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New physics contributions to the Z penguin are revisited in the light of the recently-reported discrep-
ancy of the direct CP violation in K → ππ . Interference effects between the standard model and new 
physics contributions to �S = 2 observables are taken into account. Although the effects are overlooked 
in the literature, they make experimental bounds significantly severer. It is shown that the new physics 
contributions must be tuned to enhance B(KL → π0νν̄), if the discrepancy of the direct CP violation is 
explained with satisfying the experimental constraints. The branching ratio can be as large as 6 × 10−10

when the contributions are tuned at the 10% level.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A deviation of the standard model (SM) prediction from the ex-
perimental result is recently reported in the direct CP violation 
of the K → ππ decays, which is called ε′ . The latest lattice cal-
culations of the hadron matrix elements significantly reduced the 
theoretical uncertainty [1–4] and yield [5,6](

ε′

ε

)
SM

=
⎧⎨⎩

(1.38 ± 6.90) × 10−4, [RBC-UKQCD]
(1.9 ± 4.5) × 10−4, [Buras et al.]
(1.06 ± 5.07) × 10−4. [Kitahara et al.]

(1.1)

They are lower than the experimental result [7–10],(
ε′

ε

)
exp

= (16.6 ± 2.3) × 10−4. (1.2)

The deviations correspond to the 2.8–2.9σ level.
Several new physics (NP) models have been explored to explain 

the discrepancy [11–21]. In the literature, electroweak penguin 
contributions to ε′/ε have been studied.1 In particular, the Z pen-
guin contributions have been studied in detail [11,13,15,22]. The 
decay, s → dqq̄ (q = u, d), proceeds by intermediating the Z boson, 
and its flavor-changing (s–d) interaction is enhanced by NP. Then, 

* Corresponding author.
E-mail address: teppei.kitahara@kit.edu (T. Kitahara).

1 QCD penguin contributions, e.g., through Kaluza–Klein gluons, have also been 
considered [11].
http://dx.doi.org/10.1016/j.physletb.2017.05.026
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SCOAP3.
the branching ratios of K → πνν̄ are likely to be deviated from 
the SM predictions once the ε′/ε discrepancy is explained. This is 
because the Z boson couples to the neutrinos as well as the up 
and down quarks. They could be a signal to test the scenario.

Such a signal is constrained by the indirect CP violation of 
the K mesons. The flavor-changing Z couplings affect the indi-
rect CP violation via the so-called double penguin diagrams; the 
Z boson intermediates the transition, both of whose couplings 
are provided by the flavor-changing Z couplings. Such a contribu-
tion is enhanced when there are both the left- and right-handed 
couplings because of the chiral enhancement of the hadron ma-
trix elements. This is stressed by Ref. [15] in the context of the 
Z ′-exchange scenario. In the Z -boson case, since the left-handed 
coupling is installed by the SM, the right-handed coupling must be 
constrained even without NP contributions to the left-handed one. 
Such interference contributions between the NP and the SM are 
overlooked in Refs. [11,13,15,22,23]. Therefore, the parameter re-
gions allowed by the indirect CP violation will change significantly. 
In this letter, we revisit the Z -boson scenario.2 It will be shown 
that the NP contributions to the right-handed s–d coupling are 
tightly constrained due to the interference, and thus, the branching 
ratio of K L → π0νν̄ is likely to be smaller than the SM predictions 
if the ε′/ε discrepancy is explained. We will discuss that NP pa-
rameters are necessarily tuned to enhance the ratio. A degree of 

2 In this letter, we focus on the s–d transitions. The �F = 2 transitions such as 
�mB generally involve the interference contributions.
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Fig. 1. The NP contributions to �S = 2 process. The black bubble denotes the vertices in Eq. (2.4) originating from the dimension-6 effective operators: OL and OR . The 
white bubble with “SM” denotes the SM flavor-changing Z interaction. Subfigures (b)–(e) correspond to the interference contributions between the NP and SM. A contribution 
from G0-exchange diagram is negligible because it receives a suppression factor by the external momentum, so that we omit it here.
the parameter tuning will be investigated to estimate how large 
B(K L → π0νν̄) and B(K + → π+νν̄) can become.

2. Z -penguin observables

In this section, we briefly review the Z -penguin contributions 
to �S = 2 and �S = 1 processes in the general Z scenario. Above 
the electroweak symmetry breaking scale, NP particles generate 
Wilson coefficients of the (dimension-6) effective operators,

OL = i(H†←→Dμ H)(Q Lγ
μ Q ′

L), (2.1)

OR = i(H†←→Dμ H)(dRγ μd′
R), (2.2)

O(3)
L = i(H†σ a←→Dμ H)(Q Lγ

μσ a Q ′
L). (2.3)

They are gauge invariant under the SM gauge transformations. In 
this letter, we focus on the operators, OL and OR , to demonstrate 
the impact of the interference between the SM and NP contribu-
tions.3 After the electroweak symmetry breaking, they provide the 
flavor-changing (s–d) Z interactions,

L = �NP
L

[
Zμ + 1

mZ
∂μG0 − ig

2mW mZ
G−←→

∂μ G+

− g

mZ

(
W −

μ G+ + W +
μ G−)

+ . . .

]
(sγ μ P Ld)

+ (L ↔ R) + H.c., (2.4)

where the first term in the bracket is the Z -boson interaction, 
while the others are those of the Nambu–Goldstone boson, and we 
omitted the irrelevant terms for the interference effects. Here, the 
Wilson coefficients of OL and OR are normalized by the flavor-
changing Z interactions. In the following, we omit the subscript 
“NP” in �NP

L and �NP
R for simplicity.

2.1. εK and �mK

In the �S = 2 observables, there are the indirect CP violation 
εK and the mass difference �mK in the K 0–K 0 mixing. Since εK

has been measured precisely, and the SM prediction is accurate, 
it provides a severe constraint. The SM and NP contributions are 
shown as

εK = eiϕε

(
εSM

K + εNP
K

)
, (2.5)

where ϕε = (43.51 ± 0.05)◦ . The NP contribution is given by the 
double penguin diagrams with the Z boson exchange (Fig. 1(a)),

εNP
K =

8∑
i=1

(εK )Z
i , (2.6)

where the right-hand side is [15]

3 A similar discussion as follows is expected to hold for the effective operator 
O(3)

L .
(εK )Z
1 = −4.26 × 107 Im �L Re�L,

(εK )Z
2 = −4.26 × 107 Im �R Re�R ,

(εK )Z
3 = 2.07 × 109 Im �L Re �R ,

(εK )Z
4 = 2.07 × 109 Im �R Re �L . (2.7)

In these expressions, renormalization group corrections and long-
distance contributions are included [25]. In addition, one must take 
account of the interference terms between the SM and NP contri-
butions (Figs. 1(b)–(e)),

(εK )Z
5 = −4.26 × 107 Im �SM

L Re�L,

(εK )Z
6 = −4.26 × 107 Im �L Re�SM

L ,

(εK )Z
7 = 2.07 × 109 Im �SM

L Re�R ,

(εK )Z
8 = 2.07 × 109 Im �R Re �SM

L . (2.8)

Here, the SM contribution, �SM
L , is generated by radiative correc-

tions. At the one-loop level, it is calculated as

�SM
L = g3λt

8π2cW
C̃

(
m2

t

m2
W

,μNP

)
, �SM

R = 0, (2.9)

where cW = cos θW , λi ≡ V ∗
is V id with the CKM matrix V ij , and 

μNP corresponds to the NP scale.4 In this letter, the CKMfitter

result [24] is used for the CKM elements, unless otherwise men-
tioned. The loop function is5

C̃(x,μNP) = C(x) + �C(x,μNP). (2.10)

In the Feynman–’t Hooft gauge, the first term in the right-hand 
side corresponds to the Z -boson exchange diagram [22] (Fig. 1(b)),

C(x) = x

8

[
x − 6

x − 1
+ 3x + 2

(x − 1)2
ln x

]
, (2.11)

while the second term is obtained from the Nambu–Goldstone bo-
son loops (Figs. 1(c)–(e)),

�C(x,μNP) = − x

16

[
3x − 17

2(x − 1)
− x(x − 8)

(x − 1)2
ln x + ln

μ2
NP

m2
W

]
.

(2.12)

The explicit form of �C(x) depends on the effective operators 
above the electroweak symmetry breaking scale. Here, they are 
supposed to be OL and OR . It is noted that the interference terms 
are gauge-independent.

4 In order to introduce how significant the interference contributions are, we ig-
nore the renormalization group corrections to the dimension-6 operators above the 
electroweak scale except for a first leading logarithmic contribution ln(μNP/mW )

which comes from Fig. 1(e). This approximation is valid when the NP scale is not 
so far from the electroweak scale.

5 The loop function ̃C(x, μNP) is consistent with the result in Ref. [26].
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The interference terms (2.8) have been overlooked in Refs. [11,
13,15,22]. They cannot be ignored, as we will see in the next sec-
tion.

The latest estimation of the SM value is [27]

εSM
K = (2.24 ± 0.19) × 10−3. (2.13)

On the other hand, the experimental result is [10]

|εexp
K | = (2.228 ± 0.011) × 10−3. (2.14)

They are well consistent with each other, and εNP
K must satisfy

−0.39 × 10−3 < εNP
K < 0.37 × 10−3, (2.15)

at the 2 σ level.6

The kaon mass difference �mK consists of the SM and NP con-
tributions:

�mK = �mSM
K + �mNP

K . (2.16)

If we parameterize the NP contribution as

�mNP
K

�mexp
K

=
8∑

i=1

R Z
i , (2.17)

the right-hand side is estimated as [15]

R Z
1 = 6.43 × 107

[
(Re�L)

2 − (Im �L)
2
]
,

R Z
2 = 6.43 × 107

[
(Re�R)2 − (Im �R)2

]
,

R Z
3 = −6.21 × 109 Re�L Re�R ,

R Z
4 = 6.21 × 109 Im �L Im �R . (2.18)

Similarly to the case of εK , there are interference terms between 
the SM and NP contributions,

R Z
5 = 12.9 × 107 Re�SM

L Re�L,

R Z
6 = −12.9 × 107 Im �SM

L Im �L,

R Z
7 = −6.21 × 109 Re�SM

L Re�R ,

R Z
8 = 6.21 × 109 Im �SM

L Im �R . (2.19)

Here, �SM
L is given by Eq. (2.9), and the result is gauge-

independent. These terms have been overlooked in the literature.
The experimental result is [10]

�mexp
K = (3.484 ± 0.006) × 10−15 GeV. (2.20)

Since the SM prediction involves sizable contributions of long-
distance effects, the uncertainty is large.7 Hence, we simply require 
that the NP contribution does not exceed the experimental value 
(with the 2 σ uncertainty):

|�mNP
K | < 3.496 × 10−15 GeV. (2.21)

This constraint will turn out to be much weaker than εNP
K .

6 The SM estimation εSM
K is sensitive to the CKM elements. If one uses Vcb that 

is determined by the exclusive B → D(∗)�ν decays [28], εSM
K = (1.73 ± 0.18) · 10−3

is obtained [29]. Then, εNP
K = (0.50 ± 0.18) · 10−3 is required at the 1 σ level.

7 The latest lattice simulation, which includes the long-distance contributions, 
provides �mSM

K = (3.19 ±1.04) ·10−15 GeV [30]. However, it is performed on masses 
of unphysical pion, kaon and charmed quark.
2.2. ε′/ε

The flavor-changing Z interaction also contributes to �S = 1
observables. The direct CP violation ε′/ε is shown as

ε′

ε
=

(
ε′

ε

)
SM

+
(

ε′

ε

)
NP

. (2.22)

The NP contribution is estimated as [15](
ε′

ε

)
NP

= −2.64 × 103 B(3/2)

8

(
Im �L + c2

W

s2
W

Im �R

)
, (2.23)

where B(3/2)

8 = 0.76 ± 0.05 from the lattice calculation. Here, the 
terms which are not proportional to B(3/2)

8 are omitted; the ap-
proximation is valid at the 10% accuracy. A factor in the paren-
thesis gives c2

W /s2
W 	 3.33. Thus, the NP contribution can be en-

hanced easily by �R .
As mentioned in Sec. 1, the SM prediction deviates from the 

experimental result at the 2.8–2.9 σ level. In this letter, we require 
that the discrepancy of ε′/ε is explained at the 1 σ level as

10.0 × 10−4 <

(
ε′

ε

)
NP

< 21.1 × 10−4, (2.24)

where Ref. [6] is used for the SM prediction.

2.3. K + → π+νν̄ and K L → π0νν̄

The (ultra-)rare kaon decay channels, K + → π+νν̄ and K L →
π0νν̄ , are correlated with ε′/ε as well as εK and �mK in the 
general Z scenario.8 They are represented as [15,32]

B(K + → π+νν̄)

= κ+

[(
Im Xeff

λ5

)2

+
(

Reλc

λ
Pc(X) + Re Xeff

λ5

)2
]

, (2.25)

B(K L → π0νν̄) = κL

(
Im Xeff

λ5

)2

. (2.26)

Here, Xeff is estimated as

Xeff = λt (1.48 ± 0.01) + 2.51 × 102 (�L + �R) , (2.27)

where the first term in the right-hand side is the SM contribu-
tion. Also, λ = |V us|, κ+ = (5.157 ± 0.025) · 10−11(λ/0.225)8, and 
κL = (2.231 ± 0.013) · 10−10(λ/0.225)8. The charm-quark contribu-
tion is Pc(X) = (9.39 ± 0.31) · 10−4/λ4 + (0.04 ± 0.02), where the 
first term in the right-hand side comes from short-distance effects, 
while the second one takes account of long-distance effects. Using 
the CKMfitter result for the CKM elements, one obtains

Re Xeff = −4.83 × 10−4 + 2.51 × 102 (Re �L + Re �R) , (2.28)

Im Xeff = 2.12 × 10−4 + 2.51 × 102 (Im �L + Im �R) . (2.29)

The SM predictions become

B(K + → π+νν̄)SM = (8.5 ± 0.5) × 10−11, (2.30)

B(K L → π0νν̄)SM = (3.0 ± 0.2) × 10−11. (2.31)

8 The branching ratios of K → π�+�− (� = e, μ) are also affected in the general 
Z scenario. However, K + → π+�+�− and K S → π0�+�− are dominated by a long-
distance contribution through K → πγ ∗ → π�+�− [31]. On the other hand, such a 
contribution to KL → π0�+�− is forbidden by the CP symmetry, but is dominated 
by an indirect CP-violating contribution, KL → K S → π0�+�− [31]. Therefore, it is 
challenging to discuss short-distance NP contributions in these channels.
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On the other hand, the experimental results are [33,34]

B(K + → π+νν̄)exp = (17.3+11.5
−10.5) × 10−11, (2.32)

B(K L → π0νν̄)exp ≤ 2.6 × 10−8. [90% C.L.] (2.33)

Although the current constraints on the NP contributions are very 
weak, the experimental values will be improved significantly in the 
near future. The NA62 experiment at CERN, which already started 
the physics run at low beam intensity in 2015, has a potential to 
measure B(K + → π+νν̄) at the 10% precision by 2018 [35]. The 
KOTO experiment at J-PARC is designed to improve the sensitiv-
ity for B(K L → π0νν̄), which enables us to measure it at the 10% 
level of the SM value [36,37]. As one can see from Eqs. (2.23) and 
(2.27), the NP contributions to B(K → πνν̄) are correlated with 
those to ε′/ε in the general Z scenario. Thus, if the ε′/ε discrep-
ancy is a signal of the scenario, these experiments would detect 
NP effects.

2.4. K L → μ+μ−

The branching ratio of K L → μ+μ− is also sensitive to the 
NP contributions to the flavor-changing Z couplings. Theoretically, 
only the short-distance (SD) contributions can be calculated reli-
ably. They are shown as [15,38,39]

B(K L → μ+μ−)SD = κμ

(
Reλc

λ
Pc(Y ) + Re Yeff

λ5

)2

, (2.34)

where κμ = (2.01 ± 0.02) · 10−9(λ/0.225)8. The charm-quark con-
tribution is Pc(Y ) = (0.115 ± 0.018) · (0.225/λ)4. Using the CKM-

fitter result, one obtains

Re Yeff = −3.07 × 10−4 + 2.51 × 102 (Re�L − Re�R) , (2.35)

where the first term in the right-hand side is the SM contribution, 
and the minus sign between �L and �R is due to the axial-vector 
current. The SM value is obtained as

B(K L → μ+μ−)SD, SM = (0.83 ± 0.10) × 10−9. (2.36)

On the other hand, it is challenging to extract a short-distance 
part in the experimental data B(K L → μ+μ−)exp = (6.84 ± 0.11) ·
10−9 [10], because of huge long-distance contributions through 
K L → γ ∗γ ∗ → μ+μ− [40]. An upper bound on the short-distance 
contribution is [40]

B(K L → μ+μ−)SD < 2.5 × 10−9. (2.37)

Since the constraint is much weaker than the SM uncertainties, we 
ignore them for simplicity and impose a bound on the Z couplings,

−1.08 × 10−6 < Re �L − Re �R < 4.05 × 10−6. (2.38)

The real parts of the NP contributions are constrained by B(K L →
μ+μ−).

3. Analysis

In this section, we examine the general Z scenario. Although 
the discrepancy of ε′/ε could be explained by the scenario, the 
parameter regions would be constrained by εK , �mK and K L →
μ+μ− . In particular, the interference between the SM and NP 
contributions, Eq. (2.8), affects εK significantly. In this section, we 
choose the NP scale, μNP = 1 TeV, as a reference. As we will see, 
wide parameter regions are excluded. Thus, the discrepancy of ε ′/ε
will be explained by tuning the model parameters. Let us introduce 
a quantity which parameterizes the tuning9:

9 Our definition is almost the same as that in Ref. [45], where the authors discuss 
correlations between the tuning parameter and flavor observables.
ξ = max
(
ξ1, ξ2, . . . , ξ8

)
, with ξi =

∣∣∣∣∣ (εK )Z
i

εNP
K

∣∣∣∣∣ . (3.1)

If εNP
K is dominated by a single term, one obtains ξ 	 1 and there 

is no tuning among the model parameters. If the maximal value 
of (εK )Z

i is about ten times larger than εNP
K , ξ ∼ 10 is obtained; 

the model parameters are tuned such that there is a cancellation 
among (εK )Z

i at the 10% level.

3.1. Simplified scenarios

First, we consider the following simplified scenarios (cf.,
Ref. [41]),

• left-handed scenario (LHS): �R = 0,10

• right-handed scenario (RHS): �L = 0,11

• pure imaginary scenario (ImZS): Re�L = Re�R = 0,
• left–right symmetric scenario (LRS): �L = �R .12

As shown below, these scenarios do not require large parameter 
tuning in εNP

K . However, B(K → πνν̄) will turn out to be small.
In Fig. 2, the Z -penguin observables are shown as functions 

of �L,R for LHS and RHS. In the green (light green) regions, the 
ε′/ε discrepancy is explained at 1 (2) σ . They depend only on the 
imaginary component of �L,R . Obviously, ε′/ε is enhanced by the 
right-handed Z coupling, �R , more than �L .

The blue regions are excluded by the εK , and the orange re-
gions are by the B(K L → μ+μ−). The constraint from εK is much 
severer in RHS than LHS due to the interference contributions, 
Eq. (2.8). There is no constraint from �mK in the parameter re-
gions of the plots.

The red and black dashed contours represent B(K L → π0νν̄)/

B(K L → π0νν̄)SM and B(K + → π+νν̄)/B(K + → π+νν̄)SM, re-
spectively. Here and hereafter, B(K L → π0νν̄)SM and B(K + →
π+νν̄)SM denote the central values of the SM predictions,
Eqs. (2.30) and (2.31). It is found that B(K L → π0νν̄) cannot be as 
large as the SM value as long as ε′/ε is explained in LHS or RHS. 
On the other hand, if the ε′/ε discrepancy is explained by LHS, the 
NP contribution to B(K + → π+νν̄) is limited by B(K L → μ+μ−). 
In contrast, εK restricts RHS.

Next, we consider ImZS. Such a situation is often considered 
to amplify (ε′/ε)NP but suppress εNP

K . In the left panel of Fig. 3, 
the Z -penguin observables are shown as functions of Im �L,R . The 
most severe constraint is from εK due to the interference between 
the SM and NP. The other bounds are weak and absent in the plot. 
Since there are no real components of �L,R , B(K + → π+νν̄) is 
correlated with B(K L → π0νν̄).

Finally, LRS is shown in the right panel of Fig. 3. Similarly to the 
cases of RHS and ImZS, most of the parameter regions are excluded 
by εK . The NP contributions to B(K L → μ+μ−) vanish because the 
process is the axial-vector current.

In Fig. 4, contours of the tuning parameter ξ are shown for the 
simplified scenarios: LHS, RHS, ImZS, and LRS on the plane of the 
branching ratios of K → πνν̄ . We scanned the whole parameter 
space of �L,R in each scenario and selected the parameters where 
ε′/ε is explained at the 1σ level, and the experimental bounds 
from εK , �mK , and B(K L → μ+μ−) are satisfied (see the previous 

10 This scenario is realized by chargino contributions to the Z penguin in the su-
persymmetric model [17,19,42–44].
11 Randall–Sundrum models with custodial protection [45,46] can generate 

large �R . However, there are additional effects, e.g., from KK-gluon diagrams 
for εNP

K .
12 In axial-symmetric scenarios, �L = −�R , there are no NP contributions to K →
πνν̄ .
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Fig. 2. The Z -penguin observables are displayed in LHS (left panel) and RHS (right). In the green (light green) regions, the ε′/ε discrepancy is explained at 1 (2) σ . The blue and 
the orange shaded regions are excluded by εK and B(KL → μ+μ−), respectively. The ratios of B(KL → π0νν̄)/B(KL → π0νν̄)SM and B(K + → π+νν̄)/B(K + → π+νν̄)SM

are shown by the red solid and black dashed contours, respectively. The NP scale is μNP = 1 TeV. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

Fig. 3. The Z -penguin observables are displayed in ImZS (left panel) and LRS (right). Notations of the lines and shaded regions are the same as in Fig. 2.
section for the experimental constraints). Then, ξ was estimated 
at each point. Several parameter sets predict the same B(K + →
π+νν̄) and B(K L → π0νν̄). Among them, the smallest ξ is chosen 
in Fig. 4 for each set of B(K + → π+νν̄) and B(K L → π0νν̄). In 
most of the allowed parameter regions, ξ =O(1) is obtained. Thus, 
one does not require tight tunings in these scenarios.

In the figures, B(K L → π0νν̄) is smaller than the SM value 
by more than 30%. Hence, the scenarios could be tested by the 
KOTO experiment. On the other hand, B(K + → π+νν̄) depends 
on the scenarios. In LHS, we obtain 0 < B(K + → π+νν̄)/B(K + →
π+νν̄)SM < 1.8. In RHS, B(K + → π+νν̄) is comparable to or 
larger than the SM value, but cannot be twice as large. In ImZS, the 
branching ratios are perfectly correlated and displayed by a line in 
Fig. 4. Then, B(K + → π+νν̄) is not deviated from the SM one. The 
right panel of Fig. 4 is a result of the tuning parameter ξ in LRS. It 
is found that B(K L → π0νν̄) does not exceed about a half of the 
SM value. On the other hand, B(K + → π+νν̄) is comparable to or 
larger than the SM value, but cannot be twice as large, as is similar 
to RHS.

3.2. General scenario

Let us consider the full parameter space in the general Z sce-
nario. Both �L and �R are turned on. Then, B(K + → π+νν̄)

and/or B(K L → π0νν̄) can be enhanced if the tuning for εNP
K is 

allowed.
In Fig. 5, the branching ratios of K → πνν̄ and the tuning 

parameter are shown for the case of (ε′/ε)NP = 15.5 · 10−4 and 
εNP

K = 0.37 ·10−3. The flavor-changing Z couplings, and namely the 
NP contributions to K → πνν̄ , are limited by B(K L → μ+μ−) and 
the tuning parameter.

In Fig. 6, contours of the tuning parameter ξ are shown on the 
plane of the branching ratios of K → πνν̄ . The whole parameter 
space of the general Z scenario is scanned. In the colored regions, 
ε′/ε is explained at the 1σ level, and the experimental bounds 
of εK , �mK , and B(K L → μ+μ−) are satisfied (see the previous 
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Fig. 4. Contours of the tuning parameter ξ are shown in the simplified scenarios: LHS, RHS, and ImZS (left panel) and LRS (right). Here, “SM” in the axis labels denotes 
the central values of B(KL → π0νν̄)SM and B(K + → π+νν̄)SM, Eqs. (2.30) and (2.31). In the colored regions, ε′/ε is explained at 1σ , and the experimental bounds of εK , 
�mK , and B(KL → μ+μ−) are satisfied. The right region of the blue dashed line is allowed by the measurement of B(K + → π+νν̄) at 1σ . The Grossman–Nir bound [47]
is shown by the blue solid line. The NP scale is set to be μNP = 1 TeV. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 5. B(K + → π+νν̄)/B(K + → π+νν̄)SM (left panel) and B(KL → π0νν̄)/B(KL → π0νν̄)SM (right) are shown by the red contours. The blue contours represent the tuning 
parameter ξ . The orange and purple shaded regions are excluded by B(KL → μ+μ−) and �mK , respectively. Here, (ε′/ε)NP = 15.5 ·10−4 and εNP

K = 0.37 ·10−3 as a reference. 
The NP scale is set to be μNP = 1 TeV. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
section for the experimental constraints). For each set of B(K + →
π+νν̄) and B(K L → π0νν̄), the smallest ξ is chosen among the 
parameter sets which predict the same branching ratios.

Compared to the simplified cases in Fig. 4, B(K L → π0νν̄)

can be enhanced. The tuning parameter is not necessarily very 
large if only one of B(K L → π0νν̄) and B(K L → μ+μ−) is en-
hanced. However, ξ � 30–40 is required to amplify both of them. If 
ξ � 10 (5) is allowed, B(K L → π0νν̄) can be as large as 6 × 10−10

(2 × 10−10). In other words, O(10)% tunings are required to en-
hance B(K L → π0νν̄) by an order of magnitudes compared the 
SM prediction. The KOTO experiment can probe such large branch-
ing ratios in the near future.

4. Conclusion and discussion

The recent discrepancy of ε′/ε may be a sign of the NP contri-
bution to the flavor-changing Z coupling. In this letter, we revis-
ited the scenario with paying attention to the interference effects 
between the SM and NP contributions to the �S = 2 observ-
ables. They affect εK significantly once the right-handed coupling 
is turned on. Consequently, B(K L → π0νν̄) is smaller than the SM 
prediction in the simplified scenarios as long as ε′/ε is explained.

In the general Z scenario, B(K L → π0νν̄) can be large if pa-
rameter tunings are allowed. It was found that the branching ratio 
can be enhanced by an order of magnitudes compared to the SM 
prediction if the NP contributions to εK are tuned at the O(10)% 
level. It can be as large as 6 × 10−10 (2 × 10−10) for ξ 	 10 (5), 
which implies that the NP contributions to εK are tuned at the 10% 
(20%) level. The KOTO experiment could probe such large branch-
ing ratios in the near future.

In the analysis, the NP scale was set to be 1 TeV. The NP con-
tributions to εK as well as the tuning parameter depend on it 
through the interference terms of the SM and NP (see Eq. (2.12)). 
For μNP � 1 TeV, �SM is enhanced as the NP scale increases. Hence, 
L
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Fig. 6. Contours of the tuning parameter ξ are shown in the general Z scenario. In 
the colored regions, ε′/ε is explained at 1σ , and the experimental bounds of εK , 
�mK , and B(KL → μ+μ−) are satisfied. The region between the blue dashed lines 
is allowed by the measurement of B(K + → π+νν̄) at 1σ . There are no available 
model parameters above the Grossman–Nir bound. The NP scale is set to be μNP =
1 TeV. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

one naively expects that tighter tuning is required in εK . However, 
renormalization group corrections could be larger in such a case. 
Such contributions will be studied elsewhere (see also Ref. [48]).

5. Note added

While resubmitting the manuscript, Ref. [48] appeared on the 
arXiv. In comparison with our analysis, the differences are as fol-
lows:

• we considered OL and OR operators with the first leading 
logarithmic renormalization group contribution ln(μNP/mW )

which comes from Fig. 1(e). Hence, the operator O(3)
L , the op-

erator mixing among them through the renormalization group 
above the electroweak scale, nor running effects of the cou-
pling constants are not considered in our analysis;

• a conservative constraint from B(K L → μ+μ−) [40] is im-
posed here, while Ref. [48] has also adopted an aggressive 
bound [49];

• the present analysis focuses on the parameter region where 
the ε′/ε discrepancy can be explained at 1 σ level.

The loop function C̃(x, μNP) in Eq. (2.9), which comes from OL

and OR , is in agreement with a result of Ref. [48], which comes 
from O(1)

Hq and OHd , at the first leading logarithmic approximation. 
Notice that μNP corresponds to μ� .
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