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Fully understanding biomolecular function requires detailed insight into the systems’ structural
dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy
Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted.
Molecular simulations can complement these experiments but typically face limits in accessing slow
time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation tech-
nique that tackles these challenges. While requiring only few parameters, we maintain full protein
flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce
computational demands to simulate large or heterogeneous structural dynamics and ensembles on
slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET effi-
ciencies which quantitatively agree with experimentally determined values. By providing atomically
resolved trajectories, this work supports the planning and microscopic interpretation of experiments.
Overall, these results highlight how simulations and experiments can complement each other lead-
ing to new insights into biomolecular dynamics and function. © 2018 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5010434

I. INTRODUCTION

Life at the molecular level is determined by the interplay
of structure and dynamics. While a biomolecular structure can
be determined by sophisticated experimental techniques such
as NMR or X-ray, detailed insight into its dynamics is more
difficult to access. A particularly powerful technique is FRET
(Förster Resonance Energy Transfer), where specific sites in
biomolecules are labeled by fluorescent dyes. FRET can pro-
vide time-resolved information about, e.g., protein-folding
dynamics,1 folding intermediates,2,3 unfolded or disordered
proteins,4–6 or conformational transitions.7 Both planning
and interpretation of such experiments can be nontrivial, as
FRET does not directly provide quantitative distance infor-
mation within the protein. Instead, it rather measures the
transfer efficiency between the dyes which—besides the dis-
tance between the dyes—depends on their orientation and

dynamics and hence also on their shapes. A useful com-
plement for such experiments is molecular simulations of
dye-labeled biomolecules. Depending on their complexity,
additional information up to the full dynamics of all atoms
becomes accessible.

To date, many simulation approaches are available. A
straightforward approach is predicting the inter-dye distance
by estimating the accessible volume of FRET dyes.8–12 This
does, however, not account for dynamics and the mutual dye
orientation, reflected by the orientation factor κ2. An approach
that has been used extensively for unfolded and intrinsically
disordered proteins is the interpretation of FRET data in
terms of analytical polymer models,13 but such models are
not applicable to folded proteins. Molecular dynamics sim-
ulations are computationally considerably more demanding
and aim at modeling the system dynamics accurately. In this
approach, the dyes are typically parametrized for a specific
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biomolecular force field.14 Then, simulations on the ns to µs
time scale are run and compared to experimentally acces-
sible properties, such as fluorescence anisotropy15 or mean
FRET efficiencies.14 As one might imagine, dye and linker
fluctuations play an important role.16 Similarly, the specific
dye shape and mutual orientation are crucial and are not
fully captured by simple accessible volume calculations.17

Molecular dynamics simulations also allow testing assump-
tions such as approximating the mutual dye-dye orientation
factor κ2 with 2/3, which is questioned in several studies,18,19

in particular, for low linker flexibilities.20 Many simulation
protocols have computationally prohibitive demands to reach
sufficiently long simulation times for accurate calculations
of experimentally accessible properties.21 In particular, it is
challenging to account for slow or large-scale conformational
transitions, structurally diverse ensembles such as unfolded
proteins, very large systems, or intrinsically disordered
proteins.

Here, we want to introduce a new method for simulating
the dynamics of FRET-labeled proteins on a coarse-grained
description level22 which maintains full protein flexibility and
all heavy atoms of proteins and dyes. This considerably lowers
computational costs and allows us to eliminate many chal-
lenges regarding the mentioned insufficient sampling of large
conformational ensembles. Our model allows us to access and
quantitatively analyze these complex dynamic ensembles in
atomic detail. The model requires only few and robust parame-
ters to achieve a realistic description of the system. We validate
our approach by direct and quantitative comparison against
experimental FRET efficiency histograms. As an example, we
highlight simulating large and diverse structural ensembles
by comparing simulations and measured FRET data of both
folded and unfolded proteins. Having established the preci-
sion of our model, we then compare our model to descriptions
of FRET by the accessible volume approach and analytical
polymer models.

II. THEORY
A. Förster resonance energy transfer

Förster Resonance Energy Transfer (FRET)23 is a non-
radiative energy transfer between a donor and an accep-
tor fluorophore. It has a high sensitivity to distances in the
nanometer range and is therefore a powerful “spectroscopic
ruler”.24 For example, one can label specific residues of
proteins with suitable donor and acceptor fluorophores to
distinguish different protein conformations and conforma-
tional changes directly through distance changes between the
dyes.

FRET experiments measure the FRET efficiency E, which
is related to the inter-dye distance RDA by25

E =
1

1 +
(

RDA
R0

)6
. (1)

The Förster radius R0 determines the range of measurable
distances and is given by25

R6
0 =

9(ln 10)κ2QDJ(λ)

128π5n4NA
, (2)

where QD is the fluorescence quantum yield of the donor in
the absence of the acceptor, κ2 is the dipole orientation factor,
n is the refractive index of the medium, NA is the Avogadro
constant, and J(λ) is the spectral overlap integral of donor
emission and acceptor absorption spectra. The orientation fac-
tor κ2 describes the relative orientation of the transition dipole
moments for emission of the donor, µD, and absorption of the
acceptor, µA, and can be calculated via25

κ2 = (sin θD sin θA cos φ − 2 cos θD cos θA)2, (3)

where θD and θA are the angles between µD and µA and the
connecting vector RDA between the two dye centers, respec-
tively. φ denotes the angle between the planes defined by µA,
RDA and µD, RDA, respectively.

Most experimental studies assume fast rotational diffusion
of the dyes with respect to the excited state lifetime, resulting
in an averaging over all possible orientations. This is referred
to as the “isotropic averaging regime,” in which case a con-
stant value of κ2 = 2/3 can be used.25 The assumption of
κ2 = 2/3 has been questioned in several studies12,18–20 but can
be tested experimentally, e.g., by measuring time-dependent
fluorescence anisotropy decays.14

B. Rotational correlation time

A sample of randomly oriented dyes illuminated by
polarized light depolarizes over time as a consequence of
rotational diffusion. Observing the time dependent fluores-
cence anisotropy r(t) leads to a measure of the flexibility
and rotational speed of the dyes, the rotational correlation
time τrot. The time-resolved fluorescence anisotropy can be
measured experimentally and calculated from simulations
using the normalized transition dipole moment vector µ̂
via26

r(t) = r0
〈
P2

[
µ̂(s) · µ̂(s + t)

]〉
, (4)

where r0 is the fundamental anisotropy and P2 is the second-
order Legendre polynomial. r(t) allows a direct comparison of
experimental observations with simulations. Here, we assume
that the absorption and emission dipole moments are collinear
for our dyes, so the fundamental anisotropy is given by r0 = 0.4,
close to the experimental value.27

In the analysis of experimental data, often a double-
exponential decay is required to account for the contribu-
tions of rotational motion of both the fluorophore and the
protein.14,26,28 In the systems we investigate here, the pro-
teins are large in comparison to the dyes and the measured
dye rotational correlation times are one order of magni-
tude smaller than the expected rotational correlation time
of the proteins. In the simulations, we focus on the rota-
tional motion of the dye in the inertial system of the protein,
where we find it sufficient to use only one exponential and fit
with

r(t) = r0 exp

[
−

t
τrot

]
. (5)

C. Structure based models

For our simulations, we use native Structure Based Mod-
els (SBMs), also referred to as Gō-type models.29 They
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are based on energy landscape theory and the principle of
minimal frustration.30–33 SBMs are used successfully to study
a wide range of phenomena34 ranging from, e.g., protein
folding,35,36 misfolding,37,38 structure prediction,39 and con-
formational dynamics40,41 to large biomolecules such as the
ribosome42 or RNA.43 SBM simulations show good agree-
ment with experimental results, e.g., they are used to reproduce
transition state ensembles and “en-route” intermediates,44 and
folding rates comparable to experimental measurements.35 By
design, they are limited to unfrustrated systems with negli-
gible non-native interactions.29–33 With their high computa-
tional efficiency, SBMs facilitate simulations of several folding
and unfolding transitions on regular desktop computers while
offering full flexibility for all parts of the protein. The SBM
potential employs the native structure of the protein as its
ground state but also allows one to model systems with mul-
tiple stable conformations by using potentials with multiple
minima.7,40,41,45

We use an all-atom SBM22 implemented in eSBMTools,46

which takes into account all heavy atoms of the protein and
uses a simplified potential of the form47

V =
∑

bonds

Kb(r − r0)2 +
∑

angles

Ka(θ − θ0)2 +
∑

impr. d.

Ki(χ − χ0)2

+
∑

prop. d.

Kd

[ [
1 − cos(φ − φ0)

]
+

1
2

[
1 − cos(3(φ − φ0))

] ]

+
∑

contacts

KcCG(rij, rij
0 ) +

∑
non-native contacts

Knc

(
σ̃

rij

)12

. (6)

The potential includes harmonic potentials for bonds, angles,
and improper dihedral angles and a potential for proper dihe-
dral angles which allows the occupation of isomeric confor-
mations. The minima are set to r0, θ0, χ0, and φ0, the values
for bond lengths, angles, improper dihedral angles, and proper
dihedral angles in the native state, respectively. The contact
potential CG(rij, rij

0 ) stabilizes the native structure by introduc-
ing attractive potentials for atom pairs forming contacts in the
native state, whereas an overall repulsive term is included for
the excluded volume of all atoms. rij

0 and rij are the native
and the actual distances of the atom pair (i, j) and σ̃ repre-
sents the excluded volume for Pauli repulsion with the value
σ̃ = 2.5 Å. The energetic weights for bonds, angles, improper
dihedral angles, and non-native contacts are set to the values
Kb = 20 000 ε /nm2, Ka = 40 ε /deg, K i = 40 ε /deg, and
Knc = 0.01 ε , where deg refers to degree and ε is the reduced
energy unit.48 The energetic weights for the contact potential
Kc and for the proper dihedral angle potential Kd are deter-
mined as described in Ref. 48. The Gaussian contact potential
is given by47,49

CG(rij, rij
0 ) = *

,
1 +

(
σ̃

rij

)12
+
-
*
,
1 − exp


−

(rij − rij
0 )2

2σ2


+
-
− 1, (7)

with σ2 = (rij
0 )2/(50 ln 2) for each native contact pair (i, j)

determined by the shadow map algorithm.47 All atoms are
handled equally with identical parameters for the excluded
volume and a unit mass of m = 1.0.

As SBMs do not have an inherent temperature scale com-
parable to physical temperature, the temperatures are typically

measured in reduced units. Accordingly, the folding temper-
ature in the SBMs is about 1.0, corresponding to around
T = 120 in GROMACS units.48 Here, we report the temperature
in GROMACS units.

III. METHODS
A. Dye structure

We want to find a minimal and robust set of parameters
describing the dyes which is sufficient to replicate and predict
experimental data.

SBM simulations require an initial structure of the sys-
tem. For many dyes, only chemical structures are available.
As we want a systematic and consistent workflow, we per-
form quantum-chemical calculations to get three-dimensional
structures of the dyes. Details and the structures of the Alexa
Fluor dyes with available chemical structures are given in
the supplementary material (see SI 1). Subsequently we add
the respective linkers and maleimide which are used to bind
the dyes to the protein. In this study, we use two dye pairs—
the Alexa Fluor 488 dye with C5-linker (AF488) and Alexa
Fluor 594 dye with C5-linker (AF594), and the Alexa Fluor
546 dye with C5-linker (AF546) and Alexa Fluor 647 dye with
C2-linker (AF647). In general, every dye and linker with an
available chemical structure can be utilized accordingly.

B. Dye parameters

For the initial dye parameters, we choose the same
parametrization as for the protein in the SBM. We determine
the angles and dihedral angles automatically from the bond
information given in the chemical structure. A detailed descrip-
tion can be found in the supplementary material (see SI 2). The
only interaction between both dyes and also between dyes and
protein is the excluded volume repulsion term.

SBMs do not have an inherent temperature scale. To adjust
the dye parameters independently of the protein in a consis-
tent way, we set the dye temperature Tdye separately from
the protein temperature T. In the simulation, we treat dyes
and protein as different groups and couple them to separate
temperature baths. This has the advantage of uncoupling the
behavior of dyes and protein, so we can use the same dye
temperature regardless of investigating, e.g., a folded or an
unfolded protein, realized by low and high protein tempera-
tures, respectively. We tested the effect of the dye temperature
on the protein dynamics and found only a slight increase of the
fluctuations of the respective residues the dyes are attached to,
whereas the dynamics of the adjacent residues remain unal-
tered. Due to numerical instabilities,50 we cannot sufficiently
increase the temperature to account for the high dye mobility.
Hence, we additionally change the mass of the dye atoms to
0.2, rather than the unit atom mass of 1.0 the SBM assigns to
the protein.

C. Merging dyes and protein

The protein structures used for the simulations are taken
from the Protein Data Bank (PDB).51 The three used proteins
are the chymotrypsin inhibitor 2 (CI-2, PDB: 2CI252) as a
test system, the tenth type III module of fibronectin (10FNIII,

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
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FIG. 1. Structures of 10FNIII (left) and AF546 and
AF647 dyes55 (middle). The dyes are attached with the
respective linkers via a maleimide bound to residues 11
and 86 of 10FNIII. The merged structure is shown with
the assumed transition dipole moments (black arrows) for
donor (blue, µD) and acceptor (red, µA) dyes as well as
the distance between the dyes’ centers (RDA) (right).

PDB: 1TTG53), and the cold-shock protein from the hyper-
thermophilic bacterium Thermotoga maritima (CspTm, PDB:
1G6P54).

The Alexa Fluor dyes are typically attached to cysteine
residues of proteins via a maleimide group. In our simula-
tions, the respective residue in the protein is replaced by a
cysteine and the dye-maleimide structure is attached to the
sulfur atom of the cysteine. This is done by attaching the dye
preferably orthogonally to the protein surface while avoiding
steric clashes between atoms. As an example, 10FNIII with
AF546 and AF647 attached to residues 11 and 86, respectively,
is shown in Fig. 1. Details of the procedure can be found in
the supplementary material (see SI 2).

D. Simulation protocol

We perform our simulations using GROMACS56 with the
SBM potential [see Eq. (6)] and the Langevin dynamics sim-
ulation protocol.56 As we use CI-2 as a simple test system,
we choose a protein temperature of T = 50 below the folding
temperature for the simulation of the folded state.

For the proteins CspTm and 10FNIII, we want to achieve a
quantitative comparison against experimental measurements.
To identify the SBM temperature for the folded states corre-
sponding to the experimental setup, we perform an initial all-
atom simulation in the AMBER99 force field:57 We choose the
SBM protein temperature by comparing the native-basin fluc-
tuations of the proteins simulated with the AMBER99 force
field at the physiological temperatures used in the experiments
[T = 296/295 K (10FNIII/CspTm)] with SBM simulations of
varying temperatures. We compare the root mean square fluc-
tuations of the Cα-atoms and choose the SBM temperature
which results in the least deviation from the AMBER99 sim-
ulation, according to Ref. 58. For the results, see Table I. For
the unfolded state, we choose a temperature well above the
folding temperature so that the protein is unfolded throughout
the simulation. We check the influence of choosing different

temperatures above the folding temperature, which does not
alter the results. Future work will focus on the challenges of
simulating conformational transitions (cf. Ref. 59).

To determine appropriate dye temperatures, we perform
simulations with different dye temperatures and determine the
respective rotational correlation times by using Eqs. (4) and
(5). The temperature directly affects the dye mobility and the
rotational correlation time τrot. Higher temperatures lead to
smaller τrot. To obtain a high dye mobility, we choose the
temperature for the faster rotating dye at Tdye = 250 and for
the slower dye such that the ratio of both rotational corre-
lation times from experiments is matched (see Table S1 in
the supplementary material). For AF647, we do not have an
experimental value of τrot and use the same temperature as for
AF546. Varying the dye temperature slightly does not alter the
final results.

We then perform simulations with 109 steps and
dt = 0.0005 for CspTm and with 2.5 × 109 steps and
dt = 0.0002 for CI-2 and 10FNIII. The temperature coupling
constant is set to τT = 0.1. From the simulations, we extract the
inter-dye distance RDA(t) and the transition dipole moments
of donor µD(t) and acceptor µA(t) (see Fig. 1, for details see
SI 3 of the supplementary material).

SBMs do not have a time scale directly comparable to
the physical time scale. To evaluate simulated trajectories and
obtain FRET efficiency histograms, we introduce a time scale
based on a comparison of the experimental and theoretical
rotational correlation times τrot of the dyes. We calculate the
fluorescence anisotropy decay r(t) from simulations according
to Eq. (4) and fit it with Eq. (5). From the comparison, we get
a conversion factor to adjust the trajectory time scale.

This time scale is necessary as we want to calcu-
late FRET efficiency histograms directly comparable to
experiments. Photon statistics are gained from Monte Carlo
photon simulations (as described in Refs. 8, 60, and 61) and
fully account for shot-noise. The simulation parameters are
given in Table S1 in the supplementary material. We generate

TABLE I. Simulation parameters for different protein/dye combinations. The protein temperatures for simulation
of the folded TF and the unfolded TU states, the dye pair, the dye-labeled residues, and the dye temperature(s) are
given.

Dye pair Labeled residues Tdye

Protein TF TU Donor/acceptor Donor/acceptor Donor/acceptor

CI-2 50 170 AF546/AF647 20/78 250
CI-2 50 170 AF488/AF594 20/78 190/250
CspTm 90 150 AF488/AF594 2/68, 68/2, 11/68, 68/11, 23/68 190/250
10FNIII 60 200 AF546/AF647 11/86 250

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
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donor and acceptor photons for the whole simulated trajec-
tory, corresponding to around 100 µs on the physical dye time
scale, until a specified number of photons (the burst size) is
collected. Each of these bursts is used to calculate a single
FRET efficiency value. Details are given in the supplementary
material (see SI 3).

We perform simulations with three different proteins
(CspTm, CI-2, and 10FNIII) and two different dye pairs
(AF488 and AF594, AF546 and AF647). Because of the
dependence of the Förster radius on the refractive index of
the medium, R0 changes slightly for higher denaturant con-
centrations in the experiments. Hence, for evaluation of the
unfolded state, we use the changed Förster radii (see Table S1
in the supplementary material).

IV. SIMULATION RESULTS
A. Test simulations with CI-2

As an example, we simulate the test system CI-2. The
resulting distributions for CI-2 with two different dye pairs,
attached at residues 20 and 78, respectively, are shown in Fig. 2.
The inter-dye distances RDA [see Figs. 2(a) and 2(b)] and the

FIG. 2. Simulation results for CI-2 for two different dye pairs—AF546 and
AF647 (left) and AF488 and AF594 (right)–attached to residues 20 and 78,
respectively. The results are shown for simulations of the folded state (blue)
and the unfolded state (orange). [(a) and (b)] Distributions of the inter-dye dis-
tances RDA and the average distances for folded (RF) and unfolded states (RU)
and respective Förster radii R0 (dashed black lines). Further, the respective
distributions of Cα-distances between residues 20 and 78 for folded (green)
and unfolded (red) states are shown. [(c) and (d)] Distributions of the ori-

entation factors κ2 and the average orientation factors for folded (κ2
F) and

unfolded (κ2
U) states. [(e) and (f)] Distributions of the FRET efficiencies with

a Gaussian fit (black lines) and the positions of the peaks for folded (〈E〉F)
and unfolded (〈E〉U) states.

orientation factors κ2 [see Figs. 2(c) and 2(d)] for folded and
unfolded conformations along with the respective mean values
are depicted. We have also carefully investigated the effect of
sampling (see SI 4 of the supplementary material).

Clearly, the unfolded state has a much broader distance
distribution, whereas the folded state is narrower. Comparison
of the distances of the Cα-atoms with the inter-dye distances
shows that the distribution of RDA in the folded state is dom-
inated by dye dynamics. For both dye pairs, the distance
distributions are similar. The ideal Förster radius to get best-
separated states would be between the average distances of
folded and unfolded states. Considering the Förster radii of
the two dye pairs used here, the distance distributions show
that the pair AF488/AF594 is better suitable for studying CI-2
experimentally.

The distributions of the orientation factors in the folded
and unfolded states are similar, and the mean values κ2

U are
in good agreement with the approximation of κ2 = 2/3. As
expected, in the case of unfolded proteins, the dyes can rotate
freely and their orientations are almost unrestricted. However,
we observe slightly larger deviations of 2%-5% for the mean
values in the folded state κ2

F, probably due to steric restrictions
imposed by the protein.

The resulting FRET efficiency histograms along with the
mean efficiency values calculated by Gaussian fits are illus-
trated in Figs. 2(e) and 2(f). As an alternative, log-normal

FIG. 3. FRET efficiency distributions for CspTm with AF488 (donor) and
AF594 (acceptor) at different labeling sites. The labeling positions of donor
(D) and acceptor (A) are color coded in (a)–(e). Colors refer to the positions
marked in (f), the residues 2 (red), 11 (green), 23 (blue), and 68 (yellow). The
residue numbering within the protein is given in the supplementary material
(see SI 6). The distributions are shown for the folded (blue) and unfolded
(orange) states and fitted with Gaussians. The positions of the peaks are given
for the folded (〈E〉F) and unfolded (〈E〉U) states.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
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distributions or a straightforward median can be used, but this
does only have negligible effects on the quantitative results.
Different hypothetical Förster radii can be tested with this
model (see SI 5 of the supplementary material).

B. CspTm with different dye positions

Another advantage of the efficient simulation approach
we propose is that different labeling positions can readily be
implemented and investigated. As an example, we perform
simulations for CspTm with AF488 and AF594 at differ-
ent labeling positions. The resulting FRET efficiency his-
tograms are shown in Fig. 3. The labeling sites are the residue
pairs C2/C68, C68/C2, C11/C68, C68/C11, and C23/C68 for
donor/acceptor,62,63 respectively (for the numbering scheme,
see SI 6 of the supplementary material). As expected, the
peaks for the unfolded state shift to higher efficiencies with

shorter sequence separation. Also, permutations of the dyes
with respect to the attachment points have, unsurprisingly, no
relevance.

Both results (see Figs. 2 and 3) show the strength of the
simulation method as it establishes a way to directly relate dis-
tance distributions to FRET efficiency distributions and allows
one to vary and test different parameters such as the Förster
radius, dye pair, linker length, or labeling sites. This facil-
itates improvement in planning, interpreting, and validating
experimental results.

C. Comparison of simulation and experiment

As a validation of our model, we compare the resulting
FRET efficiency histograms against experimental data. FRET
efficiency histograms from experiments and simulations for
four different systems are shown in Fig. 4. Figure 4(a) shows

FIG. 4. Comparison of FRET efficiency histograms from simulations and experiments. (a) Results for 10FNIII with AF546 and AF647 at residues 11 and 86.
[(b)–(d)] Results for CspTm with AF488 and AF594 at (b) residues 68 and 2, (c) residues 11 and 68, and (d) residues 23 and 68, respectively.63 The distributions
are shown for the folded (blue) and unfolded (orange) states. The experimental FRET efficiency values below 0.0 and above 1.0 are not shown. The distributions
are fitted with Gaussians, and the peak positions for folded (〈E〉F) and unfolded (〈E〉U) states together with the respective standard deviations σF and σU can
be found in Table II.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
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the results for 10FNIII with AF546 and AF647, and Figs. 4(b)–
4(d) show the results for CspTm with AF488 and AF594 at
different labeling positions.

The experimental data for the respective protein in 0.0 M
GdmCl (folded) and in 4.63 M and 7.0 M GdmCl (unfolded)
for 10FNIII and CspTm63 are shown, respectively. The exper-
imental data are already corrected for background, different
quantum yields of donors and acceptors, different detection
efficiencies, cross talk, and direct acceptor excitation. From
these errors, only the different quantum yields are reflected in
our simulation protocol and are already corrected for in the
Monte Carlo photon simulations.

The simulated data agree well with the experimental
results except in the case of CspTm C11/C68 [see Fig. 4(c)],
where the transfer efficiency of the folded state in the simula-
tion is shifted to lower values. In this case, the dyes are attached
on opposite sides of the protein, which would explain a lower
FRET efficiency compared to the other two labeling schemes.
The deviation between simulations and experiments may be
caused by residual attractive interactions between the fluo-
rophores and protein surface, an aspect that could be tested by
detailed time-resolved fluorescence anisotropy measurements
of the different variants.

The mean and standard deviations of the Gaussian fits in
Fig. 4 are summarized in Table II. The widths of the FRET
efficiency distributions from the simulations are dominated by
shot-noise, caused by the limited number of photons collected
for each burst.

In experiments, dye photophysics, e.g., donor and accep-
tor quenching or blinking, additional deviations through the
necessity to correct for background, cross talk, and detection
efficiencies, lack of site-specific labeling or other chemical
heterogeneity, and other experimental artifacts can lead to
additional broadening of the FRET efficiency distribution.25,64

Incomplete labeling or photobleaching can lead to a donor-
only peak near zero FRET efficiency which is also not present
in the simulations.

For CspTm, the width of the Gaussian from the simula-
tions is only slightly lower than the ones from the experiment,
which indicates that the width of the experimental histograms
is already close to the shot-noise limit.

TABLE II. Parameters of the Gaussian fits of the FRET efficiency histograms
from simulations (Sim) and experiments (Expt.). The peak positions of the
Gaussian fit for the folded 〈E〉F and unfolded 〈E〉U states are given with the
respective standard deviations (σF, σU). (a) 10FNIII with AF546 and AF647
at residues 11 and 86. [(b)–(d)] CspTm with AF488 and AF594 at (b) residues
68 and 2, (c) residues 11 and 68, and (d) residues 23 and 68.

Folded Unfolded

System 〈E〉F σF 〈E〉U σU

(a) 10FNIII Expt. 0.84 0.07 0.45 0.12
Sim 0.90 0.03 0.41 0.06

(b) CspTm C68/C2 Expt. 0.95 0.04 0.36 0.08
Sim 0.93 0.03 0.34 0.06

(c) CspTm C11/C68 Expt. 0.95 0.06 0.37 0.08
Sim 0.81 0.04 0.40 0.06

(d) CspTm C23/C68 Expt. 0.94 0.06 0.45 0.07
Sim 0.90 0.03 0.46 0.06

D. Comparison to simple models for data analysis

To compare the simulation results with different simple
models for data analysis, we plot the inter-dye distance RDA

for the folded state and RDA in relation to the Cα-distance (the
distance between the Cα-atoms of the respective residues the
dyes are attached to) in the unfolded state in Fig. 5. This is
shown for three different protein-dye systems.

For the folded state, we compare the mean and stan-
dard deviation from the distance distribution of the simula-
tion (black crosses and error bars) to the respective values
of an accessible volume calculation11,12 (blue). The acces-
sible volume approach calculates all sterically possible dye
positions within the linkage length and considers them as
equally probable. Then, it calculates the mean distance of the
dyes RDA.

Both methods agree very well, with the simulations having
a lower standard deviation. This originates from the dynam-
ics in the simulations, which entropically disfavors dye states
close to the protein surface, whereas the accessible volume
method assumes all states to be equally probable.

For the unfolded state, the accessible volume approach
faces the challenge of properly treating an unfolded ensemble
of diverse conformations with dye distributions. By contrast,
our model can directly simulate the whole ensemble with dyes.

Proteins in the unfolded state can be described as polymer
chains. At high temperatures in the unfolded state, the SBM
results in an excluded volume polymer chain.65 To test this,
we consider the equation

〈r2〉1/2 = C × Nν (8)

with the spatial distance r between two chain elements, the
sequence separation between two elements N, the length scal-
ing exponent ν, and a constant C. We fit the mean Cα-distance
〈(RCα )2

ij〉
1/2 between residues i and j, averaged over the trajec-

tory, as a function of the sequence separation N = |i � j| with
Eq. (8). We obtain values for the fit parameters ν which cor-
respond well with the expected value for an excluded volume
chain of ν = 3/565 (see SI 7 of the supplementary material).
Now we determine an effective segment length Neff = N + L
with a “length” L of the dye pair which was already used
to interpret experimental FRET measurements.66,67 We take
the dyes’ mean square separation 〈R2

DA〉
1/2 and assign an Neff

from the respective fit. An example fit and details of the calcu-
lation are given in the supplementary material (see Fig. S12).
It turns out that for the AF488/AF594 dye pair, the length is
about L = 11.3 ± 1.3 residues, which is in the same range as
found experimentally in Ref. 67. For the AF546/AF647 dye
pair, it is 14.15 ± 0.65 residues. With this effective length,
a correction factor m = ((N + L)/N)ν for the relation between
〈R2

DA〉
1/2 and the distance of the respective Cα-atoms 〈R2

Cα
〉1/2

can be calculated. It is given by m = 1.10 for CspTm (with
AF488/AF594), m = 1.14 for CI-2 (with AF546/AF647), and
m = 1.11 for 10FNIII (with AF546/AF647) (for details see SI 7
of the supplementary material).

For the unfolded state, the histogram for the inter-dye
distance and the corresponding Cα-distance is shown in Fig. 5.
It can be seen clearly that the values are not identical (which
would be indicated by the dotted lines). By correcting this
for the effective chain length, we expect a different relation

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-021898
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FIG. 5. Distributions of inter-dye distances RDA and distances of the Cα-atoms of the respective residues for CspTm (with AF488 and AF594 at residues 2
and 68, left), 10FNIII (with AF546 and AF647 at residues 11 and 86, middle), and CI-2 (with AF546 and AF647 at residues 20 and 78, right). For the folded
state [(a)–(c)], distance distributions (red), mean distances (crosses), and standard deviation (error bars) from simulations (black) and from accessible volume
calculations (blue) are depicted. For the unfolded state [(d)–(f)], the histograms of the inter-dye distances and the corresponding Cα-distances are shown. The
expected dependency for equality of both values (dotted lines) and for the expectation corrected by an effective segment length of the chain (white crosses) is
shown. The histogram count is scaled according to the maximum of each histogram separately.

between RDA and the Cα-distance, as indicated by the white
crosses, providing a good approximation of the dependence
observed in the simulations.

In summary, we achieve our aim of capturing both folded
and unfolded states in the same simulation method, paving the
way to simulate complex large-scale conformational transi-
tions between multiple states in the future.

V. DISCUSSION

In this work, we introduce a new simulation method for
dye-labeled biomolecules with only a few robust parameters.
The approach suggested here is most useful in the absence of
pronounced non-native interactions or structure formation not
included in the structure-based model. We are able to achieve
a realistic description of the system as evidenced by direct
comparison and quantitative agreement of FRET efficiency
histograms with experimental data. This establishes a way
to directly complement experimental FRET efficiency distri-
butions with atomically resolved structural ensembles from
simulations, which provides novel and detailed insights into
biomolecular processes. Even complex scenarios involving
large structural ensembles, such as unfolded proteins, intrin-
sically disordered proteins, conformational transitions, and
folding intermediates, can be sufficiently sampled with modest
computational resources.

The model can improve planning experimental measure-
ments as one can vary and test different parameters such as the
Förster radius, linker length, and labeling sites in silico. On the
basis of these simulations, one can then choose the dye combi-
nations which would, e.g., best distinguish the conformational
states of interest. Further, we found that the approximation
of κ2 = 2/3 is mostly appropriate for the tested typical sys-
tems. Similarly, we could probe estimations of dye distance
distributions based on simple models.

Having established the simulation techniques, many
new scenarios are now accessible. These include simulating
strongly restricted or slow dye motions and very short or
inflexible linkers to test their effect on κ2. The low com-
putational costs make investigating conformational transi-
tions between multiple stable conformations and other large
scale motions accessible. In addition, it can be used to simu-
late more complex FRET measurements, such as three-color
FRET,68–70 where the interpretation of the data is even more
challenging.

SUPPLEMENTARY MATERIAL

See supplementary material for additional information
about the used methods and the three-dimensional structures
of the Alexa Fluor dyes.
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