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A B S T R A C T

Three coordinated papers are presented concerning entrained flow gasification of a liquid fuel under atmo-
spheric conditions. The work is based on a detailed mapping of process parameters inside the entrained flow
gasifier and at the gasifier outlet. In this paper the experimental setup and the experimental data are reported.
Mono ethylene glycol (MEG) is used as a well-defined surrogate fuel for biogenic oils. The overall performance of
the reactor is evaluated by measuring the gas-phase composition at the reactor outlet; radial profiles of gas-phase
composition (CO2, CO, H2, CH4, hydrocarbons) and temperature at 300 and 680mm distances from the burner
are measured to describe the mixing and reaction pattern in the gasifier. Global and local species balances are
used to derive data that are not accessible by measurement. Characteristic parameters, i.e. stoichiometry, carbon
conversion and water gas shift temperature, are derived to assess consistency of the measured data. Droplet size
distribution and droplet velocity at the burner nozzle are reported based on atomization test rig experiments and
direct measurements in the burner near field under gasification conditions. The experiments show a free jet with
a strong outer recirculation zone as core gasification pattern. The measured species concentrations and tem-
peratures provide an insight into both the mixing and the reactions in the burner near field. The water gas shift
equilibrium is reached for a temperature of 1495 K upstream of the gasifier outlet. Hydrocarbons are not
completely converted due to the low temperatures near the gasifier outlet.

The research work has been conducted within the research cooperation of the Helmholtz Virtual Institute
HVIGasTech.

1. Introduction

Entrained flow gasifiers (EFG) dominate the gasification market
worldwide [1,2]. The technology is suited for the production of a high
quality syngas, with minimum amounts of hydrocarbons, tar and soot
from solid and liquid fuels, as well as from suspension fuels (e.g. slurries
consisting of a pyrolysis oil and a bio-char as applied in the bioliq®
process [3]). The design and scale-up of EFG is mainly based on ex-
perience and to a lesser extent on a thorough understanding of the
physical and thermo-chemical processes taking place in the gasifier.
Especially for suspension fuels, the gasification process, as a three-
phase high-temperature and high-pressure process, shows very complex
interactions and overlapping of different physical and thermo-chemical
process steps.

The researchers collaborating within the Helmholtz Virtual Institute

for Gasification Technology, HVIGasTech [4], have focused on the de-
velopment and validation of a numerical simulation tool for the
mathematical description of the high-pressure entrained flow gasifica-
tion process for suspension fuels. The tool is to be based on experi-
mental data derived from both the atmospheric lab-scale gasifier
(REGA) as well as the high pressure entrained flow pilot-scale gasifier of
the bioliq® process [3]. The sub-models of the simulation tool describe
the atomization of suspension fuels [5], the homogeneous and hetero-
geneous kinetics of the gasification of liquids and chars [6], the slag
behavior [7] and the radiative heat transfer [8,9].

2. The physical and thermo-chemical sub-processes in entrained
flow gasification of a suspension fuel

Entrained flow gasifiers processing liquid or suspension fuels
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(slurry) are typically equipped with twin-fluid atomizers. In the bioliq®
process a suspension fuel which consists of pyrolysis oil and pyrolysis
char from a fast pyrolysis process is converted to syngas in an entrained
flow gasifier. The fuel is fed at a low velocity while the gasification
medium is supplied at a significantly higher velocity to provide the
required momentum for atomization. The burners may have different
geometries especially with respect to the position of the fuel inlet; ei-
ther central or annular nozzles are used and oxygen and steam are
applied for atomization and gasification [10,11]. As the atomization
process is driven by the momentum of the gasification medium, the
overall stoichiometry in the gasifier, i.e. the oxygen/fuel ratio, is di-
rectly proportional to the gas-to-liquid ratio (GLR), which is a key
parameter for the spray quality [12,13].

The flow pattern in an entrained flow gasifier is dominated by the
high momentum of the gasification medium flow generating a highly
turbulent enclosed jet. Within this jet the dominating physical and
thermo-chemical sub-processes of entrained flow gasification take
place. Fig. 1 shows both the streamlines and the axial velocities in an
EFG from the RANS simulation [14], to underline the basic features of
the flow. The high momentum gas jet drives an outer recirculation zone
which carries hot syngas from the end of the gasification zone to the
burner near field, where it reacts with the oxygen introduced as gasi-
fication and atomization medium, thus being responsible for the sta-
bilization of the flame. The hot recirculated gases are entrained along
the jet, affecting the temperature and species profiles in the jet zone.

In order to identify the physical and thermo-chemical process steps
dominating entrained flow gasification Fig. 2 (left) depicts a typical
droplet/particle trajectory pattern as derived from the numerical si-
mulation of a slurry-fed EFG [12]. The colors of the trajectories re-
present different physical and thermo-chemical process steps which a
fuel droplet experiences during the gasification process:

(a) Atomization, heating-up, evaporation and decomposition (light
blue) of the liquid fuel releasing fuel vapors into the gas-phase.

(b) Heating-up and pyrolysis (orange) of the solid fuel particle (pri-
mary char) which is released from the slurry droplet. The volatiles
are released into the gas-phase; the remaining solids are denoted as
secondary char featuring different morphology and reactivity as
compared to the original solid particle in the feed. The secondary
char may also contain solids generated from the thermal degrada-
tion of the liquid-phase which may lead to the generation of
cenospheres [6,15].

(c) Gasification (red) of the secondary-char, i.e. heterogeneous

reactions of the secondary-char with steam and carbon dioxide
[16].

(d) Ash, slag-forming particles (dark blue) impinging on the gasifier
walls or leaving the gasifier with the syngas flow.

Fig. 2 (right) gives a detailed overview of the sequence of sub-
processes and intermediate species relevant for EFG. The suspension
fuel is atomized close to the burner nozzle within the highly turbulent
gas jet which is enveloped by the gas flame burning recirculated syngas
with oxygen at very high temperatures. The liquid fraction of the slurry
evaporates; the vapors react with O2, CO2 and H2O while the solid fuel
fraction (primary char) undergoes a secondary pyrolysis and penetrates
as secondary char, or as cenospheres, through this highly reactive zone
into the downstream gasification zone where the endothermal gasifi-
cation of the solid fuel components takes place, determining the syngas
quality and fuel conversion efficiency.

3. Literature review

Detailed data from entrained flow gasification experiments is rare in
literature. This chapter gives an overview of experimental data found in
literature. A detailed discussion is omitted here, as this is included in
the second part of three coordinated papers [14]. In Japan, a 200 t/d
pilot scale updraft gasifier was operated by Mitsubishi Heavy Industries
(MHI) within an IGCC development project. The syngas composition at
the reactor outlet and centerline temperatures were measured for op-
eration at 27 bar with pulverized coal [17,18]. Guo et al. [19] studied
the influence of O/C and steam/C ratio on the performance of an en-
trained flow gasifier operated at 10–30 bar, feeding pulverized coal by
diametrically opposed burners in the upper part of the reactor. More
detailed experimental investigations were carried out in lab-scale ga-
sifiers. Harris et al. [20] used a 20 bar entrained flow reactor with
electrically heated walls to study the influence of O/C ratio, residence
time and coal type on fuel conversion and product gas composition. By
inserting an oil-cooled probe from the bottom and adjusting the height
of the probe, partially reacted char and gas were sampled at variable
residence times and temperatures. At the lab scale atmospheric en-
trained flow gasifier operated at Brigham Young University (BYU) ra-
dial profiles of gas phase composition and temperature were measured.
Applying a water quench probe for gas and particle sampling the in-
fluence of coal type, particle size and operating conditions on fuel
conversion, local mixing and reaction processes were investigated
[21–23].The experimental data derived from the MHI and BYU gasifiers
was used for validation of several simulations [17,18,24–26]. Tremel
et al. [27] studied the pyrolysis and gasification behavior of different
coal types in the Pressurized High Temperature Entrained Flow Reactor
PITER varying pressure, temperature and residence time. Volatile yield
was determined applying nitrogen as carrier gas. Fuel conversion was
determined under gasification conditions from the gas phase composi-
tion measured at the reactor outlet.

For biogenic fuels data exists for laboratory scale downdraft en-
trained flow gasifiers operated with oxygen, air or steam under atmo-
spheric pressure. Qin et al. [28] and Hernandez et al. [29] both used
atmospheric, externally heated entrained flow gasifiers to investigate
the influence of operating conditions on fuel conversion of different
pulverized biomasses by sampling gas and particles at the reactor
outlet. The data from the gasifier operated at Technical University of
Denmark (DTU) [28] was used for validation of different simulation
models [30,31]. Several studies were concerned with gasification of
black liquor. Sricharoenchaikul et al. [32] investigated the gasification
characteristics of black liquor in a laboratory scale, laminar entrained
flow reactor with heated wall. Syngas taken from the reactor outlet was
analyzed by FTIR. Experimental investigation at larger scale was car-
ried out by Carlsson et al. [33] and Weiland et al. [34] using a 3MW
pressurized entrained flow gasifier. Measuring the syngas composition
at the reactor outlet, the effect of operating conditions was studied. The

Fig. 1. Stream function from the RANS simulation for gasification of mono ethylene
glycol in the atmospheric entrained flow gasifier [14].
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data derived from the 3MW black liquor gasifier also served for vali-
dation of simulation models [35,36].

4. Objectives

In order to put the simulation models on a sound basis, in the first
step a sequence of gasification experiments are conducted starting off
with atmospheric gasification of a liquid surrogate fuel (mono ethylene
glycol – MEG), which facilitates set-up of the numerical models. MEG
was chosen as its C/H/O ratio and heating value are comparable to that
of biomass based pyrolysis oils. A set of three coordinated papers is
presented with a detailed report on the gasification experiments

provided in this paper. The other two papers are on numerical simu-
lations of the gasification experiments; the first presenting RANS si-
mulations [14],while the second one reporting on LES [37]. In this way
the input data for the numerical simulations are provided by the ex-
perimental team, and the results of the numerical simulation are vali-
dated against in-gasifier data. The experimental run described in this
paper, and considered in the associated papers, is named as REGA-
glycol-T1 data set.

In the second step atmospheric gasification of a suspension fuel (bio-
slurry) will be treated in the same way, with special focus on the het-
erogeneous gasification of biogenic chars. In the third step the RANS
and LES models will then be applied to describe the gasification

Fig. 2. Left: Trajectories and process steps of slurry droplets in an entrained flow gasifier [12]. Right: sub-processes and species relevant for entrained flow gasification of slurry.

Fig. 3. Process flow scheme of the pilot scale entrained
flow gasifier REGA.
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experiments conducted in the high-pressure entrained flow gasifier of
the bioliq® pilot plant. In this semi-technical (5 MW/40 bar) entrained
flow gasifier the experimental data are not as detailed as in the atmo-
spheric experiments, but the overall gasifier performance, based on
detailed mass/species and energy balances can be compared with the
simulation results. With this approach a thoroughly validated numer-
ical simulation tool for the design and scale-up of high-pressure en-
trained flow gasifiers will be developed.

5. Facilities and measuring techniques

5.1. Research entrained flow gasifier (REGA)

Gasification experiments were carried out in the atmospheric
Research Entrained flow GAsifier (REGA). The REGA process flow sheet
is shown in Fig. 3. The main parts of the test rig are: the fuel and ga-
sification medium supply, the reactor with analytical equipment, the
syngas cooler, the scrubber and the flare for combustion of the off-gas.
Liquid and suspension fuels are stored in a stirred tank with outer cir-
culation to avoid sedimentation of particles. The storage tank and the
circuit can be heated up to a maximum temperature of 80 °C to adjust
the viscosity of the fuels. The fuel, together with the gasification
medium, is fed to the burner which is equipped with a twin fluid ex-
ternal mixing atomizer [12]. Oxygen-enriched dry pressurized-air is
used as gasification/atomization medium. The amount of oxygen in the
gasification medium can be varied in the range of 21 to 70 vol%. The
limitation to 70 vol% is due to safety reasons. The heat loss of the
system is minimized by electric heating of the reactor walls.

REGA is operated at 60 kW fuel input which, for the mono ethylene
glycol, corresponds to a feed rate of 13 kg/h and around two seconds of
average residence time (for a syngas flow rate of 60m3/h (STP),
average gas temperature of 1473 K and a reactor volume of 0.9 m3).
Fig. 4 depicts an axial cut through the gasification reactor with detailed
reactor inlet and outlet as well as the twin fluid external mixing ato-
mizer. The reactor consists of a ceramic tube with an inner diameter of
0.28m and a length of 3m. Ceramic shielded type S thermocouples (T1

to T7) are installed at fixed positions along the reactor axis to monitor
the axial gas temperature profile during operation. The reactor is
equipped with flanges along the reactor axis for sampling probes and
thermocouples access. For laser-based measurements the flanges can be
equipped with sight glasses which are purged with nitrogen. The burner
is mounted at the top of the reactor. By means of a vertically movable
burner construction the burner position can be shifted in axial direc-
tion. Thus, measurements can be taken at any distance from the ato-
mizer, enabling complete data mapping of the reactor.

The fuel mass flow rate is measured by a Coriolis mass flow meter,
while the volume flow rates of the gasification medium, air and oxygen,
as well as the purge nitrogen are determined by thermal flow con-
trollers based on hot wire anemometry. The accuracy of the measure-
ments is given in Table 1.

Gas samples are extracted from the reactor using cooled steel probes
with a ceramic tip. The samples are quenched by thermal oil at 80 °C to
prevent further reactions in the sampling line. The gas samples are
filtered; a part is cooled to 3 °C and then analyzed for the dry con-
centrations of CO, CO2, H2, O2 and CH4 in standard gas analyzers. The
N2 content is determined by difference. Organic carbon (Corg) is mea-
sured in the wet gas using a Flame Ionization Detector (FID) operated at
160 °C.

Table 2 lists the measurement principles [38] used for gas analysis
as well as the accuracies of the measured values. All the measurement
results are influenced by the uncertainty of the analyzer signal, which is

Fig. 4. Axial cut through the gasification reactor with
detailed reactor inlet, outlet and twin-fluid external
mixing atomizer.

Table 1
Accuracy of input streams (fuel, gasification medium, purge flow) according to manu-
facturer information.

Species Measurement range Accuracy of set point values

Fuel (MEG) 0–20 kg/h 12.56 ± 0.04 kg/h
Air 0–20m3/h (STP) 7.03 ± 0.04m3/h (STP)
Oxygen 0–20m3/h (STP) 4.97 ± 0.04m3/h (STP)
Nitrogen 0–4.2m3/h (STP) 0.51 ± 0.004m3/h (STP)

STP= standard temperature and pressure (273 K, 1 bar).
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(according to manufacturer) 0.2 % of the measurement range for CO,
CO2 and CH4 and 0.5 % of the measurement range for H2, O2 and Corg.
Especially the measurements of CO and CO2 by NDIR sensors are in-
fluenced by cross sensitivities. In order to eliminate this effect the
analyzers were calibrated using reference gases with a composition
comparable to the syngas. Thus, the inaccuracy of the measurements is
reduced to the uncertainty of the concentrations of dry gas species in
the reference gas of± 2 vol% (relative).

Radial temperature profiles are measured using type B double bead
thermocouples. In order to minimize the radiation effects double bead
thermocouples with bead diameters of 300 and 1500 µm are used. The
measured values are corrected for radiation assuming a wall tempera-
ture of 1473 K [39].

Both the droplet velocities and diameter are measured using the
standard PDA system. Optical accessibility of the gasifier allowed only a
backward scattering arrangement applying a lens with 1000mm focal
length.

5.2. Atmospheric spray test rig (ATMO)

The twin fluid atomizer applied in the REGA experiments (see
Fig. 4) was characterized using the atmospheric spray test rig ATMO.
The process flow scheme of the spray test rig is shown in Fig. 5. The
atomizer is mounted on the twin fluid lance which is equipped with a
liquid and a gas supply. Pulsation-free liquid supply is guaranteed by
using a pressurized vessel. Liquid mass flow is measured by a Coriolis

mass flow meter and can be adjusted in the range of 5–50 kg/h. Pres-
surized air is used as atomization medium. The gas-to-liquid ratio (GLR)
can be varied in the range of 0.5–2.

Atomization experiments were performed using the fuel applied at
REGA (mono ethylene glycol, see Section 7.1) as liquid and compressed
air as atomization medium. A high speed camera was employed for
investigation of spray angle and jet breakup in the near atomizer re-
gion. The camera featured a maximum resolution of 1024× 1024 pixel
at a frame rate of 3.6 kHz, for detailed description of the camera setup
see [40]. A 2-D-Fiber PDA System was operated in forward scattering
arrangement in the 1st order refraction mode for detection of drop size
and velocity [41]. The receiver was set to an off-axis angle of 30°. In
order to ensure a high data rate and quality, a 200 µm slit was used to
reduce the length of the measurement volume. Both, transmitter and
receiver were equipped with a lens of 500mm focal length. In order to
optimize the PDA instrument settings towards small droplets, e.g. data
rate and data validation rate, the PDA user settings were adjusted based
on a sensitivity study [42]. Sending and receiving optics were mounted
on a traverse system to guarantee reproducible and accurate posi-
tioning. Data were obtained by moving the PDA-detection relatively to
the atomizer position at an axial distance of 50mm to the atomizer
orifice varying the radial position in the range of −15mm < r <
15mm with a step of 5mm. The raw data from the manufacturer
software were used to compute arithmetic means by using an in-house
spray characterization toolbox SprayCat.

6. Reactor balancing and consistency of experimental data

Experimental research is prone to data uncertainty. Experimental
data are often not completely available for process balancing and data
plausibility check. We have put a great emphasis on both REGA bal-
ancing and checking the consistency of the measured data. We clearly
differentiate between directly measured data and data derived from the
measured values.

Under ideal process conditions the products of gasification are the
syngas components CO, CO2, H2 and H2O. The composition of the
syngas can be calculated from the molecular composition of the feed
(fuel plus gasification media) and the gas temperature if water gas shift
(WGS) equilibrium [43] (Eq. (1)) is assumed and all side products can
be neglected.

+ ⇆ + = −CO H O CO H Δ H 41 kJ/molR2 2 2 (1)

In technical systems, complete fuel conversion may not be achiev-
able due to non-ideal process conditions like incomplete mixing of fuel
and gasification medium and insufficient residence time and/or tem-
perature for the fuel conversion process. Intermediates from decom-
position and conversion of liquid and solid fuel components will be
found at the reactor outlet, influencing the syngas quality and the en-
ergy efficiency of the process. However, for the main syngas compo-
nents (CO, CO2, H2, H2O) water gas shift reaction equilibrium (Eq. (1))
may be assumed as partial equilibrium, especially for entrained flow
gasification with typically high reactor temperatures [33].

The main intermediates at high gasification temperatures are hy-
drocarbons (primarily methane), soot and char [44,45]. In the experi-
mental work presented, CH4 and the sum of volatile hydrocarbons with
a condensation point above 160 °C (temperature of FID analyzer) are
measured and both are taken into consideration for the interpretation of
the results. For the process conditions chosen (see Section 7.1) it is
reported in literature, that no hydrocarbons besides CH4 are to be ex-
pected at the reactor outlet [46,47].

6.1. Balancing of the REGA gasifier

Fig. 6 shows the REGA reactor with the boundary for global bal-
ancing. The measured data are marked in green, the derived data in
pink.

Table 2
Principle and accuracies of gas-phase measurements.

Species Principle Measurement
range/vol%

Accuracy of
reference
gas/vol%

Accuracy of
analyzer signal/

vol%

H2 Thermal
conductivity

0–50 ±0.39 ±0.25

CO NDIR 0–50 ±0.46 ±0.10
CO2 NDIR 0–30 ±0.44 ±0.06
CH4 NDIR 0–10 ±0.002 ±0.02
O2 Paramagnetism 0–15 ±0.08
Corg FID 0–10 g/m3 ±50mg/m3

Fig. 5. Process flow scheme of the spray test rig ATMO.
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Molar flow rates of species C, H, O and N (see Eqs. (2) to (5)) are
balanced using the fuel analysis, the measured flow rates of the feed
streams and the measured dry syngas composition (H2, CO, CO2, CH4).
n ̇i is the malar flowrate of species i in mol/unit time. The following
assumptions are made:

- in the gas phase only CO, CO2 and CH4 are considered as carbon
containing species

- carbon balance is closed using a molar H/C ratio of 0.8 for not de-
tected carbon containing molecules

- N2 is the only N-species in the syngas

Carbon balance:

= + = + + − +n n n n X X X X ṅ ̇ ̇ ̇ ·( )·(1 ) ̇C fuel C syngas C nd syngas CH dry CO dry CO dry H O C nd, , , , , , ,4 2 2

(2)

Hydrogen balance:

= + − + +n n X X X X ṅ ̇ ·((4 2· )·(1 ) 2· ) 0.8· ̇H fuel syngas CH dry H dry H O H O C nd, , , ,4 2 2 2

(3)

Oxygen balance:

+ + +

= + + − +

n n n n

n X X X X X

̇ 2· ̇ 2·0.21·( ̇ ̇ )

̇ ·(( 2· 2· )·(1 ) )

O fuel O air infiltration air

syngas CO dry CO dry O dry H O H O

,

, , ,

2

2 2 2 2 (4)

Nitrogen balance:

+ + + = −n n n n n X Ẋ 2· ̇ 2·0.79·( ̇ ̇ ) ̇ ·2· ·(1 )N fuel N purge air infiltration air syngas N dry H O, , ,2 2 2

(5)

= − + + +X X X X X1 ( )N dry H dry CO dry CO dry CH dry, , , , ,2 2 2 4 (6)

Aspen equilibrium calculations based on the measured input data
and the above listed assumptions showed a good agreement with the
measured gas-phase composition (see Section 7.3).

Four unknown parameters are derived from the balances:

- flow rate of infiltration air n ̇infiltration air (resulting from operation at a
pressure 1 to 2mbar below ambient)

- concentration of H2O in syngas at reactor outlet (XH2
O)

- flow rate of syngas nṡyngas
- flow rate of not detected carbon (n ̇C nd, )

The same procedure can be applied for a local volume element in
the reactor at a certain radial and axial position using local measure-
ments of the gas-phase composition. Assuming

- complete evaporation and decomposition of the fuel,
- complete mixing of the fuel and the gasification media,

the missing local values for XH2
O, n

n
̇

̇
syngas

fuel
, n

n
̇

̇
infiltration air

fuel
and n ̇C nd, can be

calculated using the local concentration data.

6.2. Parameters for characterization of processes in the gasifier

Using both the reactor input data and the above formulated bal-
ances of C, O, H, N a number of characteristic parameters can be de-
rived to describe mixing and reaction conditions in the gasifier. In this
work the absolute stoichiometric ratio (λabs), the carbon conversion
(CC) and the corresponding temperature of partial WGS equilibrium
(TWGS) are derived as global values at the reactor outlet, and as local
values at a defined position in the reactor, to describe the gasification
process quantitatively.

6.2.1. Absolute stoichiometric ratio (λabs)
In general, the stoichiometric ratio λ is defined as the oxygen supply

divided by the oxygen demand required for complete oxidation of the
fuel.

=λ
n
n
̇
̇
Oxygen supply

Oxygen stoich (7)

The stoichiometric ratio λtech is calculated using the composition
(CxHyOz) and the flow rates of fuel (n ̇fuel) and oxidation medium
(nȮ supply,2 ). The reaction equation for stoichiometric combustion (Eq.
(8)) of a fuel with a molar composition expressed as CxHyOz leads to the
definition of λtech shown in Eq. (9):

+ ⎡
⎣

+ − ⎤
⎦

→ +C H O x y z O x CO y H O
4 2

· ·
2

·x y z 2 2 2 (8)

=
+ −

λ
n

n x
̇

̇ ·( )tech
O supply

fuel
y z

,

4 2

2

(9)

The stoichiometric oxygen demand of the fuel is calculated from the
elemental fuel composition, thus the oxygen contained in the fuel re-
duces the oxygen demand for stoichiometric conversion.

In general λtech gives qualitative information only about fuel rich or
oxygen rich conditions for the fuel conversion process. For fuels con-
taining no oxygen (z= 0), which is a good approximation for fossil
fuels, λtech also describes correctly the oxidation state of the product gas
mixture. In this context, oxidation state defines the part from complete
oxidation, i.e. CO2 is oxidized completely (oxidation state 1), whereas
CO is oxidized half (oxidation state 0.5). For biogenic fuels with a high
oxygen content λtech cannot be applied to calculate the oxidation state
of the products. A simple example may illustrate the point: with CO as
fuel and a partial oxidation reaction according to Eq. (10) the value for
λtech is 0.5; the oxidation state of the product gas mixture however is
0.75, as CO2 is oxidized completely (oxidation state 1) whereas CO is in
the oxidization state 0.5 with an overall oxidation state of 0.75 for the
product gas mixture.

+ → +CO O CO CO2 1
2 2 2 (10)

From these considerations we define an absolute λabs according to Eq.
(11):

=
+

λ n
n n2· 0.5·abs

O

C H (11)

(with ni as number of moles of component i in the considered vo-
lume; this can be the burner inlet, a volume in the reactor and also at
the reactor outlet, always describing the absolute stoichiometry at this
position)

For our example, according to Eq. (10), λabs equals 0.75 and thus
describes both the stoichiometry and the oxidation state of the process

Fig. 6. REGA reactor with input and output variables (green/continuous line=mea-
sured, pink/dotted line= unknown values) and boundary for global balancing. (For in-
terpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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correctly for any fuel. Fig. 7 shows the relationship between λtech and
λabs for fuels with different oxygen content. It is obvious that both
definitions for λ match at the stoichiometric point λ=1. They match
for fuels with z= 0 (no oxygen in fuel) at any stoichiometry but only
λabs describes the stoichiometry correctly for any fuel specification at
any stoichiometry. Comparing the curves for CO and C2H6O2 shows
that with increasing oxygen content of the fuel, the deviation between
λtech and λabs increases as well.

As for λtech, the global λabs can be derived from fuel composition
and feed flow rate of fuel and oxidation medium (see Eq. (12)), however
carbon and hydrogen introduced with the fuel and the oxidation
medium, have an oxygen demand in the denominator whereas oxygen
in fuel and oxidation medium are assumed as oxygen supply in the
numerator.

=
+

+
λ

n n

n x

̇ ̇ ·

̇ ·( )abs
O supply fuel

z

fuel
y

, 2

4

2

(12)

λtech is only defined at the reactor inlet and cannot describe the
stoichiometric distribution in the reactor due to mixing. λabs, however,
may also be calculated using local species concentrations at any posi-
tion in the reactor, producing a local stoichiometry of the gas-phase as
λabs, local. The difference between the global and the local λabs is then
used to describe the local reaction conditions in the gasifier, that is the
state of mixing of fuel and oxidizer, the state of fuel conversion and
local infiltration air ratio.

In our work λabs,local is calculated using Eqs. (11) and (13) to (15) as
the gas concentrations are available from measurement (CO, CO2, H2,
CH4) and balancing (H2O).

= + + +n n X X X Ẋ ̇ ·(2· 2· )O syngas O CO CO H O22 2 (13)

= + +n n X X Ẋ ̇ ·( )C syngas CO CO CH2 4 (14)

= + +n n X X Ẋ ̇ ·(2· 2· 4· )H syngas H O H CH2 2 4 (15)

Only if all fuel components are converted into the gas species and
the mixing between the gasification medium and the fuel is complete
λabs,local is equal to λabs,global. Either fuel missing in the gas phase (due
to incomplete vaporization or mixing), existence of undetected inter-
mediates (tar, char, hydrocarbons besides CH4) or local infiltration air
lead to the case λabs, local > λabs, global. If local fuel rich zones (due to
incomplete mixing) are present we find λabs,local < λabs,global. Under
sub-stoichiometric conditions an increase in λabs results in a tempera-
ture increase. We therefore use the qualitative interdependence of local
profiles of λabs,local and temperature to check consistency of our ex-
perimental data.

6.2.2. Carbon conversion (CC)
Carbon conversion is defined as the ratio of carbon detected in the

gas-phase (as CO, CO2 and CH4) to the carbon fed into the reactor.

=CC
Carbon detected in gas phase

Carbon in feed (16)

For the REGA experiments and a fuel with the composition CxHyOz

CC is calculated using Eq. (17), a similar definition is used by Vejahati
[48] and Cousins [49].

=
+ +

CC
n X X X

n x
̇ ·( )

̇ ·
syngas CO CO CH

fuel

42

(17)

The carbon conversion can be calculated as a local value, as well as
a global value at the reactor outlet using the concentration measure-
ments and the C, H, O, N balances. For CC calculation the C/H/O/N
composition is assumed to be equal to the reactor inlet conditions, this
means that complete mixing of fuel and gasification medium is assumed
at any position in the gasifier. This is correct at the reactor outlet;
therefore CCglobal gives a reliable information on total carbon conver-
sion in the gasifier. For the local CC values, the above assumption may
not be correct for all positions in the gasifier. It is invalid for example in
the spray zone, where local fuel rich or fuel lean zones exist due to
evaporation and degradation of liquid fuel droplets. In this case, CClocal

is not a measure of carbon conversion but gives, together with the local
stoichiometry, information about mixing and distribution of fuel, oxi-
dizer and syngas components.

6.2.3. Water gas shift temperature (TWGS)
Under the assumption of water gas equilibrium, both the equili-

brium constant KP,WGS and the equilibrium temperature [43] can be
calculated from local species concentrations (see Eq. (18)). In this work,
the relationship (see Eq. (19)) between TWGS and Kp,WGS was derived
using GRI3.0 mechanism [50] to ensure consistency with the modelling
papers [14,37].

=K T
X X
X X

( )
·

·P WGS
CO H

CO H O
,

2 2

2 (18)

= +− −T GRI e e( 3.0) 8.142· 1084·WGS
log K log K5.603· 10( ) 0.6516 10( )p WGS p WGS, , (19)

Using the above procedure radial profiles of the water gas shift
equilibrium temperature TWGS are derived and compared with mea-
sured temperature profiles (see Section 7). If WGS equilibrium is
reached, the measured temperature is equal to the calculated TWGS. In
zones where substantial heat losses occur, i.e. near the reactor outlet
and in the recirculation zone near the REGA walls, the measured tem-
perature is expected to be lower than the calculated since TWGS corre-
sponds to the temperature at which the WGS-equilibrium is ‘frozen’.
The influence of local dilution through N2 purge streams imposing a
cooling effect can also be identified upon comparing the measured
temperature with the calculated TWGS.

In zones with steep local concentration gradients (e.g., due to fuel
evaporation or pyrolysis) a difference between the measured tempera-
ture and the calculated TWGS is to be expected. In all other regions of the
gasifier, especially if temperatures above 1570 K are measured, TWGS

can be used to examine consistency of the local temperature measure-
ment.

6.3. Influence of measurement accuracy on characteristic parameters

The influence of inaccuracies in the measured data on the pre-
viously defined parameters (λabs, CC, TWGS) is quantified by a sensi-
tivity analysis. The considered data includes the fuel feed stream, the
oxygen volume flow rate and the concentration of the main species in
the syngas. In Fig. 8 the deviation of the characteristic parameters
(λabs,local, CC and TWGS) resulting from inaccuracy of the data is de-
picted. CO represents the gaseous species. λabs,local is not very sensitive

Fig. 7. Correlation of λtech and λabs for different fuels (the arrows mark the values for the
example of sub-stoichiometric oxidation of CO).
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to the measured data, whereas TWGS and especially CC are significantly
influenced by variations of the input streams. Thus, λabs,local is parti-
cularly suitable to describe the processes in the reactor, for example to
identify zones of incomplete mixing or oxidation zones. The CC para-
meter gives at least a qualitative information about the local fuel con-
version situation.

7. Experimental and validation results

In this section the experimental run called REGA-glycol-T1 is de-
scribed. The description includes (a) set point data for gasification ex-
periments, (b) data from spray characterization under ambient and
gasification conditions, (c) global characterization of the gasifier, (d) in-
gasifier data describing the processes in the main reaction zone.

7.1. Operating conditions (set point)

As shown in Section 2 slurry gasification is a complex system with
complex interactions of different physical and thermo-chemical pro-
cesses. In order to improve the understanding of the single processes
and facilitate a set-up of the numerical models, the complexity was
reduced by using a liquid surrogate fuel with accurately defined com-
position. For the experiments reported here a high temperature level
was chosen to suppress extensive formation of methane. Mono ethylene
glycol was applied as surrogate fuel as its C/H/O ratio and heating
value are comparable to that of biomass based pyrolysis oils [51,52].
The elementary composition of both fuels is compared in Table 3.

The set point values for the experiments (REGA-glycol-T1) were

calculated applying the Aspen equilibrium model of the gasifier in
combination with design specifications. The desired values of the
adiabatic temperature (reaction kinetics), the exit velocity of the gasi-
fication medium (atomization) and the volume flow rate of syngas
(residence time) were reached by adjusting the operational parameters
(mass flow rate of fuel, stoichiometry and oxygen content of the gasi-
fication medium). The set point values for the gasification and atomi-
zation tests are listed in Table 4, for the atomization tests the mass flow
rates of fuel, oxygen and air are relevant only.

7.2. Spray characterization

The performance of the burner nozzle was quantified in the ATMO
spray test rig with atomizer inputs (pressures, flow rates and velocities)
identical to the REGA gasification experiments, see Table 4. Fig. 9
shows the primary jet breakup and droplet formation within 50mm
distance downstream the nozzle orifice. The liquid jet is disintegrated
directly at the nozzle orifice, the breakup mode can be described as
fiber type, according to [53]. Spray angle was determined to be ap-
proximately 21°.

Realizing that the jet breakup is completed within 50mm distance
downstream the atomizer, the drop size and drop velocity measure-
ments were performed with the PDA system at z= 50mm. Fig. 10
shows the measured drop size distribution at the centerline as an ex-
ample for the typical droplet size distribution of the nozzle. About 90 %
of the droplets have a diameter below 50 µm which is expected due to
the high gas velocity at the nozzle orifice (123m/s) and the low visc-
osity of the fuel (21mPa s). Calculated from local drop size

Fig. 8. Absolute deviation of characteristic para-
meters λabs,local, CC, TWGS due to measuring in-
accuracies of ṁfuel, VȮ2 and XCO.

Table 3
Elementary composition, ash and water content and lower calorific value (LCV) of the
surrogate fuel mono ethylene glycol (MEG) as compared to typical values for pyrolysis
oils.

Mass fraction Yi/wt% Pyrolysis oil [51,52] Mono ethylene glycol

C 32–49 38.5
H 6–8 9.7
O 44–60 51.3
S 0–0.6 0.0
N – 0.0
Ash 0.01–0.2 0.0
Water 15–30 0.5
LCV/MJ/kg 16–19 16.6

Table 4
Set point values of the gasification experiments (REGA-glycol-T1) and the atomization
tests at ATMO (for ATMO mass flow rate of fuel, air and oxygen are relevant only).

Mass flow rate of fuel ṁfuel/kg/h 12.56
Mass flow rate of air ṁair/kg/h1) 9.05
Mass flow rate of oxygen ṁO2/kg/h

1) 7.11
Stoichiometric ratio λtech/λabs 0.57/0.69
Mass flow rate of purge fluid ṁN2/kg/h

1) 0.64
Mass flow rate syngas ṁsyngas/kg/h 29.4
Adiabatic temperature Tad/K 2273
Average residence time τ (Tad)/s 2.7

Tad without dissociation (calculated from equilibrium, Aspen)
1) calculated from volume flow rates, see Table 1
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distributions, Fig. 11 shows local SMD (left) and mean axial drop ve-
locities values (right) at a position 50mm downstream the nozzle or-
ifice. The SMD values increase from about 60 µm at the centerline to
about 80 µm at 15mm off axis. The mean axial velocity values reveal a
maximum at the centerline (about 60m/s) and decrease with increasing
radial distance (below 15m/s). Both profiles can be considered as axis-
symmetric so that the whole spray can be regarded as rotational sym-
metric.

The subsequent spray investigations were performed under gasifi-
cation conditions in REGA gasifier. Again high speed camera mea-
surements were performed close to the nozzle orifice to gather quali-
tative information about jet breakup, droplet formation and

evaporation. Fig. 12 shows the fuel spray during gasification in the near
burner region (from the nozzle orifice at z= 0 down to z= 100mm) by
overlapping instantaneous pictures taken at different distances from the
burner. Again the liquid jet disintegration takes place directly at the
nozzle orifice as it has already been observed in ATMO rig. Despite of
the high temperatures close to the burner, droplets are still observed at
a distance of 100mm, showing that liquid fuel is transported well be-
yond this position.

Finally LDA measurements were performed under gasification
conditions to determine radial profiles of local drop velocities at 50mm
downstream of the nozzle orifice. As Fig. 13 shows, the spray angle is
wider under gasification conditions (REGA) as compared to ambient
conditions (ATMO). The droplet velocities are about 10m/s larger at
the jet axis under gasification conditions as compared to atomization at
ambient temperature, thus an increase of about 15 % is observed. This
finding may be explained by a volume expansion in the spray due to a
temperature increase by entrainment of hot gases from the outer re-
circulation zone into the spray. In addition, even though the burner is
cooled, the atomization medium may have a higher temperature in the
gasification experiments due to heat transfer from the reactor to the
burner. An increase of 15 % of the exit gas velocity would correspond to
a temperature increase of about 40 K.

7.3. Global balancing of the REGA gasifier

Table 5 gives the syngas composition measured at the reactor outlet.
Using the set point data and the syngas composition obtained from

the global balancing procedure described in Section 5, the following
data are obtained:

Mass flow rate of infiltration air ṁinfiltration air: 1.93 kg/h
Water concentration XH2

O: 33.08 vol%
Mass flow rate of syngas ṁsyngas: 31.3 kg/h
Carbon conversion CC: 95.5 %

The global absolute stoichiometry of the process λabs global was

Fig. 9. Primary jet breakup and droplet formation for mono ethylene glycol.

Fig. 10. Number based drop size distribution on the
centerline of the spray 50mm downstream the nozzle
orifice.

Fig. 11. Local SMD (left) and mean axial drop velocity
(right) at a distance of 50mm from the burner nozzle
(determined with PDA system).
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calculated in three ways (see Eqs. (11) and (12)):

- using the feed flow rates and the specifications (see Table 4) 0.69
- as above but including infiltration air 0.71
- using gas species concentrations measured at gasifier exit 0.74

For the temperature at the gasifier outlet two values are determined:

- gas temperature measured Tgas,outlet 1369 K,
- TWGS calculated using gas composition measured at gasifier exit
1495 K.

The different values of global absolute stoichiometry show the in-
fluence of the infiltration air and incomplete carbon conversion. As

λabs,global = 0.74 (calculated from the gas composition) is higher than
λabs,global = 0.71 (calculated using the set point values including the
infiltration air) it can be concluded that the glycol is not converted
completely into the gas species measured at the reactor outlet.

The temperature measured at the reactor outlet (Tgas,outlet = T7 in
Fig. 4) is lower by a difference of 126 K as compared to TWGS, which
indicates that the WGS equilibrium is frozen up-stream of the gasifier
exit. From the axial temperature profile (shown in Fig. 14) it can be
seen that the WGS reaction equilibrium is reached at approximately
z= 2000mm downstream of the burner.

A global carbon conversion (CC) of 95.5 % is calculated (see Eq.
(17)) using the measured data. According to the chemical equilibrium
calculations, no hydrocarbons are to be expected for a reactor outlet
temperature of 1369 K. The measurements, however, show the presence
of hydrocarbons at the reactor outlet at very low concentrations. This is
a typical observation also for technical gasifiers. The concentrations of
H2, CO, CO2 and H2O at the reactor outlet are in good agreement with
the concentration values obtained from a partial WGS equilibrium
calculation for a temperature of 1495 K.

7.4. Local profiles in the main reaction zone

Radial profiles of gas-phase composition and temperature, which
were measured at 300 and 680mm distances downstream of the
burner, are shown in Fig. 15. The derived gasification parameters (λabs,
CC and TWGS) are also shown in Fig. 16. For additional information the
outer contour of the jet is given assuming an expansion angle of 19°
[54,55]. The measured species concentrations and values of the char-
acteristic parameters at the reactor outlet are also shown.

The local characteristic parameters showed the effect of infiltration
air and purge nitrogen flow both producing a departure of species
concentrations and temperature profiles from axis symmetry. This led
to a deviation of about 2 % for λabs, local and 6 % for TWGS, for the
positions near the wall. To facilitate comparison with rotationally
symmetric numerical simulations presented in the associated papers
[14,37] the undisturbed sections of the profiles are used only and are
mirrored on the axis.

At a distance of 300mm the gas species concentrations and the gas
temperature show strong non-uniformity. At 680mm the major species
concentrations (besides CH4) and the temperature are almost constant
across the reactor cross-section. From 680mm distance to the reactor
outlet CH4 is decomposed further; whereas the major species are shifted
to a WGS equilibrium corresponding to 1495 K temperature, i.e. the
equilibrium is frozen at 1495 K temperature since a rapid cooling of the
gases occurs at the reactor bottom.

As described in detail in Section 2 the characteristic flow pattern in
REGA is dominated by the high momentum of the central gas flow, i.e.
the gasification medium flow, generating a highly turbulent axis sym-
metric enclosed jet with an outer recirculation zone carrying hot syngas

Fig. 12. Jet break up and droplet formation for fuel spray during gasification.

Fig. 13. Mean axial droplet velocity at a distance of 50mm downstream of the burner
measured under gasification (REGA) and ambient temperature (ATMO) conditions.

Table 5
Gas-phase composition measured at the reactor outlet (N2 cal-
culated according to Eq. (6)).

H2/vol%dry 19.11
CO/vol%dry 21.86
CO2/vol%dry 22.05
CH4/vol% dry 0.013
N2/vol% dry 36.96
Corg/g/m3 humid (STP) 0.026

Fig. 14. Axial gas temperature profile.
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from the gasifier exit to the burner zone. It is clear that the flow field
with the recirculation zone has a major influence on both the thermo-
chemical processes of gasification and the flame stabilization.

As shown in Fig. 15, at 300mm distance from the burner H2, CO and
CH4 show maxima on the reactor axis, whereas CO2 has a minimum, i.e.
local stoichiometry on the jet axis is lower as compared to the overall
stoichiometry. This is consistent with the visible observation of the
spray (see Fig. 12) which clearly shows fuel droplets at a distance of
120mm downstream of the burner nozzle. The local stoichiometry
λabs,local (see Fig. 16), which is calculated from the measured con-
centrations, shows a lower value on the axis as compared to the outer
recirculation zone; a lower stoichiometry implies a lower temperature.
The measured temperatures (see Fig. 15) show the highest value at the
outer contour of the jet; at this position a local maximum for λabs, local is
found. Near the burner nozzle, at the outer contour of the jet, the re-
circulated syngas reacts with oxygen from the gasification medium and
the reactions proceed under oxygen rich conditions, stabilizing the
flame. As can be seen in Fig. 16, the measured temperatures are in good
agreement with TWGS in the outer recirculation zone up to the outer jet
contour. The calculated TWGS shows the expected minimum at the jet
axis. The concentration profiles for CO2, CO and H2 are consistent with
this observation.

In the outer recirculation zone the gas phase compositions at 300
and 680mm are similar, as syngas from downstream is transported
upwards in the recirculation zone. The temperature, however, is lower
near the wall at 300mm as compared to 680mm, due to some heat loss
through the reactor wall in the upper part of the reactor.

As shown in Fig. 16, at 300mm distance, the carbon conversion

(CC) shows a maximum in the jet, a minimum at the jet boundary and
again higher values – similar to those observed at 680mm – in the
recirculation zone. Taking into consideration the opposite trend of the
local stoichiometry, it is obvious that the mixing of the reactants is not
completed in the jet.

Total organic carbon was measured using an FID-analyzer to ex-
amine whether other hydrocarbons besides methane might be present.
Fig. 17 shows a comparison of the measured concentrations of organic
carbon Corg and CH4. The measured CH4 values are converted into g/m3

for reason of comparability. On the jet axis at z= 300mm, about half of
the organic carbon measured using the FID is CH4. At 680mm distance
the amount of organic carbon is lowered by a factor of 10 as compared
to 300mm. Only CH4, as the most stable hydrocarbon, is found in the
gas-phase at this position.

8. Conclusion

The paper reports on a measurement campaign (named REGA-
glycol-T1) concerning gasification of glycol in the Research Entrained
flow GAsifier (REGA) operated at atmospheric pressure. The gasifier
was operated with mono ethylene glycol, MEG, as a surrogate fuel for
bio-oil at a fuel flow rate of 12.5 kg/h, using an oxygen-nitrogen mix-
ture as gasification medium at a global stoichiometry of
λabs,global = 0.74. The objective of this work was twofold: (a) to gain an
insight into the gasification process by carrying out in-gasifier mea-
surements of temperature and gas composition (H2, CO, CO2, CH4, or-
ganic carbon) as well as droplet velocity and diameter, (b) to generate a
set of consistent data for both the development of mathematical models

Fig. 15. Radial profiles of gas-phase composition and temperature 300 and 680mm downstream of the burner; boundary of free turbulent jet= continuous line.

S. Fleck et al. Fuel 217 (2018) 306–319

316



for gasification sub-processes and the validation of CFD-based mathe-
matical models.

The spray pattern is described by spray angle, droplet size dis-
tribution and mean droplet velocity. The overall gasification process is
characterized by concentration and temperature measurements at the
gasifier outlet. Local concentration of species (CO, CO2, H2 and CH4)
and temperature are measured at z= 300 and 680mm (i.e. z/deq = 46
and 104) downstream of the burner. Major emphasis has been put on
the validation of the experimental data using global and local species
balances. Characteristic parameters, i.e. absolute stoichiometry (λabs),
carbon conversion (CC) and water gas shift temperature (TWGS) derived
from measured data are reported as local profiles.

The in-gasifier data has identified the existence of several distinct

reaction zones: the central spray zone near the burner, where fuel
droplets are being produced and evaporated, reaches to about 150mm
(z/deq= 23) downstream of the burner. The spray zone is enveloped by
a high temperature reaction zone which is located at the boundary
between the forward flow of the central jet and the strong outer re-
circulation zone. The recirculation zone extends down to 800mm dis-
tance (z/deq= 122) transporting hot syngas back to the burner. The
syngas, entrained into the gasification medium jet, reacts with oxygen
at locally oxygen-rich (combustion) conditions.

At 300mm distance (z/deq= 46) the radial profiles of gas tem-
perature and gas composition and of the derived characteristic para-
meters show strong non-uniformity. At 680mm (z/deq= 104) the
profiles are flattened out. The gas temperature at the gasifier exit (z/

Fig. 16. Results from local balancing at 300 and 680mm downstream of the burner; boundary of free turbulent jet= continuous line.
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Fig. 17. Amount of organic carbon measured with FID
(Corg (FID)), calculated from NDIR CH4 measurement
(Corg (CH4)) 300 and 680mm downstream of the
burner.
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deq= 460) is 1369 K, the syngas composition however corresponds to
water gas shift reaction equilibrium at 1495 K, which is reached at z/
deq= 306. In other words, the rapid cooling at the gasifier bottom
freezes the reactions. Traces of methane (0.01 % wet) and higher hy-
drocarbons (organic carbon) in amounts of 0.026 g/m3 (STP) have been
detected at the gasifier exit.

The REGA-glycol-T1 data set has been produced for the mathema-
tical modelling and to this end emphasis has been placed on producing
consistent data (see Appendix A). The procedures for checking the data

consistency and inaccuracy have been described in the text.
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Appendix A

Consolidated inputs and outputs of the REGA-glycol-T1 gasification experiment
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Table A1
Gasifier inputs.

Input Mass flow rate/kg/h Remarks

Glycol 12.56 Measured with accuracy ± 0.04 kg/h
Gasification medium

Oxygen 9.22 Accuracy: see volume flow rates of oxygen and air in Table 1
Nitrogen 6.94

Purge nitrogen 0.64 Calculated from measured volume flow rate, accuracy ± 0.0005 kg/h
Infiltration air

Oxygen 0.45 Calculated using C, H, N, O balances
Nitrogen 1.48 Calculated using C, H, N, O balances

∑ 31.29

Table A2
Syngas leaving REGA (syngas temperature at the gasifier exit= 1369 K).

Species Volume fraction
vol% wet

Mass flow rate
kg/h

Remarks

H2 12.79 0.34 Volume fraction measured dry
CO 14.63 5.36 Volume fraction measured dry
CO2 14.76 8.49 Volume fraction measured dry
CH4 0.009 0.0018 Volume fraction measured dry
H2O 33.08 7.79 Calculated using C, H, N, O balances
N2 24.74 9.06 Volume fraction dry calculated (Eq.

(6))
∑ 31.04
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