell proteins present in aqueous tobacco extracts, 

and (ii) to use these data for the knowledge-based design of chromatographic purification 

strategies for various target proteins. In a first step, a decision tree for protein purification from 

clarified tobacco extract was developed based on an empirical approach characterizing the 

separation profiles of various host cell proteins on different chromatography resins and under 

several conditions typically used during downstream processing of plant-derived 

biopharmaceutical proteins. The decision tree can be used as a simple guide to process design 
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heuristics. In a second step, a model based-approach was pursued and the three-dimensional 

structures of about 100 of the most abundant host cell proteins from tobacco were modelled. 

These models were combined with data from chromatographic separations of model proteins to 

build quantitative structure activity relationship models for the retention of these host cell 

proteins on defined chromatography resins. With an increasing size of model data, the accuracy 

for the predicted separation of host cell proteins increased and was best for SP Sepharose. This 

approach will facilitate and accelerate process development for new target proteins produced in 

tobacco as promising purification conditions can be identified more rapidly (Figure I-3), 

thereby reducing costs and again contributing to the competitiveness of plant-based production 

platforms. The models generated for the different clarification and chromatography techniques 

can also be combined with the models for protein expression that have been previously 

developed to extend the QbD approach for the whole process. 
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III. Introduction 

III.1 Diseases and healthcare 

Pathogens and their hosts exist in dynamic equilibrium, based on a balance between 

pathogenicity and resistance which can be shifted by favorable mutations in either species [1]. 

This has resulted in a co-evolutionary process similar to an ‘arms race’ [2], but humans have 

attempted to shift the balance in their favor by using potions and herbs which can be regarded 

as early biopharmaceuticals [3]. 

III.2 Biopharmaceuticals 

Before the development of conventional drugs, people used crude extracts or mixtures, often 

derived from plants [4, 5]. In the 18th century, the concept of drugs based on specific active 

pharmaceutical ingredients (APIs) was developed, causing many of the earlier traditional 

remedies to fall into disuse [5]. Drugs subsequently contained chemically-synthesized APIs 

such as acetylsalicylic acid or sulfonamides [6-8], but following the pioneering works of 

researchers such as Emil von Behring (diphtheria antitoxin) and Alexander Fleming 

(antibiotics) in the 19th century, biopharmaceuticals became re-established [9-12]. The 

advantage of biopharmaceuticals was their complexity, which allowed more diverse disease 

targets to be addressed [13-18]. The production of such complex agents is facilitated by the 

selectivity and efficiency of enzymes [19], which may be provided by cultured microbial or 

mammalian cells as well as whole organisms such as plants [20]. However, this enhanced 

complexity also requires more complex manufacturing processes (e.g. aeration in 

biofermenters) thus introducing limitations in terms of scalability. 

Small-molecule drugs (e.g. secondary metabolites) were the first of two major groups 

of biopharmaceuticals that gained attention in the pharmaceutical industry, because these 

products are often synthesized naturally by cells and have well-defined structures [9, 21, 22]. 

Additionally, metabolic engineering allows alternative hosts to produce the same molecules. 

For example, paclitaxel (Taxol) is used to treat breast cancer and can either be isolated from 

Taxus brevifolia (Pacific yew tree) or produced in optimized plant cell cultures [13]. The second 

group of biopharmaceuticals consists of proteins, but most medically-relevant proteins are 

human in origin which means natural source cannot be exploited. Therefore, such proteins are 

usually produced in genetically-engineered cells or organisms. This class of biopharmaceuticals 

is more delicate in terms of structure because (i) the molecules are larger and more complex 

than metabolites (e.g. antibodies are ~150 kDa in size compared to salicylic acid at 0.138 kDa) 
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[23], (ii) their structure is flexible and can adopt different conformations [24], which means (iii) 

they may undergo denaturation under unfavorable conditions (e.g. low pH, high temperature) 

[25]. 

III.3 Production of biopharmaceutical proteins 

The first recombinant biopharmaceutical proteins were produced in the bacterium 

Escherichia coli [26, 27], but bacteria produce endotoxins that can be fatal if present in the final 

drug product [28]. An additional disadvantage is that bacteria are unable to produce complex 

biopharmaceuticals because they do not carry out post-translational modifications (PTMs) such 

as phosphorylation and glycosylation, which are often required for the efficient activity of 

human proteins [29]. Therefore, many recombinant proteins are now produced in eukaryotic 

expression platforms such as yeasts or mammalian cell cultures [27]. Chinese hamster ovary 

(CHO) cells are sometimes termed the ‘gold standard’ of expression platforms e.g. in the 

manufacture of monoclonal antibodies, which are the most prevalent biopharmaceutical 

products on the market [30-33]. However, mammalian cells present a risk of contamination 

with human pathogens and require expensive sterile cultivation equipment and media [34]. The 

up-front costs are therefore high despite the increasing use of disposable technologies [35]. This 

has encouraged the development of protein expression strategies based on plants. 

III.4 Protein expression strategies in plants 

Recombinant proteins can be expressed in plants by stable expression (transgenic plants) or 

transient expression [36, 37]. In transient expression, wild type plants are used as the 

transmission target, and these can be inoculated with viral vectors, bombarded with particles or 

injected/infiltrated with genetically-modified Agrobacterium tumefaciens [38, 39]. These 

strategies avoid the time-consuming principles of stable transformation, which include tissue 

culture, selection, regeneration and self-pollination, but the target proteins are rapidly expressed 

at high levels [38, 40-42]. Agrobacterium-mediated transient expression can be achieved using 

standard transfer DNA (T-DNA) expression constructs but hybrids containing elements from 

plant viruses can also be used [39]. The T-DNA, containing the gene of interest (GOI), is 

exported from the bacterium to nearby plant cells via a type IV secretion system [43], and 

imported into the nucleus of recipient cells by the combined activity of plant and bacterial 

proteins, when it is expressed [39]. The resulting protein of interest (POI) can be recovered 

from whole plants or plant tissues after a typical incubation period of 3–8 days [44-47]. Using 

this method, it is possible to obtain the recombinant protein less than two months after the DNA 
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construct is provided, and within 2–3 weeks if wild-type tobacco plants of a suitable age are 

maintained ready for use [48]. The ability to scale up production rapidly is a significant 

advantage over both transgenic plants and conventional production platforms, allowing for 

examples of production of vaccines in response to sudden epidemic outbreaks of influenza. 

Transient expression also allows the production of proteins that are toxic to plants if they 

accumulate during vegetative growth [49]. 

Transgenic plants are generated by the stable integration of a transgene into the host 

genome, which can be achieved by particle bombardment or other direct transfer methods, or 

biological delivery using A. tumefaciens [50]. The selection of stable integration events is 

facilitated by the simultaneous introduction of marker genes such as neomycin 

phosphotransferase (nptII), which confers resistance to aminoglycoside antibiotics [51]. 

Selection is usually implemented in callus culture, followed by regeneration into fertile plants 

[52] which are self-pollinated for several generations to produce homozygous transgenic plants 

in which the transgene is stable [53, 54]. The duration of this process is determined by the 

generation time of the plant species, e.g. ~24 months is sufficient for the Petit Havana SR1 

cultivar of tobacco, assuming five rounds of self-pollination (T5) [37]. The advantages of stable 

transgenic plants are the reproducible expression levels of the transgene, the defined master 

seed bank and the ease of scale-up [37, 38, 55]. 

III.5 Plant-made biopharmaceuticals 

The first transgenic plants expressing recombinant proteins were developed in the early 1980s 

but the first biopharmaceutical proteins were not produced in plants until 1989 [56-58]. 

Different plant species and tissues offer unique advantages but also suffer from certain 

limitations that must be taken into account when a species is selected for production [37, 59]. 

Cereal crops, such as wheat (Triticum spp.), barley (Hordeum vulgare) and maize (Zea mays), 

allow the long-term storage of recombinant proteins in seeds but pharmaceutical crops could 

contaminate the human food chain [60, 61]. Nicotiana species, such as N. tabacum (common 

tobacco) or N. benthamiana, offer a high biomass yield and recombinant proteins are generally 

produced in the leaves [62]. However, the removal of toxic secondary metabolites such as 

nicotine must be demonstrated during the purification process, although this can be facilitated 

by selecting a variety with low basal levels of nicotine. The first plant-derived pharmaceutical 

protein (a monoclonal antibody) was expressed in tobacco [58] although since then many other 

pharmaceutical proteins have been produced in a diverse range of plants [63]. 
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The major economic benefits of biopharmaceutical protein production in plants include 

the low cost of upstream production, the potential for large-scale cultivation, and the inability 

of human pathogens to replicate in plants improving the safety profile of this production 

platform [34, 37, 59, 60, 64]. Additionally, oligomeric proteins are correctly assembled in plant 

cells and PTMs such as glycosylation are introduced correctly [65-67]. The glycans can be 

modified further to improve API efficacy and reduce immunogenicity in humans by additional 

genetic engineering steps [68, 69]. 

Despite the advantages of plants, the first plant-derived biopharmaceutical product for 

human use was only granted full FDA approval in May 2012 (Elelyso, produced by Protalix 

Biotherapeutics, Carmiel, Israel; FDA application number (NDA) 022458). Many 

technological and economic hurdles caused this delay [55]. One technological issue is the 

burden of downstream processing costs, which account for a large proportion of overall 

production expenses [63]. Measures to reduce downstream processing costs will significantly 

improve the competitiveness of plant-based expression systems compared to traditional 

platforms for the production of biopharmaceutical proteins such as CHO cells. 

III.6 Downstream processing 

The production of biopharmaceutical proteins can be divided into two major work packages: 

upstream production and downstream processing. Upstream production (USP) involves the 

generation and cultivation of all the biological components of an expression system such as 

cells for fermentation, tobacco plants for cultivation, and modified A. tumefaciens for 

infiltration. It also includes all stages of the production cycle in which the recombinant protein 

is synthesized and accumulated. Downstream processing (DSP) involves the separation of the 

product from the other biological components and water, thus ensuring it is purified to a 

pre-defined degree. DSP can be sub-divided into three steps as shown in Table III.1 [70]. 

Table III.1: Common steps during the downstream processing of biopharmaceuticals. 

Step Aim 

Pre-processing, extraction and clarification 

Condition source material for processing; extract 

product from bulk biomass; remove particulate 

matter to facilitate further processing 

Recovery1 
Capture target protein from bulk extract; remove bulk 

water and some major impurities 

Purification and polishing 
Remove impurities and aggregates to achieve desired 

final purity 

1 The transition from recovery to purification and polishing is a continuum as both steps remove impurities 
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III.6.1 Extraction and clarification 

III.6.1.1 Pre-processing and extraction 

Pre-processing is the conditioning of bulk biomass into a form that can easily be handled in 

later processing stages. For a plant-based system, this can involve harvesting (removing the 

leaves from plant stems) and cleansing them to reduce bioburden after extracting the protein 

[71]. 

Protein extraction from leaves can be achieved by pressing, milling or blending, using 

rotating blades [63, 72-74]. Homogenization by blending often involves the addition of an 

extraction buffer containing a buffering agent, such as phosphate, to stabilize the pH during 

extraction, and salt, such as sodium chloride, to improve protein solubilization and prevent 

precipitation [63]. For tobacco, a pH of 7.5 achieves the most effective protein extraction [75]. 

Detergents can increase the efficiency of protein extraction but may also solubilize larger 

amounts of host cell proteins (HCP) [73]. Antioxidants are often included in extraction buffers 

to prevent protein modifications that can affect product quality and the oxidation of polyphenols 

that can interfere with filtration or chromatography [73, 76-78]. Further substances may be 

added to the buffer to facilitate subsequent process operations, e.g. polyvinylpolypyrrolidone 

(PVPP) is used to bind polyphenols and tannins [63, 78]. 

III.6.1.2 Flocculation 

Flocculants are additives, based on macromolecular polymers with varying cationic or anionic 

charges, charge densities and molecular masses [79-81]. They are used to remove dispersed 

particles from solutions. Flocculation is achieved by bridging (cross-linking) particles, like cell 

debris, with a polymer of opposing charge, thereby forming large flocks that will sediment more 

rapidly than smaller individual particles (Figure III-1 C) [79, 82]. Bridging requires the polymer 

to extend beyond the diffuse double layer (the Debye length -1, Equation 1 [83]) surrounding 

a dispersed particle and attach to a second particle (Figure III-1 A). Polymers with a low charge 

density often function in this manner, and increasing the flocculant concentration above an 

optimal value will result in the re-stabilization of dispersed particles. Another mode of action 

is charge neutralization, where polymers bind to and shield charged surface patches on 

dispersed particles thereby rendering them insoluble [79, 84] (Figure III-1 B). This is often 

observed for highly-charged flocculants, where flocculation is independent of the polymer 

concentration, but for complete aggregation of dispersed particles quantitative amounts of 

charged flocculant must be added in order to neutralize all particle charges. 
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Figure III-1: Adsorption mechanisms of flocculants. 

A. Charged polymers (red) initially bind to oppositely-charged particles (black) in a coiled state (I). Depending on 

the relaxation time tR, adsorption time tA and collision time tC, the polymer can then either interact with a second 

particle to form bridges (II) if the polymer extends beyond the inverse Debye length (green dashed line, -1) or 

adopt an expanded conformation (III) and neutralize surface charges. B. For charge neutralization, flocculation is 

concentration-independent but its quantity depends on the amount and charge density of the added polymer. C. 

Bridging flocculation is concentration-dependent where low concentrations of polymer fail to induce aggregation 

and excessive concentrations prevent effective bridging due to surface saturation. 

𝜅−1 = √
𝜀𝑟𝜀0𝑘𝐵𝑇

2𝑁𝐴𝑒2𝐼
 

Equation 1: Debye length -1 in a colloidal dispersion, with the ionic strength of the electrolyte I [mol L-1], 

permittivity of free space 0, the dielectric constant r, the Boltzmann constant kB, the absolute temperature T, 

Avogadro’s number NA and the elementary charge e. 

The forces driving the adsorption of flocculants to dispersed particles are electrostatic 

and hydrophobic interactions as well as hydrogen bonding and ion binding [79]. The adsorption 

kinetics can be described by a second-order reaction (Equation 2) and the rate constant can be 

calculated for non-stirred conditions (only diffusion) and stirred conditions involving shear 

forces (Equation 3 and Equation 4, respectively) [79, 80]. The rate constant will also determine 

the time required for a certain fraction of polymer to adsorb to the dispersed particles (tA) and 

the characteristic collision time (tC) as shown in Equation 5 and Equation 6, respectively [80]. 

These equations also show that the process of flocculation can be accelerated by increasing the 

shear rates, resulting in shorter adsorption and collision times. However, higher shear rates can 
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also lead to the breakage of flocks and thus reduce particle aggregation [85]. The equilibrium 

state of flocculation can be represented by a Langmuir isotherm (Equation 30) [80]. 

𝐽𝑖𝑗 = 𝑘𝑖𝑗𝑛𝑖𝑛𝑗  

Equation 2: Collision rate Jij between dispersed particles i and polymer j, with particle flocculation rate constant 

kij as well as number concentrations of particles ni and polymer nj. 

𝑘𝑖𝑗 =
2𝑘𝐵𝑇

3𝜂

(𝑟𝑖 + 𝑟𝑗)
2

𝑟𝑖𝑟𝑗
 

Equation 3: Particle flocculation rate constant kij calculated for diffusion, with Boltzmann constant kB, absolute 

temperature T, viscosity  and effective radii of particle ri and polymer rj. 

𝑘𝑖𝑗 =
4

3
𝐺(𝑟𝑖 + 𝑟𝑗)

3
 

Equation 4: Particle flocculation rate constant kij calculated for shear, with shear rate G and effective radii of 

particle ri and polymer rj. 

𝑡𝐴 = −
𝑙𝑛(1 − 𝑓)

𝑘𝑖𝑗𝑛𝑖
 

Equation 5: Adsorption time tA for a specific fraction f of the added polymer, with flocculation rate constant kij 

and number concentration of dispersed particles ni. 

𝑡𝐶 =
1

𝑘𝑖𝑗𝑛𝑖
 

Equation 6: Collision time tC with flocculation rate constant kij and number concentration of dispersed particles 

ni. 

Polymer adsorption is a sequential process involving the rearrangement of polymers 

from a coiled to a flat conformation after initial binding to the particle surface (Figure III-1 A 

III) [79, 86]. This process is called relaxation or inactivation, and is described by the relaxation 

time tR [80, 86]. Thus, tR needs to be larger than tA and tC for effective bridging flocculation to 

occur because this mechanism requires a polymer to extend beyond the diffuse double layer of 

a particle as stated above [80]. Under these conditions (tR>tA and tR>tC) the reaction kinetics are 

biased towards higher-order rather than second-order reactions because more than two 

molecules are usually involved per interaction [87]. 

The efficacy of flocculants therefore depends on their concentration, charge density and 

length, the shear rate and particle concentration in the feed stream as well as the solution pH 

and ionic strength [79-81, 88]. Higher ionic strength, or background salt concentration, can 

affect flocculation by (i) screening the particle surface charge, (ii) reducing the thickness of the 

diffuse double layer surrounding the charged particle, (iii) reducing the flatness of the adsorbed 

polymer, (iv) reducing polymer binding affinity, and (v) reducing the polymer effective charge 

[79, 80]. A higher salt concentration can therefore facilitate bridging flocculation as often 

observed for polymers with a low charge density, because the coiled polymer structure is 
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favored allowing simultaneous binding to several dispersed particles. In contrast, high salt 

concentrations can hamper flocculation based on charge neutralization driven by highly-

charged polymers, by reducing their affinity towards the dispersed particles [80]. Depending 

on the selected conditions, flocculants may also precipitate proteins and therefore their impact 

on a target protein must be carefully assessed [78, 89]. Several models have been developed to 

describe the settling behavior of the resulting flocks [90]. 

III.6.1.3 Clarification methods 

The bulk plant extract contains dissolved molecules such as proteins, DNA, carbohydrates and 

secondary metabolites as well as colloid particles. These particles must be removed because 

many subsequent unit operations are not compatible with suspensions, e.g. packed-bed 

chromatography [63, 73]. Heat treatment can be used to precipitate HCPs but the target protein 

may also be affected [70]. Aqueous two-phase systems (ATPS) can remove particles from bulk 

extract inexpensively, simultaneously enriching the target protein [91, 92]. In principle, a 

solution containing two phase-forming substances (salt-salt, salt-polymer or polymer-polymer) 

is mixed with the extract and incubated until two phases form. Ideally, the target protein will 

accumulate in the top phase, corresponding to a distribution coefficient above unity, whereas 

particles will settle in the bottom phase under gravity [92]. The ATPS buffer can also be used 

as the extraction buffer, thereby reducing the number of unit operations. Drawbacks of ATPS 

include the high concentrations of salt and/or polymer required for phase formation and the 

long time that may be needed for phase separation [93]. Phase formation is also sensitive to salt 

concentration and pH, two factors that may differ according to the properties of the target 

protein. It is therefore difficult to develop a generic platform process with defined parameters, 

but this may become feasible with new automated screening procedures [94]. Particle removal 

can also be achieved using (semi)continuous centrifuges [63, 82]. These accelerate the natural 

sedimentation of particles by applying multiples of the gravitational force. Although this 

method is well known, it may be difficult to implement in a large-scale process due to the high 

investment costs for this equipment, although this may not be the case for multi-product 

facilities [95]. However, cleaning procedures between batches and campaigns can be laborious 

and time-consuming without completely excluding the risk of cross-contamination. 

III.6.1.4 Filtration 

Cross-contamination and high investment costs are less of a concern when disposable filters are 

used for particle removal, but consumables costs may be higher because high-quality filter 

material must be used [96, 97]. Filters featuring different materials and progressively smaller 
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pore sizes can be combined into an optimal filter train that will guarantee a defined, low-

turbidity processed extract (Figure III-2 A) [98, 99]. The first filter has a large pore size to retain 

large particles that build up a filter cake, which will in turn provide progressively higher filter 

efficiency and increasing backpressure assuming a constant flow rate. Bag filters comprising 

needle felt or nylon filament are suitable for this step. Depth filters, with a finer retention rating, 

are used in the subsequent steps to remove particles with an average size of 1 µm [95, 98]. 

These filters remove particles by surface retention, like bag filters, but also through depth 

straining, settling zones and particle adsorption (Figure III-3 A) [82, 100, 101]. Depth filters 

can therefore remove particles larger and smaller than the nominal retention rating. 

 

Figure III-2: Schematic representation of filtration methods. 

A. Bag filters use retained particles from the filter stream to gradually build up a finer filter cake for more effective 

particle retention. Size exclusion, depth straining in narrow flow channels and adsorption are the key mechanisms 

in depth filtration, whereas membrane filters use an absolute pore size, defined by their microstructure, to retain 

dispersed particles. B. Filter additives (red) can prevent the blocking of filter pores, and provide additional surfaces 

for particle adsorption thereby prolonging filter capacity. 

The retention achieved with depth filters is not absolute, i.e. particles larger than the 

nominal retention rate may pass through the filter with a certain probability. A visible filter 

cake is not always formed due to the low abundance of large particles in the feed stream. Filter 

additives such as cellulose or diatomaceous earth may be added to the feed stream to artificially 
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build-up a filter cake over time that can increase the filter capacity (Figure III-2 B) [95]. Depth 

filters can also bind dissolved molecules such as host cell proteins (HCP) and DNA on charged 

surfaces, thereby simplifying subsequent purification steps [102]. 

An initial, macroscopic description of depth filtration was provided in the late 1930s 

[103] and experimentally verified in the late 1960s [104]. First order kinetics (Equation 7) and 

the filter coefficient  were used to describe the declining dispersed particle concentration along 

the length of a depth filter, as recently reviewed [105]. In the early 1970s the classical colloid 

filtration theory (CFT) was developed, splitting the adsorption of dispersed particles (colloids) 

to a collector (filter grain, solid phase) into two steps [106]. First, the single collector efficiency 

(collision rate)  was used to express particle transport towards a collector as the proportion of 

dispersed particles in a feed stream colliding with a collector rs relative to the total number of 

particles approaching the collector rf (Equation 8). Hence,  always adopts a value between 

zero and unity. Second, the collision efficiency  was used to determine the fraction of particle–

collector collisions rs that resulted in particle attachment ra (Equation 9). As for , values for  

are in the range 0 to 1. A relationship between the filter coefficient  and  and  can be 

established using Equation 10 [107, 108]. 

−
𝜕𝐶

𝜕𝐿
= 𝜆𝐶 

Equation 7: Change of particle concentration ∂C due to adsorption to a filter material with filter depth L, particle 

concentration C at a given depth L of the filter and the filter coefficient . 

𝜂 =
𝑟𝑠
𝑟𝑓
=

𝑟𝑠
𝜋𝑏2𝑢𝐶0

= −
2

3

𝑑𝑐
(1 − 𝜖)𝐿

ln⁡(
𝐶

𝐶0
) 

Equation 8: Theoretical and experimental calculation of single collector efficiency  (modified from [109] 

according to [110] and [111]) with the number of particle-collector collisions rs (the letter I is also used in the 

literature), the total number of particles streaming towards the collector rf, the radius of the fluid envelope in 

Happel’s model b, the approach velocity of the fluid u and the number concentration of particles in the fluid 

approaching the collector C0 as well as collector diameter dc, the bed porosity ϵ, the filter length (bed height) L 

and number concentration of particles at the outlet C. 

𝛼 =
𝑟𝑎
𝑟𝑠
=

𝜂

𝜂0
= −

2

3

𝑑𝑐
(1 − 𝜖)𝐿𝜂0

𝑙𝑛 (
𝐶

𝐶0
) 

Equation 9: Theoretical and experimental calculation of collision efficiency  (according to [108]) with the 

number of collisions resulting in particle attachment to the collector ra, the number of particle-collector collisions 

rs (the letter I is also used in the literature), the single collector removal efficiency , the single collector contact 

efficiency 0 ( in the absence of repulsive DLVO forces), as well as collector diameter dc, the bed porosity ϵ, the 

filter length (bed height) L and number concentration of particles at the outlet C. 

𝜆 =
3

2

(1 − 𝜖)

𝑑𝑐
𝛼𝜂0 

Equation 10: Correlation between filter coefficient  and single collector efficiency , as well as collision 

efficiency  with the bed porosity ϵ, the collector grain diameter dc (compare with definition of k below). 
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Happel’s sphere-in-cell porous media model [112] is often used to calculate trajectories 

for colloids approaching a collector and their collision with its surface, even though alternative 

models have been proposed including hemispheres-in-cell [113], array-of-spheres [114], and 

simple cubic and dense cubic packing geometries [101]. 

In the initial model,  was defined by the physicochemical mechanisms of diffusion 

(Brownian motion, Figure III-3 A I), interception (collision of a particle and a filter grain 

reflecting their corresponding diameters and relative positions in the flow pattern, Figure III-3 

A II) and sedimentation (action of gravity, Figure III-3 A IV). Subsequent models introduced 

additional mechanisms such as inertia (Figure III-3 A III) [109], hydrodynamic action (particles 

shifting between streamlines due to their irregular shape, Figure III-3 A V) [105, 110], surface 

straining (retention of particles in pores smaller than the particle diameter, Figure III-3 A VI) 

[107] and settling in stagnant flow zones without attachment (Figure III-3 A VII) [115, 116]. 

Several equations have been presented to calculate  based on dimensionless numbers such as 

the Peclet number [109, 110] or filtration experiments [111]. 

The collision efficiency  is often calculated based on colloid-surface interactions 

according to the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [117, 118] including 

London-van-der-Waals interactions and electrostatic double-layer repulsion (Figure III-3 B) 

[119-121]. Under ideal, destabilized conditions, the attachment of dispersed particles to a 

collector is termed favorable (no repulsive forces or energy barriers present [122]) and the value 

of  approaches unity [106]. The concentrations of dispersed particles (C) and attached particles 

(S) under these conditions can be calculated according to the CFT using Equation 11 and 

Equation 12, respectively [122, 123], but note that different variants of these equations have 

been described and discussed in the literature [124]. 

𝐶(𝑥) = 𝐶0𝑒
−
𝑘
𝜐
𝑥; 𝑘 =

3

2

(1 − 𝜖)𝜐

2𝑑𝑐
𝜂 

Equation 11: Dispersed particle concentration C, dependent on filter depth x assuming a clean filter (t0) according 

to CFT with the number concentration of particles in the fluid approaching the collector C0, the particle deposition 

coefficient k and the interstitial particle velocity . A constant value of k is assumed with the bed porosity ϵ, the 

collector grain diameter dc and the single collector removal efficiency  

𝑆(𝑥) =
𝑡0𝜖𝑘𝐶0
𝜌𝑏

𝑒−
𝑘
𝜐
𝑥
 

Equation 12: Attached particle concentration S, dependent on filter depth x assuming a clean filter (t0) according 

to CFT with the bed porosity ϵ, the number concentration of particles in the fluid approaching the collector C0, the 

porous medium bulk density b, the particle deposition coefficient k and the interstitial particle velocity . A 

constant value of k is assumed. 
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Figure III-3: Schematic representation of depth filtration mechanisms. 

A. Particles (orange) in the feed stream (blue arrows) can approach depth filter material due to different 

mechanisms such as diffusion (I), interception (II), inertia (III), sedimentation (IV) and hydrodynamic action (V) 

as well as straining (VI) and deposition in stagnation zones (VII) (see text for references and detailed explanation). 

B. Under favorable conditions (I) electrostatic repulsion (red double arrows) is shielded by dissolved counter-ions 

(red) whereas London-van-der-Waals forces (green dumbbells) result in particle attachment to the filter surface. 

Unfavorable conditions (II) can result in a second, local energy minimum at a certain distance from the filter layer 

within which a particle can become trapped. Derivations from the model predictions (III) occur for example due 

to surface roughness or uneven charge distribution (see text for detailed discussion). Section A of this figure was 

modified from [125]. 

Conditions deemed unfavorable for particle adsorption exhibit significant repulsive 

DLVO interactions [122]. These can arise from electrostatic repulsion between particles and 

collectors sharing the same charge, which can be measured in terms of -potentials [126]. 

Unfavorable conditions are often generated by low ionic strength buffers, such as <100 mM 

salt. Accordingly, the solution pH, ionic strength and approach velocity will affect particle 

adsorption [101, 111, 122, 127]. Particles may therefore be trapped in a secondary energy 

minimum (in addition to the first minimum, resembling particle attachment to the collector 

surface) preventing permanent adsorption to the collector surface [101, 127, 128]. However, 
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significant differences between CFT predictions and experimental data have been observed 

under such unfavorable conditions [120, 129, 130]. Several mechanisms have been proposed to 

account for these observed deviations, including (i) surface roughness on the collector and the 

dispersed particles (as well as their size and shape) resulting in a locally 

diminishing/disappearing energy barrier towards the first minimum [111, 131-133]; (ii) 

particles wedged between two energy barriers at sites of filter grain-to-grain contact, which may 

overcome this barrier by diffusion or hydrodynamic action [101]; (iii) colloid retention in 

stagnant flow zones without attachment [134]; and (iv) the effect of shear forces on loosely-

attached particles [116]. In this context, a bimodal model accounting for fast (favorable) and 

slow (unfavorable) adsorption has been proposed [119]. 

Membrane filtration (Figure III-2 A) is often used as a final step before chromatography 

to remove bacteria and any remaining colloidal particles <1 µm in diameter [95]. These filters 

have a fixed pore diameter which will guarantee the removal of all particles above this size. 

Particle removal is achieved by surface filtration and pore sizes are typically 0.45 or 0.22 µm. 

Some of the concepts described above for depth filtration also apply to membrane filtration 

[135]. 

III.6.2 Recovery and purification 

The objective of recovery is to separate a POI from major HCP impurities and water with 

minimal losses of the product while maintaining its integrity and functionality [63]. In 

subsequent purification steps, a pre-defined product purity must be achieved by the removal of 

any trace HCP [136]. A final polishing step is often included for recombinant proteins with 

biopharmaceutical applications in order to remove product aggregates, such as dimers in the 

case of a monoclonal antibody [137]. 

Various techniques can be used for recovery and purification, each with specific benefits 

and drawbacks, e.g. precipitation, ultrafiltration, crystallization and various chromatographic 

methods, the latter introduced in more detail in section III.6.3 [70, 73, 138]. Precipitation can 

easily be applied on a large scale by adding kosmotropic salts such as ammonium sulfate, by 

adding charged polymers or by applying heat, but the costs to dispose of salt-containing waste 

may be high [70, 139] and the potential exists to alter the conformation of the target protein 

which might affect its functionality [140]. Ultrafiltration using membranes with certain 

molecular weight cut-off (MWCO) values can also be applied on a large scale but the resolution 

may be low compared to other techniques. High purities can be achieved by crystallization but 

finding conditions suitable for crystal formation can be difficult and time-consuming [141, 
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142]. Expanded bed adsorption (EBA) is a variant of chromatography that can tolerate non-

clarified and partially clarified feed-streams due to the wide spaces between the floating resin 

particles [143]. However, EBA-specific problems include axial mixing, aggregative 

fluidization, channeling, bed collapse or dead water zones within the bed, and conditions must 

be adjusted to individual feed stream properties [144, 145]. High flow rates can be applied using 

membrane chromatography cassettes thus reducing overall process times, but the binding 

capacity of membranes can be low making them less economical than traditional packed-bed 

chromatography [146]. 

III.6.3 Packed-bed chromatography 

Packed-bed chromatography is the most common chromatography technique in bioprocessing 

and it is the central component of many recovery and purification operations [147]. The packed 

bed consists of spherical resin particles, which are beads conforming to a particular diameter 

range that can feature certain functionalities (Table III.2). These particles often have a porous 

structure and are densely packed into a column (Figure III-4 as well as Equation 13 and 

Equation 14). 

 

Figure III-4: Packed resin particles (beads) in a column section. 

The liquid mobile phase (blue, VM) can be subdivided into a bulk interstitial part (light blue, VI) outside the porous 

particles (red, VS) and a part inside the pores (dark blue, VP) where different diffusion, mass transfer and size 

exclusion limits apply (see Equation 26). 

Most resin particles are constructed from a cross-linked polymer, such as agarose, which 

is functionalized by covalent modification with specific ligands, e.g. quaternary ammonium 

ions [148]. These ligands interact with proteins passing through the column and define the type 

of chromatography: (i) hydrogen-bonding for some mixed-mode chromatography (MMC) 

resins; (ii) electrostatic interactions for anion exchange (AEX) or cation exchange (CEX) and 

MMC resins; and (iii) hydrophobic and Van-der-Waals (VDW) interactions in hydrophobic 

interaction chromatography (HIC) and MMC resins (Table III.2). 
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𝑉𝐶 = 𝑟2 ⋅ 𝜋 ⋅ 𝐿 = 𝑉𝑀 + 𝑉𝑆 = (𝑉𝐼 + 𝑉𝑃) + 𝑉𝑆 

Equation 13: Column volume VC, with column radius r, column length L, mobile phase volume VM, solid phase 

volume VS, interstitial volume VI (liquid volume outside the particles) and pore volume VP (liquid volume inside 

the particle pores). 

𝛽 =
𝑉𝑀
𝑉𝑆

 

Equation 14: Phase ratio , with mobile phase volume VM and solid phase volume VS. 

Table III.2: Functional groups of ligands used in liquid chromatography including their mode of action, 

general interaction strength and capacity. 

Ligand1 Functional group Mode of action Capacity/ligand density2 

Q Quaternary amine AEX, strong 0.18-0.25 mmol [Cl- mL-1] 

ANX Diethylaminopropyl AEX, weak 0.13-0.17 mmol [Cl- mL-1] 

DEAE Diethylaminoethyl AEX, weak 0.11-0.16 mmol [Cl- mL-1] 

SP Sulfopropyl CEX, strong 0.18-0.25 mmol [H+ mL-1] 

CM Carboxymethyl CEX, weak 0.09-0.13 mmol [H+ mL-1] 

Phenyl (high) Phenyl HIC, aromatic 40 [μmol mL-1] 

Phenyl (low) Phenyl HIC, aromatic 25 [μmol mL-1] 

Octyl Octyl HIC, aliphatic 5 [μmol mL-1] 

Butyl Butyl HIC, aliphatic 40 [μmol mL-1] 

Butyl-S Butyl-S HIC, aliphatic 10 [μmol mL-1] 

MMC N-benzoyl-homocysteine CEX (weak) and aromatic 0.07-0.09 mmol [H+ mL-1] 

MMA 
N-benzyl-N-methyl 

ethanolamine 
AEX (strong) and aromatic 0.09-0.12 mmol [Cl- mL-1] 

MEP 
4-mercapto-ethyl-

pyridine 
Charge induction, aromatic 70-125 [μmol mL-1] 

HEA Hexylamine AEX and aliphatic n.d. 

PPA Phenylpropylamine AEX and aromatic n.d. 

STAR AX Primary amine AEX n.d. 

(Hy)Q Quaternary amine AEX, strong 0.09-0.14 mmol [Cl- mL-1] 

1 Media from Pall are italicized; 2 Values provided for Sepharose fast flow (FF) (GE) or HyperCel (Pall). 

Note that weak exchangers will alter their capacity with changing pH while strong do not. 

The strength of any protein–ligand interaction is dependent on the properties of the 

protein (e.g. charge density distribution), the ligand (e.g. cationic charge), the buffer conditions 

(e.g. pH and conductivity), and the resin (e.g. ligand density and pore size) [148]. The 

interaction strength in turn determines whether a protein will pass through the column (no 

interaction or weak interaction), elute after a delay compared to the sample front (medium 

interaction) or bind to the resin (strong interaction) and hence determines the retention volume 

VR (Equation 15) [149]. The interaction strength also determines the retention factor k of a 

protein (Equation 16) as well as the selectivity coefficient kA/B and separation factor  for each 

pair of protein species in a chromatography setup (Equation 17 and Equation 18 respectively) 
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[150, 151]. If only one protein species binds to the resin, it is defined as specific, e.g. some 

affinity resins [152]. 

𝑉′
𝑅 = 𝑉𝑅 − 𝑉𝑀 

Equation 15: Adjusted retention volume V´R, with retention volume VR and mobile phase volume (hold-up 

volume) VM. 

𝑘 =
𝑉′

𝑅

𝑉𝑀
=
𝑡′𝑅
𝑡𝑀

= 𝛽
𝑄

𝐶
=
1 − 𝑅

𝑅
 

Equation 16: Retention factor k, with the adjusted retention volume V´R, the mobile phase volume VM, the adjusted 

retention time t´R, the hold-up time tM, the phase ratio , the amount of component in the stationary phase Q, the 

amount of component in the mobile phase C and the fraction of component in the mobile phase R. Note that in the 

literature, the retention factor k may also appear as k’. 

𝑘𝐴/𝐵 =
[𝐴]𝑆 [𝐵]𝑆⁄

[𝐴]𝑀 [𝐵]𝑀⁄
 

Equation 17: Selectivity coefficient kA/B, with the amounts of components A and B in the stationary [A]S, [B]S 

and mobile phases [A]M, [B]M respectively. 

𝛼 =
𝑉′

𝑅2

𝑉′
𝑅1

=
𝑡′𝑅2
𝑡′𝑅1

=
𝑘2
𝑘1

 

Equation 18: Separation factor , with the adjusted retention volume, retention time and retention coefficient of 

components 1 and 2, respectively: V´R1, V´R2, t´R1, t´R2, k1, and k2. 

Even resins without ligands can affect the retention of proteins on a column: if the pore 

diameter allows a protein to enter, it will have a longer journey through the branched pores of 

the particles compared to a larger protein, unable to enter the pore, which can migrate around 

the particle in the buffer flow [153]. Therefore, small proteins will take more time to pass 

through the column. This effect is called gel filtration (GF) or size exclusion chromatography 

(SEC) (Equation 19) [149, 153]. 

𝑉′
𝑅 = 𝑘𝑆𝐸𝐶𝑉𝐼⁡; ⁡𝑘𝑆𝐸𝐶 = 1 −

2

√6𝜋

𝑅

𝑑
⁡; 𝑅 ≈ 0.81𝑀𝑟

1
3⁄  

Equation 19: Adjusted retention volume in SEC V´R with SEC retention factor kSEC, interstitial volume VI (liquid 

volume outside the particles), protein diameter R, particle pore diameter 2d and protein molecular mass Mr. 

Changing one of the factors influencing the strength of protein–ligand interactions will 

alter the protein binding/elution behavior and thus result in different selectivity coefficients and 

separation factors during chromatography. Typical changes include linear or stepwise salt or 

pH elution gradients, selecting a different pH for the running buffer, switching the buffering 

agent, adding mobile phase modifiers or choosing a different resin [149, 154, 155]. Even ligands 

with the same functional group can have different selectivities if the base matrix is distinct, e.g. 

Q Sepharose FF (GE, Uppsala, Sweden) and Q HyperCel (Pall, Port Washington, NY, USA) 

[156]. The purification of a target protein can therefore be improved by carefully adjusting the 
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chromatography conditions. Fewer impurities will bind when there is higher selectivity for the 

target protein, resulting in higher levels of purity. 

Separative performance can be evaluated by comparing the separation factors of a target 

protein and major impurities under different chromatography conditions [157]. However, 

separation factors alone can be misleading because a pair of proteins with  values unequal to 

unity can still extensively overlap during elution if they have broad peaks (Figure III-5). 

Resolution and column efficiency are additional indicators that can help to overcome such 

ambiguities. The resolution RS describes the separation of two peaks in terms of their average 

peak width at the base (Figure III-5 and Equation 20) [149]. 

 

Figure III-5: Effect of ligand selectivity and column efficacy on protein separation by liquid 

chromatography. 

A. At low selectivity and efficacy, the peaks are poorly resolved. B. Higher selectivity increases the difference in 

the (adjusted) elution volumes of two peaks V’R (Equation 15). C. Higher efficacy results in a narrower peak 

width Wb (Equation 20). D. High selectivity and efficacy results in good baseline separation. 

𝑅𝑆 =
𝑉′

𝑅2 − 𝑉′
𝑅1

𝑊𝑏1 +𝑊𝑏2

2

=
2(𝑉′

𝑅2 − 𝑉′
𝑅1)

𝑊𝑏1 +𝑊𝑏2
=
𝛼 − 1

𝛼 + 1
⋅

𝑘̅

1 + 𝑘̅
⋅
√𝑁

2
 

Equation 20: Resolution RS of two components as a function of peak shape and retention volume as well as 

separation factor , with adjusted retention volumes of components 1 and 2 (V´R1, V´R2 respectively), baseline peak 

width of components 1 and 2 (Wb1 and Wb2 respectively), mean retention factor k̅ and plate number N. 
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𝐻 = 𝐴 +
𝐵

𝑢
+ 𝐶 ⋅ 𝑢 

Equation 21: Plate height H, with Eddy-diffusion A, longitudinal diffusion B, mass transfer kinetics for a solute 

between stationary and mobile phase C and the linear velocity u. Note that H is also referred to as height equivalent 

to one theoretical plate (HETP) (Figure III-6 C). 

𝐴𝑆 =
𝑏

𝑎
 

Equation 22: Peak asymmetry factor AS, with a and b being the distance from the peak center towards the peak 

front and back respectively at 10% peak height. 

 

 

Figure III-6: Geometric indices used for peak characterization and the van Deemter equation. 

A. The (adjusted) retention volume V’R describes the volume at which an elution peak reaches its maximum. The 

peak width at base Wb and peak width at half height Whl are a measure for peak broadening. B. The asymmetry AS 

is described by the ratio of the width left and right of the peak center at 10% peak height (Equation 22). C. The 

impact of increasing the flow rate on plate height H, the output of the van Deemter equation (Equation 21) and its 

terms. The Eddy diffusion term A (red line) is independent of the linear velocity (flow rate) u and thus constant. 

The longitudinal diffusion B (band broadening, blue curve) decreases with increasing u while the mass transfer C 

(green line) is constrained by higher linear velocity. 

𝑁 =
𝐿

𝐻
= (

𝑉′
𝑅

𝜎
)

2

= 16 ⋅ (
𝑉′

𝑅

𝑊𝑏
)

2

= 8 ⋅ ln⁡(2) ⋅ (
𝑉′

𝑅

𝑊ℎ𝑙
)

2

 

Equation 23: Number of theoretical plates N of a column, with column length L, plate height H, adjusted retention 

volume V´R, standard deviation of the Gaussian peak , baseline peak width Wb, and peak width at half height Whl. 

Note that Wb = 4. 
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𝑘̅ =
𝑘1 + 𝑘2

2
 

Equation 24: Mean retention factor k̅, with retention factors for components 1 and 2 shown as k1 and k2 

respectively. 

III.6.4 Models describing chromatographic separations 

The plate model describes column efficiency in terms of the number of theoretical plates N 

[158-160]. This concept dates back to rectifying columns where equilibriums were formed at 

each actual plate during the separation of liquid mixtures [161]. N can be calculated using 

Equation 23 if an elution peak has a Gaussian shape (Figure III-6 A) [157]. Any deviation from 

the Gaussian shape is expressed using the asymmetry factor AS (Equation 22 and Figure III-6) 

[149]. An AS larger than unity indicates peak “tailing” while a value below unity indicates 

“fronting”. Given a specific column (including resin), the plate number N can only be changed 

by altering the linear velocity u and thus the flow rate, because plate height H is calculated 

according to Equation 21, the Van Deemter equation [162]. Factor A in this equation is 

dependent on particle shape and diameter, and factor B is proportional to the diffusion 

coefficient of the mobile phase. Factor C also depends on this coefficient, and on the diffusion 

coefficient of the stationary phase and particle diameter. There is an optimal linear velocity u 

for which H adopts a minimal value as shown in Figure III-6 C. 

The relation between resolution RS and plate number N is given in Equation 20 [163]. 

The mean retention factor k̅ is defined in Equation 24. Resolution can be improved by increasing 

the values of , k̅ or N. However, small changes in the separation factor will have a stronger 

effect on the resolution than changes in the plate number, thus  should be targeted when 

improving RS. Protein elution profiles can be calculated according to the plate model using 

Equation 25 [158]. 

𝑑𝐶(𝑖)

𝑑𝜏
=
𝑁𝑝[𝐶(𝑖−1) − 𝐶(𝑖)] − 𝐶(𝑖)𝐻

𝑑𝐾[𝐶(𝑖), 𝐼]
𝑑𝐼

𝑑𝐼
𝑑𝜏

1 + 𝐻 (𝐾[𝐶(𝑖),𝐼] + 𝐶(𝑖)
𝑑𝐾[𝐶(𝑖), 𝐼]
𝑑𝐶(𝑖)

)

 

𝐻 =
(𝑉𝑐 − 𝑉𝑀)

𝑉𝑀
=
1

𝛽
⁡; ⁡𝜏 =

𝑡 ⋅ 𝑢

𝑉𝑀
⁡ ; ⁡𝑋0 =

𝑉𝐿
𝑉𝑀

 

Equation 25: Calculation of the change in mobile phase protein concentration dC(i)/d at plate i with the 

concentration difference dependent plate number Np[C(i-1)-C(i)], the mobile phase protein concentration C(i), the 

inverse phase ratio H, the protein concentration and ionic strength-dependent equilibrium constant K[C(i),I] and 

the ionic strength gradient dI/d. The initial and boundary conditions are: C(1)=C(2)=…=C(Np)=0 for =-X0 and 

C(0)=C0 for -X0<≤0 and C(0)=0 for >0 respectively. The injected sample volume is VL and the protein 

concentration in the sample is C0. 
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The rate model is a more fundamental alternative to the plate model, which calculates 

protein concentrations and elution profiles in the stationary and mobile phases over the whole 

column length and separation time by solving three partial differential equations (PDEs) [164]. 

The model is more costly to establish than the plate model and does not contain key figures that 

would facilitate the comparison of two chromatography setups, such as the number of 

theoretical plates N. Rate models differing in complexity and applications have been published 

over the last 60 years [164-171]. The first two PDEs of the rate model describe mass balances 

for the mobile and stationary phases (Equation 26) [164, 171]. The third equation describes 

adsorption and desorption kinetics (Equation 27). 

 

−𝐷𝑏𝑖
𝛿2𝐶𝑏𝑖
𝛿𝑍2

+ 𝜐
𝛿𝐶𝑏𝑖
𝛿𝑍

+
𝛿𝐶𝑏𝑖
𝛿𝑡

+
3𝑘𝑖(1 − 𝜀𝑏)

𝜖𝑏𝑅𝑝
(𝐶𝑏𝑖 − 𝐶𝑝𝑖,𝑅=𝑅𝑝) = 0 

(1 − 𝜀𝑝)
𝛿𝐶𝑝𝑖

∗

𝛿𝑡
+ 𝜀𝑝

𝛿𝐶𝑝𝑖

𝛿𝑡
− 𝜀𝑝𝐷𝑝𝑖 [

1

𝑅2

𝛿

𝛿𝑅
(𝑅2

𝛿𝐶𝑝𝑖

𝛿𝑅
)] = 0 

Equation 26: Bulk mobile phase and stationary phase mass transfer equations with axial/radial dispersion 

coefficient Dbi, bulk mobile phase concentration Cbi, concentration of i in the stagnant fluid phase inside particles 

Cpi, adsorption saturation capacity C∞, concentration of i in the particle solid phase C*
pi, effective diffusivity Dpi, 

film mass transfer coefficient ki, adsorption and desorption rate constant kai and kdi, dimensional time t, radial 

coordinate for particle R, particle radius Rp, interstitial velocity v, axial coordinate Z, bed void volume fraction b 

and particle porosity p. 

𝛿𝐶𝑝𝑖
∗

𝛿𝑡
= 𝑘𝑎𝑖𝐶𝑝𝑖 (𝐶

∞ −∑𝐶𝑝𝑖
∗

𝑁𝑠

𝑗=1

) − 𝑘𝑑𝑖𝐶𝑝𝑖
∗  

Equation 27: Adsorption and desorption kinetics, same parameters as in Equation 26, with the number of 

components Ns. Note that if adsorption/desorption rates are faster than mass transfer, both sides of this equation 

adopt a zero value resulting in a Langmuir isotherm. The following initial and boundary conditions apply to these 

equations: 

𝑡 = 0:⁡𝐶𝑏𝑖 = 𝐶𝑏𝑖(0, 𝑍)⁡𝑎𝑛𝑑⁡𝐶𝑝𝑖 = 𝐶𝑝𝑖(0, 𝑅, 𝑍)⁡; 𝑍 = 0:⁡
𝛿𝐶𝑏𝑖
𝛿𝑍

=
𝜐

𝐷𝑏𝑖
[𝐶𝑏𝑖 − 𝐶𝑓𝑖(𝑡)] 

𝑍 = 𝐿:⁡
𝛿𝐶𝑏𝑖
𝛿𝑍

= 0⁡; 𝑅 = 0:⁡
𝛿𝐶𝑝𝑖

𝛿𝑅
= 0⁡; 𝑅 = 𝑅𝑝 :⁡

𝛿𝐶𝑝𝑖

𝛿𝑅
=

𝑘𝑖
𝜀𝑝𝐷𝑝𝑖

(𝐶𝑏𝑖 − 𝐶𝑝𝑖,𝑅=𝑅𝑝) 

Where the feed concentration of i is Cfi. 

More equations have been developed since the late 19th century specifically to describe 

the binding and elution behavior of proteins on columns and thus predict their resolution. The 

behavior is commonly represented by sorption isotherms which characterize equilibriums at a 

constant temperature [172]. The simplest model assumes a linear relationship between 

equilibrium bulk protein concentration Ceq and the amount of protein bound to the resin q with 

the proportionality constant known as the linear coefficient, Kd (Equation 28 and Figure III-7). 
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𝑞 = 𝐾𝑑 ⋅ 𝐶𝑒𝑞 

Equation 28: Linear isotherm equation to calculate the amount of protein on the stationary phase q depending on 

the equilibrium mobile phase protein concentration Ceq with the linear coefficient Kd. 

 

Figure III-7: Protein sorption isotherms calculated according to different models (Equation 28 to Equation 

32). 

The linear (gray) and Freundlich (black) isotherms do not account for saturation effects at high protein 

concentrations, so the predicted capacity for the resin is unlimited. Langmuir (red) and BET (blue) isotherms 

converge to a maximum, qmax, but differ in the proposed binding mechanism and thus in the steepness of the 

isotherm slope at low protein concentrations. BET and SMA (green) isotherms have a similar shape but the SMA 

isotherm is advantageous because it links maximum binding capacity to actual physical properties and can account 

for varying salt concentrations. 

𝑞 = 𝐾 ⋅ 𝐶𝑒𝑞
𝑛
 

Equation 29: Freundlich isotherm to calculate the amount of protein on the stationary phase q depending on the 

equilibrium mobile phase protein concentration Ceq with the Freundlich coefficient Kf and the Freundlich exponent 

n. The exponent can also be written as 1/n if values of n above unity are preferred for convenience. 

𝑞 =
𝐾𝐿𝑞𝑚𝑎𝑥𝐶𝑒𝑞

1 + 𝐾𝐿𝐶𝑒𝑞
 

Equation 30: Langmuir isotherm to calculate the amount of protein on the stationary phase q depending on the 

equilibrium mobile phase protein concentration Ceq with the Langmuir sorption coefficient KL and the maximum 

value for the mass of adsorbed protein qmax. 

𝑞 =
𝐾𝑞𝑚𝑎𝑥𝐶𝑒𝑞

(𝐶𝑠𝑎𝑡 − 𝐶𝑒𝑞) ⋅ (1 +
(𝐾 − 1)𝐶𝑒𝑞

𝐶𝑠𝑎𝑡
)

 

Equation 31: BET model to calculate the amount of protein on the stationary phase q depending on the equilibrium 

mobile phase protein concentration Ceq with the sorption coefficient K, the maximum value for the mass of 

adsorbed protein qmax and the protein solubility Csat. 
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𝑞 = 𝐶𝑎,𝑒𝑞𝐾𝑎 (
Λ − (𝜐𝑎 + 𝜎𝑎)𝑞

𝐶𝑠
)
𝜐𝑎

⁡ ; ⁡𝜐𝑎 =
𝑧𝑝

𝑧𝑠
 

Equation 32: SMA formalism to calculate the amount of protein on the stationary phase q depending on the 

equilibrium mobile phase protein concentration Ca,eq with the mobile phase salt concentration Cs, the equilibrium 

constant Ka, the resin total capacity , the characteristic charge a and the steric factor of the protein a. The 

characteristic charge a is the ratio of protein binding charge zp and counter-ion charge zs. 

The obvious error in this model is the predicted infinite capacity of the resin with 

increasing protein concentration. This error is addressed in the empirical model by Herbert 

Freundlich using an additional exponent for Ceq and an adjusted proportionality constant Kf 

(Equation 29) [173]. However, introducing this modification does not correct the error, it only 

reduces its magnitude. Instead, the Langmuir isotherm has an explicit maximum value for the 

mass of adsorbed protein qmax and is thus able to describe the saturation of resin binding sites 

with protein (Equation 30) [174]. The Langmuir equation is similar to the Monod and 

Michaelis-Menten kinetics for microbial growth and enzyme kinetics, respectively [175, 176]. 

The Langmuir model is frequently used for chromatography but several assumptions are made 

that limit its predictive power, e.g. that bound molecules will not affect each other. Therefore, 

several modifications exist to adapt the model for multi-component [177-180] and cooperative 

adsorption [181] (Equation 31). An important expansion of the Langmuir model is the steric 

mass action (SMA) formalism for ion-exchange chromatography (IEC), which incorporates the 

dependence of protein adsorption on the mobile phase salt concentration [182] (Equation 32). 

SMA parameters determined for a protein are therefore valid for different salt concentrations 

whereas parameters for each salt concentration must be determined in the “standard” Langmuir 

model. The key concept of the SMA formalism is the introduction of a steric factor a 

accounting for potential resin binding sites shielded by bound proteins in addition to the resin 

sites involved in protein binding described by the characteristic charge a (Equation 32). The 

formalism can also be adapted for multi-component adsorption and its parameters can be 

determined by the chromatographic analysis of single, pure proteins (Table III.3). Additional 

approaches for parameter determination have been published recently [183]. 

Table III.3: Methods to determine SMA parameters for proteins of interest according to [182]. 

Parameter Method Reference 

Bed capacity  Frontal analysis [184] 

Characteristic charge a Multiple linear gradients [185] 

Equilibrium constant Ka Multiple linear gradients [186] 

Steric factor a Breakthrough volume [182] 
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𝑞 = 𝐶𝑎,𝑒𝑞𝐾𝑎 (
Λ

𝑐
)
𝑛

(1 −
(𝑛 − 𝜎𝑎)𝑞

Λ
)

𝑛

𝛾𝑎⁡; ⁡𝛾𝑎 =
𝛼𝑎 ⋅ 𝛼𝐿

𝑛

𝛼𝑎𝐿
⁡ ; ⁡𝑎 + 𝑛𝐿 ⇌ 𝑎𝐿𝑛 

Equation 33: SMA formalism adapted for HIC to calculate the amount of protein on the stationary phase q 

depending on the equilibrium mobile phase protein concentration Ca,eq with the overall molar concentration c, the 

equilibrium constant Ka, the total ligand concentration , the number of ligands involved per bound protein 

molecule n, the steric factor of the protein a, and the activity coefficient a. Activity coefficient a is defined as 

the ratio of protein activity a and ligand activity L to the protein-ligand complex activity aL. 

𝑞 = 𝐶𝑎,𝑒𝑞𝐾𝑎 (
Λ𝐼𝐸𝐶 − (𝑧𝑝 + 𝜎𝑎)𝑞

𝑧𝑆𝐶𝑠
)

𝜐𝑎

(
Λ𝐻𝐼𝐶 − (𝑛 + 𝛿𝑎)𝑞

𝑐
)
𝑛

𝛾𝑎⁡; ⁡𝜐𝑎 =
𝑧𝑝

𝑧𝑠
 

Equation 34: Mixed-mode isotherm to calculate the amount of protein on the stationary phase q depending on the 

equilibrium mobile phase protein concentration Ca,eq, the equilibrium constant Ka, the mobile phase salt 

concentration Cs, the overall molar concentration c, the ionic capacity IEC, the ligand density HIC, the 

characteristic charge a, the stoichiometric coefficient of the ligand n, the steric hindrance factor for charged 

ligands of the protein a, the steric hindrance factor for hydrophobic ligands a and the activity coefficient a as 

defined above. The characteristic charge a is the ratio of protein binding charge zp and counter-ion charge zs 

Similar models have been established for HIC [187-189] (Equation 33) and MMC [190] 

(Equation 34) or generalized for all types of adsorptive chromatography [191] (Equation 35). 

However, determining all parameters precisely, such as the number of ligands n involved in the 

binding of each protein molecule, is tedious using these systems. Therefore, non-mechanistic 

equations have also been developed and fitted to experimental data [192]. 

𝑞 = 𝐾𝑎Γ𝑎𝐶𝑎,𝑒𝑞 (
𝑐

𝐶𝑠
)
𝜐𝑎𝛽𝑎𝜎

(
𝑞𝐿
𝑐
)
𝜐𝑎
⁡ ; ⁡𝜎 =

𝑧𝐿
𝑧𝑆
⁡ ; 

⁡𝑃𝑎
𝑧𝑎 + 𝜐𝑎𝐿

𝑧𝐿𝑆𝜎
𝑧𝑆 ⇌ 𝑃𝑎

𝑧𝑎𝐿𝜐𝑎
𝑧𝐿 𝑆𝜎𝜐𝑎(1−𝛽𝑎)

𝑧𝑆 + 𝜈𝑎𝛽𝑎𝜎𝑆
𝑧𝑆 

Equation 35: Generalized formula to calculate the amount q of protein (P) bound to ligands (L) on the stationary 

phase displacing salt (S) depending on the equilibrium mobile phase protein concentration Ca,eq with the mobile 

phase salt concentration Cs, the equilibrium constant Ka, the equilibrium excess energies a, the overall molar 

(protein) concentration of the mobile phase c, the concentration of free ligands qL, stoichiometric coefficient a 

(number of ligands involved in protein binding), interaction mode determining factor a (= 0 for HIC, = 1 for 

IEC) and the charge ratio , with the charge of each protein species za, ligand charge zL and the charge of the salt 

counter ion zS. 

III.6.5 Prediction of chromatographic separation 

III.6.5.1 Motivation and isoelectric point 

A major drawback of all the model approaches discussed above is that the determination of 

chromatography parameters, such as SMA parameters, minimally requires several separation 

runs using pure protein [182, 193]. Pure protein samples are rarely available at an early stage 

of process development for a given POI and are even more difficult to obtain for all HCPs. 

Additionally, performing the separation runs is laborious and time consuming. Therefore, 

several in silico methods have been developed to predict protein adsorption behavior on 

different chromatography resins while avoiding the need to determine chromatography 
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parameters for each protein. One of the simplest approaches uses a theoretical isoelectric point 

(IEP, pI) in IEC [194]. The pI is calculated for a defined mobile phase pH based on the pKa 

values of all amino acids of a protein. However, this method does not account for the different 

leverage of amino acids buried within a protein compared to those on the protein surface. 

III.6.5.2 Homology modeling of protein structures 

In order to take the steric effects of amino acid positions into account, the three-dimensional 

(3D) structure of the POI must be known. Experimental methods to determine protein structures 

include nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography [195, 196]. 

However, both methods require pure preparations of the POI and HCPs, raising the same 

problems discussed above. Homology modeling is used to circumvent this limitation by 

generating 3D models for uncharacterized proteins based on the structures of homologous 

molecules. This method involves three major steps: (i) template selection and alignment, (ii) 

model building and (iii) model evaluation (Figure III-8) [197] (note that all following 

statements in this paragraph are based on this reference). In the first step, algorithms such as 

BLAST are used to identify proteins with a sequence identity ≥30% to the target protein. 

Sequence(s) with the highest identity to the target and with solved 3D structures are then 

selected as a template for modeling. Three major approaches exist for the second, model-

building step. First, rigid body assembly can be used to gradually increase the level of ‘detail’ 

in the model starting with an alignment of the c atoms of core folds and adding the remaining 

backbone atoms of these regions, then including loops and finally side chain atoms before 

energy minimization. Second, segment matching algorithms select all-atom peptide sequences 

of about six residues based on guiding positions, usually c, to reconstruct a homology model 

iteratively through the sequence of the template. Third, a broad set of structural constraints and 

restraints can be derived from the template structure, such as angles and bond lengths, and 

applied to each corresponding atom in the target sequence. For the final model, the sum of all 

constraint/restraint violations is then minimized. The advantage of this last approach is that 

different data sources can be exploited to build up the set of constraints/restraints (e.g. NMR, 

atomic force microscopy (AFM) and cross-linking experiments). Once a model has been built, 

several structural parameters are hierarchically assessed to determine the model quality. First, 

the overall fold is confirmed by evaluating the sequence identity of target and template over the 

whole sequence range, to identify low-quality regions. Any identity below 30% can be 

challenging because a relationship between sequence and structure is difficult to establish. Then 

the stereochemistry of the model is checked by investigating bond lengths, angles and correct 
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folding indicators such as the formation of a hydrophobic core and accessible surface area 

(ASA). These indicators are evaluated using different scoring functions (Table III.4). 

 

Figure III-8: Common workflow for the homology modeling of protein structures. 

A. Potential templates (green protein) are identified by alignment with the target protein sequence (red). Available 

template structures are evaluated based on sequence identity (red vs. green, boxed sequences). B. Homology 

models are built by aligning the target protein sequence with the structure of the most suitable template (red string 

vs. green cartoon) and subsequent refinement of the homology model (red cartoon). C. Finally, homology models 

are evaluated based on scoring functions such as QMEAN-Z (Table III.4) that compare structural properties of the 

model, such as binding angles, with those of structures solved by X-ray diffraction or NMR spectroscopy (Figures 

in panel C taken from SWISS-Model evaluation [198]). 

Homology models generated and evaluated in this way can then be used as the input 

data for other in silico methods for the prediction of protein retention and separation during 

chromatography, which are more sophisticated than pI prediction, e.g. molecular dynamics 
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(MD) simulations or quantitative structure-activity relationship (QSAR) models. Several online 

tools have been developed recently that facilitate the process of model building and evaluation, 

including the SWISS-MODEL and QMEAN servers [199, 200]. 

Table III.4: Scoring functions used to evaluate homology models according to the QMEAN server [199]. 

Scoring function Description 

Torsion1 
Extended torsion potential over three consecutive residues. Bin sizes: 45° for 

the center residue, 90° for the two adjacent residues. 

Pairwise1 
Residue-level, secondary structure specific interaction potential using Cβ 

atoms as interaction centers. Range 3...25 Å, step size: 1 Å 

Solvation1 

Potential reflecting the propensity of a certain amino acid for a certain degree 

of solvent exposure approximated by the number of Cβ atoms within a sphere 

of 9 Å around the center Cβ. 

All_atom1 
All-atom, secondary structure specific interaction potential using all 167 atom 

types. Range 3...20 Å, step size: 0.5 Å 

SSE_agree 

Agreement between the predicted secondary structure of the target sequence 

(using PSIPRED) and the calculated secondary structure of the model (using 

DSSP). 

ACC_agree 

Agreement between the predicted relative solvent accessibility using ACCpro 

(buried/exposed) and the relative solvent accessibility derived from DSSP 

(>25% accessibility  exposed) 

Z-score 

Estimate of the absolute quality of a model by relating it to reference 

structures solved by X-ray crystallography. The QMEAN Z-score is an 

estimate of the "degree of nativeness" of the structural features observed in a 

model by describing the likelihood that a model is of comparable quality to 

high-resolution experimental structures 

1 A linear combination of these scores is the QMEANscore4 used in SWISS-MODEL. DSSP - Define 

Secondary Structure of Proteins algorithm [201]. 

III.6.5.3 Molecular dynamics simulation 

MD simulations numerically solve the motion of molecules, like proteins and ligands, in space 

over time using a predefined environment and force field [202]. A force field, such as AMBER 

or CHARMM, provides information about the forces that act upon the atoms/molecules present 

in the simulated environment (Equation 36) as well as parameter sets for the different 

atoms/atom groups such as VDW radius, partial charge or mass [203, 204]. According to these 

forces, the changes in velocity and position are calculated for each atom/molecule in the 

simulation. For this purpose the 3D structure of each molecule has to be known, e.g. as a pdb-

file. The predefined environment comprises the 3D size (the “box”, typically 10 x 10 x 10 nm), 

the number of each molecule species, the duration and time increment as well as the solvent 

properties (explicit or implicit) of the simulated system [205]. An implicit solvent is represented 

by a fixed parameter such as the relative permittivity (dielectric constant), which is 80.10 [-] at 

20°C for water [206]. In contrast, each solvent molecule is simulated individually for explicit 

solvents increasing both simulation accuracy, especially for molecule interactions, and the 

required computational power. 
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Figure III-9: Workflow of a MD simulation. 

A. First, the size of the molecular environment is set, the components to be modeled are defined and the force 

fields, time increment and duration are selected. B. The forces are then calculated using an iterative process based 

on a force field, and the molecules are moved accordingly. C. Finally, the relative positions of the protein and 

ligand are evaluated to localize interaction spots and predict the binding orientation of the protein on a ligand-

coated surface. 

The simulation itself is an iterative process as shown in Figure III-9. A small time 

increment, typically about one femtosecond (10-15 s), and a total simulation time of 10–100 

nanoseconds (10-9 s), matching the kinetics of the reaction/interaction to be studied, are crucial 

for reliable calculations [207, 208]. As a consequence, forces and coordinates must be 

calculated ~10 million times for each atom/molecule in the simulation. In combination with an 

explicit solvent this adds up to a significant demand on computational power for each 

simulation [209, 210]. This is especially true for the evaluation of chromatographic separations 
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because all conditions such as salt concentration and pH must be calculated separately. The 

parameter values in current force fields are also based on experimental data and can thus be 

flawed, which is challenging because of potential error progression in the numerous simulation 

steps [211]. Therefore, MD simulations are currently inadequate for the prediction of 

competitive protein binding to ligands from crude solutions given available computational 

power. Instead this method is currently limited to single protein-ligand interactions [212]. 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = (𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙) + (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑉𝐷𝑊) 

Equation 36: Composition of the total potential energy of a system Etotal described by a force field including the 

potential energies for covalent bonds Ebond, bond angles Eangle, dihedral angles Edihedral, electrostatic interactions 

Eelec, and VDW interactions EVDW. 

III.6.5.4 Quantitative structure activity relationship modeling 

QSAR modeling is an alternative approach to predict protein retention during column 

chromatography that requires less computational power than molecular dynamics simulation. 

The method can be divided into three major parts (Figure III-10) [213]. First, a training data set 

is established, which consists of the retention factors for a set of model proteins under different 

chromatographic conditions and resin types, and descriptors for this set of model proteins. 

Descriptors are protein properties, such as ASA, charge and diameter, which are calculated 

based on the 3D structure of each individual model protein [213]. Second, a set of regression 

models is built that correlates retention factors with descriptor values. Algorithms commonly 

used to select descriptors with significant correlation to protein retention include multiple linear 

regression (MLR), partial least squares (PLS) and support vector machines (SVM) [214, 215]. 

The individual models are then critically evaluated to ensure reliable predictions for unknown 

proteins [214]. Over-fitting, including non-significant descriptors in the model, is a major 

concern because the number of descriptors is often much larger than the number of proteins in 

the dataset [216]. Evaluation methods include y-randomization, leave-many-out (LMO) 

analysis, bootstrapping and r2 analysis [214, 217, 218]. Additionally, QASR models should 

only be used within their applicability domain to perform predictions and prevent unjustified 

extrapolations [213]. For example, if all proteins in a training data set had a small mass 

(<50 kDa) no attempt should be made to use the established model for predictions of proteins 

with a high mass (>150 kDa). This also holds true for other chromatography conditions such as 

pH and resin type. In a third step, the regression model with the best performance is selected to 

predict retention factors for proteins that have not been included in the training data set, but for 

which 3D data are available and descriptors have been calculated, allowing the outcome of a 

chromatographic separation to be predicted. However, retention factors may vary in practice 
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when crude mixtures are used as the feed stream because competition in binding is not 

considered during modeling, and training data are often generated using pure proteins. 

 

Figure III-10: Workflow for building a chromatography retention model by QSAR. 

A. Descriptors are calculated for proteins from an experimental retention data set. B. Descriptors correlated to the 

observed chromatographic retention are selected by algorithms such as SVM and the quality of the resulting model 

is evaluated, e.g. by y-randomization. C. The final model is used to predict chromatographic retention of other 

proteins for which the same set of descriptors has been calculated based on their known/modeled structure. Graphs 

in panel B were generated with YAMS webserver [219]. 

Molecular docking is another method to predict molecular interactions that combines 

aspects of MD simulation and QSAR modeling. Either force field calculations or surface shape 

descriptors are used to “dock” two molecules to each other, e.g. protein and ligand [220]. A 

scoring function is then used to evaluate the most likely interaction sites. However, the main 

purpose of this method is to identify preferred binding orientations. It may therefore fail to 
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predict multi-site and weak interactions that are essential for protein retention during 

chromatography. 

In summary, the most promising approaches to generate models for protein 

chromatography are (i) SMA formalism to determine Langmuir isotherms, and (ii) QSAR 

modeling. These use experimental and in silico analysis, respectively, and can help to accelerate 

the development of downstream processes through guided experiment design. They can also be 

used as part of a QbD strategy for the cGMP-compliant production of biopharmaceuticals. 

III.6.6 Economic and regulatory considerations for downstream 
process design 

Recent data suggest that DSP accounts for a major part of the production costs when plants are 

used to produce biopharmaceutical proteins [63]. On one hand this is because upstream costs 

are lower for plant-based production compared to other expression systems and DSP costs thus 

account for a larger share of the total costs [34, 37]. On the other hand plant secondary 

metabolites and polymers may cause problems during processing by clogging equipment due 

to oxidization and precipitation, so actual DSP costs may be higher  [73]. Several additives have 

been used to deal with these problems as discussed above (III.6.1.2 and III.6.1.4). Using new 

additives or combining them can help to reduce DSP costs further. Recombinant proteins are 

often extracted from within the plant cell, releasing abundant HCPs into the extract. This is not 

the case if the culture supernatant is processed without cell lysis (e.g. when monoclonal 

antibodies are produced using CHO cells) [95, 221]. This issue can be addressed if inexpensive 

chromatography resins can be used in flow-through mode to bind protein impurities, which 

lowers the HCP burden on the more expensive capture resin and allows the use of smaller 

columns. 

The use of disposable equipment can also reduce the initial investment costs for a 

production process although this increases the costs of consumables [96]. Disposable 

technology is therefore advantageous for low-margin, high-value products and multi-purpose 

production sites [96]. DSP costs can also be reduced by using as many generic unit operations 

as possible for every process, because consumables can be ordered in bulk to reduce the unit 

price. The inclusion of generic operations also accelerates process development, leaving more 

time to optimize critical process steps hence reducing costs by improving product yield and/or 

purity. 

In addition to actual DSP, there are also costs associated with aseptic filling and 

pharmaceutical formulation [222], the latter aiming to provide an optimal delivery vehicle for 

the API, such as tablets, capsules, creams or solutions [223]. Optimization criteria for 
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formulation include shelf life, bioavailability, activity and dosage [224]. Several excipients are 

used for this purpose, including fillers, binders and disintegrators [224]. Adjuvants are a special 

kind of additive relevant in vaccine formulations [225]. The final formulation is known as the 

medicinal product. If possible, the final step in DSP should be adapted to the first step in 

formulation to avoid superfluous handling operations. This might be difficult because the final 

formulation is often developed during phase II/III clinical trials by which time the DSP is 

largely irreversible. 

Regulatory principles must also be taken into account during process development, 

reflecting the demands of current good laboratory practice (cGLP), good manufacturing 

practice (cGMP) and good clinical practice (cGCP) as set by the International Conference on 

Harmonisation of Technical requirements for Registration of Pharmaceuticals for Human Use 

(ICH) to improve safety standards for medicinal products [226]. Mandatory aspects of these 

guidelines include the need for comprehensive documentation, quality assurance (QA) and 

quality control (QC) at each step of the biopharmaceutical manufacturing process. DSP must 

address process- and product-related impurities, the latter defined as API precursors or 

degradation products lacking the necessary activity, efficacy or safety [227]. High-resolution 

techniques such as SEC may be needed to remove such impurities, e.g. multimers in the case 

of monoclonal antibodies [137]. 

Process-related impurities have diverse origins. Some arise from the production 

platform. For example, plant cell DNA and the enzyme ribolose-1,5-bisphosphate carboxylase 

oxygenase (RuBisCO) are among the most abundant process-related impurities in plant-based 

systems [226]. Such impurities are present in the bulk extract and can be depleted by 

precipitation and removed by polishing chromatography steps. Their presence can be monitored 

by immunochemical methods including the enzyme-linked immunosorbent assay (ELISA) 

[228]. Other process-related impurities originate from the processing equipment and chemicals, 

e.g. sulfate residues from buffers, leached Protein A from chromatography resins, and 

plasticizers from tubing. The latter are characterized as ‘extractables’ if they are only released 

under harsh conditions and ‘leachables’ if they are also released under normal process/storage 

conditions [229]. The detection of extractables/leachables can be challenging because they may 

be diverse, unknown, present at low concentrations and quantitative assays may be unavailable. 

Total organic carbon (TOC) is often used as an indicator for the presence of 

extractables/leachables and reversed-phase high-performance liquid chromatography (RP-

HPLC) may be suitable for detection and analysis [230]. However, extractables and leachables 

are often separated from the product by chromatography due to their low molecular mass and 
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charge. High-quality materials with a low extractables/leachables burden can improve process 

safety but this will increase costs. Finally, process-related impurities can also include 

cross-contamination from previous batches (in the case of reusable equipment such as 

homogenizers and all stainless steel equipment that has not been cleaned sufficiently). The 

easiest and safest way to avoid cross-contamination is to use disposable technologies wherever 

possible (compare III.6.1.4) [97]. 

The removal of human pathogens from the product is a key regulatory requirement. 

Spiking experiments are used to determine the ability of a process to remove certain indicator 

pathogens, such as Canine parvovirus and Herpes simplex virus (HSV), because the abundance 

of pathogens is usually low from the beginning [231-233]. The ability to remove these 

pathogens is expressed as a logarithmic reduction factor (LRF), and LRFs of up to 16 may be 

necessary for processes connected to upstream production using mammalian cells [232]. For 

plant expression systems, lower LRFs may be sufficient because plants do not support the 

growth of human pathogens [64]. If a process is not capable of effective pathogen removal, 

specific inactivation steps must be introduced including low-pH treatment steps [231]. 

In summary, the purity of a biopharmaceutical product is not solely a technical objective 

but economic and regulatory constraints also apply. 

III.7 Design of experiments 

The outcome of a process can be predicted if the parameters with the most significant impact 

are identified and kept within defined ranges. These significant parameters are said to span the 

so-called design space of a process [234, 235]. Such a process can be modeled if the information 

from different data points (experiments) within the design space is combined. The classical 

approach for the selection of data points is to vary one factor at a time (OFAT). However, this 

concentrates the data points along lines within the design space leaving the remainder beyond 

consideration (Figure III-11 A) [236]. Accordingly, the resulting models can be flawed and 

interactions between factors are unlikely to be found, resulting in poor predictions and 

suboptimal processes. 
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Figure III-11: Comparison of OFAT and DoE designs. 

A. Experiments of an OFAT design resemble pearls-on-a-string if projected into the design space, leaving wide 

areas (hatched ovals) for which no information is available. B. In a DoE approach, experiments are distributed 

evenly throughout the design space increasing the obtained information about the system and likelihood to find a 

desired operation point. 

In contrast, a statistical design of experiments (DoE) provides information about the 

entire design space. This is achieved most effectively using specialized software packages that 

allow the user to define the problem as well as constraints affecting the factors that are tested. 

The idea behind a statistical DoE is to scatter the data points (experiments) evenly throughout 

the design space under investigation and thus collect the maximum amount of information with 

the minimum effort [236, 237]. Parameters included in the design space are called factors and 

may be varied, whereas those excluded must be kept constant at all times. There are categoric 

and numeric factors. Categoric factors are subdivided into nominal factors, such as different 

colors, and ordinal factors such as the leaves on a plant. Numeric factors are normally 

continuous, like concentration or length measurements, but practical considerations may limit 

them to discrete values, e.g. if only a limited number of temperatures can be tested. The 

measured variable is called a response, e.g. filter lifetime or extract turbidity. 

Factor ranges considered in a DoE are often determined in initial experiments or known 

from experience or the literature. They can also be determined or narrowed down by full or 

fractional factorial designs. Categoric factors can be delimited by irregular factorial designs. 

Two-level factorial (TLF) designs are often selected for screening purposes, e.g. when many 

numeric factors are investigated. Each of these factors then adopts one of two possible values 

in every experiment so the mean (linear) effect of each factor can be assessed (Equation 37) 

[238]. Selecting a meaningful range for each factor is crucial because otherwise an important 

effect may remain concealed, as shown in Figure III-12. This problem can be avoided by 

augmenting a TLF with additional central and optional star point experiments, forming a so 

called central-composite design (CCD) [238]. A CCD can also estimate the non-linear effects 
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of a factor allowing the construction of a so-called response surface model (RSM). Using an 

optimal design algorithm, the number of experiments required to build a RSM can be reduced 

compared to a CCD. The three major optimality criteria are listed in Table III.5, but IV-optimal 

algorithms provide a model that has an evenly-distributed prediction quality throughout the 

design space and is thus ideal for the evaluation of process robustness. There are also several 

other design types for specific applications such as mixture plans [239]. 

𝐸𝑓𝑓𝑒𝑐𝑡⁡𝑜𝑓⁡𝑓𝑎𝑐𝑡𝑜𝑟⁡𝐴 =
∑ 𝑦𝑖
𝑘
𝑖=1

𝑘
−
∑ 𝑦𝑙
𝑙
𝑗=1

𝑙
 

Equation 37: Effect of factor A as the difference in average response at high factor level yi and low factor level yj 

with k and l representing the number of experiments with high and low factor levels respectively. In a full-factorial 

design, k = l. 

 

Figure III-12: The importance of meaningful factor range selection. 

In a linear factor-response relationship (green line) the effect of the factor is correctly estimated with a TLF 

(circles). However, for a quadratic correlation (red curve) the optimal value is not captured by a TLF (triangles) 

and additional experiments are required (e.g. in a CCD, open triangle). In narrow dose-response relationships (blue 

Gaussian shaped curve) the effects can remain concealed due to the inadequate selection of factor levels (squares). 

Table III.5: Criteria for the generation of optimal DoE algorithms commonly used in RSM designs. 

Design optimality Criterion 

A Minimize the average prediction variance of the model 

D Maximize accuracy of model coefficient estimates 

IV Minimize prediction variance of the model across the entire design space 

An important advantage of the statistical DoE approach over the OFAT approach is that 

interactions between factors are more likely to be found, although data analysis is dependent 

on specialized software and care must be taken to avoid misinterpretations based on missing or 

incorrect data. Common indicators for model quality are r2 (Equation 38), adjusted r2 and 

predicted r2 (Equation 39 and Equation 40) [240]. The inclusion of additional factors in the 

model is penalized in the adjusted r2 calculation by reducing the degree of freedom (df) and 

thus the adjusted r2 value so that only factors which substantially increase the model quality 

will also increase the adjusted r2. This indicator can therefore be used to detect and prevent 

model over-fitting. The predicted r2 is similar to a leave-one-out analysis and thus measures the 
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predictive power of a model based on the predicted residual sum of squares (PRESS, Equation 

41) [240]. Instruments to identify low-quality models (section III.6.5.4) may not be suitable to 

evaluate a DoE because data redundancy is low by design and thus LMO analysis is likely to 

result in models with artificially low quality. Alternatively, lack-of-fit (LOF) tests can be used 

to correlate the pure error of replicate experiments with the deviation of model and experimental 

data (Equation 42) [240-243]. A significant LOF indicates a low-quality model or problems 

with the raw data. Indicators such as normal plots of the residuals, predicted-versus-actual and 

residuals-versus-run plots allow the non-quantitative evaluation of a model [240]. 

𝑟2 = 1 − [
𝑠𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑠𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑠𝑠𝑚𝑜𝑑𝑒𝑙
] 

Equation 38: R-squared (r2) calculation, with residual sum of squares ssresidual and model sum of squares ssmodel. 

𝑎𝑑𝑗. 𝑟2 = 1 − [
(
𝑠𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑑𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

)

(
𝑠𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑠𝑠𝑚𝑜𝑑𝑒𝑙

𝑑𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑑𝑓𝑚𝑜𝑑𝑒𝑙
)
] 

Equation 39: Adjusted r2 calculation, with residual sum of squares ssresidual, model sum of squares ssmodel, degrees 

of freedom of the residuals dfresiduals and degrees of freedom of the model dfmodel. 

𝑝𝑟𝑒𝑑. 𝑟2 = 1 − [
𝑃𝑅𝐸𝑆𝑆

𝑠𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑠𝑠𝑚𝑜𝑒𝑙
] 

Equation 40: Predicted r2 calculation, with predicted residual sum of squares (PRESS, Equation 41), residual sum 

of squares ssresidual and model sum of squares ssmodel. 

𝑃𝑅𝐸𝑆𝑆 = ∑(𝑒𝑖,−𝑖)
2
=∑(

𝑒𝑖
1 − ℎ𝑖𝑖

)
2

⁡ ; ⁡𝑒𝑖,−𝑖 = 𝑦𝑖 − 𝑦̂𝑖,−𝑖 =

𝑛

𝑖=1

𝑛

𝑖=1

𝑒𝑖
1 − ℎ𝑖𝑖

 

Equation 41: Predicted residual sum of squares (PRESS) as the sum of predicted residuals ei,-i, with the residuals 

ei, the diagonal element of the hat matrix (H) hii, and the actual and predicted values for each point yi and ŷi 

respectively. The suffix “i,-i” indicates that the calculation was performed for the ith element of a data set but 

excluding that specific element from the calculation [244, 245]. 

𝑠𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑠𝑠𝐿𝑂𝐹 + 𝑠𝑠𝑝𝑢𝑟𝑒⁡𝑒𝑟𝑟𝑜𝑟 ⁡; 𝐹 = [
(
𝑠𝑠𝐿𝑂𝐹
𝑑𝑓𝐿𝑂𝐹

)

(
𝑠𝑠𝑝𝑢𝑟𝑒⁡𝑒𝑟𝑟𝑜𝑟
𝑑𝑓𝑝𝑢𝑟𝑒⁡𝑒𝑟𝑟𝑜𝑟

)
] 

Equation 42: F-test for lack of fit with residual sum of squares ssresidual, lack of fit sum of squares ssLOF, pure error 

sum of squares sspure error, degrees of freedom of the lack of fit dfLOF and degrees of freedom of the pure error dfpure 

error. 

Using DoE, the robust analysis of complete datasets results in accurate predictions of 

optimal parameter settings within the design space covered by the model. Once a good model 

is established, factors (process parameters included in the model) can be adjusted to 

accommodate desired responses (outcomes), e.g. a shorter process time or a higher yield. By 

assigning suitable weighting terms to two or more different responses, the factor setting can be 
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trimmed as required. In a subsequent step, the process model can be combined with a cost 

function [246, 247]. The resulting process cost model then allows the process to be optimized 

for different cost positions, e.g. overall product costs, consumables costs or downstream costs. 

Recent reports indicate that applying a DoE modeling approach to highly complex systems such 

as competitive protein binding during chromatography can be challenging [248]. 



IV. Materials and methods  page 45 

Biomolecular Separation Engineering – Karlsruhe Institute of Technology 

Dissertation 2017 | Johannes Buyel 

IV. Materials and methods 

IV.1 Equipment and chemicals 

All equipment is listed together with the manufacturers’ information in the appendix, section 

IX.1. All chemicals and buffers are listed in the appendix, sections IX.3 and IX.4, respectively. 

IV.2 Expression vectors and cloning 

IV.2.1 Agrobacterium tumefaciens infiltration of plants 

A. tumefaciens strain GV3101:pMP90RK was transformed with plasmids described in section 

IV.2.2 by electroporation [249]. Bacteria were cultivated in yeast extract broth (YEB) 

containing carbenicillin (50 µg mL-1), kanamycin (25 µg mL-1) and rifampicin (25 µg mL-1) for 

the selection of recombinant clones at 25°C. For transient expression in N. benthamiana, 

A. tumefaciens was cultured to an optical density at 600 nm (OD600nm) of ~5.0 and diluted with 

two-fold infiltration medium and tap water to the desired final OD600nm. An OD600nm of 1.0 

corresponded to 1.43 ± 0.12 x 109 colony forming units per mL (n = 6). Bacteria were 

inoculated by vacuum-infiltration of whole plants at ~50 Pa absolute pressure for 15 min 

followed by sudden vacuum release. 

IV.2.2 pGFD vector 

The pGFD vector, a derivative of pPAM (GenBank AY027531), was kindly supplied by Dr. 

Thomas Rademacher, Fraunhofer IME [250]. This vector included a backbone lactamase 

gene for selection in A. tumefaciens and a T-DNA containing the genes for DsRed (GenBank 

AF168419; R2G mutant), the 2G12  light chain (F62 version) and the 2G12  heavy chain, 

separated by scaffold attachment regions (SARs) from the tobacco RB7 gene (GenBank 

U67919). The SARs were included even though they are not expected to function during 

transient expression so that exactly the same constructs could be compared in transgenic plants. 

This holds true for all other constructs described below. The DsRed gene was fused to the transit 

peptide sequence from the barley granule-bound starch synthase I gene (gbssI) allowing the 

recombinant protein to be imported into plastids (GenBank X07932), whereas the light and 

heavy antibody chain genes included their native (human) signal peptide sequences allowing 

secretion to the apoplast. Each gene was expressed under the control of the Cauliflower mosaic 

virus (CaMV) 35S promoter. Transgenic tobacco seeds carrying the same integrated T-DNA 

were also kindly supplied by Dr. Thomas Rademacher. 
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IV.3 Plant growth 

IV.3.1 Plant species 

The N. tabacum varieties Petit Havana SR1 (for brevity referred to as SR1 hereafter) and K326 

as well as their transgenic progeny GFD (based on SR1) and pfs25, pfs25KO and E25T (all 

based on K326) were used for the studies described in this thesis. SR1 and N. benthamiana 

were also used for transient protein expression (IV.2.1). 

IV.3.2 Greenhouse 

Tobacco seeds were germinated on rockwool blocks (Cultilène, The Netherlands) and were 

cultivated in a greenhouse at 25/22°C day/night temperature with a 16-h photoperiod (180 

µmol s-1 m-2; =400–700 nm) and at 70% relative humidity. The plants were irrigated with a 

0.1% (w/v) solution of Ferty 2 Mega (Kammlott GmbH, Germany) and were grown for either 

35 (no bud) or 42 days (developing bud) prior to infiltration with A. tumefaciens, or for 47 days 

(mature bud) prior to harvest in case of transgenic SR1 plants. Transgenic K326 plants were 

harvested 51 days post seeding. 

IV.3.3 Post-infiltration incubation 

Infiltrated plants were transferred into phytotrons and incubated for 5 d at 70% relative 

humidity with a 16-h photoperiod, using six Osram cool white 36 W fluorescent tubes per 

0.7 m2 (75 µmol s-1 m-2; = 400–700 nm). The incubation temperature was set to 25°C. Treated 

leaves were sampled 5 days post injection (dpi) when plants reached 47 days post seeding (dps). 

IV.4 Sample preparation and analysis 

IV.4.1 Sampling from transgenic plants and process steps 

Samples were taken during extraction and subsequent DSP steps (Figure VI-1) and thus did not 

require maceration. Samples were centrifuged twice at 16,000 x g, 20 min, 4°C and 

supernatants were stored at –80°C. 

IV.4.2 Sampling from infiltrated plants 

Samples were taken from infiltrated leaf parts (IV.2.1) using a cork borer, and 3 µL of 

extraction buffer (50 mM sodium phosphate buffer, 500 mM NaCl; pH 8.0) was added per 1 mg 

of fresh biomass. Proteins were extracted by grinding with an electric pestle. Extracts were 

centrifuged twice at 16,000 x g, 20 min, 4°C, and supernatants were stored at –80°C. 
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IV.4.3 Protein quantitation 

The quantity of total soluble protein (TSP) in the supernatants was determined using the 

Bradford method [251, 252]. Briefly, 2.5 or 5.0 µL of supernatant was mixed with 200 µL of 

Bradford reagent (Thermo Fisher Scientific, Rockford, Illinois) in 96-well plates and incubated 

for 10 min at 22°C before measuring absorbance at 595 nm using a Synergy HT plate reader 

(BioTek Instruments, Winooski, Vermont). Eight dilutions of bovine serum albumin (0–2000 

µg mL-1) were prepared in triplicate and used to build a standard curve. 

DsRed fluorescence in supernatants was determined using a Synergy HT plate reader 

fitted with 530/25 nm (excitation) and 590/35 nm (emission) filter sets in 96-well half area 

plates. Reads were averaged over triplicate samples of 50 µL and a standard curve was 

generated with dilutions in the range 0–225 mg mL-1. 

The quantity of 2G12 antibody was determined by surface plasmon resonance (SPR) 

spectroscopy using a Biacore T100 (GE Healthcare, Uppsala, Sweden) measuring the amount 

of antibody binding to Protein A (Sigma-Aldrich, St. Louis, MO) immobilized on the surface 

of a CM5 chip by EDC/NHS coupling [253, 254]. A 585 ng mL-1 reference solution of 2G12 

(Polymun Scientific, Klosterneuburg, Austria) was used for one-point calibration with 

HBS-EP+ as the running buffer. 

IV.4.4 SDS-PAGE analysis 

Pre-cast 4–12% (w/v) continuous Bis-Tris gels and additional equipment from Life 

Technologies were used for sample (IV.4.1,IV.4.2) analysis by reducing lithium dodecyl sulfate 

polyacrylamide gel electrophoresis (LDS-PAGE). Samples were prepared and separated 

according to the manufacturer’s protocol. Briefly, samples were boiled in LDS-running sample 

buffer and reducing agent, and 10 µL was loaded per well. Samples were separated for 37 min 

at 200 V in MES running buffer. After washing in water, gels were stained for 1 h in 

SimplyBlue™ SafeStain and excess staining solution was removed by washing in water. 

Stained gels were scanned with a Canon 8800 (Canon, Krefeld, Germany) at a resolution of 

600 dpi using Adobe Photoshop 6.0 (San Jose, CA, USA). Silver staining was carried out using 

the SilverQuest™ Kit. The gels were washed in water, fixed using an acidic ethanol:water 

mixture, sensitized, stained and developed with intervening washing steps. 

IV.4.5 Western blot and immunodetection 

Samples separated by SDS-PAGE (IV.4.4) were transferred at 30 V for 2 h onto nitrocellulose 

membranes (GE Healthcare, Waukesha, WI, USA) using a tank blotting device from Life 

Technologies. After blocking with 5% (w/v) milk powder in phosphate buffered saline (PBS) 
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containing 0.05% (v/v) Tween-20, proteins were specifically labeled with (pairs of) mAbs 

(Table IV.1). The last mAb in the incubation series was always conjugated with alkaline 

phosphatase (AP) allowing quantitative detection using a colorimetric reaction with nitroblue 

tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP). The NBT and BCIP 

solutions (stock concentrations 0.3 and 0.15 mg mL-1, respectively) were prepared by adding 

100 µL stock per 10 mL AP buffer during development. 

Table IV.1: Monoclonal antibody (pairs) used for specific protein detection as 1:5000 dilutions. 

Target protein/domain 1st antibody 2nd antibody 

2G12 
Goat -Human-H+L-AP (Dianova 

109-055-003) 
--- 

DsRed Rabbit -DsRed (MBL PM005) Goat--rabbit-H+L-AP (Jackson 111-

045-045) His6 Rabbit-his (Genescript A00174) 

E25T Mouse-MSP1(19) (mAb 5.2) Goat--mouse-Fc-AP (Jackson 115-

005-008) Pfs25 Mouse-pfs25 (mAb 4B7) 

IV.5 Homogenization of leaf material 

Plant extracts were prepared at three scales (Figure VI-1). For bench-top scale preparations, 

50–150 g of fresh leaf biomass was processed in a blender (Waring, Torrington, CT, USA) with 

three volumes of non-cooled extraction buffer (3 mL g-1) and ground three times for 30 s with 

30 s intervals. 

For laboratory-scale preparations, 0.5–2.0 kg of biomass was homogenized in a 

Polytron PT6100 (Kinematica, Lucerne, Switzerland) with a custom blade tool scaled down 

according to a previously-developed large-scale process [255]. Initially, 250 g of biomass was 

mixed with 1500 mL non-cooled extraction buffer in a stainless steel bucket connected to the 

PT6100. After 2 min mixing at 8,200 rpm, the remaining 250 g biomass was added and mixing 

continued for another 6 min at the same speed. 

For pilot-scale preparations, 12–20 kg of biomass was homogenized for 8 min at 

3600 rpm in a REACTRON® RT50 (Kinematica) containing 36–60 L of non-cooled extraction 

buffer. All the biomass was processed in one operation. 

Different extraction buffer compositions and pH values were tested (section VI.5). The 

turbidity, conductivity and pH of the homogenate were monitored and the pH was adjusted if 

required. Total soluble protein (TSP), 2G12 and DsRed concentrations were determined in 

homogenate samples as described above (section IV.4.3). 
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IV.6 Bag filtration 

Different bag filters (Table VI.2) were tested alone or in combination with additives and/or 

flocculants to remove bulk particles from the homogenate. The working parameter settings are 

provided in Table IV.2. The bag filtrate was monitored for turbidity, conductivity, pH, TSP and 

the concentrations of 2G12 and DsRed (IV.4.3). In the bench-top and laboratory-scale 

processes, residual liquid was drained from the filters and filter cake by manual pressing to 

improve extract recovery because the filter size was slightly too large for the amount of 

processed biomass. 

Table IV.2: Bag filter sizes and flow rates at the different process scales. 

Filter 1POG04 (Pall) BP-410 (Fuhr) BP-420 

(Fuhr) 
123-D (3M) 

Length [m] 0.210 0.218 0.457 0.800 

Diameter [m] 0.107 0.102 0.102 0.180 

Area [m2] 0.080 0.078 0.155 0.478 

Volume [L] 1.89 1.78 3.73 20.36 

Volumetric flow rate [L min-1] 0.190 0.125 0.250 1.000 

Volumetric areal flow rate 

[L m-2 min-1] 
2.375 1.602 1.612 2.128 

Linear flow rate [cm h-1] 14.25 9.61 9.67 12.77 

Volume exchange [min-1] 0.1 0.07 0.07 0.05 

IV.7 Depth filtration and screening 

Different depth filters (Table IV.3, Table IV.4 and Table VI.3) were tested alone or in 

combination with additives and/or flocculants to remove fine particles from the homogenate. 

The volumetric loading flow rate was kept approximately constant over the different scales. 

Properties of the different filter types and manufacturers are listed in Table IV.3 and Table IV.4. 

The filtrate was monitored for turbidity, conductivity, pH, TSP and the concentrations of 2G12 

and DsRed (IV.4.3). 

Table IV.3: Depth filter properties at the bench-top scale. 

Filter 
PD series1 

(Pall) 

Sartoclear Caps 

(Sartorius) 

BC series 

(3M) 

Diameter [m] 0.0529 0.0564 0.0564 

Area [m2] 0.0022 0.0025 0.0025 

Volumetric flow rate [L min-1] 0.006 0.006 0.006 

Volumetric areal flow rate [L m-2 min-1] 2.733 2.400 2.400 

Linear flow rate [cm h-1] 16.4 14.4 14.4 

1 effective diameter after sealing, diameter of the filter element is 0.06 m. 
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Table IV.4: Depth filter properties at the laboratory and pilot scales. 

Filter 
Supracap 100 

series (Pall) 

Sartoclear Maxicap 

(Sartorius) (20”) 

Stax series 

(Pall) 

Sartoclear L-Drum 

(Sartorius) 

Diameter [m] 0.154 0.100 0.442 0.310 

Area [m2] 0.025 0.150 1.000 2.000 

Volumetric flow 

rate [L min-1] 
0.065 – 0.130 0.100 2.500 3.000 

Volumetric areal 

flow rate 

[L m-2 min-1] 

2.600 – 5.200 0.666 2.500 1.500 

Linear flow rate 

[cm h-1] 
15.6 – 31.2 4 15.0 9.00 

IV.8 Flocculant and additive screening and evaluation 

Different flocculants (Table VI.5 and Table VI.6) and additives (Table VI.9) were tested in a 

range of concentrations and buffer conditions for their ability to reduce extract turbidity at 

various points during clarification (Table IV.5 and section IV.12.1). Flocculants were prepared 

as 2% or 4% (w/v) stock solutions in 50 mM phosphate buffer, based on the formulation 

delivered by the manufacturer. The pH of the stock solution was adjusted to that of the extract 

with which it was mixed. In screening experiments, the amount of stock solution needed to 

achieve the desired final concentration of flocculant was added to 20 mL of crude extract and 

the volume was adjusted to 22 mL with extraction buffer. The samples were mixed thoroughly 

for 20 s by manual shaking and allowed to settle for varying times at different temperatures 

according to the DoE (Table IV.5). The samples were then filtered through two layers of 

Miracloth (Calbiochem/Merck-Millipore, Darmstadt, Germany) and the turbidity was 

determined immediately and after 24 h as a 1:10 dilution in extraction buffer using a Hach 

2100P (Loveland, CO, USA). In processing experiments, the required amount of flocculant 

stock was added to the homogenate and mixed using the appropriate homogenization device 

for 10–15 s. 

Table IV.5: Parameter ranges tested during flocculant screening by DoE. 

Parameter Lower boundary Upper boundary 

Extraction buffer pH [-] 4 8 

Extraction buffer conductivity [mS cm-

1] 
15 55 

Extract temperature [°C] 4 30 

Flocculant concentration [g L-1] 0 4 

Flocculation time [h] 0.08 1.25 

For testing at the laboratory scale, appropriate volumes of flocculant stock solution were 

added to the extract after homogenization and mixed with the PT6100 for 15 s to 5 min. The 
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pH was adjusted to 7.5 if necessary and the particles were allowed to settle for 5–30 min before 

filtration through BP-410. 

Different additives (Table VI.9) were mixed directly with the extract prior to bag or 

depth filtration and stirred until a homogenous dispersion was achieved, or dispersed in buffer 

and circulated over the filter to build up a filter cake prior to filtration. The circulation was 

continued until additive dispersion became clear, then the extract was filtered through filter and 

cake. Additives were tested in concentrations of 0–5 g L-1. 

IV.9 Pretreatment of leaves or bulk plant extracts 

IV.9.1 Blanching of plant leaves 

Blanching was always carried out with fresh leaf material before extraction (IV.5). Therefore, 

150 g of plant biomass were packed into a 23 × 23 × 23 cm polypropylene basket with wide 

meshes and a lid preventing the leaves from floating out. The filled basket was then submerged 

into a blanching bath filled with ~8L of water or 50 mM phosphate buffer (pH 8.0) pre-heated 

with a Lauda E300 (Lauda Dr Wobser GmbH, Germany) to the required temperature in the 60–

85°C range. The liquid in the blanching bath was agitated with a 4 cm magnetic stir bar with 

180 rpm to reduce stagnant layers at solid-liquid interfaces. After incubation for the time 

required in the respective experimental setup (0.5-5.0 min) the basket was removed from the 

blanching bath, drained for 30s and the plant material was subjected to extraction (IV.5). 

IV.9.2 Heat treatment of bulk extract 

Heat treatment was conducted using either a heated vessel or a heat exchanger after protein 

extraction from leaf biomass (IV.5) but never combined with blanching (IV.9.1). In the vessel 

setup, a 2-L stainless vessel was thermally equilibrated in a water bath (setup as described under 

IV.9.1) for 15 min to the temperature required for heat treatment (60–85°C range). Then, 300 

mL of extract were poured into the vessel and incubated as required (0.5-5.0 min). A 4-cm 

magnetic stir bar was also placed in the vessel to agitate the extract during heating with 150 

rpm. The heat treated extract was then subjected to filtration (IV.6). As an alternative to the 

heated vessel, plant extract was processed in a 12-loop custom heat exchanger that was 

thermally equilibrated as described for the vessel. An 0.5-L bucket was connected to the heat 

exchanger’s inlet and outlet hose using L/S 24 tubing and placed in a 1.0-L vessel containing 

cotton wool as insulation material. A peristaltic pump Masterflex L/S (Masterflex, Germany) 

was hooked up to the feed side tubing of the heat exchanger to apply a constant plant extract 

circulation rate of 300 mL min-1. The plant extract was circled through the assembly for the 
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required time (0.5-5.0 min). The heat exchanger was then transferred into another water bath 

containing 8 L of ice-cold water and circulation was continued until the extract temperature fell 

below 30°C. All liquid was drained into the 0.5-L vessel using the pump. Subsequently, the 

heat treated extract was subjected to filtration (IV.6). 

IV.10 QSAR modeling 

IV.10.1 HCP detection by mass spectrometry 

Samples from crude tobacco extracts were separated by SDS-PAGE, stained (IV.4.4) and the 

amount of protein in each band was calculated as a fraction of the total protein per lane averaged 

over three different dilutions using the Aida Image Analyzer software (raytest GmbH, 

Germany). Individual bands were isolated, the gel pieces were washed with water and 

acetonitrile and then dried in a concentrator 5301 (Eppendorf, Germany). The proteins were 

then reduced with dithiothreitol and re-oxidized under defined conditions with iodoacetamide. 

After washing the gel pieces in ammonium carbonate and acetonitrile, the proteins were 

digested in-gel with trypsin for analysis by matrix-assisted laser desorption/ionization 

(MALDI) mass spectrometry (MS) on an amaZon ETD (Bruker, MA, USA). Peptide mass 

fingerprints (PMFs) were evaluated using Mascot (Matrix Science, Boston, MA, USA). 

Individual proteins were quantitated by dividing the total protein fraction of a band (see above) 

by the number of identified proteins. These amounts were summed over all bands containing a 

specific protein to calculate its relative abundance in plant extract as a fraction of TSP. 

IV.10.2 Homology modeling 

The sequences of tobacco proteins identified by PMF (or the closest tobacco homologs when 

the identified proteins originated from other species) were compiled from UniProt [256]. If no 

tobacco homologue was found, the originally-identified protein was used instead. The 3D 

structures of these proteins were then obtained from PDBe or RCSB PDB [257, 258]. If no 3D 

structure was available the final processed amino acid sequences (without leader peptides) were 

used as input data for SWISS-MODEL homology modeling in automatic modeling mode [198, 

200, 259]. The TargetP 1.1 webserver was used to predict leader/signal peptides in case no 

annotation was available [260, 261]. For each protein, the model with the highest sequence 

coverage was selected and its quality was ranked by QMEANscore4 [262, 263], Z-Score [264] 

and sequence identity. Only templates with a sequence identity greater than 30% compared to 

the target were used for modeling. Missing residues were added in MOE (Chemical Computing 

Group, Montreal, Canada) using the homology modeling algorithm with the initial homology 
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model as the template, whereas all water and hetero atoms were removed. Three rounds of 

energy minimization on increasingly-flexible atoms were carried out in protonation states 

corresponding to pH 5.0, 6.0, 7.0 and 8.0 of each host cell protein. For model proteins included 

in the QSAR training data set (IX.6) pH values corresponding to the reported experimental 

conditions were selected (VI.10.2). The interaction surfaces were calculated with a 

corresponding algorithm in MOE for all states and proteins. Final models were manually 

curated to prevent structural clashes. 

IV.10.3 Descriptor calculation 

MOE was used to calculate 2D, TAE (transferable atom equivalent), i3D and x3D descriptors 

for all proteins at the different pH values (IV.10.2). The PEST (Property-Encoded Surface 

Translator) algorithm was used to calculate EP (electrostatic potential) and MLP (molecular 

lipophilicity potential) for proteins at pH 7.0 [265]. 

IV.10.4 QSAR model building and prediction 

Retention data for model proteins at different pH values on different resin types were obtained 

from the literature [155, 266-274]. Descriptors for these model proteins and HCPs were 

calculated as described above (IV.10.3). Descriptors with a significant correlation to protein 

retention were selected from this dataset using the YAMS (yet another modeling software) 

webserver by Dr. Michael Krein [219], hosted at the Rensselaer Exploratory Center for 

Cheminformatics Research (RECCR; http://reccr.chem.rpi.edu/ONR-QSPR/). Eight iterations 

of descriptor selection were carried out, each time removing from the dataset 30% of the 

descriptors with the least correlation. Descriptors were selected using a SVM algorithm. The 

built-in quality control tools of the web-server, such as k-fold cross-validation (here k = 10) 

[275], Y-scrambling (y-randomization) and r2, were used to evaluate the QSAR model quality. 

The method used to assemble the predicted elution salt concentrations and individual protein 

amounts into a “synthetic” chromatogram is described in the results (section VI.10.3). 

IV.11 Chromatography 

All chromatographic separations were carried out using an ÄKTA purifier 10 or 100 and ÄKTA 

explorer fast protein liquid chromatography (FPLC) systems from GE Healthcare. A variety of 

columns from different manufacturers was tested at different flow rates (Table IV.6) and details 

are provided in the corresponding results section (VI.9). Protein, DNA and DsRed elution from 

columns was monitored at 280, 260 and 495 nm, respectively. 
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Table IV.6: Column sizes, volumes and flow rates during chromatographic protein separation on ÄKTA 

FPLC systems 

Column 
HiTrap Series 

(GE) 
PRC series (Pall) XK26/10 (GE) 

MiniChrom 

(ATOLL) 

Bed height [cm] 2.5 5.0 10.0 10.0 

Bed diameter [cm] 0.7 0.5 2.6 0.8 

Column (bed) volume 

[mL] 
1.0 1.0 53.1 5.0 

Wash and elution flow 

rate [mL min-1] 
1.00 1.00 8.00 5.00 

Linear flow rate [cm h-

1] 
155.9 305.6 90.4 600.0 

Loading flow rate 

[mL min-1] 
0.125 – 1.00 0.125 – 1.00 n.a. 5.00 

Linear flow rate [cm h-

1] 
19.4 – 155.9 38.1 – 305.6 n.a. 600.0 

IV.12 Design of experiments 

Design Expert 8.0 (Stat-Ease, MN, USA) was used to build and evaluate all experimental 

designs. Unless otherwise noted, error bars on the predicted values indicate the 95% confidence 

interval of the model which equals 2 x  and is thus twice the size of the standard deviation 

normally shown using error bars. 

IV.12.1 Flocculant screening and model 

Eighteen different flocculants (Table VI.5) and controls without flocculants were tested in an 

IV-optimal RSM DoE consisting of 88 conditions covering a range of pH values and flocculant 

concentrations (Table IV.7) but constant conductivity (30 mS cm-1). A refined set of six 

flocculants was used in an IV-optimal second DoE with 60 different conditions based on the 

same parameters. For optimization of the three best flocculants, an IV-optimal RSM with 30 

conditions at additional pH values of 5 and 7 was performed. Based on the results, a second set 

of flocculants was screened in an IV-optimal RSM of 70 conditions at different concentrations, 

conductivities, pH values and incubation times (Table VI.5). The efficacy of the 

best-performing flocculant was evaluated in a 57 run IV-optimal DoE with the same parameters. 

The preferred concentration range of the final flocculant was then evaluated using an 

IV-optimal RSM design with 70 conditions at different concentrations, conductivities, pH 

values, incubation times and temperatures (Table IV.5). This DoE was applied to transgenic 

plants harvested 44 and 49 dps, corresponding to the late budding and mature flower stages 

respectively. Factors showing a significant influence on turbidity were pre-selected from a 

quadratic or cubic model by automatic backwards selection using a p-value threshold of 0.100, 

and factors with p-values greater than 0.050 were removed manually. Exceptions were made to 
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maintain model hierarchy, a requirement for high-quality polynomial regression models [276, 

277]. 

Additional designs were set up for combinations of flocculants (VI.5.2). 

Table IV.7: Parameter ranges during flocculant screening experiments by IV-optimal DoE. 

Parameter Lower boundary Upper boundary 

Extract pH [-] 4.00 8.00 

Flocculant concentration [g L-1] 0.01 3.00 

Flocculant type [-] none 18th flocculant 



V. Research proposal  page 56 

Biomolecular Separation Engineering – Karlsruhe Institute of Technology 

Dissertation 2017 | Johannes Buyel 

V. Research proposal 

As described in the introduction, plants can offer a vital alternative to cell culture-based 

approaches for the production of biopharmaceutical proteins. Even though a plethora of plant 

species has been tested for their capabilities to produce such proteins in the last decades, little 

attention has been paid to the challenges encountered during product extraction and purification 

which has been identified as the most cost-intensive part in plant-based biopharmaceutical 

production. As a consequence, concerns have come up as to whether an economical production 

of biopharmaceutical proteins can be achieved in plants at all. Therefore, there is a distinct need 

to improve the process performance of plant-based production approaches in terms of DSP 

including not only technical challenges such as clarification and product purification but also 

in terms of economic aspects, i.e. consumables costs. 

Hence, this thesis considers different aspects of DSP for a plant-derived biopharmaceutical 

protein (Figure V-1). First, an existing cGMP process for the production of monoclonal 

antibodies was scaled down and optimized in terms of duration, labor, and the cost and 

performance of the homogenization and clarification operations. This involved the introduction 

of several new methods such as the use of flocculants (section III.6.1.2). Different 

model-building strategies were used to favor a QbD approach for subsequent process 

development in concert with a novel generic extraction and clarification process (Part I). 

Second, experimental and modeling methods were also evaluated for their potential to facilitate 

the rational development of chromatographic purification processes for clarified plant extracts 

(section III.6.4 and III.6.5) (Part II). The monoclonal antibody 2G12 (which binds HIV 

glycoprotein gp120) and the fluorescent protein DsRed were used as model proteins throughout 

the work described in this thesis. An antibody was chosen because it represents the dominant 

class of biopharmaceutical products (section III.3), whereas DsRed was selected because it is 

easy to detect and quantify by fluorescence analysis. Additionally, a GMP-production process 

for these two proteins has already been established recently providing background data for 

comparison. 
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Figure V-1: Workflow during this PhD thesis, as described in section Error! Reference source not found.. 

The work packages in orange are part of an accompanying PhD thesis entitled “Manufacturing biopharmaceutical 

proteins by transient expression in Nicotiana tabacum (L.)” [278]. 



VI. Results and discussion  page 58 

Biomolecular Separation Engineering – Karlsruhe Institute of Technology 

Dissertation 2017 | Johannes Buyel 

VI. Results and discussion 

Part I: Extraction and clarification 

VI.1 Scale-down of process equipment 

The results presented in this paragraph as well as VI.3 and VI.4 have been published as the 

following manuscript: 

1. Buyel JF, Fischer R. 2014. Scale-down models to optimize a filter train for the 

downstream purification of recombinant pharmaceutical proteins produced in 

tobacco leaves. Biotechnology Journal 9(3):415-25. 

VI.1.1 Scale-down of unit operations 

A homogenization device and filter train for processing 200 kg of transgenic tobacco leaves 

was developed by Dr. Martin Lobedann during his PhD project (Figure VI-1 A top) [255]. 

 

Figure VI-1: Scale-down of equipment for the production of two biopharmaceutical proteins in tobacco. 

A. Homogenization and filter train in the 20 and 200 kg scale processes (top) and the 2 kg scale process (bottom). 

In the 2 kg scale process, some storage devices could be omitted because smaller volumes were processed. B. 

Verification of the operational quality of the 2 kg scaled-down process by extracting antibody 2G12 and 

fluorescent protein DsRed. Extraction did not vary significantly over a range of homogenization times. Error bars 

indicate standard deviation (n = 16). 
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Table VI.1: Scaling parameters and components in 200 kg and 2 kg extraction processes. 

  Scale 

Parameter Abbreviation Process Lab 

Homogenizer --- RT50 PT6100 

Total vessel volume [m3] VT 0.1200 0.0033 

Vessel diameter [m] dV 0.508 0.150 

Vessel radius [m] rV 0.254 0.075 

Vessel height [m] hV 0.643 0.186 

Blade diameter [m] db 0.200 0.089 

Blade radius [m] rb 0.100 0.045 

Blade revolutions [s-1] n 60 137 

Blade top velocity [m s-1] vmax 37.7 38.3 

Biomass per run [kg] m 24.0 0.5 

Extraction buffer per run [m3] VB 0.0720 0.0015 

Working volume [m3] VW 0.096 0.002 

Vessel diameter/height ratio [-] d/h 0.790 0.806 

Working/Total volume ratio [-] W/T 0.800 0.615 

Blade/Vessel diameter ratio [-] b/V 0.394 0.595 

Homogenization time [min] t 8 8 

Bag filter --- 8x 123-D 1x BP-410 

Nominal retention rating [µm] pbag 1.5 1 

Length [m] hBag 0.800 0.218 

Diameter [m] dBag 0.180 0.102 

Area [m2] ABag 0.478 0.078 

Volume [L] VBag 20.36 1.78 

Volumetric flow rate [L min-1] vBag 1.000 0.125 

Volumetric areal flow rate [L m-2 min-1] vdotBag 2.128 1.602 

Linear flow rate [cm h-1] uBag 12.77 9.61 

Volume exchange [min-1] VE 0.05 0.07 

Depth filter 1/2 --- PB2/PC2 PB2/PC2 

Nominal retention rating [µm] pf 8+1/0.3+0.3 8+1/0.3+0.3 

Diameter [m] df 0.310 0.056 

Area [m2] af 2.0000 0.0025 

Volumetric flow rate [L min-1] vf 3.000 0.006 

Volumetric areal flow rate [L m-2 min-1] vdotf 1.5 2.4 

Linear flow rate [cm h-1] uf 9.0 14.4 

Briefly, the process consisted of a blade-based homogenization device for leaf material 

followed by a bag filtration step (123-D) to remove bulk particles. Subsequently, finer particles 

were removed in three depth filtration steps, the first two consisting of the same depth filter 

material (PB2) but using different operating modes: differential pressure and filtrate turbidity, 
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respectively. The third depth filter (PC2) was also operated in turbidity mode. This setup was 

scaled down to a process volume of 2 kg for the further optimization of extraction and 

clarification (Figure VI-1 A bottom, VI.2 to VI.6) with the parameters shown in Table VI.1. 

VI.1.2 Verification of operational quality 

The functionality of the scaled-down homogenization device was confirmed by the efficient 

extraction of antibody 2G12 and the fluorescent protein DsRed from transgenic tobacco leaves, 

resulting in the same target protein concentrations reported for the 200 kg scale process (Figure 

VI-1 B) [255]. Homogenization for 8 min was sufficient for the complete extraction of both 

target proteins, and even shorter times did not cause a significant loss of product. The depth 

filtration step also scaled well, taking the different flow characteristics and reduction to a 

two-step filtration into account (1x PB2 + 1x PC2). The filter lifetime in the 200 kg scale 

process (tangential flow) was 61 L m-2 [255] and in the 2 kg scale process (frontal flow) it was 

44.2 ± 3.7 L m-2 (n = 3). 

VI.2 Screening bag filters for initial clarification 

A variety of bag filter materials (Table VI.2) was tested to reduce extract turbidity more 

efficiently before depth filtration without affecting the yield of the target proteins compared to 

the initial bag filter BP-410 (Table IV.2). The FP filter performed best in terms of turbidity 

reduction and protein yield (Figure VI-2), the MNS filter produced the most turbid filtrate and 

resulted in the greatest loss of target protein and the performance of the BP-410 and FL filters 

was intermediate. The BP-410 was selected for the 2 kg scale process because the per piece 

price (ppp) of €5 is much less than the others (€20). However, the FP filter may be more 

beneficial in the larger-scale process because filter lifetime and product yield become more 

relevant cost factors compared to small-scale screening experiments. The FP filter also reduced 

turbidity more efficiently than the BP-410 filter when processing leaves from tobacco plants 

grown on rockwool rather than soil. This is relevant for the production of plant-derived 

biopharmaceuticals under cGMP guidelines because rockwool has a lower bioburden than soil 

and is a consistent raw material, helping to reduce batch-to-batch variability. Neither BP-410 

nor FP reduced the total soluble protein content (TSP) or the levels of the target proteins after 

filtration (Figure VI-2 B). 
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Table VI.2: Properties of bag filters tested for initial particle removal during the processing of tobacco 

extracts. 

Filter BP-410 FP FL MNS 

Filter material [-] 
Polypropylene 

needle felt 

Polypropylene 

needle felt 

Polyester needle 

felt 

Nylon 

monofilament 

Nominal retention 

rating [µm] 
1.0 1.0 1.0 1.0 

 

Figure VI-2: Bag filter performance in the 2 kg scale process (IV.4.1, IV.4.3 and IV.6). 

A. Turbidity reduction achieved with different filter materials and suppliers, with values closer to 100% 

representing superior filter performance. B. The impact of different filter materials on protein yield, with values 

closer to unity representing insignificant effects and thus superior filter performance. Error bars indicate standard 

deviation (n = 3). Some error bars are missing because bag filters were unavailable. 

VI.3 Development of a disposable bag filtration step 

The results presented in this paragraph have been filed as the following patent: 

1. Housing for a single-use bag filter; European patent application 12 176 847.7; US 

patent application 13/943,288 

Bag filtration efficiently removed coarse particles (>10 µm) from the plant homogenate in a 

cost effective manner (bag filter costs were ~5% of depth filter costs, as shown by the 

comparison in Table VI.4). However, the bag filters were mounted in a reusable stainless-steel 

housing (Figure VI-1 and Figure VI-20), introducing a potential source of contamination and 

requiring laborious and time-consuming cleaning in place, assembly and disassembly, which 

took 1-2 person hours each. 

These drawbacks could be addressed using disposable filter modules [96, 97] but there 

were no reports of disposable bag filter modules in the literature published up to February 2012, 

and there were no patents covering such modules in the prior art according to a search of the 

Fraunhofer division of patents and licenses (FPL) performed in March 2012 (personal 

communication). This revealed a gap in disposable technologies within the production train for 
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plant-derived biopharmaceuticals. Single-use solutions are available for plant growth (e.g. by 

Cultilène, or Grodan, Netherlands), storage bags and connectors (e.g. GE Healthcare or 

Sartorius), depth and membrane filters (e.g. 3M, Pall, Sartorius) as well as chromatography 

(e.g. GE Healthcare or ATOLL) but not for homogenization and bag filtration. Two types of 

disposable bag filter housings were therefore developed to eliminate this gap and improve the 

liquid/product recovery at the same time (European patent application number 12 176 847.7). 

 

Figure VI-3: Layout for disposable bag filter housings. 

A. Layout for an integrated disposable bag filter housing used to retain particles (3) dispersed in plant extract 

entering through the inlet (1). The filter (2) may be supported by an optional outer basket (4) to withstand elevated 

pressures and it is kept away from the drain (6) and the flexible envelope (5) by a spreading ring (7). B. Layout 

for a multi-purpose disposable bag filter housing that can accommodate different bag types by sequentially 

assembling the filter (2) at a specific radial grove (10) of lower part of the inlet cap (1b) which is connected to a 

supporting basket (4) and a flexible envelope (5). Afterwards, a gasket (9) is placed in a grove (8+11) of the upper 

(1a) and lower (1b) inlet cap. The whole assembly is then sealed with a clamp (12) and dispersed particles (3) can 

be retained while cleared filtrated leaves through the bottom drain (6). 

The first solution was an integrated bag and housing resulting in a one-piece ready-to-

use filter (Figure VI-3 A) comprising a rigid inlet cap (1, which may contain a standard 

connector such as a tri-clamp for connection to upstream equipment) welded to the bag filter 

material (2) retaining the solids (3). An optional stiff basket (4) was included, which may be 

required to support the filter material during high-pressure operation, as well as a flexible outer 

envelope (e.g. a foil, 5). The envelope was fitted with a lower drain (6, e.g. realized as a tri-

clamp for connection to downstream equipment) that was kept away from the filter/basket by a 
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spreading ring (7) either contained in the envelope or mounted on the outside of the envelope 

by external lugs (not shown). The benefits of this solution include the ease of assembly into the 

process train and the minimal contamination risk due to the self-contained manufacturing and 

design. However, the design may be hard to integrate into an existing GMP process if the 

manufacturer of the disposable bag filter housing does not support the incorporation of a 

specific filter material which has been used in that GMP process, because a change in the filter 

material can attract regulatory concerns [279]. 

Therefore, a second design was developed that allows the disposable filter housing to 

be fitted with commercially-available bag filters from different manufacturers (Figure VI-3 B). 

For this purpose, the inlet of the bag filter housing was split into two parts (1a and 1b). The 

lower part of the inlet assembly (1b) was welded to an optional filter basket (4) and an envelope 

(5) with the same features described above (6 and 7). However, the lower part was not welded 

to a bag filter. Instead, the lower part was disk-shaped and featured a groove (8) for a gasket (9, 

e.g. a rubber O-ring) and also a radial groove (10) that attaches to the sealing ring of a 

commercially-available bag filter (2), which retains the solids in the feed stream (3). The base 

of the upper part (1a) of the inlet assembly was also disk shaped featuring a groove (11) for a 

gasket at a similar position to that on the lower part of the assembly. The upper part of the 

assembly (1a) tapered towards the inlet which was realized as a common connector type (e.g. 

tri-clamp). The upper (1a) and lower parts (1b) of the inlet assembly were held together by a 

clamp (12) and the connection was made water-tight by the gasket (9). The diameter and length 

of the housing could thus be adjusted to fit most common bag filters, e.g. size 2 (Ø 177.8 mm 

(7″), length 812.8 mm (32″)) [280]. 

Both solutions featured a flexible foil as an outer envelope allowing the compression of 

the solids collected in the filter at the end of the process, facilitating the release of residual 

liquid and thus better recovery of the product dissolved in the liquid (Figure VI-4). This 

compression was achieved with external rolls that approach the filter housing at the top (Figure 

VI-4, large black circles) and squeeze the flexible envelope with a pre-defined pressure that 

does not cause damage to the material and thus avoids filter breakage or leakage. The rolls then 

move downward to drain the residual liquid (b) from the solids (a) deposited inside the bag 

filter, thus increasing the volume of recovered extract and reducing the mass of waste that needs 

to be inactivated. 
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Figure VI-4: Removal of residual liquid from a bag filter after capacity has been reached. 

I. Filter capacity has been reached after a certain filtrate volume (c) while not only solids (a) but also liquid (b) 

remains in the filter cake. II. Rolls (large black circles) pressing against the outside of the flexible bag filter 

envelope can remove residual liquid by moving downwards (red arrows). III. This procedure increases the 

recovered filtrate volume and reduces the mass of biological waste that has to be discarded together with the bag 

filter. 

Another approach involves the use of an external rigid container (e.g. stainless-steel) 

that supports the filter envelope during high-pressure operation without making direct contact 

with the plant extract (Figure VI-5). The lid of such a container can have a circular or slit-like 

opening surrounded by spring-mounted rolls (Figure VI-5 c). At the end of the filtration process, 

the disposable housing including the bag can be removed from the external housing by lifting 

the filter assembly through the opening in the lid. Simultaneously, the rolls will squeeze residual 

liquid from the retained solids with a pre-defined contact pressure that still preserves the 

integrity of the filter and its envelope. The drained liquid can exit the filter through the lower 

drain which is also used during normal operation. The inlet and lower drain of the disposable 

filter housing can be mounted to the external container (e.g. by screw connection) to improve 

pressure resistance. 
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Figure VI-5: Removal of residual liquid from a bag filter contained in a rigid container after capacity has 

been reached. 

I. A disposable bag filter with flexible housing is mounted into a rigid container (b) with a top lid (a). II and III. 

During operation, the filter will fill-up with retained particles (dark green) and residual liquid (light green) while 

the increasing pressure pushes the filter housing (e.g. a foil) against the inner wall of the container. IV. The filter 

can be removed from the container through a whole in the lid (a, upward red arrow) once its capacity is reached. 

Rolls (c) mounted on top of the lid can drain residual liquid from the filter cake by squeezing (short red arrows) 

the flexible bag filter housing. 

VI.4 Screening depth filters 

Two drawbacks were associated with the initial PB2+PC2 filter combination introduced by Dr. 

Martin Lobedann (Table VI.3). First, the filter lifetime was highly variable, as shown by the 

large standard deviation which can reduce the robustness of the final process (Figure VI-6). 

Second, the filter was a combination of two individual filters (three in the large-scale process) 

which increased the consumables costs and the labor and time required for process preparation. 

Therefore, several depth filters from different manufacturers were tested alone and in 

combination (IV.7 and Table VI.3), using extracts from plants grown in soil or rockwool so that 

the data could be (i) compared to previous filtration tests using extracts from plants grown in 

soil, and (ii) used to develop an automated process with plants grown in rockwool to meet 

cGMP recommendations. A final filtrate turbidity of less than 10 NTU was considered the 

threshold for further evaluation. 
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Table VI.3: Depth filters (and combinations) tested for the clarification of leaf extracts from tobacco plants 

grown in soil or rockwool. 

  Nominal retention rating [µm] 

Filter (combination) Manufacturer 1st filter 2nd filter 

PB2 + PC21,2,3 Sartorius 8 + 1 0.3 + 0.3 

PB2 Sartorius 8 + 1 --- 

PB1+PC12,3 Sartorius 11 + 4 1 + 0.3 

PB1+PC22,3 Sartorius 11 + 4 0.3 + 0.3 

PB1 Sartorius 11 + 4 --- 

30SP03+60ZA052 3M 1-2 + 0.8 0.8 + 0.45 

30SP03+90ZA052 3M 1-2 + 0.8 0.8 + 0.2 

30SP03 3M 1-2 + 0.8 --- 

60SP05 3M 0.8 + 0.45 --- 

60SP02 3M 3-5 + 0.45 --- 

90ZA053 3M 0.8 + 0.2 --- 

PDE2 Pall 1-3 + 0.2-0.5 --- 

PDF43 Pall 3-6 + 0.4-0.8 --- 

PDH43 Pall 6-15 + 0.4-0.8 --- 

PDE44 Pall 1-3 + 0.4-0.8 --- 

PDF24 Pall 3-6 + 0.2-0.5 --- 

PDG24 Pall 4-9 + 0.2-0.5 --- 

PDG44 Pall 4-9 + 0.4-0.8 --- 

1 Filter used in the initial process designed by Dr. Martin Lobedann, 2 Combinations of two depth filters, 3 

Filters used to establish a correlation between depth filter retention gradient and filter lifetime, 4 Filters 

selected for second testing according to depth filter retention gradient (Figure VI-8). 

Regardless of the filter, the clarification of extracts from plants grown in rockwool 

reduced the filter lifetime by 50-70% compared to the clarification of extracts from plants 

grown in soil (Figure VI-6 A and B). This correlated with the increased turbidity of extracts 

from rockwool plants compared to those from plants grown in soil (Figure VI-6 C). 

Furthermore, the plants grown in rockwool showed significant signs of stress, including small 

leaves (10.1 ± 1.8 g compared to 18.5 ± 4.2 g for plants in soil) and early flowering (6–8 weeks, 

compared to 8–9 weeks for the plants grown in soil). The filter lifetime was therefore reduced 

by the processing of extracts from plants exposed to stress, perhaps reflecting the increased 

synthesis of polyphenols and lignins [281, 282] which have adhesive properties that can rapidly 

block filters [283-287]. Additionally, the stress-induced expression of proteins cross-linked to 

cell wall components, can increase the likelihood of biofilm formation [288] thus blocking the 

filter media. This was supported by the observation of a dark green varnish-like coat on the first 

layer of the depth filters used to clarify rockwool plant extracts (Figure VI-6 D 5). 
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Another stress response that could affect filter lifetime is the loss of cell wall stability, 

which contributes to the smaller size of plants growing in rockwool [289] and reduces the 

amount of cellulose in the extracts while it increases the levels of soluble pectins [290-292]. 

Cellulose is used as a filtration additive to increase filter lifetimes, so the presence of cellulose 

in the extract is beneficial, thus reducing the amount would have a negative impact on the 

lifetime of the filter (VI.6). Pectins help to form large aggregates that are removed in the 

pre-filtration steps, so the stress-induced solubilization of pectins [293] would increase the 

particle burden during depth filtration (due to reduced aggregation) also reducing the effective 

lifetime of the depth filters. A lack of cellulose and thus a reduced cell wall stability was also 

consistent with the observed smaller plant size on rockwool [289]. 

 

Figure VI-6: Lifetime analysis of different depth filter types used to process extracts derived from SR1 

tobacco plants grown in soil or rockwool (IV.4.1 and IV.7). 

The filter lifetime was higher when plants were grown in soil (A) compared to rockwool (B) correlating with the 

turbidity of the crude extract (C). The dashed line is the performance cutoff (10 NTU final turbidity), with only 

filters to the left of the line selected for further characterization. Asterisks denote tandem filter pairs, indicating 

that the effective filter capacity is half the value shown. Error bars indicate standard deviations (n ≥ 3). D. Particle 

burden before depth filtration (1+4) as well as on first (2+5) and second (3+6) PDF4 filter layers, for extracts from 

plant grown in soil (top row) or rockwool (bottom row). The particle burden was higher for the rockwool plant 

extracts, resulting in a darker green cake with particle removal biased towards the first filter layer (compare 2 vs. 

5). 

Interestingly, it was found that only tobacco variety Petit Havana SR1 (and its transgenic 

derivative pGFD) was affected by stress, whereas other varieties such as K326 and other 
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Nicotiana species such as N. benthamiana grew normally. Accordingly, the filter lifetime was 

longer when extracts from these other plants grown in rockwool were processed (Figure VI-7). 

 

Figure VI-7: Effect of plant species and variety on filter lifetime (IV.3, IV.4.1, IV.7 and IV.8). 

A. The processing of extracts from transgenic tobacco variety SR1 growing in rockwool caused a 30% reduction 

in filter lifetime compared to infiltrated N. benthamiana extracts, and a 60% reduction in lifetime compared to 

transgenic tobacco variety K326 (blue columns). The flocculant Polymin P increased the filter lifetime 

significantly for all extracts, but the difference between SR1 and N. benthamiana extracts remained constant at 

30%, whereas the difference between SR1 and K326 shrank to 15% (red columns, VI.5). * Indicates plants 

infiltrated with A. tumefaciens. Error bars indicate standard deviation (n ≥ 3). B. Characteristic height (top row) 

and diameter (bottom row) of SR1 (1+4), K326 (2+5) and N. benthamiana (3+6) at the time of harvest. Vertical 

and horizontal scale bars indicate a length 200 mm. 

When the rockwool plant extract was processed, the single depth filters 90ZA05 and 

PDF4 as well as the initial filter combination PB2+PC2 (Table VI.3) had the longest lifetime 

among the filters meeting the turbidity cutoff value of 10 NTU (Figure VI-6). These three filters 

were investigated in more detail, to check for undesirable interactions with the target proteins. 

The PDF4 filter was the most suitable, reducing the levels of TSP, DsRed and 2G12 by 30%, 

5% and 23%, respectively (Figure VI-8 A). Regardless of the filter type or combination, DsRed 

was always retained to a lesser degree than 2G12. This is unlikely to reflect size selection 

because under native conditions both proteins are tetramers with similar molecular masses of 

~150 kDa and ~140 kDa, respectively [294, 295]. However, antibodies are prone to form 

aggregates, and the presence of glycans on the recombinant antibody increases its size and 

charge, providing a possible explanation for its retention in preference to DsRed. The charge 

characteristics may be important because antibodies have a basic pI (the pI of 2G12 is 8.10-8.25 

[296]) which means they become positively charged at pH 7.5–8.0 and can thus interact with 

the negative charges of the diatomaceous earth compounds in the depth filters [297]. Increasing 

the pH of the extract to ~8.5 before clarification could help to reduce the loss of 2G12 during 

filtration, but further pH adjustment in the filtrate might be necessary before subsequent 

processing steps which could result in protein precipitation and the need for additional filtration 

steps. Omitting diatomaceous earth from the filter can be an alternative to increase product 
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recovery but is likely to reduce the clarification properties of the according filter [298]. This in 

turn would increase the number of filtration steps and thus overall costs as well as the likelihood 

to loose product. 

 

Figure VI-8: Lifetime analysis of three high-performance depth filters and their retention of target proteins 

(IV.4.3 and IV.7). 

A. The three depth filters with the longest lifetime retained less than 20% of the DsRed but up to 30% of 2G12 

and 50% of TSP. PDF4 retained the lowest levels of target protein and PB2+PC2 the highest. Error bars indicate 

standard deviations (n = 3). B. The lifetimes of six depth filters matching with the filtrate turbidity performance 

cutoff of <10 NTU (blue diamonds) were used to predict the lifetime of four non-tested filters (open red circles) 

based on the observed quadratic correlation between retention number and filter capacity (red dashed line). The 

actual observed values for the four filters (blue circles with red border) were then used to build a refined cubic 

model (blue line). 

The six depth filters achieving a turbidity of less than 10 NTU in the filtrate (Figure 

VI-6) were selected from the initial test set (Table VI.3) and used to establish a correlation 

between filter lifetime and the nominal retention rating of the depth filter layers (Figure VI-8 

B). A good quadratic correlation (r2 = 0.89) was found between filter lifetime and the average 

ratio of nominal retention ratings for each pair of subsequent filter layers divided by the total 

number of layers. This dimensionless number was called the retention number (RN, Equation 

43). The correlation was used to predict the filter lifetimes of four non-tested depth filters (Table 

VI.3, Figure VI-8 B). Experimental verification resulted in strong agreement with the prediction 

for RN values below 5.0. Predictions for larger values showed significant deviation from the 

quadratic model. Therefore, a new cubic model was established that provided a good correlation 

between filter lifetime and RN (r2 = 0.90). Unlike the quadratic model, all predictions of the 

cubic model resulted in physically meaningful values for the filter lifetime (>0.0 L m-2). The 

physical interpretation of RN was that low filter lifetime was associated with the use of only 

one filter layer (or multiple layers with an identical retention rating, RN ≈ 0) or the use of layers 

with large differences in their individual retention ratings (RN > 7.5). Long filter lifetime was 

related to moderate differences in the retention ratings and a limited number of filter layers 

(1.5 < RN < 5.0). Thus, a limited number of filtration experiments can be used for the rational 
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selection of additional filter setups with extended lifetimes. A theoretical approach to determine 

the optimal number and filter layer depth has been reported [299]. 

𝑅𝑁 =

𝑟1
𝑟2
+
𝑟2
𝑟3
+⋯+

𝑟𝑛−1
𝑟𝑛

(𝑛 − 1)𝑛
=

∑
𝑟𝑖
𝑟𝑗

𝑖=𝑛−1,𝑗=𝑛
𝑖=1,𝑗=2

(𝑛 − 1)𝑛
 

Equation 43: Dimensionless retention number RN as an indicator for depth filter lifetime depending on the 

nominal retention ratings of the filter layers. With n as the total number of layers, ri as the nominal retention rating 

of the more porous layer in the pair, and rj as the nominal retention rating of the finer layer in the pair. 

Table VI.4: Pilot scale comparative testing of the PB2+PC and PDF4 filter assembly using plants grown in 

soil. 

Process Initial  Improved 

Depth filter type PB2 PC2  PDF4 

Nominal retention rates [µm] 8.0/1.0 1.0/0.3  3.0-6.0/0.4-0.8 

Filter capacity [L m-2] 103 200  101 

Loading flow rate [L min-1 m-2] 3 3  2,7 

Turbidity after filter [NTU] 

(pooled filtrate) 
20 <5  3 

Approximate filter area required 

to process 1000 L plant extract (= 

250 kg biomass) 

6 2  10 

Filter preparation [solution; L m-2] buffer; 200   water; 50 

Filter module sizes [m2] 2 2  1.0;0.5 and 0.25 

Price per m2 filter area [€] 
480 (with 30% 

discount) 

480 (with 30% 

discount) 
 350 (still >10% discount 

possible) 

Number of filter modules needed 

to process 1000 L extract 
3 1  10 

Approximate direct filter costs for 

processing 1000 L extract 
2,880 980  3,500 

Approximate costs for tubing, 

bags and connectors [€] 
3,500  900 

Total process costs for 1000 L 

extract [€] (without labor) 
7,360  4,400 

Work load for system setup 

[person-hours] 
24  2 

Work load for system disassembly 

[person-hours] 
4  0,5 

Contamination risk (due to 

number of tubing connections) 
high  very low 

Process complexity (due to 

number of pumps, valves etc.) 
very high  very low 

Approximate space requirement 

for support equipment (holder, 

storage tanks etc.) [m2] 

25  6 

Ease of filter handling (due to 

component size, venting, number 

of connections) 

poor  good 
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The performance of the PDF4 filter module, which had the longest filter lifetime in the 

scaled down test, was compared to the original PB2+PC2 filter setup in a pilot scale process. 

This showed that the direct costs of the filter were lower, but more importantly there were 

significant savings in terms of associated consumables (e.g. tubing) and the time taken to set 

up the filtration train (Table VI.4). 

In summary, PDF4 was identified as the most suitable depth filter for the clarification 

of extracts from plants grown in soil or rockwool because of its extended lifetime, minimal 

interactions with target proteins and low cost. PDF4 was also easier to handle than the original 

PB2+PC2 setup because the three-step depth filtration train (PB2+PB2+PC2 cascade [255]) 

was replaced with a single filter, with simplified stock keeping and ordering. The consumables 

costs were lower because less tubing was required, and operational costs were reduced because 

the filter could be mounted quickly, reducing the process downtime. Filter lifetime was 

generally shorter when plants were grown in rockwool rather than soil, but rockwool is 

advantageous in terms of low bioburden and process consistency. Therefore, additional 

measures were investigated to increase filter lifetime when plants are grown in rockwool. 

VI.5 Reducing extract turbidity by flocculation 

The results presented in this section have been published as the following manuscript: 

1. Buyel JF, Fischer R. 2014. Flocculation increases the efficacy of depth filtration 

during the downstream processing of recombinant pharmaceutical proteins 

produced in tobacco. Plant Biotechnology Journal 12(2):240-52. 

VI.5.1 Screening of flocculants 

Eighteen different flocculants were tested for their ability to reduce extract turbidity after bag 

filtration, therefore increasing depth filter lifetime and reducing consumables costs (IV.8, Table 

VI.5). A set of DoE approaches was used to evaluate the flocculants under different buffer pH 

and conductivity conditions to guarantee the identification of a flocculant that is compatible 

with a broad range of operational conditions (IV.12.1). 

In the initial screen, the Praestol flocculants 822 BS, 855 BS, 2350 and 2610, as well as 

Sedipur CL 950, Sedipur CL 951 and Polymin P, were found to reduce the turbidity of the crude 

extracts at two or three different pH values (Figure VI-9). Sedipur CL 950 and 951 have very 

similar physicochemical properties (Table VI.5), therefore only Sedipur CL 950 was selected 

for further testing because the slightly lower charge density compared to Sedipur CL 951 

reduces the risk of protein precipitation. 
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Table VI.5: Flocculants used to precipitate particulate matter from tobacco extracts prior to depth 

filtration. 

Flocculant Chemistry [-] Charge [-] 
Charge density 

[meq g-1] 

Praestol 2350 Polyacrylamide anionic 6.9 

Praestol 2610 Polyacrylamide anionic 1.4 

Praestol 2640 Polyacrylamide anionic 5.5 

Praestol 822 BS Polyacrylamide cationic 1.0 

Praestol 851 BC Polyacrylamide cationic 1.2 

Praestol 855 BS Polyacrylamide cationic 2.8 

Praestol 859 BS Polyacrylamide cationic 4.6 

Lupamin 9095 Polyvinylformamide cationic 12.0 

Magnafloc LT 37 
Polydiallyldimethylammonium 

chloride 
cationic 4.7 

Magnafloc LT 38 
Polydiallyldimethylammonium 

chloride 
cationic 4.7 

Polymin P Modified polyethylenimine cationic 13.0 

Polymin SK Modified polyethylenimine cationic 6.5 

Polymin VT Modified polyethylenimine cationic 3.2 

Sedipur CL 950 Polyamine cationic 7.0 

Sedipur CL 951 Polyamine cationic 7.6 

ZETAG 7587 Polyacrylamide cationic 4.5 

pDADMAC 0.8MDa 
Polydiallyldimethylammonium 

chloride 
cationic 6.1 

pDADMAC 1.5MDa 
Polydiallyldimethylammonium 

chloride 
cationic 6.1 

Lupasol PS1 Modified polyethylenimine cationic 19.0 

Catiofast GM1 Modified polyethylenimine cationic 11.0 

Paragas1 Modified polyethylenimine cationic 14.0 

Catiofast VSH1 Polyvinylformamide cationic 7.5 

ZETAG 71091 
Dimethylaminoethyl acrylate 

methyl chloride 
cationic 5.5 

1 These flocculants were selected for a second round of screening according to their chemical properties 

based on the initial screening results. 
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Figure VI-9: Impact of different flocculants on the turbidity of tobacco extracts at different pH values (IV.8 

and IV.12.1). 

Compared to an untreated extract (C), the flocculants Sedipur CL 950 (1), Praestol 2610 (2), 2350 (3), 855 BS (4) 

and 822 BS (5), as well as Polymin P (6), reduced the turbidity of the extract and the green color at two or all three 

of the tested pH values after settling for 24 h. The other flocculants had a more limited effect such as 

pDADMAC 1.5 MDa (neg). 

 

Figure VI-10: RSM for the reduction of tobacco extract turbidity achieved with different flocculants 

immediately after filtration, depending on concentration and pH (IV.8 and IV.12.1). 
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Praestol 2350 (B) and 855 BS (C) increased the extract turbidity under low pH conditions compared to 

flocculant-free extract (A) and had no beneficial effect otherwise, whereas Praestol 822 BS (D) reduced turbidity 

slightly. The turbidity values are shown as 1:10 dilutions in buffer. 

 

Figure VI-11: RSM for the reduction of tobacco extract turbidity achieved with different flocculants 

immediately after filtration, depending on concentration and pH (IV.8 and IV.12.1). 

Praestol 2610 (B) reduced turbidity only slightly under low pH conditions compared to flocculant-free controls 

(A). Sedipur CL 950 (C) achieved a significant reduction in turbidity under high pH conditions at high 

concentrations, whereas Polymin P (D) reduced turbidity over a broad pH range even at low concentrations. The 

turbidity values are shown as 1:10 dilutions in buffer. 

The effect of these flocculants was tested in more detail in a second set of experiments 

and evaluated directly after filtration. This revealed that Polymin P reduced the turbidity of the 

extract most efficiently, followed by Sedipur CL 950, then Praestol 822 BS and 2610 which 

performed equally well, and then Praestol 855 BS and 2350 which had the most limited effect 

(Figure VI-10 and Figure VI-11). 

The efficacy of Polymin P, Sedipur CL 950 and Praestol 2610 was confirmed at pH 5 

and 7. Praestol 2610 was used in preference to 822 BS because the stock solution had a lower 
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viscosity, which can simplify dosing during process-scale production. Polymin P was again the 

best flocculant, reducing extract turbidity efficiently even for pre-filtration incubation times of 

less than 1 h. Sedipur CL 950 had a limited effect on turbidity after 1 h and Praestol 2610 

appeared to have no effect at all within this incubation time. 

These results agree with the principles of flocculation presented in section III.6.1.2. The 

highly-charged cationic polymer Polymin P achieved the fastest and most effective flocculation 

of dispersed cell debris, probably reflecting charge neutralization and electrostatic interactions 

with negatively-charged cell fragments [79, 143]. The same mode of action can be attributed to 

Sedipur CL 950, but its lower charge density probably explains the slower flock formation. In 

contrast, the almost neutral Praestol 2610 is likely to promote bridging flocculation alone, 

resulting in slower and less effective flocculation than the two other polymers [79]. Cationic 

polymers generally caused more effective flocculation than anionic polymers, but the optimal 

concentration of all flocculants was in the range of 1 g L-1, corresponding to 4 mg polymer per 

gram of suspended solids (wet mass). 

Table VI.6: Physicochemical properties of flocculants representing different polymer classes. 

Flocculant 
Average polymer 

mass [kDa] 
Macro structure [-] 

Chemical 

structure [-] 

Polymin P 800 branched 

 
Sedipur CL 950 50-200 branched 

Catiofast VSH 400 linear 

 

Lupamin 9095 400 linear 

 

Praestol 2610 5000 linear 

 

The polymer backbone chemistry also had an important impact on flock formation 

induced by cationic polymers. The most efficient were those with amine or imine functional 

groups alone, i.e. polyamines (Sedipur CL class) and polyethyleneimines (Polymin class). In 

contrast, the carbonyl groups present in polyvinylformamide (Lupamin class) and 

polyacrylamide (Zetag and Praestol classes) slowed down flocculation and reduced the 

aggregation of cell debris even when the polymers were highly-charged. This could reflect the 
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greater hydrophilicity of polymers containing carbonyl groups, which can reduce their 

interactions with lipids in the cell debris and hence limit flock formation. Longer and/or 

branched polymers were more efficient flocculants than shorter, linear ones even if the charge 

density was similar (Polymin P vs. Lupamin 9095) or higher (Sedipur CL 950 vs. 

Lupamin 9095) (Table VI.5 and Table VI.6). Branching and high charge density also promoted 

rapid flock formation (<10 minutes). 

VI.5.2 Flocculant selection and optimization 

Based on these findings, additional cationic polymers with high charge densities were selected 

for a second round of screening (Table VI.5). Catiofast VSH and Lupasol PS achieved the 

efficient flocculation of tobacco cell debris under standard extraction conditions (pH 8.0, 

conductivity 50 mS cm-1) and were chosen for direct comparison with Polymin P (IV.12.1). 

 

Figure VI-12: Turbidity reduction achieved with highly-charged cationic polymers (IV.8 and Table VI.5). 



VI. Results and discussion  page 77 

Biomolecular Separation Engineering – Karlsruhe Institute of Technology 

Dissertation 2017 | Johannes Buyel 

Turbidity in non-treated extract varied with pH and conductivity (A). Catiofast VSH (B) reduced extract turbidity 

at high conductivities, whereas Polymin P (C) and Lupasol PS (D) reduced extract turbidity at moderate and low 

conductivities regardless of the extraction buffer pH. All response surfaces were calculated for 4.0 g L-1 of polymer 

and an incubation time of 15 min. 

At conductivities >35 mS cm-1, Catiofast VSH reduced the extract turbidity by ~90% 

but had little impact at lower conductivities (Figure VI-12 B). This complemented the activities 

of Lupasol PS and Polymin P which performed best at conductivities <45 mS cm-1 and achieved 

similar reductions in turbidity (Figure VI-12 C and D) but flocculation was more rapid with 

Polymin P and required about 10% less polymer. 

 

Figure VI-13: Effect of flocculants on TSP, DsRed and 2G12 concentrations in leaf extracts (IV.4.3 and 

IV.8). 

None of the polymers affected TSP, DsRed or 2G12 concentrations significantly compared to controls. The 

example shown here is impact of control vs. Polymin P on TSP (A versus B). More DsRed and 2G12 were 

extracted at pH 6.5 (C and D respectively), whereas most TSP was extracted at higher pH and conductivity levels 

(A). All response surfaces were calculated for 2.0 g L-1 of polymer and an incubation time of 15 min. 

The concentrations of TSP, DsRed and 2G12 varied 5–10% among the polymers and 

controls, which is within the error ranges of the models and quantitation assays (Figure VI-13). 
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All three polymers therefore had an insignificant impact on protein levels within the tested 

concentration range (0.5–4.0 g L-1) and did not interfere with target protein recovery. 

Regardless of the polymer type, more TSP was extracted at higher pH and conductivity levels, 

but a slightly acidic pH (5.0–6.5) was favorable for the extraction of DsRed and even more so 

for 2G12, particularly at high conductivities. 

The effect of polymer combinations on extract turbidity was also tested but the 

simultaneous use of Polymin P and Praestol 2610, or Polymin P and Kaolin, a commonly used 

co-flocculant based on aluminum silicate, did not result in increased flocculation (data not 

shown). 

 

Figure VI-14: RSM for the effect of Polymin P concentration, incubation time, pH and conductivity on 

extract turbidity determined directly after bag filtration (IV.8 and IV.12.1). 

A. Polymin P concentration of 2 g L-1 was sufficient for full flocculation and increasing the incubation time slightly 

reduced the turbidity of the extracts. The turbidity was lower at pH 6 (top row) than at pH 8 (bottom row). 

Increasing conductivity form 15 mS cm-1 (left column) to 35 mS cm-1 (right column) improved extract clearance 

at low pH (B) but increased turbidity at high pH (D). The turbidity values are shown as 1:10 dilutions in buffer. 
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Polymin P was selected for further experiments to test additional process parameters 

including incubation time and temperature (Table IV.5). Polymin P concentrations of 1.7–3.5 

g L-1 were optimal, reducing extract turbidity below 10% of the initial value, whereas a steep 

increase in extract turbidity was observed at lower concentrations (Figure VI-14). The 

concentrations were calculated based on the Polymin P formulation provided by BASF, which 

was a 50% solution in water. Therefore, the effective concentrations are only 50% of the values 

stated in the text. A slight increase in extract turbidity was observed at concentrations >3.5 g L-

1 probably reflecting an over-saturation effect as previously reported and indicating that 

Polymin P also acted by bridging flocculation [81] (III.6.1.2). The efficiency of Polymin P 

declined in the pH range 7.0–7.7 and the extract appeared milky after bag filtration indicating 

the presence of fine, dispersed precipitates. These were probably fragments of lignified cell 

walls, which are uncharged in this pH range [300] and thus unlikely to interact with the 

polycation, preventing formation of flocks. 

High conductivities improved the performance of Polymin P in low-pH extracts but had 

the opposite effect at high pH values (Figure VI-14). This may reflect the ability of salt ions to 

shield positive particle charges at low pH, thereby preventing the repulsion of polycationic 

flocculants, but to compete for binding sites on the particles at high pH, thereby preventing 

interactions with the flocculant. Increasing the incubation time from 0.25 h to 1.25 h after the 

addition of Polymin P improved clarification but the effect was small compared to that of the 

other factors highlighting the rapid kinetics of flock formation. 

VI.5.3 Robustness of flocculation 

Because process economics and regulatory compliance favor the minimal use of additives, a 

Polymin P concentration of 2 g L-1 (effective concentration 1 g L-1) was selected for further 

tests because this was the lowest concentration that achieved complete flocculation. The 

robustness of flocculation was investigated because the impact of small changes in other factors 

that control turbidity can help to determine the potential impact of errors in buffer preparation, 

flocculant dosing or fluctuations in temperature on the process. However, robustness was 

assessed over a wider parameter range to test the compatibility of Polymin P with a broad 

variety of extraction conditions that may be required for different target proteins. It was possible 

to establish a model that reliably predicted the effects of flocculant concentration, incubation 

temperature, pH, conductivity, and incubation time on extract turbidity (Table VI.7 and Table 

VI.8). 
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Table VI.7: Model factors with a significant impact on the turbidity of tobacco extracts during flocculation. 

Source 
Sum of 

squares 

Degrees of 

freedom 
F-value p-value 

Model 3205.08 29 39.64 < 0.0001 

Incubation temperature [°C] (A) 2.93 1 1.05 0.3114 

pH [-] (B) 205.50 1 73.72 < 0.0001 

Conductivity [mS cm-1] (C) 98.86 1 35.46 < 0.0001 

Incubation time [h] (D) 61.29 1 21.99 < 0.0001 

Concentration [g L-1] (E) 3.35 1 1.20 0.2795 

AB 42.86 1 15.38 0.0003 

AC 2.31 1 0.83 0.3683 

AD 0.07 1 0.03 0.8732 

AE 13.73 1 4.93 0.0322 

BC 2.27 1 0.81 0.3724 

BD 17.23 1 6.18 0.0172 

BE 149.20 1 53.52 < 0.0001 

CD 22.42 1 8.04 0.0071 

CE 7.27 1 2.61 0.1142 

A2 31.07 1 11.14 0.0018 

B2 319.38 1 114.57 < 0.0001 

C2 13.46 1 4.83 0.0338 

D2 23.71 1 8.51 0.0058 

E2 0.15 1 0.05 0.8176 

ABC 91.52 1 32.83 < 0.0001 

ABD 22.12 1 7.94 0.0075 

ACD 36.53 1 13.10 0.0008 

A2E 33.46 1 12.00 0.0013 

AC2 17.31 1 6.21 0.0170 

B2C 563.56 1 202.15 < 0.0001 

BC2 61.84 1 22.18 < 0.0001 

BE2 18.24 1 6.54 0.0144 

C2D 12.00 1 4.31 0.0445 

B3 408.64 1 146.59 < 0.0001 

Residual 111.51 40 n.a. n.a. 

Lack of fit 100.05 32 2.18 0.1239 

Pure error 11.46 8 n.a. n.a. 
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Table VI.8: Parameters used to evaluate the flocculation model. 

Evaluation parameter Value 

r2 0.966 

Adj. r2 0.942 

Pred. r2 0.887 

PRESS1 372.509 

1 Predicted residual sum of squares 

It was challenging to use response surfaces to identify factor settings associated with 

high or low extract turbidity due to the complexity of the flocculation model. Instead, the 

flocculation model was used to predict conditions resulting in desirable and undesirable extract 

turbidities and the factor levels associated with these conditions were then analyzed (Figure 

VI-15). This revealed that lower extract turbidities were associated with pH values in the range 

4.5–5.5 or ~8.0 as well as incubation times >15 min. No clear trend was observed for incubation 

temperature or conductivity indicating a broad operational window for these parameters. 

Interestingly, extreme Polymin P concentrations were also preferred, but this was probably an 

artifact reflecting the inclusion of the non-significant quadratic effect of the Polymin P 

concentration (E2 in Table VI.7). This effect was included to maintain the model hierarchy [276, 

277]. 

Polymin P concentrations <2 g L-1 were associated with high turbidity, as were pH 

values of ~4.0 or ~7.5 and incubation times <15 min. Incubation temperature and conductivity 

did not exhibit a clear trend. For certain factors such as conductivity with an ambiguous 

influence on turbidity, extreme high or low values were over-represented, suggesting the model 

predictions become increasingly uncertain at the borders of the design space, resulting in larger 

fluctuations in the calculated turbidity values favoring extreme predictions. 

Polymin P reduced TSP levels by 20–25% at all pH values when present at a 

concentration of 2 g L-1 in a buffer with a conductivity of 15 mS cm-1 (Figure VI-17 A) 

confirming previous studies suggesting that Polymin P can be used to precipitate proteins at 

low conductivities [78]. However, SDS-PAGE analysis did not reveal significant changes in 

the protein bands or abundance, except at pH 4.0 (Figure VI-16) when flocculant-free samples 

were compared with Polymin P treated ones. Additionally, Polymin P had no effect on TSP at 

conductivities >30 mS cm-1. The concentration of DsRed was reduced 15–20% by Polymin P, 

regardless of the pH or conductivity of the buffer, with the exception of extractions carried out 

at pH 7 in buffers with conductivities below 30 mS cm-1. The beneficial effect of this 

combination probably reflected the ability of the charged flocculant to increase the buffer 

conductivity, thereby promoting the release of DsRed. 
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Figure VI-15: Predicted correlation between process parameters and extract turbidity (IV.8 and IV.12.1). 

The robustness model (Table VI.7) was used to predict conditions resulting in low (blue, desirable) or high (red, 

undesirable) extract turbidity. The parameter values for pH (A), incubation time (B), Polymin P concentration (C), 

conductivity (D) and incubation temperature (E) were analyzed separately, revealing their correlation to low or 

high turbidities. F. The robustness model was compared to models built during the second flocculant screening 

and initial optimization, revealing a large discrepancy at pH ~7 indicating that the initial model had limited 

predictive power over this pH range. 

The presence of Polymin P in leaf extracts did not alter the concentration of 2G12 by 

more than 10% at pH 6.0 or above, regardless of the conductivity, but the concentration of 2G12 

fell by 30% at pH 4.0. 
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Figure VI-16: TSP composition of tobacco extract in dependence of pH, conductivity and presence of 

flocculant (IV.4.3, IV.4.4, IV.8 and IV.12.1). 

Only at pH 4.0 and 15 mS cm-1 the addition of 2.0 g L-1 Polymin P (+) resulted in a visible reduction of TSP 

concentration (red arrow indicates diminished DsRed band) compared to polymer-free samples (-). A characteristic 

coloration below 10 kDa appeared in all polymer containing samples (green arrow). Depending on the pH, certain 

HCP were more or less extracted (black arrows): a 10 kDa protein at pH 6.0 as well as a 33 kDa and 50 kDa protein 

at pH 7.0 and 8.0. 

 

Figure VI-17: Effect of Polymin P on the concentrations of TSP, DsRed and 2G12 in leaf extracts (IV.4.3, 

IV.8 and IV.12.1). 

A. Under low pH and low conductivity conditions, Polymin P reduced TSP levels by ~25%. B. Regardless of the 

conductivity, Polymin P slightly increased DsRed concentrations in extracts at pH 7.0 but otherwise reduced them 

by 15%. C. The level of 2G12 was reduced by <10% at pH values above 6.0, but reduced by 30% at pH 4.0. See 

text for comments on missing data. Error bars indicate standard deviation (n ≥ 3). Error bars in C are missing due 

to the deleterious effect of the flocculant on the CM5 chip surface. 
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The precise quantitation of 2G12 under these conditions was difficult because the 

polymer generated a high background signal on the reference flow cell of the CM5 chip during 

SPR spectroscopy. This was expected due to the opposite charge of Polymin P (positive) and 

the CM5 matrix (carboxymethyl, negative) promoting electrostatic interactions especially in 

samples with low conductivities. However, the results agreed with those presented above 

indicating that flocculants have a limited impact on proteins under the high conductivity 

conditions tested here (VI.5.2). 

VI.5.4 Process scale-up 

The efficiency of Polymin P was confirmed in bench-top and pilot-scale tests. Manual mixing 

after the addition of flocculant was replaced with automated mixing in the homogenization 

device. Short mixing times of 10–15 s were optimal whereas longer mixing times reduced 

flocculation by disintegrating the flocks (Figure VI-18 A). In bench-top tests, Polymin P 

increased the lifetime of depth filters by three-fold (PB2+PC2 and PDF4) or seven-fold (PDH4) 

at concentrations of 1.5–2.0 g L-1 (Figure VI-18 B). The flocculant probably increased the 

average diameter of particles in the extract by bridging flocculation, thus shifting the filter 

burden towards the first filter layer and favoring PDH4, with its larger nominal retention rating 

in this layer (Table VI.3). Filtrate turbidity was not affected by the use of Polymin P. 

 

Figure VI-18: The mixing time dependence of flocculation and its effect on depth filter lifetime (IV.5, IV.7 

and IV.8). 

A. Increasing the mixing time reduced flocculant efficacy. B. Polymin P increased the lifetime of depth filters by 

3–7-fold (depending on the configuration) compared to batches without flocculant (Figure VI-6 and Figure VI-8). 

The longevity increased at higher Polymin P concentrations, as observed for extract turbidity (Figure VI-14). The 

asterisk indicates a Polymin P concentration of 1.5 g L-1, whereas 2.0 g L-1 was used for the other setups. Error 

bars indicate standard deviation (n ≥ 3). 

Polymin P was found to increase TSP levels by 20–25% compared to a flocculant-free 

setup at all steps after homogenization whereas DsRed and 2G12 concentrations remained 
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unaffected under standard process conditions at pH 7.5–8.0 with conductivities ranging from 

35 to 45 mS cm-1 and at different process steps (Figure VI-19 B to D). 

 

Figure VI-19: Comparison of process performance with and without Polymin P (IV.4.3, IV.5, IV.7 and 

IV.8). 

A. Addition of Polymin P in the concentration range 1.5–2.0 g L-1 increased depth filter lifetime approximately 

seven-fold. B – D. Polymin P did not reduce TSP or target protein levels compared to flocculant-free controls. 

Error bars indicate standard deviation (n ≥ 3). 

When the process volume was increased to the 100 L scale, protein concentrations were 

not significantly affected by the addition of Polymin P (Figure VI-20). In contrast, the filter 

lifetime was increased substantially, to more than 280 L m-2 compared to ~80 L m-2 at the 

bench-top scale. This significant improvement can be attributed to two scale-dependent factors. 

First, the utilization of the upstream bag filter was higher at the 100 L scale, improving the filter 

performance by promoting the build-up of filter cake and reducing the particle burden to 500 

NTU instead of ~5000 NTU in the feed for subsequent depth filtration. Second, the flow pattern 

at the filter layer surface changed from direct flow at the bench-top scale to tangential flow in 

the STAX modules (pilot scale), which can prevent premature clogging. Process scale-up is 

likely to reduce the costs further due to the optimized flow pattern and equipment utilization. 

In conclusion, flocculants were shown to reduce the turbidity of the process stream after 

bag filtration and to increase depth filter lifetime to more than 110 L m-2 (depending on the 
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scale and filter type) even when processing extracts from plants grown in rockwool. The 

best-performing flocculant was Polymin P. 

 

Figure VI-20: Pilot scale process validation (IV.4.3, IV.5, IV.7 and IV.8). 

A. The levels of TSP, DsRed and 2G12 did not declined during the course of the filter train as also observed for 

the bench-top scale process (Figure VI-19 B to D). Error bars indicate the standard deviation of at least three 

technical replicates. B. A photograph of the pilot scale setup (without the homogenizer) indicating the position of 

the homogenate storage tank (1), bag filter (2), bag filtrate storage tank (3), depth filter (4) and depth filtrate storage 

tank (5). C. The piping and instrumentation diagram (PID) corresponding to B indicating the same devices. 

The costs for filter consumables were reduced by more than 50% compared to a process 

without flocculant and by 20% compared to a process using plants grown in soil (without 

flocculant). There were no negative effects on target protein concentration. Polymin P also 

reduced the variance among depth filter lifetimes observed for the processing of different 

tobacco varieties and Nicotiana species (Figure VI-7 B). Natural polymers such as chitosan can 

be a sustainable alternative to synthetic polymers but recent studies using such flocculants in 

combination with plant extracts have shown that synthetic polymers were more effective in 

terms of turbidity reduction and thus of greater benefit for the clarification process [301]. 
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VI.6 Screening of filter additives 

Six cellulose-based filter additives were tested during bag or depth filtration alone or in 

combination with flocculants in order to improve particle clearance and depth filter lifetime 

(IV.8, Table VI.9). Additives included before bag filtration had only a moderate effect on 

filtrate turbidity and did not increase the lifetime of the subsequent depth filter, even if 

Polymin P was used at the same time (Figure VI-21 A, C200***). 

Table VI.9: Cellulose-based additives tested during bag and depth filtration. 

Additive Manufacturer Fiber size [-] 

CelluFluxx F15 Erbslöh Very fine 

CelluFluxx F25 Erbslöh Fine 

LuvoZell C90 Lehmann & Voss Mid 

CelluFluxx F45 Erbslöh Mid 

LuvoZell C200 Lehmann & Voss Coarse 

CelluFluxx P30 Erbslöh Coarse 

This may have occurred because the bag filters used in this step were arranged in a 

vertical orientation as preferred for this filter type, which prevented the build-up of a solid filter 

cake by the additives and thus negated one of their two major modes of action. Second, the raw 

extract already contained many plant-derived cellulose particles from the homogenization 

process so even fine cellulose fibers such as CelluFluxx F25 did not improve particle retention. 

Instead, feeding these additives into the process stream before bag filtration increased the liquid 

hold-up, and thus reduced product recovery. When used during depth filtration, the additives 

alone did not significantly reduce the filtrate turbidity or enhance the depth filter lifetime 

(Figure VI-21 A, C200**). 

 

Figure VI-21: Effect of cellulose additives on depth filter lifetime (IV.7 and IV.8). 

A. Adding coarse cellulose fibers (LuvoZell C200) to the feed stream increased the depth filter lifetime 

approximately three-fold compared to an additive-free setup. Other fibers, especially the finer ones, were less 

effective. The resulting filtrate turbidity was within the acceptance range of <10 NTU for all setups. * indicates a 
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reduced Polymin P concentration of 1.5 instead of 2.0 g L-1; ** indicates the absence of Polymin P; *** indicates 

the addition of LuvoZell C200 during bag filtration instead of depth filtration. B. The effect of LuvoZell C200 was 

concentration dependent and the longest filter lifetime was achieved with 5 g L-1. Higher concentrations resulted 

in premature blocking of the filter housing (see text for details). Error bars indicate standard deviations (n ≥ 3). 

In contrast, when additives were used during depth filtration after Polymin P had been 

added prior to bag filtration, a significant (>3-fold) increase in the filter lifetime was achieved 

(Figure VI-21 A). The best performance was achieved with the coarse LuvoZell C200 fibers, 

and increasing their concentration in the feed stream to 5.0 g L-1 was optimal in terms of filter 

lifetime and reproducibility (Figure VI-21 B). Higher concentrations of LuvoZell C200 

produced poor results because (i) extensive stirring was required in the feed reservoir to prevent 

sedimentation of the fibers, potentially exposing the target proteins to oxidative stress and (ii) 

the resulting back pressure from the filter cake, rather than the blocked filter, became a limiting 

factor for the filter lifetime because all the head space in the filter housing was filled with 

cellulose fibers. 

 

Figure VI-22: Effect of cellulose fibers on filter blockage (IV.7 and IV.8). 

A. The addition of cellulose fibers resulted in the formation of a cake on the first depth filter layer (red arrow), 

thereby prolonging its permeability to the feed stream indicated by the particles passing onto the second filter layer 

(blue arrows). B. In the absence of cellulose fibers, a dark-green varnish-like coat rapidly formed on the first depth 

filter layer, limiting its permeability for dispersed particles and thus reducing the filter lifetime. 

Other cellulose fibers, especially the finer ones, either increased the filter lifetime albeit 

to a lesser extent than LuvoZell C200 (e.g. LuvoZell C90) or had no impact on filter lifetime at 

all (Figure VI-21 A). For example, the filter cake formed by CelluFluxx F45 effectively 
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prevented small particles from entering and blocking the depth filter layers but at the same time 

formed a dense filter cake causing high back pressure and eliminating its own beneficial effect, 

again reducing the overall filter lifetime. This also occurred when the concentration of 

CelluFluxx F45 in the feed was reduced from 5.0 to 2.5 g L-1. Combining fine and coarse fibers 

in the feed stream is another option to increase depth filter lifetime which could be tested in 

future experiments. 

LuvoZell C200 and other cellulose fibers exhibited two simultaneous modes of action 

to extend filter lifetime. First, they prevented the formation of a varnish-like dark green coat on 

the upper depth filter layer by providing additional surfaces and binding sites for dispersed 

particles, resulting in a dark green filter cake (Figure VI-22). It therefore took longer to block 

the first filter layer and the filter lifetime was prolonged. Second, the filter cake provided a 

mesh-like scaffold with a loose structure to which particles could attach, reducing the back 

pressure and the number of particles entering the filter, and thus extending its lifetime. 

In summary, cellulose fiber additives were identified as a safe and convenient strategy 

to increase depth filter lifetime in combination with flocculants. Their use will further reduce 

downstream costs during the manufacturing of plant-derived biopharmaceuticals and hence 

improve the competitiveness of this production platform. In the meanwhile, it was shown that 

the capacity can be increased about 1000-fold by an adequate combination of flocculants and 

filter aids compared to a setup without any additives [302]. 

VI.7 Economic impact of process improvements 

The PDF4 depth filter was found to be superior in terms of process economics including direct 

costs, the costs of auxiliary equipment (e.g. tubing and connectors) as well as the labor required 

for operation as described in section VI.3 (Table VI.4). However, that comparison focused on 

the ‘original’ process setup for plants grown in soil. Future campaigns will probably use 

rockwool as the growth support because of its improved biosafety profile. However, this growth 

support may cause a significant change in filter capacity as discussed above (VI.3, e.g. Figure 

VI-6), and this will also affect process economy. Therefore, a direct economic comparison of 

the different filters (PB2+PC2, PDF4 and PDH4, see also Table VI.3) and growth supports is 

presented here, including the impact of the process improvements described in sections VI.5 

and VI.6. 

The following values and assumptions were used to calculate the different economic 

indicators of the depth filtration process in Table VI.10: (i) filter capacitys as determined at the 

laboratory scale (Figure VI-6); (ii) costs for PB2+PC2 filters (including a ratio of 3:1 for 
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PB2:PC2) as well as auxiliary consumables (bags, tubing etc.) taken from the breakdown of 

costs from the Pharma-Planta consortium 2G12 GMP-production batches (Table VI.4); (iii) 

60% of the auxiliary consumables costs for the PB2+PC2 filters (~2000 € in Table VI.4) were 

assumed to be the threshold for system setup (e.g. storage bags, tube connections between filter 

holders etc.) the remaining 40% were assumed to scale directly with the filter area (or number 

of L-Drums; 188 € per m-2 or 375 € per L-Drum); (iv) for the same system, a threshold of 20 h 

was assumed for setup with an additional hour for each L-Drum and a down time of 4 h for a 

system with 4 L-Drums plus 1 h for each four additional L-Drums; (v) for the PB2+PC2 system, 

a required area of 25 m2 was assumed up to a total number of 20 L-Drums and an additional 5 

m2 for each new set of four L-Drums (because they require a new filter holder skid); (vi) for 

the PDF4 and PDH4 filters, the auxiliary consumables costs were assumed to scale linearly 

with the number of filter holders required (a maximum of 10 m2 filler area per holder is 

possible); (vii) a setup time of 2 h and a disassembly time of 0.5 h was assumed per STAX 

holder; and (viii) a threshold area of 4 m2 was assumed for the STAX system (for storage bags 

etc.) with an additional 2 m2 required for each holder. 

The calculated costs are shown in Figure VI-23 A and Table VI.10. The PB2+PC2 setup 

was more expensive than PDF4 or PDH4 in each scenario. This reflects three major factors: (i) 

the costs per unit filter area were higher for PB2+PC2 compared to the other filters (Table VI.4); 

(ii) the costs for auxiliary consumables (e.g. tubing, bags, etc.) were higher for the PB2+PC2 

setup because more individual filter housings were connected also requiring a larger number of 

storage bags (Figure VI-1 A vs. Figure VI-20 C and Table VI.4); and (iii) when processing 

unmodified extract from plants grown on rockwool, the PB2+PC2 filter lifetime of was 

significantly lower than PDH4 and especially PDF4 (Figure VI-6). 

The processing of unmodified extracts from rockwool-grown plants was inadvisable 

because this increased the consumables costs (filters and tubing etc.) by ~1.5–3-fold compared 

to soil-grown plants regardless of the filter type. As a consequence, the total downstream 

processing costs for a plant-based production process would also increase by 50–100% because 

the cost for filters, bags and tubing account for ~50% of DSP costs [247]. 

Therefore, the use of flocculants and additives is vital for the cost-effective production 

of biopharmaceuticals in plants if rockwool is used as a growth support. Even for soil-grown 

plants, these process modifications can prove useful as they improve the competitiveness of the 

platform compared to established counterparts such as CHO cells. Based on the process costs 

reported previously [247], the following assumptions were made to estimate the impact of 

flocculants and additives on the total production costs of a plant-derived 2G12 antibody in a 
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process aiming to deliver 5 g of pure product: (i) a 2G12 recovery factor (overall process yield) 

of 0.7; (ii) an average harvested biomass of 0.12 kg per plant; (iii) an average 2G12 

concentration of 0.014 g L-1 in leaf extracts when three volumes of buffer were used with fresh 

biomass (e.g. 3 L per 1 kg, corresponding to an expression rate of 0.0448 g kg-1 fresh biomass); 

(iv) a liquid recovery of 80% from crude homogenate (these assumptions were based on the 

Pharma-Planta consortium 2G12 production batches); (v) the costs for plant growth as 

previously reported [247] were adjusted for the longer growth period of transgenic plants (57 

days) compared to transient expression (47 days) and increased to 8.5 € per plant; and finally 

(vi) the costs for infiltration were neglected as a process based on transgenic plants was 

considered. The resulting total production costs are shown in Figure VI-23 B using PDH4 as 

an example. 

 

Figure VI-23: Effect of different depth filtration setups on the costs of process-scale production of 2G12 

antibody (IV.7 and IV.8). 

A. Costs for the filters PB2+PC2, PDF4 and PDH4 are compared for the ‘original’ setup using plants grown in 

soil (Table VI.4) as well as those grown on rockwool, also including flocculant (VI.5) and additives (VI.6). Filter 

lifetimes determined at the laboratory scale (Figure VI-6) were used for these calculations. The costs for auxiliary 

consumables and filters were taken from the breakdown of costs from the Pharma-Planta consortium 2G12 GMP-

production batches, as discussed in the text and summarized in Table VI.10. Shaded column sections indicate the 

filter costs as a proportion of total consumables costs. Error bars indicate uncertainty of costs based on the filter 

lifetime variability. PB2+PC2 data are missing for the ‘rockwool, flocculant & additive’ condition because the 

small scale filters of this type do not have sufficient head space to allow cake formation by the additive. Data for 

PDF4 are missing because this filter type was not available at that time. B. Calculation of upstream production 

(USP), downstream processing (DSP) and total production costs of 2G12 under different production conditions 

using the PDH4 depth filter. Use of flocculants and additives reduced the production costs of rockwool-based 

production below the level of the soil-based process. A detailed discussion of the assumptions made for this 

calculation is provided in the text. 

The combined use of flocculants and additives reduced the DSP costs by 35% and 66% 

compared to the soil-based and unmodified rockwool-based processes respectively, and the 

corresponding total production costs were reduced by 25% and 55%. On a per gram basis, the 

production costs for 2G12 were approximately €6400, which is not competitive compared to 

the CHO expression system. However, taking into account the low expression rate of the 2G12 
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antibody (0.0448 g kg-1) it is likely that optimized expression cassettes/gene sequences can 

increase this level above 0.5 g kg-1 as observed for the monoclonal antibody M12 (Dr. Nicole 

Raven, personal communication). Assuming such an expression level, this would reduce the 

per gram production costs to €700-800. At this point the major cost factors in DSP will be the 

costs of labor and chromatography resins. The latter point can be addressed by reducing the 

complexity of the separation problem or using alternative separation techniques as will be 

discussed in section VI.9.6, whereas the first can also be approached by the use of filter systems 

such as STAX (PDF4 and PDH4) that require less handling time and thus help to reduce the 

labor costs. The small footprint of these systems will also help to reduce investment costs 

because they will fit within a smaller layout in the production facility. 
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Table VI.10: Calculated economic impact of different depth filtration setups on production-scale 

biopharmaceutical protein manufacturing in plants. 

Extract 

condition [-] 
Soil Rockwool 

Rockwool and 

flocculant 

Rockwool, 

flocculant 

and 

additive 

Depth filter 

type [-] 

PB2+ 

PC2 
PDF4 PDH4 

PB2+ 

PC2 
PDF4 PDH4 

PB2+ 

PC2 
PDF4 PDH4 PDH4 

Total filter 

area required 

to process 1 

m3 extract 

(~300 kg 

biomass) 

20 17 19 57 29 56 12 12 13 4 

Total number 

of L-Drums 

or STAX 

holders [-] 

10 2 2 29 3 6 6 2 2 1 

Price per m2 

filter area [€] 
480 350 350 480 350 350 480 350 350 350 

Filter costs 

for 1 m3 

extract [€] 

9600 5950 6650 27360 10150 19600 5760 4200 4550 1400 

Approximate 

costs for 

tubing, bags 

and 

connectors 

[€] 

3750 1800 1800 10688 2700 5400 3000 1800 1800 900 

Total 

consumables 

costs for 1 m3 

extract [€] 

13350 7750 8450 38048 12850 25000 8760 6000 6350 2300 

Work load 

for system 

setup 

[person-

hours] 

30 4 4 49 6 12 26 4 4 2 

Work load 

for system 

disassembly 

[person-

hours] 

6 1 1 11 2 3 5 1 1 1 

Total labor 

time [person-

hours] 

36 5 5 60 8 15 31 5 5 3 

Approximate 

space 

requirement 

for support 

equipment 

(holder, 

storage tanks 

etc.) [m2] 

25 8 8 40 10 16 25 8 8 6 
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VI.8 Pre-treatment of plants or bulk extract 

The results presented in this section have been published as the following manuscript: 

1. Buyel JF, Hubbuch J, Fischer R. 2016. Comparison of Tobacco Host Cell Protein 

Removal Methods by Blanching Intact Plants or by Heat Treatment of Extracts. Journal 

of Visualized Experiments, e54343(114):1-9. 

Different options exist to remove HCPs from a feed stream or process intermediate, including 

precipitation at low pH [303]. However, not all target proteins are stable at low pH and thus 

alternative methods to remove HCPs have to be explored for plant-based expression systems in 

order to facilitate subsequent chromatographic product purification, especially if specific 

affinity ligands such as Protein A are not available. Heat precipitation can be such an alternative 

as previously demonstrated for several thermostable plant-derived recombinant proteins [304-

306]. The heat precipitation of HCPs can be implemented in different ways, including 

blanching, i.e. the submersion of intact leaves into a hot liquid, stirred vessels or heat 

exchangers (Figure VI-24). 

 

Figure VI-24: Process flow scheme illustrating the implementation of three different methods for tobacco 

HCP heat precipitation. 

The plant material is washed and homogenized before clarification and purification. The equipment for the 

blanching step (red) can easily be added to the existing machinery. In contrast, using a stirred vessel (orange) and 

especially a heat exchanger (blue) requires one or several additional devices and tubing. 
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VI.8.1 Heat precipitation of tobacco host cell proteins by 
blanching 

Blanching was successfully used to precipitate HCPs from tobacco leaves with 70°C, reducing 

the TSP by 96±1% (n = 3) while recovering up to 51% of the Vax8 target protein, thus 

increasing its purity from 0.1% to 1.2% before chromatographic separation [305]. It was also 

possible to recover 83±1% (n = 3) of the fluorescent protein DsRed, increasing its purity from 

3.3% to 64.1%. The blanching procedure was easily integrated into a standard extraction and 

clarification scheme consisting of biomass washing, homogenization, bag filtration and depth 

filtration (Figure VI-24) [307]. 

 

Figure VI-25: Schematic setup of three methods to precipitate tobacco HCPs in intact leaves or extracts 

thereof. 

A. Blanching was carried out in a water bath heated with a thermostat (T) into which a basket containing intact 

leaves was submerged. The water bath was agitated to ensure a homogenous and constant temperature. B. A vessel 

containing a magnetic stir bar and leaf extract was submerged into a water bath. The temperature in the extract 

was monitored to ensure that the required temperature was achieved. C. A heat exchanger (H) was connected to a 

pump (P) and a thermally insulated storage vessel containing the plant extract. The heat exchanger was submerged 

in a water bath and the temperature of the heated extract was monitored. 

Preparing the blanching equipment (Figure VI-25) added about 5 min to the set-up time 

for the clarification devices, which routinely takes 20 min. Another 7 min was required to 



VI. Results and discussion  page 96 

Biomolecular Separation Engineering – Karlsruhe Institute of Technology 

Dissertation 2017 | Johannes Buyel 

perform the blanching of intact leaves in addition to the typical extraction and clarification time 

of 45 min. However, only 2 min of the additional 7 min was actual “hands-on” time. 

Additionally, short incubation times of less than 1 min are possible, reducing the blanching time 

from 7 min to approximately 3 min. Therefore, blanching not only increased the initial purity 

of a product in crude plant extracts, but was also rapidly completed with no additional process 

equipment, thus offering the potential to replace at least an initial chromatography step. The 

blanching bath temperature remained constant, i.e. <0.2°C fluctuation, during all experiments 

even immediately after the addition of harvested leaves which were at ambient temperature. 

This ensured the process was repeatable, i.e. an average coefficient of variation of 17% (n = 

24), in terms of TSP reduction, product yields and filter capacity in the subsequent clarification 

steps (Figure VI-26). 

 

Figure VI-26: Comparison of three heat precipitation methods showing their effect on process performance 

and the purification of two target proteins. 

A. Conditions supporting the removal of more than 90% of HCPs were identified for blanching, a stirred vessel 

and a heat exchanger setup, all of which increased the purity of the target proteins Vax8 and DsRed by a minimum 

of 2.5-fold and a maximum of 19-fold, with blanching performing best. In contrast, only the stirred vessel setup 

increased the capacity of the subsequent depth filtration step used for clarification of the heat treated plants or 

extracts. Error bars indicate the standard deviation (n = 3). B. The HCP content of samples after different heat 

treatment conditions was analyzed and compared using Coomassie-stained polyacrylamide gels (IV.4, IV.9.1). 

RuBisCO (green arrows) was removed along with other HCPs as the temperature during heat treatment increases, 

whereas DsRed (red arrow) remained in solution. * indicates a sample that was exposed to heat for 0.5 min, all 

other samples were treated for 3.0 min or more. Re-print with permission from [305]. 

However, the filter capacity declined at blanching temperatures >63°C, potentially 

increasing the costs of filter consumables. This can be addressed by adding flocculants after 

protein extraction [308] and filter aids after bag filtration [302], which can restore or even 

increase filter capacities. A temperature of 60°C was sufficient to remove 80±3% (n = 3) of 

HCPs and increase Vax8 purity 2.6±0.1-fold (n = 3) without affecting filter capacity. Therefore, 

HCP removal by blanching is compatible with target proteins that have moderate heat stability, 
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i.e. a melting temperature below 70°C [309, 310]. However, increasing the temperature to 70°C 

or more may result in an HCP removal of over 95% (Figure VI-26). It was useful to conduct 

the corresponding set of experiments in a well-designed manner using a statistical approach 

[311] because this allowed the rapid identification of the most relevant process parameters, i.e. 

heating time and temperature. At the same time, the DoE method generated a predictive model 

to facilitate process optimization [305]. 

VI.8.2 Heat precipitation of HCPs in a stirred vessel 

A stirred vessel for heat precipitation removed a maximum of 84±1% (n = 3) HCPs, achieving 

a purity of 0.33±0.02% (n = 3) for Vax8 and 20.2±1.4% (n = 3) for DsRed (Figure VI-26). The 

heat treatment was carried out in a vessel separate from the homogenizer to prevent delays 

reflecting device occupancy when processing multiple samples in series. The handling effort 

required for the laboratory-scale process was similar to that for blanching but an additional 

stainless steel vessel and a dedicated cooling step were required. Furthermore, heat transfer to 

the extract was slower than during blanching, with incubation times of at least 5 min, i.e. 10 

times longer than for blanching. The delayed heating was caused by the vessel, which posed an 

additional barrier to heat transfer, and the ~300% greater mass that was heated in the vessel due 

to the presence of extraction buffer in addition to the plant biomass. Precipitating proteins also 

adhered to the walls of the vessel, gradually building up an additional heat transfer barrier and 

increasing the effort required for subsequent cleaning. Setting the water bath temperature 8°C 

above the temperature used for heat precipitation compensated for energy losses in the partially 

open system and achieved the desired extract temperature. In contrast to blanching (VI.8.1) and 

a heat exchanger setup (VI.8.3), HCP precipitation in a vessel increased the capacity of 

downstream depth filtration by 2.5-fold (Figure VI-26 A), reflecting the lower sheer forces in 

the vessel compared to pumping extract through the heat exchanger or homogenization after 

blanching, probably resulting in larger aggregates that were easier to remove in the bag filtration 

step. 

VI.8.3 Heat precipitation of HCPs in a heat exchanger 

Approximately 88.3±0.7% (n = 12) of the HCP content was consistently removed from the 

extract using a heat exchanger within the temperature range 60−70°C, achieving a purity of 

0.31±0.01% (n = 12) for Vax8 and 27.6±2.0% (n = 12) for DsRed (Figure VI-26). The average 

coefficient of variation was 13% (n = 24) indicating that the repeatability of this procedure was 

even better than blanching. The desired extract temperature was achieved after ~3 min if the 

water bath temperature was set 4.5°C higher. As for the heated vessel, a dedicated cooling step 
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was required after heat treatment. The heat exchanger involved more handling effort than the 

other methods because the pumping apparatus and heat exchanger required intensive cleaning 

due to the precipitate adhering to the walls of the narrow bore stainless-steel tubing. The heat 

exchanger also achieved the lowest downstream depth filter capacity, clarifying only 13.5±6.0 

(n = 3) L m-2 before clogging. 

VI.8.4 Evaluation of HCP precipitation by heat treatment 
methods 

The three methods for heat precipitation described above can effectively remove tobacco HCPs 

prior to any chromatographic purification step [305, 312]. They complement other strategies 

that aim to increase initial product purity, e.g. guttation [313], rhizosecretion [314] or 

centrifugal extraction [315, 316], all of which are limited to secreted proteins. However, the 

heat-based methods can only be used in a meaningful way if the target protein to be purified 

can withstand the minimum precipitation temperature of ~60°C for more than 1 min. Therefore, 

the first step in any of the three methods is to design a target molecule with a sufficiently high 

melting temperature, which has been described for several malaria vaccine candidate proteins 

consisting of different domains from several Plasmodium falciparum antigens [304, 305, 317]. 

Once the thermal stability of the target protein has been demonstrated, one of the three methods 

can be selected based on the available equipment and media, anticipated final process scale and 

subsequent DSP operations [305]. 

Blanching was the fastest of the methods and additional equipment requirements were 

minimal, so it can easily be implemented into existing laboratory-scale purification protocols 

for plant-derived recombinant proteins. Thorough agitation of the blanching liquid is an 

important process parameter that affects the efficiency of HCP precipitation based on both 

empirical data and theoretical calculations [304, 318]. Failing to achieve good mixing can 

impair heat transfer and result in only partial HCP removal, which in turn can be detrimental to 

the product if host proteases remain active [304, 319]. Several other parameters can also affect 

HCP precipitation, e.g. the heating temperature and incubation time, and a DoE approach can 

therefore be useful to characterize the most relevant factors and provide predictive models to 

quantify their effects on responses such as product purity, recovery and the performance of 

subsequent DSP steps [311]. 

In the vessel setup, longer incubation times were required to achieve complete HCP 

precipitation and this may increase the likelihood of undesirable target protein denaturation 

reflecting the extended exposure to high temperatures. More thorough mixing in the vessel 

could improve the heat transfer and reduce the duration of heating. The long temperature ramp 
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in this setup can also be challenging if proteases in the extract [304, 319] become more active 

before final heat inactivation, causing product losses. 

The increased depth filter capacity observed for the vessel setup can help to reduce 

consumables costs, allowing a larger number of samples to be handled in a project with a fixed 

budget or reducing the overall funding requirements for a given set of experiments. However, 

this benefit may be outweighed by the cost of the additional vessel, which is necessary in 

addition to the homogenizer to prevent the introduction of process hold steps if several 

extraction runs are required in a series of experiments, e.g. as part of a DoE approach. The 

positive effect on filter capacity may also diminish if a more intensive mixing regime is used 

to reduce heating times as suggested above. 

A dedicated cooling step is necessary for both extract-based heat precipitation methods, 

requiring not only additional resources but also prolonging the overall processing time per 

sample, which can also conflict with fluent DoE procedures or experimental sequences in 

general. The heat exchanger setup is well characterized from an engineering perspective [320] 

and can easily be designed and scaled up for specific temperature differences, in contrast to the 

vessel, whose surface-to-volume ratio changes during scale up. However, once the heat 

exchanger size is defined, it can be difficult to adjust to alternative temperature differences 

because its length and thus the heat transfer area are fixed. 

Changing other parameters, such as the residence time (or flow rate) and temperature of 

the heat exchanger medium, can restore flexibility to some degree, but only in small-scale 

experiments because these factors are typically operated in narrow windows in process scale 

operations due to restrictions imposed by the available equipment and media like water and 

steam. The demand for a combination of short incubation times of 3−5 min and a temperature 

difference of 40−60°C becomes increasingly difficult to solve at the device level as the process 

scale increases because the dimensions of the heat exchanger become larger. This is especially 

true for the cooling step because the temperature difference between the medium and desired 

extract temperature after cooling is often smaller (T = 10−15°C) than the heating step (T = 

20−40°C) resulting in large equipment dimensions or longer cool-down times. 

In the future, the methods can be adapted to biopharmaceutical proteins other than 

vaccine candidates which in this study were specifically designed for thermal stability. Many 

antibodies can withstand temperatures of >70°C [321, 322] which is already compatible with 

the current temperature regime. This natural thermal stability can be increased further by 

engineering the different antibody domains [323], thereby increasing the number of proteins 

that can be subjected to the methods presented here. The blanching method has already been 
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applied to transgenic tobacco plants expressing a monoclonal antibody (2G12) [312] which has 

not been subject to selection for thermal stability or protein engineering. Heat treatment at 65°C 

increased the purity of the antibody by a factor of two prior to chromatographic purification 

while the recovery was similar to that observed without blanching. 

Additionally, characterizing the individual HCP melting temperatures of an expression 

system could facilitate the identification of a temperature with which the process could be 

conducted similar to pasteurization of milk: high temperature, short time [324]. The heat 

treatment (except for blanching) may also be applied to other biological starting materials to 

remove HCPs if the product can withstand the necessary temperatures. The latter may deviate 

from the ones discussed here if other expression platforms such as mammalian cell culture 

supernatants are being processed. In any case, the cost-benefit-ratio should be taken into 

account, i.e. does the benefit of reduced HCP levels outweigh the cost for implementing a heat 

treatment step that causes additional investment costs, increases the process time and may 

reduce the product yield [305]. A critical parameter in this context is the product activity. If it 

depends on the presence of linear epitopes as for some protein-based vaccines, then heat 

treatment is unlikely to have an effect [325]. In contrast, if protein structure is important, e.g. 

for conformational epitopes or enzymatic activity, the precise orientation of amino acid side 

chains in an enzyme’s active site or the correct folding of antibody complementarity 

determining regions, a heat treatment may interfere with protein activity [326, 327]. Therefore, 

suitable analysis assays should be established to monitor product performance before and after 

heat treatment. 
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Part II: Chromatography 

VI.9 Separation of HCPs by chromatography 

The results presented in this section have been published as the following manuscript: 

1. Buyel JF, Fischer R. 2014. Generic chromatography-based purification strategies 

accelerate the development of downstream processes for biopharmaceutical proteins 

produced in plants. Biotechnology Journal, 9(4):566-577. 

Chromatography is widely used for the purification of target proteins because although the 

separation conditions are mild they have a high resolving power [147]. For the initial capture 

step, it is important to separate the target protein from the bulk HCP impurities and water, thus 

the resolution of the resin is of secondary importance at this stage [63]. Selection can be 

straightforward in the case of monoclonal antibodies secreted from mammalian cells because a 

specific capture step is available (using Protein A) and the target accounts for 75% or more of 

the TSP [328]. But in plants, the POI could represent only 0.7–7.0% of TSP [329] and resin 

capacity and price therefore become more important as selection criteria. This is especially true 

if a POI-specific capture resin is not available and the column capacity must also accommodate 

the binding of HCPs such as RuBisCO. It is therefore important to find conditions that separate 

the POI and HCPs and reduce the demand for column capacity, which is ideally achieved by 

directing HCPs into the flow-through (FT) fraction. Furthermore, the process will benefit from 

capture conditions that do not require sample conditioning (e.g. buffer exchange). The 

identification of such desirable capture conditions and resins was the aim of the experiments 

described in this chapter. 

VI.9.1 AEX 

VI.9.1.1 DEAE Sepharose FF 

Once the number of particles is reduced below a certain threshold as described above (VI.2 to 

VI.6), different chromatography techniques are available for the isolation of a target protein 

from leaf extracts (III.6.3). The development of such an isolation procedure can be accelerated 

if the binding and elution behavior of the contaminating HCPs are known because this allows 

the selection of the most suitable separation conditions based on the target protein properties. 

Initially, the reproducibility of protein elution profiles was confirmed by loading 

different samples onto diethylaminoethyl (DEAE) Sepharose FF resin, a weak anion exchanger. 

Three protein-containing elution peaks were detected in addition to the FT peak (Figure VI-27 
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A). The large and small RuBisCO chains were major components in the FT fraction and elution 

peak 2, the latter containing a large number of other proteins (Figure VI-29). The protein 

concentration in peak 3 was lower than in the other peaks and its UV 254 nm signal exceeded 

that at 280 nm, indicating the presence of DNA/RNA. Deviations for repeated separations were 

less than 0.30 mL (0.28 ± 0.09 mL; n = 3) for the retention volume of peak maxima, 

corresponding to a shift in salt concentration of ~15 mM NaCl (Figure VI-27 A). However, 

components eluting in peak 3 of the directly-processed samples (<36 h after filtration) shifted 

to the FT fraction if samples were stored for more than 40 h at 4°C before chromatography. The 

area of peak 3 therefore decreased by ~40% and that of the FT peak increased 2.5-fold without 

changing the total peak area significantly (<2.0%). Most of these shifting components were 

DNA/RNA fragments as indicated by the high UV 254 nm signal in peak 3 (fresh samples) and 

the FT fraction (in aged samples) as well as agarose gel electrophoresis results (Figure VI-30 

B). RNA and DNA were probably degraded during sample storage by RNAses/DNAses 

released during leaf homogenization [330] reducing their binding to the positively-charged 

DEAE resin. Even though RNA/DNA was not the target molecule, these results imply that only 

freshly-prepared samples should be used to screen chromatography conditions to ensure 

authentic separation behavior of the extract. 

 

Figure VI-27: Effect of sample aging and different plant batches on tobacco HCP separation by DEAE 

(IV.11). 

A. Samples stored for more than 40 h (dotted lines) exhibited a shift of the UV 254 nm (green line) intense peak 3 

towards an increased UV signal in the FT fraction (arrows II and I respectively), whereas elution peaks 1 and 2 

were hardly affected. B. Only minor differences were observed between elution peaks of samples from different 

batches that were subjected to chromatography within 36 h after filtration. Salt gradient as in A. Depth filter PDF4 

was used for all experiments. The protein composition of the peaks is discussed in the text. 

Samples that were processed immediately showed comparable elution profiles (Figure 

VI-27 B) even if they originated from different plant batches or underwent individual filtration 

or desalting procedures. The retention volumes of the FT fraction and elution peaks 1 to 3 varied 
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by <0.15 mL (0.09 ± 0.07 mL; n = 4) corresponding to ~8.0 mS cm-1. Hence, the separation 

behavior of samples from different plant batches was similar, making it unnecessary to carry 

out separation runs under standard conditions for normalization. 

The effect of different depth filters (VI.3) on separation was also investigated. Higher 

UV 280 nm signals were observed in the FT fraction and peak 1 after filtration with PDF4 

(compared to all other filters) indicating that less-positively-charged extract components bound 

to the filter (Figure VI-28 A). This supported the inert behavior of this depth filter as described 

above (VI.3). Declining UV 254 nm and 280 nm signals in peak 3 were observed as the nominal 

retention ratings of the depth filters became finer, implying that more RNA/DNA fragments 

were binding to the finer depth filters. 

The binding of HCPs to DEAE resin was measured over the pH range 7.0–8.0 in 

combination with low (1.5 mS cm-1) or moderate (5.0 mS cm-1) conductivities during protein 

loading (Figure VI-28 B). Lower buffer pH was associated with a higher UV 280 nm signal in 

the FT fraction and subsequent wash step, whereas the intensity of elution peaks 1 and 3 

decreased. This is in good agreement with the binding mode of DEAE resin (Table III.2) 

because a lower pH reduces the negative charges on the protein surface and thus weakens 

binding to the positively-charged ligand. The binding strength was further weakened by the 

increase in conductivity, resulting in an additional shift in the UV 280 nm signal towards the 

FT fraction. Again, these results are in good agreement with chromatographic theory (III.6.4). 

 

Figure VI-28: Effect of depth filters, pH and conductivity on tobacco HCP separation with DEAE (IV.11). 

A. Higher UV 280 nm signals were observed in FT (arrow I) and peak 1 (inset) after filtration with PDF4 (dashed 

lines) compared to all other filters (solid lines). Decreasing UV signals in peak 3 (arrow II) were observed as 

nominal retention ratings of the depth filters used in sample preparation got finer (Table VI.3). See text for 

interpretation. B. Decreasing the buffer pH from 8.0 (blue lines) over 7.5 to 7.0 (red lines) during the entire 

separation resulted in a decreased height of peak 1 and 3 (downward arrows), whereas more signal was observed 

in FT (upward arrow). Increasing the buffer conductivity from 1.5 to 5.0 mS cm-1 (dashed lines) enhanced this 

effect. Note that only UV 280 nm for runs at pH 7.0 and 8.0 are shown for clarity. Salt gradients as in Figure VI-27 

A. 
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Figure VI-29: Impact of gradient steepness on resolution of HCPs by DEAE (IV.11). 

Using a 20 CV gradient at pH 8.0 some RuBisCO was found in the FT while most other proteins eluted in peaks 1 

and 2. Peak 3 hardly contained any protein (Figure VI-27 A). Increasing the gradient length two-fold and reducing 

the flow rate to 50% improved resolution of HCPs (Figure VI-30 A). DsRed (red arrow, P1) was separated form a 

80 kDa major HCP (black arrow, I) and the RuBisCO containing second peak. Additionally, a 17 kDa and a 45 kDa 

HCP (green and black arrow, P2.1) were separated from a 42 kDa HCP (black arrow, P2.2) within elution peak 2 

under these conditions. Note that 5.0 instead of 1.0 mL sample were loaded when a 40 CV gradient was used in 

order to improve detectability of eluted proteins. M – marker; L – load; FT – flow through; W – wash; P – peak; I 

– intermediate. 

 

Figure VI-30: Effect of increased gradient length on HCP separation on DEAE (IV.11). 

A. An increased gradient length improved separation of the three elution peaks. B. RNA/DNA was only detected 

in elution peak 3 (green arrow) independent of digestion with AluI in agarose gels. DsRed protein in load and 

peak 1 gave a false positive signal after ethidium bromide staining (red arrows). Note that 5.0 instead of 1.0 mL 

sample were loaded when a 40 CV gradient was used in order to improve detectability of eluted proteins. M – 

marker; L – load; FT – flow through; W – wash; P – peak; Sc – Sc plant expression vector (vector Sc as reported 

in [331], positive control, black arrow); B – buffer; Ds – DsRed protein. The protein composition of the peaks is 

described in the text and Figure VI-29. 

The resolution achieved with a 20 CV gradient from 0–1000 mM NaCl was poor 

because only three protein peaks (including the FT fraction) and one RNA/DNA elution fraction 

were resolved. SDS-PAGE analysis of the peaks revealed their complex composition, which 
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further reduced the separation performance (Figure VI-29, 20 CV). To improve the resolution 

of tobacco HCPs, the gradient length was increased to 40 CV and the flow rate was reduced 

from 1.0 to 0.5 mL min-1. These changes increased the separation factor  (III.6.3) of peaks 1 

and 2 by 40% whereas the separation of peaks 2 and 3 was not affected. At the same time, the 

resolution of peaks 1 and 2 also increased from 0.85 to 1.20 (~40%) whereas that of peaks 2 

and 3 decreased from 1.18 to 1.00 (~15%). An 80 CV gradient length did not improve the 

separation significantly (data not shown). 

Despite the improvement achieved with a longer gradient, elution peaks still consisted 

of a number of proteins. Furthermore, the presence of the large and small RuBisCO subunits in 

all the protein-containing fractions indicated that the target protein cannot be separated from 

major HCP impurities using DEAE resins. The most effective use of this resin would be (i) 

operation in FT mode to bind ~80% of HCPs and DNA while a POI with positive/neutral charge 

at pH 7.0-8.0 can pass through the column, and (ii) operation in binding mode for strongly-

retained target proteins eluting at conductivities >30 mS cm-1 (~275 mM NaCl). The drawbacks 

of an initial FT step include the lack of a concentrating and volume-reducing effect as well as 

the need for a high-capacity column to bind the HCPs. In contrast, binding mode is likely to 

contaminate the target protein with tobacco HCPs in case the POI elutes at low conductivity or 

with RNA/DNA as this also elutes at >30 mS cm-1 (Figure VI-27 and Figure VI-30). 

VI.9.1.2 ANX Sepharose FF 

Reproducible results were obtained when freshly-prepared samples were separated using the 

weak anion exchanger ANX Sepharose FF (VI.9.1.1). Again, fine depth filters reduced the 

amount of RNA/DNA binding to the resin. The shape of the UV 280 nm chromatograms was 

similar to that seen with DEAE resin (Figure VI-31 A) consisting of a FT fraction and three 

elution peaks. However, higher separation factors and resolutions were achieved with ANX 

resin because the elution of three peaks occurred in a larger volume under the same 

chromatographic conditions (1.0 mL sample, pH 8.0, 1.5 mS cm-1, 20 CV gradient, flow rate 

1.0 mL min-1). A 20 CV gradient was therefore sufficient with ANX to achieve the same degree 

of separation as a 40 CV gradient with DEAE (Figure VI-30 A and Figure VI-32 A). The best 

separation between elution peaks was achieved at pH 7.5 with a resolution of 1.32 for peaks 1 

and 2 and 1.11 for peaks 2 and 3. Reducing the pH to 7.0 increased the height of the FT peak 

and diminished peaks 1 and 3 (Figure VI-31 B). Increasing the conductivity during sample 

loading from 1.5 to 5.0 mS cm-1 enhanced this effect. Therefore, ANX can be used for an initial 
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chromatography step in the same way as DEAE (VI.9.1.1) with the advantage of faster sample 

processing time. 

 

Figure VI-31: Tobacco HCP separation using ANX Sepharose FF (IV.11). 

A. Three major protein containing elution peaks appeared at pH 8.0 after sample loading to ANX (green line) 

similar to DEAE (red line) but elution was spread over a larger volume for ANX. B. Decreasing pH and increasing 

conductivity during sample loading resulted in an increased intensity of the FT peak while intensity of peak 1 and 

3 diminished relative to peak 2. Note that only runs at pH 7.0 and 8.0 are shown for clarity. All curves indicate 

UV 280 nm trace. The protein composition of the peaks is discussed in the text and Figure VI-32. 

 

Figure VI-32: HCPs in fractions obtained from TSP separation by ANX or Q (IV.4.4, IV.11). 

Using ANX with a 20 CV gradient to 1000 mM NaCl at 1.0 mL min-1 tobacco proteins were separated as well as 

on DEAE with a 40 CV gradient and a flow rate of only 0.5 mL min-1 (see also Figure VI-29). RuBisCO bound to 

the resin in the tested pH range from 7.0-8.0 (here results for pH 8.0 are shown) and made up the majority of the 

UV 280 nm signal during elution (peak 2 in Figure VI-31) corresponding to elution fraction 4 on the gel. The 

fraction 2 corresponds to ANX peak 1 in Figure VI-31 and fraction 6 to peak 3. When Q Sepharose FF was used 

to separate HCPs a similar sequence of the eluting proteins was observed even when desalting was performed with 

a 30 kDa membrane instead of a G-25 desalting resin. Again RuBisCO (green arrows) bound to the resin in a pH 

range from 5.5 to 8.5 (here results for pH 8.0 are shown). Interestingly, also the 15 kDa small subunit of RuBisCO 

was found in the load and elution fractions despite filtration through a 30 kDa membrane (see also Figure VI-33). 

M – marker; L – load; FT – flow through; W – wash. 

VI.9.1.3 Q Sepharose FF and Q HyperCel 

The ability of the strong anion exchangers Q Sepharose FF (Q) and Q HyperCel (HyQ) to bind 

tobacco HCP was compared over the pH range 5.5–8.5. Q exhibited a three-peak elution profile 
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like DEAE and ANX (Figure VI-33 A) but the resolution increased for the two pairs of 

subsequent peaks to 1.48 and 1.51, respectively (compare VI.9.1.1 and VI.9.1.2) even at a flow 

rate of 1.0 mL min-1 using a 20 CV gradient. Only ~15% of the UV 280 nm signal was found 

in the FT fractions. 

Q was therefore selected for testing under conditions that resembled a production 

process more closely. First, the samples were desalted using a Hydrosart 30 kDa membrane 

(Sartorius, Germany) instead of a HiPrep 26/10 column packed with Sephadex G-25 resin (GE) 

which facilitated the conditioning of clarified extract for chromatography in a scaled-up 

process. Second, 5 mL instead of 1 mL of extract was loaded onto the 1 mL column to 

determine resin capacity and the effect of bound protein concentration on the resolution of 

separation. The 30 kDa membrane was found to permeable not only for NaCl but also for 

DNA/RNA from the plant extract (discarded with the permeate) as indicated by the absence of 

peak 3 and its formerly high UV 254 nm signal in the chromatograms (Figure VI-33 A vs. B). 

Interestingly, the small subunit of RuBisCO (~15 kDa) was still found in the filtration retentate 

and fractions collected during subsequent chromatography (Figure VI-32, green arrows) 

indicating its association with the large subunit under the pH conditions investigated here. This 

agreed with the stability of the RuBisCO complex as previously reported [332]. 

As expected, the large amount of protein loaded onto the column increased the 

UV 280 nm signal in the FT fraction (Figure VI-33 A vs. B and Figure VI-34) accounting for 

~29% of the total signal. Interestingly, the UV signal in the FT fraction increased with higher 

pH, indicating less protein was binding to the column (Figure VI-34 A). This appears to 

contradict the binding principle of Q because more negative charges should be present on the 

protein surfaces at higher pH values, facilitating binding to the positively-charged ligand. 

However, the association of large and small chain of RuBisCO mentioned above and their 

oligomeric structure might have been affected by the change in pH (e.g. 4:4 heterooctamer at 

pH 5.5 but 2:2 heterotetramer at pH 7.5) thus reducing the number of binding sites per molecule 

and causing weaker binding [149]. This assumption was supported by the finding that RuBisCO 

appeared in the FT fraction at pH ≥7.5 whereas it was not found in the FT fraction at pH ≤6.5 

(data not shown). 

Under high protein loading conditions, the two protein-containing peaks 1 and 2 were 

still separated by Q Sepharose FF whereas only one elution peak was observed using DEAE 

resin (Figure VI-33 B). The resolution of these peaks increased from 1.03 at pH 5.5 to 1.63 at 

pH 8.5 and even up to 2.30 if phosphate was replaced with glycine as the buffering agent (Figure 
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VI-34 A). This exchange also resulted in the appearance of a third elution peak (1.2) between 

former peaks 1 and 2. 

 

Figure VI-33: HCP separation by Q Sepharose FF compared to DEAE and ANX (IV.11). 

A. The three resins exhibited a three-peak elution profile (labels 1-3) but peaks were best resolved using Q. B. Q 

(solid lines) and DEAE (dashed lines) showed significant breakthrough in the FT fraction after ~2.5 mL (~12 mg 

TSP loaded) (compare Figure VI-32) when 5 instead of 1 mL sample was loaded to the column. Under these 

conditions only Q was capable of resolving peaks 1 and 2. Desalting the sample with a 30 kDa membrane instead 

of a G-25 resin removed most RNA/DNA molecules resulting in the disappearance of elution peak 3 (compare A 

and B) and its strong UV 254 nm signal. All curves in A represent a UV 280 nm signal. The protein composition 

of the peaks is discussed in the text and Figure VI-32. 

 

Figure VI-34: Influence of pH and resin structure on protein binding to quaternary ammonium ligands 

(IV.11 and III.6.3). 

A. An increasing pH shifted the elution of peak 2 towards higher salt concentrations, ~1.0 mL (~50 mM NaCl) per 

0.5 pH units while peak 1 was less affected. As a consequence resolution increased from 1.03 at pH 5.5 to 1.63 at 

pH 8.5. Changing the buffering agent from phosphate to glycerin further improved the resolution as an additional 

peak 1.2 appeared. B. The cellulose based resin HyQ exhibited less breakthrough at pH 7.5 than Q but did not 

resolve the two elution peaks well and showed extensive tailing (T). Note that the chromatogram of Q at pH 7.5 

(blue line in A and red line in B) had a wash step that was 2 mL shorter than that of all other runs and thus the FT 

peak is shifted by this volume, however, the salt gradient starts at the same volume as for all other chromatograms. 

Separation of the peaks was less efficient when a cellulose resin matrix (HyQ) was used 

instead of an agarose-based matrix (Q) (Figure VI-34 B) because the resolution dropped to 0.75 

at pH 7.5. However, the percentage of proteins in the FT fraction remained at ~27%. The HyQ 
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resin showed extensive tailing of the major elution peak containing RuBisCO, preventing the 

effective separation of this impurity from potential target proteins. HyQ may be suitable in 

binding mode only if RuBisCO has been removed in a previous step. 

The tailing may reflect the longer spacer arms of HyQ compared to Q Sepharose FF 

resulting in solid diffusion in the pores rather than pore diffusion [333-335]. The binding 

capacity of HyQ can therefore be higher (indicated by the shallower FT peak in Figure VI-34 

B) but desorption may be inhibited. 

VI.9.2 CEX – SP Sepharose 

In CEX the pH of the feed stream is usually set to 4.0–6.5 to ensure the presence of positive 

surface charges, allowing proteins to bind the negatively-charged ligands such as sulfopropyl 

[336]. At pH values <6.0, tobacco HCPs including the RuBisCO large subunit started to 

precipitate as described above (Figure VI-16). This can be advantageous if the target protein is 

stable and soluble in this pH range, because its abundance relative to the HCPs increases. 

Setting the pH at 4.5 resulted in the quantitative precipitation of the RuBisCO large 

subunit and 65% of all HCPs (Figure VI-35). Although the majority of the remaining proteins 

were found in the FT fractions (Figure VI-35 and Figure VI-36 A), the RuBisCO small subunit 

and a 40 kDa protein eluted early and late in a salt elution gradient, respectively. These 

conditions are favorable for a target protein binding to the SP resin because even a coarse 

fractionation of the elution or stepwise gradient will leave only one major impurity (RuBisCO 

small subunit or the 40 kDa protein) together with the POI. Resolution between the six detected 

elution peaks was on average only 0.53 ± 0.16, which can be improved by increasing the bed 

height or reducing the flow rate if SP is considered for an intermediate purification step (III.6.3). 

However, for an initial capture step, the achieved separation was sufficient. 

Approximately 25% of all HCPs precipitated at pH 5.5 but both RuBisCO subunits 

remained soluble and bound to the SP ligand as did 65% of the loaded HCPs (Figure VI-35 and 

Figure VI-36 A). The RuBisCO large subunit was found in the FT only during the second half 

of sample loading, indicating that the dynamic binding capacity of the resin had been reached. 

Bound proteins eluted in the first half of the subsequent salt gradient as a single peak showing 

extensive tailing. 
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Figure VI-35: SDS-PAGE analysis of fractions collected during HCP separation by SP Sepharose FF 

(IV.4.4, IV.11). 

HCP concentrations, e.g. that of the large subunit of RuBisCO (red arrow), had decreased by about 65% through 

pH adjustment to 4.5 (L). Of the remaining proteins 80% were found in the FT while the rest eluted within the first 

15 CV of a 20 CV gradient to 500 mM NaCl. The most dominant species to bind to SP were a 15 kDa protein 

(likely RuBisCO small subunit, green arrow) and a 40 kDa protein (blue arrow). At pH 5.5 25% of TSP was 

removed by precipitation following pH adjustment (L). In the course of 5 mL sample loading an increasing amount 

of RuBisCO (black arrow) was found in the FT. Most proteins eluted in a single sharp peak (fractions 2-4) with 

RuBisCO as the major component (green arrows) exhibiting extensive tailing (Figure VI-36 A). For both gels 

elution fractions 1-10 cover the volume from 17-27 mL shown in Figure VI-36 A. M – marker; L – load; FT – 

flow through; W – wash. 

Therefore, SP seemed inadequate for binding-mode at this pH because separation from 

RuBisCO can only be achieved for target proteins tightly binding to SP and eluting only at salt 

concentrations >500 mM NaCl. FT mode is a possible alternative but as shown by the early 

breakthrough of the RuBisCO large subunit, resin capacity could be a limiting factor. 

Interestingly, and as described above, the RuBisCO small subunit was found in the 

loading and elution fractions despite sample preparation with a 30 kDa MWCO membrane, 

which should be permeable to the RuBisCO small subunit (~15 kDa) if present as a monomer. 

Therefore the RuBisCO large and small subunits also formed oligomers to a certain extent at 

pH 4.5 and 5.5. 

Minimal HCP binding to SP was observed at pH 6.5 and ~95% of TSP was found in the 

FT fraction, including both RuBisCO subunits (Figure VI-36). Therefore, operating SP in 

binding mode can be advantageous because HCPs will not limit column capacity and bound 

impurities will only account for a small share of the total eluting proteins. Six elution peaks 

were observed (as described at pH 4.5) with a comparably low average resolution of 0.52 ± 0.40 

but acceptable separation factors of 1.39 ± 0.15 (colored arrows in Figure VI-36 B) indicating 

high selectivity but low efficacy (Figure III-5). This low efficacy can be compensated by (i) a 
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longer column (Equation 23) or (ii) by a shallower gradient (Equation 25) because all proteins 

were eluted within the first 25% of the salt gradient (up to ~250 mM NaCl). Both measures can 

increase the plate count N and thus help to separate bound HCPs from the target protein during 

elution. The separation achieved with the current setup can be sufficient if (i) it is used as an 

initial capture step because only traces of HCP (~5%) bind to SP or (ii) the target protein elutes 

at NaCl concentrations >250 mM. 

 

Figure VI-36: Chromatographic separation of HCPs by SP Sepharose FF (IV.4.4, IV.11). 

A. About 65% of the HCPs bound to SP at pH 5.5 (green curve) whereas only 5% did at pH 6.5 (blue curve). Most 

of the binding protein species had been removed do to precipitation at pH 4.5 (red curve) (compare Figure VI-35 

A). B. At pH 6.5 RuBisCO small and large subunits were found in the FT fractions (green arrows). The few binding 

protein species eluted within the first 7 mL of a 20 CV gradient to 500 mM NaCl (here: 1 CV = 1 mL). Six major 

proteins species were identified (three of which are labeled by a black, red or blue arrow) exhibiting an average 

separation factor of 1.38 and an average resolution of 0.52. Note that for clarity three lanes of the gel between L 

and FT 1 have been removed. Elution fractions 1-7 cover the volume from 17-24 mL shown in Figure VI-36 A. 

M – marker; L – load; FT – flow through; W – wash. 

VI.9.3 HIC 

High concentrations (1000–1500 mM) of salts, e.g. NaCl or sulfate, are required for effective 

protein binding to ligands in hydrophobic interaction chromatography (HIC) [149]. These 

concentrations and salts can cause protein precipitation and/or denaturation and increase 

disposal costs [149]. However, it is easier to adjust the intermediate salt concentration 

(~500 mM) after routine tobacco protein extraction to these conditions in a process, e.g. by 

mixing with high salt solutions, rather than desalting the bulk extract, e.g. by membrane 

filtration, to be compatible with IEC (VI.9.1 and VI.9.2). 

Therefore, protein binding was investigated to one aliphatic (octyl) and one aromatic 

(phenyl) ligand, and the latter was tested in two different ligand densities (high and low 

substitution, Table III.2). Only Phenyl Sepharose FF high substitution was found to bind ~56% 
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tobacco HCPs in the presence of 1000 mM NaCl at pH 6.5 and 7.5 (Figure VI-37). Column 

breakthrough was observed for this resin during the second half of 5 mL sample loading 

(~10 mg TSP loaded), indicated by the presence of RuBisCO in the FT fraction. A broad elution 

‘peak’ was found in the subsequent gradient to a salt-free buffer. This peak contained RuBisCO 

as the dominant protein component in all its fractions (Figure VI-37 B) and additional proteins 

appeared with decreasing salt concentrations. Therefore, no effective separation of bound 

proteins was achieved with the elution gradient and operation should be restricted to FT mode. 

However, even in FT mode, the limited resin capacity in terms of RuBisCO binding can limit 

its usefulness in a purification process for tobacco-derived proteins. Higher salt concentrations 

may improve the performance of Phenyl Sepharose FF but can also promote protein 

precipitation. Therefore, the tested HIC resins appeared inadequate for an initial capture step. 

 

Figure VI-37: Tobacco HCP binding to hydrophobic chromatography ligands (IV.4.4, IV.11). 

A. At a conductivity of 80 mS cm-1 (1000 mM NaCl) HCPs only bound to Phenyl Sepharose High Substitution 

(green lines) at both, pH 6.5 (dashed) and 7.5 (solid) with no significant difference between the pHs. Protein 

breakthrough occurred in the course of 5 mL sample loading (~20 mg protein). One broad elution peak was 

observed over the whole range of a 20 CV gradient to 4.5 mS cm-1 (no NaCl). B. RuBisCO (red arrows) was found 

in the later FT fraction from Phenyl Sepharose High Substitution when protein breakthrough occurred. Both 

RuBisCO subunits (green arrows) accounted for the majority of the UV 280 nm signal of the broad elution peak 

observed for this ligand as exemplarily shown for two fractions. With decreasing conductivity the elution peak 

contained more of a 50 kDa, a 120 kDa and a 150 kDa protein (black arrows). M – marker; L – load; FT – flow 

through; W – wash; E – elution. 

VI.9.4 MMC and salt-tolerant resins 

Mixed-mode and salt-tolerant resins (Table III.2) can be used as an alternative to HIC resins in 

terms of direct protein capture from tobacco extracts because they allow binding at intermediate 

conductivities of 15–35 mS cm-1 (100–350 mM NaCl) and thus require no or only minimal 

sample conditioning, such as dilution with water [337]. 
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VI.9.4.1 STAR AX 

The salt tolerance of the primary-amine-based anion exchange resin STAR AX was tested with 

tobacco extracts adjusted to a conductivity of either 9 or 14 mS cm-1 (IV.11) by dilution with 

water. Furthermore, phosphate concentrations of 15–25 mM were investigated because in this 

concentration range the buffer ion can affect the binding strength of proteins to the resin 

according to the manufacturer’s information [338]. 

Regardless of the conductivity or phosphate concentration, the UV 254 nm signal 

exceeded the UV 280 nm signal in the FT and wash fractions, indicating the presence of 

RNA/DNA as well as pigments such as anthocyanins (data not shown). The presence of the 

latter molecules was further implied by the yellow-greenish color of the FT fractions, the typical 

color of anthocyanins at alkaline pH [339]. These compounds had been removed before the IEC 

separations described above in the course of desalting by column or membrane filtration due to 

their small size (<0.5 kDa) compared to proteins [339]. 

 

Figure VI-38: Separation of tobacco HCPs by HyperCel STAR AX at pH 7.5 (IV.11). 

Depth filtered extract was diluted 1:1 with de-ionized water and a total of 10 mg TSP was loaded to STAR AX in 

the presence of 15-25 mM phosphate at a conductivity of 14 mS cm-1 (Hi) or 9 mS cm-1 (Low). The UV 254 nm 

signal exceeded the UV 280 nm signal in FT and W (Wash) fractions. Decreasing conductivity and phosphate 

concentration increased the retention volumes of the three observed elution peaks. See text for discussion. 

Both RuBisCO subunits and an abundant 40 kDa protein were bound under all the 

conditions tested and no breakthrough of these proteins was observed during sample loading 

(5 mL, corresponding to ~10 mg TSP per 1 mL resin) (Figure VI-39). At a conductivity of 

14 mS cm-1 ~27% of the UV 280 nm signal appeared in the elution fractions and a reduction to 

9 mS cm-1 increased this share to 32% corresponding to >65% of the loaded protein (Figure 

VI-38). Accordingly, 80 kDa and 120 kDa proteins shifted from the FT fractions into the elution 
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fractions (Figure VI-39) and average resolution between the three observed peaks increased 

from 0.95 to 1.13. Lower phosphate concentrations shifted protein elution to elevated salt 

concentrations, indicating stronger binding to the resin, but resolution was not affected. 

 

Figure VI-39: SDS-PAGE analysis of fractions collected during HCP separation from diluted tobacco 

extract by HyperCel STAR AX (IV.4.4, IV.11). 

A. Fractions obtained during separation with 25 mM phosphate in liquid phase and 14 mS cm-1 conductivity during 

sample loading (Figure VI-38). Both RuBisCO subunits eluted in peak 2 and 3 exhibiting extensive tailing (green 

arrows) but were not found in the FT. The wash fractions did not contain detectable amounts of protein. A 30 kDa 

and a 40 kDa protein band were found in fractions of elution peak 1 (black arrow). Elution fractions cover the 

gradient volume from 15-31 mL. B. Fractions obtained during separation with 25 mM phosphate in liquid phase 

and 9 mS cm-1 conductivity during sample loading. The reduced conductivity resulted in a shift of a ~90 kDa and 

a ~125 kDa band from the FT fractions to early gradient elution fractions (red arrows, compare with A). Elution 

fractions cover the gradient volume from 15-34 mL. M – marker; L – load; FT – flow through; W – wash. Note 

that gels in A and B were each merged from two individual gels. 

RuBisCO was present in several subsequent elution fractions as observed for 

Q HyperCel (Figure VI-34) and therefore this tailing effect was attributed to the shared 

cellulose-based resin matrix rather than the ligand. Accordingly, STAR AX can be operated 

effectively in FT mode, to separate a target protein from most HCPs, or in binding mode, if the 

target elutes before RuBisCO. However, in both operation modes, the resin capacity needs 



VI. Results and discussion  page 115 

Biomolecular Separation Engineering – Karlsruhe Institute of Technology 

Dissertation 2017 | Johannes Buyel 

further evaluation to ensure cost-effective separation of the POI and HCPs in the presence of 

the abundant RuBisCO proteins. The STAR AX resin can simplify the purification of 

biopharmaceuticals produced in tobacco because it allowed separation from HCP directly after 

filtration by simple 1:1 dilution with water. By adjusting the extraction buffer composition to a 

lower salt concentration, it can be even possible to skip this conditioning step. 

VI.9.4.2 CaptoAdhere 

Proteins were allowed to bind to CaptoAdhere (Table III.2) at conductivities of 30 or 

75 mS cm-1 and pH values of 6.0, 7.0 or 8.0, to determine whether (i) electrostatic or 

hydrophobic interactions were the driving forces for tobacco HCP binding to the ligand, and 

(ii) whether filtered tobacco extract (commonly 30–50 mS cm-1) can be directly loaded onto a 

column packed with this resin. Elution was induced by a combined gradient to pH 3.0 at a 

conductivity of ~3.0 mS cm-1 as recommended by the manufacturer [340]. 

At 75 mS cm-1 >95% of the UV 280 nm signal (Figure VI-40 A) and all detectable 

proteins (data not shown) were found in the FT and wash fractions regardless of the pH. In 

contrast, at 30 mS cm-1 the share of UV 280 nm found in the FT and wash fractions increased 

with the pH but only from 30% at pH 5.0 to 46% at pH 8.0. This indicated that proteins were 

bound more strongly to CaptoAdhere at low conductivities, thus electrostatic interactions were 

the major driving force for protein adsorption in the investigated conductivity range. 

The increasing share of the total UV 280 nm signal in the FT and wash fractions with 

increasing pH was not due to less protein binding to the resin, which would have been 

inconsistent with the positive charge of the ligand, but instead marked the occurrence of 

irreversible protein binding to CaptoAdhere at elevated pH levels. This was consistent with the 

observation that not all proteins loaded onto the column were retrieved in the FT, wash or 

elution fractions, e.g. RuBisCO (Figure VI-40 B). Also, manufacturer's data [340] indicate that 

recombinant antibody yields fall significantly at pH >7.5 when CaptoAdhere is operated in FT 

mode, indicating progressive and irreversible protein binding with increasing pH. The 

irreversible binding at low conductivity also explains the reduction of the total peak area to 

~70% of that observed at high conductivity. 

In summary, CaptoAdhere can be used like STAR AX in FT mode to bind many HCPs 

including RuBisCO, but is insensitive to phosphate and compatible with conductivities of at 

least 30 mS cm-1 avoiding the need for a conditioning step. However, harsh and 

time-consuming cleaning procedures may be necessary because some protein binding was not 

reversible using a low-salt and low-pH elution gradient. This could be overcome by a gradient 
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of increasing salt concentration or a combination of pH and chaotropic salts [341] but protein 

denaturation can still occur upon binding to the ligand. 

 

Figure VI-40: Analysis of fractions collected during HCP separation by different mixed-mode resins (IV.4.4, 

IV.11, Table III.2). 

A. At a conductivity of 75 mS cm-1 (dashed lines) the entire UV 280 nm signal was observed in the FT and wash 

fractions for chromatograms of HCP separation by CaptoAdhere in a pH range from 6.0-8.0. Three elution peaks 

(numbered arrows) appeared at a conductivity of 30 mS cm-1 (solid lines). Their share of the total area under the 

curve decreased from 70% at pH 6.0 to 54% at pH 8.0. B. Silver-stained SDS-PAA gel loaded with protein samples 

from fractions obtained from chromatography runs at pH 7.0 and a conductivity of 30 mS cm—1. Only a small 

fraction of the loaded amount of RuBisCO was found in the FT, wash or elution fractions of CaptoAdhere or PPA 

derived samples (green arrows). DsRed (red arrow) was found in the FT of CaptoAdhere and HEA, while it bound 

to PPA. All fractions were obtained from chromatography runs at pH 7.0 and 30 mS cm-1. M – marker; L – load; 

FT – flow through; W – wash; P – peak. 

VI.9.4.3 HEA 

Proteins were allowed to bind to HEA under the same conditions as above (VI.9.4.2). At 

75 mS cm-1 all UV 280 nm absorbance (Figure VI-41 A) and protein bands detectable on 

silver-stained SDS-PAA gels (data not shown) were found as a single peak in the FT and early 

wash fractions, indicating weak protein-ligand interactions, if any. An individual second peak 

was observed in the wash fractions when conductivity was reduced to 30 mS cm-1 during 

sample loading (Figure VI-40 B and Figure VI-41 A) indicating a stronger interaction between 

protein and ligand which was still not sufficient for complete retention. The second peak 

contained the RuBisCO large subunit as a major protein component and diminished at pH 

values >7.0. This was consistent with the ligand pKa value of 8.0, resulting in only 50% of 

ligand groups becoming charged at pH 8.0 and thus reducing resin binding capacity compared 

to pH 7.0 (90% charged ligand) [342]. 

Further reduction of the extract conductivity can increase protein-ligand interactions and 

thus result in the complete retention of some proteins. However, this would require sample 
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conditioning and thus CaptoAdhere (no sample conditioning necessary) or STAR AX (no 

hydrophobic ligand part that can cause protein denaturation) remain better choices. 

 

Figure VI-41: Tobacco HCP binding to HEA and MEP mixed-mode resins at pH 6.0-8.0 at 30 or 75 mS cm-1 

(IV.11, Table III.2). 

A. For HEA, at 75 mS cm-1 (dashed lines) all UV 280 nm signal was found in FT independent of pH while reducing 

the conductivity to 30 mS cm-1 (solid lines) shifted 50% of the signal into the wash (W) fractions but still no peak 

was observed during the subsequent low salt/low pH gradient. B. Independent of conductivity, all UV 280 nm 

signal was found in the FT when proteins were loaded to MEP. An increasing pH slightly shifted the FT peak 

towards a smaller retention volume (arrow). FT – flow through; W – wash. 

VI.9.4.4 MEP 

When the same loading conditions (VI.9.4.2) were applied to MEP, UV 280 nm absorbance 

was found mostly in the FT fraction and partly in the wash fractions (Figure VI-41 B) regardless 

of conductivity, reflecting ineffective binding to the resin. Increasing the buffer pH to 8.0 

prevented the slight interactions of proteins with the resin that were observed at pH 6.0. This 

ligand can ideally be used in binding mode if the target protein can adsorb under any of the 

investigated conditions, allowing separation from nearly all tobacco HCPs and avoiding 

capacity limitations reflecting the binding of impurities. However, target protein binding to the 

ligand is unlikely because MEP was designed to be immunoglobulin-selective [343]. 

VI.9.4.5 PPA 

Proteins loaded onto PPA at high conductivity (VI.9.4.2) passed through the column as a single 

FT peak (Figure VI-42 A). Reducing the buffer pH from 8.0 to 6.0 shifted this peak slightly 

towards higher retention volumes, but no elution peak was observed either by UV 280 nm or 

silver-staining the fractions separated on SDS-PAA gels (data not shown). A reduced buffer 

conductivity increased protein ligand interactions resulting in a second peak in the wash 

fractions containing RuBisCO (Figure VI-40 B) as observed for HEA (VI.9.4.3). A pH of 8.0 

partially reversed this shift due to the ligand pKa as discussed for HEA [342]. 



VI. Results and discussion  page 118 

Biomolecular Separation Engineering – Karlsruhe Institute of Technology 

Dissertation 2017 | Johannes Buyel 

Although no elution peak was observed at pH 6.0, about 16% of the total UV 280 nm 

signal was found in a peak at the end of the pH 7.0 elution gradient, and this contained the 

RuBisCO small subunit as a major protein component but only a little of the large subunit, 

reflecting the irreversible binding of this protein to the resin. Accordingly, PPA should only be 

considered for FT mode operations to avoid target protein denaturation/irreversible binding. 

However, RuBisCO binding may quickly exhaust the resin capacity, so large-volume columns 

would be required in order to remove all HCPs. 

In summary, CaptoAdhere was found to be the most promising mixed-mode ligand for 

the direct processing of filtered plant extracts because (i) the highest percentage of proteins was 

released from the resin during gradient elution (limited ‘irreversible’ binding) rendering binding 

mode a feasible operation mode, and (ii) because this resin achieved the widest operation range 

in terms of pH (Figure VI-42 B). 

 

Figure VI-42: HCP binding to PPA and comparison of different mixed-mode ligands (IV.11, Table III.2). 

A. For PPA, at 75 mS cm-1 (dashed lines) all UV 280 nm signal was found in FT and wash (W) fractions 

independent of pH while reducing the conductivity to 30 mS cm-1 (solid lines) shifted 50% of the signal into the 

wash fractions. Only for pH 7.0 a single peak at the end of the low salt/low pH gradient was observed (P). B. 

CaptoAdhere exhibited the largest share of UV 280 nm during elution (blue columns) compared to FT and wash 

fractions (red and green columns respectively) indicating that proteins not only bound to the ligand at 30 mS cm-1 

but were also eluted again. Hence, binding-mode is an option for this resin and protein denaturation appeared less 

likely. Additionally, protein binding was achieved over a wider pH range than for the other ligands. FT – flow 

through; W – wash; P – peak. 

VI.9.5  pH gradients 

In addition to salt elution gradients, a shift in pH can also be used to elute bound proteins from 

a resin as discussed above (VI.9.4.2 to VI.9.4.5). The elution pH of HCPs can be used to 

optimize conditions for intermediate or polishing steps. This is because commonly applied salt 

gradients will achieve a higher protein elution selectivity if the buffer pH is close to the elution 

pH of one of the proteins in the mixture (either HCPs or the target protein) since this protein 
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will have only a low surface charge compared to the other proteins and will thus respond quickly 

to a change in salt concentration [344]. 

Linear pH gradients are required for the reliable determination of protein elution pH 

values but these can be tedious to establish [345]. Therefore, different buffers, resins and 

gradients were tested for their ability to maintain a linear pH gradient during tobacco HCP 

elution. 

A gradient from 40 mM Tris pH 8.0 to 40 mM citrate pH 3.9 did not achieve linear pH 

reduction at the outlet of a DEAE column during tobacco HCP elution when a 2 mL sample 

(~8.0 mg TSP) was loaded onto a 1 mL column at a constant flow rate of 1 mL min-1 (Figure 

VI-43 A). A single steep shift from pH 6.5 to 4.5 was observed within 4 CVs. This issue was 

not solved by using buffer mixtures of 20 mM Tris/20 mM citrate containing 10 mM NaCl at 

pH 8.0 and 3.9. Replacing DEAE with Q and applying a non-linear buffer gradient resulted in 

a near-linear pH gradient (Figure VI-43 B) but this was not reproducible because there was an 

occasional sharp drop from pH 6.0 to 4.0 within 4 CVs. This seemed to reflect the simultaneous 

elution and denaturation of tobacco HCPs bound to the resin at pH <6.5 (see also VI.5.3 and 

VI.9.2) because (i) the pH shift was accompanied by a UV 280 nm peak and (ii) no sharp pH 

drop was observed in the absence of loaded protein (data not shown). The linearity and 

reproducibility of the pH gradient was no issue when the buffers developed by Frieder Kröner 

(personal communication) was used in combination with MonoQ or MonoS columns of 10 cm 

bed height (GE) (Figure VI-44, IX.7). 

Separation of tobacco HCPs in a pH 11.0–3.5 gradient on a MonoQ column resulted in 

a FT fraction and three major gradient elution peaks, the first and last of which consisted of 

three non-baseline separated sub-peaks (Figure VI-44 A). The FT fraction and peak 1 contained 

barely detectable amounts of protein (Figure VI-45). DsRed was found in elution peak 2 which 

was consistent with the high UV 495 nm signal (absorbance shoulder of DsRed) observed for 

this peak and thus had an elution pH of ~7.3. The RuBisCO small subunit was found in peak 3 

with an elution pH of ~3.8-4.8 but the large subunit was not detected in any of the elution 

fractions. This indicated that the RuBisCO large subunit was precipitated at a pH above its 

elution pH (<5.5) based on the previously observed quantitative precipitation of this protein 

below pH 5.5 (VI.5.3 and VI.9.2). Interestingly, only ~25% of the loaded TSP was retrieved 

during pH elution, indicating major protein precipitation/denaturation before the individual 

elution pH levels were reached. 

In contrast, >70% of loaded TSP was retrieved in a pH 4.0–11.0 gradient on MonoS, 

and 18 of the 25 elution peaks were detected in the first 40% of the gradient (pH 4.0–6.8, Figure 
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VI-44 B). Accordingly, the protein composition of the corresponding samples changed for each 

fraction (Figure VI-46). The RuBisCO small and large subunits were the major protein 

components of the dominant elution peaks at pH 7.0 and 10.6, respectively. DsRed eluted 

shortly before the small subunit at pH 6.5. Additional 130, 20 and 12 kDa proteins eluted with 

large subunit. Interestingly, many proteins including DsRed and the RuBisCO small subunit 

exhibited extensive tailing during pH elution and were detected in most of the elution fractions. 

This tailing made it difficult to determine a precise elution pH for the different proteins. 

Some proteins exhibited similar elution pH values on MonoQ and MonoS, including 

DsRed (pH 7.3 and 6.5 respectively), which has also been observed for monoclonal antibodies 

[344]. However, these values normally differed for the two resins, e.g. the elution pH values 

for the RuBisCO small subunit were ~4.3 and 7.0 respectively. This may reflect differences in 

the binding sites and orientations involved in protein adsorption to the Q and S ligands and it 

may be necessary to determine the protein elution pH for AEX and CEX separately [346].  

Another problem during elution pH determination was protein precipitation due to (i) 

sample pH adjustment prior to column loading to the column and (ii) precipitation/denaturation 

of proteins bound to the column. It was therefore impossible to determine the elution pH for 

affected proteins such as the RuBisCO large subunit on MonoQ. A closely-related issue was 

that the elution pH may not reflect the pH at which protein-ligand interactions were disrupted 

but rather the pH at which interactions between proteins of a bound protein complex were 

disrupted, resulting in the release of one component while the others remained bound to the 

resin. The release of single components from a complex can induce or facilitate protein 

denaturation [347, 348] and thus explain for example the lack of RuBisCO large subunit 

(RBCL) in any of the MonoQ elution fractions despite the presence of the small subunit 

(RBCS). This mechanism was also consistent with the tailing observed for DsRed (a 

homotetramer) and the small subunit on MonoS assuming that a partial release will initially 

result in bound DsRed trimers then dimers and monomers. More complex rearrangements 

seemed likely in the case of RuBisCO (hetero hexadecamer of 8:8 RBCL:RBCS) such as 8:4 

(RBCL:RBCS) releasing four small subunits per complex, resulting in elution peak 1 (fraction 

10 in Figure VI-46), followed by 8:2 causing the weak tailing of the small subunit and then the 

release of the remaining complex in elution peak 2. 

In summary, the analysis of elution pH can help to characterize heterogeneous feedstock 

[328, 344, 349], but additional studies of tobacco extracts will be required in order to rule out 

the abovementioned issues and determine reliable values for the elution pH of different proteins. 
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Figure VI-43: Non-optimal buffer conditions can prevent a reproducible linear pH gradient (IV.11). 

A. A linear gradient from pH 8.0 (40 mM Tris) to pH 3.9 (40 mM citrate) did not result in a linear pH gradient at 

the outlet of a DEAE column to which tobacco HCP had bound. Instead a sharp drop from pH 6.5 to 4.5 (arrow) 

was observed even if Tris/citrate mixtures (20 mM each) containing 10 mM NaCl were used (dashed lines). B. 

Using Q instead of DEAE and a non-linear buffer gradient results in a partially linear pH gradient at the column 

outlet (solid lines). However, this gradient was not reproducible (dashed lines) and a sharp pH drop can still occur 

coinciding with protein elution/denaturation. 

 

Figure VI-44: Separation of tobacco HCPs on 10 cm bed height MonoQ or MonoS columns using an 

optimized buffer composition (IV.11, IX.7). 

A. Besides the FT, three major elution peaks were observed during pH 11.0-3.5 gradient elution on MonoQ. The 

first and last elution peak consisted of three non-baseline separated sub-peaks. Horizontal bars E1 and E2 indicate 

elution ranges of which subsequent 1 mL fractions were analyzed by silver-staining of SDS-PAA gels (Figure 

VI-45). B. Two dominant peaks were found among the total of 25 elution peaks during tobacco HCP separation 

on MonoS. Horizontal bars E1 and E2 indicate elution ranges of which subsequent 1 mL fractions were analyzed 

by silver-staining of SDS-PAA gels (Figure VI-45). Additional samples A and B were also analyzed. FT – flow 

through; W – wash; P – peak; E – elution. 
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Figure VI-45: SDS-PAGE and silver-staining analysis of 1 mL fractions form MonoQ pH gradient elution 

(IV.4.4, IV.11 and IX.7). 

The late FT fraction and the small wash peak (W3) contained several ~70 kDa proteins, whereas fractions from 

elution peak 1 and its sub-peaks (Elution 1, 1-8; pH 10.0-9.0) did not contain significant amounts of protein. DsRed 

(red arrow) was found to be the major protein component of elution peak 2 (~pH 7.3) being consistent with the 

UV 495 nm signal of this peak (Figure VI-44 A). In the initial fractions of elution peak 3 (Elution 2, 1-10; 

pH 4.8-3.8) a ~12 kDa protein was the major component which changed to RBCS (green arrow, 15 kDa) in the 

later fractions. Interestingly, none of the analyzed elution fractions contained RBCL (green arrow, 55 kDa). M – 

marker; L – load; FT – flow through; W – wash. Elution 1 and 2 ranges correspond to horizontal bars in Figure 

VI-44 A. 

 

Figure VI-46: SDS-PAGE and silver-staining analysis of 1 mL fractions form MonoS pH gradient elution 

(IV.4.4, IV.11 and IX.7). 

Only a ~12 kDa protein was found in the wash and none in the FT fraction. Protein composition in early fractions 

of elution 1 (1-5) changed considerably corresponding to the numerous peaks observed for this pH range in Figure 

VI-44 B. RBCS (green arrow, 15 kDa; ~pH 7.0) accounted for the first major peak during pH elution with DsRed 

(red arrow; pH 6.5) eluting at a slightly earlier. RBCL (green arrow, 55 kDa; ~pH 10.6) and ~130 kDa protein 

(black arrow) were found in elution 2 (1-13), however, also DsRed and RBCS were found in these fractions due 

to extensive tailing. A – fraction at 44 mL; B – fraction at 47 mL; M – marker; L – load; FT – flow through; W – 

wash. Elution 1 and 2 ranges correspond to horizontal bars in Figure VI-44 B. 

VI.9.6  Implications for a purification strategy 

The major tobacco HCP RuBisCO was shown to bind to AEX resins at various pH values, 

therefore FT mode promises the best separation of a target protein from this impurity (VI.9.1). 
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Due to the good separation achieved with Q operation in binding mode seemed also feasible 

and an increased pH, lower flow rates as well as shallower gradients can further improve peak 

resolution. The salt tolerant STAR AX resin can simplify the purification process because 

buffer exchange can be replaced by a simple 1:1 dilution with water and conditioning is 

unnecessary if the extract conductivity can be reduced to 14 mS cm-1, e.g. by changing the salt 

concentration in the extraction buffer (VI.9.4.1). However, regardless of the operation-mode, 

the capacity of all AEX resins can be a limiting or cost-driving factor because of the abundance 

of RuBisCO and its tendency to bind these ligands. 

In contrast, the CEX resin SP can be operated in binding mode at pH 6.5 (if the target 

protein adsorbs at this pH) preventing most of the HCPs from binding, including RuBisCO 

(VI.9.2). This concentrates the target protein after elution and avoids the capacity problem 

described for AEX. In addition, host cell DNA is unlikely to bind to the negatively-charged SP 

resin, helping to remove this impurity together with the HCPs in the FT fraction. 

CaptoAdhere can be operated in FT and binding modes, but the latter allows low-pH 

and low-conductivity elution, making the elution fractions ideal for subsequent loading onto SP 

resin. RuBisCO binding can limit the column capacity and protein denaturation (especially at 

low pH) can result in the precipitation of tobacco HCPs. Instead, protein desorption can also be 

achieved by high salt concentrations or the addition of mobile phase modifiers [155, 341] 

making the elution compatible with HIC. In the results presented above, HIC was only 

evaluated as a first capture step. Therefore, additional experiments should be carried out in the 

future to determine how HIC performs if most RuBisCO has been removed. Only minimal 

conditioning for high-salt HIC loading would be necessary after an initial IEX capture step, 

resulting in a concentrated process intermediate and high conductivity. 

Information about the elution pH of HCPs and target proteins will help to specify the 

operational conditions that need to be screened for specific separation problems, and also for 

intermediate purification steps [328, 344, 349]. Even so, the problems and ambiguities 

described above for tobacco HCPs (VI.9.5) must be addressed in order to exploit the full 

potential of this method. 

The abundance of RuBisCO was a major challenge in most of the chromatographic 

methods investigated for the capture and purification of recombinant proteins from tobacco 

extracts. The abundance can be reduced along with many other HCPs by using an acidic 

extraction pH as described above (VI.5.3 and VI.9.2) and in the literature [75]. Heat 

precipitation may be used to remove HCPs as well (Figure VI-47 A) [350]. However, these 

methods are limited to target proteins that are extractable at low pH or stable at high 
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temperatures and this cannot be a generic solution to every process. Even if a target protein is 

soluble at low pH or does not precipitate when heated, these conditions can irreversibly affect 

protein folding, activity, efficacy and safety [351, 352] and should thus be carefully evaluated. 

 

Figure VI-47: Methods of RuBisCO removal prior to chromatographic purification of target proteins 

(IV.4.4). 

A. Heating plant extract to 65°C for 2 min (Heat) will denature and precipitate the most abundant HCPs (red 

arrows), while only a limited number of proteins remains in solution (green arrows). Use of flocculant (Floc, 

Polymin P, black arrow) or bag filters (Bag) does not alter the protein pattern after heat treatment. B. A 300 kDa 

MWCO membrane does not affect tobacco HCPs (even distribution in retentate R and permeate P) whereas a 

100 kDa membrane retains RuBisCO (solid green arrows), DsRed (solid red arrow) and several other proteins 

despite molecular masses below 60 kDa and only few HCPs pass the membrane (black arrows). The HCP retention 

is observed at different conductivities. The gel areas highlighted in red would be free of proteins if HCPs are 

present only as monomers in extract. * undiluted retentate sample to demonstrate concentrating effect of the 

100 kDa membrane. M – marker; E – extract; F – flocculated extract; B – bag filtrate; L – load; R – retentate; P – 

permeate. 

In contrast, membrane filtration using suitable MWCO values is a gentle alternative for 

the non-chromatographic size fractionation of proteins. As shown above (VI.9.1.3), the 

RuBisCO subunits form oligomers even under extraction conditions in the pH range 4.5–8.5, 

which prevents the small subunit (~15 kDa) from passing through a 30 kDa MWCO membrane. 

Both RuBisCO subunits were also quantitatively retained by a 100 kDa membrane at 20 and 

50 mS cm-1 indicating that extract conductivity and thus electrostatic interactions do not 

influence its association within the investigated range (Figure VI-47). No retention of RuBisCO 

was observed when a 300 kDa membrane was used for separation, thus RuBisCO was not 

present in its native hetero hexadecameric form (~560 kDa). Instead, an intermediate 

oligomerization status seemed likely, e.g. 4:4 (~280 kDa) or 2:2 (~140 kDa), which is still large 

compared to common non-antibody biopharmaceutical proteins such as LicKM E7 GGG 

(~37 kDa) [353]. A 100 kDa membrane could therefore be useful to separate RuBisCO from 
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smaller target proteins. Interestingly, many other HCPs <100 kDa were also retained by this 

membrane, indicating their oligomerization under the investigated conditions (Figure III.6). 

Future experiments should investigate in more detail the oligomeric structure of 

RuBisCO (and other abundant proteins such as RuBisCO activase) in tobacco extracts at 

different pH and conductivity values, e.g. by SEC analysis preferably in combination with 

multi-angle laser light scattering (MALLS). Membranes with different MWCOs than those 

tested here may further improve separation of HCPs and target proteins. 

The severity of the restricted column capacity discussed above (VI.9.1and VI.9.4) would 

diminish if most of the RuBisCO could be removed from the tobacco extract, allowing AEX 

resins to be used in binding mode. This would expand the separation options available because 

the different selectivities of the resins could be exploited, e.g. a target protein could be separated 

from impurities by shifting one of them into the FT by selecting appropriate conditions. 

 

Figure VI-48: Generic selection scheme for extraction conditions of biopharmaceutical proteins produced 

in tobacco plants. 

Extraction of a POI at low pH and low conductivity reduces the amount of co-extracted HCPs and increases 

compatibility with subsequent IEX (e.g. SP) respectively. A heat treatment can further reduce the concentration of 

tobacco HCPs and addition of flocculants greatly enhances capacity of depth filters. 

Different generic purification processes were developed based on the results presented 

in this chapter (VI.9) and previous chapters (VI.2 to VI.6) and are shown in Figure VI-48, 

Figure VI-49 and Figure VI-50. At first, several conditioning steps can be used to reduce the 

number of HCPs in the extract and improve process performance in dependence of the POI 

properties (Figure VI-48). In case all HCPs are present at the time of target capture (Figure 

VI-49), POIs with a basic pI should be purified after a buffer exchange by capture on CEX 

resins such as SP at a pH of ~6.5 because this will direct most HCPs to the FT fraction (VI.9.2). 

Depending on the elution salt concentration, HIC or MMC can be used as a second purification 

step. POIs with a neutral pI can be captured on salt-tolerant STAR AX after HCPs have been 
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bound to an anionic mixed-mode resin such as CaptoAdhere. Sample dilution or re-buffering 

may be necessary to promote target protein binding. Buffer exchange and SP or a combination 

of HIC and SP can be used as subsequent purification steps, depending on the elution buffer 

salt concentration. 

 

Figure VI-49: Generic purification scheme for filtered tobacco extract (IV.11 and VI.9). 

Acidic proteins can be purified after buffer exchange to pH 6.5 and conductivity <5.0 mS cm-1 (BE*) through 

binding to SP and depending on the elution salt concentration subsequent binding to CaptoA or HIC. Some HCPs 

can be removed by CaptoA before a neutral protein is bound to STAR AX at pH 8.5. Depending on the elution 

conductivity, buffer exchange to low salt and low pH (BE**) followed by SP or a combination of HIC and SP can 

be applied for further purification. Basic proteins require a large column volume for capture on STAR AX because 

RuBisCO will also bind. Depending on the elution conductivity, buffer exchange to low salt and low pH (BE**) 

followed by SP or a combination of HIC and SP can be applied for further purification. 
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A high-capacity resin is required to capture acidic target proteins because most tobacco 

HCPs will bind under the same conditions (VI.9.1). The salt-tolerant AEX resin STAR AX can 

be used for this purpose because it is also compatible with high salt concentrations in plant 

extracts, circumventing the need for initial sample conditioning. The subsequent purification 

steps would be the same as those used for POIs with a neutral pI. 

 

Figure VI-50: Generic purification scheme for RuBisCO depleted filtered tobacco extract (IV.11 and VI.9). 

After adequate membrane filtration the majority of RuBisCO is removed from tobacco extract (Figure VI-47) 

facilitating further processing. Acidic proteins can be captured with SP after buffer exchange to pH 6.5 and 

conductivity <5.0 mS cm-1 (BE*). Operating a Q column in FT-mode before SP can further reduce the amount of 

HCP. Neutral and basic target proteins can be captured using STAR AX. Depending on the elution conductivity, 

buffer exchange to low salt and low pH (BE**) followed by SP or a combination of HIC and SP can be applied 

for further purification. 
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The purification scheme can be simplified if HCPs such as RuBisCO are removed by 

membrane filtration prior to chromatography (Figure VI-50). Targets with a pI of <7.5 can be 

captured on a small STAR AX column followed by purification as described above. For POIs 

with a pI >7.5, the same purification strategy can be applied, but a Q column may be used to 

capture trace amounts of negatively-charged HCPs at pH 6.5. Several other empirical and 

rational selection criteria for assembling chromatography separation steps have been proposed 

recently [167, 328, 354-357]. 

In future experiments additional inexpensive buffer substances and mobile phase 

modifiers [155] should be screened because they can alter the selectivity of chromatography, 

as has been observed for Q resins (VI.9.1.3). 

VI.10 Predicting chromatographic separation 

The results presented in this section have been published as the following manuscript: 

1. Buyel JF, Woo JA, Cramer SM, Fischer R. 2013. The use of quantitative structure-

activity relationship models to develop optimized processes for the removal of 

tobacco host cell proteins during biopharmaceutical production. Journal of 

Chromatography A 1322:18-28. 

Identifying the most suitable conditions for chromatographic separations can be time 

consuming, laborious and expensive (III.6.5) as shown by the results presented above (VI.9) 

and in the literature [328]. Therefore, an attempted was undertaken to model the behavior of 

tobacco HCPs under different chromatography conditions. 
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Figure VI-51: Protein band isolation and quantity assignment (IV.4.4 and IV.10.1). 

A. Varying amounts of TSP were separated by SDS-PAGE and 23 protein bands were identified each time. 

Dominant bands at 55 kDa and 15 kDa correspond to the RuBisCO large and small chains, respectively. B. 

Densitometric analysis of 8.0 µg TSP lane from A. The TSP fraction within each band was calculated as the 

relative area ratio of the corresponding densitogram peak and averaged over all three dilutions (lanes in A). 

VI.10.1 Identification and homology modeling of tobacco HCPs 

HCPs were extracted from tobacco leaves at a pH of 7.5 and a conductivity of 45 mS cm-1 as 

described above (IV.5 and VI.1). These conditions were chosen because (i) they guaranteed the 

efficient extraction of a broad range of proteins and (ii) they represented standard conditions 

established for monoclonal antibodies [255]. A total of 107 individual proteins identified by 

PMFs using the Mascot database (IX.5) was present in 23 distinct bands (Figure VI-51 A) 

isolated from SDS-PAA gels (IV.4.4). As expected, the large and small subunits of RuBisCO 

were dominant proteins in the tobacco extract accounting for 19% and 10% of TSP respectively. 

Other abundant proteins included RuBisCO activase (2% TSP), glyceraldehyde-3-phosphate 

dehydrogenase isomers (3% TSP) and sedoheptulose-1,7-bisphosphatase, cysteine synthase 

isomers and mRNA binding proteins (1% TSP each). 
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Figure VI-52: Homology model quality evaluation. 

A. Half of the homology models for identified tobacco HCPs had a very high sequence coverage of >95%. B. No 

significant bias was observed for the sequence identity between template and model sequences. C. An acceptable 

Z-score of >-4 was calculated for 80% of the homology models. D. Most of the identified tobacco HCPs were 

related to cell metabolism (M), protein synthesis and turnover (P) and energy (E), whereas only few proteins 

belonging to DNA and genome organization (D), cell structure (C), resistance and stress response (R) and signaling 

(S) were found in aqueous leaf extracts. 

The proteins were subdivided into seven functional classes as shown in Figure VI-52. 

Most were related to cellular metabolism (e.g. carbohydrate turnover), protein synthesis and 

energy metabolism. Corresponding amino acid sequences were retrieved from UniProt [256], 

nine of which contained non-annotated potential leader/signal peptides that were predicted 

using the TargetP 1.1 webserver [260, 261] and excluded from the modeled structures. 
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Figure VI-53: Comparison of “good” and “bad” homology models (IV.10.2). 

Good homology models (A and C, actin 7, UniProtKB accession number Q6F4H4) exhibit values close to zero 

for all scoring functions (A) indicating an insignificant deviation from values obtained for high-quality structures 

(C, resolution below 2 Å). Bad homology models (B and D, 40S ribosomal protein S5, UniProtKB accession 

number O24111) exhibit values of >|2| for one or more of the scoring functions (B) indicating significant deviations 

from values expected according to high resolution structures (D). Note that the value of all scoring functions are 

transformed to a standard normal distribution, hence a value of >|2| indicates a score that is two-times the standard 

deviation away from the expected (zero) value and thus has a significant difference assuming a 5% significance 

level. The panels in this figure were generated as part of the homology modeling using SWISS-Model [198]. 

Two proteins lacked a suitable template and for 10 only partial models covering less 

than 30% of the sequence were retrieved when the SWISS-MODEL alignment algorithm was 

applied. Among the remaining proteins, 67 models achieved an acceptable coverage of more 

than 90% with 13 having a very high (>99%), 28 having a high (99%>x>95%) and 26 having 

a moderate (95%>x>90%) coverage. The z-score of 38 of these models was above –2.00 

indicating an insignificant difference in quality compared to high resolution X-ray structures 

(5% significance level). Only 12 models had a z-score below –4.00 indicating a poor model 

quality. Thus, without solving any structures de novo, it was possible to generate high-coverage 

homology models for more than 60% of the identified HCPs, more than 55% of which were 

high-quality models. 
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VI.10.2 QSAR model generation 

QSAR models for different modes of chromatography can accurately predict the retention times 

of various model proteins based on their 3D structures [266-273]. The molecular descriptors 

included in these models resembled the mode of action of the corresponding chromatographic 

separations, e.g. descriptors representing the net charge, shape/charge-distribution and 

hydrogen bond capacity of a protein were selected in models for IEC [272]. Recently published 

chromatographic retention data [155, 266-274] were compiled into a single, non-redundant 

training set comprising 45 different model proteins (IX.6) for which descriptors were calculated 

in the pH range 4.0–8.0 (IV.10.3). This training set was used to generate QSAR models for 

protein retention on Capto MMC (MMC), Q Sepharose FF (AEX) and SP Sepharose FF (CEX) 

(IV.10.4). The descriptors selected for the model together with their statistics are shown in 

Table VI.11. A detailed explanation of the different selected descriptors is provided in Table 

VI.12 and Table VI.13. A graphical representation of the model quality is shown in Figure 

VI-54 depicting actual-versus-predicted as well as y-randomization plots. 

All models correlated well with the actual data (r2 and adj. r2 >0.85, Table VI.11) and 

thus appeared suitable to predict the elution behavior of tobacco HCPs described in the next 

paragraph (VI.10.3). However, the correlation was lower compared to previously reported 

QSAR models [266, 268, 273]. First, this was because the retention data from different sources 

were compiled to a single dataset, introducing 5–8% ‘batch-to-batch’ variability into the data. 

Furthermore, the different original datasets required transformation to a uniform response 

(elution salt concentration rather than %buffer XY or retention volume) resulting in a further 

degree of uncertainty. Second, a more thorough cross-evaluation was used because more 

sophisticated QSAR modeling software is now available (YAMS vs. ROMS, 

http://reccr.chem.rpi.edu/Software/modeling/index.html). This prevented the selection of 

over-fitted models with artificially high correlation to the actual data. Such over-fitted models 

can describe a given dataset well but their predictive value for compounds not included in the 

set is limited [213]. 

Descriptors related to protein charge and electrostatic potential (e.g. EP.H7 and 

PEOE_VSA_FPPOS) and hydrophobicity (e.g. MLP2.W5 and MLP1.W17) were chosen for 

the QSAR model of MMC during SVM selection (Table VI.11, explanations in Table VI.12 

and Table VI.13). This agreed well with expectations for the mixed-mode character of this 

ligand as well as previous publications using similar descriptors [266]. The majority of 

descriptors were related to charge in the QSAR models for SP (e.g. RECON_FPIP7 and 

Fcharge) and Q (e.g. Fcharge and PEOE_VSA_FPPOS) as was also recently reported [273, 358]. 
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A broad pH range was covered for SP, whereas the pH range of the MMC and Q models 

was limited due to the lack of data (Table VI.11) [266-273]. A limited pH applicability domain 

can be a drawback for practical applications because pH often has a critical impact on protein 

separation, especially for IEC [344, 349]. It is thus unlikely that optimal separation conditions 

can be predicted for models that only cover a limited set of pH values, e.g. pH 8.0 and 8.5 are 

not included in the current QSAR model for Q (VI.9.1.3). 

A larger number of proteins will also improve the predictive power of the QSAR models 

because this will increase the likelihood that descriptors correlating with the retention 

mechanism can be identified. 

Table VI.11: Descriptors selected during QSAR modeling of protein chromatography including model 

statistics (IV.9). 
 Model  MMC Q SP 

Selected descriptors 1 EP.H7* RECON_SIGMin PEOE_VSA.4.1 

  2 PEOE_VSA_FPPOS FCharge RECON_FPIP7 

  3 RECON_FDel.K.NA2 RECON_SIKIA Fcharge 

  4 ANGLE.B04 PEOE_VSA_FPPOS PEOE_VSA.3.1 

  5 MLP2.W5* RECON_FLapI6 RECON_PIPMin 

  6 MLP2.AVGP* RECON_SIEPMin vsurf_DW13 

  7 PEOE_VSA.3.1 FASA. RECON_FPIP20 

  8 MLP2.W24* --- vsurf_IW3 

  9 MLP2.W16* --- RECON_FSIEPA2 

  10 RECON_FDel.K.NA9 --- --- 

  11 HydroSurf_H2 --- --- 

  12 MLP1.W17* --- --- 

Data points in training set 34 24 107 

Applicable at pH [-] 6.0-7.0 7.0-7.5 5.0-8.0 

Best model 
r2 0.9329 0.9555 0.8847 

Adj. r2 0.9147 0.9434 0.8802 

Best y-

random. 

Based on r2 
r2 0.447 0.5123 0.3393 

Adj. r2 0.2172 0.4225 0.3305 

Based on 

RMSE 

r2 0.4224 0.5123 0.3393 

Adj. r2 0.2955 0.4225 0.3305 

* Descriptors calculated using the PEST algorithm (Table VI.12). 
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Table VI.12: Descriptor types used in QSAR modeling of protein chromatography (Table VI.11). 

Descriptor type Explanation Reference 

EP Electrostatic potential [359] 

Fcharge Total charge of the molecule (sum of formal charges) [360] 

MLP Molecular lipophilicity potential [361, 362] 

PEOE 
Partial equalization of orbital electronegativities calculates atomic 

partial charge distribution between bonded atoms at equilibrium 
[363] 

PEST 

Property-encoded surface translator uses a technique akin to ray-

tracing to explore the volume enclosed by the solvent-accessible 

surface of a protein. 

[265] 

RECON 

Rapid reconstruction of molecular charge densities and charge 

density-based electronic properties of molecules, using atomic 

charge density fragments 

[265, 364] 

vsurf 
VolSurf is a computational procedure to produce 2D molecular 

descriptors from 3D molecular interaction energy grid maps 
[365] 

Table VI.13: Explanations to descriptors selected during QSAR modeling of protein chromatography 

(Table VI.11). 

Code Description 

Angle Molecular shape descriptor 

DW Ratio of hydrophobic/hydrophilic regions 

ED.min Lowest hydrophobic energy 

F.Del.K 
Surface integral of the rate of change of the K electronic kinetic energy density normal to 

and away from the molecular surface 

FASA* Fractional CASA- calculated as CASA- / ASA.  

FLap Fingerprints for Ligands and Proteins 

FPIP Fractional Politzer Ionization Potential 

FPPOS Fraction of positive polar van der Waals surface area 

HydroSurf H2 Surface Hydrophobicity using Hearn Scales 2 

IW Integy Moment 

PIP_min Local average ionization potential minimum 

SIEP Surface integral of electrostatic potential 

SIG Surface integral of G electronic kinetic energy density 

SIKIA Surface integral of the K kinetic energy density average 

VSA Van-der-Waals surface area 

* CASA – charged accessible surface area. 

The selection of additional proteins should aim to close gaps in the coverage of 

molecular masses and elution times in the training set, e.g. it will be helpful to include proteins 

eluting in the 500–1000 mM NaCl range in the MMC and SP models whereas the training set 

for Q should be expanded to encompass proteins eluting at >250 mM NaCl (Figure VI-54). 
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Figure VI-54: Graphical evaluation of QASR models for CaptoMMC (A and B), Q Sepharose FF (C and D) 

and SP Sepharose FF (III.6.5.4 and IV.9). 

A, C, D. Actual-versus-predicted plots of elution salt concentrations for proteins included in the training set. The 

predicted elution salt concentrations are in good agreement with the ideal model, which is indicated by the black 

diagonal. Error bars indicate prediction variability based on 10-fold cross-validation. B, D, E. Models based on 

y-randomized data sets (red squares) deviate significantly from the real models which are based on the actual data 

sets (blue diamonds) as the interval covering 99% (six times ) of all random models (black bar) in the R2 

(coefficient of determination) space does not overlap with the actual model, indicating meaningful descriptor 

selection. This is a desired outcome because randomized data sets (red squares) should have (i) a low correlation 

to the real y vector and (ii) a low R2 value. The black squares indicate the average correlation of random models 

to the respective real model. 
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An important factor that has not been addressed in previous QSAR chromatography 

models is protein oligomerization [191], which determines which parts of the protein surface 

are exposed to the surrounding aqueous medium (mobile phase) allowing interactions with the 

resin, thus indicating the binding strength and elution salt concentration [182]. RuBisCO can 

form oligomers under typical extraction and chromatography conditions, even if these 

oligomers are not biologically active (VI.9.1.3 and VI.9.6). Therefore, oligomerization is also 

likely to occur for model proteins used to generate QSAR training data sets (Figure VI-56) and 

if this phenomenon is not taken into account, the descriptors will be calculated based on 

improper 3D models (e.g. monomer instead of dimer) and the descriptor values will be 

compromised, especially surface charge or surface hydrophobicity descriptors. The selection of 

relevant descriptors will therefore be flawed and any physicochemical interpretations will be 

misleading. Figure VI-55 shows the impact of using different multimeric models for some 

tobacco HCPs that can form oligomers. With the exception of AOC, oligomerization increases 

the retention of proteins bound to SP at pH 5.0 or 6.0, and dimers increase the elution salt 

concentration by 2.5 ± 1.2-fold (n = 8). 

 

Figure VI-55: Impact of oligomeric state of tobacco HCPs on predicted elution salt concentration on 

SP Sepharose FF (IV.9). 

An average 2.5-fold increase of the predicted elution salt concentration was observed when dimeric 3D-models 

were used to calculate protein descriptors at pH 5.0 (A) and 6.0 (B), only AOC was an exception. Other 

oligomerizations had a similar effect. 14-3-3 g - 14-3-3 g-1 protein; 14-3-3 c - 14-3-3-like protein C; AOC - Allene 

oxide cyclase; GAPA - Glyceraldehyde-3-phosphate dehydrogenase B, chloroplastic; GSA - Glutamate-1-

semialdehyde 2,1-aminomutase, chloroplastic; PTK - Plastid transketolase; RP3E - Ribulose-phosphate 3-

epimerase, chloroplastic. 

In order to prevent oligomerization-based errors in future experiments, the elution salt 

concentrations for model proteins should be determined by including analytical techniques that 

allow oligomeric states to be characterized, e.g. SEC and/or MALLS [366-369]. Because these 

techniques were not used during the original experiments, it was not possible to correct for 

oligomerization of the model proteins in the QASR models described here. 
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Figure VI-56: Comparison of oligomeric states of proteins in the training (IX.6) and tobacco HCP (IX.5) 

data sets. 

Clearly, the training data set did not consist solely of monomeric proteins and thus, using only monomeric 

3D-models of these proteins flawed the descriptor calculation and selection. Additionally, monomeric and dimeric 

proteins were overrepresented in the training set compared to the test set, reducing the predictive power of the 

resulting QSAR models. 

In summary, the models described above are likely to predict elution salt concentrations 

more accurately than previous models for proteins not included in the training dataset because 

(i) they contain more data points than the previous models, increasing the likelihood that 

relevant descriptors will be identified, and (ii) over-fitting was avoided by applying rigorous 

cross-evaluation to prevent the selection of descriptors only relevant for the particular training 

dataset [217]. However, a broader pH range and the incorporation of oligomeric proteins is 

necessary to improve the model’s performance even further. 

VI.10.3 Generation of “synthetic” chromatograms 

The models established above (VI.10.2) were used to predict the elution salt concentrations not 

only of model proteins as has been done before [273] but for all identified tobacco HCPs (IX.5) 

based on descriptors calculated according to their 3D structures. The predicted elution salt 

concentrations were used as the mean  of a Gaussian-shaped elution function for each protein 

(Equation 44) although other functions can also be used [336]. Multiplication of this function 

with the individual protein amounts determined above (VI.10.1, IX.5) yielded elution profiles 

scaled to the actual protein abundance in tobacco extracts. Summing these elution profiles up 

for all proteins yielded “synthetic” chromatograms (Figure VI-57, a comparison with 

experimental runs is given in section VI.10.4). A global  parameter was used to describe the 

non-ideal elution behavior of the proteins causing the broadening of elution peaks. Values in 

the range 10–25 mM were assessed with smaller -values corresponding to sharper peaks and 

thus higher resolution. A value of 20–25 mM resulted in chromatograms closely resembling 
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experimental runs (VI.10.4). Proteins with elution salt concentrations of <50 mM NaCl were 

pooled as a single FT peak, with a retention volume of 3.5 mL and a  value of 1 mL. 

𝑐𝑖 =
1

2√2𝜋
𝑒−

1
2
(
𝑥−𝜇𝑖
𝜎

)
2

 

Equation 44: Gaussian function used to calculate protein elution peaks with ci as the relative elution peak height 

for protein i, x the actual salt concentration,  the predicted elution salt concentration for protein i and  the global 

peak broadening parameter. 

VI.10.4 Comparison with experimental separation 

 A good agreement was achieved between the predicted and observed HCP separation for 

SP Sepharose FF (Figure VI-57 A). The elution salt concentrations predicted for peaks 1 and 2 

were 24 and 37 mM higher than the observed values. The second predicted peak featured a 

shoulder due to the assumed separate elution of the RuBisCO large and small subunits. 

However, as discussed above, this model assumption was incorrect because the RuBisCO 

subunits formed oligomers under the extraction and chromatography conditions (VI.9.6). 

Attempts to incorporate a realistic oligomeric RuBisCO state into the model were hampered for 

two reasons: (i) it was not possible to calculate descriptors for the biological assembly (8:8 

hetero hexadecamer) or parts thereof (4:4 or 2:2) because the 3D-model contained too many 

atoms for the algorithm to handle, and (ii) RuBisCO was not present in its assumed biological 

assembly (it passed through a 300 kDa membrane, whereas the size of the biological assembly 

is ~560 kDa and should have been retained). The precise stoichiometry of the subunits was not 

known. Therefore, determining the oligomeric state of RuBisCO and incorporating an adequate 

3D structure (including descriptors) into the model is likely to resolve the difference between 

predicted and observed retention volumes. 

A larger discrepancy was observed for the predicted and actual elution of peak 3 (405 

and 570 mM NaCl, respectively). Oligomerization could also explain this discrepancy because 

many ribosomal proteins are predicted to elute at salt concentrations of ~400 mM, but this may 

increase if ribosomes or their subunits are intact under the chosen chromatography conditions, 

especially taking into account that ribosomes have evolved to bind RNA, a negatively charged 

‘ligand’ such as SP. Other abundant proteins such as RP3E also underwent oligomerization and 

shifted towards higher salt concentrations for elution (Figure VI-55). 

The reduced area of peak 3 can be explained by the missing proteins that accounted for 

34% of TSP in the SP model. These proteins were not part of the model either because they 

were not present in the protein bands used for HCP identification (VI.10.1) or it was not possible 

to calculate all their descriptors. 
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Figure VI-57: Comparison of observed and predicted tobacco HCP separation on different 

chromatographic resins (IV.9, IV.11 and VI.10). 

A. Observed and predicted HCP separation were in good agreement for SP resin and showed both three elution 

peaks. B. For Q, one major elution peak was predicted and observed, however, the observed peak eluted at a higher 

salt concentration than predicted and two additional smaller peaks appeared. C. Predictions for MMC were poor 

as only a major FT peak and a smaller elution peak instead of four predicted elution peaks were observed. See text 

for detailed discussion. Buffer pH was 6.0 for SP and 7.0 for Q and MMC. 

The above limitations also applied to the QSAR model for Q Sepharose FF and can 

explain the deviation of 172 mM NaCl between the predicted and observed elution of RuBisCO 

(highest peaks in Figure VI-57 B). Interestingly, two additional peaks (peak 1 and 2) were 

eluted before the major RuBisCO elution peak (peak 3) and these contained the large RuBisCO 

subunit as their major protein component. Hence peaks 1 and 2 may represent different 

oligomeric states, e.g. a dimer in peak 1 and a monomer in peak 2. Although ~65% of HCPs 

were included in the model, the limited number of model proteins (Table VI.11) reduced the 

precision of predictions achieved with the Q model compared to the SP model. 

More model proteins were included for descriptor selection over a broader pH range for 

MMC, but it was not possible to calculate all of the additional descriptors required to model the 

hydrophobic interactions for the RuBisCO small subunit so only 56% of TSP was covered by 

the model. The high FT peak in the actual run probably reflected the limited resin capacity 

rather than an incorrect model prediction (Figure VI-57 C). However, these data did not entirely 

explain the poor correlation between the MMC model and the observed HCP separation. 
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Instead, the selected pH of 7.0 may explain the early elution of RuBisCO (peak 1) at ~240 mM 

NaCl compared to the predicted elution at ~670 mM. This is because electrostatic interactions 

dominate protein binding under low-salt loading conditions (VI.9.4.2) [341] and are affected 

by pH, but the MMC model was missing e.g. the ‘FCharge’ descriptor depicting the total protein 

charge (Table VI.11). In this context, the descriptors of protein hydrophobicity used here may 

have been inadequate even though they have been used successfully to model protein retention 

during HIC [265, 269]. Mixed-mode chromatography is not a linear combination of 

hydrophobic and electrostatic interactions but is dependent on the relative position of charged 

and hydrophobic patches on a protein surface, facilitating binding to the sterically-defined 

ligand. Therefore, other descriptors of protein hydrophobicity [370, 371] or descriptors 

featuring a combination of hydrophobic and electrostatic interactions including the steric 

constraints of the ligand (Siddarth Parimal, personal communication) may be advantageous. 

The oligomerization of proteins (VI.10.2) can also have a critical effect on the predictive power 

of protein hydrophobicity descriptors because protein oligomerization is often driven by 

hydrophobic surface patches which are not available for protein ligand interactions after 

oligomerization [372]. The extent of protein retention on media exhibiting hydrophobic 

interaction characteristics can therefore be overestimated. 

In summary, for the first time QSAR models of chromatographic separation have been 

successfully applied to the crude protein mixture of plant extracts. In this context the accuracy 

of the predictions for SP are remarkable given the fact that protein oligomerization and 

competitive binding were not accounted for in the model. In general, the predictive power of 

models increased with the number of reference proteins in the training set and with decreasing 

complexity of the interaction mechanism (plain IEX vs. MMC) (Table VI.11). The r2 and 

adjusted r2 values did not show a good correlation with the quality of the model predictions. 

Predicted and observed elution salt concentrations matched well for SP Sepharose FF, 

indicating that QSAR modeling can be applied successfully to the separation even of crude 

protein mixtures which has not been tested before. Therefore, QSAR modeling can be used to 

guide and accelerate process development for expression platforms with known HCPs. This can 

be achieved with minimal experimental effort, simply by exploiting current protein databases 

and modeling tools [198, 219, 256, 360]. The limited size of the training data set diminished 

the accuracy of predictions for Q Sepharose FF, but additional reference data are likely to 

compensate for this shortcoming. Additional changes will be required to improve the MMC 

model as discussed in more detail in section VI.10.5. 
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VI.10.5 Future improvements of prediction quality 

Several changes can be incorporated in the method presented above to improve the predictive 

power of the “synthetic” chromatography model. First, additional proteins, if possible including 

authentic HCPs, can be included in the training data set used to generate the QSAR models. 

This will help to overcome the bias in the current training set towards small, monomeric 

proteins with IEC elution salt concentrations typically below 400 mM (Figure VI-54). As 

discussed above (III.6.5.4) such a bias in the training data narrows down the applicability 

domain of a QSAR model [213]. The same holds true for the pH range of the current models. 

Second, the quality of homology models for HCPs can be increased as (i) more X-ray 

and NMR structures are added to the structure databases and thus become available for 

modeling, (ii) the resolution of the available structures increases, and (iii) the sequence 

coverage of the models becomes complete. 

Third, more HCPs can be included in the predictions as the 108 proteins currently 

present in the model only account for 56–66% of the TSPs (depending on the QSAR model). 

More HCPs in the model will help to complete the elution profile. Fourth, the accuracy of the 

peak profile can be improved by using individually-assigned protein amounts (e.g. by 2D-gel 

analysis) rather than averaged amounts based on band intensity and the number of proteins per 

band. Fifth, protein-specific instead of global  parameters will improve the description of the 

elution behavior and resin efficacy (Figure III-5). This concept can be extended to asymmetric 

elution peaks to model “tailing” during elution. Sixth, the impact of competitive binding/elution 

of more than one model protein species should be investigated as this may affect the binding 

orientation of bound proteins and thus the strength of their interaction with the resin and the 

resulting elution salt concentration/conditions [346, 373-376]. 

Finally, protein models can be used that elaborate to the biologically-active state of the 

different proteins (dimers, tetramers etc.), rather than simply using a monomeric form. This is 

important because protein association can affect accessible surface areas and thus ligand 

binding sites [377, 378]. 

Additionally, it will be most useful to include the individual target proteins in the QSAR 

models because this will allow a direct analysis of beneficial separation conditions that yield 

highly pure product. Moreover, potential impurities co-eluting with the target in a first 

chromatographic step can be identified at an early stage of process development allowing a 

rational selection of subsequent separation steps. In the course of this thesis incorporation of 

target proteins in the models was hampered by three reasons that also pointed out the limits of 

the QSAR method. First, no adequate structure template for E25T, a potential Malaria vaccine 
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candidate (provided by Alexander Boes), was found in the SWISS-Model database preventing 

any homology modeling attempt. Second, it was not possible to perform energy minimization 

calculations for the 3D homology structure of the monoclonal antibody 2G12 due the size of 

the protein and resulting software errors. Third, descriptor calculations were incomplete for the 

biological assembly of DsRed (tetramer) and thus prevented reliable predictions for this protein 

even though a refined 3D structure was available. 
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VII. Conclusion and scope 

VII.1 Process design and control for plant-derived bio-
pharmaceuticals 

The use of suitable bag and depth filters was investigated for the clarification of plant extracts 

containing biopharmaceutical proteins, with and without flocculants and other additives (VI.2, 

VI.3, VI.5 and VI.6). The direct consumable costs for depth filters was cut by 50% solely by 

identifying a more suitable filter combination, reducing the number of depth filtration steps 

from three to one. Flocculants and cellulose-based additives incorporated during depth filtration 

again reduced the costs for filters by 50% each, leaving only ~10% of the initial costs for depth 

filters. The production of biopharmaceuticals in plants will benefit from these changes in 

process design due to the lower production costs, reduced contamination risks (because of the 

simplified process stream) and shorter processing time, thus improving the product quality and 

reducing the risk of target protein degradation/denaturation. Further improvements will be 

possible by optimizing the extraction buffer pH and other conditioning steps dependent on the 

target protein such as heat treatment and/or membrane filtration (VI.10.5) [75, 350]. Certificates 

allowing contact with food products were available for all substances, facilitating their use in 

GMP-compliant processes. 

The flocculants and additives were also compatible with subsequent chromatography 

steps based on resins and buffer conditions tested for the effective removal of major tobacco 

proteins such as RuBisCO (VI.9) under a variety of process conditions. This helped to identify 

generic process steps suitable for any target protein, which will reduce the development time 

for new processes. QSAR modeling of chromatography can also help to reduce development 

times (VI.10). These models can be applied successfully to crude plant extracts given an 

adequate amount of training data, known HCPs and high-quality descriptors. With the growing 

number of protein structures in the databases and the increasing sophistication of modeling 

tools that are freely available via the internet, the characterization and modeling of HCPs for 

individual expression platforms will become a routine procedure for the acceleration of process 

development [198, 200, 257, 258, 379]. 

VII.2 The basis for a Quality-by-Design approach 
The methodology described in this thesis is as important as the data. Previous studies have often 

focused on single factors affecting the outcome of experiments, or neglected factor interactions 

if more than one parameter was studied [75, 380, 381]. Therefore, valuable information was not 

recorded and resources were used inefficiently. In contrast, the DoE approach used throughout 
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this thesis allowed the systematic and cost-effective analysis of design spaces, resulting in a 

more detailed understanding of the process steps under investigation. The DoE approach also 

allowed the development of predictive models forming the basis of a QbD approach by offering 

(i) a quantitative correlation between process parameters and the quality of certain process 

steps, and (ii) a benchmark to define the working space in future processes [382-384]. The QbD 

approach seeks to determine process conditions that will result in reproducible product yields, 

purity and efficacy, thus producing safe, high-quality drugs, in contrast to the quality by control 

approach in which quality is ensured by extensive testing of the final product [383, 385]. 

The models presented above also revealed which process parameters (factors) 

influenced the outcome/quality/performance of a specific process step and indicated their 

individual leverage. This will facilitate the setup of a failure mode and effects analysis (FMEA) 

including the assignment of severity, occurrence and detection probability and ultimately a risk 

priority number (RPN) to each relevant process parameter [382, 383, 386]. 

The use of advanced PAT will help to close gaps between current models for the 

plant-based production of biopharmaceutical proteins as described here, resulting in a holistic 

description of the process. For example, it has not been possible thus far to link depth filter 

capacity to process parameters such as extract turbidity, probably because turbidity is a sum 

parameter of particle size and number. This limitation could be overcome by incorporating new 

inline devices that can determine particle size distribution [387-389], allowing a more accurate 

calculation of the required filter area and hence the filtration time, and maybe also selection of 

the most suitable depth filter type ‘on-the-fly’ during production. 

The ultimate goal should be a model describing the complete production and 

purification process by a (small) number of critical process parameters, linking process 

conditions to the critical quality attributes of the product and taking into account the specific 

properties of the product, e.g. pH stability. Such a global model can be achieved by combining 

the models described here with those established for different upstream operations [247, 278, 

331, 390]. The model can then be used in a feedback setup where the impact of process 

parameters on product quality is determined in a first step, and then product quality data can be 

used to define the operation range for process parameters that result in the reliable production 

of a high-quality target protein. Such a fundamental understanding of a new process can help 

to convince regulatory authorities of the safety of plant-derived biopharmaceuticals and will 

elevate this technology to the level of established production platforms such as CHO cells. 
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IX.2 Register of equipment 

Name Type/Use Manufacturer 
-20°C premium ......................... -20°C freezer .................................. Liebherr, Germany 

--- .............................................. phytotron ........................................ Ilka Zell, Germany 

0.2 and 0.45 µm filter ............... filter ................................................ Carl Roth GmbH, Germany 

1.5 and 2.0 mL tubes................. reaction tubes ................................. Sarstedt, Germany 

15 mL and 50 mL tubes ............ reaction tubes ................................. Greiner Bio-One, Austria 

2.0 mL cryotube ........................ cryo tube ......................................... Carl Roth GmbH, Germany 

2720 Thermal cycler ................. PCR cycler ..................................... Applied Biosystems, CA, USA 

96 half area flat bottom black ... 96 well plate ................................... Greiner Bio-One, Austria 

ÄKTA explorer ......................... chromatography device .................. GE Healthcare, UK 

ÄKTA purifier .......................... chromatography device .................. GE Healthcare, UK 

Allegra 25R............................... centrifuge ....................................... BeckmanCoulter, CA, USA 

Amicon 15 ................................ concentrator tube ............................ Millipore, MA, USA 

Aquarius ................................... deionized water supply device ....... membraPure, Germany 

Biophotometer .......................... photometer ..................................... Eppendorf, Germany 

BioWizard ................................. sterile bench ................................... Kojair, Finland 

BP 121 S ................................... scale ............................................... Sartorius, Germany 

BP 610 ...................................... scale ............................................... Sartorius, Germany 

Cellstar ...................................... 96 well plate ................................... Greiner Bio-One, Austria 

Centrifuge 5415D ..................... centrifuge ....................................... Eppendorf, Germany 

Commercial Blener ................... blender............................................ Warring, CT, USA 

Cond 315i ................................. conductometer ................................ WTW, Germany 

Forma -86C ULT freezer .......... -80°C freezer .................................. ThermoFisher, MA, USA 

HiTrap column .......................... pre-packed IEC columns ................ GE Healthcare, UK 

Innova 4230 .............................. incubator/shaker ............................. New Brunswick Scientific, CT, USA 

KMO 2 basic ............................. stirrer .............................................. IKA, Germany 

M-Power ................................... scale ............................................... Sartorius, Germany 

Masterflex ................................. peristaltic pump .............................. Cole-Parmer, Il, USA 

Masterflex L/S .......................... peristaltic pump .............................. Cole-Parmer, Il, USA 

Mikro 220R............................... centrifuge ....................................... Hettich, Germany 

MiniGyroRocker SSM3 ............ rocker ............................................. Barloworld Scientific, UK 

MiniSubCell GT ....................... gel electrophoresis chamber ........... BioRad, CA, USA 

MiraCloth 1R ............................ filter tissue ...................................... Merck, Germany 

Multiporator .............................. electroporation device .................... Eppendorf, Germany 

N816 ......................................... vacuum pump ................................. KNF, Germany 

NanoDrop ND-1000 ................. spectrometer ................................... peqlab, Germany 

pH 340i ..................................... pH meter ......................................... WTW, Germany 

Polytron PT3000 ....................... mixer .............................................. Kinematica, Switzerland 

Polytron PT6100 ....................... mixer .............................................. Kinematica, Switzerland 

PowerPac300 ............................ DC source ....................................... BioRad, CA, USA 

PowerPacBasic ......................... DC source ....................................... BioRad, CA, USA 

Premium ................................... refrigerator ..................................... Liebherr, Germany 

PVDF membrane ...................... blotting membrane ......................... Millipore, MA, USA 

Reactron RT50 .......................... mixer .............................................. Kinematica, Switzerland 

RTC basic ................................. stirrer .............................................. IKA, Germany 

RZR1 ........................................ stirrer .............................................. Heidolph, Germany 

SenTix 41 .................................. pH electrode ................................... WTW, Germany 

Slice200 .................................... cross-flow device ........................... Sartorius, Germany 

Synergy HT............................... 96-well spectrometer ...................... BioTek, VT, USA 

Thermomixer compact .............. temperature-controlled mixer ......... Eppendorf, Germany 

Type 6732-61 ............................ mixer .............................................. Jungheinrich, Germany 

Universal Hood II ..................... gel scanning device ........................ BioRad, CA, USA 

Varioklav .................................. autoclave ........................................ H+P, Germany 

Vortex-Genie 2 ......................... vortex ............................................. Scientific Industries, IL, USA 

Whatman paper ......................... blotting paper ................................. Whatman Inc., UK 

XCell sure lock ......................... electrophoresis chamber ................. Invitrogen, CA, USA 

XCell II ..................................... blot module .................................... Invitrogen, CA, USA 
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IX.3 List of chemicals 

Name Type/Use Manufacturer 
Acetosyringone ...............................phytohormone .....................Duchefa, The Netherlands 

Carbenicilin ....................................antibiotic..............................Duchefa, The Netherlands 

Catiofast GM ..................................flocculant .............................BASF, Germany 

Catiofast VSH.................................flocculant .............................BASF, Germany 

CelluFluxx F15 ...............................additive ................................Erbslöh, Germany 

CelluFluxx F25 ...............................additive ................................Erbslöh, Germany 

CelluFluxx F45 ...............................additive ................................Erbslöh, Germany 

CelluFluxx P30 ...............................additive ................................Erbslöh, Germany 

Citric acid .......................................buffer ...................................Carl Roth GmbH, Germany 

Dipotassium hydrogen phosphate ...buffer component ................Carl Roth GmbH, Germany 

Disodium hydrogen phosphate .......buffer component ................Carl Roth GmbH, Germany 

EDTA .............................................buffer component ................Carl Roth GmbH, Germany 

Ethanol ...........................................solution component .............Carl Roth GmbH, Germany 

Ferty2Mega ....................................fertilizer ...............................Kammlott, Germany 

Goat -human H+L AP ..................antibody ...............................Dianova, Germany 

Goat -mouse Fc AP ......................antibody ...............................Jackson, UK 

Goat -rabbit H+L AP ...................antibody ...............................Jackson, UK 

Kanamycin .....................................antibiotic..............................Duchefa, The Netherlands 

Lupamin 9095.................................flocculant .............................BASF, Germany 

Lupasol PS ......................................flocculant .............................BASF, Germany 

LuvoZell C200 ...............................additive ................................Lehmann & Voss, Germany 

LuvoZell C90 .................................additive ................................Lehmann & Voss, Germany 

Magnafloc LT 37 ............................flocculant .............................BASF, Germany 

Magnafloc LT 38 ............................flocculant .............................BASF, Germany 

Methanol .........................................solution component .............Carl Roth GmbH, Germany A 

Murashige & Skoog salts................solution component .............Duchefa, The Netherlands 

Paragas ...........................................flocculant .............................BASF, Germany 

Polymin P .......................................flocculant .............................BASF, Germany 

Polymin SK ....................................flocculant .............................BASF, Germany 

Polymin VT ....................................flocculant .............................BASF, Germany 

Potassium chloride .........................buffer component ................Carl Roth GmbH, Germany 

Potassium dihydrogenphosphate ....buffer component ................Carl Roth GmbH, Germany 

Praestol 2350 ..................................flocculant .............................Ashland, KY, USA 

Praestol 2610 ..................................flocculant .............................Ashland, KY, USA 

Praestol 2640 ..................................flocculant .............................Ashland, KY, USA 

Praestol 822 BS ..............................flocculant .............................Ashland, KY, USA 

Praestol 851 BC ..............................flocculant .............................Ashland, KY, USA 

Praestol 855 BS ..............................flocculant .............................Ashland, KY, USA 

Praestol 859 BS ..............................flocculant .............................Ashland, KY, USA 

Rabbit -DsRed ..............................antibody ...............................MBL, MA, USA 

Rabbit -His ...................................antibody ...............................Genscript, NJ, USA 

Rifampicin ......................................antibiotic..............................Duchefa, The Netherlands 

Sedipur CL 950 ..............................flocculant .............................BASF, Germany 

Sedipur CL 951 ..............................flocculant .............................BASF, Germany 

Sodium acetate ...............................buffer component ................Carl Roth GmbH, Germany 

Sodium chloride .............................buffer component ................Carl Roth GmbH, Germany 

Sodium dihydrogenphosphate ........buffer component ................Carl Roth GmbH, Germany 

Sodium disulfite .............................antioxidant ...........................Carl Roth GmbH, Germany 

Sodium hydroxide ..........................base .....................................Carl Roth GmbH, Germany 

Sucrose ...........................................buffer component ................Duchefa, The Netherlands 

Tris base .........................................buffer ...................................Carl Roth GmbH, Germany 

Tris-HCl .........................................buffer ...................................Carl Roth GmbH, Germany 

Trisodium phosphate ......................buffer ...................................Carl Roth GmbH, Germany 

Tween-20 ........................................non-ionic detergent ..............Carl Roth GmbH, Germany 

ZETAG 7109 ..................................flocculant .............................BASF, Germany 

ZETAG 7587 ..................................flocculant .............................BASF, Germany 
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IX.4 List of buffers 

Name Component Final concentration [mM] ([g L-1]) Comment 

2-fold infiltration medium Sucrose 300.0 (100.0) pH 5.6 

 Glucose 20.0 (3.6)  

 Murashige & Skoog salts --- (8.6)  

 Acetosyringone 0.2 (0.04)  

    

AP Buffer Tris 100.0 (12.1) pH 9.6 

 NaCl 100.0 (5.8)  

 MgCl2 5.0 (0.48)  

    

Blotting Buffer Tris 25.0 (3.0) pH 8.2 

 Glycine 192.0 (14.4)  

 Methanol --- (160.0)  

    

Extraction Buffer A Na2HPO4 50 (7.1) pH 6.0-8.0* 

 NaCl 10-500* (0.6-28.9)  

 NaS2O5 10 (1.9) optional 

    

Extraction Buffer B Trisodium citrate 50 (12.9) pH 4.0-6.0* 

 NaCl 10-500* (0.6-28.9)  

 NaS2O5 10 (1.9) optional 

    

HBS-EP+ HEPES 10.0 (2.4) pH 7.4 

 EDTA 3.0 (0.9)  

 NaCl 150.0 (8.8)  

 Tween-20 --- (0.5)  

    

IEX Buffer A and 
Na2HPO4 15-50 (2.1-7.1) pH 6.0-8.5* 

HIC Buffer B 

    

IEX Buffer B and Na2HPO4 15-50 (2.1-7.1) pH 6.0-8.5* 

HIC Buffer A NaCl 1000.0 (58.4)  

    

Lysogeny broth (LB) Tryptone --- (10.0) pH 7.0 

 Yeast extract --- (5.0)  

 NaCl 170.0 (10.0)  

 Agar --- (15.0) optional 

 Ampicillin 0.13 (0.05) optional 

    

MES Buffer MES 50.0 (9.76) pH 7.3 

 Tris 50 (6.05)  

 SDS 3.5 (1.0)  

 EDTA 1.0 (0.3)  
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List of buffers continued    

Name Component Final concentration [mM] ([g L-1]) Comment 

PBS(-T) NaCl 137.0 (8.0) pH 7.4 

 KCl 2.7 (0.2)  

 Na2HPO4 10.1 (1.44)  

 KH2PO4 1.7 (0.24)  

 Tween-20 --- (1.0) optional 

    

Yeast extract broth Beef extract --- (5.0) pH 7.0 

(YEB) Yeast extract --- (1.0)  

 Peptone --- (5.0)  

 Sucrose 14.5 (5.0)  

 MgSO4 2.0 (0.5)  

 Agar --- (15.0) optional 

 Carbenicillin 0.13 (0.05) optional 

 Kanamycin 0.05 (0.025) optional 

 Rifampicin 0.03 (0.025) optional 

* values varied according to experimental/DoE setup 
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IX.5 List of identified tobacco HCPs 

Protein name 

UniProt 

accession 

number 

Found 

in 

band

… 

Seq. 

coverag

e [%] 

Seq. 

identit

y [%] 

Qmea

n Z [-] 

Qmea

n 

score 

4 [-] 

Frac. 

of 

TSP 

[-] 

Cellular 

functio

n [-] 

(E)-4-hydroxy-3-

methylbut-2-enyl 

diphosphate synthase 

Q6RI20 7 93.64 19.47 -10.16 0.18 0.64 m 

14-3-3 g-1 protein Q947K7 15 93.65 78.81 -1.31 0.69 0.24 d 

14-3-3-like protein C P93343 1 90.38 97.87 -1.05 0.72 0.56 d 

24K germin like protein Q7XZV3 19 100.00 34.10 -3.98 0.49 0.42 m 

30S ribosomal protein S5. 

chloroplastic 
P93014 18 74.41 24.88 -4.96 0.41 0.15 p 

30S ribosomal protein S7. 

chloroplastic 
P62732 17 99.35 95.46 -2.20 0.60 0.18 p 

30s ribosomal protein S8 P06363 25 100.00 85.82 -1.79 0.63 0.25 p 

31 kDa ribonucleoprotein. 

chloroplastic 
D6PZY7 23 38.12 47.06 -1.03 0.66 0.22 p 

40S ribosomal protein S5 O24111 17 100.00 95.46 -4.33 0.41 0.18 p 

40s ribosomal protein S8 Q3HRZ6 15 95.54 52.94 -4.10 0.49 0.24 p 

50S ribosomal protein L10. 

chloroplastic 
O80362 18 96.11 31.07 -2.35 0.60 0.15 p 

50S ribosomal protein L12. 

chloroplastic 
P24929 18 93.98 46.09 -1.22 0.68 0.15 p 

50S ribosomal protein L3. 

chloroplastic 
O80360 16 94.14 42.86 -2.16 0.63 0.34 p 

60S ribosomal protein L12 Q6RJY1 18 77.11 92.19 -3.20 0.50 0.15 p 

60S ribosomal protein 

L13a-like protein 

Q3HRW

1 
17 100.00 85.44 -2.32 0.62 0.18 p 

60S ribosomal protein L5-

A 
Q38HU5 14 96.36 73.20 -6.95 0.33 0.24 p 

Actin C7F8N2 23 100.00 88.89 0.38 0.81 0.22 c 

Actin 7 Q6F4H4 23 98.94 90.35 -0.92 0.71 0.22 c 

ADP ribosylation factor Q08IJ1 19 97.79 94.35 0.32 0.82 0.42 s 

Alanine:glyoxylate 

aminotransferase 
C1IGP4 10 91.52 28.42 -3.28 0.57 0.69 m 

Allene oxide cyclase Q711R1 17 94.02 67.82 -0.50 0.75 0.18 m 

Aminomethyltransferase. 

mitochondrial 
P54260 10 98.41 50.81 -0.55 0.74 0.69 m 

Anthocyanidin synthase A9ZMI6 21 74.73 77.65 0.17 0.79 --- m 

AT4g29060/F19B15_90 Q9SZD6 2 --- --- --- --- 0.15 p 

ATP synthase CF1 epsilon 

subunit 
P00834 25 100.00 61.65 -1.51 0.66 0.25 e 

ATP synthase delta chain. 

chloroplastic 
P32980 19 96.28 17.13 -6.42 0.28 0.42 e 

ATPase subunit I Q36600 25 37.04 15.00 -0.93 0.59 0.25 e 

ATP-dependent Clp 

protease proteolytic subunit 
P12210 18 90.31 44.07 -3.06 0.54 0.15 p 

-carbonic anhydrase Q8W183 16 64.49 77.78 -2.14 0.62 0.34 m 

Carbamoyl phosphate 

synthase large subunit 
Q8L6J9 2 --- --- --- --- 0.15 m 

Carbonic anhydrase. 

chloroplastic 
P27141 

15; 16; 

23 
93.67 79.71 -1.98 0.63 0.79 m 
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CDSP32 protein O04002 15 72.64 15.32 -3.57 0.53 0.24 m 

List of identified tobacco HCPs continued       

Protein name 

UniProt 

accession 

number 

Found 

in 

band

… 

Seq. 

coverag

e [%] 

Seq. 

identit

y [%] 

Qmea

n Z [-] 

Qmea

n 

score 

4 [-] 

Frac. 

of 

TSP 

[-] 

Cellular 

functio

n [-] 

Chaperonin 21 Q9M5A8 17 --- --- --- --- 0.18 p 

Chlorophyll a-b binding 

protein. chloroplastic 
Q40481 19 82.50 92.12 -8.52 0.05 0.42 e 

Chloroplast elongation 

factor TuB 
P68158 16 97.80 72.14 0.20 0.78 0.34 p 

Chloroplast photosynthetic 

oxygen-evolving protein 33 

kDa subunit 

Q40459 12 95.55 48.78 -4.30 0.47 0.28 e 

Chloroplast pigment-

binding protein CP29 
Q0PWS7 14 80.00 33.19 -10.27 0.03 0.24 e 

Chloroplast ribosomal 

protein 
C9EFD1 15 --- --- --- --- 0.24 p 

Chloroplast sedoheptulose-

1.7-bisphosphatase 
C5IU71 13; 14 76.65 38.70 -3.35 0.56 0.99 m 

ClpC O48931 5 91.58 51.96 -2.73 0.60 0.33 p 

Cytochrome b6 P06247 25 98.60 90.09 -7.80 0.21 0.25 e 

Cytosolic aconitase Q9FVE9 5 99.22 61.28 -1.03 0.70 0.33 m 

Dicarboxylate/tricarboxylat

e carrier 
Q8SF02 23 93.67 23.65 -7.90 0.23 0.22 m 

Elicitor-inducible LRR 

receptor-like protein 
Q9SLS3 7 79.55 27.83 -3.98 0.53 0.64 s 

Elongation factor EF-2 Q9SGT4 5 99.53 60.59 -1.82 0.65 0.33 p 

Elongation factor Tu B5JK07 9 98.23 71.98 0.45 0.79 0.79 p 

Elongation factor Tu. 

chloroplastic 
P68158 9 97.80 72.14 0.20 0.78 0.79 p 

Eukaryotic initiation factor 

4A-10 
P41382 9 90.56 70.13 -1.05 0.70 0.79 p 

Eukaryotic initiation factor 

4A-9 
Q40471 9 90.56 70.40 -1.11 0.70 0.79 p 

Eukaryotic translation 

initiation factor 3 subunit 
B9RVA6 2 --- --- --- --- 0.15 p 

Eukaryotic translation 

initiation factor 5A-1 
P69040 18 88.68 83.69 1.55 0.94 0.15 p 

Ferredoxin-dependent 

glutamate synthase 1 
Q7M242 1; 2 --- --- --- --- 0.71 m 

Ferredoxin-NADP 

reductase. leaf isozyme 1. 

chloroplastic 

Q9FKW6 14 94.86 91.19 1.36 0.87 0.24 e 

Fructose-1.6-

bisphosphatase 
Q9XF82 11; 12 82.11 88.06 -1.20 0.70 0.60 m 

Fructose-bisphosphate 

aldolase-like protein 
Q2PYX3 12 91.34 63.22 -0.65 0.74 0.28 m 

GcpE Q8GZR6 7 87.57 19.62 -8.59 0.27 0.64 m 

Glutamate-1-semialdehyde 

2.1-aminomutase. 

chloroplastic 

P31593 9 97.47 72.34 0.01 0.77 0.79 m 

Glutamine synthetase Q42951 11 98.31 89.43 -0.62 0.70 0.32 m 

Glutathione reductase. 

chloroplastic 
P80461 9 95.11 45.53 -2.09 0.64 0.79 m 
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Glyceraldehyde-3-

phosphate dehydrogenase 

A. chloroplastic 

P09043 
11; 12; 

13; 14 
100.00 89.29 -0.52 0.75 1.59 m 

List of identified tobacco HCPs continued       

Protein name 

UniProt 

accession 

number 

Found 

in 

band

… 

Seq. 

coverag

e [%] 

Seq. 

identit

y [%] 

Qmea

n Z [-] 

Qmea

n 

score 

4 [-] 

Frac. 

of 

TSP 

[-] 

Cellular 

functio

n [-] 

Glyceraldehyde-3-

phosphate dehydrogenase 

B. chloroplastic 

P09044 
11; 12; 

13; 14 
88.31 92.35 -1.89 0.66 1.59 m 

Glycine dehydrogenase 

[decarboxylating]. 

mitochondrial 

O49954 4 --- --- --- --- 0.77 m 

Glycolate oxidase O82077 12 96.50 90.50 0.66 0.79 0.28 m 

Guanine nucleotide-binding 

protein subunit beta-like 

protein 

P49026 14 97.55 79.31 -1.58 0.68 0.24 s 

Haloacid dehalogenase-like 

hydrolase family protein 
B9T3Q7 15 94.16 20.90 -3.62 0.52 0.24 m 

Heat shock protein 70-3 Q67BD0 7 85.65 81.08 -0.02 0.75 0.64 r 

Heat shock protein 90 Q14TB1 6 95.14 61.26 -4.45 0.50 0.28 r 

Histone H2B P93354 18 86.21 64.00 -2.59 0.55 0.15 d 

Hsr203J Q8H954 7 94.93 28.09 -3.46 0.56 0.64 r 

Hydroxypyruvate reductase A1EGU2 11 96.63 25.20 -4.54 0.49 0.32 m 

Light-harvesting complex I 

protein Lhca2 
Q40512 19 78.70 94.12 -8.34 0.06 0.42 e 

Manganese superoxide 

dismutase 
Q84QX4 17 98.53 57.21 -1.31 0.70 0.18 m 

Methionine synthase Q069K2 6 99.22 87.35 -2.04 0.64 0.28 m 

MRNA-binding protein Q7X998 13; 14 91.24 16.87 -3.92 0.52 0.99 p 

Oxygen-evolving enhancer 

protein 2-1. chloroplastic 
Q7DM39 17 91.94 70.76 -0.48 0.76 0.18 e 

Peptidyl-prolyl cis-trans 

isomerase TLP20. 

chloroplastic 

B2BF99 18 80.68 70.06 0.61 0.85 0.15 m 

Phosphoenolpyruvate 

carboxylase 
P27154 4 96.89 75.40 -2.07 0.64 0.77 m 

Phosphoglycerate kinase. 

chloroplastic 
Q42961 10 98.52 59.10 -0.42 0.74 0.69 m 

Phosphoglycerate kinase. 

cytosolic 
Q42962 10 97.76 61.83 0.54 0.80 0.69 m 

Phosphoribulokinase C3URC2 12 80.17 15.48 -5.84 0.38 0.28 m 

Phosphoribulokinase. 

chloroplastic 
P25697 11 81.66 15.39 0.00 0.00 0.32 m 

Phylloplanin Q56S59 16 --- --- --- --- 0.34 r 

Plastid transketolase C3RXI5 7 97.34 87.41 0.00 0.00 0.64 m 

Plastidic aldolase 

NPALDP1 
Q9SXX4 12 99.43 53.82 -1.34 0.69 0.28 m 

Presequence protease 1. 

chloroplastic/mitochondrial 
Q9LJL3 3 98.29 99.90 -0.26 0.74 0.36 p 

Presequence protease 2. 

chloroplastic/mitochondrial 
Q8VY06 3 98.29 89.48 -0.23 0.74 0.36 p 

Probable alanyl-tRNA 

synthetase. chloroplastic 
Q9FFC7 5 76.51 24.84 -4.75 0.48 0.33 m 
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Protein thylakoid formation 

1. chloroplastic 
Q7XAB8 16 --- --- --- --- 0.34 c 

Putative beta 3 proteasome 

subunit 
Q93X33 18 100.00 55.77 -1.93 0.62 0.15 p 

List of identified tobacco HCPs continued       

Protein name 

UniProt 

accession 

number 

Found 

in 

band

… 

Seq. 

coverag

e [%] 

Seq. 

identit

y [%] 

Qmea

n Z [-] 

Qmea

n 

score 

4 [-] 

Frac. 

of 

TSP 

[-] 

Cellular 

functio

n [-] 

Putative cytosolic cysteine 

synthase 7; oas1 
Q3LAG6 13; 14 87.64 85.89 -0.37 0.76 0.99 m 

Putative cytosolic cysteine 

synthase 7; oas7 
Q3LAG5 13; 14 97.54 83.91 -0.88 0.73 0.99 m 

Putative photosystem I 

subunit III precursor 
Q84QE7 25 80.21 87.01 -5.58 0.29 0.25 e 

Putative spindle 

disassembly related protein 

CDC48 

Q1G0Z1 5 91.58 78.68 -1.10 0.69 0.33 c 

Ribonucleoprotein Q08940 16; 23 98.28 17.03 -3.67 0.52 0.55 d 

Ribosomal protein L11-like Q9FSF6 18 93.92 90.59 -4.53 0.41 0.15 p 

Ribulose bisphosphate 

carboxylase small chain 

S41. chloroplastic 

P69249 20; 26 100.00 100.00 -0.49 0.76 9.62 e 

Ribulose bisphosphate 

carboxylase/oxygenase 

activase 1. chloroplastic 

Q40460  

10; 11; 

13; 14; 

15; 23 

76.30 89.76 -1.79 0.66 2.46 e 

Ribulose bisphosphate 

carboxylase/oxygenase 

activase 2 

Q40565 23 76.64 85.27 -1.91 0.65 0.22 e 

Ribulose-1.5-biphosphate 

carboxylase/ oxygenase 

large subunit 

P00876 
2; 3; 8; 

9; 16 
96.21 99.78 -1.15 0.69 

19.1

0 
e 

Ribulose-phosphate 3-

epimerase. chloroplastic 
Q43157 16; 17 97.87 91.30 0.34 0.78 0.52 m 

Serine-glyoxylate 

aminotransferase 
Q56YA5 10 95.51 30.08 -2.97 0.59 0.69 m 

Thaliana 60S ribosomal 

protein L7 
Q38HU4 15 97.93 77.64 -4.17 0.48 0.24 p 

Thioredoxin peroxidase Q8RVF8 17; 18 95.48 62.11 -0.94 0.72 0.33 m 

TNF receptor-associated 

protein 1-like 
B6V765 6 --- --- --- --- 0.28 d 

Translation elongation 

factors 
B9TE78 6 68.37 27.82 -2.20 0.59 0.28 p 

Translation initiation factor 

IF-2. chloroplastic 
Q9SI75 6 98.15 58.35 -3.50 0.55 0.28 p 

Translation initiation factor 

IF-2. chloroplastic 
Q9SHI1 6 --- --- --- --- 0.28 p 
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IX.6 List of proteins included in QSAR training sets 

Protein name PDB code Resolution [Å] Oligomeric state [-] 

Adenosine deaminase 1vfl 1.8 2 

Alkaline phosphatase 1ajc 2.5 2 

Alpha-chymotrypsin a 5cha 1.6 3 

Alpha-lactalbumin 1f6r 2.2 6 

Asparaginase type II 3eca 2.4 4 

Aspartate aminotransferase 1ajr 1.7 2 

Avidin 1vyo 1.4 4 

Beta-galactosidase 1f4h 2.8 4 

Beta-lactoglobulin 1bsq 2.2 1 

Calmodulin 1qiw 2.3 1 

Carbonic anhydrase II 1v9e 1.9 1 

Carboxylesterase 1auo 1.8 2 

Catalase 4blc 2.3 4 

Chymotrypsinogen a 2cga 1.8 2 

Citramalate synthase 3ble 2.0 2 

Cytochrome c 2b4z 1.5 1 

Elastase 1lvy 1.8 1 

Endoglucanase I 1eg1 3.6 4 

Ferritin 1ies 2.6 24 

Glucoamylase 1lf6 2.1 1 

Glucose oxidase 1cf3 1.9 1 

Glutamate dehydrogenase 1 1nr7 3.3 6 

Glycogen phosphorylase b 1gpb 1.9 2 

Insulin (chain a) 4ins 1.5 12 

Invertase 2ac1 2.1 1 

Lactoferrin 1bka 2.4 1 

Lipoxygenase-1 1f8n 1.4 1 

Lysozyme 1aki 1.5 1 

Ovalbumin 1ova 1.9 2 

Ovotransferrin 1aiv 3.0 1 

Papain 9pap 1.6 1 

Peanut lectin 2pel 2.2 4 

Pepsin 3pep 2.3 1 

Phospholipase a2 1poc 2.0 2 

Pyruvate kinase 1a49 2.1 4 

Ribonuclease a 1rbx 1.6 1 

Ribonuclease b 1rbb 2.5 2 

Serum albumin 1ao6 2.5 1 

List of proteins included in QSAR training sets continued  
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Protein name PDB code Resolution [Å] Oligomeric state [-] 

Serum transferrin 1a8e 1.6 1 

Triacyl-glycerol acylhydrolase 3tgl 1.9 1 

Trypsin 1s81 1.7 1 

Trypsin inhibitor 1pit 1.3 n.a. 

Trypsinogen 1s0q 1.0 1 

Ubiquitin 1ubq 1.8 1 

Urease 1fwe 2.0 9 
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IX.7 pH gradient buffers for IEX 

Name Component Concentration [mM] ([g L-1]) pKa 

AEX buffer pH 10.5 to 3.5 Hydroxylamine 50% 7.7 (0.51) 5.67 

 Methylamine 50% 9.8 (0.76) 10.75 

 1-Methylpiperazine 6.4 (0.64) 9.19/4.82 

 Ethylenediamine 9.1 (0.55) 9.93/6.99 

 1,4-Dimethylpiperazine 13.7 (1.56) 8.15/4.04 

 Bis-Tris 5.8 (1.21) 6.22 

 NaCl 10 (0.58) --- 

    

CEX buffer pH 4.0 to 11.0 MESx1H2O 11 (2.35) 6.15 

 Formic acid 9.9 (0.46) 3.75 

 Acetic acid 13 (0.81) 4.76 

 MOPSO 8.7 (1.96) 6.90 

 HEPPSO 9.9 (2.66) 8.04 

 TAPS 4.6 (1.13) 8.44 

 CHES 9.4 (1.95) 9.39 

 CAPS 15.6 (3.45) 10.50 

 NaCl 10 (0.58) --- 

Note: all pH buffer compositions according to Frieder Kröner (personal communication). 


