Mechanisms of plastic deformation in cold-rolled, ultrafine-grained tungsten sheets

S. Bonk, C. Bonnekoh, P. Lied, J. Hoffmann, U. Jäntsch, M. Klimenkov, M. Rieth, J. Reiser 08.11.2017, ICFRM-18, Aomori, Japan

Institute for Applied Materials – Applied Materials Physics (IAM-AWP)

- I. Introduction
- II. Fundamental research
- III. Joining technology
- **IV.** Applications

I. Introduction

- II. Fundamental research
- III. Joining technology
- IV. Applications

4 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017

Introduction: cold rolled tungsten sheets

Hot rolled tungsten Test temperature: RT

Cold rolled tungsten Test temperature: RT

Why are cold rolled tungsten sheets ductile?

5 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017

- I. Introduction
- **II. Fundamental research**
 - a) Ductility
 - b) Brittle-to-ductile transition
 - c) Recovery and recrystallization
- III. Joining technology
- IV. Applications

Tensile ductility

8 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017

Tensile tests

9 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017

Mechanical properties: yield strength over T

Hypothesis to enhanced uniform elongation without Taylor hardening

Ordered glide of screw dislocations that move along HAGBs channels

11 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017 Thanks for the support: D. Collins, A. Wilkinson (Oxford University)

Strain rate jump tests: procedure

12 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017

13 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017

diffusion controlled!

[1] Ahmed, Hartmaier, Acta Materialia 59 (2011) p. 4323-4334

[1] J. Reiser et al., J. Nucl. Mat. (2013) 357-366.

- I. Introduction
- **II. Fundamental research**
 - a) Ductility
 - b) Brittle-to-ductile transition
 - c) Recovery and recrystallization
- III. Joining technology
- IV. Applications

The brittle-to-ductile transition (BDT)

17 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017

The brittle-to-ductile transition (BDT)

18 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017

The brittle-to-ductile transition (BDT)

[C. Bonnekoh]

19 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017

I. Introduction

II. Fundamental research

- a) Ductility
- b) Brittle-to-ductile transition

c) Recovery and recrystallization

- III. Joining technology
- IV. Applications

ICFRM-18, Aomori, November 2017

- I. Introduction
- II. Fundamental research
- III. Joining technology
- **IV.** Applications

ICFRM-18, Aomori, November 2017

- Applied Materials Physics

- I. Introduction
- II. Fundamental research
- III. Joining technology

IV. Applications

Application: mock-ups ready for testing

W-Cu Laminate Pipes L = 1 m

HHF test for Divertor Component

⁽H.Greuner, IPP, GLADIS, H₂0, 28 MW)

W-Cu Laminate Pipes + Tungsten Monoblocks

KIT: Institute for Applied Materials - Applied Materials Physics

25 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017

Highlights

Thank you for your attention!

special thanks to:

Deutsche Forschungsgemeinschaft (RE 3551-2/1; RE3554-2/1),
PLANSEE SE,
University of Oxford,
Erich Schmid Institute of Materials Science,
Forschungszentrum Jülich,
EUROfusion,
all involved colleagues at IAM (KIT).

27 S. Bonk, KIT (IAM-AWP), simon.bonk@kit.edu ICFRM-18, Aomori, November 2017