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Deutsche Zusammenfassung

Roboter hielten in den letzten Jahren mehr und mehr Einzug in verschiede-
ne Bereiche unseres Lebens. In Fertigungsstraßen in der Industrie sind sie
schon länger ein fester Bestandteil, aber auch im alltäglichen Leben werden
zunehmend mehr Roboter eingesetzt. Staubsaugerroboter reinigen unsere
Wohnungen, Plüschroboter werden zur Therapie und Unterhaltung einge-
setzt und in manchen Bars bereiten sie Getränke zu. Diese Roboter haben
alle etwas gemeinsam: Sie sind hochspezialisiert auf ihre Aufgabe. Ihre Fä-
higkeiten wurden aufwändig manuell programmiert oder die Roboter wurden
sogar vollständig für ihre Aufgabe entwickelt. Sollen Roboter jedoch uni-
verselle Helfer werden, müssen sie in der Lage sein, vielseitige Aufgaben
zu erledigen, sich in neuen Umgebungen zurechtzufinden und idealerweise
Lösungen für die Bearbeitung neuer Aufgaben zu lernen. Eine Möglich-
keit, neue Lösungswege für Aufgaben zu lernen, ist den Menschen bei der
Bearbeitung der Aufgaben zu beobachten und diese auf den Roboter zu
übertragen. Allerdings erfordert Lernen aus Beobachtung des Menschen ein
Verständnis der vorgeführten Demonstrationen und eine adaptive Repräsen-
tation der demonstrierten Aktionen. Der Raum der demonstrierten Aufga-
ben ist aufgrund seiner kontinuierlichen Natur und aufgrund seiner vielen
kombinatorisch möglichen Relationen zwischen Objekten und Aktionen zu
groß, um in diesem Raum effektiv lernen zu können. Komplexe Aufgaben,
wie beispielsweise das Zubereiten einer Mahlzeit, können jedoch als eine
Aktionsfolge repräsentiert werden, die aus einer festen, grundlegenden Ak-
tionsmenge stammen. Diese Aktionsfolge gilt es, aus der Beobachtung zu
gewinnen und in einer neuen Situation zu reproduzieren. Um eine gelernte
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Aufgabe in einer neuen Situation erfolgreich ausführen zu können, ist eine
unveränderte Imitation der beobachteten Aktionsfolge nicht immer zielfüh-
rend. Die verwendeten Objekte können sich zum Beispiel an veränderten
Orten befinden oder nicht mehr vorhanden sein. Daher muss die Parametri-
sierung der Aktionsfolgen jederzeit an die aktuelle Situation angepasst oder
es müssen neue Aktionsfolgen generiert werden können, um das Ziel der
Aufgabe zu erreichen.
Die vorliegende Arbeit stellt einen vollständigen Ansatz zum Lernen von
Aktionsfolgen aus Demonstrationen von Manipulationsaufgaben, sowie de-
ren Ausführung durch einen humanoiden Roboter vor. Der Ansatz lässt sich
in drei Kategorien aufteilen: 1) das Verstehen von Demonstrationen durch
deren Segmentierung, d. h. die Unterteilung in Aktionen, und das Erken-
nen dieser Aktionen, 2) die Definition einer Repräsentationsform, mit deren
Hilfe Aktionen über alle Abstraktionsebenen einer Robotersystemhierarchie
beschrieben werden können und 3) die zielgerichtete Ausführung von Aktio-
nen und Aktionsfolgen durch einen humanoiden Roboter unter Berücksichti-
gung des aktuellen Weltzustandes.
Der aktuelle Stand der Forschung zur Segmentierung menschlicher Demon-
strationen setzt zumeist auf die Analyse von aufgenommenen Bewegungsda-
ten oder vereinzelt auf semantische Informationen aus Bilddaten, wie z. B.
Relationen zwischen Objekten. Beides reicht jedoch nicht aus, um Aktionen
zuverlässig segmentieren zu können, da Bewegungsdaten häufig mehrdeu-
tig sind und/oder nicht alle semantischen Informationen extrahiert werden
können. Daher setzt diese Arbeit darauf, semantische Informationen und Be-
wegungsdaten in Kombination zu analysieren. In diesem Kontext wird eine
neue Methode zur hierarchischen Segmentierung menschlicher Demonstra-
tionen vorgeschlagen. Zur Gewinnung der semantischen Informationen aus
den Demonstrationen werden nicht nur Bewegungen des Menschen, son-
dern zusätzlich auch Bewegungen der manipulierten Objekte beobachtet, um
räumliche Relationen zwischen den Händen und Objekten bzw. zwischen
zwei Objekten zu extrahieren. Unter der Annahme, dass Änderungen dieser
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Relationen nur durch Aktionen des Menschen hervorgerufen werden können,
werden Demonstrationen bei Relationsänderungen in semantische Segmente
mit deren Effekt auf die Umwelt zerlegt. Diese semantischen Segmente wer-
den in einem zweiten Schritt basierend auf ihren Bewegungscharakteristiken
analysiert, um unterschiedliche Aktionen innerhalb eines semantischen Seg-
ments zu identifizieren. Das betrifft vor allem die Aktionen, deren Effekte
sensorisch nicht beobachtbar sind, wie z. B. das Schütteln einer Flasche.
Zur Evaluierung wurden die mit der hierarchischen Segmentierung erziel-
ten Ergebnisse sowohl mit manuell segmentierten Referenzdaten als auch
mit Methoden des Stands der Forschung verglichen. Der Vergleich zeigt,
dass die vorgestellte Methodik dem Stand der Forschung überlegen ist, da
ihre Ergebnisse im Durchschnitt näher an den manuell erstellten Referenz-
segmentierungen liegen. Die extrahierten Segmente sind mit symbolischen
Aktionen wie z. B. Greifen vergleichbar und können anhand des veränderten
Weltzustandes und der Bewegungscharakteristik diesen Aktionen zugeordnet
werden. Die extrahierten Aktionen werden zu einer Aktionsfolge zusammen-
gesetzt und im Gedächtnis des Roboters als neue Aktion für den Planer des
Roboters gespeichert.
Die Ausführung komplexer Aufgaben durch einen Roboter benötigt eine
Repräsentationsform, die auf symbolischer Ebene die Verkettung von Aktio-
nen zu Aktionsfolgen erlaubt und die gleichzeitig die Detailinformationen
zur Ausführung durch den Roboter beinhaltet. Um diesen Anforderungen
gerecht zu werden, wird in dieser Arbeit eine Erweiterung des Statechart-
Ansatzes vorgestellt, die es ermöglicht, Aktionen auf symbolischer und
sensomotorischer Ebene hierarchisch zu repräsentieren. Hierzu wird der
Statechart-Formalismus um eine transitionsbasierte Datenflusskontrolle er-
weitert, die es ermöglicht, Fähigkeiten an die aktuelle Situation zu adaptieren
und den Einsatz dieser für mehrere Robotertypen zu generalisieren.
Die Ausführung komplexer Aufgaben in sich dynamisch verändernden Um-
gebungen erfordert eine kontinuierliche und konsistente Wahrnehmung der
Umwelt, um Aktionen und Aktionsfolgen auf die aktuelle Situation anpassen

iii



Kurzfassung

zu können. Stellt man die Welt als kontinuierlichen Raum aus Objektposi-
tionen und Roboterposen dar, ist die Anzahl an möglichen Konfigurationen
aufgrund der hohen Dimensionalität zu groß, um darin effizient nach Lö-
sungen für Aufgaben zu suchen. Daher bietet es sich an, den Raum in eine
symbolische Repräsentation zu transformieren und diesen nach Lösungen
zu durchsuchen.
Im Rahmen dieser Arbeit wird das sensorische und subsymbolische Wissen
des Roboters über sich und die Umwelt in eine symbolische Darstellung
transformiert, um vorgegebene Aufgaben mit beobachteten Aktionsfolgen
oder mit einem Planungssystem zu lösen. Eine gefundene Lösung wird unter
Verwendung der vorgestellten Aktionsrepräsentation ausgeführt, kontinuier-
lich mittels der Weltzustandswahrnehmung überprüft und gegebenenfalls
korrigiert.
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1 Introduction

Robotics has the potential to become one of the key technological advance-
ments of the 21st century and to substantially improve the quality of life
by transferring repetitive, tedious and hard labor tasks to service robots. In
industrial environments, such tasks are already dispatched to robots due to
their endurance, precision and high repeatability. Yet industrial robots are
not suited to be utilized in human environments. For robots to be useful
in our household everyday environment, they have to be able to navigate,
to manipulate, to interact and, which is the greatest challenge, to adapt to
new situations. Those environments are tailored to the requirements and ca-
pabilities of humans. Humanoid robots are well suited to be used in such
environments because they are designed to be similar to humans in shape and
functionality. This decreases the required effort to transfer household tasks
to robots and avoids the adaption of the environment to the robot. However,
equipping a humanoid robot with abilities to act in a household environment
is still a difficult challenge since the robot must not only execute pre-scripted
skills as used in industrial applications, but needs to adapt to the current state
of the environment.

1.1 Motivation and Problem Statement

Humans have the ability to learn from their experience and to apply the ac-
quired skills in a potentially infinite number of diverse and previously unseen
situations. For example, humans can easily orient themselves in a new unseen
kitchen and locate most of the ingredients and tools required for preparing
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a meal. Furthermore, humans are able to improvise and replace missing ob-
jects with alternatives by evaluating their properties such as shape, taste or
functionality. These abilities require an understanding of the environment,
advanced reasoning capabilities as well as precise manipulation skills.
One approach to equip robots with manipulation skills, which has predom-
inantly been employed for the last decades, is to program robots manually.
However, this approach requires expert knowledge and is not easily transfer-
able to new tasks. Another approach that has gained a lot of attention in the
last decade is called Programming by Demonstration (PbD) or Learning from
Demonstration (LfD). The key idea here is to exploit the fact that humans
already know how a task is to be performed and to transfer this knowledge
to the robot. This is similar to the learning process of children, who gather
parts of their knowledge by observing their parents. A main benefit of this
approach is that untrained users can teach new abilities to robots instead of
relying on robotics experts to program a new ability tailored to the task.
However, this “programming” approach is from the point of view of robotics
far more difficult to implement. The LfD approach poses the following chal-
lenges: First, the robot has to be able to observe a demonstration and to
extract the relevant parts with respect to motion, sensory information and
objects. Second, it needs to transform the perceived information to its own
embodiment, called correspondence problem, and it has to store the informa-
tion in a generalized representation learned from multiple demonstrations.
Third, the robot needs to apply the observed demonstration in new situations.
All these challenges are not generically solved to this day and, thus, the entire
learning approach is not solved either.
LfD can be divided into two categories: 1) action learning, i.e. learning
every aspect of a single action such as grasping an object or more generically
speaking learning of control policies and 2) task learning, i.e. learning how to
apply known actions to solve a new complex task or in other words learning
of semantic concepts. This thesis focuses on task learning.

2



1.1 Motivation and Problem Statement

Figure 1.1: Overview of the contributions of this thesis.

Although, task learning does not imply to learn control policies for the exe-
cution of actions, still many problems remain to be solved. These problems
can again be divided into three categories: understanding of a demonstration,
representation of the actions used to solve tasks and the successful execution
of tasks.
An observation of a demonstration is a seamless stream of motions without
any known meaning. One approach to understand a demonstration is to ex-
tract meaningful segments and to associate them with already known actions.
For example, preparing dough consists of grasping, placing, pouring and
stirring.
The representation of the actions needs to be adaptable and hierarchical so
that it can support parametrization and composition of simpler actions to
more complex actions. For example, opening a door consists of grasping a
handle, pulling the handle and releasing the handle.
Furthermore, the robot needs to be able to reason about the current situation
and to adapt the observed demonstration in order to achieve a successful exe-
cution, e.g. the milk bottle might have been on a table during demonstration,
but it might by in the fridge when the robot has to execute the task. Since
successful execution cannot be ensured in an uncertain environment, failure
of execution such as dropping an object during grasping needs to be detected
and corrected.

3
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1.2 Contributions

This thesis presents a novel approach for learning and for execution of object
manipulation tasks by humanoid robots. This approach extends the state of
the art in several points. The contributions can be divided, like most LfD
approaches and as shown in Figure 1.1, into three categories: understanding
of task demonstrations, representation of robot skills and execution of tasks
in dynamic environments. The contributions in these categories are:

Task Understanding by Segmentation and Action Recognition

A novel hierarchical task segmentation method and a novel action recognizer
are presented to segment demonstrated tasks into atomic actions. Contrary
to state of the art approaches, semantic information based on object contact
relations as well as motion characteristics are used for segmentation and
action recognition. In both cases, the performance is improved by leveraging
the orthogonality of the feature spaces.

Robot Skill Modeling with Statecharts

An extension of an existing statechart concept addressing requirements of
robotics for modeling of heterogeneous robot skills on all abstraction levels
is proposed. While approaches known in the literature focus on coordination,
the new statechart concept also considers the data flow, which is essential for
the adaptation of skills and the composition to more complex skills.

Task Solving and Execution

The third contribution allows to solve and to execute complex tasks in dy-
namic environments. The currently perceived state of the environment is
converted online into a symbolic representation for symbolic planning. In
contrast to related approaches, the proposed approach provides suggestions
for object locations and object replacements based on various multi-modal
strategies.

4



1.3 Overview

1.3 Overview

This section provides a more detailed overview of the proposed learning
from demonstration approach and explains how the previously described
challenges are addressed. As described before, the presented approach is
divided into three parts: Observation and understanding of demonstrations,
representation of robot skills and the execution of tasks. Figure 1.2 provides
an overview of the structure and the contributions of the thesis.

Task Understanding by Segmentation and Action Recognition

In this thesis, demonstrations of tasks are observed with a marker-based
motion capture system and converted into a normalized reference model
of the human body called Master Motor Map (Terlemez et al., 2014). The
demonstrations contain full body motions of a human and 6D motions of all
objects. The recordings of the demonstrated tasks are taken from the publicly
available KIT Whole-Body Human Motion Database presented in (Mandery
et al., 2016b) containing a large variety of activities and tasks. These cap-
tured demonstrations are divided into meaningful segments by a hierarchical
segmentation algorithm, which consists of two levels: The semantic seg-
mentation on the top-level using changes in object contact relations and the
motion characteristic segmentation on the bottom-level, which inserts new
segments when the motion characteristic changes significantly, e.g. in case of
a switch between a periodic and a discrete motion. The extracted segments
serve as input to an action recognizer. In line with the segmentation, the
recognition uses semantic as well as motion features. The semantic feature
descriptor is an encoded version of the semantic world state used for the
segmentation. It consists of object contact relations from the point in time
where the segment starts and the effects the action has on the world state
represented by a delta world state. The motion based part of the action de-
scriptor uses global motion features that describe the motion characteristics
of the whole action such as the periodicity of the motion. Both feature de-
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scriptors in combination provide a descriptive and distinct action descriptor.
A labeled action dataset is used to train a decision tree classifier, which is
able to learn the relevant features for each action. The approach is evaluated
on a dataset containing various everyday activities such as preparing dough
or wiping a table. A segmented and labeled task can then be saved as a new
planning operator in the robot’s memory.

Robot Skill Modeling with Statecharts

Since tasks are segmented into action sequences, a representation for these
actions, also known as skills, is required to execute them on a robot. The
requirements of the skills are manifold with respect to the used sensor and
actor modalities as well as the employed algorithms. For example, the move

skill requires self-localization, navigation algorithms and control of a holo-
nomic platform whereas the grasp skill relies on object localization, grasp
knowledge, visual servoing and more. However, the amount of required ac-
tions is finite. According to the study conducted by (Wörgötter et al., 2013)
only 27 basic actions are needed to compose most manipulation tasks. Fig-
ure 1.3 shows ARMAR-III (Asfour et al., 2006) while executing grasping

a cup, pushing a chair, placing a cup and closing a fridge. Such heteroge-
neous skills are difficult to learn from demonstration from the ground up. In
this thesis, a powerful and flexible modeling approach is presented, which
extends the finite state machine formalism called statecharts from (Harel,
1987) to the requirements of robotics. Statecharts allow hierarchical system
modeling, which is crucial for robotics since primitive abilities are often
combined to more complex abilities. The statechart approach is extended
with several new features, most importantly transition based data flow, which
is needed to design flexible and reusable robot skills. A graphical statechart
editor tool is provided that enables a robot developer to design the control
and data flow of new skills in a graphical way. The usability and versatility
of the approach is shown in several use cases such as grasping and bipedal
walking.

6



1.3 Overview

Figure 1.2: Overview of the proposed task learning approach. The red part shows the segmenta-
tion and recognition of a human demonstration, the green part illustrates the know-
ledge representation of the robot and the blue parts contain the components used for
task execution.

7
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Figure 1.3: Humanoid robot ARMAR-III executing different tasks in a kitchen environment.

Task Solving and Execution

To solve a task in a new environment, the robot has to be able to adapt the
learned task knowledge to this particular environment. For the execution
of a task in a different environment the perception results of the robot are
converted into a symbolic representation consisting of predicates to be used
by a symbolic reasoner. In this thesis, a classical symbolic planner is em-
ployed. Raw and processed sensor data, e.g. a 6D object localization result,
is mapped to symbolic predicates stored in the memory of the robot. Based
on these predicates and based on a set of actions with preconditions and
effects, a symbolic domain is dynamically generated. To handle situations
with objects about which the robot has incomplete knowledge, an approach
called symbol replacement is used to generate replacement hypotheses. For
example, the robot is asked to bring some orange juice to the human, but
it does not know how to grasp the orange juice. Based on known affor-
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dances of orange juice, the robot can suggest an alternative, e.g. lemonade,
of which all required information is available to the robot. This approach
uses multi-modal strategies based on data-mining, visual shape assessment
and experiences from previous executions to suggest suitable replacements
for the current task. Since classical planners always need complete domain
knowledge, the dynamically generated planning domain needs to satisfy this
requirement. However, objects that have not been previously seen do not
appear in the robot’s representation of the current environment. Linear plans,
as generated by the employed planner, cannot contain sensing actions, e.g. to
find these objects, because the sequence of actions depends on the result of
the sensing action. Therefore, the proposed symbol replacement is also used
to suggest or replace the location of objects as a hypothesis. The execution of
the generated plan by a robot can fail because of a wrong world state estima-
tion, because of failure during the execution or because the world state was
changed by the human after the robot’s planning. Therefore, the execution is
continuously monitored and corrected through replanning if necessary.
The approach is evaluated in a kitchen scenario, in which several tasks such
as setting a table or preparing a salad have to be solved. The same scenario
is also used in a user study that explores whether untrained users are able to
instruct the robot to solve the tasks.

1.4 Outline

The remainder of this thesis is divided into seven chapters. Chapter 2 in-
troduces background concepts used in this thesis. Chapter 3 presents the
current state of the art for segmentation of observed demonstrations, robot
skill modeling, task execution and end-to-end task learning from demonstra-
tion approaches. In the following chapters, the main contributions of this
dissertation are described. In chapter 4, the developed hierarchical task seg-
mentation and action recognition approaches are presented. The robot skill
modeling approach using statecharts is introduced in chapter 5 followed by

9
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the presentation of the task solving and execution in chapter 6. Chapter 7
evaluates the proposed approaches and chapter 8 discusses and concludes
the thesis.
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2 Fundamentals

In this chapter, essential and underlying concepts are explained, which serve
as the basis for understanding the developed methods in this thesis. First,
the general concept of task segmentation is introduced in section 2.1. In
section 2.2, the concept of Object-Action Complexes is explained, which
is employed for the execution of tasks presented in chapter 6. The original
statechart concept is introduced in section 2.3, followed by an introduction
into the robot development environment ArmarX in section 2.4. Finally,
the fundamentals of classical symbolic planning are briefly described in
section 2.5.

2.1 Task Segmentation Fundamentals

Motion segmentation refers to the process of dividing a motion sequence
into several segments. The meaning of each segment depends on the appli-
cation and differs between the approaches. Some approaches are interested
in activities like walking and dancing (Barbic et al., 2004) while others are
interested in repetitions of a rehabilitation exercise (Lin et al., 2014).
Demonstrations are usually represented as discrete sequences of motion
frames, where each frame describes the momentary poses of all tracked
agents and objects. Segmentation algorithms try to find the frame at which
one segment ends and the next segment begins. These frames are called key

frames. Depending on the application and algorithm, the semantic mean-
ing of a key frame differs. In the first example of this section, key frames
are defined when the motion style changes while in the other example key

11
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frames are defined when a new repetition starts, which heavily depends on
the exercise (see Figure 2.1 for an illustration).

Time

Po
si

tio
n

Figure 2.1: Differences between segmentation algorithms: The green line could represent a key
frame detected by an algorithm extracting different types of motions whereas the
red lines could represent key frames detected by an algorithm extracting repetitions
of an exercise.

Task segmentation is an alteration of motion segmentation and refers in
this thesis to the process of dividing a demonstration into single actions
which change the semantic state of the environment. Since semantic state
changes are not reflected in the motion of the agent only, additional informa-
tion should also be recorded during the demonstration. Different approaches
use additional sensors like haptic or force sensors (Jäkel et al., 2011) or track
also the objects in the scene (Aksoy et al., 2010; Ramirez-Amaro et al., 2014)
as it is done in the approach in this thesis. This additional information is used
to extract semantic relations between objects (Aksoy et al., 2010; Ramirez-
Amaro et al., 2014) or constraints for the motion (Jäkel et al., 2011). Task
segmentation aims at extracting actions that can be directly mapped onto a
robot (e.g. (Aein et al., 2013)). Thus, the result of a task segmentation is a
sequence of primitive actions that in this particular succession represents the
demonstrated task.

12



2.2 Object-Action Complexes

2.2 Object-Action Complexes

Object-Action Complexes (OACs) were introduced by the PACO-PLUS
project1 and presented in (Wörgötter et al., 2009), (Krüger et al., 2011) and
(Geib et al., 2006) as a formalism for sensory-motor processes to capture
the interaction between objects and actions. OACs are designed to achieve
adaptive and predictive behavior on all abstraction levels. Each OAC is de-
fined over an attribute space that can be perceived by the robot itself and
is changed by the actions. In section 6.4 the process of translating noisy,
continuous and uncertain sensor data to a symbolic domain is described.

Figure 2.2: OACs work in three different attribute spaces: Actual world space, sensor world
space and model space. A state from the actual world (aws) is perceived with noisy
sensors and mapped into the sensed world space (ws). The sensed world state can
be mapped without loss into the model world state (s). The execution of an OAC
might lead to a different world state than the predicted world state. Hence, the OAC
should learn to minimize the prediction error as well as the execution error.

An OAC consists of the triple: a link to an execution control program, a
prediction function and a success measure. The execution control program
is responsible for executing the action on the robot. This is done in this

1
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2 Fundamentals

thesis with the proposed statechart approach (chapter 5), which provides the
requirements for modular and hierarchical skills for any abstraction level.
The prediction function is responsible for predicting the effects the associated
execution of the control program will have on the defined attribute space. In
this thesis, this function predicts the change of the symbolic state of the
environment that the action will cause if executed successfully.
The success measure stores the success rate of an OAC over time. In this
thesis, the success of each OAC is measured by evaluating the final event
of each statechart after execution, which signals whether the statechart itself
deemed the execution as successful, and by comparing the expected outcome
(prediction function) of an OAC with the perceived outcome.
To be able to learn from execution trials, each run is stored as an experiment

with the triple of the state before execution, the predicted state and the per-
ceived state after execution. OACs use these experiments to improve their
prediction function to reduce the discrepancy between the predicted outcome
of an OAC execution and the observed outcome. Furthermore, the experi-
ments are also used to adapt the control parameters to reduce the execution
error, which is the error between the actual execution result and the predicted
execution result. Depending on the OAC it can either be easier or make sense
to reduce the prediction error or the execution error. Figure 2.2 illustrates the
different attribute spaces and mappings. Since these learning tasks are highly
dependent on the specific OAC, the decision which learning algorithm is to
be used is up to the OAC designer.

2.3 Original Statecharts

(Harel, 1987) proposes a new formalism to represent and describe complex
systems. The limitations of finite state machines (FSM, (Gill, 1962)) mo-
tivated him to develop the more powerful statecharts representation. Like
FSMs, statecharts consist of states and transitions between these states, but
Harel introduces several new notation features compared to FSMs. The
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main aspect of statecharts is to reduce the complexity for the human de-
veloper. First of all, Harel introduced a hierarchy of states, meaning states
can contain a full statechart themselves allowing for reuse and composition
of states. However, these state levels are not completely separated from up-
per or lower levels, since he proposed inter-level-transitions to directly jump
into substates. Furthermore, orthogonality is used to parallelize the execu-
tion of different states on one statechart level. Each orthogonality level of
one state is executed in parallel, independently of the other levels. A his-

tory-connector is added to give states a memory, controlling which substate
is entered when a state is reentered. Based on the fulfillment of conditions,
Condition-connectors control which state a transition leads to. Finally, each
state can be connected to actions, being triggered during different phases of
the state: entering, leaving and an action that is executed repeatedly as long
as the state is active.

2.4 The Robot Software Development
Environment ArmarX

ArmarX2 (Vahrenkamp et al., 2015) is the robot software development en-
vironment used and significantly extended in this thesis. It is the base for
every component related to robot execution (realization of chapter 5 6). It
is used for connecting to the robot memory and for convenient communi-
cation between different programming languages in the implementation of
chapter 4.
In contrast to YARP (Metta et al., 2006) and ROS (Quigley et al., 2009) Ar-
marX provides not only middleware functionality for distributed processing,
but a complete cognitive robot architecture designed for complex robot sys-
tems such as humanoid robots. The middleware functionality of ArmarX is
an extension of the mature middleware ZeroC Ice (Henning, 2004) in order

2 ArmarX: ����������	��
���	�
������������
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to handle dependencies between components and their life cycle. On top
of the middleware, the framework consists of three layers (see Figure 2.3):
the low-level drivers and control, the mid-level robot capabilities and the
high-level robot coordination.

Figure 2.3: Layers and main elements of ArmarX.

The low-level layer unifies the access to the hardware or simulation as well
as offers all sensor data in a generic format to all interested components as
sensor observers. These sensor observers are used by the statechart approach
to trigger conditional events (see subsection 5.3.5) based on condition checks
located directly at the source to minimize delay and data traffic. Additionally,
real-time controllers run in this layer, i.e. as closest as possible to the hard-
ware. These controllers can be activated and parametrized from the higher
layers.
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The mid-level layer provides services and storage for any kind of know-
ledge. These services range from self-localization of the mobile platform
over object recognition to inverse kinematics. They offer the functionality
to all components in the network. The storage is used for the robot’s mem-
ory, which is essential for the realization of chapter 6. This subframework is
called MemoryX (Welke et al., 2013a; Kozlov, 2013) and will be described
in more detail in the subsection 2.4.1.
On start up all components are idling. The high-level layer brings the robot to
life by coordinating the mid- and low-level components. This is realized with
statecharts (chapter 5) and symbolic planning (chapter 6). Robot skills and
behaviors are modeled with statecharts and combine the services to complex
skills. For example, the grasp skill uses the visual object and hand localiza-
tion, the robot memory, the autonomous gaze selection, inverse kinematics,
visual-servoing and joint control.
All three layers are developed based on several design principles, which are
also reflected in the statechart and task execution approach:

• Disclosure of the internal state: The state of the system at any abstrac-
tion level can be inspected at runtime. The meta state of system shows
the state of all components and their dependencies. All sensor data is
offered in a unified way. The robot’s memory content is disclosed as
well as visualized in a 3D view of the environment, objects and agents.
Statecharts and their control and data flow as well as the state of a task
can be visualized and inspected.

• Distributed processing: All components and statecharts are reachable
via network and can effortless be distributed as needed over multiple
hosts.

• Shared and distributed resources: The robot’s memory can easily be
used,modified and extended by any distributed component. Statecharts
are reused as substates of other statecharts.
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• Type safe and unified interfaces: All calls, also network calls, are type
safe. Even the statechart data flow is type safe due to automatic checks
in the graphical statechart editor (section 5.6).

2.4.1 MemoryX: Robot Knowledge Representation

In order to equip a robot with a symbolic planning system that reasons on
the current knowledge of the robot about the environment, a powerful robot
memory system is needed. This memory system needs to store information
about prior knowledge, which the robot cannot learn by itself and which
was provided by the developer. Further, the current world state needs to
be appropriately represented and continuously updated, containing among
other entities object knowledge, agents, environment maps, affordances and
relations between entities of the memory. Last but not least, the robot needs
to have the possibility to update and persistently store data that it acquired
by itself and that can be useful in the future, such as success rates of OACs
or the currently perceived body schema (Ulbrich et al., 2012).
To this end, the memory system MemoryX of ArmarX (Welke et al., 2013b;
Kozlov, 2013) is used for the proposed task execution approach and extended
to fulfill these requirements.
MemoryX consists of three memory types: Inspired by the findings of Atkin-
son and Shiffrin (Atkinson and Shiffrin, 1968) from the neuroscience field,
it contains the Working Memory and the Long-term Memory. The third mem-
ory type, Prior Knowledge, is designed to store knowledge provided by the
human. While Long-term Memory and Prior Knowledge are persistent, the
Working Memory is volatile.

Internal Structure of the Robot Memory

Each memory is organized as a set of segments. Each segment can only
contain one specialized type of data, e.g. object types or OACs, but an ar-
bitrary number of instances of these. These specialized types are type safe
convenience views on the basic generic element ������, which is the core
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construct of the memory. An ������ consists of a name, of a unique id, of
relations to other entities and of a list of ������	�
�. An ������	�
 con-
sists of a list of variant data types that can morph into any data type and of a
probability distribution for this attribute. The relations to other entities allow
specifying hierarchies in memory segments. Figure 2.4 shows the structure
of one memory in MemoryX.

Prior Knowledge

The prior knowledge memory data is handcrafted and contains two memory
segments: An object type segment and an environment navigation graph
segment. Each object type contains several attributes:

• 3D mesh that represents the object type visually

• object recognition descriptor, e.g. for textured or shape based object
recognition

• grasp definitions that provide information about how to grasp an object

• motion model that predicts how an object moves between localizations

• place orientation that provides a hint how an object should be placed
on a surface

The navigation graph segment consists of graph nodes with the following
attributes:

• list of nodes that can be reached from this node

• 6D pose

• node type for the symbolic planner to give nodes different semantic
meanings, e.g. a location on a table where objects might be or a land-
mark for robot navigation
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Figure 2.4: A memory in MemoryX is a segmented memory. Each segment contains data ele-
ments of one type (e.g. object class). Each element type is of the base type .
An entity is a generic data type with a set of attributes. Attributes themselves consist
of 1 · · ·n values of a generic type called and a probability measure. Vari-
ants can be any type of data, from primitive types like or to arbitrary
complex types like 6D-poses or n-dimensional trajectories.
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Working Memory

The working memory represents the knowledge of the robot about the cur-
rent state of the world. It consists of several segments containing object
instances, agent instances, entity relations, detected shape primitives and
available affordances. The object instance segment entries consist of the
following attributes:

• object type

• all attributes of the object type that it is created from

• 6D Pose

• existence certainty

• current motion model

• localization priority

The agent instance segment entries consist of the following attributes:

• 6D Pose

• robot model

• full robot state containing joint angles, joint velocities, joint torques

The relation segment entries are n-ary predicates, i.e. predicates describing
a relation between n entities that can be true or false. Other segments con-
taining information such as perceived affordances or perceived geometric
primitives are not used in this thesis.
The object instance segment is enhanced with sophisticated update mecha-
nisms. The reader may consider the case in which an object is localized by
the robot at one point in time. Afterwards, the robot is looking in another
direction. Will the object still be there when the robot looks in the first direc-
tion again? A human or another robot might have moved the object in the
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meantime. What happens to the object if another robot had the object in its
hand when it was localized the last time? These are important considerations
for a consistent robot memory if the robot is not able to track all objects at
once. To this end, every object instance is enriched with a location uncer-
tainty and a motion model that predicts how the object might move. Each
motion model provides information how the pose and location uncertainty
changes over time. Most object instances are enriched with the static motion
model by default. This motion model keeps the object instance at one pose,
but it increases the location uncertainty constantly over time. New localiza-
tion updates are fused with a Kalman filter (Kalman, 1960) into the existing
pose and decrease the location uncertainty again. Additionally, the Kalman
filter also deals with noisy localization results and treats the confidence of
the object localizer accordingly since state of the art object localizers fre-
quently produce false positives or noisy poses. One false positive has only
little impact if the object has already been localized several times at a similar
position.
Other important motion models are the robot hand motion model and the
attached-to-object motion model. The robot hand motion model moves the
visually localized hand according to the kinematics of the robot. A visually
localized hand is needed to deal with the error of the 3D localization, yet
relative changes can be used from the kinematics. The attached-to-object
motion model moves the object relative to another object that the robot tracks.
This is usually used to attach a grasped object to the hand of the robot. This
is especially needed because most object localizers cannot localize an object
if it is occluded by a hand.
Additionally, the object instance is enriched with an existence uncertainty,
which is important for the autonomous gaze selection and planning. If an
object is not seen anymore at the old location, it is not immediately removed
from working memory since the object localizer might have reported a false
negative. The existence certainty is gradually reduced after each localization
iteration if the object cannot be seen anymore at the old location.
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The autonomous gaze selection keeps track of requested objects, e.g. from
the task execution system, by leveraging the pose uncertainty and the ex-
istence certainty. Objects are only attempted to be localized if the robot is
looking at their old position to reduce the average computation cost, unless
an object has a low existence certainty, which means in other words the ob-
ject could be anywhere or not there at all. Based on the pose uncertainties
of all requested objects the gaze direction is chosen as presented in (Welke
et al., 2013b). The algorithm directs the gaze and in turn keeps track of all
objects by maximizing a score over the objects with the highest pose un-
certainty, a localization priority of each object and the benefit of looking at
multiple objects at once. All these mechanisms are needed in a system with
partial observation possibilities to keep the working memory as consistent
as possible.

Long-term Memory

The long-term memory is used to store and retrieve information that the robot
acquires or refines itself through exploration and experience. In particular,
for this thesis two types of information are important: OACs and common
places of objects (Welke et al., 2013a; Kozlov, 2013). The OAC statistics
and refinements can be stored in the long-term memory. Additionally, their
parameters, preconditions and effects are stored here for the planning system.
The common places are the learned knowledge about where objects have
been seen in the past by the robot. This data is accumulated for each object
and merged into clusters that can easily be turned into symbolic locations by
the associated replacement strategy (see subsection 6.3.2).

2.5 Symbolic Planning Fundamentals

The task of generating a sequence of actions to achieve a given goal in a
symbolic world is called symbolic planning. Classical symbolic planning
searches for plans in worlds that are fully observable, deterministic, finite,
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static (change is only induced by actions of agents) and discrete (regarding
time, action, objects and effects) (Russell et al., 2003). This type of planning
is used in the task execution approach presented in chapter 6. There are
several different languages to describe the state of the world such as Stanford
Research Institute Problem Solver (STRIPS) (Fikes and Nilsson, 1971) or
Action Description Language (ADL) (Pednault, 1987). The main concepts
of ADL, which is used in this thesis, will be described next.
The state of such a symbolic world is represented as a conjunction of posi-
tive or negative (first-order) predicates that describe the world, e.g. sunny∧
open(Window). The state of unmentioned predicates is unknown based on
the open world assumption, resulting effectively in a tristate of the predicates:
true, false or unknown.
A goal is a partially specified state, represented as conjunctions or disjunc-
tions, e.g. (sunny∧ open(Window))∨ closed(Window). A goal is satisfied
if the goal expression validated against the current state is true.
An Action is defined as a quadruple: a unique name, a set of typed parameters,
preconditions and effects. The unique name is the identifier of the action.
The set of typed parameters is used in the effects and conditions to realize
flexible actions. If actions were specified without parameters, one action
would be needed for each possible configuration, e.g. graspBottle() instead
of grasp(Bottle).
The preconditions are first-order logic expressions with only action parame-
ters used in the predicates and must be fulfilled in order to execute an action.
The effects of actions are the changes caused by the action to the state of
the world. The changes can add or delete negative or positive predicates.
Deleted predicates imply that the state is unknown. If the state of an predi-
cate is known, the state is always explicitly expressed as positive or negative.
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An example action could look like this:

grasp(o : Ob ject, l : Location,h : Hand) :

Preconds : empty(h)∧on(o, l)

E f f ects : Add(¬empty(h))∧Del(on(o, l))

It is to be noted that any literal-variable combination can only appear once
in the world state and adding a positive literal also invokes deletion of the
negative literal and vice versa. Additionally, preconditions, effects and goals
can contain quantified variables, e.g. ∃x on(x,Table).
These are the main components of a planning domain, but additionally all
types and constants present in the world must be specified. A planning do-
main describes and contains all information necessary about the world for
the planning problem. Specifically, a planning domain consists of the do-
main description and the problem description. The domain description con-
tains all actions, type declarations, predicate declarations and typed constants
whereas the problem description contains the initial state of the world and
the goal. A reduced, but complete domain in the PKS (Petrick and Bacchus,
2002) syntax that is used in this thesis is given in Appendix A. A domain
can be used by a symbolic planner to generate a grounded action sequence
that can be executed by a robot. How such a domain description is gener-
ated from the current robot knowledge and how it is utilized is described in
chapter 6.
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There have been numerous publications on the topic of learning from demon-
stration. This chapter provides an overview of the literature and the state
of the art. The chapter is divided by the subproblems tackled in this thesis.
First, literature dealing with task understanding by segmentation is presented.
Section 3.2 describes robot skill modeling and programming approaches fol-
lowed by task execution and monitoring approaches in section 3.3. In sec-
tion 3.4, end-to-end learning from demonstration approaches are presented
and discussed.

3.1 Task Understanding by Segmentation

One important component of learning from observation is the ability to un-
derstand the demonstration performed by the teacher. Since tasks can be
understood as a sequence of actions (Dillmann, 2004), the first step to under-
stand a task is to segment it into the actions it consists of. This is a difficult
problem to solve since there is no clear ground truth of what is the correct
segmentation of a task. Furthermore, the demonstration can vary between
individuals due to kinematic and dynamic differences (Newell et al., 1998)
and vary in each repetition since humans cannot reproduce tasks perfectly,
e.g. due to fatigue (Winter, 1991). Furthermore, the correct segmentation
solution depends on the target application (Lin et al., 2016b) and even then
it is ambiguous at which point one segment ends and a new segment starts.
For example, in (Lin et al., 2014) physiotherapy sessions are recorded with
the goal to extract each repetition of each exercise, while (Lv and Nevatia,
2006) aim to extract walking or waving actions. In addition, most approaches
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found in the literature are tailored onto their task - especially if they are data-
driven and the training data set is very specific (Lin et al., 2014). Motion
segmentation has recently been of great interest in the research community
although it has already started in the 90’s (Kang and Ikeuchi, 1995). A large
amount of different approaches has been developed, which are summarized
and compared in the survey paper by (Lin et al., 2016b) or more generally
about time series segmentation in (Keogh et al., 2004).

(a) (b)

Figure 3.1: Different motion capture techniques: (a) RGB based marker-less skeleton tracking.
Source: (Azad et al., 2008) © 2008 IEEE (b) Marker-based tracking of skeleton and
objects as used in this thesis. Source: (Wächter and Asfour, 2015) © 2015 IEEE

3.1.1 Capturing Demonstrations

Before segmenting a demonstration, it needs to be observed and recorded
by technical means. The different segmentation approaches utilize various
sensor systems based on their requirements and availability such as marker-
based motion capture systems (VICON, 2016; OptiTrack, 2016; Motion
Analysis Corporation, 2016), mobile systems based on inertial measurements
units (IMU) (Roetenberg et al., 2009; Burns et al., 2010) or (depth) cameras
(Han et al., 2013; Zhang, 2012; Sell and O’Connor, 2014). Figure 3.1 shows
examples of different motion capture techniques.
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Marker-based motion capture systems provide the highest precision of the
different systems, but require attaching multiple reflective markers per body
segment, e.g. 53 markers for the whole body in total in (Terlemez et al.,
2014), and a set of infrared cameras around the subject. Since these systems
rely on vision they are susceptible to occlusions and often require manual
post-processing of the recorded data to fill gaps during occlusion of markers.
Segmentation algorithms using those systems are (Ilg et al., 2004; Lv and
Nevatia, 2006; Kulic et al., 2009; Kulic and Nakamura, 2010; Vögele et al.,
2014; Fox et al., 2014; Mandery et al., 2016a) and the approach presented in
this thesis.
IMU-based systems pose less restrictions for the usage, are not affected by
visual occlusions and are easier assembled, but also less accurate and prone
to position drift since they estimate the position from acceleration data with a
Kalman Filter (Luinge and Veltink, 2005; Lin and Kulić, 2012). Algorithms
using IMU-based systems are (Li et al., 2013; Berlin and Van Laerhoven,
2012; Chamroukhi et al., 2013; Yuwono et al., 2013; Aoki et al., 2013).
Depth cameras as sensors for tracking demonstrations are most flexible, re-
quire no preparation of the demonstrator and can be attached to a robot for
online tracking. Yet they also achieve a lower accuracy and a significantly
lower robustness regarding recognition errors. Additionally, complex and
computationally costly algorithms are needed to extract the human pose or
object pose from the captured point cloud which induces a higher latency and
lower data frequency (Livingston et al., 2012). Algorithms using depth cam-
eras are for example presented by (Aksoy et al., 2015, 2016) and (Devanne
et al., 2017).
Tracking systems using (stereo) RGB cameras as described by (Azad et al.,
2008) and (Bandouch and Beetz, 2009) are the least accurate, but the most
natural. They are used by (Kuniyoshi et al., 1994; Bradski and Davis, 2002;
Ratanamahatana and Keogh, 2004; Bashir et al., 2005; Aksoy et al., 2011;
Lee et al., 2012; Pei et al., 2013; Ramirez-Amaro et al., 2015).
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3.1.2 Motion based Task Segmentation

Motion based task segmentation analyzes trajectories in joint space or task
space with the goal of directly finding meaningful segment points or seg-
ments. The approaches can be categorized as online or offline approaches
and supervised or unsupervised approaches. Online means in this case that
the computational complexity is low enough to execute the algorithm as fast
as the motion data is recorded as well as that the algorithm is causal. Many ap-
proaches are acausal and need either the whole demonstration or a window of
the trajectory after the current frame for their analysis. Online approaches are
for example presented by (Kulic et al., 2009; Lan and Sun, 2015; Amft et al.,
2005; Barbic et al., 2004) whereas the algorithm presented in (Ataya et al.,
2013; Chamroukhi et al., 2013; Lv and Nevatia, 2006; Vicente et al., 2007)
only support offline segmentation. Most methods in the literature perform
segmentation by identifying segment points instead of recognizing segments
themselves. Some of these algorithms segment by thresholding on feature
vectors such as zero-velocity crossings (ZVC) (Pomplun and Mataric, 2000;
Lieberman and Breazeal, 2004; Fod et al., 2002).
(Pomplun and Mataric, 2000) study how rehearsal of motions effects mo-
tion imitation and assume that motions have clear start and end poses. Other
feature spaces used with zero-crossings are joint acceleration (Guerra-Filho
and Aloimonos, 2007; Ricci et al., 2013), linear acceleration (Yuwono et al.,
2013) and angular jerk (Yamamoto et al., 2006). Yet these algorithms suffer
all from the assumption that the crossings always indicate a segment and tend
to over-segment motions, e.g. a circular motion in 2D has either too many
zero-velocity-crossings (on each quarter) if each dimension is considered
separately or none if both dimensions are considered jointly. Furthermore,
threshold based methods always need tuning, which becomes more difficult
with higher dimensionality and heterogeneous features. Other algorithms
segment by thresholding on distance metrics. Commonly used metrics are
Euclidean distance (Mueen et al., 2009; Hao et al., 2013), Mahalanobis dis-
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tance (Barbic et al., 2004) and the Kullback-Leibler divergence (Kulic et al.,
2009; Kohlmorgen and Lemm, 2002).
(Vögele et al., 2014) employ a self-similarity matrix, which compares the
current frame to future frames. Segments are extracted by detecting distinct
temporally coherent activity segments with a neighborhood graph formed
by a kd-tree (Bentley, 1975). The mentioned segments are then further ana-
lyzed to find recurring patterns, i.e. motion primitives. The idea to segment
by searching for segments which are most different is similar to the idea
presented in this thesis.
(Koenig and Mataric, 2006) propose using signal variance as the distance
metric. Their segmentation exploits the assumption that drastic variance
changes suggest that the observed action changed.
(Devanne et al., 2017) also use a statistic feature, i.e. the standard deviation
of spatio-temporal shape poses. Segments are extracted by detecting local
minima of the standard deviation. A low standard deviation of the shape
poses corresponds to slower motions according to the authors.
Hidden Markov Models (HMM, (Rabiner, 1989)) are instrumented by many
approaches since they model the probability of state sequences. This concept
corresponds nicely to motion trajectories. One approach using HMMs is
introduced by (Kohlmorgen and Lemm, 2002), which was later extended with
clustering by (Kulic et al., 2009). State transitions of the HMM signal new
segments in these approaches. (Kulic and Nakamura, 2010) and (Aoki et al.,
2013) use hierarchical HMMs for online and incremental segmentation of
human behavior. (Asfour et al., 2008) present an approach for learning dual-
arm tasks with HMMs consisting of key frames extracted in a preprocessing
step. These key frames are defined based on direction changes of single
joints if sufficient time has passed since the last key frame and the joint
angle difference is sufficiently high. Additionally, key frames are inserted
after every pause of motion. By using only the key frames for training of the
HMMs a high number of states is avoided, which is beneficial for matching
of multiple demonstrations.
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Another type of approach is template matching (Kang and Ikeuchi, 1995;
Zhang, 2012; Ormoneit et al., 2001; Lin and Kulić, 2014; Lee et al., 2015),
in which patterns are fitted over windows of the motion to determine seg-
ments. (Ormoneit et al., 2001) examine in a first step the signal-to-noise
ratio to adjust the window size used for fitting curves of premade templates.
(Lin and Kulić, 2014) use velocity sequences in combination with acceler-
ation crossing points to locate segment points in addition to a fine-tuning
step with HMMs to avoid over-segmentation. (Meier et al., 2011) match
Dynamic Movement Primitives (DMP) from a predefined primitive library
on (partially) observed motions to find segments and recognize the actions.
A drawback of template matching is that it always requires to generate a
library of templates, which only covers all possible motions if applied in a
restricted use case such as segmentation of rehabilitation exercises. Further-
more, variability in the execution is not always well enough generalized by
the templates (Lin and Kulić, 2014).
(Beaudoin et al., 2008) present a motion-motif finding algorithm based on
strings constructed from a pose-alphabet, where each motion pose is labeled
with a letter. In combination with an adjacency matrix the distance between
letters and in succession strings is utilized to cluster similar motions and to
create a motion-motif graph, which can be used for segmentation.
A popular unsupervised approach is presented by (Barbic et al., 2004) based
on Principal Component Analysis (PCA) and as an improvement based on
Probabilistic Principal Component Analysis (PPCA, (Tipping and Bishop,
1999)). They employ the paradigm that the complexity of motions is differ-
ent and when the complexity exceeds a defined level a key frame should be
inserted. In a more technical wording, the segmentation method generates
key frames based on the gradient of the error of a motion frame after recon-
struction from a low dimensional representation created with PCA/PPCA.
The reconstruction error is created for every frame of the motion and used to
calculate the gradient by comparing the current error to the error of a frame
half a second earlier to compensate for noisy data. A new key frame is ex-

32



3.1 Task Understanding by Segmentation

tracted if the difference between the current error gradient and the average
gradient error of all previous frames is three times higher than the standard
deviation of all previous frames. After a new key frame has been extracted,
the algorithm starts again with the rest of the motion. This method is then
also extended to use PPCA instead of PCA.
(Lv and Nevatia, 2006) present an approach based on HMM and multi-class
AdaBoost, in which several different features consisting of combinations
of related joint coordinates are used to generate a 141-dimensional feature
space that covers different aspects of the motions. For each feature and for
each motion class the motion dynamics are learned by one HMM. Given a
motion sequence, the observation probability is calculated with each HMM.
Each HMM itself does not provide a reliable classification. Thus, AdaBoost
is employed to combine the multitude of weak classifiers to a more reliable
classifier.
Another unsupervised approach, which gained a lot of attention recently,
is proposed by (Zhou et al., 2013) based on clustering. Figure 3.2 shows
the approach schematically. They present an extended version of k-means
clustering (MacQueen, 1967) called Hierarchical Aligned Cluster Analysis
(HACA), which clusters motion segments based on their frame-wise simi-
larity. Kernel functions are used to overcome the problem of learning only
spherical clusters. To account for variances in segment length, an extension
of Dynamic TimeWarping (Yi et al., 1998), called Dynamic Time Alignment
Kernel, is applied that assigns a mapping for each frame of two segments
and thus makes two segments with different lengths comparable. The hi-
erarchical extension of ACA uses multiple levels with different temporal
resolutions resulting in different lengths of the segments. This reduces the
computational complexity and provides a hierarchical decomposition at dif-
ferent time scales.
One drawback of this approach is that the exact number of clusters, i.e. the
number of different motions, needs to be known in advance for each motion
sequence that is to be analyzed. In other words, a human has to extract the
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motion types contained in a motion sequence and parameterize each trial by
hand. This limits the usability to specific segmentation applications, such as
analyzing a specific exercise, and makes the approach not applicable on a
general motion database. In combination with the problem of motion vari-
ances, such as grasping objects at different places, the usage of this approach
requires tuning of the parameters for each dataset.

Figure 3.2: Hierarchical Aligned Cluster Analysis used to segment motions into recurring mo-
tion primitives. Source: (Zhou et al., 2013) © 2013 IEEE

(Lin et al., 2014) propose a supervised, data-driven approach for segmen-
tation of physiotherapy exercises. Their approach classifies each frame of
a motion sequence into either of two classes: a segment point or a non-
segment point. Figure 3.3 shows an example of the input data for the clas-
sification. Points around a transition between two segments are labeled as
segment points and the remainder are labeled as non-segment points. If they
had only used the exact transition points as segment points, the imbalance
between non-segment points and segment points would be too high for a
classifier to learn the problem. Since many machine learning algorithms are
interface-wise interchangeable, the authors evaluated three different learning
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algorithms with different combinations of pre- and post-processing. As an
optional pre-processing step PCA or Fisher’s Discriminate Analysis (Jain
et al., 2000) is utilized. As binary classifier one of the following algorithms
is used: k-Nearest Neighbor (Jain et al., 2000), Quadratic Discriminate Anal-
ysis (Jain et al., 2000), Radial Basis Functions (Orr, 1996), Support Vector
Machines (Burges, 1998) or Artificial Neural Networks (Jain et al., 1996).
The authors evaluated boosting (Freund et al., 1999) and bagging (Breiman,
1996) as post-processing options.

Figure 3.3: Segmentation based on data point classification. p1 denote segment points, while
p0 denote non-segment points. Instead of only using single segment points for
classification a window around each segment point is used to obtain a more balanced
training set. Source: (Lin et al., 2014) © 2014 IEEE

To consider not only one frame for classification they employ feature stack-
ing, i.e. positions from a few frames before and a few frames after the current
are added to the feature vector. Since the classification label distribution is
not balanced the classes are downsampled with points preferred that are close
to segment borders. With this approach, the authors achieve impressive re-
sults with classification rates of up to 100 %. However, they only evaluate
the approach on simple motions like squatting with only three IMU sensors
attached to the subject, which were also cleanly executed if the example
shown in the paper is representative. How well this algorithm performs on a
larger dataset with higher variances in motion execution is unfortunately not
evaluated. (Lin et al., 2016a) propose to utilize the fact that human motion is

35



3 State of the Art

optimized in regard to different criteria which depend on the executed action.
They extract from motion data which criteria, e.g. maximum force output
or minimal energy consumption, in a motion segment has most likely been
optimized. To this end, they use a sliding window in which Karush-Kuhn-
Tucker optimality conditions are minimized. Examples for optimized criteria
are exerted force and angular acceleration. Whenever an optimized criteria
changes, a key frame is inserted.

3.1.3 Semantic Task Segmentation

While the majority of approaches relies on motion data, some approaches
utilizing semantic information emerged in recent years. (Ziaeefard and
Bergevin, 2015) dedicate a survey paper to semantic activity recognition
based on single images or RGB videos. Activity recognition can be simi-
lar to task segmentation: When atomic actions are to be recognized from a
longer sequence some kind of decomposition is also required as a preprocess-
ing step. (Ziaeefard and Bergevin, 2015) categorize the different semantic
approaches into several feature spaces: Poselets, which are parts of a body
posture that are distinctive for a specific action, scene and object context,
which have a semantic relation to the actions performed, and attributes that
expose more information about objects or activities.
Poselet based approaches are fairly similar to motion based template match-
ing methods, but assign a specific semantic to parts of the body and combine
multiple poselets to recognize actions (Yang et al., 2010; Maji et al., 2011;
Raptis and Sigal, 2013; Wang et al., 2014).
Approaches based on objects and scene context are similar to the semantic
part of the hierarchical segmentation proposed in this thesis. They try to
leverage the additional information provided by the context to restrict the
possible actions. (Marszalek et al., 2009) use movie scripts as annotation
for videos and try to extract recurring relations between scenes and actions.
(Zhang et al., 2014) separate the background from the person in the fore-

36



3.1 Task Understanding by Segmentation

ground and learn spatio-temporal interest points for the person and several
coarse features for background regions to combine them in a bag-of-features
model.

Figure 3.4: Segmentation of manipulation actions based on object relation changes extracted
from color and depth regions calculated from RGB-D images. Source: (Aksoy et al.,
2017) © 2017 IEEE

(Aksoy et al., 2010) proposed their first approach in 2010 utilizing contact
relations between objects for object categorization as well as action recog-
nition. It is a model free approach that segments an input video stream into
regions based on their color and estimates contact relations based on spatial
proximity of the color regions as shown in Figure 3.4. Actions are not directly
recognized with traditional labels, but based on their effect on the environ-
ment. Objects are categorized by their affordance (Gibson, 1979) exhibited
during the observed action sequence. They later extended this approach to
RGB-D sensors (Aksoy et al., 2015). In a further extension of their work
(Aksoy et al., 2016), they are able to segment and recognize actions from se-
quential and concurrent action sequences. Additionally, basic manipulation
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primitives can be extracted as well as scene entities that share the same roles
in the observed action sequences.
(Summers-Stay et al., 2012) use an action grammar and extract an activity
tree from human motion as well as object contact relations. The activity tree
is built based on events in the action grammar. Events can consist of bringing
two objects together, resulting in a new object, or using a tool together with
a single object, resulting in a transformed object. The objects in the activity
tree originate from such events, such as a piece of bread on a plate, from
bringing together a slice of bread and a plate, which results in a tree structure.
Each event triggers adding new children to a tree leaf node. With this deep
hierarchical representation it is possible to segment and represent long action
sequences. Actions used for evaluation in this paper are typical household
actions such as making a sandwich.
(Ramirez-Amaro et al., 2014) proposed a similar approach in the same sce-
nario. They learn a decision tree from hand-object relations like hand moving

towards an object or object in hand. Whenever these rules lead to a state
change, a new key frame is inserted. This approach is similar to the semantic
segmentation presented in this thesis, yet the rules are more specific since
they are also used for action recognition.
(Pardowitz et al., 2008) propose a method for segmentation based on gestalt
laws and a Competitive Layer Model with hand and object trajectories as
input data. (Hendrich et al., 2010) and (Barchunova et al., 2011) present
approaches for segmentation of manipulation skills based on multi-modal
sensor input. (Barchunova et al., 2011) use data gloves, a contact microphone
and contact-force sensors as input for a Bayesian inference method (Fearn-
head, 2006) to segment a manipulation sequence of a single object (since the
microphone is attached to the object). They are able to segment actions like
holding, (un)screwing a bottle or shaking. A similar sensor modality is used
by (Matsuo et al., 2009) to segment in-hand manipulation tasks into manipu-
lation primitives. They equipp an object with force-sensor skin and measure
the contacts of the human hand on the object. From the force measurements,
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they create a contact force index, which is a generalized representation of
all contact forces and torques on the object. The contact force indices are
clustered with the expectation maximization algorithm to assign a group
of contact force indices to manipulation primitives. Whenever the current
contact force index cluster changes a new primitive starts and thus, a new
segment begins.

3.1.4 Discussion

Most segmentation approaches focus on the extraction of segments from
motion data for specific applications or on the extraction of general activi-
ties like walking, running, jumping etc. One drawback of such approaches
is their lack of generalization capability to high variance motions, which
often contain targeted motions, such as grasping. Additionally, data-driven
approaches or template-matching methods are fixed to the training data that
is used, which might be suitable if the target application has a fixed set of
actions, but is unsuitable if general motions have to be segmented. No ap-
proach focuses on segmentation of manipulation actions since their motions
are not distinctive enough solely based on motion data. Approaches based
on semantic information tackle this problem by using motion independent
features such as object relations. Yet semantic approaches only succeed if
semantic changes are observed, which is not always possible for actions such
as tossing a bottle that do not cause any observable state changes. To this end,
the approach presented in this thesis leverages both feature spaces, motion
data and object relations, to achieve a robust segmentation of different types
of manipulation actions.

3.2 Robot Skill Programming and Execution

Modeling and programming of robot skills require expert knowledge and
development experience. The task becomes even more difficult if complex
robots like humanoid robots with a high number of sensors and actors (degree
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of freedom, DOF) are the target platform. This can be driven into the extreme
if robot-agnostic robot skills are to be developed. Modeling such skills in
general purpose programming languages is difficult due to the requirement
to coordinate several sensor and actor systems, which all work independently
from the host at their own frequency. Therefore, modeling methods that target
the requirements of robot skills are needed. Many papers have dealt with this
challenge and most papers propose hierarchical and graphical modeling such
as statecharts.

3.2.1 Statechart Concept and Variations

Besides the original publications (Harel, 1987; Harel and Politi, 1998), a
multitude of further publications (Samek, 2002; Coleman et al., 1992; Von
der Beeck, 1994) and software projects (Angermann et al., 2014; Yakindu,
2015; EasyCODE, 2015) on statecharts for a variety of use cases exist. In
this thesis, the focus regarding statecharts lies on software realizations of
statecharts and on statecharts in the context of robotics. However, not all
semantics of the original statecharts are seen as feasible by authors of derived
approaches. To this end, most papers change or extend the semantics of
statecharts to their needs and opinion.
(Von der Beeck, 1994) and (Breen, 2004) critically discuss several features of
the statechart formalism such as orthogonality and history states. Breen ad-
vocates that orthogonality should often be solved by independent statecharts
and that history states can weaken the concept.
There are several projects offering frameworks for developing your own
statecharts. In late 2015, the W3 consortium released version 1.0 of an XML
statechart notation (ScXML, (World Wide Web Consortium (W3), 2015)) to
establish one format describing Harel statecharts. Similar, the Object Man-
agement Group defined the UML StateMachines notations (Object Manage-
ment Group (OMG), 2015). Yet both mainly specify general purpose nota-
tions of the Harel formalism. The approach and realization presented in this
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thesis is a ready-to-use statechart framework designed for use in robotics. In
UML it is also possible to specify control and data flow graphically in an
activity diagram. The equivalent of states are actions, which are connected
via activity edges called ControlFlow or ObjectFlow. ControlFlow edges are
only capable of activating their target actions, while ObjectFlow connects
two ObjectPins and can carry data values. This feature is similar to the data
flow of the statechart concept presented in this thesis, yet the ObjectPins only
provide very rudimentary data flow features such as carrying one data field
between two actions.
The well-known de-facto extension of C++ Boost (Huber, 2007) contains
a subproject called the Boost Statechart Library, which offers a statechart
implementation close to the original formalism of Harel. It has the unique
feature to specify statecharts with C++ templates and to achieve compile-
time statechart validation. While this is a valuable feature to ensure valid
statecharts, it does not fit the requirements of experimental robotics, i.e. quick
adjustment of parameters and the statechart structure for short development
cycles. On the side of graphical tools, the graphical statechart modeling tool
QM (Quantum Leaps, 2015) provides means for designing and implementing
event-driven low-level statecharts for embedded systems with a strong focus
on traceability at the code level. The statechart structure is generated into
C++ code, i.e. each state and transition is represented by its own C++ class or
function. This means that code regeneration and recompilation are necessary
for every statechart structure change. In statecharts presented in this thesis,
the goal is to generate code only to catch errors in the user code as early
as possible and for auto-completion purposes in Integrated Development
Environments1 (IDE), but not for functional features.
In (Yakindu, 2015) another graphical statechart modeling tool is presented,
aiming at usability and assistance inside the editor during typing. Never-

1 Integrated Development Environments (IDE) are powerful text editors with additional func-
tionality like compiling, debugging and convenience features for editing.
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theless, it seems to target low-level statecharts like QM with limited data
flow control. Data is stored in global variables and is accessible from any
state as it is done in many other approaches. Yet data flow control is of high
importance in the statecharts presented in this thesis as described later.
Statecharts are used in robotics to control behavior on a high-level in several
approaches (Klotzbücher and Bruyninckx, 2012; Merz et al., 2006; Bohren
et al., 2011; Billington et al., 2010; Thomas et al., 2013) since statecharts
address several of the problems in robotics like state-based control and
event-triggered execution. Most of the approaches change or extend the
original formalism to their identified requirements of robotics. Several ap-
proaches remove some functionality since the original statecharts are too
unrestrictive for reusability and composition of complex robot skills (e.g.
(Klotzbücher and Bruyninckx, 2012)). Others add more functionality, mostly
for less complex statecharts (e.g. inner transitions in (Angermann et al.,
2014)). (Stampfer and Schlegel, 2014) present an aspect similar to the dy-
namic structure of statecharts presented in this thesis. They replace states
with alternatives from a “robot app store” to increase robustness and reduce
complexity.

restricted Finite State Machine (rFSM)

In many aspects, the statecharts presented in this thesis are similar to the re-
stricted Finite State Machine (rFSM), presented in (Klotzbücher and Bruyn-
inckx, 2012), from the Orocos framework (Bruyninckx et al., 2003). They
also try to address the shortcomings of the original statechart formalism of
Harel. rFSMs are a minimal subset of UML2 and of Harel statecharts con-
sisting of the three elements states, transitions and connectors. Connectors

are a unifying representation for the initial, junction, entry and exit pseudo-
states of UML2.1 for a reduced formalism. Similar to (Angermann et al.,
2014), one addition is internal transitions for complexity reduction in some
use cases. Concurrency is omitted in rFSMs since they claim that the way
how concurrency can be implemented is unclear and that the feature is not
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needed in robotics since coordination as done in rFSM is always a short ac-
tion. Distribution of a statechart over several hosts is also discussed. Yet they
introduce a container state which adds two more state hierarchy levels just
for using a distributed state instead of the completely transparent approach
as proposed in this thesis.
Overall, rFSMs focus on coordination of components, but offer only very
limited support to specify transition based data flow. Figure 3.5 shows an ex-
ample of an rFSM for coordinating a gripper with entry and exit actions and
guarded transitions. The authors promote the "pure coordination" concept,
where the coordination part of the framework should be strictly decoupled
from the computation capabilities to avoid unresponsiveness and blocking.
This resembles the state phases of the approach presented in this thesis. The
state phases are split into coordination and computation phases. To give
the developer the ability to easily create critical sections, separation is only
encouraged and not enforced in the here presented statechart framework.

root
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do: open_gripper()

closing
do: closing_gripper()
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entry:
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Figure 3.5: Example for coordinating a gripper with restricted Finite State Machines (rFSM)
for modeling hierarchical robot skills. Source: (Klotzbücher and Bruyninckx, 2012)
© Joser 2012
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SMACH

In the well-known robot operating system ROS (Quigley et al., 2009), an
approach called SMACH (Bohren et al., 2011) is employed that focuses on
data flow in statecharts. However, the scope of data flow in ROS SMACH is
handled differently in comparison to the data flow in the statechart approach
presented in this thesis. In ROS SMACH, a child state can access all data
used by its parent state. This eases programming because it is easy to use data
on several levels, but also violates the principle of modularity of states and
creates implicit data dependencies between states. A state using data fields of
a parent state cannot easily be reused in another state since it depends on the
availability of specific data fields in a parent state. Due to this, data scopes
over several state levels are not allowed in the statechart concept proposed
in this thesis and explicit mapping of data between state levels is required.
Furthermore, ROS SMACH only supports graphical online visualization of
states, but does not provide any tools for graphical programming.

Simulink: Stateflow

Stateflow (Angermann et al., 2014) is a highly integrated statechart approach
of the software toolkit MatLab, which allows convenient design of behaviors.
In combination with the simulation environment Simulink, their statechart
approach can easily be connected to a robotics environment and be utilized
for developing robot skills and behaviors. In Stateflow, not all features of
the original statecharts are incorporated, e.g. global events are not possible.
They also introduce new features such as temporal logic for execution based
on the passed time or condition actions, which are actions connected to
events instead of transitions and are executed if the event occurs. Another
feature is inner transitions which are similar to reflexive transitions, but skip
the exiting and entering action of a state, which can greatly simplify the
structure of a statechart. But the biggest selling point of Stateflow remains
the tight integration into the powerful frameworks of MathWorks to quickly
create running systems.
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3.2.2 Graphical Programming Tools
in Robotic Frameworks

When developing high-level software on a robotic platform, it is desirable
to configure and connect existing components using a graphical user inter-
face to prevent writing repetitive and therefore error prone source code. This
allows new as well as experienced users to intuitively and efficiently com-
bine mid- and high-level components in order to create a functional system
structure. Since writing software is one of the main challenges in robotics
for beginners, such as students, Graphical Robot Programming offers a great
entry point. It removes the obstacle presented by syntax and control flow
of a conventional programming language (Rahul et al., 2014). Graphical
software development often combines complexity reduction by connecting
modular components on a macroscopic scale with the option to write low-
level software (e.g. joint controller) (Pot et al., 2009). Graphical and tabular
representations are an accessible way to model system behavior in the con-
text of simulation, validation and consistency checking of a system design
before final implementation (MathWorks, 2015c). (Hirzinger and Bauml,
2006) are using Simulink (MathWorks, 2015b) in conjunction with MAT-
LAB (MathWorks, 2015a) to graphically model subsystems and generate
executables running on a realtime target. The Microsoft Visual Programming
Language (Microsoft, 2012b), as part of Microsoft Robotics Developer Stu-
dio (Microsoft, 2012a), proposes developing the complete logic and program
flow in a visual development environment as it lowers the bar for novice pro-
grammers. However, in this thesis, visual development is deliberately limited
to the definition of structure, of used data types and of data flow in the state-
charts for the benefit that the user can write unrestricted C++ code. The RDE
YARP (Metta et al., 2006) also offers means of graphical programming with
the gyarpbuilder (Paikan, 2014), yet on another level. With gyarpbuilder it
is possible to connect continuous input and output data of components graph-
ically and to insert arbitrators in these connections to manipulate data flow
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easily. RtcLink (AIST, 2017) from the OpenRTM project offers a GUI to
operate on real-time components in a network. It can activate and deactivate
components as well as connect their ports. It leverages the capabilities of an
established IDE by providing the GUI as an Eclipse plugin.

3.2.3 Other Robot Skill Modeling Approaches

Besides approaches based on statecharts, like the approach presented in this
thesis, many other representations have been utilized or developed to model
and program robot skills. Some approaches rely on Finite State Machines
(e.g. (Aein et al., 2013; Loetzsch et al., 2006)). One of the first papers pre-
senting a graphical robot programming system is (Naylor et al., 1987), but
due to the early years of robotics and computers the focus of this paper lies
on graphical editing and less on graphical modeling.
(Loetzsch et al., 2006) present the Extensible Agent Behavior Specification
Language (XABSL) for describing behaviors of autonomous agents based
on hierarchical finite state machines. This approach was used by teams com-
peting in the RoboCup (Lötzsch et al., 2003) to design the behavior of soccer
robots. XABSL is a simple programming language and a behavior consists
of four components: Agents, options, states and decision trees. An agent is
here the top-level entity and consists of a number of behaviors, which are
called options. Options are hierarchical compositions of sub-behaviors to
form complex behaviors from primitive behaviors. Each option is a finite
state machine with states that define actions of the agent. These actions can
reference other options allowing for hierarchical decomposition of a task.
Transitions in the finite state machines are triggered based on a decision tree.
These decision trees utilize sensor data or input data in combination with
basic arithmetic and Boolean logic to form decisions.
(Asfour, 2003) and later (Lehmann et al., 2006) propose to use Petri nets for
parallel execution of tasks with error detection and exception handling. The
parallelism of Petri nets is used to simultaneously execute tasks of different
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subsystems, such as a mobile platform and an arm. An additional Petri net
is used for supervision of the execution to allow for interruption by the user
or a planning system. (Ziparo and Iocchi, 2006) introduce Petri Net Plans
as a representation of multi-agent robot plans and actions. The petri nets
are composed of several basic constructs such as ordinary-action, sensing-

action, conditionals, loops and more. Furthermore, they extended petri nets
with labeled/conditional transitions for coordination with external input or
triggers by the operator.
(Fraser et al., 2016) present an approach for a fixed, hierarchical, compact
robotic task representation that allows for easy specification of a task process.
Based on three sub-task types (AND, OR, THEN), task constraints can be
specified for unordered and ordered execution and dynamic action selection
based on the current world state. Which sequence of action is chosen follows
a top-down decision process which is fed bottom-up by confidence values of
potential actions about the applicability of the action. Though, as intuitive
and simple as the representation is (which is an important aspect in robotic
task specification) it seems very limited in regard to flexible, sophisticated
skills. The task representation cannot be parameterized to new situations
that are not covered during task representation design, and there is no data
flow between nodes. Thus, the adaptability is restricted to the situations
specifically modelled in the design phase. Failure handling also seems to
be marginal and might lead to starvation and/or invalid paths: If one action
node of an AND/THEN-node never reaches the activation threshold (but the
average of all nodes is high), the system will starve although there might be
a valid path somewhere in another branch of the task representation.
Behavior-based systems (e.g. (Arkin, 1998; Nicolescu and Matarić, 2002;
Frank et al., 2012; Paikan et al., 2014a,b)) are another way to specify high-
level robot functionality. The most striking difference is that statecharts are
state-based and behavior-based systems are rule-based. This means state-
charts have an explicit current state, while behavior-based systems only have
an implicit state. Additionally, behavior-based systems are inherently paral-

47



3 State of the Art

lel whereas statecharts are sequential. While behavior-based systems may be
closer to behavior of humans or animals, their scalability for programming
complex capabilities is questionable. For a human, an explicit state is easier
to comprehend. Moreover, it eases the debugging process. Both are vital
criteria for software development and maintenance.

3.2.4 Discussion

This section has given an overview over the state of the art regarding robot
skill modeling and programming. While many robotic research groups still
use unstructured plain code with long if/else or switch statements, a multi-
tude of approaches for structured modeling of robot skills is available. Most
of these use graphical modeling approaches such as statecharts for better
comprehensibility. Others use Domain Specific Languages to simplify and
specialize the programming language on the target domain. While several
graphical approaches (e.g. (Klotzbücher and Bruyninckx, 2012; Angermann
et al., 2014; Bohren et al., 2011)) are comparable to the statechart approach
presented in this thesis, they all fail to consider the data flow in robot skills
adequately. Complex robot skills such as visually guided grasping coordinate
a multitude of different algorithms such as object recognition and localiza-
tion, motion planning and motor controllers, which each require a set of
parameters to function correctly. To achieve composable, reusable and adapt-
able or even robot-agnostic robot skills some of these parameters need to be
adjusted for different tasks or different robots. Some approaches allow for
limited data flow specification (Angermann et al., 2014; Bohren et al., 2011)
for single data values and/or at a large scope, but it is necessary to be able to
specify in detail the interface of a skill, i.e. the input and output parameters,
to achieve truly reusable skills. (Bohren et al., 2011) keep all variables at the
statechart scope. While this seems practical, it violates the reusability princi-
ple and opens the door for unwanted side effects during repeated execution
of a statechart.
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Furthermore, robot skill modeling approaches for complex systems like hu-
manoids need to provide means to cope with distributed systems and failures
of sensors and subsystems. Since humanoid robots are thought to perform
tasks like humans, tasks are likewise complex. This means that the repre-
sentation needs to be able to represent low-level actions such as platform
navigation and high-level capabilities like symbolic planning operators (e.g.
grasp object X). The statechart approach presented in this thesis tackles
these problems as described in chapter 5 and provides a clearly structured
and comprehensible representation.

3.3 Execution of Complex Tasks
on Humanoid Robots

Single robot skills are useful to achieve one specific goal. But combining
them to dynamic action sequences or plans increase the possibilities greatly.
Yet how skills can be successfully combined requires advanced knowledge
or complex reasoning about the current state of the world: object locations
differ, object relations change and the robot might be at a different position.
All these changes require different parameterization of the robot skills or
even different action sequences.
One prerequisite for executing tasks in a dynamic environment is to perceive
and understand the world. In other words, the current state of the world needs
to be considered when executing a task.
There are two fundamentally different types of approaches: Approaches that
model tasks directly and approaches that solve tasks based on some reasoner
and a knowledge base. A literature review reveals many different approaches
on this topic. Researchers started working on this topic several decades ago
with e.g. a theoretical hierarchical planning and execution system as demon-
strated in (Nilsson, 1973). The idea is to use short plans, which recursively
consisted of more detailed plans themselves. Nilsson also considered failures
and surprises during execution, which is a crucial part of any task execution
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system, by backtracking the full plan to the problematic action and solving
the task again from that point. This process is propagated up the hierarchy
until a level can find a new solution. Yet Nilsson pointed out that porting
such a system onto a real robot would require substantial additions.
Similarly, Hierarchical Task Networks (HTN) by (Erol et al., 1994) try to
divide-and-conquer the planning problem by specifying actions and tasks,
of which the tasks themselves consist of actions and tasks. This approach
combines using predefined tasks and reaching a goal with a planner. The
authors compare their tasks to "recipes" for a problem. Both types, actions
and tasks, can have preconditions, whereas only actions can have direct ef-
fects since tasks are always just compositions of actions. From logic point
of view, each task contains or just provides a set of suitable action/task can-
didates. In this way, it is possible to reduce the complexity by magnitudes.
Though, additional knowledge and often more knowledge engineering by the
developer is required for each task. Another advantage is the possibility to
plan on state variables instead of predicates. The main difference to classical
planning (see section 2.5) is not to achieve a goal, but to perform a task.
The search algorithm itself in two implementations of the authors, PyHop2

and SHOP3, is a simple search, where each task path is followed recursively
until a subtask has failed. In this case, the plan path is backtracked to the last
decision point and the next option is chosen.
In contrast to this, classical planners like FastForward4 (Hoffmann and Nebel,
2001) or Planning with Knowledge and Sensing (Petrick and Bacchus, 2002),
only apply planning operators, i.e. actions, to the world state to achieve a
given goal. Yet less knowledge engineering is needed here to create a valid
domain.
The Task Description Language (TDL) introduced by (Simmons and Apfel-
baum, 1998) is an approach which uses designed task descriptions and gen-
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erates trees as representation of the robot tasks. These trees consist of two
different types of nodes: command nodes and goal nodes. Command nodes
specify behavior or robot skills that are executed upon entering the node.
Command nodes can only have other command nodes as children. Goal

nodes represent high-level behaviors and are expanded at run-time into other
goal nodes or command nodes. Without further constraints all children of
a node are executed concurrently. But since robot actions often need to be
executed in a particular order it is possible to specify additional constraints
for each node such as passing of time or that another sibling node has to
be finished first. Similarly, termination constraints can be specified, which
terminate the execution of a node prematurely if a specific event occurs.
Semantically, there are many parallels between TDL trees and statecharts.
Yet TDL trees are by default concurrent whereas statecharts are by default
sequential. Figure 3.6 shows an example of a TDL tree.

deliverMail

navigate Speak
ToLocn

center
OnDoor

monitor
Pickup

lookFor
Door

move center
OnDoor

lookFor
Door

Speak

notify
Sender

Figure 3.6: Example of a Task Description Language tree describing one task. Source: (Sim-
mons and Apfelbaum, 1998) © 1998 IEEE

The shift of focus in the recent years goes towards integrating such task
description or solving systems into full robot systems with sophisticated
natural language understanding (Ovchinnikova et al., 2015; Dzifcak et al.,
2009; Nyga and Beetz, 2012a; Matuszek et al., 2013; Liu and Zhang, 2016),
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reasoning about the environment (Agostini et al., 2015; Beetz et al., 2011)
and execution monitoring (Aein et al., 2017; Konecny et al., 2014).
An approach focusing on execution monitoring based on planning is pre-
sented by (Konecny et al., 2014). Their method considers not only symbolic
effects of actions during monitoring, but also temporal aspects. They show
that even failures of actions without observable effects can be detected by
using causal, temporal and categorical knowledge.
(Agostini et al., 2015) propose a method for planning and plan execution in
dynamic environments with the perk of object replacement based on affor-
dances. The system is evaluated in a cooking task. First, a plan is generated
from a prototypical problem definition. This plan is checked for unavailable
objects in the current scene. If any object is missing, a reasoning engine in
combination with a database (Szedmak et al., 2014) is used to find objects
with matching affordances. If a replacement is found, the missing object
in the plan is replaced and the execution starts without actual replanning.
Action FSMs, which were previously learned from demonstration, are used
for execution (Aein et al., 2013). The success of an action is measured by
evaluating the effects of actions based on the changes of the object-relations.
The replacement method is similar to the one proposed in this thesis, yet
the proposed one incorporates more modalities. Another difference is that
they plan first and replace afterwards whereas in the proposed method the
planning follows the replacement process. This way, the costly planning pro-
cess is only triggered if known objects are available. Additionally, locations
are proposed by the replacement method. (Boteanu et al., 2016) also present
an approach for object replacement leveraging big semantic networks like
WordNet5 (Pedersen et al., 2004).
(Beetz et al., 2011) propose another system for preparing a meal. Here, the
cooking task is performed by two robots with a different range of duty. The
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recipes are downloaded from the World Wide Web, e.g. from a how-to6

website for humans. They create a sketchy-plan from the natural language
recipe in technical terms. Each step of a recipe is represented as a goal to
be achieved. A symbolic planner uses this to generate an action sequence to
achieve this goal. The robot also utilizes ontologies to determine probable
places of objects. For example, the pancake mix is flagged with the attribute
perishable. Perishable objects are stored in the fridge. Therefore, the robot
generates the hypothesis that the pancake mix might be in the fridge, which
is needed for the plan generation. This feature is similar to the location
hypothesis generation proposed in this thesis. Yet different knowledge bases
are used. Whereas (Beetz et al., 2011) use an object ontology based on
object attributes, the approach proposed in this thesis uses exchangeable,
multi-modal strategies to generate hypotheses.
One important part of an autonomous robot acting in an unstructured envi-
ronment is the capability to process and store the perceived knowledge for
future usage. (Beetz et al., 2015) present a robot knowledge system called
openEASE7 that strives to develop an online knowledge base for robots that
can be accessed and filled by robots all over the world to extend the rea-
soning capabilities and profit from the learned capabilities of other robots.
The knowledge base includes semantic information as well as an episodic
memory about the world state and trajectories of the agents. To provide struc-
tured access to the information a complex query language is employed. This
knowledge base is similar to the robot memory system MemoryX that is used
in this thesis.
(Bollini et al., 2013) also had the vision to create a kitchen chef robot called
BakeBot, which can understand recipes written for humans and which creates
a feasible plan and also executes this plan. This work is similar to the work of
(Beetz et al., 2011). The recipes are also downloaded automatically from the
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Internet and parsed into known, parametrized baking action sequences. It is
possible to extract multiple action sequences from one recipe text. Therefore,
the extracted baking action sequence is optimized based on a reward function,
which is learned from a labeled dataset of recipes with their correct action
sequences. The FastForward planner (Hoffmann and Nebel, 2001) is used to
generate motion primitive sequences from the baking action sequences.
(Lisca et al., 2015) propose a system using Probabilistic Action Cores

(PRAC), see (Nyga and Beetz, 2012b, 2015), that obtains task descriptions
from natural language instructions, generates a plan based on the task de-
scription. The plan is then executed with predefined control programs. This
system is evaluated in the context of tasks in a biological laboratory and in
particular in a DNA extracting procedure on the PR2 robot.

3.3.1 Discussion

(Nilsson, 1973) pointed out that the execution of plans must be well inte-
grated into the generation of plans with means to compare the expected
results with the actual execution results. This is one important aspect that
has not received appropriate attention up until today. Most planning frame-
works only offer a file based interface for calculating the full plan and do
not take the monitoring of plan execution into account. This is probably due
to the fact that all benchmarks assess how fast planners create full plans in
a simplified simulated world. Evaluation on real robots is rarely performed
due to the required high effort.
Whether to use classical planning or HTNs for a sophisticated service robot
system depends on the application. Classical planners cannot deal, unlike
HTNs, with domains containing a multitude of constants and actions. Yet
HTNs require more knowledge engineering since not only the actions, but
also higher level tasks need to be modeled. Another decision factor is whether
it is feasible or more suitable to generate goal descriptions (classical plan-
ning) or task descriptions (HTNs) for the robot.
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Although a lot of progress has been made in the area of reasoning and plan-
ning for service robots in dynamic environments, all approaches are far away
from a general solution to the problem due to the complexity of the whole
systems and each of the subsystems. Those systems need to integrate several
subsystems such as language understanding, perception, reasoning and exe-
cution. Since not even the problems of the subsystems can be seen as solved
also the compositing systems are incomplete. Therefore, all approaches tar-
get specific applications such as cooking a meal. The approach presented in
this thesis improves several aspects of the existing systems such as symbol
replacement and on-the-fly generation of a complex symbolic planning do-
main completely from the robot’s memory state. One of the main concepts of
the execution system is the exchangeability and extensibility. While several
replacement strategies (see subsection 6.3.2) are already presented in this
thesis, new modalities can be added even during runtime. Further, the do-
main translation (see section 6.5) can easily be adapted to new environments
and different features of a robot.

3.4 End-to-End Task Learning from
Demonstration Approaches

While there are many papers dealing with subproblems of learning from
demonstration (LfD) many researchers have also presented approaches
dealing with all aspects needed for a functional system, i.e. end-to-end ap-
proaches. These approaches need to provide solutions for the understanding
of the demonstration, the representation of the learned information and for
the execution. Here, approaches focusing on task learning from demonstra-
tion are presented. A general survey about learning from demonstration can
be found in (Argall et al., 2009).
LfD is composed of three steps: observation, representation and execu-
tion. Although every step is necessary for a complete LfD system, some
approaches skip or simplify parts of the process, e.g. (Mohseni-Kabir et al.,
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2015) demonstrate in simulation or (Dillmann, 2004) assumes that primitive
actions are already available. This is due to the fact that LfD is a vast research
area with a series of difficult subproblems, which constitute a reasonable
research problem themselves, e.g. the segmentation of demonstrations as
elaborated in section 3.1.
As a first step, the capturing of the demonstration needs to be processed.
Here, some approaches convert the demonstration in a generalized repre-
sentation (Jäkel et al., 2010) or use a representation that is tightly linked
with the next step (Aksoy et al., 2011; Ramirez-Amaro et al., 2014). Most
approaches segment and classify the demonstrations as the next step (Ku-
niyoshi et al., 1994; Dillmann, 2004; Aksoy et al., 2011; Ramirez-Amaro
et al., 2015) before generalizing (Jäkel et al., 2012; Mohseni-Kabir et al.,
2015; Ekvall and Kragic, 2006, 2008) and transforming the demonstrated
task into an often hierarchical representation (Dillmann, 2004; Zöllner et al.,
2005; Mohseni-Kabir et al., 2015). In the various approaches, the execution
phases are different since they need to be suitable for the employed robot.
Symbolic planners managing primitive actions are utilized in this phase (e.g.
(Mohseni-Kabir et al., 2015; Nicolescu andMataric, 2003)), or own represen-
tations are tailored to their requirements (e.g. (Chang and Kulić, 2013b)).
(Kuniyoshi et al., 1994) present one of the first approaches for an end-to-
end system for learning from observation. They use a multi-camera system
to capture the human demonstration by tracking the hand and the objects.
Segmentation and classification based on motion types, manipulated objects
and action effects are utilized to understand the demonstration, which is used
for bottom-up inference of the demonstrated plan. For execution, the stored
plans are instantiated on a 6 DOF robotic arm with a gripper and adjusted to
the currently perceived environment. Whereas this sounds like everything is
already solved, every component (certainly due to hardware limitations) was
rudimentary compared to today’s systems.
(Nicolescu and Mataric, 2003) present a system based on behavior networks.
Their system is able to generalize observed sequences into common action
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sequences over multiple demonstrations and extracts temporal dependencies
as well as preconditions needed for each action. Furthermore, the human can
provide feedback to the robot to correct or improve tasks.
A programming by demonstration system is presented by (Dillmann, 2004)
in which a training center consisting of hand trackers, data gloves, multiple
cameras and a microphone is used for capturing the demonstrations. An ab-
stract, system invariant task knowledge representation builds the base for
mapping demonstrations from a human to a robot. Tasks are demonstrated
via action sequences, which are pruned of irrelevant actions during a gen-
eralization step. The actions are organized in a tree structure based on a
rule-based system. The actions themselves are assumed to be available and
not described in the paper. (Zöllner et al., 2005) presented a similar approach
with the additional benefit of alternative actions.
In (Ekvall and Kragic, 2006) an approach was presented that is able to learn
from multiple human demonstrations by decomposing each task into sub-
tasks for segmentation and classification. Furthermore, the segmented tasks
are inserted into a task model, which describes their goals and constraints.
For online execution a task level planner is employed that enables the robot
to choose the best strategy depending on the current environment.
(Jäkel et al., 2012) presented an approach for learning manipulation tasks
from demonstration by utilizing constraints observed during demonstra-
tion and constrained motion planning. The constraints consist of force, con-
tact and collision constraints. The initial constraints are extracted from the
demonstration of the teacher and are then adapted to the kinematics of the
robot. Generalization is done based on different demonstrations, which have
to cover well the possible variations of the task, e.g. large distances between
two goal positions of a placing action would lead to a gap in between those
demonstrations in the generalized model although it might be possible to
place the object there. This problem is alleviated by additionally testing
more configurations in simulation. For perception of the demonstrated task,
multiple cameras, datagloves, motion trackers and tactile sensors are used.
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The system is evaluated on two complex and difficult bi-manual manipula-
tion tasks on a real two armed robot: Unscrewing a bottle while holding it
and lifting a spoon with one hand to grasp it with the second hand.
An approach based on Petri nets is proposed in (Chang and Kulić, 2013b) and
an extension in (Chang and Kulić, 2013a). The petri nets are automatically
created from one or multiple demonstrations and used to generate action
sequences for imitation of an observed task. The latter paper extends the
approach by an error recovery mechanism.
(Wörgötter et al., 2015) present a concept called structural bootstrapping
for improving robot skills on all abstraction levels through exploration and
accommodation and assimilation of new knowledge. Structural bootstrap-
ping is a probabilistic process inspired by child language acquisition that
combines existing knowledge with new observations to supplement miss-
ing information to the robot’s knowledge base about planning-, object- and
action-relevant entities. They use means of task segmentation and action
semantics learning (Semantic Event Chains (SEC) - (Aksoy et al., 2011)),
affordance learning (Xiong et al., 2013), symbolic planning (Petrick and Bac-
chus, 2002) and plan recognition (Geib, 2009) to infer unknown actions and
objects in observed plans und thus learning new plans from observation.
Two approaches based on Hierarchical Task Networks (HTN) are presented
by (Mohseni-Kabir et al., 2015) and (Boteanu et al., 2016). (Mohseni-Kabir
et al., 2015) focus on an interactive learning process between the human
teacher and the robot, in which the robot can ask for help and additional
information based on collaborative discourse theory. The robot is able to
learn a task from a single demonstration or multiple demonstrations, which
are merged into one HTN based on the work presented in (Mohseni-Kabir
et al., 2014).
(Ramirez-Amaro et al., 2015) transfer skills to a humanoid robot based
on semantic rules and a knowledge base. The authors claim to extract the
"essence" of an activity, which means which aspects of the demonstrations
are needed to achieve the goal. The semantic rules ground on object relation
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information such as which tool or object is involved in an action. Since se-
mantic information is utilized, the approach is invariant to different timings
or execution styles and one scenario can be transferred to new situations. The
execution on the robots makes use of a pre-existing primitive library which
is parametrized according to the observed action.
A library of actions with semantics is learned in (Aein et al., 2017) based on
the observation method and the action semantics proposed in (Aksoy et al.,
2011). Each semantic state change rule is associated with a set of primitive
actions that in combination achieve this change. Tasks are represented by
linking them to a specific set of these rules. A FSM is used for execution
of tasks, which selects appropriate actions and monitors the fulfillment of
action effects. For evaluation a large set of different objects is used in 30 trials
for each of ten tasks and for two more complex, composited tasks (object
rearrangement and making a salad).

3.4.1 Discussion

Although many papers have been published in the area of learning from
demonstration (LfD) there exists no complete solution that can solve every
task and application and it will take several more years or decades until LfD
is solved. On the contrary, most approaches work only for a very limited
range of applications and only under certain conditions. E.g. the approach of
(Ramirez-Amaro et al., 2015) only distinguishes between three motion types
(move, not move, tool use) and object relations, which do not differentiate
between a grasp and a pushing action. In most approaches, demonstrations
are carefully adapted to the system regarding motion style and speed since
natural motions are more difficult to perceive and segment. Therefore, the
segmentation approach in this thesis is targeted to improve segmentation
results on natural, seamless motion. While action recognition works well,
most limitations arise when it comes to the execution on robots because
then detailed, robot adapted representations are necessary. The difficulties
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lie here in the several modalities that are relevant for different actions, a
high precision and the correspondence problem between human and robot.
Therefore, a powerful hierarchical skill programming approach is used in
this thesis for representing skills of all modalities.
Additionally, it is a challenge to reason on the world and adapt robot skills
to it. To tackle this problem, this thesis presents an approach that can plan
on incomplete environment knowledge by proposing hypotheses for objects
and locations and utilizing these to plan goal fulfilling action sequences.
Table 3.1 shows a comparison of the discussed approaches based on several
criteria: The criterion observation describes what sensors are used. This de-
termines what kind of information is available and how precise the data is.
The criterion situation adaption describes if an approach can adapt to situ-
ations that are different from the demonstrated situation. A more advanced
adaption is described by the online planning criterion. This describes if a
task can be extended or restructured to solve the task at hand. Skill learning

refers to whether the underlying skills or actions are learned from demon-
stration as well or if predefined skills are used. The skill/task representation

states, if available, the name of the used representation for execution of skills
and tasks. The last column, symbol replacement, describes whether the ap-
proaches can suggest alternatives for symbols, e.g. objects and locations, that
lead to an acceptable solution.
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4 Task Understanding by
Hierarchical Segmentation
and Action Recognition

Understanding natural human demonstrations is an indispensable ability of
robots that should learn from observation. Yet understanding demonstrations
is a difficult endeavor. The number of possible demonstrations in an environ-
ment with several objects is not manageable if each demonstration is seen
as one element. Alongside with the divide-and-conquer paradigm, a first
step towards understanding is segmenting a demonstration into meaningful
segments to reduce the complexity of the observation. Fortunately, complex
tasks like preparing a meal consists usually sequences of actions, such as
grasp, mix, place etc. However, a human performs these actions in a seam-
less stream without clear transitions between these actions, which increases
the difficulty to segment such demonstrations into a sequence of actions.
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Most task segmentation algorithms focus on poses or motion trajectories
of the human (see subsection 3.1.2), whereas a few algorithms focus on
semantic features extracted from the world state. Nevertheless, both feature
spaces alone are not distinctive enough to extract all segments: Motion based
methods have difficulties to generate a correct segmentation if one action
follows another seamlessly, e.g. if an object is first grasped and then pushed,
there might not be any significant change in the motion between these actions.
Based on motion trajectories it is also difficult for humans to perform such
a segmentation. In general, it is likely that two persons segment the same
demonstration differently (Lin et al., 2016b).
Semantic approaches face other problems. They depend on the fact that the
state of the world changes. However, if the detection of these changes fails,
no segmentation point can be extracted. For example, detecting the effect of
shaking a fluid in a bottle with current state of the art observation systems
is difficult. Fortunately, in many situations problematic action transitions in
one feature space are easy to deal with in the other feature space.
Yet the segmentation of a demonstration does not reveal which actions it
consists of. The segments are just unlabeled motions and world states, which
need to be associated with known descriptions of actions. The is known in
the literature as action recognition. In most approaches, action recognition
is similar to segmentation approaches performed based on the motion data
(Aggarwal and Ryoo, 2011) and in some cases based on semantic features
(Aksoy et al., 2016). But some actions, especially goal-directed manipulation
actions, do not have a similar motion trajectory. For example, the motion of
a grasping action from a table in contrast to the motion of a grasping action
out of a box. The motion trajectory for the object on the table is a fairly
straight motion whereas a curved motion is needed for grasping out of a box.
Semantic features, however, dot not always change during actions, which
makes recognition of such action with semantic approaches impossible.
In this thesis, a hierarchical task segmentation approach which uses semantic
features in combination with motion based features is proposed. This chapter
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describes an extended version of the approach presented in (Wächter and
Asfour, 2015).

Figure 4.1: Overview over the segmentation and recognition approach.

The hierarchy consists of two levels (see Figure 4.1):

• the semantic level (section 4.3)

• the motion characteristic level (section 4.4)

The features of the semantic level are extracted from object contact rela-
tions. The segmentation is premised on the assumption that every change
in the semantic feature space must be caused by an action of the demon-
strator, whereas the features of the motion characteristic level describe the
dynamics of a motion. The top-level of the hierarchy uses the semantic fea-
tures since these features are more reliable than motion based features. Thus,
the motion based features are used on the bottom-level of the hierarchy for
sub-segmentation of the semantic segments and are used to find segments
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missed by the top-level. In the next two sections, the data representation that
is needed to apply this algorithm will be explained.
A novel approach for action recognition is presented in section 4.5, which
leverages similarly to the segmentation approach both feature spaces, motion
and semantic feature space, to create a meaningful action descriptor that is
used for learning a decision tree.

4.1 Representation of Human Demonstrations

In order to capture human demonstrations with a high accuracy and at a high
resolution, the marker-based motion capture system VICON1 is employed.
In contrast to most other approaches, the objects and the environment are
captured in addition to the human. To be able to capture all entities, markers
have been attached to the human subject as well as to objects of interest
present in the current scene (see Figure 4.2).

Figure 4.2: Difference between resulting object distances of marker representation and mesh
model representation. The red arrow illustrates the distance between the closest
two markers of two objects while the green arrow illustrates the minimum distance
between the mesh models. The mesh model distance is significantly smaller.

1
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4.1 Representation of Human Demonstrations

Since tracking the whole body of the human does not improve the segmenta-
tion, only the hands of the human are considered during the post-processing.
The hands are treated as rigid bodies as the fingers are not tracked. Three
markers on each object and each hand are sufficient to calculate the 6D pose
of the object or hand. Yet more markers increase the robustness in case of
occlusions. All markers are labeled and grouped according to the object they
belong to. The motion capture data consists of 3D Cartesian space trajecto-
ries of all markers. However, the trajectories and the label of the markers do
not sufficiently describe the shape of the object for the proposed segmenta-
tion approach. Figure 4.2 illustrates the difference between representation
consisting only of markers and the representation with 3D mesh models. To
enhance the recordings, the trajectories are converted from a marker repre-
sentation to a 6D object pose representation with motion converters of the
MasterMotorMap framework (Terlemez et al., 2014). The converters require
a mapping of the labeled markers from the recordings to virtual markers on
a 3D mesh model. Thus, 3D mesh models of each object were created with
a 3D object scanner (Kasper et al., 2012) or common 3D modeling tools and
equipped with virtual markers on the model. The resulting object representa-
tion consists of a 3D mesh model of each object as well as the positions of all
labeled markers attached to this object. This information allows to calculate
the 6D object pose using the 3D shape registration algorithm described in
(Besl and McKay, 1992). In Figure 4.3, the mapping of observed and virtual
markers is visualized.
To retrieve the 6D pose trajectory for an object, the transformation is cal-
culated for each frame and applied to the base pose of the object. This con-
version is performed for all captured objects, which leads to an accurate
representation of the scene during the demonstration. In the applications pre-
sented in this thesis, trajectories with at least three markers for each object in
any frame were used. If a marker is missing for a short time in the recordings,
the marker position is interpolated based on the other markers belonging to
its marker group.
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Figure 4.3: Mapping of observed markers (blue spheres) attached to an object to virtual markers
(green spheres) on its model. Both, observed and virtual markers, are aligned with
the 3D shape registration algorithm of (Besl and McKay, 1992). Text in the figure
describes the labels used for identification of the markers. Left: The visualization of
the cup’s 3D mesh shows the 6D pose of the perceived object. Right: For non-rigid
objects, like a human hand, the relative positions of the markers change depending
on the deformation of the object. Since the object model is static, this results in
larger errors of the marker mapping. These errors are in the case of a hand small
enough to not affect the segmentation algorithm.

4.2 Input Data for Task Segmentation

As input data for the hierarchical task segmentation the motion data of the hu-
man as well as of the objects and the environment are used. In the following,
these are referred to as entities. A similar approach was proposed by Aksoy
et al., which uses an RGB stereo camera (Aksoy et al., 2010, 2011) or RGB-
D (Aksoy et al., 2015) images as input. While this approach does not require
to model each involved object, it does not provide 6D trajectories of human
hands or objects and lacks robustness in terms of action execution velocity
and precision. The authors estimate contacts between objects by recognizing
overlapping color blobs. In this work, marker-based motion capture is used
to record demonstrations. As mentioned earlier, the shape and the pose of the
entities are not sufficiently represented by the markers alone. A segmentation
based on the distances between the entities requires the use of high distance
thresholds to detect contact points that are far from the markers. This reduces
the robustness of such a method since entities in the demonstrations need to
have a relatively large minimum distance between each other. The introduc-
tion of a 3D mesh model as entity representation instead of markers allows
the use of sophisticated mesh-based collision detection algorithms, such as
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4.2 Input Data for Task Segmentation

the one described in (Larsen et al., 1999), to accurately calculate the distance
between objects and to detect contacts or collisions between them.
A demonstration D is represented by the 6D trajectories of all entities and
the distances between all entities for each time frame:

D = ((M1, · · · ,Me),(F(1), · · · ,F(T ))) (4.1)

F( f ) = ((�p1( f ), · · · ,�pe( f )),(d1,2( f ), · · · ,d1,e( f ) . . .de−1,e( f ))) (4.2)

where F( f ) defines the pose of each entity and the distances between all
entities at frame f , T is the number of frames, e is the number of entities
in the demonstration, di, j( f ) is the distance between the entities i and j at
frame f , �pi( f ) is a 6D pose of entity i at frame f and Mi is the mesh model
of entity i.
Figure 4.4 shows all the intermediate data representations during the seg-
mentation process.

Figure 4.4: Several data representations are used in the process of the hierarchical segmentation
as illustrated here.

69



4 Task Understanding by Hierarchical Segmentation and Action Recognition

4.3 Semantic Segmentation based on
Object Relation Changes

On the top level of the hierarchical segmentation, the human demonstration
is segmented into semantic segments based on semantic changes in the world
state similar to the idea presented in (Aksoy et al., 2010). Semantic segments
are motions which have an observable semantic effect on the world state
or as (Ziaeefard and Bergevin, 2015) wrote “What does it mean to do an
action?”. This world state consists of entity contact relations, which are ex-
tracted based on the 3D mesh model and the 6D pose of each object. Thus,
the demonstration is segmented by detecting key frames based on the change
of relations between entities. Only contact relations are considered, where
contact(A,B) denotes contact between entities A and B. Other relations like
on or in ground on such contact relations and do not improve the results of
the segmentation method. Yet they might prove valuable for action recogni-
tion. The relation contact(A,B) relies on the closest distance between any
part of the involved entities A and B. contact(A,B) returns true if the dis-
tance falls below a predefined threshold ε . To deal with noise in the distance
measure, hysteresis is applied on the threshold if a contact has been detected
in the last frame.
It is possible that the first frame with contact between two objects is not
the moment that is considered by a human as the end/start of a motion. For
example, if the human grasps an object, the fingers might touch the grasped
object while still approaching the object. The final grasp pose, i.e. the key
frame, might occur later when the grasp is stable. To account for this, key
frames are extracted at the local minimum of the distance curve between
two objects. Figure 4.5 illustrates this behavior. Additionally, to compensate
motion capture inaccuracies the relative velocity between two objects needs
to be similar, i.e. the objects need to move in the same direction with similar
velocity.
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4.3 Semantic Segmentation based on Object Relation Changes

Figure 4.5: When approaching an object the first contact (left) between two entities is not always
the desired key frame. Therefore, the key frame detection is deferred until the contact
relation is stable (right).

The three relations between objects are:

1. absent-Relation:

absent f (A,B) = !A f ∨ !B f , (4.3)

where !A f or !B f means that the object A respectively B is not present
in frame f.

2. contact-Relation:

contact f (A,B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(dA,B( f )< ε)
∧ lA,B( f )

, !contact f−1(A,B)

(dA,B( f )< ε ∗λ )
∧ (|�̂vA,B( f )|< τ)

, contact f−1(A,B),

(4.4)
where dA,B( f ) is the Euclidean distance between entity A and B, λ
denotes the hysteresis factor. τ is a velocity difference threshold below
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which the velocity of two objects is considered similar. lA,B( f ) is true
if a frame is a local distance minimum between object A and B:

lA,B( f ) =

⎧⎪⎪⎨
⎪⎪⎩

true,
(dA,B( f )< dA,B( f −1))

∧ (dA,B( f )< dA,B( f +1))

f alse, otherwise

(4.5)

�̂vA,B( f ) is the Cartesian velocity difference between entity A and B:

�̂vA,B( f ) = �p ′
A( f )−�p ′

B( f ) (4.6)

3. no_contact-Relation:

no_contact f (A,B) = !contact f (A,B) (4.7)

All three relations are mutually exclusive.
Calculating these relations for all frames and all entity combinations results
in the semantic representation R of the demonstration as a three-dimensional
array RT×e×e with:

Ri jk = {absent,contact,no_contact} (4.8)

Whenever the relation between two entities in two consecutive frames
changes its status, a frame is considered a key frame k and added to the
set of key frames K. This results in the segmentation subarray S:

ST×e×e = (ski j)k∈K,i, j∈{1...e} (4.9)

This matrix encodes the semantic world state as relations between all objects
for each extracted key frame. Figure 4.6 depicts several snapshots of a drink-
ing demonstration and the corresponding object relation matrices. Figure 4.7
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4.3 Semantic Segmentation based on Object Relation Changes

shows an example of a demonstration sequence including actions such as
grasping, shaking, tossing and pouring to which this segmentation algorithm
was applied.

Figure 4.6: Visualization of multiple semantic world states during a demonstration. The matri-
ces describe the relations between the objects and the corresponding state seen in the
3D visualization. The abbreviations mean: A: Absent, N: No Contact, C: Contact.
The colors show the same information as the letters. From the human model only
the hands are considered for the segmentation.

4.3.1 Post-processing: Merging of Key Frames

Not all actions correspond to only one relation change. For example, the
action of dropping a ball (B) from a hand (H) into a container (C) can be
associated with two relation changes (under the assumption that liquid can
be tracked):

contact(B,H) ∧
→

!contact(B,H) ∧
!contact(B,C) contact(B,C)
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4.4 Segmentation based on Motion Characteristic

Hence, key frames need to be merged into groups of key frames that seman-
tically belong together. For most actions, these key frames appear within a
small time window as it is the case for the action of dropping an object into
another. A simple way to cope with this is to consider the temporal displace-
ment of two key frames and to merge them if this distance between the key
frames is too small.
State changes are always instantaneous, although e.g. pouring might seem
as a continuous state change. However, the change of the contact relation
does not take time. If the pouring takes noticeably long, it would result in
two key frames: A first key frame when the liquid gets in contact with the
target container and a second key frame when the liquid loses contact with
the source container. Thus, the first would be the starting key frame and the
second key frame would be the end of the pouring action.

4.4 Segmentation based on
Motion Characteristic

The first level of segmentation described above results in a segmentation
of the human demonstrations in semantic segments that have observable
changes in the world state. Nevertheless, some actions have unobservable
effects, even for a human. For example, the effect of shaking two transparent
liquids in a bottle cannot be observed visually. In this and other examples,
such unobservable effects are relevant for segmentation and ultimately for un-
derstanding the demonstrated task. However, their detection based on current
state of the art methods and sensor technologies is challenging.
The previously described method can only detect events when two entities
come in contact with each other. Yet, it is desirable to also detect actions
without observable effects. To this end, the segmentation from the previous
section is extended with a sub-segmentation that extracts motion parts within
a semantic segment based on the trajectory shape and the motion characteris-
tics. In other words, the detected semantic segments serve as the input for the
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bottom-level of the hierarchy and are divided further by the motion charac-
teristic segmentation. The goal of the sub-segmentation is to decompose the
semantic segments into smaller parts that contain motions with different mo-
tion characteristics and potentially represent the different motion primitive
within a semantic segment. Many motion based segmentation algorithms use
insufficient features for extracting atomic actions since they target longer
activities like walking or dancing (Barbic et al., 2004; Zhou et al., 2013)
or cannot handle high variances in action repetition (Lin et al., 2014). For
example the Zero-Velocity-Crossings algorithm in (Fod et al., 2002) detects
key frames when the motion changes the direction or stops completely. Thus,
actions with seamless transitions cannot be detected and false positives occur
frequently for periodic actions. Segmentation based on Principal Component
Analysis or Dynamic Movement Primitives extracts segments with an upper
complexity limit of the motion. But a complexity limit does not describe a
distinctive feature for an action: A grasping motion is often almost linear
while a shaking motion has a complex trajectory profile.
Yet several motion based segmentation methods could be used for this sub-
segmentation. In this work, a novel heuristic is used that assesses the char-
acteristic of a motion and divides a motion when the characteristic changes.
To capture the characteristic of a motion, the approach uses the dynamics of
the motion as a basis, i.e. the acceleration values of the trajectory. Figure 4.8
continues the segmentation shown in Figure 4.7 and shows an example for
this motion segmentation applied to the same demonstration sequence.
There are two fundamentally different ways to segment motion data. One
type is to find key frames that meet a specific criteria, and the other one is
to search for meaningful segments. The presented approach lies in between.
The approach searches for key frames that maximize the difference of the
trajectory parts left and right of a key frame. As such, the approach differs
from the pure key frame search since the key frame itself is unimportant. It
also differs from segment search because it does not require the complete
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4.4 Segmentation based on Motion Characteristic

demonstration segments to be known in advance. In short, the proposed
approach segments the trajectory in most distinctive parts.
To find the key frames, the demonstration trajectory is analyzed recursively.
On every recursion level, the given trajectory segment is searched sequen-
tially with a predefined step size for the key frame that divides the trajectory
best. Subsequently, the segments left and right of this key frame candidate
are analyzed again in the same manner until the segment size falls below a
threshold or no additional segments with a sufficiently good quality can be
found. The whole approach is described in Algorithm 1.

Algorithm 1 Motion Characteristic Segmentation Algorithm

function F I NDKEYFRAMES(kf, tl , tr, lmin, s, μ)
// kf: in-out parameter; intially empty key frame list
// tl , tr: timestamps of current segment borders
// lmin: minimum segment length
// s: stepsize for sliding window
// μ: minimum segment quality
for t := tl + lmin to tr − lmin ; t += s do

for d := 0 to dimensions do
qn ← CALCQUAL I TY(t, d)
if qbest < qn then

qbest ← qn
tbest ← t

end if

end for

end for

if qbest > μ then

kf.I N S ERT(tbest ,qbest )
F I NDKEYFRAMES(kf, tl , tbest , lmin, s, μ)
F I NDKEYFRAMES(kf, tbest , tr, lmin, s, μ)

end if

end function
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To define the quality of a frame, which is needed to decide whether a frame
is a key frame, first the following terms are introduced:

sl,d(tc) =
tc−1∫

tc−w
2

√
1+a′d(t)2dt

(
Ûl

Ûr

)2

(4.10)

sr,d(tc) =

tc+w
2 −1∫

tc

√
1+a′d(t)2dt

(
Ûr

Ûl

)2

, (4.11)

where a′d(t) is the derivation of the acceleration vector of dimension d at
timestamp t, d is the dimension of the trajectory, sl,d(tc) and sr,d(tc) are the
quality scores left and right respectively of the key frame candidate, tc is
the timestamp of the key frame candidate, w is the window size left and
right of the key frame candidate that is analyzed. Ûl and Ûr are the peak-to-
peak amplitudes of the acceleration left and right of the key frame candidate.
Equation 4.10 calculates the score of the segment left of the key frame by
calculating basically the length of the function. Equation 4.11 does the same
for the right side of the key frame. To also consider the amplitude of the
acceleration, the score is multiplied with the squared relation of the peak-to-
peak distances left and right of the key frame candidates. Finally, the quality
qd of a key frame candidate is then defined as:

qd =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sl,d

sr,d
, sl,d > sr,d

sr,d

sl,d
, sl,d ≤ sr,d

(4.12)

So far, the qualities for each dimension are normalized by their amplitudes.
However, the amplitude of one dimension can be small compared to another
dimension. Since motions in a dimension with overall low amplitudes are
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not as important as another dimension with high amplitudes, the qualities for
each dimension are aligned with the maximal peak-to-peak distance Ûd of
all dimensions:

q̂d = qd · z

√√√√ Ûd

max
d

Ûd
, (4.13)

where z is a scalar which influences the weight of the normalization. The
key frame with the best q̂d of all frames and dimensions is selected as a key
frame with the quality q, if the value does not violate a quality-threshold or
a minimum segment size to avoid oversegmentation.
The idea of this heuristic is that motions with a different characteristic, e.g.
smooth circles, intense shaking, pouring have a different acceleration profile
and therefore a different shape. The heuristic primarily measures the length
of the acceleration curve and normalizes it with the amplitude of the segment.

4.5 Action Recognition

The segmentation presented in the previous sections is able to segment com-
plex manipulation demonstrations into meaningful segments, i.e. actions. Yet
the segmentation does not provide a grounded symbolic meaning of the seg-
ments. It only provides semantic states before and after the actions. In the
literature, the process of classifying each segment is called action recogni-

tion, in which each segment is labeled with a known symbolic identifier such
as grasp or pour. Similar to the segmentation approach, the action recog-
nition approach presented in this section uses semantic as well as motion
features. Most action recognition approaches rely solely on motion features
such as poselets (as presented in the survey by (Ziaeefard and Bergevin,
2015)) and a few rely on semantic features (e.g. (Aksoy et al., 2016)). Yet
some actions do not provide enough distinctive information in each of the
feature spaces. For example, a grasp action depends heavily on the location
of the grasped object and the motion trajectory differs therefore greatly be-
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4.5 Action Recognition

tween repetitions of the action. Such an action is difficult to recognize with
motion based features, but exhibits an obvious state change in the semantic
feature space: The contact relation between the hand and the target object
changes. The action shaking a bottle is difficult to recognize in the semantic
space since the mixing of the contents of the bottle cannot be observed by
technical means. Yet this action shows promising features in the motion tra-
jectory space with a rapid, periodic motion of the end-effector. Thus, using
both feature spaces should increase the action recognition rate. But there are
even more benefits from combining both feature spaces than recognizing
actions which only show features in one of the feature spaces. For example
the actions wiping and stirring are very similar in the motion feature space,
but in combination with the semantic states this ambiguity is easily solved
since wiping actions are executed with different tools than stirring actions.
To this end, both feature spaces, semantic and motion features, are used in
this approach and combined into one feature descriptor.

Semantic Features for Recognition

The semantic recognition features utilize the same information as used for
the semantic segmentation: the object contact relations. For each segment,
i.e. action, the semantic state of the first frame is taken as the first part of
the semantic feature descriptor. The possible object-relations are absent,
no_contact, contact. The state at the last frame of the segment is not used di-
rectly, but used to calculate the state delta between the first and the last frame
of the segment. The state delta is the second part of the feature descriptor.
Since most classification algorithms work on float arrays, the semantic fea-
ture descriptors need to be also represented as such. Additionally, the dimen-
sionality of the training data for all demonstrations needs to be the same.
A suitable representation for this is a two-dimensional distance matrix as
depicted in Figure 4.9. Because the object-relations are symbolic, these rela-
tions need to be converted into a float or integer representation. To be able
to calculate a state delta from two semantic state matrices with the same
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distance between each possible relation type one-hot encoding is used. This
translates

• absent to (1,0,0),

• no_contact to (0,1,0) and

• contact to (0,0,1).

Thus, each matrix cell contains a three-dimensional vector. To keep the size
of the matrix constant between all demonstrations each entity used in any
of the demonstrations is encoded into the matrix. Additionally, an object
hierarchy is used to generalize actions, e.g. all manipulated objects are also
represented by the row/column of the matrix labeled object. Since multi-
ple objects influence the state of the object relations, the relation types are
ordered and the highest occurring relation type is used. The order of the rela-
tions is contact > no_contact > absent. Objects that are not present during a
demonstration are flagged as absent. Combining the distance matrix with the
one-hot encoding creates a three dimensional matrix, which is rolled out into
a one dimensional vector for the classification algorithm. The state delta is
created by subtracting the matrix of the semantic state after the action from
the semantic state matrix before the action. This means if 10 objects are used,
the feature vector for the semantic features is 102 ∗3∗2 floats long, where
the square results from the distance matrix, the 3 from the one-hot encoded
cells and the factor 2 from the state matrix and the state delta matrix.
Figure 4.9 shows an example segment. The visualizations at the top depict
the demonstration, in which the human approaches the red cup with the right
hand. The matrices below show the object contact relations at the start of the
action, at the end of the action and the state delta.
Reflexive relations are always marked as absent since they cannot appear.
The absent relation is also important for objects that are not present during
one demonstration, but are used in other demonstrations since all objects
appear in the full relation matrix, as explained later. In this example, the red
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cup touches the table in the beginning and the table and the hand at the end
of the action (C entries, meaning contact, in the matrices). The hand also
touches the table in this demonstration, but it might not do so in other demon-
strations. These variations between demonstration repetitions are considered
later in the classifier.

(a) Action start (b) State delta (c) Action end

Figure 4.9: Example of semantic states of an approach action. (a) and (c) show the semantic
state before and after the action. (b) shows the state delta between (a) and (c). (a)
and (b) are used as the semantic features of the action recognition. The abbreviations
mean: A: Absent, N: No Contact, C: Contact. The numbers in the delta matrix show
the simplified difference of the states.

Motion based Features for Recognition

The semantic states of an action already reduces the search space of possible
actions so that only a few actions need to be distinguished. For example,
when holding a bottle the demonstrator will probably not try to write or cut.
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Thus, the motion based features used here do not need to be as distinctive
as they need to be in a general motion based action recognition approach.
Furthermore, it should be possible that actions with largely different motion
trajectories can be in the same action class, e.g. the approach action can have
very different motion trajectories depending on the location of the object.
The motion based recognition features should, in line with the motion based
segmentation heuristic, consider global characteristics of a motion such as
the dominant frequency.
The following global motion based features are used for the action recogni-
tion:

• Dominant frequency: The dominant frequency is extracted for each
of the dimensions of the Cartesian space. Since calculating the domi-
nant frequency with the Fourier transformation proved to be not reli-
able, a geometric approach was chosen that calculates the average dis-
tance between local minima and maxima of the position. This feature
is important to detect periodic motions and is only used if a minimum
number of cycles is detected, otherwise the value is set to zero.

• Intensity: The intensity characterizes how dynamic and fast an ac-
tion was demonstrated based on the mean of the absolute acceleration
values.

• Main direction: This feature represents the main direction of the
action, which is typically towards the human or away from him.

• Work space: This feature is calculated based on the amplitude of the
motion trajectory and represents the extent of the motion.

Each of the features is calculated for each Cartesian dimension, resulting in
a twelve dimensional float vector for each action.
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Decision Trees for Action Recognition

The feature vectors are merged and used to train a general purpose classifier.
As the feature vector contains mostly irrelevant dimensions for a single action
and the training only covers a very small part of the feature space, a classifier
is required that can handle sparse data and detect relevant dimensions. Most
classifiers do not work on such data because they need dense data, but deci-
sion trees are well suited for this problem. Here, classification and regression
trees (CART) are used (Loh, 2011). Support Vector Machines, Bayesian Net-
works, Gaussian Processes and Neural Networks were also evaluated, but
produced significantly worse results.
Each action is one training data element represented as a float vector of size
(12+ #ob jects2 ∗ 3 ∗ 2) and multiple labels. The labels describe different
abstraction levels, e.g. grasping a bottle is labeled as graspBottle and grasp,
to be able to generalize the observed action, e.g. to abstract from the used
objects. To train the classifier as many repetitions of actions as possible need
to be fed to the classifier. To account for variations in demonstrations, such as
irrelevant contacts of an action, multiple demonstrations should be available
in the dataset. The decision tree classifier will then be able to detect the
relevant dimensions.
The prediction on the learned model uses the same data format and can
recognize actions in an online manner.

4.5.1 Accommodation as new Object-Action Complexes

Planning operators are symbolic descriptions of action preconditions and
the action effects on the world state, which are used by planning systems to
manipulate a world state in order to achieve a given goal. The preconditions
of a planning operator define a subset of the world state predicates with un-
bound variables that need to be fulfilled to apply this planning operator. The
effects are the changes, which the planning operator has on the world state
and to which the world state of the segmentation result is similar. Each of the
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extracted segments represents elementary actions, of which only a limited
number of different actions is needed. According to (Wörgötter et al., 2013)
most manipulation tasks can be composed of only 27 actions. The accompa-
nying world states at the key frames before and after a segment correspond to
the world state before and after a planning operator was applied. The label of
the recognized segment can be used to find the matching planning operator.
But also the parameters of the planning operator need to be found. This can
be done by binding the parameter variables of this planning operator to the
objects of the demonstration by using the object hierarchy and comparing
the observed effects with the effects of the planning operator as proposed in
(Wächter et al., 2013).
Extracting entirely new operators from the observation by machine learn-
ing is a research area of its own and was already addressed by others (e.g.
(Mourao, 2012)) and is therefore omitted in this thesis. New composite plan-
ning operators representing a full demonstrated task can be learned by analy-
sis of the contained basic planning operators. Each occurring object instance
represents one parameter of the composite operator. The preconditions are
calculated by adding up all preconditions of the contained operators if they
are not fulfilled by any previous operator effect. The effects are calculated
by adding up all effects of the contained operators and by deleting predicates
that occur with the same amount of positive and negative instances. The pre-
conditions and effects are to be stored in the Object-Action Complex (see
chapter 2) segment of the long-term memory together with the list of actions
that are parametrized with the parameters of the new composite planning
operators. The new planning operator increases the planning performance
because it executes several actions in one step and can contain actions with-
out observable effects, which a planning system would never use since it can-
not see their effect. Since planning domains, especially if they are generated
automatically, can explode easily in complexity, i.e. if the branching-factor
during each planning step is high, an observed task stored as one planning
operator can make the difference between solvable and unsolvable tasks.
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4.5.2 Object Hierarchy

The objects used in the demonstration and in the planning operators are all
known and organized in an object class hierarchy since planning operators
can often be applied to more than one object class. Only leaves of the hier-
archy tree can appear in the demonstration or in the binding of a planning
operator. Every element of the hierarchy can have multiple parents and mul-
tiple children. Having multiple parents of one object class allows specifying
heterogeneous sets of objects. E.g. a cup can be graspable and pourable

while a hammer is also graspable, but not pourable. Thus, if the grasping

planning operator contains a parameter of type graspable the cup and the
hammer are candidates while for the pouring action with parameter type
pourable only the cup will be considered.

4.6 Summary

In this chapter, a hierarchical segmentation approach and an action recogni-
tion approach based on semantic information using object contact relations
and motion features were presented. The novelty lies in the consequent us-
age of both feature spaces and in exploiting the orthogonality of the feature
spaces. The hierarchical segmentation approach consists of two levels, the
semantic level and the motion characteristic level. The semantic segmenta-
tion has precedence over the motion characteristic level since the semantic
features based on object contact relation changes are more grounded. The
motion based segmentation extracts segments based on significant changes
in the motion characteristic. Yet the point at which a change is significant
cannot be pin-pointed onto one value and can depend on the types of the
demonstrated actions.
The action recognition uses both feature spaces to reduce the ambiguity in
each individual feature space for certain actions by leveraging the orthogonal-
ity of the feature spaces. Actions that cannot be distinguished in one feature
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space have often clearly different representations in the other feature space.
These recognized actions correspond to robot skills that can be modeled with
the approach presented in the next chapter.
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In the previous chapter, an approach for segmentation of a human demon-
stration into a sequence of actions has been presented. Yet from observing
actions it is not possible to just replay these actions successfully on a hu-
manoid robot. The embodiment and uncertainties in perception as well as
the state of the environment are too different to just imitate these actions.
Therefore, a representation of actions or even complete tasks is needed to
enable a robot to reproduce observed tasks.
Dealing with the complexity of multi-component systems can be challenging
in terms of control and data flow. Hence, only skilled experts are capable
of designing and realizing highly connected software systems as they are
needed for humanoid robots. In this work, the statechart concept is proposed
to provide a representation for robot behavior and skills that reduces com-
plexity while increasing reusability of already created functionality.
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The statechart concept is part of the robot software development environment
ArmarX (Vahrenkamp et al., 2015). A robot framework in ArmarX consists
of several distributed components, which provide access to sensors and ac-
tors (i.e. the hardware), offer computational functionality and implement a
robot memory system as a common data source for the robot software. On
top of these robot components, the statechart mechanism simplifies the defi-
nition of the coordination on all abstraction levels of robot behavior (i.e. the
program flow). By separating coordination from behavior, the task of build-
ing new robot software applications can be supported through graphical user
interfaces while maintaining full flexibility on source code level. In order
to gain full flexibility within the robot application, the programmer can use
well-defined entry points to implement user-specific source code. In the fol-
lowing, the design principles chosen for the proposed statechart concept and
the resulting differences to Harel’s formalism are presented. This chapter
was published in a shorter version in (Wächter et al., 2016).

5.1 Design Principles

Key design principles of the proposed statechart approach are: modularity,
reusability, runtime reconfigurability, decentralization and state-disclosure.

• Modularity of the proposed statechart concept is realized through the
individual states and their explicitly specified input and output. There
is no direct interaction allowed between substates of different parent
states. Such direct transitions would violate the defined interface of a
state.

• Reusability is ensured, since every state can be used as a substate in
any other state and has a specific interface for interaction. The interface
is specified with state parameters similar to parameters of a function.

90



5.2 Differences to Harel Statecharts

• Runtime-reconfigurability means that a statechart can be defined in
configuration files and every aspect of the structure can be changed at
runtime.

• Decentralization means that a statechart does not need to reside in
one process, but can be spread over several processes and hosts. This
enables load balancing and increases robustness by enabling crash
recovery (see subsection 7.2.1).

• State-disclosure means that the current state and all its parameters can
be inspected at runtime and logged for future behavior adaptation.

5.2 Differences to Harel Statecharts

The proposed statechart concept differs in several points from Harel’s orig-
inal formalism. Some of Harel’s features are omitted to comply with the
stated design principles and to simplify the statechart design process for the
developer. One important aspect was added to the statechart concept, which
is not covered in Harel’s formalism: data flow specification and control dur-
ing transitions. The condition-connectors and hierarchies are available like
in the original statecharts. Direct inter-level-transitions are not allowed in or-
der to avoid violations of the principle of modularity. The history-connector
of Harel’s formalism is not available since it conflicts with the data flow
specifications. Furthermore, the history-connector is removed to reduce side-
effects during execution as well as to simplify the comprehension of the
current state of the system during introspection. Each entering of a state with
the same parameters must provide the same internal state. Orthogonality is
currently only available in a smaller scope. Each active state can contain an
asynchronous user code function executed in a separate thread. Thus, the
different hierarchy levels can run in parallel.

91



5 Statecharts for Hierarchical Robot Programming

5.3 Statechart Internals

Statecharts are organized in groups (see Figure 5.1). Following the composite
pattern, a statechart is a state itself and can be used as a substate in another
state. Transitions connect substates and define the control flow. Every state
can be nested into another state to construct state hierarchies. States are
equipped with three parameter dictionaries. The first two define the input
and output parameters of a state. The third dictionary is used to store local
values that can be passed to a substate. States and substates can be compared
to classes and instances in object-oriented programming. When the states
are defined they are not yet used anywhere, like classes. After instantiation,
states are always substates of another state like class instances are usually
members of other classes. Transitions between those substates are triggered
by events. Transitions do not only specify control flow, but also data flow
by attaching a parameter mapping to each transition. This mapping contains
instructions on how to fill the input parameters of the next state. Distribution
of statecharts over multiple processes is possible by usage of Remote States,
which transparently represent states located in another process.

Figure 5.1: Statecharts are organized in groups. States are comprised of transitions and substates.
If the statechart groups of a parent state and substates differ, the substate is called a
Remote State (green state). The control flow within a state is terminated if any end
state (yellow state) is reached. Source: (Wächter et al., 2016) © 2016 Frontiers
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In the following, the main technical aspects of the statecharts are described:
substates, transitions, events, state phases, data flow, interfacing with external
components, distributed statecharts and the dynamic statechart structure.
The terms statechart and state are interchangeable since every statechart
can also be just a state itself. The term statechart is used if the aspect of
representing a state machine is important. The term state is used if properties
of states are in the focus.

5.3.1 Substate Types

substates are not the same as states. States are templates which are instan-
tiated as substates of other states. However, only substates of one type are
direct instantiations of states. Statecharts consist of four different types of
substates, each with a specific purpose:

• LocalState

Local states are normal state instances with no special features.

• EndState

EndStates trigger leaving the parent state immediately. They cannot
contain substates or execute any user code. EndStates are one way
to specify outgoing transitions of the parent state. The name of an
EndState specifies the name of the outgoing transition of the parent
state.

• RemoteState

RemoteStates behave like local states, but internally point to a specific
state in another statechart group (potentially in another process or on
another host).

• DynamicRemoteState

DynamicRemoteStates are similar to remote states, but they are like
generic pointers. On entering, a dynamic remote state morphs into a
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specific remote state based on parameters mapped during the transi-
tion.

5.3.2 Statechart Groups

Statecharts are organized in statechart groups according to their requirements
to external components and by semantic context since all states in one state-
chart group share the same dependencies. Dependencies are service compo-
nents that are used by a statechart, e.g. a component to calculate the inverse
kinematics of a robot. This means that statechart groups and in turn the con-
tained states will only be started if all dependencies are available. Therefore,
the designer needs to be aware of what dependencies are required for a robot
skill. Statecharts that use states from other groups, i.e. a RemoteState, only
share these dependencies implicitly and have only an on-demand dependency
on the other statechart group. This means statecharts from a group will not
be available only if they are waiting for unstarted remote states. All other
states are ready to be executed. This is in particular important for high-level
statechart groups such as a statechart group representing planning operators.
It is undesirable that the whole system is waiting if one sensor is not available
that is only needed for some of the robot’s abilities.
Furthermore, the statechart designer should group statecharts in one group by
semantic context, e.g. all states needed for directly controlling joints should
be in one statechart group.
In general, statechart groups offer all contained states as a service and wait
to be used by other statecharts or to be started as a top-level state.

5.3.3 Transitions

Control flow as well as data flow is defined via transitions between states. A
transition consists of a source state, a destination state, the associated event
and a data mapping that defines the data flow between states during this
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transition. Each transition is associated with one event that the corresponding
source state can process.
Each state has exactly one initial transition if the parent state has at least one
substate. The initial transition can be seen as the transition from the parent
state to the first substate. This transition is triggered immediately when the
parent state is entered. Thus, when the top-level state of a state hierarchy is
entered, initial substates on each level are entered recursively until the lowest
level of the statechart is reached.
When the control flow reaches an end state the control flow within the parent
state is terminated and the associated transition of the parent state is triggered.
Thus, each end state defines one outgoing transition in the corresponding
parent state.
The data flow during transitions is realized through a parameter mapping
definition which is attached to transitions (see subsection 5.3.6). Unlike in
Harel statecharts, transitions can only be created between substates of the
same parent state to keep the modularity principle of the statecharts. If states
had transitions to other hierarchy levels or other parent states, the parent state
could not be reused without disconnecting that transition.

5.3.4 State Phases

A state passes the following state phases while it is visited: OnEnter, run-

ning, onBreak and onExit. Each phase is linked to a user code function, i.e.
C++ code, in order to enable developers to execute custom code in a state.
OnEnter, onBreak and onExit are atomic coordination phases while running

is the computation phase of a state, in which complex or long running com-
putations are executed.
The execution order of the phases is as follows: onEnter, running and then
onBreak or onExit. Before entering a state, i.e. before the phase onEnter,
the parameters (explained in subsection 5.3.6) are mapped or set to default
values. In the onEnter phase local variables can be set to be mapped into
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substates. When a transition is triggered, the onExit or onBreak phase is
entered. Figure 5.2 illustrates when the state phases are executed. Which
phase is executed depends on the level where the transition was triggered.
Due to the hierarchical nature of statecharts, it is possible for a higher state
to receive an event, although its substates have not reached an end state
yet. In this case, the substatecharts cannot finish in an expected manner. To
give the developer an option to deal with this unexpected behavior, each
state provides the onBreak phase. If no behavior is specified for the onBreak

phase, the user code function of the onExit phase is executed. When a top-
level state receives an event, the complete stack of child-states needs to exit
first by exiting all substates, starting with the leaf-substate and proceeding
up level by level.

Figure 5.2: Each state visit consists of several phases: onEnter(), run() and onExit()/onBreak().
Each phase is linked to user code.

Whenever a state is entered, its initial substate is entered as well. This means
that after executing the onEnter phase of a state, the onEnter phase of the
initial substate is executed immediately afterwards.
Since the user has freedom of implementation in the coordination phases,
she or he is discouraged by warnings if computationally intensive code is
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detected. After entering, the running phase is launched in its own thread to
allow executing computationally intensive user code without interfering with
the statechart coordination. In the default behavior the coordination does not
wait for the run-function to finish and ignores all results produced by the
running phase after the state was left.

5.3.5 Events

Transitions can only be triggered by events. Events can be fired either by user
code, if an end state is reached or if a certain condition is met. Events from
user code or from end states are fired immediately, while events from condi-
tions are fired as soon as the condition is fulfilled. Conditions are specified
using Boolean algebra expressions and comprised of literals and Boolean
operators.
Event Generation with Conditions

A literal is defined by a data field of an observer and by a parametrized check
that is to be performed on this data field. Conditions are installed in sensor-
observers and are evaluated by the appropriate observer after each sensor
update. To clarify the concept of distributed conditions, the following listing
gives an example that will be explained in detail below.
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Listing 5.1: An exemplary definition of an event condition, which fires when

either a specific force or a minimum distance is reached.
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The first statement in Listing 5.1 defines the literal ��������	�
��� that
describes the distance between �
�
 and ������� and checks if this dis-
tance is below �� ��. ���������	���� is a reference to the current pose
of ������� and is updated continuously.
��������������	�������
�
���	� is the name of the data field for
the current pose of the hand within the ��������������	�����. The
��	���	�
��� check compares the position components of both poses
and evaluates to true if the distance falls below the provided argument value
(here �� ��).
The second statement defines ������
�����
� which checks if the force
in the right Tool Center Point (TCP) is larger than the given threshold. Both
literals are combined using a disjunction. If either of both conditions is true,
the corresponding event ��������
���
����� is fired. The condition is
evaluated in a distributed fashion since different sensor observers are used,
i.e. ��������������	����� and ����� ��!����	�����. A central com-
ponent called "��
�����#
�
$�� distributes the literals to the appropriate
observers. The observer approach avoids unnecessary transmission of high
frequency sensor values since only changes of the Boolean state of a literal
are signaled by the observers. When the Boolean term of a condition eval-
uates to  �%�, the "��
�����#
�
$�� fires the event associated with the
previously described condition. The middleware passes the event to the state
that originally installed the condition, which in turn triggers a state transition.
Event processing

Arriving events are queued and processed sequentially by the receiving pro-
cess. Due to the distributed and asynchronous nature of the software frame-
work, processing of events needs to be performed with caution in order to
ensure stability and consistency. One aspect that must be considered, is the
fact that a state may already be left when an event arrives. To address this
issue, all events contain a unique id of the destination state.
Additionally, special care needs to be taken of consistently considering par-
allelism. Since statecharts can be distributed over several processes, events
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can arrive and be processed in parallel. In order to deal with this situation,
the statechart framework protects critical sections allowing concurrent multi-
threaded access. Such critical sections are the event-processing function (one
per statechart hierarchy-level) and the state phases, where the state coordi-
nation is performed (see subsection 5.3.4 for details). Thus, transitions can
only be taken once and states are only entered and exited once.
If two events arrive in parallel in two processes (i.e., on two different levels of
the statechart), both events are started to be processed. Even though they are
processed in parallel a critical section can only be entered by one processing
thread. In this example, the lower-level state enters the critical section of
its state level1 first. The upper level, however, traverses down the hierarchy
of active substates, i.e. states that are currently visited, and encounters that
one substate is currently being processed. Since an event is processed in
a per-state-level critical section, the upper level state has to wait until the
lower level event is processed. Afterwards the upper level event breaks the
new active substate and continues upwards, breaking active substates until
reaching its own level and exits the currently active substate of its own.
The difference between exiting and breaking states is described in the next
section.
If the case is encountered where the upper-level state starts processing first
and currently breaks a substate and this substate receives an event in the
meanwhile, this event is omitted since the receiving state is not active any-
more when it acquires the mutex lock.

5.3.6 Transition based Data Flow

One important feature of the proposed statechart concept, which is unique
to the author’s best knowledge in this extend, is the extensive control of
data flow in the statecharts, which eases accomplishing the modularity

1 State level refers to the hierarchy level of a statechart. Substates of a state are one level lower
in the hierarchy.
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and reusability principles. All states are equipped with input and output-
parameter dictionaries to decouple states from external global data stor-
age. Input parameters are read-only in user code functions and specify all
parametrization the state needs for its computations. Output-parameters can
be set in the user code functions and contain the results of a state. They can
be used as a source for input parameters of the next state or mapped back to
the parent’s local- or output-parameters.
Additionally, so called local-parameters are provided, which are accessible
for the user code. Local-parameters are intended to be used for temporal
local storage of parameters that are passed down to a substate’s input, passed
up from a substate’s output or passed between different state phases. During
each of the state phases, the developer can access the different parameter
dictionaries in the user code functions. Once a state is left, all parameters are
reset in order to avoid side effects of previous visits.
Each parameter dictionary field consists of a string identifier and a variant
data-type that can contain arbitrary types. ArmarX already provides the ba-
sic types Boolean, integer, float, double and string as well as several types
associated with robotics, like vectors, matrices, 3D poses or probability dis-
tributions. If needed, developers can easily implement new variant types.
These parameter dictionaries are defined by the developer and specify the in-
terface of each state, i.e. which data is needed for execution. Each parameter
can be optional, can have a default value2 and/or can be filled from several
sources. This is called parameter mapping. When a state is used, its non-
optional input parameters without default values need to be connected with
other parameters of the same type. Thus, a parameter mapping for each of
these input parameters must be created for each state instance. The developer
can choose between mappings from the output of a previous state from the
same hierarchy level, from the input or local parameters of the parent state or

2 Consequently, if parameters have a default value, the optional flag does not make much sense
any more. Thus these two Boolean flags basically form a tri-state.
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from a parameter attached to the transition-event. Additionally, developers
can map values from the output of a state to the local- or output-parameters
of the parent state. Later, when another substate needs a calculated value as
an input parameter, the local parameter is mapped to that input parameter. For
example, generic counter states can be implemented following this pattern,
so that counting loop sequences of states can be defined without writing any
additional specialized custom code. With this pattern, it is possible to pass
data from a substate to another state later in the chain more easily. Otherwise
the parameters would need to be mapped between all states in the sequence.
Figure 5.3 shows the different types of mappings during transitions.

Figure 5.3: Several different parameter mapping sources are possible to fill the input parameters
of the next state. Source: (Wächter et al., 2016) © 2016 Frontiers

Each state has three parameter dictionaries: input, local and output param-
eters. In each of the blue substates only the relevant dictionaries for the
mapping during the transition are shown. The green arrows show possible
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mappings to the input parameters of the next state. The blue arrows show
possible mappings from the output of the previous state to the local and
output parameters of the parent state. These mappings are performed after
leaving the previous state and before entering the next state.

Transition Functions

It is often necessary to control the data flow between two states in a more
advanced way than by mapping the parameters, especially because states are
reusable and might be designed for a different use case. One typical example
is that a output parameter of a state is a 6D pose and the input parameter of a
following state is a 3D position. In this case, a conversion between these two
types is needed. This can be solved with an additional state which realizes the
needed conversion. Yet this is cumbersome and increases the complexity of
a statechart, since many of these small conversion states might be required.
To this end, it is possible to attach a user code function to a transition, which is
called directly after the parameter mapping is applied. It gives the developer
access to the output parameters of the source state of the transition and to
the input and local parameters of the parent state in order to manipulate
the input parameters of the destination state of the transition. This way, the
range of possible data mappings is greatly extended. Examples of possible
data mappings are type conversion, conditional mappings and parameter
modification.
This feature significantly reduces the visual complexity of statecharts by
removing helper states, which do not contribute to the statechart behavior
and are only means to an end. Figure 5.4 illustrates the benefit of Tran-

sition Functions with an example of parameter conversion needed for the
connection of two states. The problem in this example is once solved with
an additional state in between and once with a wrapper state. Using wrap-
per states makes sense if the wrapped state is used multiple times. Without
transition functions (Figure 5.4(a)) two additional states are needed to use
the �������� 	�
���� and the 	�����
�
 	�
���� state to provide the

102



5.3 Statechart Internals

input parameters in the correct format. The same behavior solved in a more
comprehensible way is shown in Figure 5.4(b): Only major states remain
and the statechart is not cluttered with helper states. The input parameter
conversion has been moved into Transition Functions, which are executed
during the transition processing.

(a) Usage of additional wrapper states

(b) Usage of transitions functions

Figure 5.4: Transition Functions reduce the number of needed states and improve the compre-
hensibility of reused statecharts.

5.3.7 Statechart Profiles

Another extension of the Harel’s statechart concept, called Statechart profiles,
offers the possibility to provide different parameter sets for different robots or
different setups. These profiles are defined in a hierarchy tree, which means
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that values of lower priority profiles (lowest priority is the Root-profile) are
overwritten by values of a profile with a higher priority. This hierarchy al-
lows using inheritance of parameter values to avoid duplicated parameter
values. Figure 5.5 shows an example of such a hierarchy for the ARMAR-III
robot (Asfour et al., 2006).

Figure 5.5: Statechart profiles allow for individual parameterization of each state for a specific
(robot) use case and are organized in a hierarchy tree. To avoid repeated specification
of shared parameters for each use case such parameters can be specified in the fitting
parent profile of the profile tree.

Default State Parameter Values

A profile encapsulates default parameter values for a well-defined use case
configuration of a statechart while maintaining the same functionality for
all statecharts of the hierarchy. For example, a statechart that is used on a
simulated robot might need different default parameter values than the same
statechart that is deployed on a real robot. Thus, the usage of statechart
profiles helps preventing duplicates of functionally equal statecharts while
still allowing convenient configurations for different use cases.
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Statechart Group Default Configuration

Additionally, statechart profiles allow specifying configuration values for the
whole statechart group like proxy names, e.g. the name of the KinematicUnit
to control the robot’s actors. These names usually differ from robot to robot
and need to be specified for each robot separately, e.g. Armar3KinematicUnit

for the robot ARMAR-III.

5.3.8 Interfacing with External Components

Statecharts that can only access functionality and data of themselves are not
particularly useful for robotics. Therefore, they must be able to access all
available components. Since ArmarX is a distributed system, it cannot be
assumed that required components are running in the same process or on
the same host. Hence, states require network proxies to these components.
Additionally, it should be ensured that a state is only started if all required
components are available. Dependencies for a group of states can therefore
be defined in a so called StatechartContext, which manages dependencies
and enables states to communicate with external components.

5.3.9 Distributed Statecharts

Another important feature is the possibility to distribute statecharts over sev-
eral processes or hosts. To this end, states are organized in groups, which
for example contain states that are semantically similar and share the same
dependencies to external components. In this context, semantically similar
means states which share common aspects regarding their purpose. For ex-
ample, all states for controlling holonomic platform movements from a PD
controller to path navigation should be encapsulated in one statechart group.
However, this is just a useful convention.
Each group is executed as one component in a so called RemoteStateOfferer.
These RemoteStateOfferers offer states to be used by other states as RemoteS-

tates over the network. RemoteStates are network proxy objects, which acts
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like a local pointer object. For increased robustness, each RemoteStateOfferer

is located in its own process. Thus, a RemoteState is employed whenever a
state uses a state of another group as a substate. This process is completely
transparent to the developer. The only difference to a local state is that the
RemoteStateOfferer’s name needs to be specified in addition to the state
name. Theoretically, each state could have its own group for maximized
robustness. Since distributed statecharts are slower than local statecharts, de-
velopers need to decide carefully when to split statecharts into more than
one group.

Figure 5.6: Statecharts are organized in groups which can be distributed over several processes
and hosts. By default, each statechart group resides in one process. It is possible to
incorporate states of another group transparently into a statechart by using RemoteS-
tate instances. Source: (Wächter et al., 2016) © 2016 Frontiers

Another advantage of distributed statecharts is the possibility to deploy them
close to their components. A statechart that makes heavy use of the robot’s
memory should ideally be located on the same host as the database servers,
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whereas a visual servoing statechart should be close to the vision system
and to the host where joint-level control takes place. Figure 5.6 depicts the
linkage between different statechart groups and RemoteStates.
Due to the sophisticated underlying middleware Ice3, which transforms net-
work communication into transparent function calls, the step from local state-
charts to distributed statecharts only requires to provide interfaces in the
IDL of the middleware and an implementation of these interfaces. Substates
pointing to a remote state just use another implementation of the state inter-
face, which reroutes all the function calls over the middleware. On the other
side, the aforementioned RemoteStateOfferer component offers a network
interface to the normally local functions of a state. This way, consistency
is assured in the same way as it is done locally, with mutexed access and
holding of data only on the offerer side. Thus, synchronization of data is not
needed.

5.3.10 Dynamic Statechart Structure

In most statechart frameworks, the structure of the statecharts is fixed, once
it has been designed by the developer. This limits the usability of statecharts
in a highly dynamic environment, e.g. regarding humanoid service robots.
In this context, a symbolic planner may be incorporated which needs to be
able to change the statechart structure on the fly, according to the currently
planned program flow. ArmarX supports dynamic online statechart restruc-
turing by offering so called DynamicRemoteStates which provide generic
entry points for exchangeable statecharts. As the name suggests, a Dynami-

cRemoteState connects to a state in another (or its own) process. It decides
upon entering, into which state it is morphed based on specific parameters
passed by the transition. Additionally, further parameters can be specified
that are mapped into the connected state. The correctness and completeness
of the parameters are verified at runtime, i.e. when the state is loaded.

3 ������������	
��
�
��
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5.4 Formalization of the Statechart Concept

The full statechart concept is formalized as follows. All capital letters, if
not specified otherwise, are sets of elements named with the same letter in
lowercase, e.g. S = {s1, . . . ,sk} is a set of states s.
A statechart group is defined as the tuple

G = (S,O,C) (5.1)

which consists of a set of states S, a set of proxy objects O, which the states
can use to communicate with external components, and a set of configuration
key-value pairs

C = {(key1,value1), . . . ,(keyn,valuen)}. (5.2)

The tuple
s = (id, I,T, istart ∈ I,E,P,F) (5.3)

defines a state s, where id is a unique identifier, I is a set of state instances
and T a set of transitions. istart is the initial state instance and an element of
I. E is a set of transition defining events, P is the tuple (Pi,Pl ,Po) and F the
tuple

F =( fenter(Pi,Pl ,Po),

frun(Pi,Pl ,Po), (5.4)

fbreak(Pi,Pl ,Po),

fexit(Pi,Pl ,Po)),

where fenter(), frun(), fbreak(), fexit() are user code functions associated with
state s. Pi,Pl ,Po are the input, local, and output parameter dictionaries.
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A state instance i is the tuple

i = (s,n), (5.5)

where s ∈ I is a state, the central component of the statechart concept, and n

the identifier of the state instance. State instances always belong to a set I of
state instances of another state.
A transition t ∈ T is defined by the tuple

t = (M,e, is, id), (5.6)

in which M is a set of parameter mappings m, e is the event associated
with the transition and is and id are the source respectively destination state
instances of the transition. A parameter p is the tuple

p = (key, type,optional,de f ault), (5.7)

where key is a string identifier, type is the type of this parameter (poten-
tial types: Boolean, int, string, float, double, position, orientation, pose, ...),
optional is a Boolean flag to signal whether or not this parameter is required
for successful execution and de f ault is the default value of the parameter
with the type of type. Default values are stored in the implementation of this
statechart concept in JavaScript Object Notation (JSON) syntax4.
The parameter mapping m is the tuple

m = (mappingtype,sourcekey,destinationkey), (5.8)

in which mappingtype ∈ {out put, parent,value,event} determines from
which source a parameter is retrieved with the sourcekey and inserted in the
input parameters of the destination state at key destinationkey.

4 ����������	
���
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The statecharts in the ArmarX framework are implemented based on this
formalization.

5.5 Textual Statechart Specification

While the advised method to create statecharts is to use the graphical state-
chart editor (see section 5.6), it is also possible to specify statecharts textually
as shown in Listing 5.2. First, each state needs to be added with its state class
(TemplateParameter) and the instance name (parameter of addState()) as a
substate (����������) to link the substate with the user code of the added
state. Afterwards, transitions between these substates can be created by speci-
fying the start and end state and by declaring on which event this transition
should be triggered. The data flow and any other feature can also be specified,
but these specifications are omitted here for brevity.
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Listing 5.2: An exemplary textual definition of a state.
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5.6 Graphical Modeling of Robot Skills

Since statecharts are a visual modeling approach, the next logical step is to
program statecharts with a graphical user interface. This eases the compre-
hensibility of statechart designs immensely and increases the development
speed drastically since repetitive textual specifications are avoided.
For the framework ArmarX, a powerful graphical statechart editor has been
developed based on the concept presented in this chapter, which allows the
developer to design hierarchical statecharts by specifying the control and
data flow of robot skills in an intuitive way. The goal of the statechart editor
is to enable users with little training to create event-driven robot behaviors
or skills from scratch or by reusing existing skills such as moving a platform
or complex skills such as grasping an object. When existing skills are reused,
it is possible to create more complex skills without programming any line of
code by just coordinating data flow between existing skills.

Figure 5.7: With the graphical statechart editor it is possible to design, to manage and to execute
robot skills.
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The statechart editor provides all functionality for designing statecharts, from
creation and organization over hierarchical arrangement to linking the states
with user code. Figure 5.7 shows a screenshot of the graphical statechart
editor, which is explained in detail in (Wächter et al., 2016). On the left,
the organizational structure of statechart groups is shown as a tree. This
structure is important for the execution of statecharts since one statechart
group is always executed in one process. The main part is the view of the
currently opened statechart including the completely visible hierarchy of the
statechart. The bottom shows the user code linked with the currently selected
state.

5.7 Summary

In this chapter, a new robot skill modeling approach was presented that ex-
tends the original statechart formalism proposed by (Harel, 1987) to the
requirements of robotics. The presented statechart concept allows for hier-
archical modeling of skills on all abstraction levels while supporting and
encouraging reusability through defined interfaces between states and pre-
cise data flow control. Furthermore, a defined success and failure result of
each state ensures failure handling on coordination level, which can be done
on the appropriate parent level. Distributing statecharts transparently over
multiple hosts addresses the multi host solutions that are typically found
in complex robot systems such as humanoid robots. Another requirement,
which is essential for reusable skills with different robots, is solved by intro-
ducing hierarchical statechart profiles that allow specifying default parameter
values, which can be specialized for specific robots. The complete approach
is tightly integrated into the robot development environment ArmarX and
represents a core feature of the framework.
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Dynamic Environments

The developed methods for understanding and representation of human
demonstration allow for execution of observed tasks as a sequence of ac-
tions, which are specified by statecharts with predefined parameters. But
tasks in human-centered environment are highly dependent on the current
state of the world. Depending on this state a different sequence of actions
might be needed to solve a task. For this reason, it is not sufficient for an
autonomous humanoid robot to only be equipped with a fixed set of ob-
servations, which is a specific action sequence to solve one task in one
configuration. To this end, an approach is proposed to solve complex tasks
in a perceived, dynamic environment. This approach includes fault recovery
and affordance reasoning based on a given goal and various knowledge bases
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about the environment. Parts of this approach were published in (Wächter
et al., 2018).

6.1 Task Execution Overview

The proposed task execution approach contains three main modules: The
domain and plan generation module, the symbol replacement manager and
the task execution and monitoring module. The approach is depicted in Fig-
ure 6.1 with its main modules and their control flow and data flow connec-
tions. To motivate the approach consider the following example: The human
utters the following request to the robot I’d like to drink some soda. Could

you bring me some soda? This spoken command is processed by a Lan-
guage Understanding component (Ovchinnikova et al., 2015) and translated
into a symbolic goal with affordances for each object uttered in the com-
mand (Wächter et al., 2018), i.e. ���������	������
 ����
 as the goal
and the affordance drink for the soda. Affordances (Gibson, 1979) describe
the action and interaction possibilities of an agent on the environment. This
data is transferred to the Symbol Replacement Manager, where a preliminary
feasibility check on the involved objects is performed, i.e. it is examined
whether all objects are known and an object instance is already located in the
current world state for each object. In this example, it is checked whether or
not soda is a known object and if a location hypothesis1 can be generated for
it. Soda is unknown to the robot as a graspable object2 and, thus, the robot
looks for a suitable replacement with its available replacement strategies.
Replacement strategies employ different kinds of knowledge bases or sensor
input for object replacement candidates or location hypotheses, e.g. common
places of objects experienced by the robot in the past (Kozlov, 2013).

1 Location hypotheses are guesses of the robot where an object in the real world might be. These
guesses are needed since classical planners need complete knowledge about the world.

2 In this work, graspable objects are objects of which the robot knows how to grasp them and
whom the robot is able to visually localize.
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6.1 Task Execution Overview

Figure 6.1: The main modules, control flow and data flow of the task execution approach. The
green and blue components were developed in this work.
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Since soda is unknown to the robot as a graspable object, it does not need to
find a location for it. Yet the robot can try to find another object that might fit
the task. Based on the affordance drink, which was provided by the Language
Understanding component, it searches through the common sense database
for an object that has the affordance drink associated with it. It finds the
object juice, which is a graspable object for the robot. If all objects have a
location hypothesis or are replaced with objects that have one, the adjusted
goal is passed to the Domain and Plan Generation module.
The Domain and Plan Generation module transforms the continuous robot
experience into symbolic predicates and generates a domain and problem
statement for the planner. Based on this, the planner tries to find a sequence
of planning operators that solves the given problem, i.e. achieves the goal
state. If a solution in form of a plan has been found, the sequence is executed
sequentially by using a link between symbolic planning operators and state-
charts, which execute the planning operators on the robot. The execution is
monitored with respect to perceived and expected effects of each action, e.g.
the juice might not have been grasped successfully and it is still standing in
the fridge. If a mismatch is detected, a new plan is generated based on the
current world state and the execution starts over.

6.2 Continuous and Consistent
Robot Knowledge

The first step towards online planning on a humanoid robot is to transform
the perceived, continuous world state into a symbolic representation suitable
for task planning. The raw sensor data as well as subsymbolic information
such as object positions need to be translated into symbolic predicates like
the apple is on the table. However, this is a complex endeavor due to the am-
biguity, uncertainty and lack of data. The uncertainty about objects and their
location requires a higher tolerance for predicates like the apple is on the

table, which in turn leads to ambiguity of the predicates, because they might
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overlap. These issues make the transformation of the robot’s knowledge into
a symbolic world description difficult and require mechanisms to reduce un-
certainties and assumptions. Another issue is the impermanence and general
uncertainty of perceptions: Every state of the art object recognition some-
times provides false positives and inaccurate localization. Additionally, an
object that was perceived some time ago might have been moved by a third
party. All these issues need to be considered in a robot memory architecture,
which represent what the robot “knows” about the world.
With these requirements in mind, the robot memory framework MemoryX has
been designed and realized, which builds the base for the approach presented
in this chapter. The details of MemoryX are explained in subsection 2.4.1.
In the next section, the approach of using the robot’s memory for reasoning
about object and location replacements is presented. In section 6.4, the use
of the robot memory structure to extract the needed symbols for the planner
is described.

6.3 Symbol Replacement based on
Various Knowledge Bases

Reasoning about entities in the environment of the robot is an important
ability for an autonomous robot to solve new and unknown tasks. In this
thesis, a symbol replacement3 system is presented which has the ability to
reason about the suitability of objects for a given task and proposes replace-
ments based on various knowledge bases and sensor information. Further,
the approach can generate location hypotheses for objects that have not been
seen recently or could not be found anymore at the last known location. The
location hypothesis generation is a requirement for the usage of classical
planning systems in dynamic and unexplored environments. Classical plan-
ning systems (see section 2.5) need complete world knowledge to solve a

3 Symbol replacement is here the replacement of planning symbols like objects or locations in
the planning domain.
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task. They cannot reason on unknown and incomplete world states, e.g. all
objects involved in the task and their locations need to be known in advance.
To avoid actively searching with the robot for all objects before starting to
plan, location hypotheses are generated for all objects. This means, object
instances are inserted into the working memory at assumed locations with a
relatively low existence certainty and high position uncertainty. Only during
execution these hypotheses might be proven wrong and will trigger a replan-
ning with the new information that a particular object is not at a specific
location. One side product of the symbol replacement is a feasibility check
of a given task, i.e. whether all objects mentioned in the goal are known to
the robot. Otherwise the planning system will not be able to find a solution.

6.3.1 The Replacement Process

Figure 6.2 shows an overview of the symbol replacement system and Fig-
ure 6.1 shows how it is used in the planning system. The Symbol Replace-
ment Manager (SRM) is evoked by an external trigger like the Language
Understanding component or if a plan fails during execution. For each object
and location name occurring in the goal provided by the external trigger,
the SRM checks if they are contained in the robot’s memory (MemoryX),
i.e. if the names can be converted into MemoryX types that have instances
with specified locations. If an instance or its location is missing, the SRM
attempts a replacement and rewrites the goal before passing it to the planner.
The SRM queries the domain generator and replaces unknown objects in the
goal with known ones and makes sure that location hypotheses are available
for instances of all objects mentioned in the goal by inserting object instances
into the working memory. The planner will treat these in the same way as
confirmed object instances, but all actions using this object instance will fail
during execution if the object instance hypothesis is wrong.
To find replacements a strategy pattern is used. Several replacement strate-
gies are available, which are associated with an overall strategy confidence
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to determine the order in which the strategies are called. The result of a re-
placement strategy is a list of replacement propositions with a confidence
value for each replacement hypothesis. For example, the common location
strategy, i.e. locations extracted from experience, has a higher confidence
than the common sense location strategy, which generated object locations
from data-mining of large text corpora and potentially contains more false
propositions than grounded knowledge from experience. The strategies are
explained in subsection 6.3.2.
If a suitable replacement has been found, the SRM rewrites the goal and
passes it to the planner that generates a plan. The plan execution is supervised
by the Plan Execution & Monitoring component. If the plan execution fails
because of a missing object, the SRM is called again.

Figure 6.2: The Symbol Replacement Manager provides replacements for objects and locations
based on various replacement strategies. These strategies include replacement based
on shared visual affordances or on common sense knowledge extracted from large
text corpora.

6.3.2 Symbol Replacement Strategies

The Symbol Replacement Manager is using different replacement strategies,
which vary with respect to the considered input data and which range from
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online visual shape estimation to offline evaluation of large text corpora. The
replacement strategies are subdivided into object and location replacement
strategies, which are described in the following.

Object Replacement Strategies

Object replacement is performed when a) an object type mentioned in the
goal is unknown or b) a suitable object could not be found at any known
location of the object during the plan execution. Two object replacement
strategies based on shared common sense affordances and shared visual fea-
tures as described below are presented here. Object replacement requires
human feedback. Therefore, the SRM generates a confirmation question for
the human and only proceeds with the replacement if this question is con-
firmed.

Common Sense Affordance Strategy

The common sense affordance strategy uses shared affordances between ob-
jects extracted from large text corpora as presented in (Kaiser et al., 2014).
For each object known to the robot4 affordances expressed by verbs com-
bined with a confidence score are extracted and stored in a database. Based
on patterns like "���� ����	
�� 
��
" (cut the banana) or "���� ���	

����	
�� 
��
" (cut with a knife), the relations between objects and affor-
dances are extracted. Based on the occurred pattern, the role of the object is
determined, i.e. patient or instrument. The frequency of occurrences deter-
mines the confidence score of the relation. This results in the tuple 〈object,
affordance, role, score〉, e.g. 〈knife, cut, instrument, 0.823〉.
The resulting affordance database is then further processed to generate a
replacement database containing tuples of the form 〈object1, object2, affor-

dance, score〉. This tuple indicates that object1 can be replaced with object2

in context of the affordance with the confidence score. These tuples are gen-

4 Only known objects are extracted since the robot cannot handle unknown objects and therefore
the proposition of unknown objects is not expedient.
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erated with a relational learning framework as described in (Wächter et al.,
2018).
Since the replacement database is generated from textual corpora, it contains
only object names represented by nouns ("cup" instead of "bluecup"). The
strategy uses the type hierarchy (e.g. "bluecup" → "cup" → "container") for
realizing the replacement. For example, if "bluecup" needs to be replaced, it
will search for replacement options specified for its parent in the hierarchy.
Similarly, if "cup" is suggested as a replacement, the strategy will select its
leaf child in the hierarchy as a replacement candidate.

Shared Affordance from Visual Features Strategy

This strategy uses shared affordances between objects extracted from vi-
sual features to suggest replacement objects. This strategy was developed in
(Mustafa et al., 2016). The visual features are calculated based on segmented
point clouds of the objects and utilize the shape of the objects. A global
3D histogram descriptor is generated to estimate the affordance of an object
(Mustafa et al., 2015). In Figure 6.3 the perceived point cloud is projected
into the visualization of the current working memory content of the robot,
where for each segmented object (colored point cloud clusters) the estimated
affordances are shown. In this example, the bowl as well as the basket (the
object on the right) afford pouring into, stirring and dropping into. The grey
bowl represents the perceived pose of the bowl by the object recognition
system. The perceived object is compared to an affordance database that was
learned by the JointSVM algorithm (Mustafa et al., 2015) on labeled point
cloud data of objects.
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Figure 6.3: Affordances estimated based on shape representations. Source: (Wächter et al.,
2018) © Elsevier

Location Replacement Strategies

Location replacement happens when the locations of all instances of an ob-
ject type mentioned in the goal are unknown or when an object could not be
found during the plan execution. For location replacement, the SRM manip-
ulates the current working memory of the robot and inserts object instances
as unconfirmed hypotheses at the suggested location provided by the replace-
ment strategy. Three location replacement strategies are presented in the
following paragraphs, which are based on 1) common locations learned from
the previous experience of the robot, 2) common sense locations obtained
from textual corpora, 3) human feedback.

Common Locations Strategy

The strategy based on common locations uses a feature of ArmarX that allows
robots to learn typical locations of the objects from their experience (Welke
et al., 2013b). Since the information about object locations is stored in the
robot’s memory as a set of density distributions of points (see Figure 6.4),
the distributions have to be mapped to symbolic location labels that can
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be processed by the planner. To do so, a location label is linked with the
expected value of the corresponding distribution. When the robot is close
enough to the object and can actually see it, the assumed location is corrected
with the actual observed object position.
This strategy is the most used location strategy with a high hypothesis confi-
dence. The confidence of the location hypotheses is rated high because the
knowledge originates from the experience of the robot. When the robot is
started, the locations of the objects are unknown. Thus, when a command is
received, a location hypothesis needs to be generated for each implied object.

Figure 6.4: Previously seen locations of an object (green spheres), which are clustered to density
distributions in order to generate common object locations. The cluster on the right
side represents the top location hypothesis, since the object has been seen at this
location more often. Source: (Wächter et al., 2018) ©

Common Sense Locations Strategy

The strategy based on common sense knowledge is obtained from textual
corpora and employs the method for extracting typical object locations from
text as described in (Kaiser et al., 2014). For each pair of (object_label, lo-

cation_label) in the underlying domain, such that the labels are expressed
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by nouns, the corpus is searched for the patterns “���������	� 
��
�

�������� ������	�”, where �������� is a location preposition, e.g. on,
in, at. Using this method, a location database is generated consisting of the
tuples of the form 〈object, location, score〉. Each tuple proposes a location
for a given object, with a confidence score corresponding to the normalized
frequency of their co-occurrence in the text corpus. To increase the likeli-
hood of finding objects, this strategy queries the database not only for the
actual object type, but for all parents of that object type in the type hierarchy.

Human Feedback Strategy

The strategy based on the human feedback uses object locations communi-
cated by the human, e.g. The corn is in the fridge. The Natural Language Un-
derstanding component handles world state descriptions including location
descriptions and updates the working memory in MemoryX correspondingly.
Thus, the strategy consists of generating a question for the human, asking
for the location of the missing object, and monitoring the working memory
updates in MemoryX. Once MemoryX has been updated, the SRM invokes
the planner, which replans based on the new information. This strategy is
considered a fall-back mechanism that is used only if all other strategies fail.

6.4 Symbol Extraction from
Continuous Robot Knowledge

Symbolic planning requires that the world is represented purely by symbols
and not by subsymbolic data. However, representing the robot’s environment
as symbols perceived by the robot itself is a difficult endeavor. Table 6.1
shows an comparison between subsymbolic and symbolic representation of
robot knowledge.
Each symbol type may require different (sensor) data and algorithms for
its calculation, e.g. the predicate ��������� queries the database for grasp-
ing knowledge while the predicate �� evaluates the position of object in-
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stances in the working memory. Therefore, a strategy pattern is used for
generating predicates in a uniform manner. For each predicate a special-
ized predicate provider is available that can access each memory of Memo-

ryX or any other robot component like the current robot model state. Pred-
icate providers are free in their realization and can be simple rules such as
��������	
�����
����� → ������	
�����
����� or learned from ex-
perience. For example, the ��������� predicate could be refined after each
grasp trial with the result of the execution. Additionally, predicate states
can be stored in the relation segment of the working memory. This is used
by memory updates from natural language, e.g. the fridge is open, or for
non-observable action effects (see section 6.7).

Table 6.1: Comparison between subsymbolic and symbolic representation of the robot know-
ledge.

Subsymbolic Symbolic

Modeling

Space
R

n per type

Types (e.g. 
�����)

Instances (e.g. �
����)

Hierarchies (�
���� is �
�������)

Operators
Arithmetic

Matrix Operations

Predicates

Constrained Rules

Domain

Description
Lists of Rn per type

Instances

Predicates

Rules

Every time the planning domain is generated, all predicate providers are
queried to provide their predicates given the current world state. The validity
of the predicates highly depends on the accuracy of the used data. If an object
position has an average error of a few centimeters, the threshold regarding
objects needs to be chosen more tolerant, which opens the door for false posi-
tives. For example, the ������ predicate on the ARMAR-III robot compares
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the distance between object instance and hand to determine whether or not
an object is in the robot’s hand since it has no sensors in its hand. Yet visual
in-hand localization is not robust due to occlusion and the motion prediction
of the object is not always correct. These issues require a threshold of sev-
eral centimeters for the ������ predicate, which leads to false positives if
the hand just happens to be close to the object. The predicates used in the
proposed approach are described in subsection 7.3.1.

6.5 Generation of Symbolic Domains
from Robot Knowledge

Figure 6.5 shows how the robot’s memory is used to generate a symbolic do-
main description consisting of static symbol definitions and problem specific
definitions. The symbol definitions consist of types, constants, predicate def-
initions and action descriptions, while the problem definitions consist of the
symbolic representation of the current world state represented by predicates
and the goal state that should be achieved. Types enumerate available agents,
hands, locations and object classes contained in the prior knowledge. Con-
stants represent available instances, on which actions can be performed, and
are generated using entities in the working memory. Each constant can have
multiple types, such that one is the actual type of the corresponding entity,
and others are parents of that particular type including transitive parentship.
For example, instances of the type ��� are also instances of 	
�����
�
and ������. This type hierarchy is important for specifying actions over a
particular set of types, e.g. the grasping action has the type 	
�����
� as a
parameter to ensure that grasps are only planned on graspable objects.
The domain generator derives action representations from the long-term
memory, where they are associated with specific robot skills represented by
statecharts (Wächter and Asfour, 2015). Each action is associated with a set
of preconditions and effects represented by predicates and predicate changes
respectively.

126



6.6 Execution of Symbolic Planning Operators

Figure 6.5: Components involved in the domain description generation.

The generated domain description is used by the replacement manager and
the planning component. The replacement manager uses the description to
check if objects in the planner goal and their locations are known to the robot.
The planning component uses it as the knowledge base for finding plans.

6.6 Execution of Symbolic Planning Operators

Symbolic planning operators only contain information needed by the plan-
ner, i.e. preconditions and effects. To execute a planning operator on a robot
an entirely different representation is needed. This representation needs to
represent actions on a symbolic level as well as to perform these actions on
a technical level, e.g. move a robot hand along a trajectory. In this thesis, the
formalization Object-Action Complex (OAC, see section 2.2) is employed to
connect the symbolic world with the execution on a robot. The prediction
function of an OAC is represented by the preconditions and effects of the
planning operator. The execution ID is a link to a statechart, which contains
all the details required for execution. The statechart for the planning operator
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is shown in Figure 6.6. The success measure and learning
parameters can be queried and updated by the statechart from the OAC seg-
ment in the long-term memory of the robot. The learning parameters stored
in the database can be used to improve the performance of an action.

Figure 6.6: The equivalent of the planning operator represented as a statechart
for execution on a robot. Only the first level of the hierarchical statechart is shown
for simplicity.

The statecharts developed in this thesis are designed to fulfill the require-
ments of a planning operator realization. It is easily possible to create state-
charts, which accept symbolic parameters like a planning operator as input.
Due to the hierarchical nature of statecharts, the required levels of abstrac-
tion can be modeled, from a PD controller for motion control of the mobile
platform of the robot to the highest abstraction, the planning operators.
All parameters of a planning operator are entities of the memory since the
planning domain has been generated from the robot’s memory. The statechart
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framework is capable of processing this entity type and further information,
which is required for executing an action, can be queried with these entities
from the memory. For example, the planner only needs symbolic information
of an object instance, whereas statecharts need the exact 6D location and
grasps associated with the object.
Similar to the applicability of a planning operator, a statechart can be inappli-
cable on a specific world state. Yet the reason of inapplicability, which will
lead to a failure of the action, can be manifold and can only be determined
during execution. One reason for inapplicability of a statechart is that an ob-
ject could not be found at the location hypothesis. The next section explains
how such failures are handled by the system.

6.7 Task Execution and Monitoring

Once a solution, i.e. an action sequence, has been found by the planner it
needs to be executed. Furthermore, instead of blindly executing the actions
one by one, the execution should be monitored and verified for correctness
and success. Figure 6.7 shows the control flow during the execution. The
Task Execution Monitor (TEM) receives the solution from the planning com-
ponent and associates each planning operator with a statechart with OACs
from the long-term memory. Before the execution of each action, the appli-
cability of the action is verified again on the level of the planning operator’s
preconditions. If the action is still applicable on the current world state, the
execution of the associated statechart is triggered. After the execution of
each action the effects of the planning operator are compared to the changes
in the robot’s memory perceived by the sensors of the robot. If all observable
effects are fulfilled, the task execution is still on track and the next action
can be executed. However, not all effects are observable by the robot. For
example the state of the fridge door cannot be perceived in the current sys-
tem. Such action effects are not validated. Yet these effects are tracked in the
robot’s memory by using the effect descriptions of the planning operators
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since they might be a requirement for the next task. To account for failures
regarding these action effects the human can inform the robot about all states,
i.e. effects, using natural language feedback.

Figure 6.7: Control flow of the task execution and monitoring with the main components for
each phase.

If some effects could not be found in the current world state or if the execu-
tion of the action failed, the planning component is called again to generate
a new plan with the same goal, but on the current world state instead of the
initial world state. If the special failure result object not found occurs, the
symbol replacement manager is called beforehand to generate a new location
hypothesis or to replace the object with a new object.
Only effects relevant to the current action are checked. Changes of another
agent to the scene or unexpected effects of the executed action which do
not contradict the effects of the current action are tolerated by the execution
monitoring and the robot continues unless the changes of another agent’s
action directly violate the execution of the current solution. If the robot
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completes the plan successfully, it waits for further instructions. In the case
of failure, replacing is performed as long as a potential solution theoretically
exists, or planning is terminated, e.g. via human instruction.
To be more flexible, the task execution approach supports multiple execution
modes. The default mode is described above and takes a goal state descrip-
tion as input. Another mode is the direct command mode. In this mode,
it is possible to directly evoke single planning operators such as grasp or
open. Yet a full parametrization of the action is required here to be given
to the robot, which is computed by the planner in the planning mode. The
direct command mode is used in (Kaiser et al., 2016) in a pilot interface for
semi-autonomous execution of actions suggested based on the affordances
of geometric primitives. The action parametrization is here generated based
on the perception of the robot and the suggestion selection of the user.

6.8 Summary

In this chapter, an approach for execution of tasks in dynamic environments
on a humanoid robot was presented. To reason about the current state of
the dynamic environment, the robot’s perception is converted online into a
symbolic domain description, which is used by a symbolic planning system
to generate an action sequence for a given task. Additionally, the domain
description is altered automatically based on multi-modal replacement strate-
gies if the domain contains unusable objects or if locations for objects are
missing. These strategies use information such as common sense knowledge
about object affordances or object locations learned from text mining, shared
visual features regarding the affordances of objects and common places of
objects learned from experience. The generated action sequence consists of
actions that correspond to the robot skills presented in the previous chap-
ter. A task monitoring keeps track of the execution and triggers correcting
measures if necessary.
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In this chapter, the developed methods are evaluated. First, the hierarchical
segmentation and action recognition approach is evaluated. This segmen-
tation is compared to two other segmentation methods known from the lit-
erature. Second, several use cases for the statechart concept are presented
and discussed. Finally, the task execution approach is shown in a complex
scenario and evaluated on the robot ARMAR-III and in a user study.

Figure 7.1: Stages of demonstration capturing and processing: The human demonstrator with
attached markers on the objects (left); marker group representation (middle); 3D
mesh models with applied 6D object pose (right). Source: (Wächter and Asfour,
2015) © 2015 IEEE

7.1 Task Segmentation and Action Recognition

This section starts with the employed experimental setup for capturing hu-
man demonstrations and a discussion about the quality of the preprocessing
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step, converting marker positions into 6D object poses. The segmentation
results of the presented approach are compared with a manual reference seg-
mentation and other segmentation methods based on a new segmentation
metric. The action recognition algorithm is evaluated by comparison to a
labeled dataset.

Figure 7.2: Left: Image of a real object with attached reflective markers from the KIT Whole-
Body Human Motion Database (Mandery et al., 2016b). Right: A visualization of
the corresponding 3D mesh model with attached virtual markers.

7.1.1 Experimental Setup

Human demonstrations were recorded with the marker-based VICON mo-
tion capture system. The capturing system consists of ten cameras for the
observation of the scene, in which all objects are common rigid household
objects that have at least three markers attached to them in an asymmetric
arrangement. The human demonstrator is, depending on the dataset, fully
captured or only her/his hands are captured. All demonstrations are available
in the KIT Whole-Body Human Motion Database1 (Mandery et al., 2016b).
Nonetheless, regarding the human motion, only the hands are used for the
segmentation and action recognition. The motion capture system uses mod-
els of the spatial marker relations of all objects for automatic labeling of

1 �����������	�
��
�
�
������

�	����	�����

134

https://motion-database.humanoids.kit.edu
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the markers (see Figure 7.1, middle). For every object, a 3D mesh model
is available, created either with a 3D scanner or by hand and enriched with
virtual marker positions (see Figure 7.2).

7.1.2 Segmentation Metric

To compare the presented approach to other algorithms, a metric is proposed
that measures the error of the key frame extraction in square seconds com-
pared to a reference segmentation. The metric is similar to the F1-score
(van Rijsbergen, 1979), but considers additionally the accuracy of the true
positives. This metric represents the precision of the results better since the
temporal precision is not only binary. Let Kr be the set of key frames of the
reference segmentation and Kf the found key frames of the algorithms. The
metric assigns each kr ∈ Kr the closest key frame available in Kf . Each key
frame can only be assigned once and the squared error to the reference key
frame is measured. The maximum allowed distance of a correct key frame
to the reference key frame was chosen to be one second; otherwise the key
frame is considered missed. For every missed key frame (false negative) and
for every false positive key frame of the algorithms, a penalty is added, in
order to severely penalize completely wrong key frames. The penalty factor
was chosen by the author to appropriately reflect the missed and unmatched
key frames since there exists no objective penalty factor. In summary, the
metric e used for comparison is given by:

e = (m+ f ) · p+∑
i
min

j
(kr,i − k f , j)

2, (7.1)

where m is the number of missed key frames, f the number of false positives,
kr and k f are the reference key frame and corresponding detected key frame.
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7.1.3 Evaluation Methodology

The presented Hierarchical Segmentation (HS) approach needs to be com-
pared to an ideal segmentation to assess the quality of the results. Though,
generating automatically ground truth segmentation data of demonstrations
is not feasible since the actions often change seamlessly into the next action.
Additionally, even for a human it is not easy to determine when an action
ends and the next action starts. Nonetheless, the recordings of these action
sequences were segmented manually as a reference to which the results of
the algorithms are compared. The presented segmentation approach and its
sub-segmentation methods are compared to the segmentation method Zero-
Velocity-Crossings (ZVC) and to a method based on Principal Component
Analysis (PCA) (see subsection 3.1.2). All parameters of all methods were
optimized over all demonstrations with random cross-validation to achieve
the best average results with one set of parameters. The PCA and ZVC meth-
ods were optimized manually, while the Hierarchical Segmentation (HS) was
optimized with a genetic algorithm due to the higher number of hyperparam-
eters.

7.1.4 Experiments and Datasets

To test the presented segmentation approach the following task demonstra-
tions were recorded among others: preparing dough, wiping a table, shak-

ing/pouring of a bottle, drinking from a cup, cutting with a knife and pol-

ishing a bowl. These tasks were chosen to have a wide range of typical
manipulations of a kitchen environment and are similar to the demonstra-
tions used in other publications (Aksoy et al., 2011; Ramirez-Amaro et al.,
2014). Since the two levels of the hierarchical segmentation target different
types of actions, the recordings were split into two datasets to show the ben-
efit of the different segmentation levels. Eventually, both sets were merged
and evaluated together.
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For each task, between two and five repetitions of the tasks with variations in
the action selection, action duration and order of the actions were recorded.
In total, 30 task demonstrations are used for the evaluation. Figure 7.3 shows
snapshots of the demonstrated tasks.

Dataset 1

Dataset 1 predominantly contains actions with observable object relation
changes such as grasping. The datasets consists of 17 demonstrations with
multiple actions, i.e. segments. In total, the dataset contains 67 segments
of the reference segmentation. The actions in the dataset are mostly grasp-
ing and placing actions, but also cutting, pouring, mixing, wiping, drinking
actions.
The preparing dough task is in this dataset and the task setup contains a table,
a cup, a bottle, a bowl and a whisk (three bottom rows of Figure 7.3). The cup
is grasped by the human, the content is poured into a bowl and then the cup
is placed again on the table. This is repeated for the bottle. Afterwards the
liquids are mixed with a whisk, which also has to be grasped by the human
to perform the mixing action. In the end, the whisk is placed again on the
table. To note here is that the liquids are not tracked by the motion capture
system. This task is chosen because it contains several objects and typical
actions in the context of a household robot.
The other demonstrations are short demonstrations mostly consisting of a
tool use action from the list described previously, for which the tool needs to
be grasped and placed.

Dataset 2

Dataset 2 predominantly contains actions without observable object relation
changes such as shaking and wiping. The datasets consists of 13 demonstra-
tions with multiple actions, i.e. segments. In total, the dataset contains 291
segments of the reference segmentation. In the following, some of the tasks
contained in the dataset are described.
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Figure 7.3: Snapshots of different task demonstrations that are used for evaluation of the hierar-
chical segmentation and recognition approach.
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In the table wiping task, the human demonstrator grasps a sponge from a
table and wipes the table using several different wiping styles like intensive
wiping of a spot or wiping of a wide area with circle motions. In a second
task, a bottle is being grasped, tossed, inspected, shaken, poured and dripped
off. In a third task, a big bowl is being held in one hand and polished by the
other hand with changes of the hands in between.
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Figure 7.4: Segmentation based on object contact relations: When two objects get in contact
with each other (contact in this case is approximated as distance < 7 mm) or lose
contact, a new key frame is inserted with the current world state attached to it.
The dotted vertical lines depict the detected semantic segments. Only distances
between objects that get in contact during the complete demonstration are shown.
Source: (Wächter and Asfour, 2015) © 2015 IEEE

7.1.5 Segmentation based on Semantics

Since the two levels of the hierarchical segmentation are independent seg-
mentation algorithms, it makes sense to assess them individually and com-
pare them with the hierarchical segmentation. An example of the semantic
segmentation is shown in Figure 7.4 related to the preparing dough task
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showing picking and placing of a cup and a whisk and stirring with the
whisk. The inter-object distances that are not relevant for this segmentation
task are omitted in this diagram for better comprehensibility. Whenever the
left or right hand grasps an object or puts down an object a new key frame is
inserted. Table 7.2 shows the segmentation results on a dataset consisting of
actions with visible effect, i.e. contact relation changes, such as most actions
shown in Figure 7.3. This segmentation method proves to be reliable for
actions with visible effect, which are predominantly manipulation actions.
The accuracy is better and almost all key frames also appear in the reference
segmentation than of the motion segmentation and of ZVC and PCA as can
be seen in Table 7.2, Table 7.3 and Table 7.4 (rows accuracy and unmatched

key frames). Yet due to the nature of the method not all key frames can be
found, which is reflected in the row missed key frames especially in Dataset 2.

The parametrization used is shown in the top part of Table 7.1 at the end of
this section. The distance threshold of 6.81 mm allows for precise detection
of contact-relations with a tolerance for model discrepancies or capturing
errors. The semantic merge threshold determines when effects are consid-
ered to result from the same action and thus also determines the minimum
segment length. With 47 frames, i.e. 0.47 seconds, the merging still allows
short actions with natural execution speed.

7.1.6 Segmentation based on Motion Characteristics

An example for the segmentation based on motion characteristics is shown
in Figure 7.5. It can be seen that the algorithm inserts key frames whenever
the motion characteristic noticeably changes, e.g. change between periodic
and discrete motions, different amplitudes of a periodic motions, different
frequency etc. Table 7.4 shows that the motion characteristics segmentation
yields already good results in the range of the hierarchical segmentation and
significantly better than ZVC and PCA. Yet Table 7.3 shows that discrete
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but it still achieves comparable results. As for all motion based segmenta-
tion approaches, the number of false positives (unmatched key frames) is
higher than that of the semantic segmentation since the motion data is more
ambiguous than contact relations. Also the accuracy is not as good as the
accuracy of the semantic segmentation since seamless actions do not always
have a clear segmentation point in motion space. However, the results on
the combined dataset (Table 7.4) are better than the results of the semantic
segmentation alone since the motion characteristics based segmentation has
the chance to find all key frames. And indeed, it extracts most of the actions.
The used parameters are shown in Table 7.1.

Table 7.1: Parameters of the hierarchical segmentation algorithm (see section 4.3 and 4.4) and
their values.

Parameter description Value

S
e
m
a
n
ti
c

S
e
g
m
e
n
ta
ti
o
n Distance threshold (ε) 6.81 mm

Semantic merge threshold 47 frames

Hysterese factor (λ ) 1.72

Velocity difference (τ) between objects 1 mm/frame

M
o
ti
o
n

S
e
g
m
e
n
ta
ti
o
n Window size (w) 0.54 sec

Minimum segment size (lmin) 1.09 sec

Minimum segment quality (μ) 818

Normalization weight (z) 3.78

Gauss filter width (σ ) 0.078

The minimum segment size is bigger here (1.09 seconds) since when the
motion style changes there are several possibilities where to insert the key
frame, i.e. where the condition holds that left and right of the key frame
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the motion characteristics are different. The sliding window size is 0.54
seconds wide, which means half a second of motion is considered for the
comparison. Since even marker-based motion capture data contains noise,
a Gaussian filter with small width has been applied to reduce acceleration
spikes, which would have direct effect on the segmentation quality since it
is an acceleration based heuristic.
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Figure 7.5: Sub-segmentation of one semantic segment (sponge touches hand and table) into
different subsegments, i.e. different wiping styles. The dotted vertical lines depict the
segmentation points. Whenever the wiping styles changes, a key frame is inserted.
Source: (Wächter and Asfour, 2015) © 2015 IEEE

7.1.7 Hierarchical Segmentation

In the previous sections, each level of the hierarchical segmentation was
evaluated individually to show the benefit of combining both segmentation
methods into one hierarchical segmentation. Now, the semantic segmenta-
tion approach is used for the top level and the motion characteristic based
segmentation is used for the sub-segmentation for the bottom level of the
hierarchical segmentation as described in chapter 4.
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Table 7.2: Comparison of the hierarchical segmentation to the two levels used individually
with Dataset 1. HS = Hierarchical Segmentation, SS = Semantic Segmentation,
MCS = Motion Characteristics Segmentation

Average Results HS SS MCS

Error 2.89 s2 3.14 s2 3.97 s2

Accuracy 0.22 s 0.21 s 0.33 s

Unmatched key frames 0.54 0.0 0.18

Missed key frames 1.9 2.0 1.72

Table 7.3: Comparison of the hierarchical segmentation to the two levels used individually with
Dataset 2.

Average Results HS SS MCS

Error 2.94 s2 5.43 s2 3.03 s2

Accuracy 0.25 s 0.18 s 0.25 s

Unmatched key frames 2.0 0.23 1.55

Missed key frames 3.4 10.0 4.04

Figure 7.6 shows the shaking-pouring task and the results of the compared al-
gorithms. The semantic level of the hierarchical segmentation extracts three
segments from the demonstration (green bars in Figure 7.6). These segments
are in proximity of the key frames of the reference segmentation and cor-
respond to picking up the bottle, putting it back on the table and retreating
the hand from the bottle. The algorithm found all actions with an observ-
able effect. Yet the found segments contain actions without observable effect.
Furthermore, the transitions between the segments are seamless, which in-
creases the difficulty to extract them. The motion characteristic level found
several subsegments (red bars in Figure 7.6). Six of them are fairly close to
key frames of the reference segmentation and four do not correspond to any

143

key frames. Though, the performance on this difficult demonstration is not



7 Evaluation

perfect, the presented approach outperforms the other methods. The PCA
based segmentation oversegments the demonstration due to the complexity
of the motion. ZVC shows better performance, but also extracts too many
false positive key frames. The results show that a maximum complexity per
segment as a segmentation criteria, as PCA does, is not a suitable criteria to
extract actions out of a demonstration. Motions can be very complex and still
be part of the same action. Furthermore, the change of direction on multiple
dimensions of the motion, as used by ZVC, is also not a suitable criteria,
especially for periodic motions, which change the direction in every period.
Figure 7.7 shows results of two further demonstrations in detail: wiping

with a sponge and another trial of the shaking-pouring task. The wiping
task contains fast, periodic movements without stopping. It can be seen that
ZVC barely finds segmentation points since it is mostly a continuous motion
whereas PCA oversegments the demonstration due to the complexity of the
motion trajectory.
Figure 7.8 shows the repeatability of the approach on different trials of the
same task. The shaking-pouring task is demonstrated three times with differ-
ent order and duration of the actions. The quality of the segmentation result
is comparable in all three trials. Only zero or one false positive key frames
are extracted by the proposed method. Nevertheless, some key frames from
the reference segmentation are missed (two to five key frames). This is due
to marginal changes in the motion characteristic between the segments. All
semantic segments are found.

Average results over all demonstrations

The average metric results over all 30 task demonstrations are shown in Ta-
ble 7.4. The Hierarchical Segmentation (HS) algorithm is compared with
the segmentation algorithms based on ZVC and PCA using the proposed
metric. To apply the metric to all 30 demonstrations (15 - 40 seconds each)
the results of the algorithms are compared to the manual reference segmen-
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(a) Segmentation of a wiping task

(b) Segmentation of a shaking-pouring task

Figure 7.7: Comparison of the proposed approach to Zero-Velocity-Crossings and PCA-based
segmentation on the (a) wiping task and the (b) shaking-pouring task Missed key
frames are shown in red. Matched key frames are shown in green. The different
lengths of the plots originate from the last key frame found in the segmentation
results.
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Figure 7.8: Comparison of manual to hierarchical segmentation with three trials of the same
shaking-pouring task. The vertical lines denote key frames at their timestamps. This
shows the repeatability of the approach on variant yet similar trials. Missed key
frames are shown in red. Matched key frames are shown in green. The three trials
contain grasping, placing, shaking, tossing, inspecting and pouring actions similar to
Figure 7.6 (top) each in different order and with different timing. Source: (Wächter
and Asfour, 2015) © 2015 IEEE

Table 7.4: Comparison of average results over 30 task demonstrations with other segmentation
methods based on the metric proposed in subsection 7.1.2. The error value is the
metric value. The other criteria are part of the error value.

Average Results HS SS MCS ZVC PCA

Error 2.93 s2 5.1 s2 3.14 s2 7.01 s2 20.18 s2

Accuracy 0.24 s 0.19 s 0.26 s 0.1 s 0.36 s

Unmatched key frames 1.51 0.15 1.09 0.6 27.9

Missed key frames 2.9 7.33 3.27 12.27 3.5

tations created each by two persons. The error row shows the value of the
proposed metric. The other rows are the sub-results of the metric and make
up the final metric value as described in subsection 7.1.2. Accuracy is the
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average distance of matched key frames to the corresponding key frames of
the reference segmentation. In other words, it shows how close an extracted
key frame lies to the reference segmentation if a match for this key frame was
found. Unmatched key frames (false positives) mean how many key frames
found by the algorithms were not assigned to a key frame in the manual
segmentation. Missed key frames (false negatives) indicate how many key
frames of the manual segmentation per demonstration where not assigned to
a key frame found by the algorithms. The results are the average results over
the 30 task demonstrations. The parameters for the presented approach were
trained on five task demonstrations with a genetic algorithm and tested on
all 30 demonstrations. It can be seen that the proposed algorithm achieves
significantly smaller error values than the two other approaches. The accu-

racy and unmatched key frames values in the case of ZVC are better since
the number of key frames inserted by ZVC is considerably smaller (compare
missed key frames and see the examples in Figure 7.6 and Figure 7.7) and
therefore the probability of inserting a false positive is decreased.
PCA on the other hand has a comparable amount of missed key frames, but
a significantly higher number of unmatched key frames.

7.1.8 Psychological Study: Comparison to
Segmentation by Human Subjects

The hierarchical segmentation algorithm was also used in a collaboration
with the university of Groningen. They conducted a study (Schlichting et al.,
2018) on the segmentation of demonstrations and reproduction of the dura-
tion of actions by humans after watching tasks containing several actions.
Twenty psychology students with no affiliation to robotics and no know-
ledge about how the algorithms work were asked to extract the start- and
end-points of actions in videos shown to them. Figure 7.9 shows the results
of the segmentation experiment. For each action the average start and end
points of the actions of all participants are shown together with the variance.
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The black star denotes the result of the hierarchical segmentation. It can be
seen that the hierarchical segmentation produces very similar results to the
segmentation by the participants and therefore indicates that the meaning
of the segments found by the algorithm is similar to how humans segment
sequences of actions.

Figure 7.9: Psychological study on segmentation of demonstrations. Source: (Schlichting et al.,
2018) © 2018

7.1.9 Action Recognition

The action recognition presented in section 4.5 was evaluated on the same
dataset using a manual segmentation of the demonstration, in which each
segment was enriched with multiple labels of different abstraction, such as
graspBottle, grasp, discrete. In total, the dataset contains 31 different actions
such as approach or pour and 105 executions of these. This means there are
only on average 3.39 repetitions per action available, which increases the
difficulty for the identification of the relevant action features. The decision
tree classifier was evaluated with the cross-validation technique by selecting
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a random training and test dataset 100 times with 90/10 split and averaging
the results over all iterations.
Most actions are labeled with multiple labels with different levels of abstrac-
tion. Yet the most abstract description still corresponds to the abstraction
of a planning operator such as pour. The more concrete labels describe the
style or the object the action was performed on, e.g. xwiping, meaning wip-
ing along the x-axis, or approachBottle. These more concrete labels are very
difficult to recognize since they describe the motion in detail and also have
very few examples in the dataset.
The average recognition success on the dataset is 76.2 %. A successful recog-
nition is achieved if one of the labels was predicted successfully. Table 7.5
shows the complete action recognition results for each action label. Both, the
recognition of the action with semantic effects works well (e.g. approach,
place) and the abstraction from the used object was successful. The recogni-
tion of the actions without semantic effect does not succeed as well since the
used dataset is very challenging in this regard. Some of the actions do have
very similar motions such as shaking and tossing a bottle and therefore a mis-
match is easily possible. For example, the wiping action has a recognition
rate of 97.58 % since there are no actions with similar motion characteristics
using the sponge in the dataset, though the motion characteristics for tossing

are very similar. Wrong recognitions between actions with different objects
did not happen (e.g. wiping with a sponge and tossing a bottle). Therefore, it
can be said that the distinction between actions based on the semantic state
could be achieved.
The recognition results for the more concrete action labels are considerably
worse (e.g. ywiping or approachBottle) since the motions between different
concrete labels are very similar or only have very few examples in the dataset.
Yet the concrete labels are not needed for association with planning operators.
They were used to test the limits of the algorithm and would only be needed
for parametrization of the action style.
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Table 7.5: Action recognition results for each action label.

Action labels Recognition rate in % Action labels Recognition rate in %

approach 83.72 pouringBottle 32.00

approachBottle 88.46 raise 29.41

approachSponge 64.71 raiseBottle 29.41

drippingoff 47.62 retreat 100.00

drippingoffBottle 47.62 retreatBottle 93.33

inspect 37.93 retreatSponge 100.00

inspectBottle 37.93 shaking 47.22

lift 92.00 shakingBottle 47.22

liftBottle 92.00 spotwiping 75.56

lower 57.14 tossing 65.91

lowerBottle 57.14 tossingBottle 65.91

place 100.00 wiping 97.58

placeBottle 100.00 xwiping 81.25

pour 81.48 xywiping 52.24

pourBottle 81.48 ywiping 58.82

pouring 32.00 Average 76.20

7.1.10 Discussion

The segmentation approach has proven to find segments that are similar to
segments chosen by humans. But first, the segmentation sub-algorithms will
be discussed separately.

Semantic segmentation

In general, the semantic segmentation approach relies strongly on the pre-
cision of the 6D trajectory and the model associated with it. An inaccurate
model can lead to false or missed contact detection and therefore to false
segmentation. Based on experience, the precision is sufficient to detect all
contacts and segment the trajectory into their semantic parts. As shown in Fig-
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ure 7.4, where the action sequence of pouring with two different cups and
a subsequent mixing action was demonstrated, the contact between the ob-
jects can be extracted from the distance curve and, thus, the key frames are
detected. In certain cases, a loss of contact does not mean that a new action
starts. For example, during the wiping action, the sponge occasionally loses
contact with the table. Based on the assumption that actions have a minimum
duration (470 ms is used here), this situation is avoided to a certain degree
by merging adjacent key frames that are temporally too close to each other.
Although the semantic segmentation performs well for most demonstrations,
the drawback of the semantic segmentation becomes apparent if actions oc-
cur without any observable effects, for which the semantic segmentation has
no chance to detect these actions.

Segmentation based on Motion Characteristic

The sub-segmentation tackles this problem of unobservable effects of actions.
Additionally, different styles of periodic actions can be detected (different
wiping styles, e.g. wiping in lines or intensive wiping on one spot). In Fig-
ure 7.5, a segmented action of wiping is shown, which is then subsegmented
in different wiping styles. Each time the wiping pattern changes, a new key
frame is inserted. In Figure 7.6, the further inspection and segmentation of a
semantic segment, which supposedly represents a pouring action, indicates
that these segments comprise more actions without observable effects, and,
thus, can be further divided into subsegments. In the experiments, most seg-
ments have been detected, though a smooth transition between two actions
can be problematic and no key frame might be found.

Hierarchical Segmentation

Table 7.2 and 7.3 highlight the benefit of combining both segmentation algo-
rithms to a hierarchical segmentation. The semantic segmentation performs
well on dataset 1 whereas the motion characteristic based segmentation per-
forms well on dataset 2. The hierarchical segmentation outperforms both
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algorithms on both datasets. Both algorithms have their strengths and weak-
nesses, which can be well compensated with the combination of both. The
motion characteristic based segmentation achieves good results, but can be
improved with the hierarchical segmentation. Yet the semantic segmentation,
and thus the hierarchical segmentation, provides besides the segmentation
the valuable information about the semantic state at each segment, which
a motion based segmentation cannot provide. While this information is not
important for the segmentation itself it is particularly valuable for further
processing of the segmentation results such as action recognition or learning
of effects of actions (Aksoy et al., 2015).

Action Recognition

The semantic state is used in the action recognition approach. In contrast to
the state of the art, the proposed approach uses motion and semantic informa-
tion to recognize actions. The combination of both feature spaces allows to
reliably distinguish actions with similar motions (tossing vs. wiping). Such
actions are typically difficult to distinguish only based on motion features.
Yet not all motions can be recognized. Motions without semantic change
and no characteristic motion are not reliably recognized. For example, the
pouring motion is basically an idle motion with the bottle in the hand since
the bottle is just held over the container. However, most other approaches
would probably also fail to recognize such action. Due to the global nature
of the motion feature descriptor and the search space reduction induced by
the semantic state, the proposed approach is able to recognize actions with
high variance on trajectory level.
Since the employed feature vector is high dimensional, it is important to
detect relevant dimensions. The problem is that the relevant dimensions are
action dependent and, thus, general dimension reduction cannot be applied.
The decision tree classifier is able to identify many irrelevant dimensions and
can recognize irrelevant differences in the demonstrations. For example, in
some demonstrations the hand touches the table at the end of the approach
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action. This contact is not relevant for this action, which is successfully
recognized by the classifier.
As for all data-driven approaches, more recognition results would have
helped the classifier to create a better decision tree since many different
actions are to be recognized, where each action type naturally increases
the ambiguity and the need for a bigger dataset. A comparison to other
approaches is unfortunately hardly possible since other approaches either
use motion features or semantic information. Furthermore, a public dataset
providing the needed information for such a comparison is also not available.

7.2 Statecharts

In the following, the use of statecharts for the development and programming
of robot capabilities is described. Several use cases, the developed generic
robot skills, example applications as well as fault recovery capabilities are
presented.

7.2.1 Robustness and Fault Recovery

Due to the distributed nature of the statecharts, it is possible to recover from
fatal faults (i.e. process crashes) of sub-statecharts. The statecharts are orga-
nized in groups, which typically contain semantically or functionally similar
states. Since each statechart group resides in its own process, fatal faults of
other groups do not result in a complete system shut down. If a substate of
another group crashes or terminates due to internal errors, the parent state
will receive a failure transition from the substate and can handle the failure.
This is an important feature for a complex robot like a humanoid robot with
several subsystems, especially bipedal humanoid robots, where a crash of a
single substate could have serious consequences for the whole system result-
ing e.g. in a fall of the robot which can be dangerous to humans and to the
robot itself. Therefore, a powerful fault recovery is an integral part of a robot
that interacts with humans.
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7.2.2 Generic Robot Skills

Reusability of developed robot skills is an important requirement. Consider-
ing the reusability of software in robotics is still not prevalent, maybe due
to the fact that the research field is relatively young and the research efforts
focus mainly on solving robotic problems while ignoring aspects of software
engineering for robotic applications. The developed statechart approach ad-
dresses important aspects of software reusability. e.g. by utilizing a profile
hierarchy to specify robot specific configurations where they are needed (see
subsection 5.3.7). This significantly supports the development of robot inde-
pendent skills, which can be resused on other systems.

Table 7.6: Subset of available generic robot skills implemented with statecharts.

Skill Description

JointControl Synchronous joint control

CartesianControl Cartesian TCP control

HolonomicPlatformControl Controls a holonomic platform

GazeControl Controls the view direction in Cartesian space

PositionVisualServoing Visually tracked, Cartesian TCP control

GraspObject Grasps an object from a location

ZeroForce Enables zero force control on an end effector

PlaceObject Places an object on a surface

ScanForObject Scans the environment for objects

ShapeHand Moves a robot hand into a specific shape

BringObject Brings an object to the human

PlanExecution Handles the execution of planning steps

A subset of the most important skills, which have been developed, imple-
mented and evaluated is given in Table 7.6. These skills range from low-level
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controllers like JointControl and HolonomicPlatformControl to high-level
functionalities statecharts like BringObject and PlanExecution, which han-
dles the execution of generated plans on the statechart level. In total, over 300
states have been implemented for the robots ARMAR-III and ARMAR-4.

7.2.3 Use Cases

In the following, example use cases for different applications of statecharts
are described. The BringObject statechart is a realization of a complex task
whereas the Walking statechart shows an example of state-based coordination.
The third use case Execution of Planning Operators illustrates an advanced
example, in which statecharts are used for the execution of Object-Action
Complexes as the underlying elements of a symbolic plan.

Use Case: BringObject Statechart
The Figures 7.10 to 7.14 show the first five levels of the BringObject task
statechart. With this statechart it is possible to specify fetch and deliver an
object to a human. Each of the statechart levels is dedicated to a different
abstraction level of the task and could be used again in another statechart for
the realization of another robot capability. The parametrization is passed on
from the top-level to the lower-level where and when necessary. Green states
are remote states, located in another statechart group process and yellow
states are final states, which trigger an event in the parent state.
Several states like StopRobot, MoveJoints, ShapeHand or VisualServoTo-

wardsObject are used multiple times in this task, which illustrates the
reusability of states in different situations. Figure 7.15 shows the input pa-
rameters of the GraspObject state. Most of the parameters are pre-configured
for each robot type based on simulation or expertiments on the real robot.
Some of the parameters (e.g. ObjectName) do not have any default values
and need to be mapped from the parent or previous state, when the state
is used in another state. The types vary from basic types like ����� and
����	
 to complex types like ��
���� or ���		�����, which is a ref-
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erence to a dynamic data channel of an ArmarX observer, e.g. an object
instance channel of the ObjectMemoryObserver2.

Figure 7.10: Top level of the BringObject task statechart, in which the robot moves to a given
location, grasps an object and hands it over to a human at a delivery location. This
and the following statecharts are exported directly using the graphical statechart
editor.

This state is not designed for one specific robot, but for a robot type with
certain features: It needs at least one arm with a gripper or hand, knowledge
about the current object location and a mobile, holonomic platform. To run
this statechart on a new robot only a robot model, which is given in the
Simox (Vahrenkamp et al., 2012) file format, and an adaption of the robot
specific statechart parameters (e.g. the kinematic chains) is needed.
This BringObject statechart already represents a complex task and consists
of several states, which are used as planning operators in the task execution
system (see subsection 7.3.2) (i.e. the states GraspObject, MovePlatform-

ToLandmark, HandOverObject).

Bipedal Walking Coordination with Statecharts

The statechart concept is also used to implement bipedal walking on the
humanoid robot ARMAR-4 (Asfour et al., 2013). Since walking consists
of repeated phases or in other words repeated states it makes sense to use
statecharts for the coordination of the walking controllers.

2 The ObjectMemoryObserver contains all the object localization results.
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Figure 7.11: Second level of the BringObject task statechart: move to a location and grasp an
object.

Figure 7.12: Third level of the BringObject task statechart: visual object localization and grasp-
ing.

Figure 7.13: Fourth level of the BringObject task statechart: select an arm, reposition the mobile
platform and grasp the object.
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Figure 7.14: Fifth level of the BringObject task statechart: Execute grasping using visual servo-
ing.

Figure 7.15: Input parameters of the GraspObject state.
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The implemented walking algorithm combines 1) calculation and movement
of the robot center of mass (CoM) based on joint angle measurements, inertial
measurements and a robot model with its dynamic parameters such as mass
and center of mass, with 2) the utilization of force measurements acquired
by a 6D force-torque sensors in the ankle to compensate model errors. In the
following, only the aspects of the walking algorithm related to the statechart
are briefly explained.
Each walking step consists of three phases, i.e three states, which can be
parametrized for each leg. The corresponding statechart is shown in Fig-
ure 7.16. Since walking requires high-performance controllers, not all of
them are implemented in the state user code. The ankle-stabilizer controller,
e.g. uses only the force-torque information to minimize torques and to keep
the robot stable. Therefore, the controller is executed close to the hardware to
reduce latency between sensing and acting. This ankle-stabilizer controller
offers a network interface which is used for its parametrization and activa-
tion. The parametrization depends on the current step phase and is performed
in the corresponding state as soon as the state is entered. Performing such
state-dependent parametrization in sequential code would mean to represent
the states in sequential code, which results in unreadable code. Additionally,
with the statechart framework the current state and its parameters can be
inspected graphically (see Figure 7.18).

Figure 7.16: State for a single step with the bipedal robot ARMAR-4.
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Since the low-level controllers should not execute long-running calculations,
the inverse kinematics solving for the center of mass movement is performed
asynchronously in the running phase of the state, which guarantees that the
state is still responsive to sudden state changes. To perform continuous steps,
the state DoSingleStep is instantiated three times with different parametriza-
tion: initial step with half step size, right step and left step. The right and left
step states are structured in a loop to perform an arbitrary numver of steps in
succession (see Figure 7.17).

Figure 7.17: Walking statechart with three instantiations of a single step with different
parametrization.

Figure 7.18: Each running statechart can be inspected online with the StatechartViewer GUI,
including the currently active states (red border), the state trace (red transitions)
and the state parametrization.
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Execution of Planning Operators

The third use case is the execution of plans generated by the approach pre-
sented in chapter 6. The fact that statecharts usually have a static layout and
plans are sequences of parametrized planning operators, which depend on
the current world state and goal, allows the assumption that the statecharts
cannot fulfill the requirements for executing symbolic plans. To deal with
this important aspect, the DynamicRemoteState was developed (see subsec-
tion 5.3.10). This dynamic remote state can morph into any remote state at
runtime upon entering the state and, thus into the desired planning operator
state.

Figure 7.19: The top level state for OACs execution encapsulates the ExecutionManager state
to allow unexpected abort of the exection (event EvAbort).

Figure 7.20: Substate of the OAC execution that manages the selection and execution.
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Figure 7.19 and 7.20 show the statechart implementing the logic for exe-
cuting smybolic plans. The OACExecutor state is merely an encapsulating
state which defines a clean procedure for a unexpected abort of the execution,
e.g. when a ���� command triggered by the human is recognized. In such
situations, the robot is stopped by the �����	� and returns then back to the
ExecutionManager state, in which it waits for a new command. The Exe-

cutionManager and Executive state (Figure 7.20) perform the actual work.
The WaitForNextPlanStep substate observes a remote data field that is con-
trolled by the plan execution component and reacts whenever this data field
is updated. This data field contains a plan step with the corresponding the
parameters. This plan step is given to the SelectAction substate, in which the
associated OAC is queried from the long-term memory. The OAC contains
the information about the associated statechart, which is passed on to the
Executive substate. The purple colored ActionState is a DynamicRemoteS-

tate, which morphs into the selected state and executes it. After finishing,
either with success or some failure, the result is sent back to the plan execu-
tion component to react appropriately, the statistical measure of the OAC is
updated and the statechart waits for the next step of the plan.
With this statechart it is possible to execute any planning operator, i.e. OAC,
that has an entry in the OAC segment of the long-term memory, without
altering this statechart. This statechart has been used e.g. in (Kaiser et al.,
2016) as element of a graphical pilot interface for semi-autonomous action
selection and execution. The interface suggests a variety of applicable OACs
and automatically parametrizes theses OACs based on the perceived envi-
ronment. A parametrized OAC is then send to the proposed task execution
system (see chapter 6) for execution.

7.2.4 Discussion

Up today, more than 300 states for a wide variety of applications for the
robots of the ARMAR series have already been developed and extensively
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been used not only to demonstrate simple tasks, but also for complex skills
of humanoid robots acting in real world scenarios, including grasping, mo-
bile manipulation, learning from human observation and the execution of
symbolic plans.
The decision to remove some of the features of Harel’s original statechart
for the proposed statechart approach has proved to be a right decision, since
the removed features (inter-level-transitions, history-connector) were rarely
missed in robotic applications and their removal has led, from robotics point
of view, to significant improvements regarding comprehension, reusability
and maintenance.
Compared to the MCA-framework (Scholl et al., 2001) that was used before
for the ARMAR robots, in which robot behaviors were also encoded by state
machines, but without a defined structure, the proposed statechart concept
improved the development and maintenance of robot skills for humanoid
robot. In particular, the explicit definition and specification of the data flow
in the statecharts have contributed to reusability, convenient debugging and
inspection of the system at different levels of abstraction.
An important effect of the explicit data flow definition is that implicit data-
dependencies to other states are not possible, which ensures that entering
a state with the same set of input-parameters leads to the same result. On
the one hand, specifying the data flow explicitly and in great detail can be
seen as an overhead in the development, but on the other hand the easy and
convenient debugging and better maintenance will certainly make the effort
worth in the long run. Additionally, specifying and inspecting data flow with
graphical tools simplifies this process considerably. Such graphical tools are
not only useful for defining the data flow, but indispensable for developing
complex state machines. Hence, the graphical statechart editor is one of the
most important tools of the ArmarX framework.
The necessity seen by Harel for introducing the concept of hierarchies into
state machines can be confirmed. Hierarchies are essential for developing
robot skills as compositions of elementary sub-skills and for maintaining the
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reusability. The grasping skill, for example, consists of up to six hierarchy
levels, where some of the substates are used several times. Unrolling this
into one hierarchy level results into a statechart that is practically impossible
to design by hand due to the number of required states.
The proposed statechart concept proved to be applicable for use cases on
all levels of a robot architecture. An example of a low-level statechart is a
controller for holonomic platform movements, where the leaf state is the
PD-controller (using the asynchronous user code run-function for high per-
formance control) and the level above decides on the waypoints. An example
for a high-level statechart is the statechart for OAC execution presented ear-
lier (see Figure 7.20).

7.3 Task Solving and Execution
in Dynamic Environments

The third part of this thesis, the task solving and execution in dynamic envi-
ronments is evaluated in a complex scenario, in which the robot, in coopera-
tion with a human, has to solve the task of rearranging a room and preparing
a meal. The scenario was executed on the humanoid robot ARMAR-III and
in a user study in simulation to test the usability and robustness of the ap-
proach with untrained users. The scenario, the experiments and the results
are presented in the following.

7.3.1 Predicate Providers

Predicate providers map subsymbolic information into symbolic predicates
and are essential for the execution of tasks in dynamic environments. The
reliability and precision of the predicate providers have a high impact on the
robustness of the execution and failure handling. Yet the reliability of pred-
icate providers depends on the quality of the sensor data, e.g. of perceived
object poses and the location of the robot in the environment and thus such
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data should be pre-processed to reduce noise and task specific errors. In the
case of a mobile manipulation task, a Kalman filter is used for the fusion of
the visually determined object pose and for the robot pose estimation based
on odometry and laser scanner information.
All predicate providers developed in this thesis are rule-based and use the
results of the self-localization, object localization and robot configuration.
Table 7.7 shows the list of used predicates that are extracted from robot
perception, and an explanation of the calculation rule. As described in sec-
tion 6.7 there are more predicates that are unobservable by the robot and
tracked based on the effects of actions. In the use case described in the
following sections, the predicates proved to be of varying reliability. For
example, the ��������	�
���
���� predicate is reliable since it is repre-
sented by bounding boxes in which objects are rarely on the borders. Even
if objects are on borders, they can be graspable by the other hand leading
to a successful execution of the task without even noticing a failure. The
������ predicate is less reliable since it depends on the predicted object
pose in the hand, a challenging task which is not supported by the visual
object localization method applied in this thesis.

Table 7.7: Observed predicates used in the planning domain.

Predicate with types Description Calculation description

inHand(object, hand, robot) object is in hand of robot.
Distance between object and

hand < ε1

objectAt(object, location) object is at landmark location.
Distance between object and

location < ε2

robotAt(robot, location) robot is at landmark location.
Distance between robot and

location < ε3

handEmpty(robot, hand) hand of robot is empty. Distance of hand to all objects > ε4

leftGraspable(object)
Left hand grasp is known for object and it is

currently at a suitable location for the left hand.
Object position in bounding box

rightGraspable(object)
Right hand grasp is known for object and it is

currently at a suitable location for the right hand.
Object position in bounding box
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7.3.2 Evaluation Scenario

The task execution system has been evaluated on the humanoid robot
ARMAR-III (Asfour et al., 2006) in a kitchen environment. ARMAR-III
is a 43 DOF humanoid robot with two seven DOF arms, two hands with five
fingers each, a seven DOF head with two stereo camera systems with foveal
and peripheral lenses and a holonomic mobile platform with three omni
wheels. It can operate in an autonomous way using only onboard sensors,
computing power, batteries.
The case study is a dinner preparation scenario, in which the robot and a
human cooperatively prepare a salad and rearrange the room for dinner for
two people. Figure 7.21 shows snapshots of the execution in chronological
execution order. The video resulting from the Xperience (Xperience, 2011)
project which demonstrates the results is online available3.
During the dinner preparation, the human instructs the robot to perform
certain tasks using natural language4 while the human is performing other
parts of the dinner preparation. To solve the tasks the task execution system
is employed and several robot skills described by the developed statechart
representation are used. Table 7.8 shows the list of symbolic skills used in
this scenario.
The sub-tasks of the scenario are:

1. Fetching and placing the salad bowl on the sideboard

2. Preparing the salad with corn and oil

3. Placing the salad bowl on the dining table

4. Fetching a chair and moving it to the dining table

5. Delivering a beverage to the human

3 ����������	�	
���
���
������
4 The natural language understanding component is not part of this thesis.

167

https://youtu.be/-8oC-WW5P1I


7 Evaluation

Each of the sub-tasks are uttered to the robot, which tries to find a solution
based on the current world state. Each of the tasks could also be commanded
with direct action commands without using the planning system. In this
mode, the full parametrization needs to be given to the robot, e.g. grasp

the green cup with your left hand from the sideboard. The execution can be
stopped at any time and the robot awaits a new command for solving a new
task based on the current world state.

Table 7.8: Symbolic robot skills used in the evaluation scenario.

Skill Description

JointControl Synchronous joint control

CartesianControl Cartesian TCP control

HolonomicPlatformControl Control of a holonomic platform

GazeControl Control of the view direction in Cartesian space

PositionVisualServoing Visually tracked, Cartesian TCP control

GraspObject Grasp an object from a location

ZeroForce Enable zero force control on an end effector

PlaceObject Place an object on a surface

ScanForObject Scan the environment for objects

ShapeHand Move a robot hand into a specific shape

BringObject Bring an object to the human

PlanExecution Handle the execution of planning steps

7.3.3 Natural Human-Robot Interaction User Study

The presented task execution approach was evaluated together with a lan-
guage understanding component developed in (Ovchinnikova et al., 2015;
Wächter et al., 2018) in a user study. The goal of the study was to evaluate
whether the approach can handle commands of untrained users and achieve
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(a) Grasping the bowl (b) Placing the bowl

(c) Opening the fridge (d) Pouring corn

(e) Closing the fridge (f) Pouring oil

(g) Stirring salad (h) Tidying up

(i) Placing the bowl (j) Bringing juice

Figure 7.21: Snapshots of cooperatively rearranging the room and preparing dinner.
Source: (Wächter et al., 2018) ©
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the desired goal. Due to the use of generic interfaces, a simulation and the
real robot are interchangeable without changes of the execution system. For
this experiment a kinematic simulation is used and the user can follow the
robot in a 3D view of the current working memory content of the robot. This
graphical user interface is shown in Figure 7.22. It visualizes the current state
of the working memory and allows the user to enter commands in natural
language as text.
The subjects were instructed to achieve a given goal by controlling the robot
with natural language commands in the simulation environment. The setup
of the study is defined as follows:

• The user should communicate with the robot by typing or speaking
sentences via the GUI.

• The initial world state with labels of robot locations and ambiguous
object names, as shown in Figure 7.23(a), was presented to the user.

• The goal state, which the user should achieve by controlling the robot
as shown in Figure 7.23(b).

• The drink on the table could be chosen from a predefined list of drinks
represented as images (e.g. beer, juice, milk) and the salad should
contain ingredients, which were also only represented as images of
corn and oil.

The experiment was conducted in the lab with no time constraints. In to-
tal, eight subjects (four male, four female, age 20–60) with no background
in robotics or related areas took part in the experiment. The experimenter
was present during the experiment to transcribe the process, but did not
give any further instructions and answered no questions. An example of
two sentences with one failure and one success is shown in Table 7.9.
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Table 7.9: Experiment transcript example

User ID Command RM Memory Update Planner Execution User feedback

Al
"Put two cups

on the table"
- -

Failed: No plan, since only

one location ����� known
-

User confused,

since no feedback

"Set the table

for two people"
- - OK OK -

Figure 7.22: Graphical user interface for interac-
tion for interaction with the simu-
lated robot.

The command Put two cups on

the table resulted in a failure since
there was only one location of
type ����� available, but the plan-
ner tried to put both cups on that
one location. This results in a loop
since the planner wants to put one
cup on the table and removes it
in the next step again to put the
other cup on the table. A function-
ing command for this task would
be Set the table for two people.
This command maps the location
type ���������	
� to two differ-
ent instances of that type and re-
sulting in a quickly found plan.
All subjects were able to solve the
tasks using 12.5 utterances in aver-
age. The commands given by sub-
jects differed greatly. Some were using general task descriptions, e.g. make a

salad with corn and oil, whereas others were giving fine granular commands
such as go to the fridge. Open the fridge. Take the corn.
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In general, most commands could be handled by the system. Few commands
failed due to various reasons, such as an invalid mapping of natural language
instructions to the planning goal.
The Replacement Manager (RM) suggested six object replacements, of
which four were accepted by the users. It has also generated location hypothe-
ses for all known objects and asked the users for unknown object locations.
The working memory was successfully updated during the execution and
after processing human utterances. Given the generated domain description
and a goal that could be fulfilled, the planner generates the required plans to
achieve the goal.

(a) Initial scene

(b) Goal scene (table setup)

Figure 7.23: Initial and goal scenes provided to the users.
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An important issue that occurred during the experiments were cases in which
several replacements of the same type were required in a goal expression.
For example, the command Put two glasses on the table implies that there
should be two different glasses on the table. Since no glasses are available
in domain, the RM suggests replacing them with cups and selects the type
������� as a replacement. Since there is only one instance of �������, the
new goal implying two different instances could not be fulfilled. To tackle
this problem, the RM should take the number of instances of replaceable
types into account and should provide only replacement suggestions if the
required instances are available.
The lack of a mechanism for estimating the interdependence between con-
secutive goals has led to unreasonable sequences of plans. For example, a
user has instructed the robot to put a cup on the table, which the robot could
perform without problems. Some of the follow-up commands may result in
a plan that instructs the robot to remove the cup again from the table, which
may contradict the original intention of the user. Yet this problem is difficult
to solve since sometimes previous goals are not relevant for future plans, e.g.
putting the bowl first on the sideboard to prepare salad and placing it later
on the dining table would contradict the first goal, but is still correct.

Table 7.10: Runtime of the main components in seconds. Source: (Wächter et al., 2018)
©

Component Average Maximum Minimum

Language Understanding 0.26 s 0.79 s 0.13 s

Visual Features Strategy 2.61 s 4.61 s 1.66 s

Planning System 0.89 s 7.99 s 0.13 s

Action Execution 20.59 s 42.01 s 4.44 s
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The runtime of the main components is depicted in Table 7.10. The host
PC used for the measurements was an Intel Core i7-6700HQ CPU running
at 2.60 GHz with 16 GB RAM. The tasks from the user study were used
to measure the runtime. The Language Understanding component performs
its analysis reliably in under one second (maximum 0.79s). No input data
produced a noticeable delay in the task triggering. The RM and its strategies
except the visual features strategy are table look ups of precomputed infor-
mation, e.g. common sense object replacements, and consume no significant
CPU time. These strategies were omitted in Table 7.10. The visual features
strategy on the other hand is computationally expensive and required 2.61s
on average. The runtime mainly depends on how many point cloud clusters
(i.e. objects) have been found in the current scene. The runtime of the plan-
ning component highly depends on the specific goal and the current state of
the memory and varies between 0.15ms and 7.99s for the given tasks. The
minimum of 0.15ms was achieved when the goal was already fulfilled before
planning. The maximum of 7.99s was required for the task set the table for

two people, with all objects except the corn already being in the working
memory. The runtime of the action execution was measured per plan step in
the simulation. This measurement includes the full duration of the robot’s
action execution. On the real robot the runtime is similar, but slightly higher
due to smaller joint angle velocities and due to a higher perception time. The
runtime highly depends on the executed action; in case of the move action it
depends on the travelling distance.

7.3.4 Discussion

With the presented task solving and execution approach it is possible to
equip a robot with the powerful capability to act and interact autonomously
in an unstructured and dynamic environment. The ability to reason about the
location and the potential replacement possibilities of objects enhances the
autonomy and flexibility of a robot. The versatility of the location hypothesis
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and object replacements is ensured due to the multi-modality of the symbol
replacement, which can easily be extended by additional strategies in the
future. However, the location hypothesis and object replacements are not
and cannot always be correct, since there is no way to know if an object
is currently at the most probable location. A wrong replacement will be
discovered during execution and the robot will autonomously correct it by
creating a new hypothesis. Apart from the common places strategy, this will
be always the same hypotheses since the underlying data structure is static.
One possible extension would be to assess the reliability of hypotheses after
execution and adjust the confidence of the employed strategies and individual
hypotheses. This way, the robot could ground the hypotheses in the real world
and improve their quality over time.
The predicate providers allow a developer to easily design a mapping be-
tween continuous subsymbolic and discrete symbolic representation needed
for reasoning and planning. These need to be developed for each observable
predicate used in the planning domain. Optimally, all predicates should be
observable to always allow a grounding of symbolic information in the real
world, but this is not feasible with current state of the art sensors and percep-
tion methods. In this thesis, the most important and perceivable predicates
about the object and robot location are automatically extracted from sensor
data. Additional predicates such as graspable are derived from information
stored in the robot’s memory. Information about non-observable predicates
can be provided to the robot via natural language, such as the fridge is closed.
From theoretical point of view, each of the predicates could be declared non-

observable, but then online domain generation and task execution monitoring
would be pointless since the execution would be independent from any in-
formation about the current state of the world. Thus, the correctness of the
generated planning domains relies mainly on the quality of these predicate
providers. In future work, predicate providers that are learned by the robot
itself based on simulation or real world experience would enable the robot
to learn new symbolic information and possibly refine existing predicate
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providers. Similarly, to the extension of the replacement strategies, the pred-
icate providers could analyze the execution results that are executed based
on the information from the predicate providers and adapt those in failure
situations.
The user study showed that the proposed approach can be controlled by
untrained users to solve a complex task with a humanoid robot. Problems
that the participants encountered showed that the feedback of the robot, i.e
the human-robot-interaction, should be improved. The robot should be able
to communicate the reason of failure and externalize its current state to the
participants to realize more symbiotic interaction and reliable task execution.

Figure 7.24: Snapshots of a demonstration of the wiping task.

7.4 End-to-End Use Case

The developed approach for end-to-end learning tasks from human obser-
vation and their execution on a humanoid robot is evaluated in the context
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of a table cleaning task. For the sake of clarity, a rather simple example is
selected without limiting the generality of the approach. In the following, all
steps involved in task learning and executing are described.

Observation

The first step is to observe the demonstration and map it to a representation
suitable for learning. In the demonstrated task, the human wipes a table
with a sponge. In the beginning, the sponge is placed on the table and the
human is standing in front of the table. The human grasps the sponge with
the right hand and a wiping action is started and executed for 13s. After
that, the human releases the sponge and retreats the hand. Figure 7.24 shows
snapshots of the demonstration converted into the MMM reference model.
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Figure 7.25: Semantic segmentation of a short wiping task. Semantic key frames (vertical
dashed lines) are inserted when a stable contact is detected and when a contact is
broken. The distance between the table and the sponge is almost zero during the
whole demonstration.
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Segmentation

The first processing step is the segmentation of the demonstration. The seg-
mentation divides the demonstration into individual actions. Figure 7.25
shows the result of the semantic segmentation level of the hierarchical seg-
mentation. The relevant distances between objects and the right hand are
shown as curves. At the beginning, the distance between the right hand and
the sponge is high (height ≈1.5m), but decreases then rapidly to zero. It
can be noticed that the first key frame is inserted slightly after the frame
where the distance reaches zero since key frames are only inserted at a local
minimum and if the relative velocity between two objects is almost constant.
The first segment in Figure 7.25 corresponds to the grasp action, the middle
segment corresponds to the wiping action and the last segment represents
the retreat action.
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Figure 7.26: Hierarchical segmentation of a wiping task. The curves depict the motion of the
right hand on the Cartesian axes whereas the red vertical dashed lines are semantic
key frames.

Figure 7.26 shows the result of the complete hierarchical segmentation. The
curves show the Cartesian positions of the right hand of the human. The mo-
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tion characteristic based segmentation does not insert an additional key frame
in this demonstration since it correctly identified that the wiping style was
not changed during the execution. The amplitudes as well as the frequency
in all dimensions of the motion are similar during the whole segment.

Recognition

The next step consists of the recognition of the extracted segments in the wip-
ing task. An evaluation of the action recognition system developed in this
thesis was described in subsection 7.1.9. In the wiping task, the semantic
states at the beginning and end of each segment are calculated and converted
into a matrix representation as described in section 4.5. These semantic states
are shown in Figure 7.27. All object relations, in this demonstration only one,
are also accumulated in the row and column labeled object to allow gener-
alization. Before the grasp action (Figure 7.27(a)), only the sponge and the
table are in contact. After the grasp action (Figure 7.27(b)), the hand is in
contact with the sponge and the table as well. The contact with the sponge
is desired, but the contact between the table and the hand results from the
small height of the sponge and is not desired. After the wiping action (Fig-
ure 7.27(c)), the contact between the hand and the table is broken due to a
different hand pose, but the contact between sponge and hand is still active.
This relation illustrates, in this use case, the robustness of the action recog-
nition and the task extraction to wrong results of previous processing steps.
In addition to the semantic states, motion features are extracted from the
segments and used for the recognition. The decision tree of the action recog-
nizer was trained in advance with the whole dataset used in subsection 7.1.9.
Based on these features, the decision tree of the action recognizer calculates
the correct action labels: grasp, wiping and retreat.

Task Extraction

A new task can be extracted from the demonstration based on the recog-
nized action labels, the semantic states from the segmentation and a database
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of known actions. Listing 7.1 shows all available actions for this use case:
, , , and . It needs to be noted that not

all predicates can be extracted from the semantic states of the segmentation.
The predicates and are not observable and can only be in-
ferred based on executed actions. This needs to be considered when learning
a new task with its preconditions and effects on the world state.

(a) (b)

(c) (d)

Figure 7.27: World states at key frames used for action recognition: (a) Before grasping the
sponge (b) After grasping the sponge (c) End of wiping action (d) After retreating
with the hand from the sponge

180



7.4 End-to-End Use Case

�
������ ���	
��
���� � �
������ � �
���������



������	


��������������

������
�����

������	


����������
�������

����������������

������ ������
���� � �
������ � �
���������



������	


��������������

�����������

������	


������������������

������ ��
�����
���� � 	
	
���� � �
���������



������	


���������	����

�������	���

������	


���������������

������ 	��������
���� � �
�������



������	


�����������

������	


����	���������

������ ���������
���� � �
�������



������	


��������������

�����������

������	


�����������������

����������
������

�
Listing 7.1: Planning operators available for task learning.
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The learning of a new task consisting of known actions is then solved by
searching for action sequences with the same effects on the world state. This
requires finding out which objects are involved in a task, which actions ex-
plain the observation best and how these actions need to be parametrized.
The action recognition provides a sequence of labeled actions, but these la-
bels are not correct if the action recognition failed. Therefore, the recognized
actions are only considered as potential action candidates. The recognized
actions are used as the preferred solution if it does not contradict any of
the preconditions or effects. Otherwise, all available actions are validated
with respect to the observed world state changes. The first matching action
is selected for the new task. The learned task for this use case is shown in
Listing 7.2.
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Listing 7.2: Extracted planning operator.

Based on the extracted action sequence it is also possible to extract the types
for the parameters from the action. In this use case, the first parameter needs
to be an object of type ������ since the wiping action requires a sponge.
The second parameter is the ���	
��� that should be wiped and the third
parameter can be the left or right �	�
. The extracted preconditions of the
task are that the ������ is at ���	
��� and that the �	�
 to be used is

182



7.4 End-to-End Use Case

empty. The effect of the task is that the location is �������. This new task
is then added to the OAC database in the long-term memory and can be used
by the planner in the future.

Robot Skills

Each of the planning operators needs an implementation for execution by a
robot. These planning operators are implemented using the statechart con-
cept presented in this thesis. The statecharts of the actions required for the
execution of the new task are shown in Figure 7.28. The grasp statechart
uses visual servoing to move the hand of the robot to a grasping pose relative
to the current object pose. The grasping information is stored for each object
in the prior knowledge. Upon reaching the grasping pose, the hand is closed.
The wiping statecharts uses a Dynamic Movement Primitive learned from
observation (Gams et al., 2010) and the retreat action opens the hand and
moves it upwards and towards the robot.

Execution based on goal query

As mentioned before, the newly learned task can be used by a symbolic
planner like any other planning operator. This leads to shorter plans as the
learned planning operator already consists of a sequence of elementary ac-
tions. This reduces the computational complexity of planning since this com-
plexity grows exponentially with the plan length and thus results in faster
planning.
To trigger the use of the new task, the following task goal could be used:
��	���
��� 
 ��������� 
�������������

This goal state specifies that the predicate ������� should be true for all
constants of type ��������. Figure 7.29 shows snapshots of the execution
of the new task in simulation, in which the robot is standing in front of the
table and the sponge is on the table.
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(a)

(b)

(c)

Figure 7.28: Robot skills required for the wiping task modeled as statecharts.
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(a) Starting pose (b) After grasping the sponge

(c) Execution of the wiping action (d) After retreating the hand from the
sponge

Figure 7.29: Snapshots of the execution of the new wiping task. The yellow lines depict the
trajectory of the end-effector.

7.5 Summary

In this chapter, the presented approaches regarding task understanding by
segmentation and action recognition, robot skill modeling with statecharts
and task solving and execution were evaluated. The hierarchical segmenta-
tion algorithm was evaluated on a demonstration dataset containing typical
household manipulation actions such as pick, place, pour, stir and cut. Its
performance was compared to two popular approaches and to a manually
created reference segmentation. The results and a user study demonstrate
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that the automatically extracted segments by the developed algorithms are
similar to the way humans segment a demonstration. The action recognition
approach was trained on one part of the same dataset and evaluated on an-
other part with cross-validation. The results show that the semantic and the
motion feature space complement each other and allow the classification of
actions that are ambiguous in one of the feature spaces.
The robot skill modeling approach based on statecharts was employed and
evaluated by letting multiple developers implement a multitude of skills
using different sensor modalities and targeting different abstraction levels
such as object grasping or robot navigation. Developer feedback showed that
the approach simplified the design process significantly and improved the
maintainability.
The task solving and execution approach was applied in a kitchen scenario,
in which several tasks have to be executed such as setting a table or preparing
dinner for two people by utilizing the developed robot skills. Furthermore, a
user study was conducted to evaluate if untrained users are able to instruct
the robot with natural language to solve given tasks. The results indicate that
most users are able to solve the tasks, but multiple trials are necessary.
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8 Conclusion

The objective of this thesis was to develop methods and algorithms for
learning complex manipulation tasks from human demonstration and ex-
ecute them on a humanoid robot in dynamic environments. The proposed
approach addresses the three major research questions in learning from hu-
man observation and robot programming by demonstration: 1) Observation
and understanding of human demonstrations, 2) representation of skills and
tasks in a generalized way and 3) adaptation and execution of learned skill
and task knowledge in novel situations. Human demonstrations of complex
manipulation tasks are automatically segmented into meaningful segments
and associated with known actions. These actions are modeled with state-
charts for execution on mobile, dual-arm robots such as the humanoid robot
ARMAR-III. Finally, the actions are used to solve tasks in dynamic environ-
ments including reasoning about potential object alternatives and monitoring
of the execution. In this chapter, the contributions of this work are revisited
and the results as well as possible extensions are discussed.

8.1 Contributions of the Thesis

The overarching contribution of the thesis is a complete system for learning
task knowledge from human demonstrations and the adaptation of this know-
ledge to new situations. In summary, the main contributions of this thesis
are:
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Task Understanding by Segmentation
and Action Recognition

To understand and learn complex manipulation tasks demonstrated by hu-
mans, it is necessary to segment these demonstrations. To this end, a novel
hierarchical segmentation approach is proposed to extract meaningful seg-
ments, i.e. manipulation actions, that takes not only motion data, but also
semantic information extracted from object contact relations into considera-
tion. For the recognition of such manipulation actions in human demonstra-
tions, an action recognizer has been developed which is based on a decision
tree classifier. This classifier relies on a novel action descriptor considering
object relations and global motion features. The hierarchical segmentation
approach has been published first in (Wächter et al., 2013) and was extended
in (Wächter and Asfour, 2015). It is used in (Wörgötter et al., 2015) and
(Schlichting et al., 2018).

Robot Skill Modeling with Statecharts

A novel robot skill modeling approach using extended hierarchical state-
charts has been developed, implemented and evaluated in complex tasks
on a humanoid robot. This hierarchical modeling approach is capable of
representing multi-modal robot skills on all abstraction levels of a robot
architecture ranging from low-level controllers to high-level symbolic plan-
ning operators. The developed hierarchical statechart approach extends the
original statecharts described in (Harel, 1987) to address the requirements of
many-sensor and many-actor systems such as humanoid robots by providing
means for fine-granular and reusability-supporting data flow specification,
distribution over multiple hosts and fault handling on coordination level. On
top of this, a complete graphical modeling tool has been developed to support
convenient programming, easy system monitoring, simplified debugging and
short development cycles in robot programming. The statechart concept and
the graphical tool are core elements of the robot development environment
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ArmarX1, which is used for programming the ARMAR robots. The concept
and its integration in ArmarX has been published in (Welke et al., 2013c;
Vahrenkamp et al., 2014, 2015) and (Wächter et al., 2016).

Task Solving and Execution

For the execution of tasks in dynamic environments symbolic planning is
used to find an action sequence that transforms an observed world state into
the goal state of a task. For this purpose, continuous, subsymbolic sensori-
motor representations are generically mapped into a symbolic representation
of the world state. To deal with situations in which the world state is insuf-
ficiently explored or objects are unknown, a symbol replacement method
has been proposed to generate hypotheses about alternatives for objects and
object locations to allow the generation of a plan for solving the underlying
task. In order to handle execution failures and wrong hypotheses, the exe-
cution of tasks is monitored and corrected automatically. The task solving
and execution approach has been published in (Ovchinnikova et al., 2015).
An extended version with replacement capabilities is presented in (Wächter
et al., 2018).

8.2 Discussion and Outlook

Several aspects of learning from demonstration have been addressed in this
thesis. In the following, the results of the proposed approach and possible
extensions are discussed.

Task Segmentation and Action Recognition

The evaluation of the hierarchical segmentation approach showed that the
extracted segments are in many cases similar to segments defined by humans.
However, there are cases where segmentation differs due to various reasons.

1 ArmarX: ����������	��
���	�
������������
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Semantic segmentation

In general, the semantic segmentation approach heavily relies on the preci-
sion of the 6D trajectory and the models associated with it. An inaccurate
model can lead to wrong or missed contact detection and therefore to wrong
segmentation. Based on experience, the precision is sufficient to detect all
contacts and segment the trajectory into its semantic parts. Although the se-
mantic segmentation performs well for most demonstrations, the drawback
of the semantic segmentation becomes apparent in the case of actions with-
out observable effects. In this case, the semantic segmentation has little or
no chance to detect these actions.

Segmentation based on Motion Characteristic

The sub-segmentation tackles this problem of unobservable effects of actions.
Additionally, different styles of periodic actions can be detected such as
different wiping styles, e.g. wiping in lines or intensively wiping on one spot.
In the experiments, most segments have been detected, though a smooth
transition between two actions can be problematic and no key frame might
be found.

Hierarchical Segmentation

The benefit of combining both segmentation algorithms to a hierarchical
segmentation was demonstrated by using specialized datasets. The semantic
segmentation performs naturally well on demonstrations with observable ef-
fects whereas the motion characteristic based segmentation performs better
on demonstrations containing periodic motions. The hierarchical segmen-
tation outperforms both algorithms on both used datasets. Both algorithms
have their strengths and weaknesses, which are compensated by their combi-
nation. The semantic segmentation, and thus the hierarchical segmentation,
also provides valuable information about the semantic state of each segment,
which a motion based segmentation cannot provide. While this information
is not important for the segmentation results themselves, it is particularly
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valuable for further processing of the segmentation results such as action
recognition or learning of effects of actions.

Action Recognition

In contrast to the state of the art, the proposed approach uses motion and
semantic information to recognize actions. The combination of both feature
spaces has proven to be advantageous as actions with very similar motions
can be reliably distinguished (tossing vs. wiping), which are difficult to cor-
rectly recognize by using classical action recognition based on motion fea-
tures. Yet motions without semantic change and no characteristic motion are
not reliably recognized.
The decision tree classifier is able to recognize irrelevant variances in the
demonstrations. For example, in some demonstrations the hand touches the
table at the end of the approach action. This contact is not relevant for this
action, which is successfully recognized by the classifier.
As for all data-driven approaches, more training data would have helped
the classifier to create a better decision tree since many different actions
are to be recognized and since each action type increases the ambiguity. In
future work, more object relations such as in and on could improve the action
recognition results further since they reduce the ambiguity of actions.

Task Extraction

The successful extraction of new tasks learned from human observation de-
pends on the correctness of the segmentation and recognition. One missed
or additional segment will cause a shorter or longer action sequence for the
new task. Furthermore, the action recognition has to recognize an action that
should not be contained in the extracted action sequence. Depending on the
recognized action, this can lead to a failure of the task extraction algorithm
or even lead to a task description with different semantics. In future work,
this problem could be addressed by learning task representations from multi-
ple demonstrations. Another future extension could be pruning of generated
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plans. Using planning operators learned from demonstration creates the pos-
sibility that the resulting plan is not optimal. For example, a learned task
contains grasp as a first action, but the robot already holds the object in its
hand. The planner will then instruct a place action to grasp it again as part
of the learned planning operator. Such cases could be detected and removed
from the action sequence by detecting which consecutive actions nullify the
effects of the previous action.

Robot Skill Modeling with Statecharts

In the following, experiences from implementing and developing robot skills
with the statechart concept are discussed. Since more than 300 states for a
wide variety of applications for the robots of the ARMAR series are already
developed, several advantages and disadvantages of the proposed concept
appeared. The presented statechart approach has extensively been used not
only to program simple actions, but also for complex skills applied in real
world scenarios, including grasping, mixing, pouring or opening and closing
doors.
The decision to remove some features of Harel’s original statechart has
proved to be the right decision, since the removed features (inter-level-
transitions, history-connector) were rarely missed in robotic applications
and their removal has led to significant improvements regarding comprehen-
sion, reusability and maintenance. A detailed and explicit specification of
the data flow results in development overhead, but the simplified debugging
and maintenance makes the effort worth in the long run. Specifying and
inspecting this data flow with graphical tools greatly simplifies the software
development process. Such graphical tools are not only useful for defin-
ing the data flow, but indispensable for developing complex state machines.
Hence, the graphical statechart editor is one of the most important tools of
the ArmarX framework.
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The proposed statechart concept proved to be applicable for different ab-
straction levels from low-level controllers to high-level planning operators
as well as for heterogeneous skills such as grasping and walking. In future
work, extending the proposed statechart concept with full orthogonality with
consideration of splitting and joining the data flow could simplify developing
robot capabilities, in which skills and tasks are executed in parallel as it is
the case in bimanual grasping and manipulation.

Task Solving and Execution

With the presented task solving and execution approach it is possible to
equip a robot with the powerful capability to act and interact autonomously
in a dynamic environment. The ability to reason about probable locations
of objects or entire replacements of objects greatly enhances the autonomy
and flexibility of a robot. Yet the feasibility of a solution heavily depends on
the reliability of the used information. Up to now, the information about the
certainty of existence of objects is not incorporated into the planning domain
generation. Thus, every object pose is effectively treated as a fact. However,
the full usage of such information would require a probabilistic planner.
In future work, the conversion of continuous sensorimotor information into
symbolic information and vice versa could be extended to be refined or
learned through experience and exploration. Refinement could be achieved
through evaluation of previous action results, where failure and success of
actions can be used to tune hyper parameters and confidence values.
The user study showed that the proposed approach can be controlled by
untrained users to solve a complex task with a humanoid robot. The problems
that the participants encountered showed that the feedback of the robot, i.e.
the human-robot-interaction, should be improved in future extensions.
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This section shows a shortened planning domain in the PKS (Planning with

Knowledge and Sensing, (Petrick and Bacchus, 2002)) syntax as generated
by the implementation of the task solving and execution approach presented
in chapter 6. The domain is shown in listing A.1.
A domain consists of three parts: the symbols definition, a list of actions and
a problem definition. The symbols definition consists itself as well of 3 parts:
the ����� declaration, the �����	
��� declaration and the 	����
��� dec-
laration. The declaration of the used types, e.g. 

���������, determines
the types that are used for action parameters and constants. In the generated
example domain each type is prefixed with a meta type, e.g. ��	
������,
which is necessary for the conversion back into robot memory symbols.
The �����	
��� declaration determines the predicates that can be used
in the domain and have the arity attached, e.g. 

������� means that the
predicate always has two parameters, for example 

�����������������
����
�������.
The 	����
��� declaration represents the entities existing in the planning
domain together with the type of the constant.
The 
	����� consist of a typed parameter list, preconditions and effects.
Preconditions are predicates that can only contain the parameters of the
action and effects are predicate changes. The ������� definition depends
on the current state of the world and describes the state of the world with
grounded predicates in the ������ block. The second part of the �������
definition is the 
�
� definition. The 
�
� definition is a desired state of an
arbitrary number of predicates. To be more flexible quantifiers can be used,
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which is particular important for generated domains. The goal in the example
in listing A.1 specifies that all doors should be closed, i.e. not ����. Without
quantifiers each �����	�� constant would have to be named explicitly. If
a generated domain with varying locations is used, this would entail that
the 
��� would to generated dynamically as well. This can be avoided with
quantifiers as shown in the example.
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Listing A.1: An exemplary definition of a planning domain.

198



Glossary

������ An action is a targeted motion performed by one subject, e.g. a step
during walking or grasping an object.

����	���
 An affordance (Gibson, 1979) is the possibility of an action on
an object or environment based on various properties such as shape,
weight, stability etc. For example, a chair affords sitting, but it does
not afford rolling.

�����
 A causal algorithm only uses data from the current state and the past.
It does not need data from future timestamps. This is a crucial criterion
for an online algorithm.

����� ����
 The joint space of a robot is the configuration space, where the
joint angle of each joint represent the dimensions of the configuration
space.

�
� ����
 A motion consists of a sequence of frames. A key frame in the
context of segmentation is a frame that denotes the end and beginning
of two consecutive segments.

������ ��������
 A motion primitive is the smallest unit of motions with
a semantic meaning, e.g. a step while walking could be one motion
primitive.
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Glossary

����������	
� �

���� Object-Action Complex (OAC) is a manipula-
tion action formalization to describe manipulation actions in relation
to an object and the effect the action has on the world state.


������� An ArmarX observer is a component that observes and logs the
data stream of one sensor type. It is possible to install conditions and
filters on each data field of an observer that are evaluated on each
sensor update.

�����	�� 
�����
� A planning operator is the equivalent of an action in
terms of the planning system, i.e. it contains the information needed
for planning: the precondition predicates, the effects and the types of
all involved planning constants.

����	���� Predicates are used to symbolically describe the state of the
world. They have a Boolean value and zero to n parameters, e.g.
������� �	
��
.

�
�
� ��	�� A robot skill is the implementation of an action on a robot, e.g.
moving to a landmark or grasping an object.

���
��� A (motion) segment is a part of a longer demonstration which
ideally denotes one motion primitive.

��
���	� ���
��� A semantic segment is a segment of a demonstration
that contains a semantic change in the world, e.g. the change of contact
between two objects.

���� A task is a goal for the robot that should be achieved by executing the
correct actions. The goal is formulated as a desired goal world state.

���� ����� The task space of a robot is the configuration space of the 6D
end-effector pose of a robot arm.
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Glossary

����� ����	 The world state means in this thesis a semantic or symbolic
representation of the environment. More specifically, in the case of
the semantic segmentation it refers to object relations and in case of
the symbolic planning to a set of predicates describing the relations
between entities such as objects and robots.
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Acronyms

��� Dynamic Movement Primitives

��� Deoxyribonucleic acid

��� Degree of Freedom

��� Finite-state Machine

	
� Graphical User Interface

��� Hidden Markov Model

�� Hierarchical Segmentation

�
� Hierarchical Task Network

��� Integrated Development Environment

��� Interface Definition Language

��
 Inertial Measurement Unit

��
 Karlsruhe Institute of Technology

��� Learning from Demonstration

��� Master Motor Map
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Acronyms

��� Object-Action Complex

��� Programming by Demonstration

��� Principal Component Analysis

�� Proportional Derivative (-Controller)

��� Planning with Knowledge and Sensing

	
�� restricted Finite State Machines

�
� Red Green Blue

�
��� Red Green Blue Depth

��� Robot Operating System

��� Semantic Event Chains

��� Symbol Replacement Manager

��� Unified Modeling Language

��� Extensible Markup Language

��� Zero Velocity Crossings
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Roboti cs has the potenti al to become one of the key technological advancements of the 
21st century and to substanti ally improve the quality of life by transferring repeti ti ve, tedi-
ous and hard labor tasks to service robots. However, equipping robots with complex capa-
biliti es sti ll requires a great amount of eff ort. In this work, a novel approach is proposed to 
understand, to represent and to execute object manipulati on tasks learned from observa-
ti on. A human demonstrati on is automati cally segmented into a sequence of manipulati on 
acti ons, which are associated with a database of acti ons. Each of these acti ons is hierarchi-
cally composed with a graphical programming mechanism called statecharts and allows 
the robot to execute the given tasks in dynamic environments. If the robot encounters a 
diff erent state of the environment or even misses objects needed for the task, an online 
percepti on, reasoning and planning approach is employed for fi nding a suitable alternati ve 
for the task to fulfi ll the task nonetheless.
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