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KURZFASSUNG

Diese Arbeit stellt ein allgemeines Mess- und Modellierungsverfah-
ren zur Erzeugung orts- und winkelaufgelöster Spektralverteilungs-
modelle für LEDs vor, wie sie im Entwurfsprozess moderner und
hochwertiger LED-basierter Leuchten zunehmend benötigt werden.
Im Gegensatz zu bestehenden Methoden ist das hier vorgestellte Ver-
fahren dabei nicht auf zeitaufwendige winkelaufgelöste Spektralmes-
sungen angewiesen. Die Anzahl der nahfeldgoniophotometrischen
Messungen wird durch das Messobjekt bestimmt und stets minimiert.

Das Grundkonzept der „Physikalisch motivierten Basisspektren”
(PMBS) basiert auf der Annahme, dass sich jedes vom Ort oder Winkel
abhängige Spektrum als gewichtete Summe der im System vorkom-
menden Basisspektren beschreiben lässt. Unter Hinzunahme der spek-
tralen Information des goniophotometrischen Messsystems ergibt sich
das spektrale Nahfeldmodell als Lösung eines simplen linearen Glei-
chungssystems der nahfeldgoniophotometrischen Messungen. Die
Zusammenhänge können direkt auf Fernfeldmessungen bzw. andere
kamerabasierte Messungen übertragen werden.

Die Überführung von PMBS in die Praxis besteht aus drei Teilen, wel-
che lediglich leicht verfügbare physikalische Informationen, wie die
Anzahl unterschiedlicher spektraler Quellen, die räumliche Trennung
verschiedenfarbiger LED-Chips oder die physikalische Unmöglichkeit
negativer Spektren, verwenden. Das Verfahren wird anhand verschie-
dener aktueller LED-Systeme, wie einer leuchtstoffbasierten weißen
LED, einer RGB LED einer rot/weißen LED und einer RGBW LED vali-
diert. Die erhaltenen Modelle können direkt in modernen kommerziell
verfügbaren Strahlverfolgungsprogrammen verwendet werden.
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ABSTRACT

This thesis presents and validates a fast, accurate and general measure-
ment and modeling technique to obtain spectral near field data of LED
systems in order to improve the optical design process of modern high
quality LED systems. It requires only a minimum of goniophotomet-
ric near field measurements as well as no time-consuming angularly
resolved spectral measurements. The required measurement effort is
thus much smaller than in existing state-of-the-art methods and the
approach works for a wide range of modern LED systems.

The procedure is named physically motivated basis spectra (PMBS)
as its main assumption is that each piece of angularly and spatially
varying spectral information can be described as the weighted sum
of its physical basis spectra such as the individual semiconductors
or a phosphor. Based on detailed spectral information regarding the
goniophotometric measurement setup, the spectral model is obtained
by solving a simple system of linear equations using the obtained near
field measurements. PMBS can also be applied on far field measure-
ments or camera based measurements.

The proposed workflow to create spectral near field data consists of
three major steps, which utilize physically available information such
as the number of different spectral sources, the spatial separation of
colored LEDs from each other or the physical impossibility of negative
spectra, to overcome their practical challenges. The complete process
is validated and applied to different state-of-the-art LED systems, such
as a phosphor converted white LED, a RGB LED, a Red/White LED
and a RGBW LED system. The obtained results can be used directly in
state-of-the-art ray tracers.

iii





CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Aims of the thesis . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . 5

2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Spectral properties of LEDs . . . . . . . . . . . . . . . . 7
2.2 Radiometry, photometry and colorimetry . . . . . . . . 9
2.3 Ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Near field goniophotometry . . . . . . . . . . . . . . . . 16

3 Spectral ray files . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Spectral ray files and the plenoptic function . . . . . . . 19
3.2 Application of spectral ray files . . . . . . . . . . . . . . 20
3.3 Properties of spectral ray file measurements . . . . . . . 22
3.4 State-of-the-art methods to create spectral ray files . . . 24

3.4.1 Spectral adjusting . . . . . . . . . . . . . . . . . . 27
3.4.2 Polychromatic ray data . . . . . . . . . . . . . . 28
3.4.3 Principal component analysis . . . . . . . . . . . 29
3.4.4 Blue/Yellow approach . . . . . . . . . . . . . . . 30
3.4.5 Hyperspectral measurements . . . . . . . . . . . 31
3.4.6 Physical LED models . . . . . . . . . . . . . . . . 32
3.4.7 Summary . . . . . . . . . . . . . . . . . . . . . . 33

4 Spectral ray files based on physically motivated
basis spectra (PMBS) . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Direct generalization of the Blue/Yellow approach . . . 35

v



CONTENTS

4.2 Physically motivated basis spectra (PMBS) . . . . . . . 40
4.2.1 Spectral reconstruction matrix . . . . . . . . . . 43
4.2.2 Relative and absolute weightings . . . . . . . . . 45
4.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . 52
4.2.4 Workflow of PMBS . . . . . . . . . . . . . . . . . 54

5 PMBS: Modeling the basis spectra . . . . . . . . . . . . . . . 57
5.1 Phenomenological basis spectra of LEDs . . . . . . . . . 57
5.2 Initial modeling . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Single LED spectrum . . . . . . . . . . . . . . . . 60
5.2.2 Overlapping LED spectra . . . . . . . . . . . . . 63
5.2.3 Spectral sources with phosphor . . . . . . . . . . 65

5.3 Basis spectra validation and optimization . . . . . . . . 73
5.3.1 Spatial separation . . . . . . . . . . . . . . . . . . 74
5.3.2 Punctual spectral measurements . . . . . . . . . 76
5.3.3 Color mixing line . . . . . . . . . . . . . . . . . . 77
5.3.4 Optimization of basis spectra . . . . . . . . . . . 78

6 PMBS: Determination of optical filters . . . . . . . . . . . . 81
6.1 Modeling the uncertainty of the spectral reconstruction 81

6.1.1 Optical glass filters . . . . . . . . . . . . . . . . . 84
6.1.2 Interference filters . . . . . . . . . . . . . . . . . 86
6.1.3 Input uncertainties . . . . . . . . . . . . . . . . . 87

6.2 Filter selection . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.1 Monte Carlo based filter selection . . . . . . . . 89
6.2.2 Factorial design based filter preselection . . . . 92

6.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1 Validation of filter selection . . . . . . . . . . . . 94
6.3.2 Validation of filter preselection . . . . . . . . . . 98

6.4 Filter technology comparison . . . . . . . . . . . . . . . 102

vi



CONTENTS

7 PMBS: Creation of hyperspectral LED models . . . . . . . . 107
7.1 Calculation concept . . . . . . . . . . . . . . . . . . . . . 107
7.2 Histogram based measurement models . . . . . . . . . 109

7.2.1 From ray file to model . . . . . . . . . . . . . . . 109
7.2.2 From model to ray file . . . . . . . . . . . . . . . 113
7.2.3 Precision estimation . . . . . . . . . . . . . . . . 114

7.3 Histogram based spectral models . . . . . . . . . . . . . 115
7.3.1 Negative and false positive amplitudes . . . . . 116
7.3.2 Nearest neighbor calculation . . . . . . . . . . . 118

7.4 Calculation procedure . . . . . . . . . . . . . . . . . . . 120
7.5 Validation of calculation procedure . . . . . . . . . . . . 123

8 Application and Validation . . . . . . . . . . . . . . . . . . . 129
8.1 Comparison to the Blue/Yellow approach . . . . . . . . 129
8.2 Reconstruction of typical spectral LED combinations . 134

8.2.1 Red/White (RW) . . . . . . . . . . . . . . . . . . 137
8.2.2 Red/Green/Blue/White (RGBW) . . . . . . . . 141

8.3 Spectral ray tracing . . . . . . . . . . . . . . . . . . . . . 147
8.3.1 Red/White (RW) . . . . . . . . . . . . . . . . . . 149
8.3.2 Red/Green/Blue/White (RGBW) . . . . . . . . 152

9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.1 PMBS – approach . . . . . . . . . . . . . . . . . . . . . . 157
9.2 PMBS – practical applications . . . . . . . . . . . . . . . 163

10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

vii



CONTENTS

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A Additional information regarding PMBS . . . . . . . . . . . 185
A.1 Invariance of PMBS towards initial amplitudes of

modeled basis spectra . . . . . . . . . . . . . . . . . . . 185
A.2 Detailed explanation of spatial separation value Psum,n 188

B Spectral ray tracing alignment consideration . . . . . . . . . 193

Lists of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Publications by the author . . . . . . . . . . . . . . . . . . . . . 207

Supervised theses . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 211

viii



CHAPTER 1

INTRODUCTION

The sole requirement of the first commercially used artificial light
sources - gas lights - was to provide light. However, starting with the
development of incandescent lamps, artificial light sources began to
compete in economic aspects such as production costs, lifetime and
energy efficiency. Both technologies improved and soon artificial light
sources became common and the field of general lighting started to
grow. During the 1960s and 1970s, in the shadows of the established
light sources, another light source technology was invented [1]. This
was the starting point of the development of light emitting diodes
(LEDs) [2], [3].

The basis of the LED breakthrough originated in 1994. It was the
invention of the first high brightness blue LED [4] by Nakamura et. al.
as it enabled white LED based lighting. The LED technology rapidly
improved in the following years and quickly started to be competitive
in terms of lifetime and energy efficiency. Nowadays, LEDs have
become one of the most important light sources in lighting technology.
LED lighting applications range from medical [5], [6], horticulture [7]
and automotive lighting [8] over several general lighting applications
such as street lighting, work place lighting as well as shop and home
lighting [9]. It is expected that the importance of LEDs will further
increase in the next few years [3], [10].

However, not only the direct efficiency of the light source itself helped
LEDs to become such a success story. Their small sizes and comparable
low operation temperatures also enabled the possibility of placing
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INTRODUCTION

cost-efficient plastic optics near to the LED source [11]. Examples
are light guides, free-form lenses or metal coated free-form reflectors.
A feasible optical design of these free-form elements ensures a high
optical system efficiency, specific photometric quantities and a compact
system size. However, the design of these compact systems requires
the optical designer to include the near field radiation properties of
each light source in the system [12], [13]. This means the light source
model has to describe the direction of the light rays coming from the
source and their starting points on the spatially extended source. This
information is essential for designing specific, efficient and robust
high quality optical systems.

The measurement technique which provides this near field information
is called near field goniophotometry [14], [15]. The measurement result
obtained is called ray file. It can be used in commercial ray tracing
software [16], [17]. This software enables to trace light rays according
to the rules of geometrical optics and thus to assess an optical design.
Therefore, near field goniophotometry, ray files and ray tracing have
become important optical measurement and simulation tools which
enable the design of efficient high quality lighting systems considering
the near field of LEDs [12], [18].

However, in modern lighting technology, “lighting quality” refers
to a permanently increasing number of different aspects, which also
depends on the specific application. Besides photometric quantities
and efficiency this may include visual and aesthetic properties such as
uniformity, color uniformity and color rendering or non-visual effects
of light on human beings called human centric lighting [2], [3], [19].
Examples are the influence of the color temperature on the day and
night rhythm [20], [21], the concentration during work or the learning
process of school children [22].

All these additional quality aspects are directly related to the spectrum.
Different material systems and LED chip designs provide different

2



INTRODUCTION

spectral power distributions. These can be combined with different
phosphors, which convert spectral parts of the light from the LED chip
into other spectral parts. This enables the design of specific spectral
power distributions. These distributions can be optimized in terms of
several different quality aspects such as efficiency, chromaticity, color
rendering or other color appearance metrics as well as non-visual
aspects [23]–[26]. At the same time, the desired uniformity require-
ments have led to the need for efficient mixing optics for different
LEDs to ensure a high lighting quality in all the above mentioned
aspects [27]–[29].

However, the optical design of color mixing optics as well as the simu-
lation of complete spectral distributions in an optical system within
a ray tracer is a challenging task. The simulations are not as precise
as photometric simulations and require a comparably large amount
of computation time [30]. Furthermore, in contrast to conventional in-
candescent or fluorescent lamps, the required modern LED multi-chip
systems as well as plain white LEDs can show strong spectral varia-
tions in both the angular and the spatial dimension. These variations
can also differ for individual LEDs due to manufacturing tolerances
[16], [31]. Thus, the optical design requires a accurate LED models
which precisely describe the complete spectral radiation in each direc-
tion from each point of the physical light sources. These models can
be referred to as hyperspectral LED models.

Since conventional near field goniophotometry does not directly pro-
vide spectrally resolved near field information, there is a lack of
suitable hyperspectral LED light source models for the ray tracing
simulations. Nevertheless, if the optical design is based on wrong
assumptions regarding the light source properties, the best design and
the most precise and time-consuming simulation will still lead to an
unsatisfactory result. This leads to a need for precise hyperspectral
LED models in terms of the angular and the spatial dimension.

3



INTRODUCTION

1.1 AIMS OF THE THESIS

The main aim of this thesis is to propose, develop and validate a
measurement and modeling technique to obtain hyperspectral LED
models which can be used in conventional non-sequential ray tracing
software. In contrast to the existing state of the art, this method has
to combine a suitable measurement time with acceptable spectral
deviations in the context of lighting technology. This also includes the
required measurement systems, as well as the model assumptions and
the deduced limitations so that the method can be applied to state-of-
the-art LED systems. The models have to be capable of simulating a
spectrally varying distribution, which may be based on an angularly
and spatially varying LED source and a spectrally sensitive optical
system. Examples of such distributions are shown in the photographic
images of Fig. 1.1.

(a) (b)

Figure 1.1: Examples of spectrally varying LED based lighting:
(a) Plain phosphor converted white LED.
(b) Optical system consisting of an spectral-angularly and spectral-spatially varying
source and a dispersion prism.
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STRUCTURE OF THE THESIS

1.2 STRUCTURE OF THE THESIS

The thesis develops, applies and validates one specific method to ob-
tain hyperspectral LED models. The fundamentals, which are required
in the thesis, are briefly summarized in chapter 2 which mainly focuses
on state-of-the-art near field goniophotometry and some aspects of ray
tracing and optical design as well as light source models. Furthermore,
spectral properties of LEDs as well as selected colorimetric terms and
concepts are briefly explained.

Chapter 3 introduces first the concept and application of spectral ray
files. Afterwards, the existing state of the art is summarized. The
concept of each method is qualitatively explained and assessed with
respect to earlier deduced measurement properties.

Chapter 4 serves as the theoretical basis for the following chapters.
It motivates, introduces and mathematically describes the physically
motivated basis spectra (PMBS) approach, which extends selected
concepts from the state of the art of the previous chapter. Based on the
mathematical description of PMBS, a theoretical modeling workflow
as well as fundamental limitations are concluded. Finally, the main
practical challenges are summarized at the end of the chapter.

Chapters 5- 7 each focus on one of the individual challenges of PMBS,
concerning its practical application. Thus, each main challenge is
considered individually in theory and the deduced solutions are ex-
plained and supported with practical examples. While chapter 5
concentrates on obtaining spectral LED model parameters, chapter 6
considers typical uncertainties of the required measurements to adapt
the measurements and optimize the data base. Finally, chapter 7 de-
scribes the construction of the hyperspectral LED models with the
obtained measurement data in detail.

5



INTRODUCTION

A validation of the complete workflow as well as a comparison with
an important state-of-the-art method is provided in chapter 8. This
also includes the spectral ray tracing of sources, whose spectrum
changes as a function of angular and spatial dimension, combined
with a spectrally sensitive system.

Chapter 9 concludes and discusses the developed methods, problems,
limitations and obtained results with respect to the desired applica-
tion and in a broader context. The main findings of the thesis are
briefly summarized in the last chapter 10. Furthermore, it suggests
concepts which may improve both PMBS and near field goniopho-
tometry in the future.

6



CHAPTER 2

FUNDAMENTALS

The aim of this chapter is to summarize the necessary fundamentals regarding
the spectral characteristics of LEDs, photometry and colorimetry. Further-
more, ray tracing and its typical light sources as well as near field goniopho-
tometry are briefly introduced. A more complete and general overview of the
fundamentals is given in the cited literature.

2.1 SPECTRAL PROPERTIES OF LEDS

A Light Emitting Diode (LED) is an optoelectronic semiconductor
converting electrical energy into incoherent radiation. A part of the
electrical energy is also converted into thermal energy. The emitted
radiant power distribution in watt per frequency or wavelength λ

is called spectral power distribution S(λ) or in short spectrum. The
spectrum depends on the specific material system of the LED as well
as its thermal and electrical operation conditions. The wavelength
at which the highest radiation occurs is called peak wavelength. In
this thesis, the peak wavelength is the only characteristic wavelength
associated with an LED spectrum. Examples of LED spectra and
their peak wavelengths are given in Fig. 2.1. It is common in lighting
technology to visualize all quantities as a function of the wavelength
in vacuum rather than the frequency.

The spectral width of LED spectra prohibit the direct generation of
white light using solely one semiconductor chip. However, as the gen-

7
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eration of white light is an important aspect in lighting technology, two
possibilities for creating white LED based light have been developed.
One is the additive mixture of different LED spectra with spatially
separated LED chips, for instance red, green and blue. The color is
tuned by adapting the power of the individual chips. However, the
color mixing of the spatially separated chips is a challenging task.

Figure 2.1: Examples of typical LED spectra (spectra and labeling according to [32]–[35]).

White light can also be created by combining typically a blue or ul-
traviolet LED chip with one or several conversion phosphors. The
phosphor partly absorbs the high-energy LED radiation and re-emits
radiation with longer wavelengths. Due to the additional scattering
properties of the phosphor, the resulting radiation is partly mixed. The
thickness of the phosphor layer can be used to tune the light color. A
thicker layer results in a yellower or warm white lighting. Figure 2.2 (a)
shows white LED spectra, which are based on a RGB LED system, and
Fig. 2.2 (b) shows spectra, which are based on phosphor converted
LED systems. Nevertheless, depending on the specific design of the
phosphor coating, the resulting spectra may have an angular color
uniformity. This results from an angular dependent ”LED radiation”
to ”phosphor radiation” ratio caused by deviating phosphor conver-
sion lengths. An example of this phenomenon is discussed in detail in
section 8.1. More information on LEDs, LED systems, and conversion
phosphors is provided in [36], [37].

8
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(a) (b)

Figure 2.2: White LED spectra based on (a) additive mixture of red, true green and deep
blue (according to Fig. 2.1) and (b) phosphor converted LED spectra according to [38],
[39].

2.2 RADIOMETRY, PHOTOMETRY AND COLORIMETRY

Radiometry is the science of measuring the optical part of electromag-
netic radiation ranging from ultraviolet to infrared [40]. Photometry
can be considered an area of radiometry, which focuses solely on the
visible part of the spectrum. Another important difference between
them is the application of specific actinic action spectra. Actinic ac-
tion spectra are weighting functions, which are used to weight the
measured spectral power distribution according to photobiological or
photochemical effects. In radiometry, there is no specific weighting
function. In photometry, the v(λ) function, which is used to model the
sensitivity of the human eye, is the most important weighting function.
If an actinic action spectrum or any other spectral weighting function
is applied, the spectrally integrated value changes. In terms of the
v(λ) function, the resulting quantities have specific names such as lu-
minous power, light intensity, illuminance or luminance to distinguish
them from their radiometric counterparts such as radiometric power,
radiant intensity, irradiance or radiance. In this thesis, all arbitrary
weighted and spectrally integrated values obtained with any function
different from the v(λ) function are marked with the index ”pseudo”

9
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to distinguish them from the unweighted radiometric and photometric
values. More information on the basis quantities of radiometry and
photometry can be found in [40], [41].

Two other important actinic action spectra are the color matching
functions x(λ) and z(λ), which are related to human color perception.
Similarly to the v(λ) function, they were defined by the Commis-
sion Internationale de l’Eclairage (CIE). The color matching functions
x(λ), z(λ) and the y(λ) = v(λ) function are the basis of the CIE 1931
color space. The integration of a spectrum S(λ), which is weighted
with a color matching function, results in a tristimulus value XCIE,
YCIE, or ZCIE:

XCIE =
∫

S(λ)× x(λ)dλ

YCIE =
∫

S(λ)× y(λ)dλ

ZCIE =
∫

S(λ)× z(λ)dλ

. (2.1)

The tristimulus values serve as an important starting point for the
science of color measurement called colorimetry. An important light
color representation used in this thesis is the CIE 1976 uniform chro-
maticity scale diagram or in short CIE u′v’ diagram. The coordinates
are the so called chromaticity coordinates u′ and v’, which are cal-
culated according to

u′ =
4XCIE

(XCIE + 15YCIE + 3ZCIE)

v′ =
9YCIE

(XCIE + 15YCIE + 3ZCIE)

∆u′v′ =
√(

u′1 − u′2
)2

+
(
v′1 − v′2

)2

. (2.2)

In contrast to a similar diagram, the CIE 1931 xy diagram, the euclidean
distance ∆u′v′ between two points u′1, v′1 and u′2, v′2 in the CIE u′v’
diagram is approximately proportional to the perceived difference

10
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of their light color stimuli. The CIE thus recommends evaluating
white light color differences [42], [43] and also saturated light color
differences with this diagram [43]. The color matching functions and
the CIE u′v’ diagram are shown in Fig. 2.3.

Not all colorimetric values are based on the tristimulus values. The
color rendering index (CRI) and its suggested successors such as TM-
30-15 (Technical Memorandum-30-15), which are all used to rate the ca-
pability of a light spectrum to render object colors, require the complete
spectrum S(λ) because they are based on different spectral weighting
functions. A comprehensive overview on this topic is provided in [44].

(a) (b)
Figure 2.3: Color matching functions (a) and CIE u′v′ diagram (b).

An important phenomenon in colorimetry is known as metamerism.
It refers to the effect that different spectral power distributions may
result in the same color stimulus. The mathematical explanation is that
the integration of the weighted spectral power distributions may result
in the same relations between the tristimulus values XCIE, YCIE, and
ZCIE. While different chromaticity coordinates cannot have the same
underlying spectrum, different spectra may lead to the same chro-
maticity coordinates. These colors are called metamers. An example
are the white RGB based spectra in Fig. 2.2 (a), which are assigned to
the same chromaticities as the phosphor converted white LED spectra

11
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in Fig. 2.2 (b). More information on colorimetry and more advanced
concepts such as color appearance models are provided in [45], [46].

2.3 RAY TRACING

The precise propagation of each light source’s electromagnetic radi-
ation can be described with Maxwell’s equations. However, solving
these differential equations is both computationally expensive and
unnecessary in the typical optical design process of lighting technol-
ogy. In lighting technology, the spatial dimensions of the optically
relevant geometries are usually much larger than the wavelengths of
the usually incoherent radiation and effects as interference or diffrac-
tion can be neglected without affecting the precision [12]. In these
cases, the mathematical assumption λ→ 0 is valid and leads to geo-
metrical optics [47]. Then the light can be approximated in the form
of rays, which are perpendicular to the wave front and only the rules
of geometrical optics such as Snell’s law of refraction, the law of re-
flection or the Fresnel equations are considered if a ray encounters
a material interface [48].

A ray tracer is a software tool, which facilitates the application of the
rules of geometrical optics1 on up to several billion rays within a typi-
cally three dimensional opto-mechanical setup. Besides the geometries,
all optical material properties such as refractive indices, dispersion
relations or surface parameters are usually part of the calculations.
Ray tracers are typically used to design optical elements such as lenses,
reflectors or total internal reflection optics in such a way that they
provide a specific light distribution or illumination in combination
with a specific light source or to predict the visual perception of an

1 Ray tracers may also support physical optics calculations.
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illumination scenario. Therefore, light distributions can be evaluated
regarding their radiometric, photometric or colorimetric properties.
Furthermore, system analyses can be performed, for instance to visu-
alize specific ray paths called sequences within the opto-mechanical
setup. A typical ray tracing setup consists of a source, which serves
as ray origin, the opto-mechanical setup and sensors, which evaluate
the tracing results. An example is shown in Fig. 2.4.

Figure 2.4: Ray tracing setup of a flash lamp and irradiance distribution in the ray tracer
LightTools.

There is sequential and non-sequential ray tracing. In sequential ray
tracers, the sequence of the optically active geometries is predefined.
It is faster and typically used to design imaging optics. In contrast,
non-sequential ray tracing has no predefined tracing sequence. It
is typically used to design non-imaging optics or to simulate effects
such as stray light. There are also cases in which both approaches are
combined. An example is the design of modern head-up-displays [49].

In direct non-sequential ray tracing, rays start at a defined light source
and are evaluated at defined sensors. In inverse ray tracing, the rays
start at the sensor and propagate to the sources. Inverse ray tracing
can be used if only a small number of rays from the source reach the
sensor. In both cases, the rays are traced through the optical system
until they are absorbed or until they have no more interactions with
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the optical system. In this thesis, the ray tracer OptisWorks is used
to evaluate the light source models.

Several ray tracers, for example OptisWorks, use a Monte Carlo ap-
proach. This means that each ray is either completely reflected, com-
pletely transmitted or completely absorbed with a specific probability,
which is defined by the rules of geometrical optics. This also means
that if the same ray is traced twice, its sequence throughout the optical
system may change. This has the consequence that the number of
rays is an important precision criterion of the simulation. The statisti-
cal error of a Monte Carlo ray tracer is indirectly proportional to the
square root of the number of rays used.

Typically, the optical design process consists of several steps such as the
initial design and the design optimization [12]. The initial design pro-
vides a first geometry, which is based on simplified assumptions. It is
followed by the design optimization, which aims to optimize the initial
geometry by considering more realistic conditions. An important as-
pect in each step of the optical design is to choose an appropriate light
source model. There are several types of light source models in ray
tracers, which will be introduced below. More information regarding
the optical design process and optical design is provided in [12], [48].

(a) Point source (b) Geometrical model (c) Ray file

Figure 2.5: Typical light source models used in ray tracers.
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The point source model shown in Fig. 2.5 (a) is the most simplified
light source model. The extensions of the light source are ignored and
it is thus only described by its light intensity distribution curve. The
error associated with this approximation is usually neglected, if the
distance between the source and the observer or the optical element is
beyond the photometric limiting distance. More information on this
distance is provided in [50]. Although it is the least precise model, it
is often chosen because it enables the use of advanced mathematical
optical design techniques such as the supporting quadric method [12],
[51] or tailoring [51] during the initial design step [12]. The point
source model may be based on a solely mathematical model, a gonio-
photometric measurement or an indirect camera measurement [52].

Geometrical light source models are a possibility for modeling ex-
tended light sources [12]. They extend from simple models, for in-
stance an extended plane, to complex physical CAD models with
defined optical parameters of the different materials. A schematic
example is provided in Fig. 2.5 (b). Often, the core of these models is
another light source model or a mathematical description for instance a
Lambertian emitting plane. Radiance or luminance maps may be used
as source models as well [53], [54]. They are created by ray tracing of
another light source model. These models speed up the ray tracing
process and allow both direct and inverse ray tracing.

A ray file as shown in Fig. 2.5 (c) models an extended light source as
well. It represents the near field of the source as a list of vectors. Each
vector represents a ray with a three dimensional starting point and a
normalized direction [16]. The luminous or (pseudo-)radiometric flux
is either provided by the density of the rays with constant amplitudes
or an individual amplitude for each ray. There are several different
ray file formats for the individual ray tracing softwares. Some formats
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allow the inclusion of additional information like the wavelength
or the polarization. In 2013, the TM-25 format was defined by the
Illuminating Engineering Society (IES) as a general standard for the
ray file format [17], [55]. Ray files are typically used in the optical
design process if the extension of the source can no longer be neglected.
However, they allow only direct ray tracing. Ray files are typically
provided on the home page of the light source manufacturers. They are
usually based on near field goniophotometric measurements [14], [15].

2.4 NEAR FIELD GONIOPHOTOMETRY

Ray files are usually based on a set of luminance or pseudo-radiance
images, which are measured goniometrically [56]. In this measurement
technique, the luminance images are obtained from different angular
positions. These measurements are performed with a so called near
field goniophotometer2, as shown in Fig. 2.6 (a). A typical near field go-
niophotometer consists of at least two moving axles, an imaging lumi-
nance measurement device (ILMD3) - also referred to as a luminance or
color camera -, a photometer and sometimes also a spectroradiometer.

In the ILMD, an objective (lens) images the luminance of the de-
vice under test on a spatially resolved sensor, for instance a CCD
(charge-coupled device) or CMOS (complementary metal-oxide-
semiconductor). An additional optical transmission filter adapts the
spectral sensitivity of the system to the v(λ) function. The ILMD

2 Strictly speaking, it is more often used as near field gonio(pseudo-)radiometer in this
thesis. Nevertheless, in accordance with the commonly used terminology, the terms
goniophotometry and goniophotometric are used in these cases as well.

3 Strictly speaking, it is more often used as imaging (pseudo-)radiometric measurement
device in this thesis. Nevertheless, in accordance with the commonly used terminology
the abbreviation ILMD is used in these cases as well.
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provides the luminance and pseudo-radiance images and thus the
near field information. The spectral information is lost due to the
optical integration on the sensor.

One or several filter wheels within the ILMD may allow the replace-
ment of the v(λ) matching filter by another filter to adapt the spectral
sensitivity of the system to other actinic action spectra such as x(λ)
and z(λ). To reduce the complexity in the manufacturing process, the
x(λ) adaption filter is sometimes represented by two filters. They are
named xshort(λ) and xlong(λ) in this thesis. A schematic ILMD with a
filter wheel is visualized in Fig. 2.6 (b). These systems can be used to
apply selected actinic action spectra directly on the measured spectra
and thus to obtain a ray file set, which represents the selected quantity.
However, these ray files are not suited to perform spectral simulations,
which will be discussed in more detail in section 3.2.

(a) (b)

Figure 2.6: Near field goniophotometer with typical sensors (a) and schematic image of
an ILMD with filter wheel (b), (images reprinted with permission from [57], [58]).

The photometer as well as the spectroradiometer provide no spatial
resolution. Although they are mounted on a near field goniopho-
tometer, the source models obtained solely with these sensors can be
considered as far field models. The photometer’s system sensitivity is
also adapted to the v(λ) function. In near field goniophotometry the
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photometer, which also provides no spectrally resolved information, is
used to obtain the absolute luminous flux of ray files, which are based
on a v(λ) ILMD-based goniophotometric measurement.

The spectroradiometer is the only sensor which provides spectrally
resolved information. There are array and scanning spectroradiome-
ters. Although a scanning spectroradiometer offers a higher spectral
resolution and a larger stray light suppression, which leads to a higher
dynamic range and therefore a smaller measurement uncertainty [59],
its higher measurement time is unfavorable in combination with a
goniometer. This is why the faster but less precise array spectro-
radiometers are typically used for goniometric measurements. The
measurement time of an angularly resolved goniometric spectral mea-
surement is still very high compared to a similarly resolved ILMD-
based measurement due to the difference of the integration times
ultimately leading to a start-stop-motion of the goniometric spectral
measurement [59].

In this thesis, the ”RIGO801 near field goniophotometer” from the
TechnoTeam Bildverarbeitung GmbH was used to perform the near
field measurements. It is equipped with a photometer from the Czibula
& Grundmann GmbH, a ”LMK5 color” camera from TechnoTeam and
a ”specobs 1211” spectroradiometer from JETI Technische Instrumente
GmbH. The camera has an integrated filter wheel, which is equipped
with v(λ), xshort(λ), xlong(λ) and z̄(λ) matching functions as well
as an infrared and a glass filter, which has no significant spectrally
selective absorption.
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CHAPTER 3

SPECTRAL RAY FILES

In this chapter, the concept of the 6-dimensional data set “spectral ray file” is
briefly described and motivated. Subsequently, ideal properties of measure-
ment techniques to obtain spectral ray files are deduced and used to assess
the briefly and solely qualitatively described state of the art.

3.1 SPECTRAL RAY FILES AND THE

PLENOPTIC FUNCTION

The 7-dimensional plenoptic function P(X, Y, Z, φ, ϑ, λ, t) is the most
general light source description in the context of the ray optic as-
sumption if polarization is neglected [60]. Each ray is described by its
3-dimensional starting point (X, Y, Z), the angular ray direction (φ, ϑ)

and the wavelength λ. In the lighting industry, temporal variations
t are usually neglected as the lighting distribution is assumed to be
static or at least quasi-static, which reduces the plenoptic function to
the 6-dimensional non-temporal plenoptic function R(X, Y, Z, φ, ϑ, λ).
If there is no spectral information available, the plenoptic function is re-
duced to the 5-dimensional usually photometric or pseudo-radiometric
non-spectral-non-temporal plenoptic function M(X, Y, Z, φ, ϑ).

A ray file is a discrete representation of the plenoptic function. Each
directly measured ray file represents the 5-dimensional non-spectral-
non-temporal plenoptic function because the spectral information is
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lost due to the optical integration on the ILMD (Imaging Luminance
Measurement Device) as described in section 2.2 and 2.4.

In contrast, a spectral ray file represents one additional dimension,
which is the wavelength as shown in Fig. 3.1 so that each ray has
a specific starting point, angular direction and wavelength. Before
the measurement properties and state-of-the-art techniques to create
spectral ray files are discussed in section 3.3 and 3.4, section 3.2 ex-
plains the advantages of spectral ray files over a conventional ray file
in commercial ray tracing software.

Figure 3.1: Schematic visualization of the discrete representation of the 6-dimensional
plenoptic function.

3.2 APPLICATION OF SPECTRAL RAY FILES

According to the assumption of geometrical optics, the wavelength
is unimportant during ray tracing and only the geometric relations
of rays and surfaces as well as material parameters are relevant. The
wavelength is only required to calculate photometric quantities, which
depend on actinic action spectra. Examples are light and object col-
ors, color rendering, blue light hazard or circadian effects. Thus, the
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wavelength does not seem to be necessary for the tracing process itself.
However, this assumption is wrong because the wavelength does have
an indirect influence on the ray tracing process.

If a ray hits a material interface, the ray tracer needs to assign the
physical parameters of the materials such as absorption coefficient and
the index of refraction. These parameters depend on the wavelength.
For instance, in the visible part of the spectrum the index of refraction
of classical optical materials is usually higher for smaller wavelengths.
According to Snell’s Law, this leads to different angles of refraction
for different wavelengths, which is referred to as chromatic aberration.
The image of the prism shown in Fig. 1.1 (b) in chapter 1 is an extreme
example. This effect also occurs in the case of lenses and can lead to
color shadows. As shown in Fig. 3.2 the cut-off line of automotive head
lights may also show color shadows caused by chromatic aberration.
The same can happen if different spectral absorptions occur in the
system, which is for instance typical in rear lights.

This wavelength dependency is also the reason why it is not feasible to
obtain any photometric quantity “prior” to the ray tracing. The effect
of the wavelength dependent material parameters changes the results,
as a function of angular or spatial dimension on the sensors of the ray
tracer as it has in Fig. 3.2. Therefore, the design process of a complex
optical system requires the inclusion of the wavelength dependent
material parameters and the spectral information of the source.

In the case of conventional light sources such as tungsten halogen
lamps, a global spectrum can be added to the ray file because the spec-
trum does not change as a function of spatial or angular dimension.
The spectrum serves as a global probability density function which
statistically assigns a wavelength to each ray. The optical design pro-
cess of complex systems thus only requires modeling the wavelength
dependence of the material parameters.
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Figure 3.2: Color shadow caused by chromatic aberration at the cut-off line of an auto-
motive head light.

However, in the case of LEDs there might be spectral variations as a
function of angular or spatial dimension which can be caused by the
spatial separation or by different intensity distributions of the individ-
ual LED chips and conversion phosphors. Then, attaching a global
spectrum leads to errors [61]. To minimize these errors and achieve
a realistic light source model, the conventional 5-dimensional ray file
has to be replaced by a 6-dimensional spectral ray file. To sum up, to
achieve precise spectral and colorimetric simulation results in commer-
cial ray tracing software, realistic light source models incorporating
the complete spectral information of the source are required.

3.3 PROPERTIES OF SPECTRAL

RAY FILE MEASUREMENTS

The aim of computer-aided optical design is to accelerate the develop-
ment process of optical components and optical systems. The spectral
ray files should allow colorimetric and spectral simulations with realis-
tic predictions within established non-sequential simulation software.
Further, the measurement effort has to be reasonable with respect to
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the cost and time saving aspect of the computer aided lighting pro-
cess. On the one hand it makes no sense to create a “perfect ray file”
because there are other model assumptions in the ray tracer, such as
manufacturing tolerances of the CAD models, which create a bias as
well and because the required storage and measurement effort would
increase significantly. On the other hand a fast and cheap measure-
ment technique which does not provide useful results will not be used
in any application. Finding the right trade-off between these aspects
is crucial for each measurement task.

Spectral deviation The spectral deviation between two spectra may
be described as residual sum of squares (RSS) or as chromaticity dis-
tance ∆u′v′. While the RSS is not prone to metamerism and suited
for comparative analyses, its non-interpretable values are not suited
for assessing absolute deviations. In these cases, the interpretable
chromaticity distance ∆u′v′ is used. Typically, both figures of merit
are highly correlated. Naturally, the tolerable spectral deviation of a
spectral ray file always depends on the precise task. A typical one
would be ensuring the color uniformity of an illumination. This is
challenging because the human eye is a very sensitive detector when
it comes to color discrimination. Nevertheless, the spectral deviation
of a spectral ray file has to ensure at least the usability in such ap-
plications. The exact color discrimination threshold in u′v′ depends
on the light color and the viewing conditions. Thus it varies from
individual to individual and therefore also from study to study. In the
case of white illumination, which has tough uniformity requirements,
it typically lies in the range around 4× 10−3 < ∆u′v′ < 1.6× 10−2

in practical applications [62].

Memory requirements and interface The generated data format has
to be capable of being integrated in existing non-sequential ray tracing
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software. Even if a measurement technique creates adequate results
in a short amount of time, the results have to retain their properties
in the established software without a complex adaption of the sim-
ulation software. Otherwise the usability decreases. The memory
requirements should also remain reasonable because ray files are often
provided on the home page of the LED manufacturers for download.
This may become critical in the case of a 6-dimensional quantity. In the
best case a standardized format as TM-25 [17], [55] can be used directly.

Measurement system As mentioned above the measurement effort
has to be reasonable. Measuring the 5-dimensional quantity ray file
with a moving scan typically requires between several minutes and
a few hours. The measurement time depends on the measurement
resolution, scanning range and the integration times of the sensors.
As these measurement times are currently tolerated, the measurement
time of a spectral ray file should be in the same order of magnitude. In
particular, a start-stop-motion of the goniometer should be avoided
because it heavily increases the measurement time. Another aspect
that should be considered is the potential need for additional non-
conventional measurement equipment such as a hyperspectral camera.
It is a structural and financial advantage, if a method only requires
established measurement equipment.

3.4 STATE-OF-THE-ART METHODS TO

CREATE SPECTRAL RAY FILES

The most obvious and simple method to create spectral ray files would
be an individual ILMD-based measurement of each LED source in
the system followed by their combination. However, this approach
has several problems [61].
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First, the individual sources influence each other. One example is the
thermal induced temperature drift, which is caused by unavoidable
thermal losses of neighboring LEDs. The thermal drift affects the spec-
tral shapes and intensities and therefore light color, overall flux and
flux relations of the different LEDs. Second, not all LED systems allow
the different chips or chip colors to be powered individually. Finally,
in the case of phosphors an individual measurement is not physically
possible because the phosphor is powered by LED radiation [61].

Consequently, over the last years several different measurement meth-
ods to create spectral ray files have been proposed. Most of them rely
on conventional measurement techniques. They combine ILMD-based
measurements with spectral measurements. The spatially resolved
ILMD-based measurements are required to be goniometric in order
to include angularly resolved information.

The spectral information of an ILMD-based measurement is lost due to
the optical integration of the spectrum on the ILMD sensor. In combina-
tion with a goniometer it provides the 5-dimensional M(X, Y, Z, φ, ϑ).
However, it is possible to weight the spectrum by using different op-
tical transmission filters prior to the integration on the chip. Each
filter optically weights the spectrum differently and therefore gener-
ates different spectrally integrated pseudo-radiometric information.
The number of required ILMD-based measurements with different
optical filters varies in the state-of-art methods. On the other hand,
the spectral measurements do not generate spatially resolved informa-
tion because the spectroradiometer images one “pixel”, but spectrally
resolved information. In combination with the goniometric system
the spectral information may be obtained as a function of the angle.
Nevertheless, only the combination of both the ILMD and the spectro-
radiometer provides enough information in terms of spatial, angular
and spectral resolution to create a spectral ray file, which represents
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R(X, Y, Z, φ, ϑ, λ), if no additional measurement equipment, such as
hyperspectral cameras, are used.

Rykowksy summed up the four different possibilities for combining
the spectral measurements with the ILMD-based measurements with
respect to the required measurement effort [63]. Table 3.1 shows pro-
posed state-of-the-art methods and their assignment to these four
options. The columns distinguish the measurement methods between
the need of angularly resolved spectral measurements and one spec-
tral measurement. Note that only one state-of-the-art method avoids
angularly resolved spectral measurements. The rows distinguish the
measurement methods between the required number of ILMD-based
measurements with different optical transmission filters, which is
either equal to one or larger.

Table 3.1: Concepts to create spectral ray files R(X, Y, Z, φ, ϑ, λ) with conventional
measurement equipment and allocated state-of-the-art methods

Spectral measurement

Global Angularly resolved
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ne Spectral variations

not accountable
PCA method (3.4.3)
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l

Blue/Yellow approach (3.4.4)
Spectral adjusting (3.4.1)

Polychromatic ray data (3.4.2)

The option which combines only one ILMD-based measurement with
one global spectral measurement does not contain any spectral infor-
mation as a function of angular or spatial dimension. It can therefore
not be used to create spectral ray files but only a ray file with a fixed
spectrum. The three remaining options have all been used to create
spectral ray files. They are evaluated in the subsections 3.4.1-3.4.4. The
methods discussed in subsections 3.4.5 and 3.4.6 cannot be assigned to
the table directly as they utilize different measurement approaches.
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3.4.1 SPECTRAL ADJUSTING

One of the first methods to create spectral ray files was published by
Radiant Vision in 2011 [63]. This method generally requires angularly
resolved spectral measurements and ILMD-based measurements with
at least three optical filters to obtain spatially resolved colorimetric
information at the same angular positions. For each selected starting
location (ILMD pixel) the associated far field spectrum is adjusted to
match the measured colorimetric information. The adjustments are
based on an iterative algorithm such that “as much features of the
original spectral power distribution as possible remain” [63]. A more
precise description of the algorithm is not provided as it is the intel-
lectual property of Radiant Vision. The algorithm proceeds until the
spectrum matches the measured color within a user defined tolerance.
The authors suggest a colorimetric tolerance of4u′v′ < 0.003. The re-
sulting data format provides an adjusted spectrum at each location and
angle of radiation. This format cannot be used in a ray tracer directly
because one ray requires one wavelength and not a complete spectrum.
Therefore, a specific wavelength is assigned to each ray based on the
provided spectrum of the starting point and the ray direction to allow
the ray tracing. The memory requirements of the 6-dimensional raw
data prior to the wavelength assignment are rather high.

The spectral adjustment can be prone to metamerism as the spectral
adjustment is not unique since different spectra can produce the same
color stimulus. This problem intensifies if the number of spectral
sources increases and the term “spectral feature” becomes harder to
define. The largest disadvantage, however, is the measurement time be-
cause angularly resolved spectral measurements are recommended to
obtain good results. Nevertheless, this method can produce angularly
and spectrally resolved spectral ray files by using only conventional
measurement techniques.
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3.4.2 POLYCHROMATIC RAY DATA

The Opsira GmbH published another method to create spectral ray
files [64]. It combines between seven and ten ILMD-based measure-
ments with optical bandpass filters, which are evenly spaced across
the visible spectrum, to create the same amount of different ray files.
This ray file set serves as the basis for the ray tracing simulation [61],
[65]. An angularly resolved spectral measurement allows the absolute
radiometric weighting of each ray file by integrating the measured
spectra in the defined spectral intervals and over the angular dimen-
sion. The authors note that strong spectral variations along the angular
measurements may require an individual weighting of each ILMD
picture prior to the ray generation in order to improve the absolute
weighting [61]. This requires the angular positions of the ILMD-based
measurements to match those of the spectral measurements.

The spectral deviations as well as the memory requirements and the
measurement time depend on the number of filters used to create the
ray file set. However, the number of ILMD-based measurements is
always comparably high and the required angularly resolved spectral
measurements result in a start-stop-motion of the goniometer. Both
facts lead to a rather high measurement time. Nevertheless, the ob-
tained set of ray files can be used directly in ray tracing software and
produces angularly and spatially resolved spectral information. Al-
though the whole concept relies only on conventional measurement
equipment, it is the most general concept so far as it works for all kinds
of stable light sources and not just all kinds of LEDs.
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3.4.3 PRINCIPAL COMPONENT ANALYSIS

Jacobs et. al. proposed a method to create spectral ray files which
contain brightness variations as a function of angular and spatial
dimension and spectral variations as a function of angular dimension
[66]. This approach is the only method requiring just one ILMD-
based measurement but still requiring angularly resolved spectral
measurements.

The angularly resolved spectral measurements are used to deduce
a set of principal components whose weighted sum is capable of re-
constructing the measured spectra. Afterwards the weighting factors
are obtained at each angular spectral measurement position and used
to interpolate the weighting factors at all required angular positions.
This information is then combined with the angularly and spatially
resolved information of the ILMD-based measurement [66]. The num-
ber of principal components used to reconstruct the spectra influences
both spectral deviations and memory requirements. However, since
the principal components are based on a PCA, the relative importance
of additional basis functions decreases strongly and their number can
remain quite small.

Advantages include the data compression as well as the requirement
of solely conventional measurement equipment. An even larger advan-
tage is the measurement time compared to the approaches discussed
in subsection 3.4.1 and 3.4.2. Although the approach still requires
angularly resolved spectral measurements, the measurement time
is comparably low because the angularly resolved spectral measure-
ments do not have to occur necessarily at the same positions as the
ILMD-based measurements due to the possible interpolation. This is
especially true in the case of rotationally symmetric spectral variations
because only the polar angle requires an angular resolution. In the
non-rationally symmetric case, the angularly resolved measurements
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still lead to high measurement times. The precision of the PCA and the
interpolation increases in the case of additional spectral measurements.
A large disadvantage is that the spectral variation is only described
as function of the angular dimension. Therefore, this approach is
more suited to describe spatially uniform sources such as OLEDs (or-
ganic light emitting diodes) but lacks precision in the case of spatially
varying spectral information.

3.4.4 BLUE/YELLOW APPROACH

The LED manufacturer Osram has proposed the only measurement
technique which requires a single spectral measurement in addition
to two ILMD-based measurements. This approach is mainly used to
describe phosphor converted white LEDs and is typically referred to
as the “Blue/Yellow” approach or the “Blue/Yellow” ray files [16],
[67]. The main idea of this method is to separate a global measured
spectrum into two parts, which represent the physical sources blue
LED and yellow phosphor. ILMD-based measurements with a blue
optical filter and a yellow optical filter are performed to create two
ray files. The spectrum is separated at a specific wavelength into a
blue and yellow part as well. Each ray file is assigned to its sharp
spectral part describing its relative change as a function of angular
and spatial dimension. The relative weighting between the ray files
as well as the absolute weighting with respect to the radiometric flux
is considered by a global weighting factor for each ray file. Although
the procedure to obtain these two factors is not described in [16],
[67], it is fair to assume that these weightings are based on the global
measured spectrum and the overall flux of the LED. A similar method
is described in subsection 4.2.2.
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The main advantage of this approach is the short measurement time
because there is only a need for two ILMD-based measurements and
no angularly resolved spectral measurement. As the angularly and
spatially resolved spectral information is provided by two ray files,
it is directly available in the ray tracer and has only small memory
requirements. In addition it is compatible to the standardized ray
file format IES TM-25.

However, one has to accept the introduction of a systematic error if
this method is used. Although the spectrum consists of two spectral
sources, which are the physical LED and phosphor spectrum, there is a
difference between the physical spectra and the assigned spectral parts.
The size of the error depends on the chosen separation wavelength,
the characteristics of the source, the global spectrum and also on
the actual filters used to create the ray files. If the filters transmit
only a spectral range, which represents one spectral source directly
without overlap to another source, the resulting ray files have the
correct relative distribution.

3.4.5 HYPERSPECTRAL MEASUREMENTS

Lee et. al proposed a measurement technique which combines angu-
larly resolved spectral measurements with one hyperspectral image
[68]. First, all measurements are used to deduce sharply separated
spectral parts. This is done based on a correlation analysis of the spec-
tral change in the near- and far-field. Each spectral band is treated
as an individual source.

The hyperspectral image provides the information regarding the 2-
dimensional starting points. The angularly resolved spectral measure-
ments serve as a data base of the ray directions for each spectral band.
The 2-dimensional starting points on an emitting plane as well as the
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directions are determined by a Monte Carlo approach for each source.
A ray tracer is used to compare simulation results of the model which
consists of the sum of all sources with additional photometric and
colorimetric mid-field measurement data. The mid-field is defined
according to [69]. It is the region between the near field (vector region)
and the far field (Fraunhaufer region) in which the light pattern varies
from a distance to another.

In general, the third dimension of the starting point is neither the
same for different spectral bands nor provided by the geometrical
2-dimensional hyperspectral image. Therefore, the location of the
emitting plane of each spectral band is also an optimization value.
This is for instance necessary in the case of phosphor converted white
LEDs because the phosphor usually 3-dimensionally encapsulates
the blue LED. The starting points, ray directions and emitting plane
locations are altered until the normalized cross-correlation (NCC) of
the simulation result and the mid-field measurement data is above a
user defined threshold. The authors recommend a NCC above 0.99.

This method does not require a conventional ILMD-based goniophoto-
metric measurement. However, although it uses hyperspectral imag-
ing, angularly resolved spectral measurements are still required and
thus lead to a high measurement time. In addition, the mid-field region
has to be measured and the separation into sharp spectral bands differs
from the true physical basis spectra as described in subsection 3.4.4.

3.4.6 PHYSICAL LED MODELS

The approach discussed in this subsection will only be mentioned
peripherally as its main purpose is not the generation of spectral ray
files but the analysis and improvement of LED sources and phosphor
parameters [70]–[72]. The idea is to create a complete geometrical
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and optical physical model of the LED and, if present, the phosphor
within the ray tracer.

The modeling starts with the creation of a precise LED-CAD model,
which includes for instance the electrode structures and encapsulation
geometries. The modeling also requires the inclusion of additional
measurement data such as for instance the blue LED emission spec-
trum and the phosphor absorption and re-emission spectra in order
to correctly predict the wavelength conversion of the blue light in the
phosphor matrix. While a semiconductor is optically described as
Lambertian surface radiator, the scattering in the phosphor is modeled
using Mie theory and requires additional parameters that have to be
measured [73] or modeled [71]. In the case of [71], unknown intrinsic
phosphor parameters within the phosphor matrix are altered until sim-
ulation results in ray tracing software are in agreement with additional
photometric, colorimetric and/or spectral measurement data.

Compared to the spectral ray files described from subsection 3.4.1
to 3.4.5, the resulting models are not just descriptive with respect to
the angularly and spatially resolved spectral information, but offer
a deeper understanding of the LED source itself. However, the indi-
vidual modeling effort and required data amount and therefore the
overall creation time is larger than in the other methods. Neverthe-
less, if the complex models exist they can be used in a similar way
to spectral ray files [74].

3.4.7 SUMMARY

Several state-of-the-art methods exist for the creation of spectral ray
files. Most of them focus on the angular color uniformity of phosphor
converted white LED. The fastest amongst them is the Blue/Yellow
approach because it requires no angularly resolved spectral measure-
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ments. The two ILMD-based measurements provide a high angular
and spatial resolution. The sharp spectral separation is its main limita-
tion, which is also true in the case of the hyperspectral measurements.
The PCA approach can also be used to obtain a spectral ray file of a
solely angularly varying source. In contrast to the Blue/Yellow ap-
proach, it is not limited to LEDs and was successfully applied on a
white OLED. It requires only one ILMD-based measurement, angu-
larly resolved spectral measurements at a comparable low resolution
and the assumption that the source has no spatially spectral variations.

To obtain a spectral ray file of a spatially and angularly varying source
either the spectral adjusting or the polychromatic ray data can be
used. However, both methods require time-consuming angularly re-
solved spectral measurements at the positions of the ILMD-based
measurements. Although the spectral adjusting is usually faster than
the polychromatic ray data because it utilizes only three ILMD-based
measurements, it is also prone to metamerism and cannot be used for
complex LED systems such as an RGBW LED. The only remaining
measurement method besides setting up a physical model, is thus the
polychromatic ray data. However, a spectral ray file of a Red/White
LED system required eight ILMD-based measurements in addition
to the angularly resolved spectral measurements [61]. As with the
spectral adjusting, the measurement time can be reduced by decreas-
ing the angular resolution. A technique which is both general and
comparably fast does not exist until today.
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CHAPTER 4

SPECTRAL RAY FILES BASED

ON PHYSICALLY MOTIVATED

BASIS SPECTRA (PMBS)

The aim of this chapter is to introduce the general concept of the measurement
method. Starting from the direct generalization of the Blue/Yellow approach
introduced in subsection 3.4.4, the physically motivated generalization is
deduced. According to the main assumption that all spectral variations of
the plenoptic function can be described as the weighted sum of physical basis
spectra, it is named “physically motivated basis spectra” or PMBS. This
chapter includes all fundamental assumptions, mathematical descriptions,
and the principal limitations as well as a first outline of the complete workflow,
which serves as starting points for chapters 5-7, which describe the practical
application of the main steps of PMBS.

4.1 DIRECT GENERALIZATION OF THE

BLUE/YELLOW APPROACH

The plenoptic function R(X, Y, Z, φ, ϑ, λ) describes the radiation of a
source in terms of starting point (X, Y, Z), direction (φ, ϑ) and wave-
length λ if temporal variations and polarization can be neglected. It
is therefore the most complete description of a radiation source if the
ray optic assumption is used. Although the state-of-the-art methods
described in section 3.4 are capable of providing this information in
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form of spectral ray files, they either require time-consuming angularly
resolved spectral measurements or work only for phosphor converted
white LEDs. Nevertheless, the state-of-the-art-methods provide very
useful ideas and concepts, which are:

1. Spectral compression by the deduction of global basis spectra
in order to reduce the storage amount as in the PCA approach
(3.4.3), the Blue/Yellow approach (3.4.4) and the hyperspectral
measurements (3.4.5)

2. Associating one ray file to each basis spectrum in order to use
the spectral ray files directly in a state-of-the-art ray tracer as in
the polychromatic ray data (3.4.2), the Blue/Yellow approach
(3.4.4) and the hyperspectral measurements (3.4.5)

3. Incorporation of physical/prior knowledge of the device-under-
test (DUT) as in the Blue/Yellow approach (3.4.4) and the physi-
cal LED modeling (3.4.6) instead of many (additional) redundant
measurements

4. Checking the model based on the conducted and (or) additional
measurements as in the hyperspectral measurements (3.4.5)

5. Avoidance of angularly resolved spectral measurements as in the
Blue/Yellow approach (3.4.4) or at least a significant reduction
as in the PCA approach to reduce the measurement time (3.4.3)

Taking a closer look, the Blue/Yellow approach from subsection 3.4.4
combines most principles. Its main drawback is that it is only de-
scribed for phosphor converted white LEDs. Therefore, it has to be
generalized.

The idea of the Blue/Yellow approach is to model each physi-
cal spectral source individually. The overall plenoptic function
R(X, Y, Z, φ, ϑ, λ) is composed of the sum of two individual spectrally
separated plenoptic functions such that
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R(X, Y, Z, φ, ϑ, λ) = RSB(X, Y, Z, φ, ϑ, λ) + RSY(X, Y, Z, φ, ϑ, λ) (4.1)

in which RSB(X, Y, Z, φ, ϑ, λ) is the plenoptic function of the blue part,
which models the LED, and RSY(X, Y, Z, φ, ϑ, λ) the plenoptic func-
tion of the yellow part, which models the phosphor. It is assumed
that each individual plenoptic function can be divided into a non-
spectral blue part MA,SB(X, Y, Z, φ, ϑ) and a non-spectral yellow part
MA,SY(X, Y, Z, φ, ϑ) as well as an individual globally separated spec-
trum of the blue part SSB(λ) and the yellow part SSY(λ):

RSB(X, Y, Z, φ, ϑ, λ) = MA,SB(X, Y, Z, φ, ϑ)× SSB(λ)

RSY(X, Y, Z, φ, ϑ, λ) = MA,SY(X, Y, Z, φ, ϑ)× SSY(λ)
(4.2)

The overall spectrum S(λ) can be written as

S(λ) = SSB(λ) + SSY(λ) (4.3)

with

SSB(λ) =

S(λ) 0 ≤ λ < λCut

0 λCut ≤ λ < ∞

SYB(λ) =

0 0 ≤ λ < λCut

S(λ) λCut ≤ λ < ∞

, (4.4)

where λCut is the separation wavelength. The spectral separation
is therefore a sharp spectral separation. The principle is visualized
in Fig. 4.1. It shows a relative spectral distribution of a phosphor
converted white LED, which is separated at a separation wavelength
λCut according to Eq. 4.4.

Individual global weightings for the plenoptic functions of the blue
LED WSB and the yellow phosphor WSY are necessary, because the
plenoptic function Mn(X, Y, Z, φ, ϑ) is represented by a measured
ray file, which is a relative distribution. The weightings ensure the
correct relative relation between the individual plenoptic functions.
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Figure 4.1: Principle of the Blue/Yellow approach.

If the weightings are absolute weightings, the combination of the
plenoptic functions and spectra provides the correct radiometric
flux. Then the absolute plenoptic functions MA,SB(X, Y, Z, φ, ϑ) and
MA,SY(X, Y, Z, φ, ϑ) are defined as

MA,SB(X, Y, Z, φ, ϑ) = WSB ×MSB(X, Y, Z, φ, ϑ)

MA,SY(X, Y, Z, φ, ϑ) = WSY ×MSY(X, Y, Z, φ, ϑ)
(4.5)

The absolute MA,SB(X, Y, Z, φ, ϑ) and MA,SY(X, Y, Z, φ, ϑ) provide the
weighting as a function of spatial and angular dimension.

The direct generalization for nmax different sharply separated spectral
sources SS,n(λ) would be

S(λ) =
nmax

∑
n=1

SS,n(λ) (4.6)

with

SS,n(λ) =


0 λ < λCut,n−1

S(λ) λCut,n−1 ≤ λ < λCut,n

0 λCut,n ≤ λ < ∞

(4.7)

and λCut,0 = 0 nm. The variable λCut,n is the separation wave-
length between the nth and nth+1 sharp spectral band. Each nth
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spectral band has to be measured individually with a suitable filter
to obtain MS,n(X, Y, Z, φ, ϑ, λ). Afterwards, the plenoptic function
R(X, Y, Z, φ, ϑ, λ) is the weighted sum of these ILMD-based gonio-
photometric measurements and the sharply separated spectra as
described in Eq. 4.8.

R(X, Y, Z, φ, ϑ, λ) =
nmax

∑
n=1

RS,n(X, Y, Z, φ, ϑ, λ)

=
nmax

∑
n=1

WS,n ×MS,n(X, Y, Z, φ, ϑ)× SS,n(λ)

(4.8)

The deduction of the weighting factors WS,n is similar to those de-
scribed in subsection 4.2.2 and is therefore not described in detail
at this point.

Although Eq. 4.6 to Eq. 4.8 are general, their combination is not physi-
cally valid for each LED spectrum and the associated error can become
large for certain LED spectra. The problem occurs if a sharp spectral
distribution SS,n(λ) changes as a function of angular and spatial dimen-
sion and therefore the association of the usually pseudo-radiometric
plenoptic function Mn(X, Y, Z, φ, ϑ) to a sharply separated spectrum
SS,n(λ) becomes erroneous. Sometimes there is a full spectral overlap
as in the case of the combination of phosphor spectra and red or green
LED, which is typical to enhance the color rendering of a luminaire.
Then the generalization provided by Eq. 4.6 to Eq. 4.8 is not valid due
to the non valid assumption of constant sharp separated basis spectra.

The problem of spectral overlap is visualized in Fig. 4.2, which shows
three measured spectra at different angular positions from an LED
system, which consists of phosphor converted white LEDs and addi-
tional red LEDs. The sharp spectral separation at λCut,1 is reasonable
because the relative spectra SS,1(λ) and the left hand side of the SS,2(λ)

are similar. However, the sharp spectral separation into a red and a
yellow part at λCut,2 results in a different relative spectral distribution
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SS,3(λ) because no constant factor exists between the SS,3(λ) at the
different positions. This violates the assumption in Eq. 4.8, which
states that all SS,n(λ) do not depend on the angle of radiation. The
change is caused by the large spectral overlap of the physical phosphor
spectrum and the spectrum of the red LED. An experimental analysis
of this problem in the case of a warm white phosphor converted LED
is provided in section 8.1.

Figure 4.2: Problem of the direct generalization of the Blue/Yellow approach: The
relative spectral distributions depend on the angular position.

To avoid this problem, a valid and more physical generalization of the
Blue/Yellow approach is necessary. This generalization aims to avoid
the less precise and arbitrary sharp spectral separation and leads to
the physically motivated basis spectra approach.

4.2 PHYSICALLY MOTIVATED BASIS SPECTRA (PMBS)

To show the differences between the arbitrary and physical gener-
alization of the Blue/Yellow approach, the physically relations of a
single phosphor converted white LED will be formulated in equations
similar to those in section 4.1. The physical realization of Eq. 4.3 uses
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the physical spectra of each source and describes the overall spectrum
S(λ) as the sum of the blue LED spectrum SBlue(λ) and the yellow
phosphor spectrum SPhosphor(λ).

S(λ) = SBlue(λ) + SPhosphor(λ) (4.9)

The main difference between Eq. 4.3 and Eq. 4.9 is that the spectra
SBlue(λ) and SPhosphor(λ) in Eq. 4.9 are the physical spectra of the
individual sources. Then the assumption that the relative spectrum of
each individual physical radiation source is constant over the spatial
and angular dimension becomes valid. This means it is not erroneous
to assign a plenoptic function An(X, Y, Z, φ, ϑ) to the physical basis
spectrum Sn(λ) for the blue LED and the phosphor such that

R(X, Y, Z, φ, ϑ, λ) = ABlue(X, Y, Z, φ, ϑ)× SBlue(λ)

+ APhosphor(X, Y, Z, φ, ϑ)× SPhosphor(λ)
(4.10)

This is visualized in Fig. 4.3. At first glance, Eq. 4.1, 4.2 and Fig. 4.3
seem to be identical to Eq. 4.8 and Fig. 4.1. However, it is important
to note that An(X, Y, Z, φ, ϑ) 6∝ Mn(X, Y, Z, φ, ϑ). Mn(X, Y, Z, φ, ϑ) is
the direct result of an ILMD-based measurement and thus a usually
pseudo-radiometric quantity of all sources. The radiometric distri-
bution An(X, Y, Z, φ, ϑ) in contrast is always assigned to precisely
one individual source and not necessarily proportional to any direct
measurement result.

The generalization for LED systems with nmax different spectral
sources Sn(λ) would be similar to Eq. 4.6 and Eq. 4.8:

S(λ) =
nmax

∑
n=1

Sn(λ) (4.11)
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Figure 4.3: Principle of PMBS approach in the case of a phosphor converted white LED.

R(X, Y, Z, φ, ϑ, λ) =
nmax

∑
n=1

An(X, Y, Z, φ, ϑ)× Sn(λ) (4.12)

This is one of the most important equations in this chapter. It means
that although the plenoptic function R(X, Y, Z, φ, ϑ, λ) varies spectrally
as a function of the angular and spatial dimension, its underlying rela-
tive spectral distributions are constant. R(X, Y, Z, φ, ϑ, λ) can therefore
be described by the weighted sum of physical basis spectra, which
occur in the system. All spatial and angular variations are described by
the relative radiometric An(X, Y, Z, φ, ϑ), which change as a function
of angular and spatial dimension.

However, one problem remains. As previously mentioned, a direct
ILMD-based measurement of the relative radiometric distributions
An(X, Y, Z, φ, ϑ) is neither assumed nor generally possible. To be more
precise, there is no optical filter which can measure only the relative
change of one basis spectrum, if that basis spectrum is fully over-
lapped by other basis spectra. The relative radiometric distributions
An(X, Y, Z, φ, ϑ) have to be obtained using the combination of differ-
ent pseudo-radiometric ILMD-based measurements. The procedure
is explained in the next subsection.
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4.2.1 SPECTRAL RECONSTRUCTION MATRIX

The absolute MA,n(X, Y, Z, φ, ϑ) obtained with the ILMD-based mea-
surements depends on the effective spectral sensitivity sτ,eff,n(λ) of
the ILMD-system. According to Eq. 4.13 sτ,eff,n(λ) is the product of
the transmission function of the actual optical filter τn(λ) used to per-
form the measurement, the optional transmission function of a neutral
density filter τND,n(λ) and the spectral system sensitivity function
sSys(λ). The spectral system transmission function usually remains
constant and includes the sensitivity of the optoelectronic sensor and
the transmission of the lens optics

sτ,eff,n(λ) = τn(λ)× τND,n(λ)× sSys(λ). (4.13)

The absolute measurement signal MA(X, Y, Z, φ, ϑ) of an ILMD-based
measurement with the effective spectral sensitivity sτ,eff(λ) is given by

MA(X, Y, Z, φ, ϑ) =
nmax

∑
n=1

An(X, Y, Z, φ, ϑ)×
∫

Sn(λ)sτ,eff(λ)dλ.

(4.14)
It is assumed that besides the measured signal MA(X, Y, Z, φ, ϑ) the
relative basis spectra Sn(λ) as well as all spectral transmissions and
sensitivities and therefore sτ,eff(λ) are known. This means that only the
nmax An(X, Y, Z, φ, ϑ) are unknown variables in Eq. 4.14. If m different
optical filters are used, they produce m different effective spectral sensi-
tivities sτ,eff,m(λ) and thus m spectrally weighted pseudo-radiometric
measurement values MA,m(X, Y, Z, φ, ϑ), which are given by

MA,1(X, Y, Z, φ, ϑ) =
nmax

∑
n=1

An(X, Y, Z, φ, ϑ)×
∫

Sn(λ)sτ,eff,1(λ)dλ

. . .

MA,m(X, Y, Z, φ, ϑ)=
nmax

∑
n=1

An(X, Y, Z, φ, ϑ)×
∫

Sn(λ)sτ,eff,m(λ)dλ.

(4.15)
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These equations are a system of linear equations, which has a unique
solution if the number of different optical filter measurements equals
the number of physical basis spectra m = nmax. Equation 4.15 can
be rewritten in its matrix form as

MA,1(X, Y, Z, φ, ϑ)
...

MA,nmax (X, Y, Z, φ, ϑ)

 = MSτ ·


A1(X, Y, Z, φ, ϑ)

...
Anmax (X, Y, Z, φ, ϑ)

 , (4.16)

with

MSτ =


∫

S1(λ)sτ,eff,1(λ)dλ · · ·
∫

Snmax(λ)sτ,eff,1(λ)dλ
...

. . .
...∫

S1(λ)sτ,eff,nmax(λ)dλ · · ·
∫

Snmax(λ)sτ,eff,nmax(λ)dλ


The matrix MSτ summarizes all available information about the effec-
tive spectral sensitivity of the measurement system and the physical
basis spectra of the DUT. Equation 4.16 therefore relates the abso-
lute pseudo-radiometric measurement values MA,n(X, Y, Z, φ, ϑ) to
the unknown radiometric amplitudes An(X, Y, Z, φ, ϑ), which will be
assigned to the nmax physical basis spectra. The radiometric distri-
butions An(X, Y, Z, φ, ϑ) can be reconstructed by inverting the matrix
MSτ . The reconstruction equation is given as

A1(X, Y, Z, φ, ϑ)
...

Anmax(X, Y, Z, φ, ϑ)

 = M−1
Sτ ·


MA,1(X, Y, Z, φ, ϑ)

...
MA,nmax(X, Y, Z, φ, ϑ)

 (4.17)

The matrix M−1
Sτ will be called the spectral reconstruction matrix. The

reconstructed distributions can be used to calculate the plenoptic func-
tion and thus to create the spectral ray file. The general procedure is
summed up in the following subsection.
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4.2.2 RELATIVE AND ABSOLUTE WEIGHTINGS

It is important to note that Eq. 4.14 til 4.17 are only valid if absolute val-
ues are used. However, in this context the Mn(X, Y, Z, φ, ϑ) are based
on measured ray files. They are therefore provided as unweighted dis-
tributions. According to Eq. 4.5 the absolute distributions are given as

MA,1(X, Y, Z, φ, ϑ)
...

MAnmax (X, Y, Z, φ, ϑ)

 =


W1 · · · 0

...
. . .

...
0 · · · Wnmax

 ·


M1(X, Y, Z, φ, ϑ)
...

Mnmax (X, Y, Z, φ, ϑ)


(4.18)

where the diagonal matrix of the weightings can be written as the
product of the relative weighting matrix WR and an absolute scal-
ing factor WA

W1 · · · 0
...

. . .
...

0 · · · Wnmax


︸ ︷︷ ︸

absolute weightings

= WA


WR,1 · · · 0

...
. . .

...
0 · · · WR,nmax


︸ ︷︷ ︸

relative weightings WR

. (4.19)

The separation of the absolute and relative weightings makes sense
for two reasons. Firstly, the absolute scaling factor can be based on
the photometer, which provides absolute luminous flux values with
a smaller uncertainty than the ILMD. Secondly, the mathematical
importance of both weightings differs. Only the relatives weightings
are essential for PMBS. If Eq. 4.18 and 4.19 are inserted into Eq. 4.17
and the matrix multiplications are carried out the result is given by
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A1(X, Y, Z, φ, ϑ) = WA ×
[

M1(X, Y, Z, φ, ϑ)×M−1
Sτ (1, 1)WR,1

+ · · ·

+ Mnmax (X, Y, Z, φ, ϑ)×M−1
Sτ (1, nmax)WR,nmax

]
...

Anmax (X, Y, Z, φ, ϑ) = WA ×
[

M1(X, Y, Z, φ, ϑ)×M−1
Sτ (nmax, 1)WR,1

+ · · ·

+ Mnmax (X, Y, Z, φ, ϑ)×M−1
Sτ (nmax, nmax)WRnmax

]
(4.20)

This shows that the relative weightings are necessary to perform the
reconstruction because they effectively change the complete recon-
struction matrix. If the relative weightings are ignored, the spectral
reconstruction does not provide the correct radiometric distributions
An(X, Y, Z, φ, ϑ).

In contrast, the absolute scaling factor WA can be factored out in
Eq. 4.20 and therefore also remains as a global scaling factor, if the
distributions An(X, Y, Z, φ, ϑ) from Eq. 4.20 are inserted into Eq. 4.12.
WA is chosen so that it relates the integral of the plenoptic function
to an absolute radiometric or photometric value.

The determination of the relative weighting factors WR,n is mandatory
and described in the following. Two methods to obtain the correct
relative weightings WR,n will be discussed. The first method uses
measured values obtained directly from the goniophotometric ILMD-
based measurements. The availability of these values depends on the
measurements. The second method relates the relative distribution
Mn(X, Y, Z, φ, ϑ) to a spectral measurement in the known geometrical
setup and deduces the weightings by using Eq. 4.16. Finally, the
absolute weighting WA can be applied to ensure the correct radiometric
flux such that
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
MA,1(X, Y, Z, φ, ϑ)

...
MA,nmax(X, Y, Z, φ, ϑ)

 = WA ×WR ·


M1(X, Y, Z, φ, ϑ)

...
Mnmax(X, Y, Z, φ, ϑ)



WR =


WR,1 · · · 0

...
. . .

...
0 · · · WR,nmax


.

(4.21)
Furthermore, it should be mentioned that in contrast to the weightings
of the measurement values, an arbitrary non-zero weighting of the
basis spectra does not change the result in Eq. 4.12. The basis spectra
weightings change the reconstructed An(X, Y, Z, φ, ϑ) but also the
initial weightings of Sn(λ) and therefore not their product in the final
Eq. 4.12. Mathematical details are provided in the Appendix A.1.

METHOD 1: CAMERA LUMINOUS FLUX

While the luminous flux of the ray file typically refers to the angular
integrated photometer measurements, some near field goniophotome-
ters sum up all preprocessed weighted pseudo-radiance images of
the ILMD-based measurement. These values can be used directly as
weightings for the corresponding ray file and therefore provide the
weighting factor.1 If these values are not available, the weighting
can be estimated based on a spectral measurement using the second
method.

1 In the case of the RIGO801 used in this thesis, this value is provided as “camera
luminous flux” in the measurement results. It is corrected by a calibration factor
to generate a luminous flux under the assumption that the device under test has
a spectral distribution according to standard illuminant A. Each filter has its own
calibration factor. The weighting of the camera luminous flux has to be negated by
dividing the camera luminous flux by the individual calibration factor of the filter.
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METHOD 2: INVERSE RECONSTRUCTION

The second and more general option to obtain the weighting is to
use the geometrical information of the spectral measurement and the
measurement ray files used to obtain Mn(X, Y, Z, φ, ϑ). Typically, the
spectrum is measured with the goniometer in the same setup as all
ILMD-based measurements at a known position (φ, ϑ, r). The variable
r is the measurement distance. The measured spectrum SM(λ, φ, ϑ, r)
at the known position is a linear combination of the basis spectra
Sn(λ) according to

SM(λ, φ, ϑ, r) =
nmax

∑
n=1

An(φ, ϑ, r)× Sn(λ). (4.22)

The amplitudes An(φ, ϑ, r) ∈ (0, ∞) for the known position can be
estimated using an optimization algorithm, in which the amplitudes
An(φ, ϑ, r) are the optimization variables by minimizing the residual
sum of squares RSS (An(φ, ϑ, r)) defined as

RSS (An(φ, ϑ, r)) = ∑
λ

(
SM(λ, φ, ϑ, r)−

nmax

∑
n=1

An(φ, ϑ, r)× Sn(λ)

)2

.

(4.23)
The amplitudes An(φ, ϑ, r) can be used to estimate the expected mea-
surement values MA,n(φ, ϑ, r) at the known position (φ, ϑ, r) using
Eq. 4.16. The relative weighting of the measurement can then be ob-
tained by ray tracing of the relative measurement ray files towards
the known position (φ, ϑ, r).

Figure 4.4 visualizes the concept. Each ILMD-based measurement is
represented as a different color in the figure. A sensor is placed at the
known position (φ, ϑ, r) of the spectroradiometer. The measurement
distance r and the diameter of the sensor are included in the ray tracing,
which ensures that near field information is used. The diameter of
the sensor element is equal to the diameter of the optical probe of the
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spectroradiometer. Each measurement ray file is traced individually
to that sensor to obtain the ray number Mn(φ, ϑ, r) at position (φ, ϑ, r).
Finally, the weighting WR,n can be calculated by

WR,n =
MA,n(φ, ϑ, r)
Mn(φ, ϑ, r)

× NRay,n, (4.24)

in which NRay,n is the number of rays in the nth measured ray file. Note
that 4.24 requires that all rays in the ray file have a constant amplitude.

To sum up, the relative weightings WR,n are determined such that
a spectral reconstruction at a specific position (φ, ϑ, r) is capable of
reconstructing the measured spectrum at the same position. It is
based on the measured ray files and the spectral reconstruction matrix.
Basically, the PMBS method is used inversely.

The spectral measurement should contain spectral data of all basis
spectra if this method is used. Typically, the main radiance direction
at φ = 0° and ϑ = 0° is a suitable position for the spectral measure-
ment. If the spectral measurement is an absolute measurement, the
relative weightings already include the correct absolute weighting
and thus lead to WA ≈ 1. If the spectral measurement only provides
a relative distribution SM(λ), an additional absolute weighting has
to be calculated.

Figure 4.4: Deduction of relative weightings WR,n: The rays of the different ILMD-
based goniophotometric measurements (different ray colors) are traced towards the
spectroradiometer and compared to a spectral measurement.
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SPECIAL CASE: NORMALIZATION

The relative weightings can be replaced by a normalization of the
spectral reconstruction matrix such that MR,Sτ is defined as,

1
...
1

 = MR,Sτ ·


1
...
1

 (4.25)

and

MR,Sτ =


Wnorm,1 · · · 0

...
. . .

...
0 · · · Wnorm,nmax

 ·MSτ (4.26)

resulting in

Wnorm,n =
1

∑nmax
m=1

∫
Sm(λ)sτ,eff,n(λ)dλ

(4.27)

if two conditions are fulfilled:

1. The basis spectra deduction is based on a spectral measurement
of the complete spectrum S(λ).

2. All spectral sources follow the same relative distribution (for
instance Lambertian) and have the same number of rays.

The first condition will be fulfilled in most cases because the spec-
tral measurement is performed in the same goniometric setup as the
ILMD-based measurements. The second one is the limiting condition
but is for instance fulfilled in the case of RGB LEDs. Note that it is
not fulfilled in the case of RGBW because the phosphor will have a
different relative distribution.

It can be shown that this normalization equals the second method
described above. The deduction of the amplitudes using the optimiza-
tion in Eq. 4.23 results in A1 = 1 = · · · = Anmax because of the first
condition. Then Eq. 4.16 gives
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MA,n =
nmax

∑
m=1

∫
Sm(λ)sτ,eff,n(λ)dλ (4.28)

for all expected measurement values MA,n at the known position. The
second condition provides that the ray tracing towards each position
would result in the same M1 = · · · = Mnmax . It is thus a constant for
all measurement values and can be neglected such that the relative
weightings of the measurements would be

WR,n =
nmax

∑
m=1

∫
Sm(λ)sτ,eff,n(λ)dλ× NRay,n (4.29)

for all measurements. If these weightings are inserted into Eq. 4.21
and then into Eq. 4.16, the result can be written as

WA ×WR ·


M1(X, Y, Z, φ, ϑ)

...
Mnmax (X, Y, Z, φ, ϑ)

 = MSτ ·


A1(X, Y, Z, φ, ϑ)

...
Anmax (X, Y, Z, φ, ϑ)

 .

(4.30)
By multiplying the inverse of the weighting matrix from the left hand
side the equation changes to (note that WA is a scalar)

WA ×


M1(X, Y, Z, φ, ϑ)

...
Mnmax (X, Y, Z, φ, ϑ)

 = W−1
R ·MSτ ·


A1(X, Y, Z, φ, ϑ)

...
Anmax (X, Y, Z, φ, ϑ)

 .

(4.31)
Since the weighting matrix is a diagonal matrix, the inverse is a di-
agonal matrix, in which each element is the inverted element of the
original matrix. Thus it can be rewritten according to Eq. 4.26

WA ×


M1(X, Y, Z, φ, ϑ)

...
Mnmax (X, Y, Z, φ, ϑ)

 = MR,Sτ ·


A1(X, Y, Z, φ, ϑ)

...
Anmax (X, Y, Z, φ, ϑ)

 .

(4.32)
This is a convenient result because it simplifies the procedure in some
cases such as RGB LEDs.
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ABSOLUTE WEIGHTING

The absolute weighting WA can be based on the absolute photometric
measurement, which is always performed during an ILMD-based go-
niophotometric measurement by using the photometer. The angularly
integrated photometer values provide the luminous flux of the device
under test. Another option is to use additional measurement equip-
ment. Afterwards, the spectral ray files are weighted such that their
luminous flux matches that of the absolute photometric measurement.

4.2.3 LIMITATIONS

The most limiting assumption of the whole process is the constant basis
spectra assumption, which implies that the workflow does not cover
nonlinear effects such as quenching caused by phosphor saturation
due to a high radiant flux of the LED [75] or phosphor self absorption.
These effects cause a change of the relative phosphor spectrum as a
function of angular or spatial dimension.

In the case of phosphor converted white LEDs without additional
spectral sources, the influence of such effects can be estimated by
obtaining angularly resolved colorimetric measurements2 as shown in
Fig. 4.5. If the measured chromaticities are on a straight line in the CIE
xy or CIE u′v′ diagram, then the basis spectra can be assumed to be
constant because the additive color mixing changes the chromaticity
only between the chromaticity coordinate of the blue LED and the
chromaticity coordinate of the yellow phosphor. This is for instance
the case in Fig. 4.5 (a).

2 Often strong color variations occur in dark areas. Therefore attention has to be paid
during the measurements to avoid a decision which is based on noise.
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(a) (b)

Figure 4.5: Schematic angular color uniformity of two different phosphor converted
white LEDs:
(a) Linear shift - 2 basis spectra assumption is justified.
(b) Nonlinear shift - 2 basis spectra assumption is not justified.

If the measured chromaticities of a system with two basis spectra
do not lie on a straight line in the CIE xy or CIE u′v′ diagram as in
Fig. 4.5 (b), the PMBS approach should not be used because there are
nonlinear effects. Typically, the nonlinear effects are weak compared
to the effect of the linear basis spectra combination. Note that Fig. 4.5
(a) is based on real measurement data but Fig. 4.5 (b) displays only
an artificially produced example.

Chromatic effects resulting from a primary optic cannot be modeled
with the PMBS approach. Although it is common in near field photom-
etry, it shall be mentioned that all interrelated measurements require
the steady state condition with respect to electrical and thermal op-
eration conditions.
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4.2.4 WORKFLOW OF PMBS

Based on section 4.2, a general workflow for PMBS can be concluded.
The workflow is visualized in Fig. 4.6 and serves as an outline for
the next chapters.

The process starts with the determination of the individual semicon-
ductor and phosphor basis spectra using a spectral measurement.
The determination of the nmax basis spectra is discussed in detail in
chapter 5. Subsequently, the goniophotometric measurement with
nmax different suitable filters are performed. Chapter 6 will focus on
a precise definition of the term “suitable” in this context. Then the
obtained results in the form of ray files and the spectral sensitivities
of the measurement system and the basis spectra are combined to
form the spectral reconstruction matrix M−1

Sτ . Subsequently, the ray
files are used to solve the system of linear equations by applying the
reconstruction equation Eq. 4.17. While this step is mathematically
unproblematic as described above, the practical application on ray files
is not trivial because a ray file is a randomized statistically discrete set
of vectors. Therefore, chapter 7 will focus on the practical application
of the reconstruction equation Eq. 4.17.

54



PHYSICALLY MOTIVATED BASIS SPECTRA (PMBS)

Figure 4.6: Workflow of physically motivated basis spectra (PMBS) approach.
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CHAPTER 5

PMBS: MODELING

THE BASIS SPECTRA

In a best case scenario, the semiconductor and phosphor basis spectra, which
are necessary to set up the reconstruction matrix of the PMBS method, would
already be available due to prior knowledge of the system. Then this chapter
might be skipped. However, more often than not they are not available.
Therefore, this chapter describes an algorithm, which estimates the basis
spectra based on predefined phenomenological LED models and one spectral
measurement. While this “initial modeling” performs well in most cases,
complex spectral systems can be optimized further if an additional assumption
and the relations from chapter 4 are used.

5.1 PHENOMENOLOGICAL BASIS SPECTRA OF LEDS

Each spectral model aims to describe the spectral power distribution
of an LED semiconductor as accurately as possible. The difference
between a phenomenological model and a physical model is its foun-
dation. A phenomenological modeled LED spectrum describes the
correct spectral power distribution with a solely mathematical distri-
bution. A physically modeled LED spectrum describes the correct
spectral power distribution based on physical parameters.

Before the basis spectra estimation process is introduced in the next
section, some possible LED basis spectra functions will be discussed.
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There are plenty of different phenomenological LED models in the
literature [23], [76]–[80]. Reifergerste et. al. summed up and evaluated
some of them [81]. Table 5.1 shows the models which were considered
in this thesis. Each model has a parameter which represents the peak
wavelength λC of the LED and an initial amplitude p. In the case
of PMBS and according to section 4.2.2 and appendix A.1, the initial
amplitude is unimportant as long as p ∈ (0, ∞). The remaining pa-
rameters σn describe the width and skewness of each model function.
Their number differs between the model functions.

Table 5.1: Potential model functions for LED spectra (extract from [44], [81])

Name Basis spectrum Sn(λ) = p×

Gaussian e−
(

λ−λC
σ1

)
Second

order

Lorentzian

1[
1+
(

λ−λC
σ1

)2
]2

Logistic

power peak

(
1 + eψ

)− Ψ
σ2
(
eψ
) Ψ

σ2

Ψ
σ2

Asymmetric

logistic peak

(
1 + e−ψ

)−Ψ (e−ψ
)

σ−σ2
2 (Ψ)Ψ

Pearson VII
1[

1+
(

λ−λC
σ1

)2
( σ2
√

2−1)
]σ2

Asymmetric

double

sigmoidal

1

1+e
−
(

λ−λC+σ3
σ1

)
(

1− 1

1+e
−
(

λ−λC−σ3
σ2

)
)

Boltzmann

based [82]
Sn(ν) = p×

(
e(−σ1(ν−νC)) + σ2e

(
h

kσ3
(ν−νC)

))−1

+ Ξ

with ψ = (λ−λC+σ1 ln σ2)
σ1

and Ψ = σ2 + 1 and Ξ = σ4e−
(

ν−σ5
σ6

)
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An important difference exists between symmetric and asymmetric
models. In the case of symmetric models, such as for example a
Gaussian or a second order Lorentzian distribution, it is assumed that
the distribution is symmetric towards the peak wavelength λC. This is
not true for real LED spectra and therefore the models lack accuracy
[81]. But it is advantageous that the models are very simple and that
the parameter σ1 can be interpreted directly as the width of the spectral
power distribution. The Pearson VII distribution is also symmetric
and in the case of σ2 = 2 identical to the second order Lorentzian
(σ1 differs only by a factor).

The asymmetric models are in general more precise in describing the
spectral power distribution than the symmetric models, but they are
also more complicated. The skewness is described by at least two pa-
rameters σn. The phenomenological Logistic power peak function and
the physically modeled Boltzmann based distribution (which is also
the only one which models the spectrum as a function of frequency
ν) have the advantage of already having been extended to describe
thermal and in the case of the Logistic power peak also current de-
pendencies of the spectra [81], [82]. The Logistic power peak and the
Asymmetric logistic peak require only one more parameter than the
symmetric models, which is an advantage in the case of numerical
optimization techniques.

In contrast, the Boltzmann based model, which is shown in the last
row of table 5.1, requires five more parameters than the Logistic power
peak. Three of them are needed to fit the Gaussian distribution (the
second term), which is added to the Boltzmann based first term to
adjust the model to measurement data. In practice the second term
is obtained in a second fitting process after the result of the first fit
(first term) is subtracted from the measurement data [82]. Therefore,
this additional Gaussian slightly reduces the physical background and
adds a phenomenological part to that model.
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In the case of PMBS, the parameters of the models should be char-
acteristic and assignable to a specific feature of the spectral power
distributions. Most spectra in table 5.1 fulfill this condition. This is
important because it simplifies the differentiation of the LED spectra
from each other and from the phosphor spectrum and enables the
definition of starting parameters and constraints for optimization al-
gorithms. Furthermore, it is an advantage for optimization techniques,
if the number of model parameters remains small. Note that piece-
wise defined functions are not considered as LED model spectra as
they do not assess specific features to parameters, which makes them
inappropriate for the optimization discussed in the next subsections.

5.2 INITIAL MODELING

This section is divided into three subsections. The first describes
the modeling process of a single spectrum, the second the slightly
more complex case of overlapping LED spectra and the third the most
complex case which is LED spectra and a phosphor.

5.2.1 SINGLE LED SPECTRUM

The aim of the initial modeling is to estimate the model parameters
x = {p, λC, σ1...σn} for each spectral source. The most straightforward
approach is to measure each spectral source in the system individually
and fit a parametrized model. An optimal fit is obtained by finding
the minimal residual sum of squares RSS, which is defined as

RSS = min
x∈R

f (x) (5.1)
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with

f (x) = ∑
λ

(SM(λ)− S(λ, x))2 (5.2)

by directly using an optimization algorithm.

Figure 5.1 compares measured LED spectra SM(λ) to fitted LED spec-
tra S(λ, x) for the different model functions. The Boltzmann based
model is ignored because of its high number of parameters and due to
the two-step fitting process. A more detailed explanation for neglect-
ing the Boltzmann based model is given in subsection 5.2.3.

Each colored LED spectrum (red, green and blue) was measured and
fitted separately. The figure shows the sum of the measurements and
the sum of the models as well as their difference. It can be seen that
there is practically no difference between the different LED spectra
(red, green and blue). Furthermore, the figure shows that there is
no important difference between the different model functions apart
from the higher performance of the asymmetric models (compared
to the symmetric models) and the low performance of the Gaussian
compared to all other model functions.

Table 5.2 summarizes the results for all tested model functions and the
individual LEDs. To allow a better comparison of the different models,
the RSS is normalized to the RSS of the Gaussian model RSSG. The
model performance is better if the RSS is smaller. The additionally
provided chromaticity distance4u′v′ helps to assess the physiological
impact of the fitting error because the residual sum of squares has
no physiological meaning. Note that a difference in 4u′v′ alone is
prone to metamerism and can theoretically give a value 4u′v′ = 0
although the fit shows clear differences. The analysis of both figures
of merit (RSS and4u′v′) leads to the conclusion that apart from the
Gaussian, all tested model spectra might be used to model individually
measured LED spectra (at least those without a phosphor).
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(a) Gaussian (b) Second order Lorentzian

(c) Pearson VII (d) Asymmetric logistic peak

(e) Logistic power peak (f) Asymmetric double
sigmoidal

Figure 5.1: Comparison of measured spectra SM(λ) and fitted LED spectral models
S(λ, x) for different model functions.
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Table 5.2: Goodness of fit of individually measured LED spectra

Name Blue Green Red Sum

Figure of

merit
RSS

RSSG
4u′v′ RSS

RSSG
4u′v′ RSS

RSSG
4u′v′ RSS

RSSG

Gaussian 1 0.023 1 0.011 1 0.022 1

Second

order

Lorentzian

0.27 0.015 0.53 0.006 0.49 0.006 0.37

Pearson VII 0.25 0.010 0.49 0.005 0.48 <0.001 0.37

Logistic

power peak
0.19 0.016 0.05 0.001 0.27 0.011 0.21

Asymmetric

logistic peak
0.35 0.019 0.14 0.004 0.07 0.003 0.16

Asymmetric

double

sigmoidal

0.23 0.017 0.07 0.002 0.10 0.005 0.13

However, as discussed at the beginning of section 3.4, an individ-
ual measurement can be problematic in practical applications and
may even affect the shape of the obtained spectral power distribu-
tion. Therefore an estimation has to be possible if only one measured
spectrum is available.

5.2.2 OVERLAPPING LED SPECTRA

Due to the spectral overlap the modeling gets more complicated if all
spectra are estimated from one measured spectrum, which contains
the sum of all basis spectra. Besides the measurement spectrum SM(λ),
the proposed algorithm requires prior knowledge of the system, which

63



PMBS: MODELING THE BASIS SPECTRA

is the number of different LED spectra nmax. This knowledge is typ-
ically directly available. The optimization problem is the estimation
of nmax different parameter sets xi = {pi, λi,C, σi,1...σi,n} such that
x = {x1...xnmax} using the already defined Eq. 5.1 and Eq. 5.2 from
the last subsection.

Table 5.3 shows the results of the optimization based on the sum
of the individually measured spectra. The RSS is again normalized
by the RSSG of the individual measurements to allow a comparison
between the different models as well as to the models obtained from
the individual measurements. The last column shows that the RSS
of the sum in table 5.2 remains or improves, which is a direct result
of the optimization. In the case of the individual “true” basis spectra,
the result differs.

Table 5.3: Goodness of fit to sum of measured LED spectra

Name Blue Green Red Sum

Figure of

merit
RSS

RSSG
4u′v′ RSS

RSSG
4u′v′ RSS

RSSG
4u′v′ RSS

RSSG

Gaussian 1 0.023 1.04 0.010 1 0.022 0.99

Second

order

Lorentzian

0.30 0.016 0.56 0.006 0.49 0.006 0.37

Pearson VII 0.33 0.018 0.69 0.008 0.48 0.001 0.36

Logistic

power peak
0.20 0.016 0.07 <0.001 0.27 0.011 0.21

Asymmetric

logistic peak
0.35 0.019 0.19 0.004 0.07 0.002 0.16

Asymmetric

double

sigmoidal

0.23 0.017 0.08 0.001 0.10 0.005 0.13
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The most interesting model in this comparison is Pearson VII. The
RSS of the blue and green LED models worsens, while the RSS of
the red LED stays almost constant. The blue and green LED are more
affected because they have a stronger overlap than the green and red
LED model, which can be seen in Fig. 5.1. It is also important to
note that the individual Pearson VII models deteriorate more than
the individual Lorentzian models (while the RSS of the sum stays
better). All other models show only small differences between the
individual fits (table 5.2) and the fits from the sum of the individual
spectra (table 5.3).

As long as the spectral overlap of the individual spectral sources is
small, the optimization of the sum will provide results as good as those
from an individual fit. But the result may get worse as consequence of
a spectral overlap as in the case of Pearson VII. If the spectral overlap
becomes larger, it is helpful to use models with less optimization pa-
rameters and easily definable constraints as for instance the Lorentzian
function. Nevertheless, the comparison shows that in simple cases
without a phosphor the basis spectra obtained are good enough to
proceed with PMBS directly.

5.2.3 SPECTRAL SOURCES WITH PHOSPHOR

In case of the presence of a phosphor the optimization becomes more
complicated for two reasons:

• The spectral overlap between a phosphor and a LED spectrum
can be very large (as in the case of a green or red LED and a
yellow phosphor, such as in RGBW systems).

• There is no general phenomenological parameterized model
function, which can describe the spectral power distribution of a
phosphor.
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Again the following approach requires prior knowledge of the system,
which is the number of basis spectra nmax and the occurrence of the
phosphor as well as the measured spectrum SM(λ). Due to the occur-
rence of the phosphor the number of LED basis spectra is reduced to
nmax− 1. Consequently, the following approach assumes that the phos-
phor spectrum can be described by one distribution. The modeling
procedure visualized in Fig. 5.2 consists of a four step process:

Step 1 is similar to the optimization without a phosphor. The mea-
sured spectrum SM(λ) is used to estimate nmax LED basis spectra by
using Eq. 5.1 and Eq. 5.2, although it is known that there are only
nmax − 1 LED spectra. Then the obtained model parameters are used
to identify the model spectrum having the least probability of being
an LED spectrum. Hence a characteristic model parameter is required.
In the case of a Lorentzian this would be σ1 as it describes the width
of the model spectrum. The broadest spectrum is assumed to be the
phosphor.

Step 2 directly follows the decision which assigns the individual
models to the LED and phosphor. The remainder phosphor spectrum
SR,P(λ), which is defined as

SR,P(λ) = SM(λ)−
nmax−1

∑
n=1

Sn(λ, x), (5.3)

serves as the basis of the phosphor. A smoothed spline is used to
describe the phosphor. The smooth spline is used to represent the
general distribution of the phosphor because it models the only known
general attributes, which are smoothness and continuity, with the
highest precision. The smoothing parameter psmooth is an optimization
variable. However, as psmooth = 1 would equal a cubic spline, it needs
a user defined upper constraint to maintain the smoothness. The result
is a first estimate of the phosphor spectrum SP(λ).
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Figure 5.2: Estimation of basis spectra if a phosphor spectrum occurs.
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Step 3 is similar to step 2 but focuses on the LED instead of the
phosphor. The phosphor spectrum SP(λ) is used to recalculate the
nmax − 1 LED spectra, which are based on the remainder spectrum
SR,LED(λ) defined as

SR,LED(λ) = SM(λ)− SP(λ). (5.4)

SR,LED(λ) and the former nmax− 1 LED spectra are then used in the op-
timization Eq. 5.1 and Eq. 5.2. The result is a set of nmax − 1 improved
LED models Sn(λ, x).

Step 4 is the iterative improvement of the model spectra by alter-
nately repeating step 2 and step 3. The results of step 3 are used to
revise SR,P(λ) and the spline SP(λ) and subsequently, the results of
step 2 can again be used to revise the LED basis spectra. Step 4 can be
repeated until it converges or until a predefined number is reached as
indicated by Fig. 5.2. Finally, the nmax basis spectra are given by the
nmax − 1 LED basis spectra and SP(λ) = Snmax(λ).

The approach is similar to obtaining the Boltzmann based model de-
scribed in [82] which models a Gaussian distribution that is also based
on a remainder spectrum in a second optimization. This is also the
reason why the Boltzmann based model is not used in this thesis
apart from its high number of model parameters. Modeling the phos-
phor would lead to a more complex 3-step process and the additional
Gaussian might disturb the phosphor spectrum.

Figure 5.3 visualizes each step with the example of a phosphor con-
verted white LED with an additional red LED using the Logistic power
peak model. In the first step, the sum of three Logistic power peaks is
fitted to the measured spectrum SM(λ) as shown in Fig. 5.3 (a). Then
it is decided which LED basis spectrum has the least probability of
being an LED basis spectrum, which is S2(λ, x).
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 5.3: Example of basis spectra estimation if a phosphor spectrum occurs:
Step 1: First estimation according to Eq. 5.1 and Eq. 5.2 based on the measured spectrum
SM(λ). As the LED model spectrum S2(λ, x) is the broadest, it is assumed to be the that
of the phosphor.
Step 2: Calculate remainder phosphor spectrum SR,P(λ) as the difference between the
measured spectrum SM(λ) and S1(λ, x) + S3(λ, x) and fit the smoothed spline SP(λ).
Step 3: Re-estimation according to Eq. 5.1 and Eq. 5.2 based on the remainder spectrum
SR,LED(λ) of the LEDs.
Step 4 (first part): Recalculate remainder phosphor spectrum SR,P(λ) and smoothed
spline SP(λ) and proceed as shown in Fig. 5.2.
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The characteristic inhomogeneities of the phosphor remainder spec-
trum SR,P(λ) around the peak wavelength of the LED spectra are
caused by the difference between the LED model spectra and the
measured spectrum. They are similar to the differences observed in
Fig. 5.1. The smoothed spline SP(λ) with the smoothing parameter
psmooth avoids the inhomogeneities.

Figure 5.3 (c) shows that the blue LED spectrum changes slightly if
SP(λ) is considered. Consequently, SP(λ) also changes slightly around
the blue LED spectrum compared to Fig. 5.3 (b) in the next step.

(a) Complete result (b) Blue LED

(c) Red LED (d) Phosphor

Figure 5.4: Results of basis spectra estimation of white (blue/phosphor) and red LEDs
compared to the individually fitted basis spectra.

Figure 5.4 shows results obtained from the combination of red LED,
blue LED and phosphor (RBY). The figure displays the fitted models
from the individual measurements compared to those estimated from
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the sum as well as the corresponding difference. In the figure, the
Asymmetric logistic peak was used.

The largest difference can be observed between the phosphor spectrum
in the spectral regime which overlaps to the red LED. But the absolute
difference is small for all three basis spectra. This is also supported by
the numeric comparison of the absolute chromaticity distances4u′v′

shown in table 5.4. Note that the chromaticity distance of the blue
LED and the phosphor refer to a fit which was obtained by using only
the measured spectrum of the white LED. The chromaticity distance
of the red and white LED refers to the distance to the individually
measured spectra.

Figure 5.5 shows results obtained in the case of the combination of
green LED, blue LED and phosphor (GBY). The spectral overlap be-
tween the green LED spectrum and the phosphor spectrum is larger
than in the previous RBY case. The individual peaks of the phosphor
and the green LED even merge to one as shown in Fig. 5.5 (a). This
example is therefore more critical. Nevertheless, the obtained basis
spectra of the blue and green LED in sub Fig. 5.5 (b) and (c) match
those of the individual measurements.

Only the phosphor spectrum in sub Fig. 5.5 (d) shows a clear displace-
ment and a large chromaticity distance4u′v′ (see also table 5.4). The
phosphor displacement is mainly caused by a wrong estimation of
the amplitude ratios, which shifts the phosphor peak towards higher
wavelengths and changes it especially in the regions of stronger over-
lap. The RSS still remains high as the sum matches the measurement.
The problem is the same as that which caused the deterioration of
the Pearson VII model described in subsection 5.2.2. However, the
effect is stronger because the spectral overlap of the green LED and
the phosphor is much stronger.
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Table 5.4: Comparison of fitted model spectra to individually measured spectra in4u′v′

Name

RBY GBY

R
W

G
W

B Y B Y

Second order Lorentzian 0.003
0.004

0.012
0.036

<0.001 0.004 0.001 0.044

Logistic power peak 0.012
0.010

0.004
0.026

0.005 0.012 0.005 0.033

Asymmetric logistic peak 0.002
0.004

0.002
0.018

0.001 0.005 0.004 0.022

(a) Complete result (b) Blue LED

(c) Green LED (d) Phosphor

Figure 5.5: Results of basis spectra estimation of white (blue/phosphor) and green LEDs
compared to the individually fitted basis spectra.
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To sum up: Although the estimation provides useful results in most
cases, such as phosphor converted white LED or a combination of
phosphor converted white LED and red LED, the basis spectra ob-
tained differ stronger in the case of a green LED and a phosphor.

The limitations occur due to the limited physical background of the
chosen figure of merit RSS in Eq. 5.1 and Eq. 5.2, which only ensures a
correct sum. Furthermore, the approach cannot be used if the phosphor
description requires more than one phosphor modeling function, as
for instance in the case of an inhomogeneous combination of different
phosphor layers or the combination of warm white and cold white
LED. However, by using additional prior knowledge the estimation
can be optimized using the PMBS approach itself.

5.3 BASIS SPECTRA VALIDATION AND OPTIMIZATION

Until this section, chapter 5 only serves as a basis for the other chap-
ters of this thesis. The basis spectra are estimated by optimizing the
residual sum of squares from the sum of all basis spectra and a mea-
surement. But the optimization is solely mathematically motivated
and lacks a physical background. As a result, the individual basis
spectra differ as for instance in the case of GBY. Furthermore, it is not
simple to choose a set of spectra obtained from different optimizations
(for instance different LED model functions), if the individual spectra
cannot be measured (if they could be measured there would be no
need to estimate them in the first place). As the reconstruction matrix
of PMBS requires the correct basis spectra, the approach would be
flawed were incorrect basis spectra to be used. Therefore, it is neces-
sary to validate the basis spectra. This section describes possibilities of
validating the basis spectra based on measurements in the goniometric
setup. They allow the choice of the most suitable set of basis spectra.
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Finally, these validations may be used as additional merit functions to
optimize basis spectra, which were for instance obtained during the
solely mathematical initial modeling described in the last section.

5.3.1 SPATIAL SEPARATION

This validation incorporates an additional physical attribute of LED
systems, which is the spatial separation of colored LEDs (often also the
phosphor as part of only the white/blue LED). Most often, the different
LED colors lie next to each other. A green LED is green, a red LED is red
and a white LED is white (or rather blue and yellow). The green, red
and white LEDs do not overlap in the 3-dimensional spatial dimension.
Although there might be a remote phosphor, which overlaps with all
LEDs, the single colored chips are both spatially separated and highly
localized in the three dimensional spatial dimension. Those known
attributes can be used.

A set of single pseudo-radiance images (or pseudo-irradiances based
on measured ray files) Mn(X, Y) is used to reconstruct the single radi-
ance images (or irradiances) An(X, Y) of the individual basis spectra
using the mathematical relations described in chapter 4 by apply-
ing Eq. 4.17. The reconstructed An(X, Y) can be used to quantify
the “spatial separation” of the individual spectral sources. Often a 2-
dimensional spatial separation in the technical LED plane is sufficient.
A high spatial separation and localization consists of a few high values
and as many zeros or dark areas as possible (the red LED does not lie
on a white LED). To quantify the term “as many zeros or dark areas as
possible”, the figure of merit Psum,n has been developed. The mathe-
matical details and an artificial example are provided in appendix A.2.

Psum,n becomes small if there are few high peaks and many values
near zero. If there are artifacts (for instance a green LED spatially on
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top of a white LED) beside the high peaks, the values corresponding
to the artifacts result in a higher Psum,n. As there are nmax Psum,n (one
for each basis spectrum) the final figure of merit is defined by

Psum =
nmax

∑
n=1

Psum,n. (5.5)

A lower Psum indicates a better spatial separation and therefore a
better set of basis spectra.

(a) Basis spectra from
individual measurements

(b) Basis spectra from SM(λ)

Figure 5.6: Reconstructed amplitude images An(X, Y) using the basis spectra displayed
in Fig. 5.5 (from left to right, Blue LED, Green LED, Phosphor).

Figure 5.6 (a) shows the reconstructed normalized An(X, Y) for the
case of the individually measured models for the GBY LED and Fig. 5.6
(b) the results for the estimated basis spectra using SM(λ) (the spec-
tra are those displayed in Fig. 5.5). They are based on irradiances
Mn(X, Y) obtained from measured ray files. The given values of the
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spatial separation Psum,n are normalized to those of the individual
measurements as reference values to allow a better comparison. It can
be seen that the measured object contains three spatial regions: the
bottom left, the middle and the top right. While the middle region
contains white (blue/phosphor) and green LED radiation, the bottom
left contains only white (blue and phosphor) radiation and the top
right only green LED radiation1.

As expected, the individual measurements from sub Fig. 5.6 (a) outper-
form the mathematical deduced spectra from the initial modeling from
sub Fig. 5.6 (b). In particular the reconstructed irradiance A2(X, Y) (the
green LED) shows an artifact in the bottom left region in sub Fig. 5.6
(b), which also leads to the higher Psum,2 compared to sub figure (a).
Note that the spatial resolution of the irradiances should be low to
avoid influence of noise caused by high resolutions of the An(X, Y).

5.3.2 PUNCTUAL SPECTRAL MEASUREMENTS

Another option to validate the basis spectra would be to perform ad-
ditional spectral measurements at different angular positions (φ, ϑ)

before or after the ILMD-based measurements. The ray files can be
used to reconstruct the spectra using the PMBS method as described in
chapter 4 using Eq. 4.12 and Eq. 4.17 at the measured angular positions
(φ, ϑ). Then the reconstructed spectra can be compared to the spec-

1 Of course the two LED types green (5.6 (a), middle) and white (5.6 (a) right and left)
are also spatially separated in the middle region. The irradiance images merge only
because the plane of projection is above the LED plane. To see the separation clearly,
it would be necessary to display the images directly in the LED plane. This is not
done in Fig. 5.6 because each LED is as large as one pixel due to the large distance of
the two outer regions compared to the small distance of the LEDs within the middle
region. On closer inspection one can notice a slight spatial shift between A2(X, Y) and
the other reconstructed images.
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tral measurements at these positions (φ, ϑ) in terms of chromaticity
distance 4u′v′ or the residual sum of squares RSS. As described in
section 4.2.2 the process may take into consideration that the spectral
measurement occurred in the near field as the measurement distance
and the diameter of the sensor of the spectroradiometer are known
during the ray tracing. The ray tracing is necessary to compute the
measurement amplitudes as input for PMBS.

However, this method should only be used if the ray files or rather
the light intensity distribution at the spectral measurement position
does not lie within a high gradient because then the uncertainty of
the measurement amplitudes obtained is too large. Furthermore, a
comparison to noisy spectral data (for instance measured at the dark
areas) should be avoided.

5.3.3 COLOR MIXING LINE

In the case of phosphor-converted white LEDs there is a similar but
slightly advanced option compared to the punctual spectral measure-
ments. As described in section 2.2 and subsection 4.2.3 the color shift
always lies on a line in the CIE u′v’ diagram if nonlinear effects such
as self absorption or saturation can be neglected. As PMBS also as-
sumes that the final spectrum consists of a linear combination of the
basis spectra (see Eq. 4.12) the reconstructed spectra also lie on a line
between the chromaticity coordinates of the associated basis spectra.
This means that the alignment of the theoretical mixing line and some
measured points also gives a hint of the precision of the basis spectra.

Nevertheless, due to metamerism there is a theoretical chance that
incorrect basis spectra could still lead to a good alignment. Therefore,
the punctual spectral measurements required to draw the true mixing
line should also be used to reconstruct the spectrum at the measure-
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ment positions as described above. The color mixing line is a simple
and intuitive representation but also limited to cases with only two
basis spectra and therefore mainly to phosphor converted white LED.
The restrictions regarding the quality of the spectral measurements
are identical to those of the punctual spectral measurements.

5.3.4 OPTIMIZATION OF BASIS SPECTRA

In the last three subsections additional figures of merit for the purpose
of basis spectra validation have been developed. A logical consequence
of their definitions is to use them directly within an optimization ap-
proach to further optimize the basis spectra. The spatial separation
Psum in particular can be minimized directly because the reconstruc-
tion of the An(X, Y) depends on the reconstruction matrix M−1

Sτ , which
is a function of the parameters of the basis spectra2. As the spatial sep-
aration basically optimizes the reconstruction matrix M−1

Sτ it focuses
on integrated spectral values but not on a spectrally resolved distri-
bution. Therefore the RSS or the punctual spectral measurements are
used as a constraint during the optimization to avoid a solution which
would only optimize Psum without considering a measured spectral
distribution. In this thesis, the constraint was defined as a tolerated
maximum factor for the deterioration the RSS. As the results from the
initial modeling provide reasonable starting points, local optimization
techniques were used.

2 The relative weighting should be based on the camera fluxes if this method is used
because otherwise the optimization is influenced by the deduction of the relative
weighting factors, which also rely on the basis spectra in the second method.
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(a) Complete result (b) Blue LED

(c) Green LED (d) Phosphor

(e) Spatial separation

Figure 5.7: Results of basis spectra estimation using the spatial separation Psum of a
combination of white (blue/phosphor) and green LEDs.

Figure 5.7 shows the optimized basis spectra and the spatial separation
Psum,n (again normalized to those of the individual measurements as
reference) as well as the resulting reconstructed An(X, Y) of the GBY
Asymmetric logistic peak model. The displacement of the phosphor
was improved using this optimization approach. However, as the
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spatial separation tends to optimize only spatially separated LEDs, the
separation of the blue LED and the phosphor may deteriorate.

Table 5.5 shows the results obtained using the different model func-
tions optimized with spatial separation compared to the models ob-
tained from an individual measurement. While the separated green
LED performs as well as if it had been based on an individual fit (see
also table 5.2), the result from the blue LED deteriorates. However,
due to the significant improvement of the phosphor as part of the
white LED, the overall results are always better. A more in-depth
discussion of the basis spectra optimization is presented in chapter 9
and subsection 10.2.

Table 5.5: Model spectra after (before) optimization using spatial separation compared
to individually measured spectra in4u′v′

Name

GBY

G
W

B Y

Second order Lorentzian 0.003 (0.012)
0.005 (0.035)

0.007 (0.001) 0.015 (0.044)

Logistic power peak 0.002 (0.004)
0.009 (0.026)

0.003 (0.005) 0.028 (0.033)

Asymmetric logistic peak 0.003 (0.002)
0.006 (0.018)

0.004 (0.004) 0.009 (0.022)
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CHAPTER 6

PMBS: DETERMINATION

OF OPTICAL FILTERS

This chapter shows that the uncertainty of the ILMD-based measurements
influences the reconstruction equation of PMBS. It focuses on the selection of
the ideal optical filter combination for any arbitrary spectrum of a given filter
set. This is done by considering measurement uncertainties of two different
filter technologies - glass edge absorption filters and interference filters -
with Monte Carlo simulations. A RGBW LED reconstruction with different
filters is used to verify the simulations and to underline the importance of the
filter selection. Furthermore, a fast preselection technique based on factorial
design is introduced to overcome potential high simulation times of Monte
Carlo simulations1.

6.1 MODELING THE UNCERTAINTY OF

THE SPECTRAL RECONSTRUCTION

Similarly to the nmax basis spectra, the different nmax effective spectral
sensitivities sτ,eff,n(λ) are required to set up the reconstruction matrix
MSτ , which is necessary to apply PMBS. According to Eq. 4.13, the
effective spectral sensitivity sτ,eff,n(λ) of the ILMD-based goniopho-
tometric measurement depends on the filter transmission τn(λ), the
neutral density filter transmission τND,n(λ) and the remaining system

1 Parts of this chapter have already been pubslished in [83].
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sensitivity sSys(λ). In contrast to the basis spectra the determination
of sτ,eff,n(λ) is straightforward. Each filter transmission τn(λ) and
τND,n(λ) as well as the sensitivity sSys(λ) can be measured individu-
ally, as for instance described in [84]–[87].

The effective spectral sensitivities sτ,eff,n(λ) also influence the measure-
ment values Mn(X, Y, Z, φ, ϑ) which are required to reconstruct the
radiometric amplitudes An(X, Y, Z, φ, ϑ). Then, according to chapter 4
and Eq. 4.16, the only requirement of the effective spectral sensitivities
is fulfilled if sτ,eff,1(λ) 6= ... 6= sτ,eff,nmax(λ). This means that at least
in theory any arbitrary filter combination is sufficient for a spectral
reconstruction with PMBS.

An example is shown in Fig. 6.1. The shown RGBW LED system con-
sists of four basis spectra and, therefore, PMBS requires four different
ILMD-based filter measurements. According to the ideal reconstruc-
tion Eq. 4.16, the four basis spectra can be reconstructed with, for
instance, the filter combinations A-D. However, at a closer look no
one would consider to choose filter combination B or C during the
application of PMBS in this example because they do not provide an
accurate measurement of the blue part of the spectrum.

During the application of PMBS the ideal reconstruction Eq. 4.16
has to be extended to the real reconstruction Eq. 6.1. This equa-
tion considers that the reconstructed An(X, Y, Z, φ, ϑ) differ by
∆An(X, Y, Z, φ, ϑ) due to the deviations ηn(X, Y, Z, φ, ϑ) of the mea-
surements Mn(X, Y, Z, φ, ϑ). Note that in the context of PMBS all
values in Eq. 6.1 are functions of the spatial and angular dimensions.
However, as this dependence is not important in this chapter, the
equations are simplified by using only single values.

MA,1 + η1
...

MA,nmax + ηnmax

 = MSτ ·


A1 + ∆A1

...
Anmax + ∆Anmax

 (6.1)
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(a) Filter combination A (b) Filter combination B

(c) Filter combination C (d) Filter combination D

Figure 6.1: Reconstruction of a RGBW LED: According to the reconstruction Eq. 4.16, a
spectra consisting of nmax known basis spectra can generally be reconstructed with nmax

arbitrary filter measurements and would therefore work equally well for all displayed
filter combinations.

The uncertainty ηn from Eq. 6.1 has two different physical origins as
shown in Eq. 6.2.

Mn + ηn = (Mt,n + ητ,n)× (1 + ηN) (6.2)

The first factor consists of uncertainties ητ,n regarding the effective
spectral sensitivities sτ,eff,n(λ) and their interactions with the basis
spectra. The uncertainty ητ,n depends on the individual filter used in
the measurement and is added to the true value Mt,n. The second term
ηN describes uncertainties which apply for all filter measurements
independent of the specific filter function sτ,eff,n(λ) at each step of the
goniophotometric measurements. Examples are noise from the sensor
chip or the quantification errors caused by the ray file resolutions. Fur-
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Eq. 4.17. This error propagation can be estimated with the condition
number of the reconstruction matrix MSτ and according to Eq. 6.3 [88],

‖∆A‖2
‖A‖2

=
(∥∥∥M−1

Sτ

∥∥∥
2
· ‖MSτ‖2

)
︸ ︷︷ ︸

cond2(MSτ)

‖η‖2
‖M‖2

(6.3)

in which the variables ∆A, A, η and M are each a vector corresponding
to a set of nmax measurements. Note that Eq. 6.3 is suitable as a rough
estimation, especially if cond2(MSτ) is very large. But it is not capable
of distinguishing between the different amplitude values ∆An and is
therefore not suited to judge the performance of a reconstruction in
detail. A detailed estimation of the reconstruction performance of a
filter combination needs to consider the individual filter based η as
well as its error propagation. Thus the perfomance will differ for each
filter combination and selecting a robust filter combination becomes
an essential part of applying PMBS.

In the following sections, empirical models for optical glass and com-
mon interference filters as they are provided by the manufacturers
are extended to describe the physically caused measurement uncer-
tainty ητ,n. The models allow the analysis of the influence of different
effective spectral sensitivities sτ,eff,n(λ) on the reconstruction result of
PMBS. This offers the possibility of choosing the optimal filter com-
bination from a given filter set.

6.1.1 OPTICAL GLASS FILTERS

An optical glass filter is characterized by its internal transmission spec-
trum τin(λ) given at a reference thickness d0. The ideal transmission
function τ(λ) is the product of the resulting internal transmission
τin(λ) for a thickness d and the Fresnel losses τFr(γ, nr) at the air/glass
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and glass/air interfaces, which depend on the angle of incidence γ

and the refractive index nr. The ideal relation is given in Eq. 6.4 [89].

τ(λ) = τFr(γ, nr)× τin(λ)
d

d0 (6.4)

The uncertainties of the room temperature u(T) and temperature shifts
u(Tabs) due to absorption as well as those of spatial roughness u(d),
angle of incidence u(γ), the uncertainty of the transmission curve
measurement u(τin) and its wavelength precision u(λ) [84] are added
to the model as absolute values. They influence Fresnel losses as
well as the internal transmissions. All uncertainties are assumed to
be correlated and are therefore the same for all wavelengths. Note
that all uncorrelated uncertainties of τ(λ) are averaged out due to the
spectral integration on the ILMD sensor. The model of the transmission
function therefore depends on the angle of incidence γ, the refractive
index nr, the thickness of the glass d and the temperature coefficient
dλ/dT. Hence the model is defined as

τ(λ) = τFr(γ + u(γ), nr)

×
[

u(τin) + τin

(
λ + u(λ) +

dλ

dT
[u(T) + u(Tabs)]

)] d+u(d)
d0 cos δ

(6.5)

using

δ = arcsin
{

sin [γ + u(γ)]
nr

}
.

Multiple reflections in the Fresnel term τFr(γ + u(γ), nr) are not mod-
eled since the absolute difference between multiple reflections and a
two boundary approach is small. By neglecting the effect in the model
this small absolute difference is not assigned to τFr(γ + u(γ), nr)2. For

2 If for instance the refractive index of the optical glass is 1.56, the difference of the
transmission at normal incidence would be smaller than 0.25%. Therefore, by not
considering the effect as a functional relation, merely the change of those 0.25%
difference as a function of the uncertainty terms is neglected.
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the same reason, dispersion effects and thermal expansion [86] are
neglected as well. Also note that the linear temperature dependence
in Eq. 6.5 is limited to long pass glass edge absorption filters [89].

6.1.2 INTERFERENCE FILTERS

The transmission spectrum τ(λ) of interference filters relies on con-
structive and destructive interference at a stack of specially designed
interfaces. They can be designed with different FWHM (Full Width
at Half Maximum) at different center wavelengths. The sources of
uncertainty are the same as for the glass filters despite heating due
to absorption and spatial roughness. The shift of the transmission
spectrum can be estimated for small angles (γ < 15◦), where neff is
the effective refraction index of the spacer layer and λ the wavelength
of the shifted spectral feature [89]–[92]. Decreasing transmission, the
broadening of the transmission spectrum and a separation of s- and
p-polarization can be neglected for the angle of incidence used in
this thesis [91]. The model of the interference filters for small angles
γ < 15◦ can therefore be written as

τ(λ) = u(τin) + τin

(
λ + u(λ) +

dλ

dT
u(T) + u(λγ)

)
(6.6)

using

u(λγ) = λ

√
1− 1

neff
sin [γ + u(γ)]2.
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6.1.3 INPUT UNCERTAINTIES

To take into account the influence of the uncertainty terms in Eq. 6.5
and 6.6, the uncertainties need to be modeled as well. In accordance
with [93], a probability density function (PDF) is chosen or determined
for each term. Table 6.1 summarizes the accounted uncertainty terms
and their model parameters.

The noise from the sensor chip ηN increases linearly with the signal
level of an individual pixel, if the dark signal noise, which is just in
the order of a few least significant bits, is neglected [94]. The term ηN

is assumed to be a Gaussian. The absolute values are in the order of
the repeatability of a commercial luminance/color camera [58]. The
quantification error of the ray file is neglected as it depends on the mea-
surement resolutions, the number of rays and the model resolutions
used to apply PMBS.

The uncertainty of the internal transmission wavelength u(λ) is also
modeled as a Gaussian distribution. The same is true for the uncer-
tainty of the spatial roughness u(d), which influences the thickness
of the filter across its area. The room temperature uncertainty u(T) is
assumed to be sinusoidal, because the room temperature is usually
controlled to lie in a given interval. The measurement movements of
the goniometer justify a similar assumption for the temperature un-
certainty caused by absorption u(Tabs). The uncertainty of the optical
transmission amplitudes and especially the blocking range u(τin) are
assumed to lie in the interval provided by the manufacturers and are
therefore modeled as a rectangular distribution.

The most complex term is the angular distribution because it depends
on the geometric setup as well as the source and its radiance distribu-
tion. In this thesis, it is modeled as an uncertainty u(γ) as well. It bases
solely on geometrical assumptions regarding the diameter of a circular
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light source with a constant radiant intensity, a circular filter diameter
and the measurement distance. The filter is assumed to be attached in
front of the lens of the ILMD. Figure 6.2 (a) shows the obtained distri-
bution for a point source and a small (20 mm) and a large (70 mm) light
source with a filter diameter of 40 mm and a measurement distance of
300 mm. The geometrical assumption is shown in Fig. 6.2 (b).

Table 6.1: Model parameters of the considered uncertainties

Term PDF Amplitude

u(τin) Rectangular 10−5

u(λ) Gaussian 0.5 nm

u(d) Gaussian 3 µm

u(T) Sinusoidal 3 K

u(Tabs) Sinusoidal 3 K

ηN Gaussian
0%

0.4%

u(γ) see Fig. 6.2
small
large

(a) Estimated probability
density functions

(b) Assumed geometrical setup

Figure 6.2: Estimation of angle of incidence u(γ) on filter.
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6.2 FILTER SELECTION

As described above, the reconstruction result is influenced by the
optical filters of the ILMD-based measurements. Due to the fact that
these measurements are a time-consuming aspect of PMBS, it is not
feasible to try out all different filters in real measurements. Therefore,
the ideal set of nmax optimal filters from all possible filter combinations
has to be determined prior to the actual measurements. Given a set of
m different filter functions τ(λ), one can determine the ideal subset of
nmax filters out of Ncomb possible filter combinations for each specific
R(X, Y, Z, φ, ϑ, λ) consisting of nmax basis spectra Sn(λ). Ncomb can be
calculated with the binomial coefficient:

Ncomb =

(
m

nmax

)
=

m!
nmax!(m−nmax)!

(6.7)

The following subsections introduce two methods to determine the
optimal filters by considering the modeled uncertainties. Figure 6.3
shows the workflow of PMBS under consideration of both methods.
The first method uses Monte Carlo simulations to determine the ideal
filter combination from a given filter set. The second - optional and
less accurate, but faster - method which is based on factorial design,
may be used prior to the actual Monte Carlo simulation to reduce the
number of all possible combinations to save computation time.

6.2.1 MONTE CARLO BASED FILTER SELECTION

To determine the ideal filter combination a Monte Carlo simulation can
be performed. In this simulation, random amplitudes An of the basis
spectra are generated to create a defined number of known random
spectra S(λ). Furthermore, random uncertainty values are created by
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using inverse transform sampling of the predefined PDFs in table 6.1.
The uncertainties are sampled individually for each filter.

Subsequently, the measurements are simulated by solving Eq. 4.15
using the known random spectra amplitudes An and the transmission
profiles, which are influenced by the uncertainty terms according
to Eq. 6.5 and 6.6. This results in a simulated measurement value
Mη,n = Mn + ηn for each filter for each random spectrum. Then the
sensor noise is added according to Eq. 6.2. Finally the reconstruction
equation Eq. 4.17 is performed to obtain Aη,n = An + ∆An. These Aη,n

define the reconstructed spectrum Sη(λ), which can be compared to
the known random spectrum S(λ) with the residual sum of squares
RSS according to

RSS = ∑
i

∑
λ

ki(λ)×
(
Sη(λ)− S(λ)

)2 . (6.8)

One or several weighting functions ki(λ), for example the color match-
ing functions, can be added to rate the RSS according to the desired
application. The mean value of all random spectra RSSmean is used
as a figure of merit for the specific filter combination. The mean
value is chosen because it includes outliers stronger than the median,
which would overestimate the filter performance. Note that choos-
ing the maximum would base the selection on too noisy data. The
filter combination minimizing RSSmean would be the preferred one for
the goniophotometric measurements and the spectral reconstruction.
Since the absolute values of RSSmean do not allow an intuitive judg-
ment of the colorimetric precision, the known random spectra and
the reconstructed spectra can also be compared in terms of absolute
colorimetric distance4u′v′mean. As described in chapter 4,4u′v′mean

alone is not suitable to evaluate the performance of the reconstruction,
if there are more than three basis spectra, due to metamerism.
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Figure 6.3: Integration of filter selection in workflow of PMBS.
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6.2.2 FACTORIAL DESIGN BASED FILTER PRESELECTION

An individual Monte Carlo simulation for each possible filter accord-
ing to Eqs. 4.14, 6.2, 6.5, and 6.6 and each possible combination ac-
cording to Eq. 4.17 can result in a high computation time for the filter
selection process because the number of combinations can become
very large. Hence, a preselection method to reduce the number of
filters and filter combinations to be addressed by the Monte Carlo
simulations is developed.

Firstly, a two level full factorial design [95] is used to estimate the
physical filter errors according to Eqs. 4.14, 6.5 and 6.6 for a specific
test spectrum. A two level full factorial design describes the permu-
tation of chosen minimal and maximal values for all m input factors
resulting in 2m iterations. As minimal and maximal factors of each
uncertainty the terms

umin =umean − uσ

umax =umean + uσ

(6.9)

are defined. They are the difference between the uncertainty factors
from their mean value umean and the standard deviation uσ derived
from their PDFs. There are m = 6 factors resulting in 64 iterations for
each optical glass filter and m = 4 factors resulting in 16 iterations for
each interference filter according to Eqs. 6.5 and 6.6. If more detailed
models which account for more factors than Eq. 6.5 and 6.6 are used
the number of iterations can be reduced by using a fractional factorial
design [96]. Subsequently, the standard deviation is calculated based
on all iterations to represent ητ,n for each individual filter.

After estimating the uncertainty of each filter, the error propagation
resulting from the solution of Eq. 4.17 has to be considered. Therefore,
the second part of the preselection process estimates the mathematical
error of each filter combination with a 3-level full factorial design
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[95]. The sensor signal noise ηN is added to the results of the first
simulation according to Eq. 6.2. This results in a minimal, mean and
maximal value for each filter:

Mmin,n = (Mt,n − η
τ,n)× (1− ηN)

Mmean,n = Mt,n

Mmax,n = (Mt,n + η
τ,n)× (1 + ηN)

(6.10)

Note that Mmean,n represents the true value Mt,n without any uncer-
tainty. The test spectrum S(λ) is reconstructed for all 3nmax possible
permutations for each filter combination by solving the reconstruction
equation Eq. 4.17 to define Sη(λ). Again, the number of iterations can
be reduced by either using a two level factorial design, a fractional fac-
torial design or both. As in the Monte Carlo simulation, the RSSmean

between the original spectrum S(λ) and the 3nmax reconstructed spec-
tra Sη(λ) is used as figure of merit. After selecting a certain percentage
of the Ncomb possible combinations which performed best in the prese-
lection process, the full Monte Carlo simulation is performed to select
the optimal combination from the reduced sub set.

6.3 VALIDATION

The Monte Carlo simulation has to determine the best or at least one
of the best filter combinations such that only the required ILMD-based
goniophotometric measurements are performed. The filter preselection
has to determine the filter sets such that the most promising filter
combinations are not excluded by the preselection. This section aims
to validate these requirements.
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6.3.1 VALIDATION OF FILTER SELECTION

To validate the filter selection, simulations are compared to spectral
reconstructions, which are based on measurements with different
filters. The filter selection is more important and more complex in the
case of a higher number of overlapping basis spectra. Therefore, a
RGBW LED system was used to verify the filter selection process. To
minimize the influences of the basis spectra modeling, the basis spectra
are based on individual spectral measurements of the red, green, blue
and white LEDs. The basis spectra are displayed in Fig. 6.4 (a).

(a) Modeled basis spectra (b) Glass absorption filters

(c) Interference filters (d) CCD sensor and ND filter

Figure 6.4: Validation of filter selection: Data of the simulation.

The filter selection process was performed to estimate the arrangement
of the 15 possible filter combinations from ILMD-based measurements
with six edge absorption filters as well as from ILMD-based measure-
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ments with six interference filters as displayed in Fig. 6.4 (b) and (c).
The Monte Carlo simulation also included the spectral sensitivity of the
remaining system as well as the transmission function of a neutral den-
sity filter which had to be added to all ILMD-based measurements in
order to reduce the signal on the CCD. Both are displayed in Fig. 6.4 (d).
The uncertainties are based on table 6.1 with ηN = 0.4% and a large
angular distribution. The neutral density filter transmission uncer-
tainty was taken into account and modeled similarly to u(τin) and
u(λ) but only once for all filters as the same neutral density filter was
used in each measurement.

In addition to the twelve ILMD-based goniophotometric measure-
ments, an angularly resolved spectral measurement was performed.
The angularly resolved spectral measurement is used to evaluate the
performance of each filter combination. The evaluation used is similar
to the punctual spectral measurements described in subsection 5.3.2.
Each spectrum is reconstructed at the known angular positions and
compared to the measured spectrum in terms of the chromaticity dis-
tance4u′v′ and the RSS. The mean value of all positions RSSmean is
used to rate each filter combination. The mean chromaticity distance
4u′v′mean is used to assess the absolute influence of the filter selection
with respect to the requirements of the spectral ray files.

Figure 6.5 shows the distribution of the RSS obtained for the four filter
combinations A-D from the beginning of this chapter. The logarith-
mic scale is normalized to the worst RSS of all reconstructions. As
suspected, the simulation hints a different reconstruction performance
for the four filter combinations A-D.

Figure 6.6 shows the obtained 4u′v′mean as a function of the selec-
tion number of the filter selection. The reconstruction performance of
the glass edge absorption filters in Figure 6.6 (a) can be divided into
roughly three groups. The first group results in a 4u′v′mean ≈ 0.01,
the second group in a 4u′v′mean ≈ 0.025 and the last group in a
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Figure 6.5: Validation of filter selection: Comparison of the simulated reconstruction
results of four different filter combinations
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4u′v′mean > 0.1. The last group consists of filter combinations which
cannot reconstruct the spectra due to missing information such as filter
combination B and C. Impossible chromaticity distance values such as
4u′v′mean > 0.6 result from physically impossible chromaticity coordi-
nates, which are based on partly negative spectral distributions. The
impossible area is marked in all figures. The filter selection succeeds
in separating these three groups. The order within the groups is not
monotone but particularly in the first group the differences are very
small. Nevertheless, the filter selection identifies the optimal filter
combination, which is filter combination A, from all 15 possibilities.

(a) Edge absorption filters

(b) Interference filters

Figure 6.6: Validation of filter selection: Experimental reconstruction results as a function
of filter selection number (marked area contains unphysical4u′v′mean due to negative
spectral parts).
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Similarly to the glass edge absorption filters, the performance of the
interference filters in Fig. 6.6 (b) can be divided into groups. The first
group results in a reconstruction performance of 4u′v′mean < 0.01.
The second results in4u′v′mean ≈ 0.015, the third in4u′v′mean ≈ 0.025
and the last group in 4u′v′mean > 0.1. While the selection number
arrangement still represents the reconstruction well, there seem to be
outliers at the second/third and eighth position. On closer inspec-
tion, the reconstructions with the better performance at the first, third
and eighth position all exclude the interference filter with the center
wavelength around 480 nm. All other filter combinations in Fig. 6.6 (b)
include this specific filter. There are two possible explanations for this
behavior. The first one is neglected uncertainties, such as those of the
CCD, whose spectral sensitivity function might affect the interference
filter at 480 nm more than the alternative filters at 500 nm and 520 nm.

But it is more likely that the disparity is caused by deviations from
the basis spectra model of the blue LED and the phosphor to the real
basis spectra. This difference is stronger in the spectral region in which
both spectra overlap. Since the transmission region of the 480 nm filter
is located directly in this spectral region, the assumed reconstruction
matrix might differ from the true matrix. The filter selection cannot
address this circumstance, because it assumes that the basis spectra
are correct. This issue will be discussed in more detail in section 6.4.
Nevertheless, the filter selection of the interference filters also identifies
the best filter combinations from all possible combinations.

6.3.2 VALIDATION OF FILTER PRESELECTION

Similarly to the Monte Carlo simulation, the result of the preselection
is an arrangement of all possible filter combinations according to their
anticipated reconstruction success. To validate the performance of the
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preselection, the resulting arrangement is compared to the results of
the Monte Carlo simulation.

Therefore, simulations with four different test spectra as shown in
Fig. 6.7 have been performed. The test spectra include the combina-
tion of Blue/Yellow (BY), Red/Blue/Yellow (RBY), Blue/Blue/Yellow
(BBY) and Red/Green/Blue/Yellow (RBGY). The evenly distributed fil-
ter set used in this analysis consists of 63 interference filters (three with
1.5 nm, 47 with 10 nm, seven with 40 nm and six with 70 nm FWHM)
from [90], [97] and 23 glass filters in the visible spectral range. The glass
filters consist of the 18 glass edge absorption filters GG380-RG715 and
five band pass filters from [89]. Typical internal transmission profiles,
temperature coefficients and refractive indices were provided by the
manufacturers. Note that in this example 86 filter transmission profiles
led to over 2× 106 combinations for test spectrum RGBY (nmax = 4).

(a) Blue/Yellow (b) Red/Blue/Yellow

(c) Blue/Blue/Yellow (d) Red/Green/Blue/Yellow

Figure 6.7: Validation of preselection: Visualization of the four test spectra.
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The uncertainty terms were modeled according to table 6.1, such that
realistic values are used for this verification. The simulation included
a constant system function, which described the sensitivity of a CCD
sensor without an uncertainty and without any neutral density filter.

As the angular distribution varies strongly depending on the geometric
extension, the angular uncertainty distribution was modeled twice as
shown in Fig. 6.2 to present a large and small measurement object. The
same is true for the sensor noise and the quantification error of the
ray files ηN. Therefore, the total number of filter selection scenarios
adds up to 16.

For each of the 16 selection scenarios, a Monte Carlo simulation and a
preselection have been performed. For each Monte Carlo simulation,
105 random amplitude sets have been created. The amplitude sets
have been modeled as rectangular distribution within a high dynamic
range of 140 dB [58]. The amount of modeled filter combinations in
the Monte Carlo simulation consists of the first 50% possible filter
combinations according to the preselection for test spectra BY, RBY
and BBY and 10% for test spectrum RGBY since the large number of
possible combinations results in a high computation time.

Figure 6.8 shows four exemplary results from the 16 simulations. The
mean residual sum of squares RSSmean obtained from the Monte Carlo
simulation of each filter combination is plotted on a logarithmic scale
against the preselection number NPS to check the validity of the pre-
selection process. A perfect preselection would be a monotonically
increasing graph. However, in practical applications, it is most impor-
tant that the ideal filter combination, or at least a combination which
is nearly as good as the ideal one, is within the first part of the prese-
lection. There must not be strong outliers towards small values at late
preselection numbers since this would prohibit a more detailed analy-
sis in the real Monte Carlo simulation. However, an overestimation of
bad filter combinations is uncritical since it will be detected during the
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succeeding Monte Carlo simulation. The highlighted areas in Fig.6.8
correspond to the first two percent of all possible filter combinations.
All most promising combinations including the global minimum of
RSSmean are within this area.

(a) Spectrum BY (b) Spectrum RBY

(c) Spectrum BBY (d) Spectrum RGBY

Figure 6.8: Validation of preselection: The reconstruction performance RSSmean is plot-
ted on a logarithmic scale against the preselection number NPS of different filter combi-
nations for all four test spectra.

The preselection number NPS of the ideal filter combination and its
relative position NPS

Ncomb
from all possible combinations in percent for all

16 selection scenarios are summed up in table 6.2. All relative positions
are within the first few percent of the possible combinations. Note that
the results in percent are more critical for fewer possible combinations.
However, one can for example save a factor 50 of computation time
by simply simulating the best 2% from the preselection.
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Table 6.2: Validation of preselection: The table shows the preselection number NPS of
the optimal combination and its relative position NPS

Ncomb
for all 16 selection scenarios.

Spectrum u(γ) ηN
Results preselection

NPS Relative position NPS
Ncomb

BY
small

0.0% 1 0.03%
0.4% 1 0.03%

large
0.0% 1 0.03%
0.4% 1 0.03%

RBY
small

0.0% 64 0.06%
0.4% 234 0.23%

large
0.0% 79 0.08%
0.4% 87 0.09%

BBY
small

0.0% 89 0.09%
0.4% 34 0.03%

large
0.0% 56 0.05%
0.4% 75 0.07%

RGBY
small

0.0% 59 <0.01%
0.4% 2 <0.01%

large
0.0% 61 <0.01%
0.4% 2 <0.01%

6.4 FILTER TECHNOLOGY COMPARISON

The validation shows that the filter selection as well as the preselection
fulfill their requirements. But it also shows that there is no significant
difference regarding the reconstruction performance of the two differ-
ent filter technologies. In general, the impact of uncertainties affecting
the wavelength precision of the transmission function τ(λ) strongly
depends on the spectral position of steep slopes. If the filter and a basis
spectrum both have a steep slope in the same spectral region, the im-
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pact on the measurement result, and therefore the relative importance
of those uncertainties, increases. An important difference between the
technologies is that glass absorption filters are more strongly affected
by temperature variations and that the interference filters are more
strongly affected by the angular distribution, which depends on the
device under test. Furthermore, the glass edge absorption filters tend
to set up reconstruction matrices which propagate errors more strongly
since they provide a higher condition number. If the basis spectra are
certain, there is no important difference between both technologies.

However, the validation of the Monte Carlo simulation shows another
important aspect of the filter selection, which is the ignored uncertainty
of the modeled basis spectra. This uncertainty may change across
the wavelengths, as in the case of the phosphor and the blue LED.
If a filter only transmits spectral regions which are uncertain with
respect to the basis spectra, the spectral reconstruction deteriorates.
As described in section 5.3, a basis spectra optimization is required
to separate complex spectra such as GBY (GW) or RGBY. However,
as this optimization relies on ILMD-based measurements, the filter
selection has to take place prior to the basis spectra optimization if no
additional measurements are to take place. Consequently, the filter
selection should remain stable in the case of inaccurately estimated
basis spectra, as for instance those which are based solely on the initial
modeling of section 5.2.

In this context, filters which provide a larger transmitting region are
expected to perform better. These would be glass edge absorption
filters. To briefly validate this expectation, the basis spectra of the
RGBW LED were estimated only with the initial modeling of 5.2 and
the selection number was obtained with these estimated basis spectra.
The numbers in table 6.3 and 6.4 show the original selection numbers,
which are based on the individually modeled basis spectra. The row
numbers, which are equal to the selection numbers of the first column,
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stand for the selection numbers of the inaccurately estimated basis
spectra for model 1-4. The measured reconstruction performance is
coded in the cell color according to Fig. 6.9. If the cell color is green,
the performance was within the best group, if it is yellow within the
second best group and if it is red it failed to reconstruct the spectrum.
If the cell color within a row does not change, the filter selection can
be assumed to be stable. Table 6.3 shows that the filter selection based
on the glass edge absorption filters is quite stable. Although there is a
change of sequence within the second group and in the case of model
3 also a change between groups, the filter selection stays stable.

Table 6.4 and Fig. 6.10 show that the filter selection which is based on
the interference filters has more sequence changes between the groups
and in one instance even fails to select the optimal filter combination.
For a fair comparison to the glass edge absorption filters, the blue cell
colors have to be interpreted as either green or yellow. Nevertheless,
it can be concluded that in the case of uncertain basis spectra the
transmission region of the filters should remain large, which is a more
typical attribute of glass edge absorption filters.
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Table 6.3: Filter selection number with inaccurately estimated basis spectra using glass
edge absorption filters

True basis spectra Model 1 Model 2 Model 3 Model 4

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 10 10 10 10

8 9 7 14 7

9 7 8 13 8

10 8 9 7 9

11 11 11 8 14

12 13 13 9 13

13 12 12 11 11

14 14 14 12 12

15 15 15 15 15

Figure 6.9: Reconstruction success of true basis spectra for edge absorption filters and al-
location to different groups (marked area contains unphysical4u′v′mean due to negative
spectral parts).
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Table 6.4: Filter selection number with inaccurately estimated basis spectra using inter-
ference filters

True basis spectra Model 1 Model 2 Model 3 Model 4

1 1 1 2 1

2 3 3 1 2

3 2 2 5 5

4 5 4 8 4

5 4 5 4 3

6 8 7 3 8

7 7 8 7 7

8 6 6 6 6

9 12 9 11 9

10 11 10 12 11

11 10 15 9 10

12 9 11 15 12

13 15 14 14 15

14 13 12 10 14

15 14 13 13 13

Figure 6.10: Reconstruction success of true basis spectra for interference filters and allo-
cation to different groups (marked area contains unphysical4u′v′mean due to negative
spectral parts).
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CHAPTER 7

PMBS: CREATION OF

HYPERSPECTRAL LED MODELS

As discussed in chapter 4, the generation of spectral ray files using PMBS
requires solving a system of linear equations by applying the reconstruction
equation. However, problems occur due to the resolution and precision re-
quirements of spectral ray files and the discrete nature of the input data. This
chapter introduces histogram based light source models to apply PMBS. It
focuses on the relationship of artifacts and resolutions and introduces a physi-
cally motivated calculation concept using neighborhood relations to overcome
the highly discrete nature of ray files, which finally leads to spectral ray files 1.

7.1 CALCULATION CONCEPT

Theoretically, the general problem of obtaining spectral ray files is
solved by an adequate basis spectra modeling to obtain Sn(λ) as de-
scribed in chapter 5 followed by an optimal filter selection to deter-
mine the optimal sτ,eff,n(λ) as described in chapter 6. Then it is only
necessary to apply the reconstruction Eq. 4.17 on the 5-dimensional
measured ray files. However, due to the discrete nature of ray files,
the rays of different ray files will not be defined at the same positions
(X, Y, Z) with the same directions (φ, ϑ). To this end the calculation
concept as shown in Fig. 7.1 has been developed.

1 Parts of this chapter have already been pubslished in [98].
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The calculation process starts with the transformation of the mea-
sured ray files into continuous models of their plenoptic function
Mn(X, Y, Z, φ, ϑ). Subsequently, Eq. 4.17 is applied to the measure-
ment models to achieve the spectral models An(X, Y, Z, φ, ϑ). Finally,
the spectral models can be used to create spectral ray files.

Section 7.2 describes the transformation process from a ray file into
a continuous histogram based measurement model and vice versa.
Furthermore, it describes the model precision parameter NCC (nor-
malized cross-correlation) necessary to validate the model resolution.
The third section 7.3 focuses on the spectral models. It is shown that the
application of the reconstruction equation Eq. 4.17 on high precision
models regarding the NCC can lead to insufficient spectral reconstruc-
tion results. Therefore, a second precision parameter, which is the
physically motivated amount of negative amplitudes, is derived to val-
idate the spectral models. Furthermore, a post-processing step, which
utilizes neighborhood relations in the spectral models and minimizes
these reconstruction errors, is introduced. This improvement enables
the derivation of the final workflow in section 7.4, which combines
high model resolutions and high spectral accuracies by taking into
consideration both defined precision parameters and their relations.
The last section includes the validation of this chapter based on a
spatially and spectrally well defined test device.

Figure 7.1: Concept to apply the reconstruction Eq. 4.17.
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7.2 HISTOGRAM BASED MEASUREMENT MODELS

The model creation and calculation time should not exceed the overall
measurement and creation time of the ray files because the calculation
should not become the bottleneck of PMBS. Additionally, it would be
advantageous, if the spectral model could be used directly for inverse
ray tracing. This would require the models to be competitive with
existing models in terms of memory requirements and access time. To
achieve these aims, concepts from similar ray file based light source
models [53], [54], [99] have been adapted.

7.2.1 FROM RAY FILE TO MODEL

The transformation of the original ray files to the models can be di-
vided into three main steps, which are visualized in Fig. 7.2. The
corresponding transformations for the case of ray files with constant
amplitudes are illustrated in Fig. 7.3.

Step 1 focuses solely on the spatial information (X, Y, Z). Firstly, all
rays are projected onto an enveloping spatial hemisphere to reduce the
spatial dimension to two2 and to enable the possibility of describing
them with spherical coordinates (φS, ϑS) [99]. Subsequently, a grid
defined by the resolution parameter Nspatial is created and all rays
are assigned to a specific bin to create a 2-dimensional histogram.
Figure 7.3 shows the generation of the spatial histogram on the left
hand side. The overall model after step 1 is illustrated in Fig. 7.2 (a).
The false color represents the measurement amplitudes, which are the
number of rays.

2 Typically the ray files already start on an envelope if they are generated with commer-
cial measurement equipment.
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(a) Step 1

(b) Step 2 (c) Step 3

Figure 7.2: Visualization of overall model on enveloping hemisphere following the
creation of the spatial histogram (step 1), the generation of the local areas (step 2) and
the individual assignment of the angular distribution curves to their specific local area
(step 3).

Step 2 defines different local regions within the spatial model as
shown in Fig. 7.2 (b). The envelope is divided into NVoron regions
such that each region covers approximately the same amount of ray
starting points as shown on the upper part of the right hand side in
Fig. 7.3. That way it is ensured that each region has approximately
the same amount of rays. As suggested in [54], this thesis uses vector
quantification (more specific Lloyds algorithm [100]) to distribute the
points associated to the voronoi regions for this step.

Step 3 is similar to step 1 but focuses solely on the angular ray
directions (φ, ϑ), by creating one angular distribution curve (ADC)
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for each voronoi region. The ADCs are described as histograms with
Nangular bins based on the directions of all rays in the voronoi region
and can thus be interpreted as point source models. In total there
are NVoron ADCs. The process is visualized in the right hand side of
Fig. 7.3 and the final model in Fig. 7.2 (c).

In this thesis, the spatial hemispheres as well as all ADCs are divided
into Cartesian coordinates with approximately constant solid angles
as described in [99], [101], [102]. First, the hemisphere is divided into
constant polar angular steps. Subsequently, the azimuth is divided
into constant angular steps depending on the current polar angle,
such that a certain solid angle is defined. The resolution parame-
ter Nspatial or Nangular determines the value of that solid angle. This
ray allocation offers the possibility of classifying the rays using one-
dimensional kd-search trees [99], which allow a very fast classification
with a calculative complexity O(log NRay). Firstly, a 1-dimensional
search tree is used for the polar angles. The leaves of that tree consist of
1-dimensional kd-search trees for the azimuth angles. Alternative pos-
sibilities of allocating the rays are introduced and compared in [103].

While all resolutions Nspatial and Nangular and the positions and num-
ber of the voronoi regions NVoron have to be the same for all models, it
should be mentioned that it is advantageous for the memory require-
ments for the resolution of all ADCs to be the same. This offers the
possibility of saving the angular positions only once.

Furthermore, the ADCs can be stored as sparse matrices because large
parts of the ADCs equal zero since the local angular distributions on
the enveloping hemisphere are quite directional. Although the concept
works for both kind of ray files (constant and variable amplitudes),
ray files with constant amplitudes are slightly advantageous as all
ray weighting can be ignored. The generation of ray files from the
model described in the next subsection also creates rays with con-
stant amplitudes.
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Figure 7.3: Visualization of model creation process: The left hand side shows the deter-
mination of the spatial histogram and the right hand side the generation of the angular
model, which consists of NVoron different local regions and their individual angular
histograms.
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7.2.2 FROM MODEL TO RAY FILE

Since a histogram Mspatial(φS, ϑS) is an estimation of a probability
function, the normalized spatial histogram can be interpreted as the
probability of occurrence of a random ray starting point (X, Y, Z)
on the hemisphere. That ray starting point also defines the voronoi
region Voron(φS, ϑS) and thus its specific angular histogram. The
angular histograms Mangular(Voron(φS, ϑS), φ, ϑ) can be normalized
and interpreted similarly as the probability of occurrence of a random
ray direction (φ, ϑ). Since there is an ADC for each voronoi region,
Mangular(Voron(φS, ϑS), φ, ϑ) also depends on the starting point. Fi-
nally, the overall model value (or if normalized, the probability of
occurrence) of a ray is given by the product of Mspatial(φS, ϑS) and
Mangular(Voron(φS, ϑS), φ, ϑ) as described in Eq. 7.1.

M(φS, ϑS, φ, ϑ) = Mspatial(φS, ϑS)×Mangular(Voron(φS, ϑS), φ, ϑ)

(7.1)
The creation of a ray file from the model is basically the inverse of the
model creation process. Firstly, randomized starting points are created.
Then the starting points are assigned to a specific ADC. Finally, the
randomized ray directions are assigned to the starting points. As
suggested in [54], the random variables are created using inverse
transform sampling of the spatial histogram Mspatial(φS, ϑS) and the
ADCs Mangular(Voron(φS, ϑS), φ, ϑ) respectively. Furthermore, it is
necessary to randomly distribute the starting points within each bin.
This distribution has to take into account the original allocation process.
In the case of Cartesian coordinates with approximately constant solid
angles as described above, the randomized values in φ/φS direction
can be distributed equally within the bin. In the polar direction the
distribution is defined as sinusoidal because the solid angle (or surface
area) is proportional to the sinus of its polar angle. This is important
because an equal distribution leads to artifacts at low polar angles.
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7.2.3 PRECISION ESTIMATION

The precision of the generated ray file is determined by three differ-
ent resolution parameters Nspatial, Nangular and NVoron. However, it
also depends on the number of rays in the original ray file and the
measurement resolution during the goniophotometric measurement.
Furthermore, the precision of the spectral ray files cannot be estimated
in general as there is no reference data. However, it is possible to
estimate the precision of the quantification by comparing the origi-
nal measured ray files to ray files, which were created based on the
measurement models as shown in Fig. 7.4.

Figure 7.4: Validation principle of generated models and ray files.

As proposed in [68], [69] the similarity of two ray files is obtained by
evaluating the normalized cross-correlation (NCC) values of their an-
gular distributions at different distances r to cover near-, mid- and far
field. The NCC of measurement model n at distance r is defined
in Eq. 7.2.

NCCn,r =
∑φ,ϑ (In,r(φ, ϑ)− Imean,n,r)× (Jn,r(φ, ϑ)− Jmean,n,r)

∑φ,ϑ (In,r(φ, ϑ)− Imean,n,r)
2 ∑φ,ϑ (Jn,r(φ, ϑ)− Jmean,n,r)

2

(7.2)

The variable In,r(φ, ϑ) is the achieved pseudo-intensity distribution3 at
distance r of a ray file, which was created with measurement model n,
and the variable Jn,r(φ, ϑ) is the achieved pseudo-intensity distribution

3 Technically speaking, it is a near field pseudo-intensity because it refers to a finite
distance r. The term intensity distribution is only defined in the case of limr→∞ r.

114



HISTOGRAM BASED SPECTRAL MODELS

surement model n. The variables Imean,n,r and Jmean,n,r are the mean
values of the corresponding pseudo-intensity distributions. Then the
minimal value

NCC = min
n,r

NCCn,r. (7.3)

is used as the figure of merit for the precision of the measurement
model.

Each pseudo-intensity distribution is achieved by assigning the rays to
equally distributed points on an enveloping hemisphere as described
above. Unfortunately, In,r(φ, ϑ) and Jn,r(φ, ϑ) also require a resolution
parameter. However, this resolution can be achieved by obtaining the
NCC between the ”same” measurement ray file. This requires the ray
file to be created twice using the same measurement raw data. If the
generation parameters are changed slightly (for instance the number
of rays, or the start value in the case of RIGO801) the ray file is only
statistically identical to the first. Then these ray files can be compared
at different resolutions. If the resolution gets too high, the NCC will
drop below the suggested value of NCC = 0.99 [68], [69].

7.3 HISTOGRAM BASED SPECTRAL MODELS

All resolutions Nspatial, NVoron and Nangular as well as all positions of
the voronoi regions are the same for each measurement model. In
that way the reconstruction Eq. 4.17 can be performed on the spatial
histogram Mspatial,n(φS, ϑS) and Mangular,n(Voron(φS, ϑS), φ, ϑ) to cre-
ate the histograms Aspatial,n(φS, ϑS) and Aangular,n(Voron(φS, ϑS), φ, ϑ)

of all models. Finally, these histograms contain the amplitudes of
the physical basis spectra and can be used to create a spectral ray
file as described above.
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7.3.1 NEGATIVE AND FALSE POSITIVE AMPLITUDES

A high NCC requires high resolution parameters but this also leads to
a problem, namely the occurrence of negative reconstruction results in
the spectral models. Figure 7.5 shows three measurement histograms
M1(φ, ϑ) − M3(φ, ϑ) and one resulting spectral histogram A1(φ, ϑ)

following the application of the reconstruction Eq. 4.17 at different
resolutions. If the resolution increases, the ray number in the bins
further decreases until statistically empty bins start to arise in the
measurement models (white bins in Fig. 7.5). This is caused by the
discrete nature of the original ray files. In that case, bins are statistically
subtracted from empty bins. This results in negative values (yellow to
red bins in Fig. 7.5) at these bins, which indicate a mismatch between
the measurement models. Higher resolutions lead to more statistically
empty bins and a stronger occurrence of negative amplitudes.

As each Aspatial,n(φS, ϑS) and Aangular,n(Voron(φS, ϑS), φ, ϑ) represents
an amplitude of a physical basis spectrum, negative amplitudes A−n
can be assumed to be solely reconstruction errors. However, as the
negative amplitudes occur due to a mismatch of a minuend with
its supposed subtrahend, the non-subtracted minuends lead to false
positive amplitudes. Even if the non-physical negative amplitudes
are ignored (or eliminated during the inverse transform sampling),
the false positive amplitudes lead to visible artifacts in the spectral
models and the created spectral ray files. Therefore, the amount of
negative/false positive amplitudes Qn(An), which is the relation of
negative amplitudes |A−n | to all amplitudes |A−n |+ A+

n , is defined as
a quality metric for each spectral model

Qn(An) =
∑ |A−n |

∑
∣∣A−n ∣∣+ ∑ A+

n
(7.4)
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Figure 7.5: Occurrence of negative amplitudes in spectral histogram A1(φ, ϑ) caused by
increasing mismatch between the different measurement models M1(φ, ϑ)−M3(φ, ϑ)

with increasing resolution.
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with

A−n ∈ An∀An < 0 A+
n ∈ An∀An ≥ 0.

A low value of Qn(An) indicates that there are only a few nega-
tive/false positive amplitudes and therefore only few artifacts in the
spectral model. Unfortunately, the resolutions required to obtain a low
Qn(An) contradict the resolution requirements and lead to a low NCC.
In the next subsection an algorithm which reduces Qn(An) without
affecting the NCC is introduced.

7.3.2 NEAREST NEIGHBOR CALCULATION

The low amount of negative amplitudes in the case of low resolutions
shows that there is no fundamental mismatch between the measure-
ment models. Since the mismatch only arises in the case of high
resolution models, it can be concluded that it arises solely at high
frequencies due to the discrete nature of the ray files and that the false
positive values therefore occur in the neighborhood of the negative
values. While false positive values cannot directly be distinguished
from correct positive values, all negative values can assumed to be arti-
facts as described above. This important physical boundary condition
always holds in the case of PMBS since the reconstructed amplitudes
are always those of the physical basis spectra. These relations are the
basis of the algorithm displayed in Fig. 7.6. The regions which contain
artifacts due to incomplete calculations are detected by searching for
negative amplitudes. The calculation is then completed by compensat-
ing the positive values, which are likely to be false positive, with the
negative values in the neighborhood region until either the negative
or positive amplitudes vanish. The process repeats itself while increas-
ing the searched neighborhood region until a user defined threshold
Qfinal,n is reached.
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Figure 7.6: Workflow of nearest neighbor calculation.

The overall integral of the model remains constant during the process
but Qn(An) reduces. The nearest neighbor calculation takes place in
the spatial histogram and all ADCs. If the resolution of the models
is very high and a large part was not calculated correctly, the nearest
neighbor calculation performs the remaining calculation and there-
fore reduces both negative values and false positive values without
affecting the resolution of the model.
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7.4 CALCULATION PROCEDURE

Due to the improvement generated by the nearest neighbor calculation
for models with high resolutions, the resolution can be optimized until
a user defined NCC is reached. The auxiliary variable calculation
success ζ is defined as the 1

ζ fraction of incorrectly calculated bins in
the spectral models. If the calculation success is 100, statistically only
1/100 of all bins are incorrectly calculated. If it is one, all bins were
incorrectly calculated. The amount of negative amplitudes Qn(ζ) of
a spectral model directly depends on the calculation success and the
matrix row of the reconstruction matrix used to create the spectral
model. The relation is described in Eq. 7.5.

Qn(ζ) =

|αn |
ζ

βn − (|αn| − |αn |
ζ ) + |αn |

ζ

=
|αn|

ζ × (βn − |αn|) + 2 |αn|
ζ ≥ 1

(7.5)

The variable αn is the sum of all negative matrix values and the vari-
able βn is the sum of all positive matrix values occurring in the nth

row of the reconstruction matrix (see Eq. 4.16 and 4.17). The calcula-
tion success, which only depends on the resolution parameters of the
models, is used as an auxiliary variable to determine the histogram
resolutions Nspatial and Nangular. It not only traces both resolutions
back to one parameter, but also rates the interaction of the original
ray files according to the reconstruction equation and allows a direct
estimation of the initial calculation artifacts according to Eq. 7.5.

The final workflow is shown in Fig. 7.7. The user defines the desired
precision as minimal NCC at different distances and Qfinal,n for the
neighborhood calculation. To start the optimization, an initial value for
the calculation success ζ is required in addition. At first the nmax origi-
nal ray files are transformed into nmax histogram based measurement
models using arbitrary low initial model resolutions Nspatial, NVoron
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and Nangular. Subsequently, the nmax spectral models are calculated
by applying the reconstruction Eq. 4.17. Equation 7.4 is used to esti-
mate the current artifacts Qn(An) = Qcurrent,n of the spectral models.
The initial calculation success ζ defines a Qn(ζ) = Qaim,n via Eq. 7.5.
Then Qcurrent,n and Qaim,n are compared. Algorithms such as bisec-
tion or false position are used [104] until Qcurrent,n ≈ Qaim,n to adapt
Nspatial for the spatial histogram and Nangular for all ADCs. These
algorithms only require the assumption that the functional relation is
one-dimensional and monotone and an allowed tolerance ε. Strictly
speaking, ε is also an input parameter. However, if the precision of
the false position or bisection algorithm is small, for instance below
1% of Qn(ζ), its influence can be neglected.

If Qcurrent,n ≈ Qaim,n for the most critical spectral model, nmax ray
files are created from the measurement models to calculate their NCC
values with the original ray files as described in the section above.
The NCC obtained is compared with the desired NCC. If the obtained
NCC is smaller than the desired NCC, the remaining resolution param-
eter NVoron is optimized for the given calculation success ζ. If NVoron

is too small, the NCC in the far field gets higher than in the near field
because few ADCs with a high angular resolution are associated with
large starting areas. If NVoron is too large, the NCC in the far field is
smaller than in the near field for the same reason.

The model introduces a fuzziness between far field and near field or
rather the angular distributions resolution and its associated area for
a given calculation success ζ, which is adjusted with NVoron. If the
desired NCC cannot be reached by adapting NVoron, the initial ζ is
reduced. If ζ can remain high, the initial artifacts are small. However,
if ζ becomes small, the spectral models show artifacts. The process
stops when the desired NCC is obtained. Finally, the nearest neighbor
calculation reduces the initial calculation artifacts and completes the
creation of the hyperspectral LED models.
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Figure 7.7: Workflow of the model creation and calculation process including the deter-
mination of the resolution parameters Nspatial, NVoron and Nangular by using the precision
parameters NCC and Qfinal,n.
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7.5 VALIDATION OF CALCULATION PROCEDURE

The concept in Fig. 7.7 works for every arbitrary LED spectrum which
might also contain phosphor conversion. Nevertheless, each step is
illustrated by the example of the spectral reconstruction of the RGB
LED F50360 from Seoul Semiconductor [105]. The RGB LED is chosen
because the spectrum and position of each spectral source are well
separated and therefore well known. Thus, the RGB LED enables the
possibility of easily detecting spectral reconstruction errors and offers
a reasonable validation of the whole calculation process described
in this chapter.

Figure 7.8: RGB LED: Photographic image and normalized pseudo-irradiances
M1(X, Y)−M3(X, Y) of the measured ray files in the LED plane.
M1(X, Y): sτ,1(λ) = xshort(λ), M2(X, Y): sτ,2(λ) = xlong(λ), M3(X, Y): sτ,3(λ) = v(λ).

Figure 7.8 shows the test device and the normalized pseudo-irradiances
M1(X, Y)−M3(X, Y) of all measured ray files with 10× 106 rays in
the LED plane. This plane is chosen since the irradiance provides
a sharp image of the individual LEDs, which can be verified by a
comparison with the photographic image. The electrodes of the LED
as well as a ring can be observed in the measured ray data4. The LED
at the top of the images is the green LED. The blue LED is on the left
hand side and the red LED on the right hand side.

4 The ring may be hard to see in a printed version of this thesis.
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(a) Basis spectra Sn(λ) (b) Sensitivities sτ,eff,n(λ)

Figure 7.9: Input data for M−1
Sτ,RGB: (a) Normalized basis spectra Sn(λ) of well known

RGB LED and (b) Normalized measured sτ,n(λ) and τND(λ) used to create the ray files
M1(X, Y)−M3(X, Y).

The basis spectra of the test RGB LED are shown in Fig. 7.9 (a). The
standard functions xshort(λ), xlong(λ) and v(λ) and a neutral density
filter as shown in Fig. 7.9 (b) were used to create these ray files. Accord-
ing to Eq. 4.16 and Eq. 4.17 the basis spectra Sn(λ) and the effective
spectral sensitivities sτ,eff,n(λ) define the reconstruction matrix M−1

Sτ

shown in Eq. 7.6. The relative weightings of the measured ray files
are incorporated by the normalization of the matrix MSτ as described
in subsection 4.2.2.

M−1
Sτ,RGB =

 1.0051 0.0035 −0.0086
−0.2235 −0.8428 2.0663
0.0564 1.4984 −0.5548

 (7.6)

It should be noted that the filters used are not optimal according to
chapter 6, but they provide a strong spectral overlap and therefore
allow the validation of the calculation procedure. The first matrix row
shows that the first measurement with sτ,eff,1(λ) = xshort(λ)× τND(λ)

covers approximately one spectral source because the first matrix
value is nearly one and the remaining values are orders of magnitude
smaller. The first row describes the reconstruction of the blue LED.
However, the reconstruction of the green and red LED requires a linear
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combination of all measured ray files, because neither sτ,eff,2(λ) nor
sτ,eff,3(λ) measured only the individual green or red LED. The second
filter sτ,eff,2(λ) = xlong(λ)× τND(λ) measured a linear combination of
the green and red LED and the third filter sτ,eff,3(λ) = v(λ)× τND(λ)

measured a linear combination of all LEDs. This is also indicated by
the second and third row of M−1

Sτ,RGB , because at least two values in
each row are in the same order of magnitude.

Before the calculation procedure can start, the resolution and positions
of the NCC calculation and the desired NCC, as well the Qfinal,n need
to be defined. As the envelope of all measured ray files was set to 5
mm, the intensity distributions were evaluated to calculate the NCC
(see subsection 7.2.3) at the distances 6, 7, 8, 9, 10, 20, 30, 40, 50 and
300 mm. Each of the equally distributed sampling points used to de-
termine the intensity of the RGB LED covered approximately a solid
angle of 0.0025 sr. At this resolution the NCC between the original ray
files containing 106 rays and the original ray files containing 10× 106

rays from the same measurement is above 0.996 at each distance. The
difference can assumed to be noise in the smaller ray file resulting from
the high resolution. As an NCC of above 0.99 indicates good agree-
ment [68], [69], that resolution is suitable for the precision estimation
of the created light source models.

Figure 7.10 visualizes the irradiance in the LED plane of the recon-
structed green LED spectral model for different desired NCCs (without
nearest neighbor calculation). The amount of negative amplitudes gets
larger with increasing resolution parameters. If Qn(An) is as small as
1% or 10%, only the green LED is represented, but the irradiance is
also blurred out due to the low angular and spatial resolution of the
histograms, which is quantitatively verified by the NCC. However,
if the resolutions are very high, spectral artifacts as high as 26% or
33%, which are caused by false positive amplitudes, start to occur. The
model assigns parts of the blue and the red LED also to the green LED.
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Figure 7.10: Trade off between model precision NCC and artifacts as amount of nega-
tive/false positive amplitudes Q2(A2) (green LED model) as normalized irradiance in
the LED plane.

The relation between this incomplete calculation and the NCC is also
visualized in Fig. 7.11. The graphs show the achieved NCC displayed
as 1− NCC on a logarithmic scale at the tested distances for different
calculation successes ζ with original ray files containing 106 rays in
Fig. 7.11 (a) and 10 × 106 rays in Fig. 7.11 (b). The NCC with the
same calculation success is always higher in Fig. 7.11 (b). This is
to be expected, because higher model resolutions can be achieved,
before the noise of the larger and therefore higher resolved original ray
files reduces the calculation success. The graphs also verify that the
calculation success ζ remains high for NCCs above 0.99 with typical
original ray amounts, for instance 106 or 10× 106. According to [68],
[69] an NCC > 0.99, or rather 1− NCC < 1× 10−2, indicates good
conformity between model and measurement.

(a) 106 rays (b) 10× 106 rays

Figure 7.11: Relation between calculation success ζ and the NCC with original ray files
containing (a) 106 rays (b) 10× 106 rays.
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Figure 7.10 supports this suggestion as it shows the irradiance of
the spectral models in the LED plane although the calculated NCC
displayed in Fig. 7.10 refers to near field pseudo-intensity distribu-
tions of the measurement models at different distances as described
in subsection 7.2.3.

Figure 7.12 visualizes the improvement due to the nearest neighbor
calculation compared to the original calculation with a NCC = 0.9998
and Qfinal,n=Qstart,n/1000. The variable Qstart,n refers to the amount
of negative amplitudes of each spectral model before performing the
nearest neighbor calculation. The artifacts caused by false positive
rays are strongly reduced for both the green and red LED. All three
LEDs can be seen. The comparison of Fig. 7.12 and Fig. 7.8 shows that
the workflow is capable of creating spatially and angularly resolved
spectral ray files.

Figure 7.12: Normalized irradiance in the LED plane for all spectral LED models before
and after the nearest neighbor calculation for NCC = 0.9998 and Qfinal,n=Qstart,n/1000
for all models.
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As the desired NCC of the measurement model was set to 1− NCC <

3× 10−4, the reconstructed individual LEDs in Fig. 7.12 match the
device shown in Fig. 7.8 with a high level of detail. Electrodes as well
as reflections created by the surrounding ring are represented in the
irradiance distributions created by the spectral models. Since the blue
LED model is approximately represented by the first measurement
(xshort(λ)), the reflections of the ring can be assumed to be represented
well. The same reflection scheme is observed in the irradiance distribu-
tions of the green and red LED. The reflection is strong near the LED
and nearly zero if the other LEDs shadow the ring.

Depending on the desired precision and using ray files with 106 rays,
the simulation time of a MATLAB implementation was between 40
minutes on an average personal computer (Intel(R) Core(TM) i5-3470
CPU @ 3.2GHz and 16GB RAM) for an NCC of 0.996 and three hours
on a simulation computer (Intel(R) Xeon(R) CPU E5-2670 v3 @2.3 Ghz
and 98GB RAM) for the high precision NCC > 0.9998. Generating ray
files using the histogram based models requires only a few seconds.
Therefore the calculation time is the same order of magnitude as the
measurement time.
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CHAPTER 8

APPLICATION AND VALIDATION

In contrast to the examples and validations used in the previous chapters,
the validations in this chapter use the complete workflow of PMBS to create
spectral ray files. The basis spectra are always estimated as described in
chapter 5. Subsequently, the goniophotometric measurements and calcula-
tions are performed. The first section applies PMBS on a phosphor converted
white LED and compares the obtained results with data according to the
Blue/Yellow approach. More complex spectral combinations are reconstructed
in section 8.2. The last section verifies the spectral ray files obtained from
section 8.2 by comparing ray tracing simulations of a simple optical system
with far field measurements of the same system and the same LED source.

8.1 COMPARISON TO THE BLUE/YELLOW APPROACH

As described in section 3.4.4 and 4.1, the Blue/Yellow approach is a
feasible, fast and therefore industrially used measurement method to
create spectral ray files of phosphor converted white LEDs with two
ILMD-based measurements. The main idea, which is the allocation
of the physical sources to basis spectra and ray files, is identical to
PMBS. While the Blue/Yellow approach is less complicated to apply,
PMBS is a physically more valid approach and does not introduce a
systematic error by virtue of its underlying assumptions. The required
measurement amount of both methods is identical in the case of a
phosphor converted white LED.
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To quantitatively compare both methods, an LED with a strong angular
color uniformity was chosen. Angularly resolved spectral measure-
ments have been performed to assess the results. Figure 8.1 shows the
LED as well as its color shadow on a photographic image. The angu-
larly resolved spectral measurements are evaluated as chromaticity
coordinates in the CIE u′v′ diagram and shown in Fig. 8.1 as well. As
the color shift lies on an almost straight line, it can be concluded that
the color shift is caused by the linear combination of the blue LED and
the yellow phosphor. Therefore, both the Blue/Yellow and the PMBS
approach can be used to create a spectral ray file of this LED.

Figure 8.1: LED used for comparison and chromaticity coordinates obtained from angu-
larly resolved spectral measurement.

The Blue/Yellow ray file of the LED was obtained from an industrial
partner according to the state-of-the-art procedure1. The separation
wavelength was set to 520 nm2. Figure 8.2 shows the sharp spectra
and its theoretical color mixing line in addition to the measured chro-
maticities. The chromaticity shift is well described by the Blue/Yellow
approach. There is only a small misalignment between the measured
data and the theoretical color mixing line, which is caused by the

1 It is important to note that the same LED was used for both Blue/Yellow and PMBS.
2 It can be assumed that the separation wavelength was defined by the physical filters

used to measure the blue and yellow ray files.
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simplification of the sharp spectral separation as described in sec-
tion 3.4.4 and 4.1.

The reconstructed spectra deviate stronger, the stronger the spectrum
to be reconstructed deviates from the global spectrum used for the
sharp spectral separation. As the global spectrum used for the separa-
tion is based on the sum of all measured spectra, the largest deviations
occur at the main radiance direction ϑ = 0◦ and the largest polar angle
measured at ϑ = 65◦. They are displayed in Fig. 8.3 and not only show
a characteristic discontinuity at the separation wavelength, but also
differ stronger in their relation and their relative distribution in the
region of the spectral overlap.

Figure 8.2: Sharp separated spectra and associated mixing line of Blue/Yellow approach
compared to angularly resolved spectral measurements.

Figure 8.3: Comparison of angularly resolved spectral measurements to Blue/Yellow
simulation of phosphor converted white LED.

131



APPLICATION AND VALIDATION

The obtained chromaticities are also shown in Fig. 8.3. As indicated by
the color mixing line, there is a misalignment between the measured
chromaticities and the simulation results of Blue/Yellow. Further-
more, there seems to be a slight blue shift. But it can also be noted
that the relative chromaticity shift of the LED is well presented by
the Blue/Yellow approach. It should be mentioned that this state-
of-the-art method can be improved by using a shorter separation
wavelength. However, the separation wavelength always remains
an arbitrary parameter.

Figure 8.4: Basis spectra obtained from initial modeling and their associated color mixing
line as well as Blue/Yellow color mixing line.

132



COMPARISON TO THE BLUE/YELLOW APPROACH

The basis spectra estimation of PMBS is also based on the global spec-
trum used for the sharp spectral separation. Figure 8.4 shows esti-
mated basis spectra models and their theoretical color mixing lines.
The alignment of the color mixing lines compared to the angularly
resolved spectral measurements is used to select the final basis spectra.
As the color mixing line of the basis spectrum Logistic power peak
(green dashed-dotted line) shows the best alignment, it is chosen for
PMBS. Furthermore, it should be noted that all PMBS basis spectra
are more suited to describe the measurement values compared to the
sharp spectral separation (solid line). The ILMD-based measurements
have been performed with the standard optical filters for xshort(λ) and
xlong(λ) and an additional neutral density filter. It is an advantage if
the reconstruction works well with these filters because they are often
available in ILMDs, which are able to measure colorimetric values.
Their suitability is to be expected because the system is simple and
the filters separate the basis spectra well. The camera luminous fluxes
are used to obtain the absolute weighting of the ray files. Finally, the
reconstruction is performed.

The results of the PMBS simulation are visualized in Fig. 8.5. The
comparison of reconstructed spectra to measured spectra in Fig. 8.5
shows that the deviations are small in the case of PMBS. The spectra
differ more strongly in the spectral region of the basis spectra overlap
but the overall differences are smaller than those of the Blue/Yellow
spectra in Fig. 8.3.

The comparison of the reconstructed chromaticities to measurements
in Fig. 8.5 and the comparison to Fig. 8.3 lead to the same conclusion.
PMBS is not only able to describe the relative chromaticity shift more
precisely, but also differs less in terms of the absolute chromaticity
differences, whose mean value is ∆u′v′mean ≈ 0.002. Note that these
results are achieved although the obtained basis spectra still differ
from the true basis spectra.
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Figure 8.5: Comparison of angularly resolved spectral measurements to PMBS simula-
tion of phosphor converted white LED.

The small intensity peak of the phosphor between 400 nm and 420 nm
as well as the right hand side of the LED basis spectrum from the
Logistic power peak can be assumed to be artifacts. However, as in the
case of the Blue/Yellow approach, the combination of both weighted
basis spectra lead to a cancellation of the individual basis spectra
deviations and thus to a good representation of the true LED spectra.

8.2 RECONSTRUCTION OF TYPICAL

SPECTRAL LED COMBINATIONS

Although PMBS performs well compared to the Blue/Yellow approach
in the case of phosphor converted white LED, its main advantage is
the generality for more complex LED systems. This section shows
reconstruction results of two more complex but typical LED systems.

In both cases, the measurement object shown in Fig. 8.6 from [106]
is used as an example. An aperture set creates a strong angular and
spatial color variation in the near field, limits the solid angle and
thus reduces the measurement time of this object [106]. This temper-
ature controlled device was operated in two different colorimetric
setups, namely Red/White and Red/Green/Blue/White. Both setups
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represent typical cases of modern lighting technology such as color
tunable luminaries.

The following two subsections each focus on one specific example and
can be divided into four different parts. The first part is the initial basis
spectra estimation. The second part focuses on the measurements and
a first precision estimation. The third part describes the basis spectra
optimization and the last part assesses the final results.

(a) Board (b) Schematic sketch

(c) Mixing principle

Figure 8.6: Adaptive test device with apertures introduced in [106] (images adapted
from [106], photo (a) from Tino Weiss, LTI).

Initially, all measurements are performed with standard optical fil-
ters to test PMBS with typically available filters. The filter selection
according to chapter 6 is only applied, if the standard filters cannot
reconstruct the spectra. Generally, the filters shown in Fig. 8.7 are
considered. Interference filters are not used as they are more prone to
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deviations of the initial modeled basis spectra as shown in section 6.4.
The relative weighting of the measured ray files are always based on
the camera luminous flux values because the inverse reconstruction
assumes correct basis spectra, which cannot be ensured.

The desired normalized cross-correlation (NCC) in the calculation
procedure was set to 0.9997. The NCC of the intensity distributions
was evaluated at 1.1, 1.2, 1.5, 2, 2.5, 5 and 10 times the radius of the
enveloping hemisphere as well as at infinity.

During the reconstruction the spatial separation is assessed in the
LED (board) plane. The plane is marked in Fig. 8.6 (b). The LED
plane offers the highest localization and is thus automatically chosen
during the spatial separation algorithm of the basis spectra assessment
and during the basis spectra optimization. Only this plane ensures
the evaluation of the spatial separation between the individual chips
within one RGBW LED.

However, it is hard to visualize artifacts and reconstructions in this
plane. Therefore, the reconstructions and measured ray files are all
shown in the aperture plane, which is also visualized in Fig. 8.6 (b)
and (c).

(a) Standard filters (b) Glass absorption filters

Figure 8.7: Filters considered for the spectral reconstructions of Red/White and
Red/Green/Blue/White.
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8.2.1 RED/WHITE (RW)

The first setup combines white (W) and red (R) LEDs, which is a
typical combination to enhance colorimetric parameters as for instance
the color rendering index. The specific setup and angularly resolved
spectral measurements are shown in Fig. 8.8. Due to the apertures,
there is a strong angular and spatial chromaticity shift in the near
field. The colors mix partly with an increasing distance from the
measurement object. The chromaticity shift is nearly linear because the
blue LED and the yellow phosphor ratio does not change significantly
within the aperture limited solid angles. Nevertheless, the spectral
sources are modeled individually as red and blue LED as well as
a phosphor.

Figure 8.8: Configuration of Red/White (images adapted from [106]) and measured
chromaticities CIE u′v′ diagram.

First, the initial modeling is used to obtain the three basis spectra
from a spectrum measured at main radiance direction. The comparison
of the obtained basis spectra to the individually measured spectra is
shown in Fig. 8.9. The obtained spectra match the true basis spectra.
The chromaticity distances of the individual LEDs are smaller than
4u′v′ = 0.001. Only the estimated phosphor deviates slightly which
leads to a chromaticity distance of 4u′v′ = 0.007.
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(a) Complete result (b) Blue LED

(c) Red LED (d) Phosphor

Figure 8.9: Comparison of initial modeled basis spectra modeling to individual fitted
basis spectra of Red/White.

Then the ILMD-based goniophotometric measurements using the
standard filters for xshort(λ), xlong(λ) and v(λ) are performed. Fig-
ure 8.10 (a) shows the obtained measurement ray files as normalized
pseudo-irradiances in the aperture plane. The shapes are not circular
and differ for the individual measurements. This non-circular shape
occurs since the individual LED chips are off centered. The apertures
are centered on the virtual midpoint of the RGBW LED.

The first estimation of the reconstruction result is shown as normalized
irradiance in the aperture plane in Fig. 8.10 (b). The reconstructions
each show two spectral sources and no significant artifacts apart from
a slight amount of negative values in the red LED model. Therefore
the measurements based on the standard filters are used to proceed
with the basis spectra optimization using spatial separation.
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(a) Measured ray files

(b) Spatial separation

Figure 8.10: Ray files used for the Red/White reconstruction visualized as normalized
pseudo-irradiances and obtained spatial separation as normalized irradiance in the
aperture plane.

The optimized basis spectra are shown in Fig. 8.11. As the initial
modeling already achieved good results, the basis spectra optimiza-
tion does not change the model spectra significantly. This can also
be seen by comparing the spatial separation using the basis spectra
from the initial modeling in Fig. 8.10 (b) to the spatial separation us-
ing the optimized basis spectra in Fig. 8.12. The spatial separation
obtained with the optimized basis spectra shows a slight improve-
ment in the case of the red LED model. The chromaticity distance
of the optimized phosphor spectrum supports this impression as it
reduces to 4u′v′ = 0.004.

Finally, the spectral ray files are reconstructed using the calculation
procedure described in section 7.4. Figure 8.13 shows spectral ray files
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(a) Complete result (b) Blue LED

(c) Red LED (d) Phosphor

Figure 8.11: Comparison of optimized basis spectra using spatial separation to individ-
ually fitted basis spectra of Red/White.

as normalized irradiance in the aperture plane as well as the chromatic-
ity distance between the angularly resolved spectral measurements
and spectral reconstructions on the goniometric measurement sphere
of the spectroradiometer. The results obtained represent the setup
defined in Fig. 8.8.

The irradiance plots of the phosphor and the red LED show a small
artifact, which assigns a part of the red LEDs to the phosphor and
vice versa. However, the wrongly assigned spectral parts are below
0.3 percent. In conformity with the measured ray files, the apertures
are not circular and differ for the individual spectral models. The
irradiances of the phosphors and the blue LEDs have the same shape
because they are both part of the same white LEDs.
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Figure 8.12: Spatial separation obtained with optimized basis spectra as normalized
irradiance in the aperture plane.

The mean chromaticity distance of the spectral reconstruction on
the virtual spectroradiometer sphere is ∆u′v′mean ≈ 0.005 and
therefore slightly higher than the median chromaticity distance
∆u′v′median ≈ 0.003. These values also indicate that the spectral recon-
struction performs well, even if only standard optical filters are used.
The performance in an actual ray tracer is evaluated in section 8.3.

Figure 8.13: Obtained spectral ray files and reconstructed chromaticities compared to
angularly resolved spectral measurements for the Red/White setup.

8.2.2 RED/GREEN/BLUE/WHITE (RGBW)

The second case, shown in Fig. 8.14, combines white (W), blue (B), red
(R) and green (G) LEDs. RGBW LEDs are typically used in modern
adaptive and intelligent lighting systems. The angularly measured
chromaticities shown in the CIE u′v′ diagram include pure colors as
well as mixtures. Therefore it is necessary to model all four basis
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spectra. Note that the blue LED chip of the white LED is assumed
to be identical to the pure blue LED.

The initial basis spectra modeling was performed on a spectrum
that had been measured at main radiance direction. Figure 8.15 shows
the estimated basis spectra as well as a comparison to individually
measured and modeled spectra. The chromaticity distance between
the LED models is smaller than ∆u′v′ ≈ 0.003. However, the phosphor
basis spectrum shows a larger difference and a chromaticity distance
as high as ∆u′v′ ≈ 0.037.

Figure 8.14: Configuration of Red/Green/Blue/White (image adapted from [106]) and
measured chromaticity coordinates in the CIE u′v′ diagram.

The first measurements are based only on standard filters for
xshort(λ), xlong(λ), v(λ) and ”Glass”, which has no mentionable ab-
sorption. As in the case of Red/White and the phosphor converted
LED, the filter selection was omitted such that in the first try only
standard filters are used. The expected reconstruction performance is
assessed using spatial separation, which is visualized in Fig. 8.16. It
shows a weak performance. Instead of a spatial separation most LED
models are located at the same positions. The LED in the lower left is
assumed to be a green, red and blue at once. Furthermore, the spatial
separation concludes that each LED has an additional phosphor.
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(a) Complete result (b) Blue and Red LED

(c) Green LED (d) Phosphor

Figure 8.15: Comparison of initial modeled basis spectra modeling to individual fitted
basis spectra of Red/Green/Blue/White.

This indicates a poor spatial separation. The weak performance may
be caused by the deviations of the phosphor model, or by the cho-
sen standard filters. Therefore, the estimated basis spectra shown
in Fig. 8.15 are used to estimate a better suited filter set. The small
inhomogeneity in the lower left corner is caused by spatial distortions
due to an non-optimal lens calibration.

Figure 8.16: Spatial separation using standard optical filters and basis spectra after
initial modeling.
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The optimized measurements are performed with glass edge ab-
sorption filters with the cut off wavelengths 475, 610 and 695 nm and
the standard filter for xshort(λ). The obtained measurement ray files
as normalized pseudo-irradiances in the aperture plane are shown in
Fig. 8.17. Again spatial separation is used to validate the reconstruc-
tion and to rate the basis spectra. The spatial separation in Fig. 8.18
still shows slight artifacts. There is a negative green spectral part at
the location of the white LED. But overall the result is an improvement
compared to the reconstruction based on standard filters in Fig. 8.16.
The images show fewer LED locations, and reasonable combinations,
as for instance a weak blue peak, which is located at a large phosphor
peak and spatially separated colored LEDs.

Figure 8.17: Ray files used for the RGBW reconstruction visualized as normalized
pseudo-irradiances in the aperture plane.

Figure 8.18: Spatial separation before basis spectra optimization using filter set according
to filter selection procedure.

The basis spectra have been optimized using spatial separation.
They are shown in Fig. 8.19 (a)-(d). While the LED spectra show no
significant change regarding the colorimetric distance, the phosphor
spectrum has improved and the chromaticity distance decreased to
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∆u′v′ ≈ 0.021. The improvement is also verified by the spatial separa-
tion in Fig. 8.19 (e). In particular the green LED model shows fewer
artifacts. However, there is still a negative spectral part from the red
LED at the location of the white LED, which is an artifact. This artifact
has to be considered in the calculation procedure according to chapter 7
by adapting Qfinal,n to the negative values of the spatial separation.
Otherwise the calculation converges slowly because it falsely assumes
that all negative amplitudes are caused by the model resolutions.

(a) Complete result (b) Blue and Red LED

(c) Green LED (d) Phosphor

(e) Spatial separation

Figure 8.19: Comparison of optimized basis spectra using spatial separation to individ-
ually fitted basis spectra of Red/Green/Blue/White.
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The spectral models obtained are shown in Fig. 8.19. As the blue
LED model is part of both the blue and white LED, the irradiance in the
aperture plane shows a good spatial separation and thus represents the
chosen setup. The green LED model shows an artifact, as it associates
5 percent of its radiometric power to that of the white LED. For the
remaining models this value is below 1.5 percent.

The mean chromaticity distance of the spectral reconstruction on the
spectroradiometer sphere is ∆u′v′mean ≈ 0.012 and therefore higher
than in previous examples. This value is mainly caused by comparably
high deviations at high polar angles in the color mixing regions, which
occur due to a decreased ray file resolution in these regions. Figure 8.20
shows a histogram of the chromaticity distances. Note that the median
value, which ignores the outliers, provides a chromaticity distance of
approximately ∆u′v′median ≈ 0.007. The performance of the ray files
in a ray tracer will be evaluated in the next section.

Figure 8.20: Obtained spectral ray files and reconstructed chromaticities compared to
angularly resolved spectral measurements.
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8.3 SPECTRAL RAY TRACING

To validate the suitability of the obtained spectral ray files, a far field
measurement of a wavelength dependent optical system including the
measurement object was compared to ray tracing simulations in the
commercial ray tracer OptisWorks from OPTIS. The optical system
consists of one dispersion prism because it shows a strong wavelength
dependence and because the simple geometry minimizes deviations
between the optical system and the CAD geometry, which can disturb
the assessment of the spectral ray files.

(a) Experimental setup
(Red/White)

(b) Setup in simulation

Figure 8.21: Photographic image of experimental setup (a) and rendering of simulation
setup (b) for the spectral ray tracing validation.

The experimental setup containing the temperature control (TEC con-
troller) and the source as well as the dispersion prism on a rotating
stage is shown in Fig. 8.21 (a). A colorimetric intensity distribution of
the refracted part of the light was goniometrically measured with an
automotive goniometer and the colorimeter C3300 from LMT.

The simulation setup is shown in Fig. 8.21 (b). In both simulation and
measurement the prism was aligned with the rotating plate.

As in the measurement, the photometric center of the intensity sensor
in the simulation was defined at the center of the prism. The ray
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file editor from OptisWorks was used to assign the basis spectra to
the reconstructed ray files from section 8.2. Finally, a direct spectral
simulation with the combination of all spectral ray files was performed.
Each source was represented by 10× 106 rays. A spectral intensity
detector obtained the complete spectrum at each solid angle element.

As the prism was located in the near field of the source, the influence
of the prism is different for each LED source. Figure 8.22 shows
photographic images of the obtained distributions. Both distributions
show the individual LEDs used in the setup.

(a) Red/White (b) RGBW

Figure 8.22: Photographic images of obtained distributions.

The Red/White distribution consists of a solely white part in the upper
right, a red/white mixture in the middle and a solely red part in the
lower left. Furthermore, both parts with a white LED show a chromatic
shift from blue to red caused by the prism. The characteristic shape
arises due to the placement of the source and the aperture of the prism.

The RGBW distribution has similar characteristics. Each LED is located
in a specific corner with an overlapping region. Both photographic
images in Fig. 8.22 show only a part of the complete distribution. In
the following subsections both examples are qualitatively and quanti-
tatively evaluated to validate the obtained spectral ray files.
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8.3.1 RED/WHITE (RW)

Figure 8.23 (a), (b) and (c) visualize measured as well as non-filtered
and filtered simulated distributions of the Red/White setup. The filter-
ing was performed with the OPTIS XMP-filter in order to decrease the
noise in the simulation. Furthermore, only the three major sequences,
which represent 92% of the radiometric power reaching the sensor,
contribute to the simulation result3. The images aim to visualize both
results in true colors. Therefore, values from the measurement and the
simulation provided in XCIE, YCIE, and ZCIE were converted in RGB
values. These RGB values were used to create the images. However, it
has to be noted that the colors are still false colors if they are observed
on a printed page or a display.

Nevertheless, the comparison of Fig. 8.23 (a) and Fig. 8.23 (b) shows a
very good qualitative agreement between the simulation and measure-
ment results of the Red/White source although the simulation still
shows noise in the white regions. Both the general shape and color
of each region as well as the overlapping regions obtained with the
spectral ray files fit the measurement. This can also be verified by the
red spot in the upper left corner. It is caused by a reflection of the red
LED within the prism and occurs in both measurement and simula-
tion. Only the curvature of the distributions seems slightly stronger
in the measurement. It is likely that this difference is caused by a
misalignment, which occurred either in the near field measurement
or the simulation. Appendix B shows that the slight misalignment
between measurement and simulation is not caused by the spectral
ray files created with PMBS. It also shows that it is valid to consider
only the three major sequences.

3 The different sequences present different ray paths in the optical simulation and are
typically used to suppress or analyse stray light. The sequence analysis was performed
with the stray light analysis from OptisWorks.
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(a) (b) (c)
Figure 8.23: Comparison of far field measurement (a) and unfiltered (b) as well as
filtered (c) spectral ray tracing with Red/White spectral ray file.

The quantitative comparison is shown in Fig. 8.24. Sub figure (a)
visualizes the chromaticity distance between the chromaticity coordi-
nates of the measurement and the chromaticity coordinates obtained
from the spectral intensity sensor in the ray tracer. Note that only
measurement and simulation values with a reasonable measurement
signal are evaluated. The displayed colorimetric distance is limited
to ∆u′v′ ≈ 0.05 in order to provide a better overlook. Figure 8.24 (b)
shows a histogram of the deviations and the mean chromaticity of
the highlighted regions R, W and R/W. There are high deviations
at the edges of the distributions, especially in the white region. It is
likely that the main part of these deviations is caused by the slight
misalignment between the distributions because the shape of the chro-
maticity distances above ∆u′v′ ≈ 0.05 in Fig. 8.24 (a) is similar to the
curvature in Fig. 8.23 (a).

Other causes of these deviations may be the applied XMP-filter, which
smears the edges, or the number of rays used in the simulation. The
phosphor spectrum serves as the probability density function for the
phosphor ray file. Therefore, the number of rays associated with very
short or very large wavelengths is comparably small. Furthermore,
there are fewer rays in the solely white distribution. Both can be
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verified by comparing the noise in Fig. 8.23 (b) within the white and
within the red/white distribution as well as at the chromatic edges of
the white and red/white distribution. In both cases, the solely white
region has more noise.

(a)
Pixel-wise (b) Distribution

Figure 8.24: Chromaticity distance ∆u′v′ of measurement and spectral ray tracing with
Red/White ray file.

Due to the deviations at the edges, the mean chromaticity distance is
not suitable for quantifying the performance of the spectral ray files.
The highlighted regions R, R/W and W in Fig. 8.24 (a) are less influ-
enced by the misalignment and thus used. The deviations in the red
region are as high as the basis spectra model precision from the used
Asymmetric logistic peak (see Table 5.2 in chapter 5). The deviations
in the white and red/white regions are higher but not solely noise
induced. Note that the absolute deviations are within the color dis-
crimination thresholds of white light colors in applications according
to [62]. The main part of these deviations occurs due to an offset of
∆v′ ≈ 0.009, which may originate from the phosphor basis spectra pre-
cision or the relative weighting between the phosphor spectrum and
the blue LED or the uncertainty of the array spectroradiometer and the
colorimeter used in the near or far field measurement. However, as
the main deviation is induced by an offset, the relative deviations are

151



APPLICATION AND VALIDATION

expected to be smaller and enable for instance a uniformity analysis
of the light distribution.

8.3.2 RED/GREEN/BLUE/WHITE (RGBW)

Figure 8.25 (a), (b) and (c) visualize measured as well as non-filtered
and filtered simulated values of the RGBW distribution. As in the
Red/White simulation, only the three major sequences, which repre-
sent 92% of the radiometric power reaching the sensor, contribute to
the simulation result. Again the images aim to visualize the results
in true colors.

(a) (b) (c)
Figure 8.25: Comparison of far field measurement (a) and unfiltered (b) as well as
filtered (c) spectral ray tracing with Red/Green/Blue/White ray file.

The main part of the wrongly assigned flux from the green LED of
Fig. 8.20 is assigned to the white LED and does not disturb the obtained
images in Fig. 8.25 (b) and (c). Thus, the comparison of Fig. 8.25 (a)
and Fig. 8.25 (c) shows a good qualitative agreement between the
simulation results of the RGBW source with the prism in its near field
and the measured data. Note that the slight red and white chromatic
shadows at the green and blue distributions are also caused by a
reflection of the specific radiation at the prism.
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However, the curvature of the distributions seems again more pro-
nounced for the measurement. Also note that in the measurement the
green distribution is located slightly above the blue distribution, which
is not true for the simulation. This again indicates a misalignment
between the far field measurement and the simulation or the simu-
lation and the near field measurement. Furthermore, a small green
color shadow can be noted at the lower right part of the red LED in
the non-filtered simulation in Fig. 8.25 (b). This is a reconstruction
artifact of PMBS, which occurred due to the wrongly assigned flux
in the green LED model. Appendix B shows that - in contrast to the
green shadow - the slight misalignment between measurement and
simulation is not caused by the spectral ray files created with PMBS.

A quantitative comparison in the form of the chromaticity distance
is shown in Fig. 8.26. Figure 8.26 (a) visualizes the chromaticity dis-
tance for each measured location, which had a suitable measurement
signal in at least two of the three measurement channels of the col-
orimeter. The same applies for the simulation. Furthermore, the
distribution of all deviations is shown as a histogram in Fig. 8.26 (b).
The figure also summarizes the mean chromaticity distance of the six
highlighted regions shown in Fig. 8.26 (a).

The highest deviations are again located at the edges of the distri-
bution. High deviations also occur at the edges of the overlapping
regions Y and C but not within the overlapping regions Y and C. This
also indicates the slight misalignment between the measured and the
simulated distributions. Consequentially, the highest deviations are
located at the lower right corner as well as the upper right corner of the
white LED region, which has the strongest difference in the curvature.

The XMP-filter and the number of rays used in combination with the
chromatic shift of the prism may also be critical for the white region
as described in the previous example. Furthermore, only 15% of the
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blue LED model is assigned to the blue chip of the white LED. This
also decreases the number of rays with short wavelengths in the white
region. Note that these deviations are by far the highest.

Nevertheless, as the overall mean chromaticity distance is influenced
by these deviations at the edges, it is not suited to validate the spectral
ray files. A better quantitative validation is provided by the mean
values of the six locations G, Y, R, B, C and W, which are less influenced
by the misalignment. In that case, the highest mean chromaticity
distance of a single spectral source occurs in the red region R and the
white region W. However, both can be expected. As the basis spectra
model used was a Logistic power peak, the deviations between the
red LED basis spectrum and the true red LED spectrum are in this
order of magnitude (see Table 5.2 in chapter 5). The deviations in
the white region may occur due to the non-optimal basis spectra of
the phosphor, the wrongly added flux parts of the green LED model
and due to noise, which is stronger in this region compared to other
regions. The main reasons for the deviations in the region Y is the
deviation of the red region and the 5% missing flux in the green LED
model, which disturbs the relative weighting of the color mixture.

(a)
Pixel-wise (b) Distribution

Figure 8.26: Quantitative comparison of measurement and spectral ray tracing with
Red/Green/Blue/White ray file.
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Even so, the absolute deviations are again within the color discrimina-
tion thresholds in practical applications according to [62]. However, it
should be noted that these thresholds depend on the specific viewing
conditions and were determined for white light colors. Recent stud-
ies [107], [108] hint that the color discrimination threshold is higher
and thus less critical for saturated colors. As the regions R, W and
Y all have an offset induced error, the relative deviations between
measurement and simulation, which are required for a uniformity
analysis, are even smaller.

In summary, both tested spectral ray files - Red/White and RGBW - are
well suited for optical simulations. Apart from the green shadow in the
RGBW distribution and slight colorimetric offsets below ∆u′v′ < 0.01,
no PMBS induced artifacts were observed. As these spectral recon-
structions are more complicated than a single phosphor converted
white LED or a RGB LED, it can be concluded that PMBS can be used
directly for all these LED systems to simulate spectral distributions
in commercial ray tracing software with an appropriate consideration
of the spectral near field of these LED systems.
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CHAPTER 9

DISCUSSION

In this thesis, a measurement and modeling technique to obtain hyperspectral
LED models is proposed, implemented and verified. The first section of this
chapter provides a theoretical discussion of the overall approach. The second
section focuses on practical aspects. This includes an analysis of the achieved
results and the required measurement time - also compared to the state of the
art - and concludes with practical applications.

9.1 PMBS – APPROACH

The physically motivated basis spectra approach (PMBS) is a method
to create hyperspectral LED models based on the assumption that all
spectral variations in the near field of a LED source can be described as
the weighted sum of their physical basis spectra. The relative spectral
distribution of each spectral source is constant. Therefore, PMBS
utilizes prior knowledge regarding the device under test.

In the best case, this prior knowledge includes the spectral distribu-
tions of the physical sources of the device under test. In the worst
case, the basis spectra have to be estimated. Then the only important,
but easily obtainable information is the number of different spectral
sources in the device. Furthermore, PMBS requires detailed knowledge
regarding the spectral sensitivity of the ILMD-based measurement sys-
tem. Subsequently, all available spectral information is combined to
set up a system of linear equations, which is used to reconstruct the
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individual spectral models from the ILMD-based measurements. The
combination of all spectral models is the hyperspectral model.

In a similar way to the general approach, the proposed practical im-
plementations aim to utilize physical boundary conditions. Exam-
ples are the assumption that colored LEDs are spatially separated
from each other or that negative amplitudes are physically impossible.
The validity of these assumptions is unquestionable. Nevertheless,
there are theoretical limitations in the overall approach or specific
aspects which have to be discussed in order to assess the developed
approach correctly.

The first aspect to be considered is the Monte Carlo simulation used
for the filter selection, which aims to minimize the expected reconstruc-
tion errors described in section 6.2. By modeling typical uncertainties
of the ILMD-based measurements in relation to the optical filters and
spectral sensitivity of the ILMD, their influence on the spectral recon-
struction is estimated. This information is used to select an optimal
filter set. This modeling requires basis spectra, which are at this point
not yet optimized. However, as indicated in section 6.4, the filter selec-
tion using standard filters and glass edge absorption filters - generally
filters with a broad transmission - is stable towards non-optimized
basis spectra. The Monte Carlo simulation can therefore be used as
it is for choosing an optimal or at least one of the best filter combi-
nations. The determination of the best filter combination cannot be
guaranteed, because the number of roughly estimated input param-
eters influences the result. But performing the filter selection will
always minimize the risk of selecting an unsuitable filter combination
in the context of PMBS.

Nevertheless, it has to be noted that although the Monte Carlo sim-
ulation selects the filters based on estimated reconstruction errors
regarding measurement uncertainties, an estimation of the absolute
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reconstruction uncertainties is far more complex. This would require
an analysis according to [93], which requires modeling the input un-
certainties and also the device under test in more detail. An example
is the prior estimation of the amplitude distributions of all spectral
sources or influences of environmental conditions such as temperature
or current on the specific device under test. However, predicting ab-
solute uncertainties is, in contrast to their general consideration, not
within the scope of this application.

The second aspect is the calculation procedure of chapter 7 used
to apply PMBS directly to commercially available ray files. In the
context of PMBS, the histogram based models and the calculation
workflow are only a means to an end. They might be adapted, and
other quantification models, raw data such as .ttr-files, or ILMD-based
images can be used as well. However, it is important to note that the
usability of those algorithms is higher, if only a small amount and only
intuitive input parameters are used. In this case these were the desired
NCC and the final amount of negative amplitudes Qfinal,n.

The core concept of the calculation procedure with respect to PMBS
is the nearest neighbor calculation of subsection 7.3.2. It utilizes the
information that negative spectral distributions of physical sources
are impossible. In theory, the nearest neighbor calculation allows
maintaining the resolution of the input data by assuming that all
negative amplitudes occur due to a resolution caused mismatch.

However, both negative and false positive amplitudes can also be
induced either by deviating transmission filter profiles or by an in-
sufficient description of the basis spectra. The occurrence of these
initial reconstruction errors in the form of negative amplitudes has
to be checked prior to the calculation procedure such that the nearest
neighbor calculation only converges towards the initial amount of
negative amplitudes. Otherwise, the assumption that only resolution
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caused negative values are canceled out is no longer valid. If initial
spectral reconstruction errors are minimized with the nearest neighbor
calculation, the calculation procedure may require an unnecessary
additional amount of calculation time and create additional artifacts.
The initial amount of negative amplitudes was considered during the
reconstruction of the RGBW example in section 8.2.

Furthermore, it is important to note that it cannot be guaranteed that
only false positive amplitudes are used to compensate the negative
amplitudes. Further, the nearest neighbor calculation can only be
used with physically motivated basis spectra because the usage of
negative amplitudes requires the prior knowledge that they have to
be calculation artifacts. Mathematical basis spectra, which would for
instance occur if a principal component analysis were used to derive
the basis spectra, may also create correct negative amplitudes within
an individual model. They only compensate each other after the final
combination of all models.

The third aspect is the basis spectra optimization using spatial sep-
aration. The spatial separation utilizes the information that it is very
unlikely for the same spatial location to emit, for instance, a red, green
and blue LED spectrum at once. It is assumed that colored LED are
spatially separated from each other. As outlined in subsection 5.2.3
this technique is only necessary if the basis spectra are not available
and are hard to estimate due to a significant spectral overlap. An
example is the combination of green LEDs and a yellow phosphor as
in subsection 5.2.3 and section 8.2. The basis spectra optimization uses
the spectral reconstruction of PMBS to create irradiance images and
assesses the results regarding their spatial separation. The optimiza-
tion changes the basis spectra to achieve a better spatial separation.
However, this will only work up to a certain degree.
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The basis spectra optimization only assesses the spatial separation
based on a PMBS reconstruction and therefore only validates the re-
construction matrix. The basis spectra are only validated indirectly.
This has three consequences regarding PMBS.

The first is that the relative weightings have to be based on values,
which are independent on the basis spectra. An example is the camera
luminous flux provided by the RIGO801. The more elegant inverse
reconstruction cannot be used because it assumes correct basis spectra.

The second consequence is that deviations from at least one mea-
sured spectrum have to be included as an auxiliary condition while
effectively changing the reconstruction matrix. This was also consid-
ered in all examples which included the basis spectra optimization.
In complex cases adding a low number of additional spectral mea-
surements is recommended as the measurement time is not enlarged
significantly while the auxiliary condition becomes more powerful.
However, it must be ensured that all angular positions used in the
auxiliary conditions have a suitable signal to noise ratio. This applies
for the ILMD-based measurements and for the spectral measurement.

The third consequence affects the filter selection. Filters with a broad
transmission are more suited to use the spatial separation as figure of
merit for the basis spectra optimization. The worst case for the spatial
separation would be a reconstruction matrix which equals the unity
matrix because then the spatial separation is already optimal and the
non-optimized basis spectra have no effect on the spatial separation.

The fourth aspect is the most general. All modeling concepts require
the tacit assumption that the complete system has no additional inac-
curacies besides basis spectra deviations or resolution caused artifacts.
These two problems are directly related to PMBS and can be considered
the main sources of spectral reconstruction errors. Therefore, they are
corrected and optimized during the PMBS workflow. However, there
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are additional aspects influencing the reconstruction results. These are
not solely related to PMBS but to near field photometry in general. The
optical filter and neutral density filter transmission profiles are first
examples. Although they are considered during the filter selection,
their influence is only minimized but not corrected. Other inaccuracies
are, for instance, the lens calibration and aberrations, or the spectral
measurement as well as an unstable device under test.

With this in mind, the last figure of this thesis can be interpreted.
Figure 9.1 shows the spatial separation of the RGBW reconstruction
of section 8.2 using the individually measured basis spectra and an
optimized filter set at a low resolution. This means that all aspects
of this thesis are optimized. However, there are still artifacts within
the green LED model, which are caused by other factors. The artifacts
are even slightly larger than the artifacts in the spatial separation of
the optimized model of Fig. 8.19.

Figure 9.1: Spatial separation of RGBW system obtained with PMBS using ideal basis
spectra and optimized filter set.

This shows that it would be critical to blame, for instance, only the
basis spectra for all artifacts within a reconstruction. A sole “opti-
mization” of the basis spectra would only transfer all ignored aspects
directly into the basis spectra. Generally, a sole optimization of the
main challenges of PMBS, the basis spectra estimation, the filter se-
lection, and the calculation procedure cannot lead to hyperspectral
LED models without any artifacts because they are also caused by
factors independent of PMBS. However, hyperspectral LED modeling
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using PMBS will improve together with near field photometry and
may even help to improve this aspect. This will be considered in more
detail in the outlook of this thesis.

9.2 PMBS – PRACTICAL APPLICATIONS

The PMBS approach has been developed to be a fast modeling tech-
nique for spectral near field data of LEDs with a low spectral error.
The measurement and simulation effort has to remain feasible with
respect to the current state of the art. Furthermore, the complexity of
spectral reconstructions depends on the specific LED system.

One of simplest, but most important cases is the phosphor converted
white LED. Most state-of-the-art techniques focus mainly on this case.
The industrial applied quasi-standard is the Blue/Yellow approach,
which combines a short measurement time with reasonable results
regarding the spectral error. The basis spectra importance is low com-
pared to spatially separated different colored LEDs because all angular
and spatial regions provide a mixture of the blue LED spectrum and
the yellow phosphor spectrum.

PMBS, which can be interpreted as the physical generalization of
the Blue/Yellow approach, requires the same measurement effort for
phosphor converted white LEDs. It consists of only two ILMD-based
measurements and one spectral measurement. The additional simula-
tion time of PMBS is smaller than the measurement time. Section 8.1
shows a direct comparison of both approaches. Both the relative color
over angle deviations as well as the absolute chromaticity distances
are smaller and even in the region of just noticeable color differences
for PMBS. Also, only standard filters are required to successfully apply
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PMBS. Therefore, PMBS is well suited to create spectral ray files for
the important case of phosphor converted white LEDs.

Note that neither non-linear effects such as quenching within the phos-
phor conversion nor inhomogeneous combinations of different phos-
phors are covered in PMBS or the Blue/Yellow approach. However,
as those effects have been, and will be, considered in the develop-
ment of phosphor converted LEDs [75], [109]–[111], their practical
relevance is limited.

Another simple case is the RGB LED, which was reconstructed in
section 7.5 to verify the calculation procedure using only three ILMD-
based measurements with standard filters. The basis spectra modeling
without a phosphor is uncritical. Depending on the desired precision
of the calculation procedure, the reconstructed spectral models provide
details such as the electrode structure of the LEDs.

A more complicated, but practical case is the combination of red LEDs
and phosphor converted white LEDs. The polychromatic ray data is
the only state-of-the-art method, which covered this case by combin-
ing eight ILMD-based measurements with angularly resolved spectral
measurements [61]. The PMBS method covered this case in section 8.2
by applying only three ILMD-based measurements and one spectral
measurement significantly reducing the measurement time. As in the
case of the phosphor converted white and RGB LED, standard filters
remain suitable for applying PMBS. The initial modeling provides well
suited estimates for the basis spectra. This was also the first case vali-
dated by spectral ray tracing. The highest mean chromaticity distance
between the simulations and the colorimeter measurements was only
∆u′v′ ≈ 0.013. A large part of the deviations was an offset induced
error of ∆u′v′ ≈ 0.009. Therefore, the reconstructed spectral ray files
are well suited for spectral ray tracing and uniformity analyses.
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The most complex case considered in this thesis is the RGBW example
in section 8.2. Although some state-of-the-art methods can be used
in theory, a spectral ray file of such a system had not been previously
documented. It is the only example in this thesis which requires a basis
spectra optimization. In addition, the requirements for the quality of
the input data, for example the transmission filter profiles, increase.
Therefore, it is necessary to select an optimal filter combination in
order to minimize the influence of uncertainties outside the scope of
PMBS. Despite all optimizations, the spectral ray tracing still showed
slight PMBS induced artifacts such as a tiny green color shadow within
the red part of the distribution. Nevertheless, due to the advanced
modeling techniques of PMBS such as the basis spectra optimization,
the quantitative results are comparable to those of Red/White and thus
well suited for spectral ray tracing and uniformity analyses. Further-
more, the quantitative analysis of the spectral ray tracing considered
neither the uncertainties of the array spectroradiometer and the col-
orimeter, nor the fact that the CIE u′v′ diagram is more reliable for
white color stimuli [42], [43]. Physiological studies suggest that the
noticeable color differences in the CIE u′v′ diagram increase for satu-
rated colors [107], [108], which would decrease the importance of the
offset induced deviations in these regions.

The only practical limitation of the PMBS approach as described in
this thesis is the combination of different white LEDs, which use
different phosphors. An example is a warm white/cold white LED
system, which uses a different phosphor for the warm white and cold
white LEDs. The main limitation is the initial modeling of the basis
spectra. The deduced figures of merit can be used but the basis spectra
optimization requires an adaption of the optimization algorithm with
respect to the phosphor distributions. However, if the basis spectra
are known, a hyperspectral LED model can be created with PMBS
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because both the filter selection as well as the calculation procedure
have no fundamental limitations.

As described above and in subsection 3.4.7, PMBS has significant
advantages compared to other state-of-the-art methods. It is, for exam-
ple, suitable for several different LED systems which was validated in
this thesis. Other state-of-the-art methods are only suitable for phos-
phor converted white LEDs or less complicated systems. Methods
which are able to create spectral ray files of more complicated LED
systems require angularly resolved spectral measurements. This is
time-consuming especially compared to the short ILMD-based mea-
surement time of PMBS.

However, PMBS is only suited for LED systems. In the case of light
sources without a spatially-spectral variation such as OLEDs the PCA
approach provides good results. In the case of very complex systems,
as for example a combination of different OLEDs and different LEDs,
a time-consuming approach such as precise physical modeling or the
polychromatic ray data approach, which requires no specific modeling
assumptions, should be used.

To sum up, the developed approach was successfully used to obtain
hyperspectral models of phosphor converted white LED, RGB LED
and Red/White LEDs with a comparably small measurement and
simulation effort using only standard optical filters. In these cases no
additional measurement equipment is required. More complex cases
require an optimized filter set in order to minimize the influence of
measurement uncertainties and the application of advanced modeling
techniques such as the proposed basis spectra optimization.
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CHAPTER 10

SUMMARY

This chapter summarizes the developed method and achieved results and pro-
vides an outlook regarding potential improvements. Furthermore, it suggests
applications outside the original scope of the thesis.

10.1 SUMMARY

The aim of the thesis was to propose, develop and validate a mea-
surement and modeling technique for obtaining the spectral near field
of LEDs in order to improve the optical design of high quality LED
based lighting systems. Based on selected concepts of the current
state of the art, the physically motivated basis spectra (PMBS) ap-
proach, which considers the required measurement effort as well as
the usability and generality in practical applications, was proposed
and mathematically described.

The main assumption of PMBS is that spectral variations in the near
field of an LED system can be described as the weighted sum of all
physically occurring spectral sources. This enables the possibility of
interpreting a hyperspectral LED model as a set of spectral models,
which can each be described individually, for instance as a ray file with
one global spectral distribution. The main measurement effort in the
form of conventional ILMD-based (imaging luminance measurement
device) goniophotometric measurements with different optical filters
is determined by the number of spectral sources and is therefore,
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in contrast to the state of the art, always minimized. The ILMD-
based measurements and one global spectral measurement as well as a
detailed spectral description of the ILMD-based measurement system
are used to reconstruct the near field distribution of the individual
spectral models.

The thesis then defined three main challenges concerning the practical
implementation of PMBS. These were the potentially mandatory basis
spectra estimation, reconstruction errors caused by deviating input
data and the application of PMBS on typically available near field data.

The basis spectra estimation uses the global spectral measurement
and the number of different spectral sources in the system to obtain
phenomenological LED basis spectra. If necessary, the basis spectra
can be optimized by quantifying the ”spatial separation”. This figure
of merit assumes that single colored chips are both spatially separated
and highly localized in the three dimensional space. In other words, it
assumes that a red LED is only red, a green LED is only green, a blue
LED is only blue and a white LED is only white or rather blue and
yellow. In the case of the spatially non-separated individual phosphor
converted white LEDs, a color mixing line, which compares possible
color mixtures to actual measurements, can be used. These techniques
enable the estimation of the required basis spectra, if they are not
available in advance.

Furthermore, it has been shown that an unintelligent filter selection can
lead to undesired reconstruction artifacts due to given uncertainties
regarding the ILMD-system. To correctly assess the influence of the
selected optical filters on PMBS, empirical models for common glass
edge absorption and interference filters as provided by the manufac-
turers were extended to consider physically caused measurement un-
certainties. While these models may be evaluated directly in a Monte
Carlo simulation, a time saving preselection technique using factorial
design was also proposed and validated. During the validation of
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the filter selection techniques, it was verified that an appropriate filter
set is able to minimize reconstruction artifacts. Furthermore, it was
shown that the procedure is stable with respect to estimated or rather
non-optimized basis spectra, especially for optical filters with a broad
transmission. Practical examples are glass edge absorption filters.

To ensure the direct usability of PMBS, the proposed and validated
calculation procedure focused on commercially available ray files. The
ray files are transformed into histogram based light source models,
whose resolution parameters are adapted with respect to a user de-
fined precision parameter. Calculation artifacts, which are caused by
the highly discrete nature of ray files, are corrected by applying the
nearest neighbor calculation, which utilizes the physical impossibility
of physically motivated spectral sources with negative or partly nega-
tive amplitudes. This process ensures a correct application of PMBS
with high model resolutions. Furthermore, the obtained results can
be used directly in state-of-the-art ray tracers.

Using the described implementation, PMBS was first used to recon-
struct a conventional phosphor converted white LED. The required
measurement effort is the same as in the Blue/Yellow approach, which
considers only this type of LED. The hyperspectral LED model, which
was obtained with PMBS, showed smaller deviations from validation
measurements. The obtained chromaticity distances were even in the
region of just noticeable color differences at around ∆u′v′ ≈ 0.002 .

PMBS was further tested by successfully modeling a RGB LED, which
covered details such as the electrode structure, as well as spectral
ray files of more complex Red/White and Red/Green/Blue/White
LED-systems. The spectral ray files were used within a commercial
ray tracer to obtain a spectral far field distribution, created by a spec-
trally sensitive prism in the near field of the measurement object. The
spectral simulations were compared to measured colorimetric values
of the same setup and showed deviations below ∆u′v′ ≤ 0.016, which
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led to similar images of these distributions. Therefore, it can be con-
cluded that PMBS is suitable for obtaining hyperspectral LED models,
which can be used to improve the optical design of high quality LED
based lighting systems.

10.2 OUTLOOK

Although PMBS obtains good results for nearly all LED systems, there
is still a practical limitation. The application of PMBS on LED systems
with different phosphors on different LEDs is only possible, if the basis
spectra are known in advance because the initial basis spectra esti-
mation is unsuited for this case. The proposed figure of merit spatial
separation remains valid and may still be used in optimizations. How-
ever, these optimizations require the development of an appropriate
spectral adaptation algorithm, which may for instance try to preserve
specific spectral features of the individual phosphor spectra, similar to
the spectral adjusting method. Another option to obtain first estimates
of the basis spectra is to base the complete initial basis spectra model-
ing on a single or on a small number of hyperspectral measurements.

The conventional ray files used as input data in this thesis, are already
processed data and therefore limit the resolution from the start. Fur-
thermore, the adaptation of the resolution parameters with respect to
the input ray files is the bottle neck regarding the computation time.
A higher resolution as well as a faster computation time might be
achieved by applying PMBS directly on raw data as for instance com-
pressed luminance images as .ttr-files. While the data compression and
adaptive resolution estimation is avoided, the nearest neighbor calcu-
lations will still remain the core concept of each calculation procedure.
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However, PMBS is not limited to obtaining spectral near field data
for optical simulations. There might be other applications as well.
In particular, the fact that the reconstruction of phosphor converted
white LEDs, RGB LEDs and Red/White LEDs requires only standard
filters is a promising result. It enables the possibility of estimating a
spectral light intensity distribution curve of these LED systems based
solely on colorimetric measurements. Furthermore, it is possible to
use PMBS to reconstruct a spectral image of LED systems and LED
based illuminations with non-goniometric ILMD-based images. If the
measurement time is small, it might also be advantageous to consider
an over-determined system of linear equations in PMBS.

In this thesis, it was always assumed that all spectral transmissions and
sensitivities in the measurement system as well as all measured input
data used in the reconstruction were correct. Only the spectral near
field of the device under test was unknown. However, this assump-
tion can be inverted by using a spatially, angularly and spectrally well
described LED source as developed in the metrology project EMRP
ENG62 MESaIL. Then the reconstructions of PMBS, which relate spec-
tral measurements to several ILMD-based near field measurements,
might be used to qualify near field measurements and thus near field
measurement systems. This may help to advance near field measure-
ments beyond spectral simulations but in the context of photometry
in the future.
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APPENDIX A

ADDITIONAL INFORMATION

REGARDING PMBS

A.1 INVARIANCE OF PMBS TOWARDS INITIAL

AMPLITUDES OF MODELED BASIS SPECTRA

It is important to show that the PMBS method tolerates any individ-
ual non-zero arbitrary weighting factors pn for each basis spectrum
such that

S
′
n(λ) = pnSn(λ) (A.1)

without affecting the final result, which is the reconstructed plenoptic
function according to Eq. 4.12. The plenoptic function becomes

R(X, Y, Z, φ, ϑ, λ) =
nmax

∑
n=1

An(X, Y, Z, φ, ϑ)× Sn(λ), (A.2)

if the arbitrary factor pn is not applied (first case) and

R
′
(X, Y, Z, φ, ϑ, λ) =

nmax

∑
n=1

A
′
n(X, Y, Z, φ, ϑ)× S

′
n(λ), (A.3)

if the arbitrary factor pn is applied (second case). To prove the in-
variance of the plenoptic function towards an initial basis spectrum
weighting, it has to be shown that the term R(X, Y, Z, φ, ϑ, λ) is equal
to R

′
(X, Y, Z, φ, ϑ, λ). This is valid if A

′
n is reconstructed with the

inverse weighting factor pn such that

A
′
n(X, Y, Z, φ, ϑ) =

1
pn

An(X, Y, Z, φ, ϑ) (A.4)
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If the factor pn is applied the matrix MSτ changes to

M
′
Sτ =


∫

p1S1(λ)τeff,1(λ)dλ · · ·
∫

pnmax Snmax (λ)τeff,1(λ)dλ
...

. . .
...∫

p1S1(λ)τeff,nmax (λ)dλ · · ·
∫

pnmax Snmax (λ)τeff,nmax (λ)dλ



= MSτ


p1 · · · 0
...

. . .
...

0 · · · pn


(A.5)

The reconstruction equation in the first case is given as
A1(X, Y, Z, φ, ϑ)

...
Anmax (X, Y, Z, φ, ϑ)

 = M−1
Sτ ·


MA,1(X, Y, Z, φ, ϑ)

...
MA,nmax (X, Y, Z, φ, ϑ)


(A.6)

and in the second case as
A
′
1(X, Y, Z, φ, ϑ)

...
A
′
nmax (X, Y, Z, φ, ϑ)

 = M
′−1
Sτ ·


MA,1(X, Y, Z, φ, ϑ)

...
MA,nmax (X, Y, Z, φ, ϑ)




A
′
1(X, Y, Z, φ, ϑ)

...
A
′
nmax (X, Y, Z, φ, ϑ)

 =


p1 · · · 0
...

. . .
...

0 · · · pnmax


−1

M−1
Sτ


MA,1(X, Y, Z, φ, ϑ)

...
MA,nmax (X, Y, Z, φ, ϑ)


(A.7)

or
p1 · · · 0
...

. . .
...

0 · · · pnmax




A
′
1(X, Y, Z, φ, ϑ)

...
A
′
nmax (X, Y, Z, φ, ϑ)

 = M−1
Sτ


MA,1(X, Y, Z, φ, ϑ)

...
MA,nmax (X, Y, Z, φ, ϑ)

 .

(A.8)
The right hand side of Eq. A.6 is the same as A.8 and it can therefore
be written that
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
p1 · · · 0
...

. . .
...

0 · · · pnmax




A
′
1(X, Y, Z, φ, ϑ)

...
A
′
nmax

(X, Y, Z, φ, ϑ)

 =


A1(X, Y, Z, φ, ϑ)

...
Anmax (X, Y, Z, φ, ϑ)

 ,

(A.9)
which shows that Eq. A.4 is fulfilled.

Hence, a fundamental difference exists between the influence of the
arbitrary basis spectra amplitude matrix and the measurement weight-
ing matrix, which are both inserted into the reconstruction equation:


WR,1 · · · 0

...
. . .

...
0 · · · WR,nmax




MR,1
...

MR,nmax

 = MSτ ·


p1 · · · 0
...

. . .
...

0 · · · pnmax

 ·


A1
...

Anmax


(A.10)

or


A1
...

Anmax

 =


1
p1

· · · 0
...

. . .
...

0 · · · 1
pnmax

M−1
Sτ


WR,1 · · · 0

...
. . .

...
0 · · · WR,nmax




MR,1
...

MR,nmax

 .

(A.11)
This is

A1(X, Y, Z, φ, ϑ) =
WA
p1
×
[

M1(X, Y, Z, φ, ϑ)×M−1
Sτ (1, 1)WR,1

+ · · ·

+ Mnmax (X, Y, Z, φ, ϑ)×M−1
Sτ (1, nmax)WR,nmax

]
...

Anmax (X, Y, Z, φ, ϑ) =
WA

pnmax

×
[

M1(X, Y, Z, φ, ϑ)×M−1
Sτ (nmax1)WR,1

+ · · ·

+ Mnmax (X, Y, Z, φ, ϑ)×M−1
Sτ (nmax, nmax)WR,nmax

]
(A.12)

The reason for the different influences of these two diagonal matrices is
that the basis spectra weighting including the pn is multiplied from the
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left hand side and the measurement weighting matrix including the
relative weightings WR,n is multiplied from the right hand side to the
matrix M−1

Sτ . Therefore the correct determination of the measurement
weighting matrix is crucial while the basis spectra weighting can be
arbitrary as long as it is non-zero.

A.2 DETAILED EXPLANATION OF SPATIAL

SEPARATION VALUE PSUM,n

The figure of merit used to quantify the spatial separation Psum,n of the
nth individual spectral model according to section 5.3 is explained in
detail below. The starting point is a reconstructed radiance image (or
irradiance of a projected ray file) A(X, Y), which is normalized to its
integral such that ∑X ∑Y A(X, Y) = 1. Since a high spatial separation
and localization consists of few high values and as many zeros (or
dark areas) as possible, the total number of pixels above a threshold
Th defined as

Ptot(Th) = ∑
X

∑
Y

P(X, Y, Th) (A.13)

with

P(X, Y, Th) =

0 |A(X, Y)| ≤ Th

1 |A(X, Y)| > Th
(A.14)

can be used as an indicator. Ptot(Th) is a function of the threshold
value and the threshold value lies in the interval Th ∈ (0 1) because
all values |A(X, Y)| have to lie between 0 and 1. Since Ptot(Th) ≥ 0
∀ Th, the cumulative sum Pcumsum(Th) defined as

Pcumsum(Th) =
∫ Th

j=0
Ptot(j) (A.15)
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is a monotone increasing function. Furthermore, it holds that Ptot(Th)
itself is a monotone decreasing function. Another important attribute
of Pcumsum(Th) is that its maximum value Pcumsum(Th = 1) = const.
due to the normalization ∑X ∑Y A(X, Y) = 1. The figure of merit for
the spatial separation/narrow localization is then defined as

Psum,n =
∫ Th

Pcumsum(Th)dTh. (A.16)

Figure A.1 shows three different artificially reconstructed 1-dimen-
sional amplitudes A(X) with different spatial separations/narrow
localizations. They are normalized to their integrals.

“Spatial 1” shows data localized evenly on two pixels (X = 3 and
X = 5). “Spatial 2” is localized more strongly at pixel X = 5 and
more weakly at pixel X = 3. “Spatial 3” is localized completely at
pixel X = 5. The localization decreases from Spatial 1 to Spatial 3.
Note that in the case of the PMBS basis spectra validation, each tested
distribution would represent a different reconstruction (based on a
different set of basis spectra).

(a) Spatial 1 (b) Spatial 2 (c) Spatial 3

Figure A.1: Artificially reconstructed 1-dimensional amplitudes A(X) with different
spatial separations/narrow localizations.

Figure A.2 (a)-(c) show the Ptot(Th) for Spatial 1 to Spatial 3. In the
case of Spatial 3, Ptot(Th) = 1 for each threshold value. In the case
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of Spatial 2, Ptot(Th) = 2 until Th = A(X = 3). Then Ptot(Th) = 1
because only pixel X = 5 is above the threshold. After reaching the
value Th = A(X = 5), Ptot(Th) drops to zero. Spatial 1 is two as pixels
X = 3 and X = 5 are above all thresholds until the threshold reaches
Th = A(X = 3) = A(X = 5). Subsequently, Ptot(Th) = 0. Figure A.2
(d) shows the resulting Pcumsum(Th) for all three distributions. It can
be seen that all reach the same maximum value. It is 200 since the
threshold value was increased evenly 200 times between 0 and 1 in this
example. The important point is that it not depends on the normalized
A(X). Figure A.2 (e) displays the integrals Psum used as figure of merit
for the spatial separation/narrow localization. As expected, Spatial
3, which is localized perfectly has the lowest value, while Spatial 1,
which is localized least perfectly has the highest value.

Ptot(Th) always decreases with an increasing threshold Th. A low
threshold results in a high Ptot because many pixels near zero are above
the threshold. If Th is increased, it starts to include less pixels and
therefore decreases. Pcumsum(Th) always increases (or stays constant).
The maximum value depends only on the number of discrete values
used for the threshold value Th as described above.

In the case of a low spatial separation the first values of Pcumsum(Th)
are higher as is the slope of Pcumsum(Th). If fewer pixels are above
the threshold, the slope gets smaller and may reach zero eventually.
The important fact is that the value Pcumsum(Th) of a high spatial sep-
aration is larger or equal to Pcumsum(Th) of a low spatial separation
for each threshold value. This is always true because Pcumsum(Th) are
monotone increasing functions for all A(X, Y) with the same maximal
value and both derivations Ptot(Th) are decreasing functions. There-
fore, the integral Psum,n =

∫ Th Pcumsum(Th)dTh can be used as a direct
measure of the spatial separation of the nth spectral model.
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(a) Ptot(Th) of Spatial 1 (b) Ptot(Th) of Spatial 2

(c) Ptot(Th) of Spatial 3 (d) Pcumsum(Th) for Spatial 1-3

(e) Psum for Spatial 1-3

Figure A.2: Ptot(Th), Pcumsum(Th) and Psum for Spatial 1-3.
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APPENDIX B

SPECTRAL RAY TRACING

ALIGNMENT CONSIDERATION

The quantitative evaluation of the spectral ray tracing in section 8.3 did
not consider the deviations at the edges of the simulated spectral dis-
tribution. Furthermore, it considered only the three major sequences
of the ray tracing, which contain 92% of the radiometric power. The
remaining sequences were ignored. To justify both steps it has to be
shown that neither the stray light nor the deviations are caused by the
spectral ray file but occur due to misalignments between the near field
measurement and the simulation, misalignments between the far field
measurement and the simulation, or deviating material parameters in
the simulation. As the problem is identical for the spectral ray tracing
of the Red/White example and the RGBW example, it is adequate to
consider only one of them below.

(a) (b)
Figure B.1: Comparison of measurement (a) and spectral ray tracing (b) with
Red/Green/Blue/White ray file from section 8.3.
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(a) (b)
Figure B.2: Comparison of shape obtained from ray tracing using originally measured
ray files (a) and ray files from PMBS (b).

Figure B.1 shows the measured and simulated distributions from the
RGBW example of section 8.3. The two main deviations regarding the
shape are the curvature at the edges on the right hand side and the rela-
tive positions of the green and blue distribution. The green distribution
is located above the blue distribution only in the measurement.

To show that these deviations are not caused by the spectral ray files,
a simulation with original measured ray files is compared to a simu-
lation with spectral ray files. As no spectrum can be assigned to the
original ray files, all wavelengths were set to 555 nm. Figure B.2 shows
the normalized intensity obtained with a simulation using the original
ILMD-based ray files. The ray files are based on the standard filters
xshort(λ), xlong(λ) and v(λ) because they provide a sufficient signal
for all sources. Figure B.2 shows the obtained normalized intensity of
a simulation with the spectral ray files from the blue, green, red and
phosphor model obtained with PMBS from section 8.3. The compari-
son of both distributions show that both the shape and relative position
of the green and blue distributions are identical for both ray file sets.
Therefore these deviations are not caused by the spectral ray files.

The same comparison can also be used to verify whether the 8% stray
light only occur in the simulation using the spectral ray file set. Fig-
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ure B.3 (a) and (b) show the unfiltered simulation with the stray light
on a logarithmic scale. As the stray light distributions are comparable,
it shows that they are not caused by the spectral ray files either. Note
that the relative deviations in all distributions are expected because
the weighting of the individual sources is different in the original ray
files compared to those of the spectral ray files.

(a) (b)
Figure B.3: Comparison of stray light obtained from ray tracing using originally mea-
sured ray files (a) and ray files from PMBS (b) on a logarithmic scale.
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LIST OF SYMBOLS

Symbol Description
αn sum of all negative elements in nth

row of the reconstruction matrix
βn sum of all positive elements in nth

row of the reconstruction matrix
γ angle of incidence
∆A vector of nmax ∆An corresponding

to a set of ILMD-based measurements
∆An value of ∆An(X, Y, Z, φ, ϑ)

∆An(X, Y, Z, φ, ϑ) deviations of An(X, Y, Z, φ, ϑ) from
true amplitude distribution

∆u′v′ chromaticity distance in CIE u′v′

diagram
∆u′v′median median of several ∆u′v′

∆u′v′mean mean value of several ∆u′v′

ε precision of the false position
or bisection

ζ calculation success of spectral
reconstruction

η vector of nmax ηn corresponding
to a set of ILMD-based measurements

ητ,n uncertainties regarding specific sτ,eff,n(λ)

ηN uncertainties affecting all
Mn(X, Y, Z, φ, ϑ)

ηn value of ηn(X, Y, Z, φ, ϑ)
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Symbol Description
ηn(X, Y, Z, φ, ϑ) deviations of Mn(X, Y, Z, φ, ϑ)

to Mt,n(X, Y, Z, φ, ϑ)

ϑ polar angle of radiation
ϑS polar angle of starting points

X, Y and Z on surface
λ wavelength
λC peak wavelength of spectral model
λCut (λCut,n) (nth) separation wavelength
λi,C peak wavelength of ith spectral model
ν frequency
νC peak frequency of spectral model
σi,n nth parameter for width

and skewness of ith spectral model
σn nth parameter for width

and skewness of spectral model
τ(λ) optical transmission
τFr(γ, nr) transmission according to Fresnel equations
τin(λ) internal transmission spectrum
τn(λ) τ(λ) of used filter

in nth ILMD-based measurement
τND,n(λ) transmission of neutral density used

in nth ILMD-based measurement
φ azimuth angle of radiation
φS azimuth angle of starting

points X, Y and Z on surface
A vector of nmax An corresponding

to a set of ILMD-based measurements
A(X) artificial one-dimensional A(X, Y)
A(X, Y) radiance image or irradiance based

on a basis spectrum
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Symbol Description
A(X, Y, Z, φ, ϑ) radiometric non-spectral and

non-temporal plenoptic function
of individual basis spectrum

Aη,n An(X, Y, Z, φ, ϑ) including
simulated ∆An

Aangular(Voron(φS, ϑS), φ, ϑ) angular histogram of spectral
ray file

Aangular,n(Voron(φS, ϑS), φ, ϑ) angular histogram of nth spectral
ray file

ABlue(X, Y, Z, φ, ϑ) A(X, Y, Z, φ, ϑ) of blue LED
An values of Aspatial,n(φS, ϑS)

or Aangular,n(Voron(φS, ϑS), φ, ϑ)

or A(X, Y, Z, φ, ϑ)

A−n /A+
n negative/positive An

An(φ, ϑ) specific spectral histogram of nth

spectral ray file
An(φ, ϑ, r) amplitude of nth basis spectrum

at known position (φ, ϑ, r)
An(X, Y) radiance image or irradiance based

on nth basis spectrum
An(X, Y, Z, φ, ϑ) nth A(X, Y, Z, φ, ϑ)

APhosphor(X, Y, Z, φ, ϑ) A(X, Y, Z, φ, ϑ) of phosphor
Aspatial(φS, ϑS) spatial histogram of spectral ray file
Aspatial,n(φS, ϑS) spatial histogram of nth spectral

ray file
ADC n ADC of nth voronoi region
d thickness of optical filter
d0 reference thickness
dλ wavelength increment
dλ/dT temperature coefficient of λ
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Symbol Description
f (x) function of x
Imean,n,r mean value of In,r(φ, ϑ)

In,r(φ, ϑ) pseudo-intensity of ray file
created with M(φS, ϑS, φ, ϑ)

Jmean,n,r mean value of Jn,r(φ, ϑ)

Jn,r(φ, ϑ) pseudo-intensity of measured
ray file (original ray file)

ki(λ) itharbitrary weighting function
for RSS merit

M vector of nmax Mn corresponding to
a set of ILMD-based measurements

M(φS, ϑS, φ, ϑ) model of plenoptic function created
with measured ray file

M(X, Y) pseudo-radiance image or pseudo-
irradiance based on ray file of
ILMD-based measurement

M(X, Y, Z, φ, ϑ) unweighted pseudo-radiometric or
photometric non-spectral and
non-temporal plenoptic function

Mη,n value of Mη,n(X, Y, Z, φ, ϑ)

Mη,n(X, Y, Z, φ, ϑ) Mn(X, Y, Z, φ, ϑ) including
simulated ηn(X, Y, Z, φϑ)

MA(X, Y, Z, φ, ϑ) M(X, Y, Z, φ, ϑ) with absolute weighting
MA,m(X, Y, Z, φ, ϑ) mth M(X, Y, Z, φ, ϑ)

with absolute weighting
MA,n(φ, ϑ, r) absolute measurement value of nth

ILMD-based measurement
at known position (φ, ϑ, r)

MA,n(X, Y, Z, φ, ϑ) nth M(X, Y, Z, φ, ϑ)

with absolute weighting
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Symbol Description
MA,SB(X, Y, Z, φ, ϑ) sharp blue M(X, Y, Z, φ, ϑ)

with absolute weighting
MA,SY(X, Y, Z, φ, ϑ) sharp yellow M(X, Y, Z, φ, ϑ)

with absolute weighting
Mangular(ADC n, φ, ϑ) angular histogram of nth specific

voronoi region of measured ray file
Mangular(Voron(φS, ϑS), φ, ϑ) angular histogram of measured

ray file
Mangular,n(Voron(φS, ϑS), φ, ϑ) angular histogram of nth

measured ray file

Mmin,n, Mmax,n, Mmean,n obtained minimal, maximal and

mean Mη,n used in factorial design
Mn value of Mn(X, Y, Z, φ, ϑ), pseudo-

radiometric or photometric value
Mn(φ, ϑ) specific measurement histogram

of nth measured ray file
Mn(φ, ϑ, r) counted ray number of

nth measured ray file
at known position (φ, ϑ, r)

Mn(φS, ϑS, φ, ϑ) model of plenoptic function created
with nth measured ray file

Mn(X, Y) pseudo-radiance image or pseudo-
irradiance based on ray file of
nth ILMD-based measurement

Mn(X, Y, Z, φ, ϑ) nth M(X, Y, Z, φ, ϑ)

MR,Sτ normalized MSτ

M−1
Sτ (MSτ) (inverse) spectral reconstruction

matrix
M−1

Sτ,RGB spectral reconstruction matrix
of RGB LED
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Symbol Description
MS,n(X, Y, Z, φ, ϑ) nth sharp M(X, Y, Z, φ, ϑ)

MSB(X, Y, Z, φ, ϑ) sharp blue M(X, Y, Z, φ, ϑ)

Mspatial(φS, ϑS) spatial histogram of measured ray file
Mspatial,n(φS, ϑS) spatial histogram of nth measured ray file
MSY(X, Y, Z, φ, ϑ) sharp yellow M(X, Y, Z, φ, ϑ)

Mt,n value of Mn(X, Y, Z, φ, ϑ)

Mt,n(X, Y, Z, φ, ϑ) Mn(X, Y, Z, φ, ϑ) without any uncertainty
n, m index variables, number
Nangular number of spatial histogram bins

used to sample ray files
Ncomb number of possible filter combinations
neff effective index of refraction

(used for interference filter)
nmax number of basis spectra
nr refractive index
NPS selection number of filter preselection
NRay total numbers of rays in ray file
NRay,n total numbers of rays in the nth ray file
NSe selection number of filter selection
Nspatial number of spatial histogram bins used

to sample ray files
NVoron number of voronoi regions with

constant ADC used to sample ray files
NCC normalized cross-correlation
NCCn,r NCC of nth model at distance r
p initial amplitude of spectral model
Pcumsum(Th) cumulative sum of Ptot(Th)
pi (pn) initial amplitude of ith (nth )

spectral model
P(X, Y, Z, φ, ϑ, λ, t) plenoptic function
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Symbol Description
PRef,n reference spatial separation merit

of An(X, Y)
psmooth smoothing parameter of smoothed spline
Psum spatial separation merit
Psum,n spatial separation merit of An(X, Y)
Ptot(Th) total number of pixels above Th
Qaim,n aim value of Qn(An) in optimization
Qcurrent,n current value of Qn(An) in

optimization
Qfinal,n aim value of Qn(An) in nearest

neighbor calculation
Qn(ζ) amount of negative/false positive

values in An according to ζ

Qn(An) amount of negative/false positive
values in An

Qstart,n value of Qn(An) before nearest
neighbor calculation

r distance to point of origin
of goniophotometer

R(X, Y, Z, φ, ϑ, λ) non-temporal plenoptic function
RS,n(X, Y, Z, φ, ϑ, λ) nth sharp R(X, Y, Z, φ, ϑ, λ)

RSB(X, Y, Z, φ, ϑ, λ) sharp blue R(X, Y, Z, φ, ϑ, λ)

RSY(X, Y, Z, φ, ϑ, λ) sharp yellow R(X, Y, Z, φ, ϑ, λ)

RSS residual sum of squares
RSSG reference RSS (of Gaussian model)
RSSmean mean value of several RSS
S(λ), S(ν) spectral power distribution (spectrum)
S(λ, x) model spectrum of LED
Sη(λ) reconstructed spectrum including

simulated ∆An
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LISTS OF SYMBOLS

Symbol Description
sτ,eff(λ) effective spectral sensitivity of ILMD-system
sτ,eff,m(λ) effective spectral sensitivity of ILMD-system

used in mth ILMD-based measurement
sτ,eff,n(λ) effective spectral sensitivity of ILMD-system

used in nth ILMD-based measurement
sτ,n(λ) sτ,eff,n(λ) excluding τND,n(λ)

SBlue(λ) blue LED spectrum
SM(λ) measured spectrum
SM(λ, φ, ϑ, r) measured spectrum at known position (φ, ϑ, r)
Sn(λ) nth basis spectrum
Sn(λ, x) nthmodel spectrum of LED
SP(λ) spectrum modeled as smoothed spline

(model of phosphor basis spectrum)
SPhosphor(λ) phosphor spectrum
SR,LED(λ) sum of remainder LED spectra
SR,P(λ) remainder phosphor spectrum
SS,n(λ) nth sharp separated spectrum
SSB(λ) sharp blue spectrum
SSY(λ) sharp yellow spectrum
sSys(λ) spectral system sensivity
T room temperature
t time
Tabs temperature drift caused by absorption
Th threshold value in calculation of Psum

u(...) modeled uncertainty distribution
of ...variable

u(λγ) wavelength uncertainty
induced by u(γ)

u′n, v′n nth coordinates of CIE u′v′ diagram
uσ standard deviation of u(...)
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Symbol Description

umin, umax, umean minimal, maximal and mean uncertainty

u(...) used in factorial design
v(λ) [= y(λ)] photometric sensitivity of the human

eye according to CIE
Voron(φS, ϑS) specific voronoi region
WA absolute scaling factor
Wn absolute weighting of nth

ILMD-based measurement
Wnorm(Wnorm,n) matrix to normalize MSτ

(nth diagonal element)
WR relative weighting matrix
WR,n relative weighting factor of

nth ILMD-based measurement
WS,n nth global sharp weighting factor
WSB global sharp blue weighting factor
WSY global sharp yellow weighting factor
X, Y and Z spatial X,Y and Z-dimension

(starting point on a surface)
x set of model parameters
x(λ), z(λ), y(λ) color matching functions according

to CIE 1931
xi set of model parameters for ith

basis LED spectrum
XCIE, YCIE, ZCIE tristimulus values according to CIE 1931
xlong(λ) filter functions which approximates

x(λ) in the interval [500 830]
xshort(λ) filter functions which approximates

x(λ) in the interval [380 500]
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LISTS OF SYMBOLS

Abbreviation Description
ADC angular distribution curve
BBY Blue/Blue/Yellow (Phosphor)
BY Blue/Yellow (Phosphor)
CAD computer - aided design
CCD charge-coupled device
CIE Commission Internationale de l’Eclairage
CIE u′v’ diagram CIE 1976 uniform chromaticity scale
CMOS complementary metal-oxide-semiconductor
CRI color rendering index
DUT device under test
FWHM full width at half maximum
GBY Green/Blue/Yellow (Phosphor)
GmbH german abbreviation for

Gesellschaft mit beschränkter Haftung
IES Illuminating Engineering Society
ILMD imaging luminance measurement device
LED light emitting diode
ND neutral density
OLED organic light emitting diode
PCA principal component analysis
PDF probability density function
PMBS physically motivated basis spectra
RBY Red/Blue/Yellow (Phosphor)
RGB Red/Green/Blue
RGBW Red/Green/Blue/White
RGBY Red/Green/Blue/Yellow (Phosphor)
TM Technical Memorandum
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