
An Adaptive Index
Recommendation System (AIRs)
on Document-Based Databases

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Parinaz Ameri
aus Bam, Iran

Tag der mündlichen Prüfung: 20.07.2017

Erster Gutachter: Prof. Dr. Achim Streit
Zweiter Gutachter: Prof. Dr. Andreas Oberweis

mailto:parinaz.ameri@kit.edu

ii

Erklärung zur selbständigen Anfertigung der Dissertationsschrift

Hiermit erkläre ich, dass ich die Dissertationsschrift mit dem Titel

An Adaptive Index Recommendation System (AIRs) on Document-Based Databases

selbständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel be-
nutzt sowie die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht
und die Regeln zur Sicherung guter wissenschaftlicher Praxis am Karlsruher Institut für
Technologie (KIT) beachtet habe.

Ort, Datum Parinaz Ameri

iv

To Hamzeh, my true friend
and

to my beloved parents

vi

Acknowledgements

I would like to begin my acknowledgements by thanking Prof. Dr. Achim Streit,
my supervisor, for the continuous support of my PhD studies and research. I
would also like to thank Prof. Dr. Andreas Oberweis for co-supervising this
thesis.

Besides, I would like to thank Dr. Jörg Meyer for his advice throughout my work
and for his comprehensive effort in proofreading the drafts of this thesis. Addi-
tionally, I would like to thank Mr. Nico Schlitter for his friendly encouragement
and support during my doctoral study.

I would like to thank my parents for their unconditional and long lasting love.
Finally, I would like to thank my true friend, my husband, for his devoted
attention, kindness, and compassion he has shown during the past years it has
taken me to finalize this thesis.

viii

Zusammenfassung

Aufgrund stetig wachsender Datenmengen und einer gesteigerten Vielfalt an
Datenbankanwendungen zeigen aktuelle Studien ein steigendes Interesse an As-
sistenzsystemen, welche beim Design von Datenbanken und insbesondere bei
der Auswahl von Indexmengen unterstützen. Ziel dieser Arbeit ist es, eine
tiefgreifende Analyse von individuellen Indexmengen zu ermöglichen, um jene
Menge zu identifizieren, welche für ein Arbeitsaufkommen den größten Nutzen
bei möglichst geringen Wartungskosten aufweist.

Beschränkungen, welche durch die Umwelt und das eigentliche Arbeitsaufkom-
men auferlegt werden, erschweren eine solche Analyse. Selbst wenn die zu-
grunde liegenden Speicherrestriktionen es zuließen, wäre das Erzeugen aller
möglichen Indexmengen aufgrund des durch Schreiboperationen verursachten
Wartungsaufwands jedoch keine Option.

Obwohl das Index Select Problem (ISP) seit Jahrzenten untersucht wird, ver-
einfachen viele Studien einige Aspekte, indem sie sich lediglich auf ein Lesezu-
griffsszenario beschränken oder Fortschritte bei der Anfrageoptimierung und
der Verschränkung von Indexen ignorieren. Darüber hinaus wurden die Studien
größtenteils für relationale Datenbanken durchgeführt.

Diese Arbeit nähert sich den vernachlässigten Aspekten dieses komplexen Op-
tierungsproblems durch die Entwicklung eines mathematischen Modells, welches
die relevanten Faktoren berücksichtigt. Das entstandene Modell wird anhand
von Dokument-basierten Datenbanken untersucht. Dabei wird klar, dass das
Anwachsen des Anfragelastumfangs und der gespeicherten Datenmengen die
Entwicklung neuer Methoden erfordert, um die Anzahl der durch den Optimierer
zu evaluierenden Indexmengen zu reduzieren ohne dabei jedoch die relevanten
Indexmengen zu verlieren.

Der zu betrachtende Suchraum wird verkleinert, indem nur die relevanten Indexe
für die am häufigsten vorkommenden und langlaufenden Datenbankanfragen als
Index-Kandidaten berücksichtigt werden. Eine ähnliches Vorgehen wird auf In-
dexkombinationen angewendet. Anstatt alle möglichen Indexkombinationen zu
berücksichtigen, werden lediglich jene verwendet, die vom gegebenen Arbeits-
aufkommen auch genutzt werden können. Eines der Ziele dieser Arbeit ist die
Entwicklung und zugehörige Komplexitätsbetrachtung eines Algorithmus, der
diese beschränkten Kombinationen identifiziert und zugleich die Kosten anhand
des indexverschränkenden Anfrageoptimierers verifiziert.

Die Verifikation durch den Anfrageoptimierer erhöht die Last auf dem Daten-
banksystem zusätzlich. Um diese Last zu reduzieren wird eine virtuelle Umge-
bung basierend auf repräsentativen Stichproben des ursprünglichen Datensatzes
erzeugt. Da jedoch die Größe der Indexe nicht direkt hergeleitet werden kann,
wird eine theoretische Abschätzungsmethode mit Bezug zum ursprünglichen
Datensatz entwickelt.

Das Fehlen eines geeigneten Benchmark-Werkzeugs, welches anstelle des gesam-
ten Datenbanksystems lediglich das Index Recommendation System untersucht,
wird im Kontext nicht-relationaler Datenbanken adressiert. Neben geeigneten
Metriken wird ein generischer Arbeitslast-Generator vorgestellt, mit dem die
in dieser Arbeit erzeugten synthetische Datensätze und Arbeitslasten erzeugt
werden.

Schließlich werden sowohl die individuellen Lösungen als auch das Gesamtsys-
tem hinsichtlich ihrer Leistungsfähigkeit bewertet. Für diese Evaluierung werden
genau jene meteorologischen Datensätze und deren zugehörige Arbeitsaufkom-
men genutzt, welche diese Arbeit ursprünglich motivierten. Die Resultate zeigen
die Effizienz der vorgeschlagenen Lösungen.

Abstract

Due to the increase in the amount of data volume and variety of application
workloads that databases should handle, recent studies show a raising interest
in the utilization of automatic physical database design assisting systems, more
specifically index design systems. The aim of this thesis is to enable thorough
investigations of individual sets of indexes for any particular workload to find the
most profitable set that has the least maintenance cost on the targeted database.

The nature of such an analysis is complicated due to the constraints imposed by
the environment and the workload itself. Because of the indexes’ maintenance
cost for any write query to the database, creating all possible indexes would not
be an option, even if the storage limitations allowed this materialization.

Although the Index Selection Problem (ISP) is a well-established field of research
for decades, many of the studies simplified some aspects of the problem like
restricting the workloads to read-only scenarios or ignoring the advances in
query optimizer capabilities to intersect various indexes to execute one query.
Additionally, this problem has mostly been studied in the context of relational
databases.

This thesis focuses on covering the missing aspects of this complicated optimiza-
tion problem by formulating a mathematical model considering the relevant fac-
tors. The model is then evaluated with to document-based database types. The
growth of workloads and datasets requires the development of new methods to
reduce the number of index sets that should be evaluated by the optimization
model with an insurance of not eliminating the relevant index sets from the
evaluation.

The search space is reduced by considering only the relevant indexes of the
most frequent queries and the ones with long run-time as the candidate indexes.
A similar idea is applied to index combinations. Instead of using all possible
candidate index combinations, the index recommendation system only regards
combinations that can be utilized by the given workload. One of the aims of
this thesis is the development of an algorithm and the analysis of its complexity
that extracts these limited combinations and simultaneously verifies their costs
by a query optimizer with index intersection capability.

The verification process by the query optimizer enforces additional load on the
in-production system. To reduce this load, a virtual environment with the as-
sistant of representative samples of the original targeted datasets is created.

However, since the size of indexes on the original dataset can not be directly
extracted from the sample index sizes, a theoretical method is developed to
estimated the approximated original size of indexes.

Finally, the challenge of absence of a proper benchmarks for targeting the in-
dex recommendation system rather than evaluating the whole database perfor-
mance, especially compared to non-relation databases, is addressed. Besides the
introduction of proper metrics, the development of a generic workload generator
solution allows defining various synthetic datasets and workloads that are used
through out the whole thesis.

At the end, individual solutions as well as the overall performance of the en-
tire system is evaluated. This evaluations are performed with the help of the
real dataset and workload use-cases from the meteorological projects that moti-
vated this thesis. The evaluation results show the effectiveness of the proposed
solutions.

Contents

1 Introduction 1

1.1 Main Contributions . 2

1.1.1 Reducing the Search Space of the Index Recommendation Problem . 2

1.1.2 Formulation of a more Profitable Index Sets as an Objective Function 2

1.1.3 Evaluation of the Index Sets without Overloading the Query Optimizer 3

1.1.4 Evaluation of the Performance of the Designed Solution 3

1.2 Outline of the Thesis . 3

2 Setting the Scene 7

2.1 Motivation: The Meteorological Application’s Database 7

2.2 Background . 14

2.3 Introduction to Index Recommendation Criteria 18

2.4 Index Recommendation Specifications on Document-Based Databases . . . 20

2.4.1 Data Model and Indexing . 21

2.4.2 Procedural vs. Declarative Query Language 22

2.4.3 Query Optimizer Behaviour . 24

2.5 Summary . 26

3 Related Work 27

3.1 Complexity of Index Recommendation Problem 27

3.2 Search Space of the Index Recommendation System 28

3.3 Cost Model . 29

3.4 Query Optimizer Considerations . 29

3.5 Reduction of Load on the Query Optimizer 30

3.6 Enumeration Technique . 32

3.7 Benchmarking Challenges . 34

4 The Adaptive Index Recommendation System 39

4.1 Identification of Relevant Criteria . 39

4.2 The Architecture Design . 43

4.3 Exploration of Candidate Indexes . 48

4.3.1 Frequency Query Strategy . 50

xiii

4.3.2 Index Transformation through Merging 51
4.4 Storage Estimation . 52
4.5 Summary . 66

5 Cost Model for Configuration Evaluation 67
5.1 Objective Function Formulation . 67

5.1.1 Optimization Model and Enumeration Technique 71
5.1.2 Integer Linear Programming Formulation of the Objective Function 72

5.2 Index Benefit Graph for Search Space Reduction 75
5.2.1 Construction of an Index Benefit Graph 76
5.2.2 Complexity Analysis of IBG . 81

5.2.2.1 Complexity of IBG with No Index Intersection 81
5.2.2.2 Complexity of IBG with Index Intersection 82

5.3 Summary . 87

6 Performance Studies 89
6.1 Benchmarking Components and Workload Generator for Document-Based

Databases Performance Analysis . 89
6.2 Real Meteorological Data Sources . 93
6.3 Evaluations with Real Data Sources . 95

6.3.1 Assessment of Effectiveness of Candidate Indexes Exploration Strategies 95
6.3.2 Measurement of IBG Algorithm Effectiveness 97
6.3.3 Recommended Configuration Optimality Evaluation 98

6.4 Summary . 104

7 Conclusion 105
7.1 Future Extensions . 106

Appendices 108

A NoWog Grammar 109

B Glossary 111

Bibliography 113

xiv

List of Figures

2.1 Comparison of the spatial distribution of the data measured by MLS and
MIPAS . 9

2.2 A read-mostly meteorological workload of satellite applications and the dis-
tribution of their search queries. 11

2.3 The structure of the files of a GLORIA dataset. 12

2.4 The workload of GLORIA application and the distribution of its search queries. 13

2.5 The high level architecture of the key components of a typical database. . . 15

2.6 The decision tree of a typical query processor functionality regarding utiliza-
tion of the cache entries or activating the query optimization process. . . . 17

4.1 The Architecture of the Adaptive Index Recommendation System (AIRs). . 43

4.2 The input and output of the Recommendation Modules of AIRs. 45

4.3 The input and output for sub-modules of the AIRs Query Analyzer module. 49

4.4 Index size growth pattern for attributes with Integer value types to the
number of documents in the dataset. 54

4.5 Index size growth pattern for attributes with Boolean value types to the
number of documents in the dataset. 55

4.6 Index size growth pattern for attributes to the number of documents in the
dataset. 56

4.7 Index size growth pattern for attributes with Array of integers as value type
to the number of documents in the dataset. 57

4.8 Int-Bool: Comparison of index size growth pattern between two single in-
dexes and a compound index with increasing number of documents. 59

4.9 Bool-Bool: Comparison of index size growth pattern of two single indexes
each on an attribute with boolean values. 61

4.10 Bool-Array: Index size growth patterns on a dataset with two attributes,
one containing boolean values and the other array of integers. 62

4.11 Int-Int: The comparison of the index size growth patterns on a dataset with
two attributes each containing integer values. 63

4.12 Int-Array: Comparison of the index size growth pattern with the number
of documents on a dataset consisting of integer and array values. 64

xv

4.13 Int-Nested: Comparison of the index size growth patterns of single and
compound indexes to the number of documents in a dataset with one con-
taining integer values and another attribute containing three layers of nested
documents. 65

5.1 Index Benefit Graph (IBG) structure for the execution plan of a query that
required no index intersection. 78

5.2 Index Benefit Graph (IBG) structure for the execution plan of an example
query that required index intersection. 80

5.3 Best case scenario in case of the IBG with intersection. 84
5.4 IBG structure for the case of maximum number of calls to the query optimizer. 85

6.1 WKL 1: Run-time measurement of WKL 1. 99
6.2 Different values of five chosen queries of WKL 1. 100
6.3 WKL 2: Run-time measurement of optimal and sub-optimal candidates of

WKL 2. 101
6.4 WKL 3: Run-time measurement of optimal solution and its combination

with the primary key for WKL 3. 102
6.5 WKL 4: Run-time measurement of the optimal solution for WKL 4. . . . 103

xvi

List of Tables

3.1 Comparison between well-known solutions to the index recommendation prob-
lem. 38

4.1 General considerations and parameters that effect the design of the Adaptive
Index Recommendation system (AIRs). 42

4.2 Comparison of index storage consumption on original data set and a sample
set for attributes with single and array of values. 53

5.1 The complexity of the Index Benefit Graph algorithm in asymptotic notation. 83

6.1 Number of operations in the real workloads of meteorological applications
and their corresponding dataset size. 94

6.2 The effectiveness of the Frequent-Long itemsets and merging strategies in
reducing the number of possible attribute combinations. 96

6.3 The effectiveness of the IBG algorithm is in calling feasible number of times
to the query optimizer, despite its high theoretical worst-case. 98

xvii

xviii

List of Algorithms

4.1 Configuration Materialization(CR, CE) . 46
4.2 Merge Indexes(E) . 52

5.1 Build IBG(qi, E) . 77
5.2 Get Atomic Configurations(IBGi) . 79

xix

xx

Chapter 1

Introduction

Databases are one of the major means to organize and manage data. Although relational
databases have been the dominant type of databases, their deficiency in management ca-
pabilities for non-traditional applications such as image processing and web applications
lead to the development and usage of non-relational databases. Among various types of
databases, the document-based type is a widely utilized type.

Despite their difference, both relational and document-based databases take advantage
of indexes to provide fast access to the data. Indexes are data structures that can be created
using one or more attributes of a dataset. Indexes contain a copy of the data of its corre-
sponding attributes mostly in form of a tree that can be searched efficiently. The existence
of proper indexes reduces the search time of read queries. However, the materialization
of all of the possible indexes might exhaust the storage limitations. Also, the presence of
indexes introduces additional maintenance costs for write operations, because in addition to
execute the write operation all of the relevant indexes should also be updated. Therefore,
there is a trade off between fast access by creating more indexes and tolerating maintenance
cost by updating them. This trade off decision is an acknowledged NP-complete problem
in the literature known as Index Selection Problem (ISP).

The growth in databases and their workloads results in more interest of atomized sys-
tems to help managing the database physical design decision such as choosing the proper
set of indexes. Any automated adaptive approach that aims for recommending the most
beneficiary set of indexes to minimize the cost of running all of the queries in a workload
should solve this problem. It has been proven that the ISP can be solved in practice by
considering some heuristics. Despite extensive studies on this problem, there are still many
aspects that require more comprehensive research. The problem of recommending indexes
has been studied in the context of relational database in literature. The context of this
thesis is the management of the physical database design of a meteorological databases by
introducing required indexes in an instance of document-based databases. Among all of
the contributions, this thesis focuses on studying the index recommendation problem in the
context of document-based databases. The main differential data models, query languages
and query optimizer behaviours between these database types are studied and discussed.

1

These studies then empower the reduction of the search space of the index recommenda-
tion problem by the extraction of relevant candidate indexes. In the following, the major
research questions and the main contributions of this thesis are explained.

1.1 Main Contributions

This thesis necessarily covers a broad-spectrum of topics to enable the design of an adaptive
index recommendation system for various workloads. Although the contributions achieved
in this thesis can be considered separately, the general focus of all of them is to recommend
the most optimal and beneficiary set of indexes efficiently. These contributions are then
put together to design an integrated framework known as Adaptive Index Recommendation
system (AIRs). In essence, this thesis addresses the following research sub-topics:

1.1.1 Reducing the Search Space of the Index Recommendation Problem

The search space of the index recommendation problem grows exponentially by the number
of attributes in the targeted dataset. To reduce this search space and extract the relevant
indexes for a specific workload, two main heuristics are developed and utilized by AIRs.

One is the development of a Frequent-Long algorithm that identifies only the queries
that are either issued frequently or their run-time takes longer than a configurable threshold
as relevant queries. The extraction of the candidate indexes of these queries is done by a
syntax-based analysis of the queries. The syntax-based analysis is developed based on the
behavior of the query optimizer and the query language of the targeted database.

The other one is to limit the evaluation of sets of indexes to the so-called atomic ones.
An atomic set of indexes is defines as a set of indexes that all of them are used to run some
query in the workload. For the extraction of these atomic index sets an Index Benefit Graph
algorithm is utilized. This algorithm provides a top-down approach to determine the set of
atomic indexes.

1.1.2 Formulation of a more Profitable Index Sets as an Objective Func-
tion

The benefit and maintenance cost of each set of candidate indexes should be evaluated
with regard to the queries in a workload that are issued in a specified period of time. It
necessitates the formulation of a cost function with regard to all of the relevant criteria to
determine the most beneficiary set of indexes.

The developed formula considers the effect write operations and the cardinality of the
dataset attributes. Additionally, to ensure that only substantial indexes for the query
optimizer are recommended, the core cost evaluation process to feed as input to the objective
function is done by the query optimizer.

This objective function can be then maximized by any optimization method to find the
index set with highest benefit and lowest maintenance cost for a particular workload. While
query optimizer should be make its optimized decision fast, the optimization process of the

2

index recommendation can use longer time frames to make its decision. Thus, more precise
optimization methods can be utilized by an index recommendation system which guarantee
finding the global optimal index set.

1.1.3 Evaluation of the Index Sets without Overloading the Query Opti-
mizer

The execution of the cost evaluation process by means of the query optimizer enforces a
large amount of overload on the in-production system. It requires that the candidate indexes
are available to the query optimizer.The materialization of all candidate indexes for a large
dataset is a very resource-consuming process. Also, the large number of necessary calls to
the query optimizer for the evaluation process can interfere with the performance of the
database in response to its applications.

Utilization of a virtual environment that consists of a representative sample of the
targeted dataset is presented as a solution to this problem. By materializing indexes on the
representative sample set, they are available to the query optimizer for the cost evaluation
process of running each query. In this case, the size of each index on the original dataset
must be estimated. This size can be estimated from the number of documents containing
the attributes of the index and their corresponding value types.

1.1.4 Evaluation of the Performance of the Designed Solution

Despite the extensive studies on the index selection problem, there are only few unified
methods to evaluate the results which are not standardized especially for document-based
databases. Other approaches are mostly evaluated by a set of standardized benchmarks
that are targeted to evaluate the performance of the databases themselves rather than a
specialized system like index recommendation.

Also, the standard methods utilized by other approaches are designed for the relational
datbases and the SQL-like query languages. The evaluation of the developed solutions, in
particular in relation to a document-based database model necessitates the definition of the
baseline, evaluation metric and a proper dataset and workload.

1.2 Outline of the Thesis

The rest of this thesis is organized as the following:

In Chapter 2, the management of some meteorological datasets in a document-based
database is provided as the motivation for this thesis. These projects establish a use-case
for the index recommendation system. Some of the descriptions and studies on the provided
data and use-cases of these projects are published in:

• P. Ameri, et al., “On the application and performance of MongoDB for climate satellite
data“, In TrustCom (2014), pp. 652-659,

3

• R. Lutz, P. Ameri, et al., “Management of Meteorological Mass Data with MongoDB“,
In EnviroInfo (2014), pp. 549 -556,

• M. Szuba, P. Ameri, et al., “A Distributed System for Storing and Processing Data
from Earth-observing Satellites“, In CCGrid (2015), pp. 169-174.

Hence, a brief description of some of their corresponding databases and workloads is also
given. As the next step to set up the scene, a brief and general introduction is provided. This
section is followed by a more precise discussion on the criteria of index recommendation.
Some of the material presented in this section are already published in:

• P. Ameri, “Database Techniques for Big Data“, In ”Big Data: Principles and Paradigms”
published (2017), Chapter 6.

Chapter 3 is dedicated to discussions of the related work. In the context of each of
the research sub-topics, the major influential related works are presented. The possible
inspiration of each of these works on the current thesis as well as their shortcomings and
the differences between the approaches are discussed. Some parts of these discussions are
first published in:

• P. Ameri, “On a Self-Tuning Index Recommendation Approach for Databases“, In
ICDE (2016), pp. 201-205.

In Chapter 4, the overall problems of designing a unified index recommendation system
are explained. Then, the general modular architecture design of the AIRs is presented and
the requirement of having each of the modules and their particular rule are clarified. Also,
the necessity of having a virtual environment for the evaluation and the strategic design
of this environment in AIRs are discussed. In the rest of this chapter, various essential
practical heuristics that are considered to reduce the complexity of the search space are
analyzed. As the next step, the model to estimate the size of indexes without creating them
on the original dataset is presented. The initial ideas of the architecture design of the index
recommendation system are published in:

• P. Ameri, et al., “On a new approach to the index selection problem using mining
algorithms“, IEEE BigData (2015), pp. 2801-2810.

Chapter 5 is devoted to the theoretical analyses of various aspects in design of the index
recommendation system. At first, the essential factors to formulate an objective function
and the mathematical representation of this function in the chosen optimization method is
presented. Then, the problem of having large search space of candidate index sets that are
the input of the objective function is discussed. As a solution, the developed algorithm to
extract the so-called atomic configuration is presented and its complexity is analyzed. The
initial formulation of the objective function is published in:

4

• P. Ameri, “Challenges of Index Recommendation for Databases“, In GVDB (2016),
pp. 10-14.

Finally, the evaluation of the performance of each developed solution and the overall
performance of the AIRs are presented in Chapter 6. At first, the difficulties of benchmark-
ing the index recommendation system specially in relation to a document-based database
are discussed. In that regard, the established methods for the evaluation are presented. In
addition, the developed workload generator solution is introduced that enables generation
of synthetic database and workloads that are used to evaluate various aspects throughout
the whole thesis. In the rest of this chapter, the data sources that are used for the various
evaluations are presented. The chosen datasets and workloads of individual meteorological
projects are introduced in more details. With help of these datasets and workloads and the
proposed methodologies, distinct solutions of AIRs for index recommendation problem and
its overall performance to recommend the optimal set of indexes are verified. Some of the
materials that are used in this chapter, such as the precise presentation of the synthetic
workload generator, the necessity to develop such solution and its specific grammar are
published in:

• P. Ameri, et al., “NoWog: A Workload Generator for Database Performance Bench-
marking“, In DataCom (2016), pp. 666-673.

After discussion and evaluation of the contributions to the index recommendation prob-
lem, the thesis is concluded in Chapter 7. In this chapter, first the achievements of the
thesis are summarized and then the results are confronted with the goals of the study. At
the end an outline for future work is given.

5

6

Chapter 2

Setting the Scene

A crucial step in the database design and management is to identify and adjust the proper
indexes to the incoming workload of the corresponding applications. As a result of the
increasing complexity in both query processors and database applications, the decision-
making process to adjust the system with a proper set of indexes gets more intricate.
Consequently, there is a high demand for adaptive recommendation systems that can sys-
tematically examine the space of alternative solutions and assist with the database tuning
process [1].

This chapter, first, presents the applications from some meteorological databases that
required to be managed by a document-based database in Section 2.1. The management of
the corresponding workload of these databases and the distribution of their queries lead to
the recognition of the need for an adaptive index recommendation system. A brief summary
of the required background knowledge to go through this thesis is provided in Section 2.2.
Additionally, an introduction to the index recommendation topic and its challenges is given
in Section 2.3. At last, Section 2.4 introduces the specific challenges of the index recom-
mendation problem in association with document-based databases.

Most of the content written in this chapter is published in [2], [3], [4], [5], [6] and [7].

2.1 Motivation: The Meteorological Application’s Database

The motivation for the work presented in this thesis originated from the management of
databases for several meteorological applications in the context of Earth and Environment
Data Life Cycle Lab [8] of the Large-Scale Data Management and Analysis project [9]. Their
datasets consist of large schemaless data with scalar and multi-dimensional array values.
The structure of these datasets are described in detail in [2], [3], [4].

The first example comes from a meteorological application with satellite data (sat1) [2]
and [4]. Modern remote sensing techniques implemented and launched on satellite platforms
like MIPAS 1 [10] on ENVISAT [11] or MLS 2 [12] on EOS-AURA [13] generate enormous

1The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)
2The Earth Observing System Microwave Limb Sounder (EOS MLS)

7

amounts of global atmospheric data comprising rich, long time continuous measurement
sets to be maximally exploited by adequate data processing in a finite time-frame. Ide-
ally, these real world measurements are accompanied by atmospheric chemistry or climate
models (e.g., ECHAM 1/MESSy 2 [14]), which simulate the physical processes and scan
the relevant parameter fields to achieve a deeper understanding of the atmosphere by com-
parison with the measurements [15]. Moreover, data from (often many) different satellites
have to be correlated and cross-validated to estimate inherent observation and instrument
uncertainties. From the original datasets, derived products are generated which themselves
are subject to the aforementioned processing procedures and are typically the main objects
of further scientific exploration.

As a result of the different nature and origins of the products, the datasets from all
these fields and within a single field are disseminated in very different formats. As an
additional complexity, even data equally labeled according to labeling conventions (like
CF [16] for netCDF [17] datasets) can have differing actual content (e.g., time often has
different reference points). So, there is a need to effectively store the data in a common area
for efficient access and also harmonize the datasets or even to find a common denominator
for the base parameters to be stored, as these different sets deliver very different quantities.
This set of base parameters should be generic for the diverse applications required for the
data collections.

We use the IMK 3/IAA 4 MIPAS/ENVISAT scientific dataset as a sample project,
together with additional datasets from other satellites (esp. AURA-MLS). The minimum
base parameter set where all data is indexed on consists of temporal and spatial coordinates.
Figure 2.1 shows only the spatial distribution of data recorded both by MLS and MIPAS
instruments for the duration of one day.

Traditionally analyses of climate data are based on large datasets at the edge of techno-
logical and financial feasibility, typically stored in file hierarchies. There are some metadata
indexes added in a single server database for each file for crude searching capabilities. On
the application side, particular file input modules and specialized visualization software in
high-level programming languages (e.g., Java or IDL) for a posteriori plot analysis were
prevalent [18]. For the sheer variety of the applications, a lot of detailed knowledge and
programming expertise was needed to change or extend such software often composed of
many modules in different programming paradigms and languages.

However, recent developments in information technology and rapid price decline make it
now possible to index the complete datasets in large, distributed databases and exhaust the
full operational capacities of such configurations. Computing power not only in several CPU
cores, but even more in the cores of graphic cards in the teraflop range is now ubiquitous
so that a lot of pre-processing, conversion, and additional storage (that previously should

1ECMWF Hamburg: atmospheric general circulation model by Max Planck Institute for Meteorology
in Hamburg, Germany

2The new Modular Earth Submodel System (MESSy)
35Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK),

Germany
46CSIC, Instituto de Astrofsica de Andaluca (IAA), Spain

8

be done in advance) can now be integrated on the fly in the viewing pipeline of climate
analysis. It radically changes the approach to scientific exploration, as real-time viewing of
several months datasets and even complex online animation is now within reach.

When it comes to choosing platforms and methods to handle Big Data, several options
exists; some of them are: Cloud computing platforms [19], MapReduce [20] and scalable stor-
age systems or massively parallel processing databases [21]. To handle metadata, database
with their indexing facilities are known to be more useful than filesystem storages [22].
Additionally, modern databases facilitate the storage of variety of data structures such as
non-scalar values and images. The goal is also to store the data itself into the database
instead of files.

Therefore, for a design architecture to handle Big Data, scalability of the system must
be considered, so that the system can scale over a cluster consisting of several nodes. Based
on the CAP (Consistency, Availability, Partition tolerance) theorem [23] traditional rela-
tional databases, whose functionality is based on ACID (Atomicity, Consistency, Isolation,
Durability) [24] properties, are not partition tolerant. Also, according to the CAP theorem,
scalability of traditional databases is a big issue. Moreover, given in our special use case
there are more read queries to the database than write queries, and delete queries are con-
sidered to happen rarely, being bound by all ACID properties was not only unnecessary but

latitude
80 60 40 20 0 20 40 60 80

 l
o

n
g

it
u

d
e

200

150

100

50

0

50

100

150

200 MLS

MIPAS

Figure 2.1: Comparison of the spatial distribution of the data measured by MLS and MIPAS
instruments during one day.

9

also incompatible with availability and performance, as well as scalability requirements [25].

The above-mentioned characteristics of the meteorological datasets suggests utilizing
a non-relational database. Whereas most of the non-relational databases cover schema-
less data structures and facilitate scalability requirements, an instance of a document-
based NoSQL database (i.e. MongoDB) is chosen for these applications. Document-based
databases assist with handling multi-dimensional array values and nested-document con-
cepts. Additionally, their JavaScript Object Notation (JSON) [26]- or Extensible Markup
Language (XML) [27]-based documents support web applications such as the considered
meteorological applications. There are more features provided by this database that is
particularly useful for the particular meteorological satellite use case, such as spatial index-
ing, documents based on JSON which ease the use of GEOJSON [28] match, and also the
possibility to have parallel access to the database.

Figure 2.2a depicts the distribution of queries to all of the collections containing data
for a satellite application [2], [4]. This application does not have a heavy workload. The
distribution of queries forms a read-mostly workload for this application. Over the course
of seven months, there are only four peaks of insertion to all of the collections of this
application and only a small distribution of update operations to one of the collections.
(For further description see WKL 1 and WKL 2 in Section 6.2). Therefore, since this is a
read-mostly workload, it can benefit a lot from having proper indexes in place.

Whereas Figure 2.2a illustrates the frequency of all of the queries, Figure 2.2b exhibits
the scattering of unique search queries. Note the unique query that suddenly appears in
June of that year - with uniqueQueryID 1 - in a high number (3065 times) and disappears
in the following months again. Such queries are usually related to a temporary usage of
the data in the application. In many situations, these queries are issued without informing
the database system administrator to generate new proper indexes. An automatic index
recommendation system, which monitors the incoming workload and accordingly adjusts
corresponding indexes to improve the performance of user applications.

Another motivational use-case example is the application of the Gimballed Limb Ob-
server for Radiance Imaging of the Atmosphere (GLORIA) 1. GLORIA is a recently devel-
oped unique atmospheric remote sensing instrument that bridges the gap from scanning to
imaging in the infrared spectral domain. This is realized by the combination of a classical
Fourier transform spectrometer (FTS) with a 2-D detector array tailored to the FTS needs.
GLORIA is designed to operate on the high altitude research platforms aircraft (HALO) [30]
and stratospheric balloons [31].

GLORIA’s data consist of three major parts: the pre-processed measurement data, the
processing configuration data, and the final result data (spectra, trace gas distributions,
etc.). The first objective is to store the pre-processed data which is the base for further
processing and visualization.

Figure 2.3 shows the data structure of a pre-processed GLORIA dataset provided by

1GLORIA is a joint development of the two national research centers of the Helmholtz Association
Karlsruhe Institute of Technology (KIT) and Forschungszentrum Jülich (FZJ). Detailed information about
the instrument is presented at [29].

10

(a) Meteorological satellite application workload over the course of more than half
a year. This workload is read mostly, with some insertion peaks and few frequent
updates at the end. The has been no delete operation in this workload.

(b) Distribution of 22 unique search queries from April to October of 2015 in the
satellite workload. Each colored label indicates a uniqueQueryID for each of the
search queries of the satellite workload.

u
n

iq
u

eQ
u

er
y
ID

(c)

Figure 2.2: A read-mostly meteorological workload of satellite applications and the distribu-
tion of their search queries.

11

Figure 2.3: The structure of the files of a GLORIA dataset which is known as cubes. Each
cube contains a measurement sequence of about 3 to 13 seconds. A measurement sequence is a
sequence of recorded images which are called slices. A single slice is delivered in a time period
of 15ns-300ms by a detector field with 256×256 pixels.

the measurement campaigns on board of HALO. A flight delivers a dataset and may take
several hours. The files of a dataset are called ”cubes” and contain a measurement sequence
of about 3 to 13 seconds. A measurement sequence is a sequence of recorded ”images”
(slices). A single slice is delivered in a period of 15ns-300ms by a detector field with
256x256 pixels. Depending on the scientific needs, only a subset of the full detector array
is used for performing the measurements.

A HALO flight in 2012 took 12 hours and produced about 11.500 datasets (≈ 2.2
TB). Scientists are particularly interested in processing interferogram data. Since GLO-
RIA dataset files contain the ordered list of slices, the datasets must be converted to be
stored in MongoDB based on the resulting interferograms.

The first approach to manage GLORIA data was reuse of the software environment of its
predecessor instrument MIPAS which is available on aircraft, balloon and for ground-based
measurements. Furthermore, MIPAS provided a huge amount of data as one instrument
aboard the European environmental satellite ENVISAT.

The software environment for the MIPAS aircraft and balloon experiments is based
on Firebird [32], a free parallel development of Borland’sTM relational database Interbase.
The database manages the metadata of the measurements with links to the data files which
reside on the file system. The data generated by GLORIA is approximately hundred times
the data produced by MIPAS. For this reason, the data management has to be reconfigured.

12

(a) Meteorological GLORIA application workload. The mixture of operations in
this workload in more than satellite workload. However, there is no delete operation
in workload as well.

(b) Distribution of 28 unique search queries in GLORIA workload from April to
October of 2015. Each colored label indicates a uniqueQueryID for each of the 28
unique search queries of GLORIA workload.

u
n

iq
u

eQ
u

er
y
ID

(c)

Figure 2.4: The workload of GLORIA application and the distribution of its search queries.

13

Additionally, several fundamental new requirements exist for the data management
which must be fulfilled by the new environment. The most important requirements are:

• Access to data and metadata within one single database query

• Sustainable long-term usage of well-established database to manage the data

• The data schema should be open for enhancements and modifications

• Horizontal scalability

• Possibility of array-oriented storage of datasets

They all provided reasons to again use the same document-based database (i.e. Mon-
goDB) for the data management of the GLORIA application [3]. Figure 2.4 depict the
corresponding workload distribution for the GLORIA application. Two individual work-
loads of this application are described in more details as WKL 3 and WKL 4 in section 6.2.
The distribution of all queries in Figure 2.4a suggests that this workload has similar char-
acteristics as the satellite workload, but there are more queries issued per time unit. Such
heavy workload might require many indexes to be created. As machines that host database
systems have a limited storage capacity, the creation of all required indexes might not be
possible. Therefore, there should be an optimization method to choose the most beneficiary
indexes for the whole workload.

The spread of unique search queries is depicted in Figure 2.4b. This figure displays
few search queries that are issued to the system on a more regular basis over the course
of several months. However, for some of these regularly issued queries to the system, the
number of issuances is not that high. Normally, the more frequent a query is, the higher is
its need to take advantage of the presence of its corresponding indexes. This fact already
suggests a strategy to prioritize indexes.

In this section, the requirement for an adaptive index recommendation system in con-
junction with the considered document-based database is identified. In the following of this
section, a brief background knowledge on query processing procedure in databases is given.
Section 2.3 introduces the criteria of an index recommendation system. Then, the specific
criteria of such systems on document-based databases are discussed.

2.2 Background

This section is dedicated to introducing the main concerns and criteria of designing an index
recommendation system. To do so, first, some fundamental components of any database sys-
tem are presented. Then, the role of the query optimizer as the key component to evaluate
query plans is explained. Eventually, the major components of an index recommendation
system are defined similarly to the structural elements of a query optimizer.

Figure 2.5 illustrates the key components of modern database architectures. Depending
on the database type and the query language of the database, the User Interface contains

14

a specific protocol that parses each query and translates it to form a parse tree that is
recognizable by the Query Processor. The Query Processor layer receives the request from
the protocol layer and makes a decision about how to further process the query. At this
level, the query is examined both syntactically and semantically. Query processing is done
in two different steps: 1- query optimization and 2- query execution [33, Chapter 19]. The
Storage Engine store and addresses the actual data depending on the data model of the
database.

The well-known relational databases store data in tables (relations) where each row
(tuple) represents a full object that the columns indicate its characteristics. Each cell of the
table should contain scalar values based on the First Normal Form (1NF) [34]. Whereas the
newly emerged database models such as document-based, graph-based, key-value stores and
column-based databases, each have different model of storing data. The document-based
databases that are the focus of this thesis store the data in documents instead of tables.
Section 2.4.1 discusses this data model in more detail.

The Query Optimizer is a key component in a database. It receives the parsed query as
input and is responsible for preparing an efficient plan to execute the query [33, Chapter 19].
To fulfill this purpose, the query optimizer searches a vast space of alternative plans. Even-
tually, it extracts the plan that based on the query optimizer evaluations is anticipated to
be least expensive. The output of the query optimizer is known as the Execution Plan that
defines strictly how a query should be executed.

This execution plan is commonly a tree of physical operators that is passed to the Query
Execution Engine as its input to run the query. The input to each physical operator is a
series of documents (or tuples in the case of relational databases), and after application of
its role on these documents, this operator passes the subset of the input documents that
satisfied the criteria of the operation. Examples of physical operators are index scan, sort,
and project [35]. Each operator returns its output to the next physical operator that is in
an upper layer of the plan tree. The root operator node of the execution plan tree returns
the results for the query. To find proper physical operators and their order in the execution
tree to obtain the least expensive plan, the query optimizer must evaluate many alternative
plans.

Indexes are data structures that can be created using one or more attributes of a dataset.
Indexes contain a copy of the data of its corresponding attributes mostly in form of a tree,

Figure 2.5: The high level architecture of the key components of a typical database.

15

i.e. B-tree [36] or R-tree [37], that can be searched efficiently. Additionally, the leafs of these
trees usually include either a direct link to where the data is copied from or the address of
the low-level disk block where the actual data is stored. Therefore, the existence of proper
indexes reduces the search time of read queries. However, each index enforces further costs
of storage space and writes to the system in case of any update of the data to maintain the
index.

In the presence of several indexes in the system, the query optimizer evaluates the cost
of running the query with each of such indexes. The benefit of indexes are evaluated based
on their selectivity as described in Definition 2.2.2. Therefore, query optimization can be
seen as a complex search problem that is characterized by three components: 1- Search
space, 2- Cost model and 3- Enumeration strategy [1].

Definition 2.2.1. Cardinality :
The cardinality of an attribute a in a data set is defined as the number of unique values of
that attribute and is represented as CAa [33, Chapter 3].

Definition 2.2.2. Selectivity :
For any index I, its selectivity is denoted by SLI and defined as the cardinality of I’s
corresponding attributes CAa over the total number n of documents in the collection,
SLI = CAa

n [33, Chapter 19].

In the query optimization process, the search space defines the set of execution plans that
should be considered by the query optimizer. The cost model evaluates the consumption
of resources by every element of a particular plan and assigns a cost to it. To traverse all
of the possible alternative plans in the search space, an efficient enumeration strategy is
needed [40].

The query optimizer carries out the complex task of evaluating alternative plans by
considering the set of already available indexes in the system. Since query optimization is
an expensive process, usually to prevent extensive use of it the winning plan is saved as a
cache entry. For as long as there is no change in the set of available indexes in the database,
the query processor avoids triggering the query optimizer for similar queries to the system.
The decision-making process of the query processor is illustrated in Figure 2.6.

The query optimizer bases its decision on the statistics that are typically available to it
from the dataset. This statistical information is advantageous to construct an execution plan
by estimation of the query result size. These statistics usually contain information about
data distribution, as well as a number of distinct values in each attribute (column) [41].
These statistics solely approximate the distribution of values in an attribute. The availabil-
ity of the statistical information is beneficiary to derive the cardinality of range and join
predicates which is one of the main features in the cost-based query optimizers [1, Chap-
ter 2]. A large uncertainty in the estimation of the results size may impair the validity of
the decision taken by the query optimizer [42].

Various techniques are suggested in the literature to estimate the results size of a query
such as utilization of histograms [43], sampling [44] and parametric techniques [45]. Most

16

database systems save the statistical information about the data distribution of each at-
tribute in histograms [42]. The major advantages of utilizing histogram over other tech-
niques are that for most real-world database they produce an estimation with low uncer-
tainty and occupy a fairly small amount of storage [42].

In a one dimensional histogram, the values of an attribute are divided into some buckets.
Each bucket is associated with some aggregated information also known as partitioning rule.
The aggregated information associated with each bucket as well as the procedure utilized
to choose the boundaries for the buckets results in different categories of histograms, such
as equi-width, equi-depth, max-diff and end-biased histograms [1, Chapter 2]. The accuracy
of the histogram, as well as memory usage of the histogram, are affected by the number of
chosen buckets.

Independent of their types, histograms represent a compressed value distribution for
each given attribute. In general dealing with such a compact data structure requires a
couple of simplifying assumptions. In particular, in the case of missing or stale statistics,
the query optimizer should apply some simplifying assumptions. For example, in such cases,
the query optimizer assumes the values represented in a bucket are distributed uniformly

Figure 2.6: The decision tree of a typical query processor functionality regarding utilization
of the cache entries or activating the query optimization process. If a cache entry of a plan with
satisfiable performance for a particular query already exists and the set of available indexes
are not altered, the query processor does not require to trigger the expensive process of query
optimization. (Adapted from Figures in [38] and [39])

17

in the bucket domain even though the attribute contains skewed data. When there are
no multi-dimensional statistics available, the assumption of the query optimizer is that
predicates in different columns are independent [1, Chapter 2]. Despite the widely usage of
one dimensional histograms, multi-dimensional histograms are utilized rather rarely.

After building the histograms, statistical analysis with the purpose of determining stale
or missing values are frequently run to verify the stored statistics. The validation process
may include the execution of the query or a part of it on a sample set of the input dataset [41].
The sampling methods should be adequately accurate to validate the stored statistics. Many
studies have been conducted in the literature on how to obtain an optimal sample size that
leads to a more accurate and precise estimation of the result size of the query [41], [46], [42].

Usually, the creation of an index with leading key attribute A1 also returns a histogram
on that attribute. As the index includes all values for an attribute in sorted order, the
histogram creation can be conveniently added on top of index construction. As a result, by
the construction of an index, the query optimizer is also given better estimates for particular
predicates, which can influence the chosen execution plan [1, Chapter 2].

Consequently, whereas the query optimizer of the database is responsible for carrying
out the complex task of choosing the most efficient plan considering the existing indexes in
the system, often an even more crucial task is to provide a set of proper indexes to the query
optimizer. Unless there is a corresponding proper index for a query, the query optimizer is
forced to select a full collection scan as the winning plan.

The database administrators usually utilize a series of heuristics that are developed over
time as the norm to choose the appropriate index for a corresponding query [47]. However,
heuristics are not sufficient anymore due to the advancements in the query optimizer designs
and establishment of different database types with distinct query languages. This method of
manually choosing and creating indexes requires experienced administrators with extensive
knowledge of the system and frequent monitoring of the database workload to adjust the
proper indexes. This is not scalable for large datasets and complex workloads.

As a result, there is a high demand for assisting tools that can monitor the database
workload continuously, identify a candidate set of indexes based on a comprehensive analysis
of the way the query optimizer works, and recommend the most proper set of indexes. Such
an index recommendation system facilitates the adaptation of the database to the detected
changes in the workload. A concrete definition of the task for an index recommendation
system and a brief overview of the design concerns for such system are presented in next
section.

2.3 Introduction to Index Recommendation Criteria

The definition of the task that an Index recommendation system should accomplish is de-
scribed in Problem 2.3.1.

Problem 2.3.1. Index Recommendation Problem:
Given a workload W = {q1, q2, · · · , qn}, where each qi is a query, and given a total storage

18

limitation S acquire the subset C = {I1, I2, · · · , Im} of all possible indexes - known as
a configuration- such that 1-

∑
j size(Ij) ≤ S and 2-

∑
i cost(qi, C) is minimized, where

cost(qi, C) is the estimated cost of the execution plan for query qi by the query optimizer
when all and only indexes in configuration C are accessible for it.

Therefore, the index recommendation system should be able to evaluate a large set
of alternative plans per query in the workload and extract the most efficient one. This
operation is also known as index selection in the literature and Douglas Comer in [48]
proves that it is a NP-complete [49] problem.

Based on the definition of the Index Recommendation in Problem 2.3.1, it can be charac-
terized similar to the query optimizer tasks. Therefore, despite different considerations, the
index recommendation problem can be analyzed regarding the same components as query
optimization problem, by characterizing the search space, a cost model and choosing an
efficient enumeration technique. Based on the challenges appeared in each of these steps,
I developed solutions that are presented throughout this thesis under an integrated system
named Adaptive Index Recommendation system (AIRs). A brief description of the most sig-
nificant challenges and considerations in the above-mentioned steps and their corresponding
developed solutions are as the following:

1. The search space of the index recommendation problem consists of various subsets of
all possible indexes.

Problem 2.3.2. Search Space Problem:
The number of possible combinations out of the set of all indexes is enormous. There-
fore some strategies to extract the necessary fraction set of all index combinations are
required.

2. In contrast to the cost model of the query optimizer that is used to optimize the cost
of one query, the cost model of an index recommendation system should optimize the
cost for the entire workload of queries to the database at least for a defined period.
A recommended index that is disregarded by the optimizer should be avoided.

Problem 2.3.3. Evaluation of the profit of any set of indexes concerning the incoming
workload requires modeling an objective function.

3. Even by reducing the number of candidate indexes, the evaluation of the index com-
binations by the query optimizer can exert a lot of load on the in-production system.
The main reason is to obtain the statistics regarding the cost of execution of any query
with each particular index from the query optimizer, that index should be created.
Adapting an appropriate strategy to extract the index statistics without overloading
the database system is substantial.

Problem 2.3.4. Extraction of the corresponding statistics regarding any set of indexes
from the query optimizer enforces lots of additional load on the database system.

19

4. Similar to the functionality of a query optimizer, traversing the space of alternative
plans with an efficient enumeration technique is essential. To ensure rapidity of the
enumeration process, query optimizers mostly rely on greedy algorithms, which do not
guarantee to always find the global optimal solution [50]. Although the speed of the
enumeration technique for the index recommendation can be a factor, there can be
a trade-off between speed of the algorithm to the extraction of the globally optimal
solution.

Problem 2.3.5. Extract the globally optimal solution to the objective function of the
index recommendation system.

5. Due to the utilization of individual and non-standardized procedural languages by
document-based databases instead of the declarative SQL [51], as well as a different
usability of these databases, the standard benchmarking convention of the database
society, such as TPC [52], are not practically helpful. Therefore other methods should
be applied to determine the quality of the solution presented by AIRs.

Problem 2.3.6. Benchmarking non-relational and specially non-SQL related systems
is not yet fully standardized.

The solutions of the above-mentioned problems are applied in different segments of the
AIRs and are discussed throughout this thesis. Chapter 2.4 is dedicated to specifying the
differences in studying the index recommendation system on a document-based database
compared to a relational database.

2.4 Index Recommendation Specifications on Document-Ba-
sed Databases

Unlike well-known traditional relational databases that store data in relations (tables),
the data model of document-based models is found on storing data in documents. This
fundamentally different data model enforces many distinctions between these databases that
can affect databases as well as tools that interact with databases. Therefore, the first crucial
step towards the design of an index recommendation system is to study these differences
and their possible effect as well as the impact of all common potential parameters.

This section is consecrated to define these differences and their influence in designing the
AIRs. In section 2.4.1, the basic data model of a typical document-based database and its
influence on the indexing process are introduced. Section 2.4.2 presents the description of
the non-standard procedural query language that is later exploited throughout this thesis.
The assumptions about the behavior of the query optimizer of the database under study
are defined in Section 2.4.3.

20

2.4.1 Data Model and Indexing

The principle idea for document-based databases is to store data in documents. A document
is usually in a markup standard format like JSON, or XML. Each document contains several
attributes that are build by an arbitrary name. Attributes are associated with some values
(similar to key-value structure). Documents are classified together in directories that can
be named as collections.

Document-based databases are schemaless [53]. Therefore, neither the attributes nor
the type of their values is predefined. As a result, the appearance of any attribute in a
document is optional, and the documents in the same collection are not bound to contain
a similar set of attributes. Even for two documents that have the same set of attributes,
the type of their associated values are not forced to be identical. Unlike in the relational
data model, the value in a document-based model can range from any scalar value to a list
(array) or even a whole other document inside the current document (nested documents).

The concept of nested documents is considered as a replacement for JOIN operations in
relational databases [5] as expressed in Assumption 2.4.1. This is one of the key solutions
of document-based databases to increase the performance. The idea is that a document,
including all its nested documents, is stored in a single location in persistent memory.
Accordingly, even if the database store the data on distributed hosts, once queried the
documents can be fetched from one physical host where they are stored. Hence, the number
of I/O operations are reduced.

Assumption 2.4.1. There is no JOIN operation used in document-based databases to an-
swer a query.

Despite all these differences in the data model of document-based and relational databa-
ses, the construction of indexes is essentially alike. Indexes are usually B-tree or B+-tree
structures with search, insert and delete time complexity of O(log n) [54]. Each tree is
constructed with the values of an attribute or a set of attributes depending on the chosen
keys in the corresponding index. The leaves of these trees form a sorted list of these values.
These leaves contain pointers that indicate the physical address on disk where the values
are stored.

Indexes are built on collection level and can contain one single attribute or a combination
of attributes (compound indexes). If the information that is requested is not entirely stored
in the index, or in other words if an index does not contain all of the attributes that appear
in projection part, the whole document should be fetched from disk. To prevent such
expensive fetching, it is best to consider including more attributes in the form of compound
indexes that are appearing more often in one query.

In relational databases, another type of indexes is commonly used known as clustered
index. Instead of containing a pointer to the actual records, the cluster indexes include the
actual record itself. Base on the structure of document-based databases and them being
schemaless, the assumption is that no clustered index can be made on them.

Assumption 2.4.2. Building clustered indexes is not possible in document-based databases.

21

The fundamentally different data model of document-based databases requires its spe-
cific query language to access and manipulate data. Section 2.4.2 presents a definition for
this specific query language that is used throughout this thesis.

2.4.2 Procedural vs. Declarative Query Language

The conventional declarative Structured Query Language (SQL) is defined based on rela-
tional algebra [55]. It is widely used to interact with relational databases and to operate on
tables. The essentially different data model of document-based databases calls out for its
specific query language. Due to the structure of documents, normally a procedural query
language is defined to access their contents. Despite the similarity of the data model and
utilization of a typically procedural query language, there is no unified query language uti-
lized by all document-based databases [5]. Therefore, in this section, a definition of the
query language that is used throughout this thesis is presented. This language covers all
of the relevant aspects of targeted database query language, but it is general enough to
describe the query language of any other database.

The content of documents can be presented in tree structures. These contents can
be searched and accessed by the path to their attributes. Therefore, a procedural lan-
guage that specifies exactly how to navigate to the data is commonly utilized by document-
based databases. These languages mainly consist of four basic operations to create, re-
trieve, update and remove data. Based on Assumption 2.4.1, there is no join operation.
These operations are covered by insert, read, update and delete operations in the language.
These operations can be constructed by search-predicate, projection-predicate, sort-clause,
modification-predicate as shown in Code 2.1 and 2.2.

Code 2.1: The definition of the retrieval operation in a procedural language of document-based
databases.

db.coll.READ({search -predicate }{projection -predicate }).SORT({
sort -clause })

Code 2.1 represents the definition of a read operation in this procedural language that is
used to retrieve data. The db and coll are respectively indicators for the targeted database
and collection that can be replaced by the intended names. The search-predicate contains
conditions that should be fulfilled when searching for the intended documents. These con-
ditions can be formulated by a combination of equality or range condition on each intended
attribute. Also, equality or range conditions on multiple attributes can be combined by
any conjunctive operation as OR (indicated with ∨) and AND (indicated with ∧). If this
predicate remains empty, all documents in the collection are searched.

The projection-predicate in Code 2.1 contains the attributes that should be returned
from the documents that match the conditions of the search-predicate. The specification of
the projection-predicate is optional. In case it is not specified, the whole documents that
satisfy the conditions are returned. Each READ operation can potentially be combined

22

with a SORT operation as shown in Code 2.1. The sorting process is done based on the
attributes appeared in the sort-clause. An example of a read operation is presented in
Example 2.4.1.

In Example 2.4.1 - as well as all the other example in this thesis - certain values are
identified with capital letters. Also, the path to any attribute bj of a document nested under
attribute ai is shown with a dot separator as ai.bj . The same path specification applies for
indexes of arrays. The loc.coordinate.1 in the search-predicate of Example 2.4.1 represents
the path to the value of the second element in the array of value associated with attribute
coordinate. Where the attribute coordinate itself is an attribute of the document that is
assigned as value to attribute loc.

Example 2.4.1. db.coll.READ({”att-time” > TB ∨ ”loc.coordinate.1” = LOC}
{”sun-shine”}).SORT({”att-time”})

The search-predicate of this query determines conditions to find the documents with their
att-time attribute is greater than the given time as TB or the value of their loc.coordinate.1
element is equal to the given location as LOC. The matching documents are first sorted
based on the value of their att-time attributes. Then only the sun-shine attribute of each
document and its corresponding value is returned.

Code 2.2 represents the definition of any WRITE operation in the procedural language.
The WRITE command is an indicator that can be replaced by any of the following opera-
tions: UPDATE, INSERT, or DELETE. The search-predicate of this operation, similar to
the READ operation defines the conditions to find the intended documents. Insert opera-
tions do not contain any search part. Therefore, the search-predicate in insert operations is
empty , as shown in Example 2.4.2.

Example 2.4.2. db.coll.INSERT({}, {”normal-array”=[N1, N2, N3],
”nested-doc”={”nested-att”=NA}})

According to this insert query, a document with two attributes normal-array and nested-att
is created. The normal-array contains as value an array of three elements and the nested-att
a nested document with one attribute.

Code 2.2: The definition of the write operations in the procedural language of document-based
databases. The WRITE operation can be replaced by an update, insert or a delete operation.
The search-predicate is empty for an insert operation.

db.coll.WRITE({search -predicate }{modification -predicate })

The modification-predicate in Code 2.2 contains attributes and values that should be
altered in the matching documents. If the specified attribute in this predicate already
exists in the document, only the value of it is updated to the newly determined value.
However, if the attribute does not exist in the matching documents, this attribute and its
corresponding values are added to the document, as discussed in Example 2.4.3.

23

Example 2.4.3. db.coll.UPDATE({ BM < ”match-att” < EM }
{”first-att” = FA, ”match-att” = SA})

This update query searches for all of the documents where attributes match-att is greater
than given value BM and less than EM value. With the assumption that attribute first-att
did not exists in this document, this operation adds this attribute with the given value FA
to the document. It also replaces the value of attribute match-att with the value SA.

If the WRITE operation is delete, the specified attributes in the modification part are
removed from the matching documents. However, if the modification-predicate of a delete
operation is empty, the whole matching document is removed.

Example 2.4.4. db.coll.DELETE({”any-att” = A})
This delete operation searches for a document where the attribute any-att is equal the give
value A. It then drops the entire matching document.

The different data model and the assumptions that were defined in Section 2.4.1 re-
quired for a different query language for document-based databases. The definitions of the
procedural query language presented in this section are used all through this thesis. The
differences are not limited to the query language, but also to the rules of thumbs that
the query optimizer of the document-based databases is applying to produce the optimal
plan. These major considerations of the query optimizer of document-based databases are
explained in Section 2.4.3. All of these differences also result in disqualification of the stan-
dard benchmarks of relational databases to evaluate document-based systems. This issue
is discussed in Section 6.1.

2.4.3 Query Optimizer Behaviour

The application of a different data model and query language impose special query opti-
mization considerations on the query optimizer of document-based databases. Although
the basic functionality of the query optimizer as described in Figure 2.6 remains the same,
the rules that are applied to produce and evaluate candidate plans are different. The se-
lection of the candidate indexes in the index recommendation system should be carried out
with regards to the rules of the query optimizer (see Section 4.3). These rules are directly
dependent on the set of physical operators that the Query Execution Engine is capable to
perform. However, unlike traditional relational databases, NoSQL databases in general, and
document-based databases in particular do not have a unified query language and thus a
unified basic set of physical operators. Therefore, it is requisite to define the set of optimiza-
tion rules evaluated by the targeted database query optimizer. In the rest of this section,
first the type of some of the optimization tasks for a document-based query optimizer are
described. Then, the assumption of the main rules applied by a typical document-based
query optimizer to choose a plan are introduced.

The search space of a query optimizer consists of the alternative plans for execution
of a given query. The construction of these alternative plans is dependent on the series of
physical operators supported by a Query Execution Engine.

24

The assumption is that the document-based databases eliminate usage of JOIN opera-
tors (Assumption 2.4.1). Also, the indexes are constructed on collection level. As a result,
no query accesses multiple collections at the same time. Therefore, all of the query op-
timization tasks concerning JOIN operations, e.g. utilization and operator reordering of
Loop Join, Merge Join, or Hash Join [1, Chapter 2], are irrelevant for a document-based
query optimizer.

However, there remain other sources of variety for a query optimizer to generate alter-
native plans. One of the most important ones is the choice of the access path. If no indexes
are available for a query, the default plan generated by the query optimizer is to access
the intended data by performing a full collection scan. Modern query optimizer can utilize
single- or multi-attribute (compound) indexes. In the presence of various indexes, more
alternative plans can be constructed by performing an index seek utilizing the indexes.

The plans are constructed by prioritizing the set of rules described in Definition 2.4.1.
Then the cost of each index is evaluated by the optimizer based on the selectivity of that
index (see Definition 2.2.2). The lower the selectivity, the more efficient the index is.

Definition 2.4.1. The Query Optimizer Selection Rules:
The selection of indexes is performed by considering the following rules:

1. If the query includes a sort-clause, try to sort using an index.

2. Satisfy conditions in the search-predicate of the query utilizing indexes.

3. If the query contains a range condition or sort-clause, choose the index which its last
attribute can satisfy the range or sort.

The first rule indicates that execution of a SORT operation utilizing an index is the
priority. Both single- or multi-attribute indexes can be used to satisfy the sort-clause. The
same is true to satisfy the second rule for attributes in the search-predicate.

However, if the query does not contain any projection-predicate or the index does not
contain the information for the specified attributes in the projection-predicate, the whole
matching document should be fetched from disk to memory. This process slows down the
response time with several order of magnitudes. Therefore, it can be helpful to benefit from
multi-attribute indexes that cover more information.

Additionally, the second rule points out another capability of the query optimizer. For
queries with more complex predicates, the query optimizer is also capable of utilizing sev-
eral indexes simultaneously with what is called intersection of indexes. The idea behind
index intersection is to exploit multiple-conditions selectivity by simultaneously scanning
the single indexes of each condition.

Example 2.4.5. Consider the following conjunctive condition: A1 = 10 ∧ A2 =”string”,
where A1 and A2 are two single attributes in documents of a collection. The assumption
is that there are single attribute indexes available on attribute A1 and A2. By exploiting
these indexes, a set of pointers to the documents that fulfill each condition can be obtained.

25

The query optimizer applies many rules. The rules that are more relevant to the decision
making and extraction of criteria in an index recommendation system are described in this
section.

2.5 Summary

In this chapter, a description of the application of meteorological databases that pro-
vided the motivation for the research for an adaptive index recommendation system on
the document-based database is presented. The specific requirements of these applications
demanded the usage of document-based databases. The distribution of different operations
through time and the unique queries in the corresponding workload of these applications
raised the awareness about the lack of an adaptive index recommendation system especially
with the considered document-based database.

To help the reader to navigate through thesis, a summary of the background knowledge
representation and a briefing about the challenges of index recommendation problem are
given. Then, to lay the basics for AIRs design, the distinctions between traditional relational
databases and document-based ones regarding design an index recommendation system are
introduced.

For this purpose, the data model of the document-based databases is described. Due to
the diversity of the models between different document-based databases, the assumptions of
the behavior of a typical document-based database that the research in this thesis is based
upon are introduced.

It is deduced that the entirely different data model of the document-based database
requires other query language than the standard SQL. As there is no unified query language
for NoSQL databases in general, and document-based databases in particular, the query
language that is utilized throughout this thesis is described.

As a result of the different data model and query language, the tasks of the query opti-
mizer also differs for document-based databases. The fundamental rules that are assumed
a typical document-based database applies are presented.

At last, based on these characteristics, the parameters that must be considered in the
design of an adaptive index recommendation system concerning a document-based database
are presented. Different segments of the index recommendation system contain various
solutions containing these parameters.

26

Chapter 3

Related Work

Indexes are physical structures that can significantly increase the performance of the databa-
se. The design of these physical structures along with the capabilities of the query optimizer
and engine of the targeted database determine the efficiency of a query execution. Auto-
matic recommendation of required indexes is non-trivial. The significance of this matter
has engaged several scientific [56], [57], [58] as well as commercial study groups [59], [60]
for years. In this chapter, some of the related work in the field are discussed. Also, more
recent and leading studies on the subject are mentioned and are discussed in context of this
thesis. Due to the broadness of the aspects that index recommendation is associated with,
the related work is discussed concerning each issue in the rest of this chapter.

Parts of the following text is published in [61].

3.1 Complexity of Index Recommendation Problem

In 1978, D. Comer investigated the complexity of the selection of a set of indexes out of
all possible indexes [48]. Since the focus of his work is merely on the proof of difficulty of
the Optimum Index Selection Problem (OISP), a simplistic form of ISP is defined as the
following: For any given file F with n records, k attributes, and a given integer p, is there an
index set for F with size not larger than p? Even with the assumption that the attributes
of the file are not to be combined, Comer reduces the NP-complete problem Satisfiable with
exactly 3 literals per clause (SAT3) [62] to OISP. This proves that OISP is an NP-complete
problem and there is no known algorithm to solve this problem in less than exponential
run-time for any arbitrary inputs.

Then, Piatetsky-Shapiro in [63] also by reducing the problem of selection of secondary
indexes to the Minimum Set Cover [49] proved that it is an NP-complete problem.

However, Chaudhuri et al. in [64] investigated the selection of clustered and non-
clustered indexes with the assumption of two constraints: 1- the additional storage required
to build the proposed indexes should not exceed the storage limit, 2- for any given table in
the database, it is not possible to build more than one clustered indexes. By reduction of
the non-clustered index selection problem to the k-densest sub-graph [65], they proved that

27

it is an NP-hard problem.

Although in Section 2.4.1 we assume that building cluster indexes is not possible in the
collections of the document-based databases (see Assumption 2.4.2), according to the above-
mentioned studies, any solution to the recommendation of the sub-set of proper indexes is
computationally hard.

In general, the index recommendation problem can be deliberated as a complex search
problem that has a search space, a cost model to evaluate each solution, and an enumeration
method to traverse the space of possible solutions. The steps taken in the advancement of
any of these areas of research over assisting physical design tools such as index recommen-
dation systems are discussed in the following of this section.

3.2 Search Space of the Index Recommendation System

The search space of the index recommendation system is composed of candidate indexes.
There are various methods to select the candidate indexes. A common method to extract
the candidate indexes is to execute a syntactic analysis of the query [66], [67], [68]. This
parsing can be done on the query string and can extract the indexable attributes from the
parse tree which is known as Parsing-Based Approach or from the execution plan generated
by the query optimizer which is known as Execution Plan-Based Approach [1, chapter 4].

The primary studies only included the selection of single-attribute indexes [69], [70], [71],
[72]. However, considering the ability of all modern query optimizers in processing multi-
attribute indexes, it is important to recommend them as candidates when required. There
are different methods to construct a proper subset of multi-attribute candidate indexes for
a workload such as:

1. iterating from single-attribute indexes to multi-attribute candidate indexes [66],

2. clustering single-attribute indexes in various queries together [67],

3. utilization of a Frequent Itemset algorithm [73] to determine single- and multi-attributes
at the same time [68].

Not only to build the proper set of multi-attribute candidate indexes, but also to con-
sider the candidate indexes only for frequent queries of the workload, the Frequent Itemset
algorithm is adapted in this thesis as well. However, to not ignore the queries with long
run-time, the candidate indexes of such queries are also added to the candidate set of
indexes.

Additionally, some index transformation techniques can be used to consider sub-optimal
candidate indexes that might fit better into the environmental constraints such as storage
limitation. One of these transformation techniques that is leveraged in this thesis as well
is index merging [74]. The idea of index merging is to combine two indexes that their first
starting key is similar with a utilization of the starting key and combination of rest of their
attributes.

28

Furthermore, typically any subset of these candidate indexes should be evaluated in
the index recommendation process. These sub-sets of indexes are known as configurations.
Depending on the number of candidate indexes, the number of all possible configurations is
enormous. Utilization of the atomic configuration concept [75] assists in reducing the search
space of the index recommendation problem. The atomic configurations are configurations
that all of their indexes are used for the execution of some query. The execution cost of
queries for any other configuration can be calculated based on the execution cost of the
atomic configurations. Since the atomic configurations are only a fraction of all possible
configurations, leveraging this concept results in a major reduction in the search space of
the index recommendation problem.

3.3 Cost Model

As discussed before, the index recommendation problem can be seen as a complex search
problem with a possibly large search space of configurations. Although there are various
methods how to find the solution for this problem, the fundamental common requirement
of them all is the ability to evaluate the expected data access cost for each given query in
the presence of every configuration in the search space. Therefore, a cost model should be
designed to promote the configurations with a better fit.

Many studies on the index recommendation problem merely focused on designing a cost
model that defined the benefit of indexes for read queries with storage constraint [67], [66].
However, an accurate cost model should take into account the maintenance cost of indexes
in the presence of update operations as some suggested models in [76], [68]. The early
studies on the index recommendation problem tended to develop an external cost model to
independently evaluate different sets of indexes [69], [70], [71], [72], [77].

However, the efficiency of any set of recommended indexes for a given query depends
on the design and efficiency of the query optimizer of the targeted databases. Therefore,
a major trend in the design of index recommendation systems is to communicate with the
query optimizer of the targeted database to estimate the worth of any set of indexes for a
given query [78], [79], [66], [68].

Utilization of the query optimizer to estimate the profit of any set of indexes has several
advantages such as: 1- the recommended index sets are assured to be used by the query
optimizer to execute the query, 2- the recommendation system benefits from all of the
performance optimization aspects that the query optimizer takes into consideration, and 3)
any modification in the cost model of the query optimizer is automatically included in the
index recommendation system [80]. This way, the capability to run the query with multiple
indexes by intersecting them together is also taken into account [64].

3.4 Query Optimizer Considerations

The search space of any query optimizer depends on the number of physical operators that
the database engine can perform. In query optimizers of relational databases, the search

29

space also revolves around the number of equivalent algebraic transformations that can be
carried out by the database engine. Many of these transformations are by some means
related to properly placing the JOIN operations in sub-plans [1, chapter 2]. Examples of
such considerations are the determination of the order of GROUP-BY and JOIN clauses
after each other [81] and simplification of the execution of an OUTERJOIN by pulling it
above a block of JOIN operations [82].

All of the above-mentioned optimizations in the search space are tightly associated
with the relational data model and normally their SQL language. However, since the
document-based databases mostly eliminate the JOIN physical operators [53, Chapter 5],
these transformations are not considered in their optimizers.

Nevertheless, there are many other transformations in the search space of the query
optimizer that are relevant for both relational and document-based databases such as access
path selection [83]. Naturally, the considerations of the query optimizer regarding the
common transformation for relational and document-based databases are specific to the
data model and the query language of that database. This is also true for the case of the
cost model and the enumeration strategy of the query optimizer.

In the case of the enumeration strategy, the query optimizer of the document-based
databases mainly follow the extensible optimizer paradigm [84] that mostly relies on the
Volcano/Cascades optimization framework [85]. However, in a document-based database,
the rules of the query optimizer are defined based on the criteria of the data model and
language. An example of the rules applied in the query optimizer of a particular document-
based database is given in [86, Chapter 7].

By the time of writing this thesis, to the best of my knowledge, all of the published
scientific studies on the index recommendation problem are applied to relational databases1.
The behavior of the query optimizer and the rules that it applies to determine the optimal
plan directly affect the syntactic methods used in an index recommendation system to
extract candidate indexes and the estimated costs of running a query with a distinct set of
indexes.

3.5 Reduction of Load on the Query Optimizer

Despite all of its advantages, obtaining the cost of running queries under various index sets
from the query optimizer puts lots of load on the database system. This extra load can
affect the performance of the database in response to its application queries. Therefore,
many studies have been conducted to reduce this load on the query optimizer.

One well-known method to lessen the load of the evaluation of queries by the query
optimizer is the implementation of a What-If optimization environment [89]. This environ-
ment enables the simulation of the existence of a hypothetical set of indexes in the database
management system. Therefore, the process of optimization of different queries can be done

1The author is aware of the attempt to adapt AutoAdmin [59] to be applied to their cloud-based
document-based database DocumentDB [87] in Microsoft Azure according to [88]. However, by the date
of publication of this thesis no scientific paper is published about this process.

30

with the assumption of the presence of that set of indexes without materializing those in-
dexes in reality. For any given query (read or update) and a set of indexes, the What-If
optimizer produces the cost estimation of the optimal execution plan for the query with the
index set. Such environment is extensively utilized by index recommendation systems and
thus is adapted into many modern databases [90].

Nevertheless, the What-If optimization is an expensive process and is itself often the
bottleneck in the index recommendation process. Therefore, an enhancement study is con-
ducted to reduce the overhead of the What-If optimization by a technique called INdex
Usage Model (INUM) [57]. INUM is designed to function in cases where a large number of
What-If optimizations should be performed for the same statement. It is considered as a
fast alternative to the What-If optimization. INUM functions in two phases:

1. For a given query q, it makes few carefully chosen calls to the What-If optimizer to
obtain the potential set of optimal execution plans of q. INUM caches these plans
and utilizes them when any What-If optimization regarding q is required.

2. It transforms each of the optimal cached plans of phase 1 to use the given set of
indexes as the access plans. INUM introduces the transformed plan with the lowest
cost as the optimal plan [90].

However, the usage of the What-If optimizer or INUM requires the development of
an additional component within the database. This What-If component should collect
the same statistics about the data set as the ones gathered by the query optimizer to
build the necessary histograms [91]. As an alternative solution, the logic of gathering
statistics is leveraged in the designed solution of this thesis, to develop a virtual environment
consists of a sample set of the original data set where all of the candidate indexes can be
materialized once. Then the cost of running the query with each configuration can be
simulated in this environment. This design is significant because index recommendation
systems typically rely on the design of the database system itself, such as the existence
of a What-If interface [92]. However, the virtual environment design enables the index
recommendation system to cooperate with any database without requiring to alter internal
components of the database.

Since the estimation obtained from the query optimizer relies on the statistics that it
gathers from the dataset (i.e. histograms and cardinality of attributes), it is imperative
that the sample set carries approximately the same statistical ratio for all attributes in
the dataset. This approach is inspired by and based on the idea of utilization of random
sampling for the approximation of histograms provided to the query optimizer to estimate
the number of results of a query [93], [94]. Piatetsky-Shapiro and Connell prove in [95]
that for any single given query, just a small sample size is enough to estimate an accurate
histogram with high probability for that query. However, for the purpose of building the
virtual environment with a representative sample for the index recommendation system,
a histogram should be derived that is reasonably adequate for all of the queries in the
workload or a large number of them. Gibbons et al. in [46] determined a bound on the
requisite sampling size which is independent of the distribution. The focus of their work

31

is on maintaining histograms incrementally. Chaudhuri et al. in [96] introduce an error
metric that leads to a specification of a much stronger bound on the crucial sample size.
The results of this method are adapted to conduct the study on the essential optimal bound
on the trade-off between the size of samples and the derived error on the histograms.

Additionally, to reduce the overhead of calls to the query optimizer - regardless of
What-If or our virtual environment - the concept of atomic configurations is utilized. As
mentioned earlier in this section, the execution cost of queries for any configuration can be
computed based on the execution cost of the atomic configurations. Therefore, the number
of calls to the query optimizer decrease, because only these atomic configurations should be
evaluated.

There are various methods to extract the atomic configurations. Chaudhuri and Narasa-
yya in [75] discuss a static strategy based on the restrictions of the query processors. The
idea is that the atomic configurations can be constructed upon characteristics of the query
processor such as defining the maximum number of indexes that can be intersected to run
a query or number. In contrast to exploit a static method, an adaptive strategy is further
developed in this thesis.

3.6 Enumeration Technique

The configurations in the search space of the index recommendation problem should be
traversed efficiently to be evaluated according to the designed cost model. The enumer-
ation techniques can generally be classified into two categories: bottom-up and top-down
approaches [1, Chapter 6]. Each of these approaches has its advantages and disadvantages.

The usage of a hill-climbing approach also known as Greedy algorithm [97, Chapter 16]
is an example of a bottom-up approach that is commonly used to solve the index recommen-
dation problem [68], [72], [70], [75]. The ascending greedy algorithm starts from an empty
set of candidate indexes and incrementally (greedily) adds more candidate indexes attempt-
ing to maximize the benefit of the indexes. This process terminates as the benefit starts
to decrease or the storage limit is reached. Despite its relatively fast process, the greedy
algorithm does not guarantee to always find the optimal global solution. It might stop at
a local maximum solution. This approach is the common solution used in the Microsoft’s
AutoAdmin index selection tool [59].

Another commonly used bottom-up approach to find the final configuration from the
set of candidate indexes is to assimilate it into a form of the Knapsack problem [98]. The
studies on the index selection problem conducted in [99], [66], [100], [64], [101] and [102],
all formulated it as a Knapsack problem where each index represents an object, the index
storage size is considered as the weight of each object, the chosen cost of running the work-
load determines the benefit objective function, and the total storage limit is the knapsack
size. Then the problem is often solved by a greedy approach. This approach is the core of
the index selection tool of DB2 Advisor [60].

Additionally, derivation of randomized methods such as Genetic algorithm [103] are also
adapted to formulate the index recommendation problem. Kratica et al. in [76] defined

32

the primary population for the Genetic algorithm to be the candidate index set. The
objective function to optimize is similar to previous approaches. This method evaluates
the cost of running the workload with different configurations. Then the combinatorial
manufacture of the final configuration is performed by mutation, crossover, and selection
genetic operators [68].

In general, the bottom-up approaches are more beneficiary in cases where the storage
capacity is limited to a small size. However, in modern, scalable systems, often the storage
is not tightly restricted. On the contrary, the top-down approaches start with a globally
optimal solution that normally exceeds the storage limit. Then, they gradually temper this
initial configuration so that it will fit into the storage constraint. The top-down approaches
are more desirable, especially in cases where the storage capacity is not that low. Through a
relaxation of constraints, the top-down approaches determine measures of approximate opti-
mal solutions [104]. Therefore, they provide information about more efficient configurations
than the final recommended one, that does not fit into the constraints. This information
can be valuable to make better decisions for resource management of the system such as
required increase in the disk or memory storage of the database environment.

A remaining open research question is if hybrid schemes build upon the approaches
mentioned above can improve the index selection problem [1, Chapter 6]. Additionally, as
noted before, most recent advances in index recommendation approaches all suffer from
a common drawback: they do not guarantee the optimality of the final solution [64]. In
most of the approaches above, the final recommended configuration can be a locally optimal
solution instead of a globally optimal one.

Therefore, in the course of this thesis, the search space of the index recommendation
is first narrowed down with the assistance of a top-down approach in the form of Index
Benefit Graph algorithm [72]. Then to assure the discovery of the global optimal solution,
the index recommendation problem is formulated in Integer Linear Programming [105]
which is traversed by the Branch-and-Bound algorithm [106].

The usage of the adapted Index Benefit Graph algorithm provides all of the advantages
of top-down approaches in this work. An important aspect that is covered is the possibility
of interaction of indexes [107]. Interaction of indexes in the form of index intersection is
an important common functionality of modern database optimizers to answer a query. The
coverage of index intersections can only be estimated utilizing top-down approaches. In
bottom-up approaches where the cost of running a query with each index should be defined
individually and before the enumeration, it is not possible to cover the index intersection
possibility for queries. The complexity of the adapted Index Benefit Graph algorithm to
extract the index intersections is a subject of study in this thesis.

The usage of an Index Benefit Graph in combination with the usage of Frequent Itemset
and long query strategy helps to restrict the size of the search space for the index recom-
mendation problem. Hence, the utilization of the Integer Linear Programming becomes
practical.

The Integer Linear Programming (ILP) is itself an NP-hard problem [108]. However, for
a small search space, it can return the optimal global solution quickly. Papadomanolakis

33

and Ailamaki in [56] presented a formulation of the index selection problem in ILP. However,
the cost model of that design for write operations is not complete. This thesis provides a
complete formulation of index recommendation problem in ILP that takes into account not
only the effect of updates and the ratio of read to write, but also the selectivity of candidate
indexes. Also, a sensitivity analysis of this model is provided.

3.7 Benchmarking Challenges

Despite the extensive research that has been conducted on the index recommendation prob-
lem over the past years, not much attention is paid to systematic evaluation methodologies
to determine the quality of various index recommendation systems [1]. To perform such
evaluations, standard benchmarks are required. However, the defined generic benchmarks
do not target specifically to validate the index recommendation solutions. Therefore, for
each index recommendation solution, a special set of experiments is defined to verify the
solution. There have been some efforts to design frameworks to benchmark index recom-
mendation systems that are discussed in the rest of this section. The common aspect among
all of them is that their database type is relational with a corresponding workload of SQL
queries. Therefore, the evaluation of an index recommendation solution for document-based
databases projects additional challenges.

The generic database benchmarks are designed to provide a way to execute the same set
of tasks on different systems so that the performance results of these systems are compa-
rable with each other [109]. Designing a fair benchmark is a delicate task. An inadequate
benchmark can leave the door open for ”gaming the benchmark” [1, Chapter 12]. Each
benchmark has three fundamental components: 1- evaluation metric, 2- baseline definition,
3- the database/workload. Each of these components must be carefully chosen according to
the System Under Test (SUT) [110]. For the generic database benchmarks that are tar-
geting the performance of the system as a whole the evaluation metric is usually a single
quantity metric such as the throughput of the system. These benchmarks also determine
the baseline and the database/workload. Then, their execution on several different systems
allows comparing the results of their performances with each other [111].

There are many generic benchmarks defined to evaluate the performance of relational
databases. The Transaction Processing Performance Council (TPC) [52] is a well-known
benchmark defined by a consortium of vendors. TPC consists of a series of benchmarks
that are corresponding to different well-established applications of relational databases.
They even introduce modern benchmarks to cover more recent relational applications such
as support systems and web commerce [112]. The performance of the whole system is
evaluated then with the aid of a single metric.

Many index recommendation solutions utilized one or more TPC datasets and a variation
of their workloads to validate the performance of their solutions [66], [79], [58], [68], [56],
and [67]. These solutions, mostly, used a single value named percentage improvement to
evaluate the quality of their index recommendation solutions. This number indicates how
efficient costs of running the queries of the given workload are with the recommended set

34

of indexes in comparison to the baseline set of indexes.

However, to assess the performance of specific database related systems such as an index
recommendation system, more accurate evaluation metrics, and accurate baselines should
be defined which are dedicated to index recommendation evaluation. Hence, each of the
mentioned solutions to the index recommendation problem utilized a variation of one of the
TPC benchmark and yet none of them used the same set of benchmarks. Consequently,
though all of those solutions are developed for a relational database, their results are not
directly comparable with each other.

There have been few efforts to design a common framework for the evaluation of in-
dex recommendation systems. Consens et al. in [111] suggest a framework to assess the
effectiveness of the automated index recommendation systems that is known as Toronto
Autonomic Benchmark (TAB). TAB defines its goal as enabling a comparison of the results
of one or more index recommendation systems with each other that are running on the same
database system, in contrast to the comparison of the results of these systems across multiple
database systems. TAB introduces an evaluation metric that carries more detailed infor-
mation about the quality of the index recommendation solution performance. This metric
requires an input time and defines the quality of each particular set of recommended indexes
as the number of queries in the workload that can be executed within this given time. This
metric allows for a side-by-side comparison of the quality of the results of multiple index
recommendation systems. It also supports performing a specific goal-oriented evaluation
such as the execution of a fraction of queries in a sub-second time [113]. The baseline of TAB
is proposed to be a set of all single-attribute indexes. For their database/workloads, they
use both real and synthetic databases that can appropriately scale to the capacity of the
available resources. For their realistic scenario, TAB utilizes the Non-redundant REFerence
protein (NREF) database published by the Protein Information REsource [114] and for syn-
thetic workloads a combination of TPC-H [115] and a skewed version of the TPC-H [116].
However, they only utilize retrieval queries and do not consider update queries.

N. Bruno in [113] had a critical look at the TAB benchmarks. The first concern is
about the evaluation metric of TAB that works with the actual run-time of the queries. He
argues that the execution of a query depends on many factors such as the query optimizer,
query processor, and even the conditions of the underlying operating system. Therefore,
such evaluation metric as introduced by TAB can be beneficent when dealing with assessing
the full database system. Nevertheless, for a pure evaluation of the index recommendation
systems, it is important to freeze any other external variables [117]. Thus, Bruno argues
for utilizing the estimated execution cost by the query optimizer. Additionally, he claims
another drawback of TAB’s evaluation metric is that it only reveals information about the
quality of the index recommendation solution for all of the queries of the workload rather
than for each single query. Therefore, he recommends an evaluation metric that determines
the quality of the recommended set of indexes in comparison to the baseline or any other set
of indexes for every single query. He claims that this metric can be used as a complementary
metric to TAB’s metric to evaluate the index recommendation solutions. Regarding the
baseline definition, Bruno also strongly argues against the usage of single-attribute indexes.

35

He introduces the design of a proper database/workload to evaluate the quality of index
recommendation systems as an open research question. He explains that any beneficiary
database/workload of a benchmark should be constructed from at least one of the following
three ’buckets’: Micro-benchmarks, Synthetic benchmarks or Real benchmarks.

Finally, Schnaitter and Polyzotis proposed a benchmark to assess the online index rec-
ommendation systems in [92]. Similar to the last two approaches, they also assumed that
the data is stored in a relational database. Then, they exploit two evaluation metrics for
their study. The first metric measures the total cost of the materialization of each set of
indexes and the cost of running the queries of the workload under the current materialized
set of indexes. Like the strategy proposed in [113], they also argue to utilize the estimated
cost by the query optimizer instead of the actual running cost of the query. Therefore,
their metric is not influenced by any mismatch between the statistics of the query optimizer
and the real execution cost in the environment. As a complementary evaluation metric,
they also capture the total wall clock time to execute the whole workload. For both of
these metrics, they use the system that contains no indexes as their baseline. At last, they
utilized the TPC-H, TPC-C, and TPC-E from the TPC benchmark suits and the NREF
data set as their database. As of the workload, they use three different templates, which
indicate various levels of workload complexity. Then, from each of these templates, the
tables that are engaged in each query are selected randomly, with a selection probability
proportional to the cardinality of the participating tuple. This approach to generating the
workload is based on the common assumption that the query distribution pursues the data
distribution. Certainly, an alternative approach to the random query usage is to benefit
from the standard set of queries that are designed for each of the chosen datasets.

The common target of all of the above approaches is index recommendation solutions for
relational databases. The evaluation of NoSQL database systems is even more challenging
since there is not yet a generic standard benchmark designed to operate in both relation and
all of the different types of NoSQL databases. The design of a uniform set of benchmarks to
cover all database types requires a very careful and precise study. Due to the fundamental
distinctions between data models and query languages of the NoSQL databases to each
other and the traditional relational databases, the TPC benchmarks can not be directly
used for other database types.

Even a proper mapping of the normalized data structure of the relational TPC bench-
marks and their corresponding queries to the highly denormalized structures of NoSQL
databases is a complex task [6]. Up until now, the efforts to map some of the TPC bench-
mark suits to document-based data model normally suffer from one of the following issues:
they either do not consider the capability to replace linked data with nested documents [118],
or they overuse the embedding ability [119]. Eventually, a proper translation of each query
is required [120].

An attempt to provide a general framework that can produce data sets and workloads for
many different database types is the development of the well-known Yahoo Cloud Serving
Benchmark (YCSB) [121]. However, the common standardized evaluation metric, baseline
and set of database/workload are still an open research question.

36

Therefore, the design of the methods to evaluate effectiveness of the AIRs proposed
solutions required major attention. Sections 6.1 and 6.2 represent the proposed evaluation
metric, baseline and the designed synthetic and real database/workload scenarios to evaluate
the AIRs.

Table 3.1 lists a summary of some of the significant characteristics related to an index
recommendation system for significant approaches to the index recommendation problem.

37

[6
6
]

D
B

2
A

d
v
iso

r

[7
9
]

M
ic

ro
so

ft
S

Q
L

S
e
rv

e
r

2
0
0
5

[6
8
]

A
D

a
ta

M
in

in
g

A
p
p
ro

a
c
h

[5
6
]

A
n

IL
P

A
p
p
ro

a
c
h

[6
7
]

A
C

lu
ste

rin
g

A
p
p
ro

a
c
h

[7
6
]

A
G

e
n

e
tic

A
lg

o
rith

m
A

IR
s

D
a
ta

M
o
d

e
l

R
elation

al
R

elation
al

R
elation

al
R

elation
al

R
elation

al
R

elation
al

D
o
cu

m
en

t-
b

ased

Q
u

e
ry

L
a
n

g
u

a
g
e

S
Q

L
S

Q
L

S
Q

L
S

Q
L

S
Q

L
S

Q
L

P
ro

ced
u

ral
Q

u
ery

L
an

gu
age

C
o
m

m
u

n
ic

a
te

w
ith

Q
u

e
ry

O
p

tim
iz

e
r

X
X

—
X

X
—

X

H
e
u

ristic
to

E
x
tra

c
t

Q
u

e
rie

s
—

—

F
req

u
en

t
Item

sets
O

u
tp

u
t

—

K
-M

ean
s

C
lu

sterin
g

O
u

tp
u

t
—

F
req

u
en

t-L
on

g
&

M
erged

O
u

tp
u

t

M
e
rg

in
g

X
—

—
—

—
—

X

R
e
d

u
c
tio

n
o
f

S
e
a
rch

S
p

a
c
e

S
A

E
F

IS
&

B
F

I
A

lgo.
A

tom
ic

C
on

fi
gs

F
req

u
en

t
Q

u
eries

A
tom

ic
C

on
fi

gs

C
lu

sterin
g

S
im

ilar
Q

u
eries

A
tom

ic
C

on
fi

gs

A
tom

ic
C

on
fi
gs

&
F

req
u

en
t-

L
on

g
A

lg.

E
n
u

m
e
ra

tio
n

T
e
ch

n
iq

u
e

K
n

a
p

sa
ck

F
o
rm

u
lation

&
G

reed
y

S
earch

G
reed

y
S

earch
G

reed
y

S
earch

In
teger

L
in

ear
P

rogram
m

in
g

—
A

G
en

etic
A

lgorith
m

In
teger

L
in

ear
P

rogram
m

in
g

G
a
ra

n
te

e
O

p
tim

a
l

S
o
lu

tio
n

—
—

—
X

—
—

X

R
e
d

u
c
tio

n
o
f

L
o
a
d

o
n

th
e

O
p

tim
iz

e
r

S
in

g
le

C
all

A
lgorith

m
W

h
at-If

O
p

tim
izer

—
IN

U
M

—
—

V
irtu

al
E

n
v
.

B
ased

on
S

am
p

lin
g

E
v
a
lu

a
tio

n
S

c
e
n

a
rio

V
ersio

n
s

o
f

T
P

C
-D

su
its

V
ersion

s
of

T
P

C
-D

su
its

V
ersion

s
of

T
P

C
-H

an
d

T
P

C
-D

su
its

T
P

C
-H

su
it

T
P

C
-R

su
it

R
an

d
om

ly
G

en
erated

IS
P

s
b
y

[117]

M
ix

of
R

eal
an

d
S

y
n
th

etic
G

en
erated

b
y

N
oW

og

T
a
b

le
3
.1

:
C

o
m

p
a
rison

b
etw

een
w

ell-k
n

ow
n

so
lu

tio
n

s
to

th
e

in
d

ex
reco

m
m

en
d

ation
p

rob
lem

.

38

Chapter 4

The Adaptive Index
Recommendation System

Besides the theoretical complexities of index recommendation, there are many applied and
practical issues that should be considered when designing the architecture of a unified
system. This chapter is devoted to the discussion of such practical issues as well as the
explanation of heuristics used to design solutions in AIRs.

At first, the criteria that are considered to design the AIRs are presented in Section 4.1.
As presented in Problem 2.3.2, one major concern in the design of an index recom-

mendation system is to reduce the search space of the candidate indexes. Section 4.3, in
addition to presenting the architecture of AIRs declares the heuristics that are taken into
account to reduce the search space.

Another major practical design concern is to reduce the overhead of calls to the query
optimizer as stated in Problem 2.3.4. The designed solution of AIRs to address this problem
is discussed in Section 4.2.

Materialization of indexes on the original datasets is too resource-consuming and the
size of each candidate index can not be directly measured. Therefore, the size of indexes
should be estimated from the number of documents containing the corresponding attributes
that construct the index. As discussed in Section 4.4, this estimation can be done based on
the type of the value that the attribute contains.

Some of the ideas presented in this chapter are published in [7], [61], and [122].

4.1 Identification of Relevant Criteria

Based on the task defined for an index recommendation system in Section 2.3 and the
characteristics and requirements of each of its sub-challenges, the parameters that should
be considered in the design of an index recommendation system can be extracted. This
section is dedicated to explaining the extracted parameters. A concise description of where
and how these parameters are taken into account in the unified design of the AIRs is also
presented.

39

The design of an index recommendation system is dependent on three general conditions
of the targeted database: 1) the initial state of the database at the time of activating the
recommendation system, 2) the capacity of the environment where the database instance is
running within, and 3) the type of incoming workload to the database. The exact relevant
parameters in the design of the adaptive index recommendation system are chosen regarding
each of these conditions. Table 4.1 represents a summary of all of these relevant parameters
in correspondence to each general condition.

The logic behind consideration of each of these parameters are discussed in the following:

1. Initial State of the Database: the AIRs can only recommend indexes based on its
analysis of the database system at the time that AIRs is triggered. The state of the
database at this time is known as the initial state of the database. This initial state
can be defined by the following parameters:

• Database Type : the type of a database is defined by its data model, query
language, and the query optimizer behavior. The differences in the behavior of
the query optimizer and the query language of various databases have a direct
impact on the syntactic analysis of the queries to extract candidate indexes. The
required distinctive syntactic analysis is discussed in Section 4.3.

• Cardinality of the Database Attributes: the cardinality of attributes in
the contemplated datasets determine the selectivity of the chosen indexes. A
designed strategy of AIRs to reduce the overhead of calling to the query optimizer
is to work with a sample of the dataset. The query optimizer chooses between
different indexes based on their selectivity that is extracted from the statistics
of the dataset.

Therefore it is important to extract a representative sample of the dataset, espe-
cially in terms of cardinality of the attributes. Hence, the cardinality parameter
impacts the practical design of the AIRs as debated in Section 4.2.

• Already Existing Indexes: the targeted database at its initial state might
already contain some indexes. The execution of the analyzed workload with the
recommended indexes proposed by AIRs should not be more expensive than its
execution with the set of already existing indexes. This aspect is considered in
Section 4.2 where an algorithm is developed for the materialization of the set of
indexes (Algorithm 4.1).

2. Database Environment: the capacity of the environment where the targeted datab-
ase is running determines a limitation on the available resources. These resources
consist of available storage, processing units, etc. However, for parametrization of an
index recommendation system design, it is important to consider the storage restric-
tions. By strongly advising to run the AIRs on a separated system as the original
database, the processing power of the environment becomes irrelevant as a parameter
in the study.

40

• Storage Limitation : to be able to materialize the proposed indexes, their
required storage capacity should not exceed the available storage threshold. Also,
to benefit fully from the advantages of having an index in the system, the index
should fit into the memory.

Therefore the available free storage capacity of the database environment implies
an upper limit for the total size of all recommended indexes. This matter is
introduced as a constraint for the objective function presented in Section 5.1.
Additionally, since materializing indexes is an expensive process, the size of the
candidate indexes should be estimated. The related study to estimate the size
of each index is covered in Section 4.4.

3. Type of Input Workload: the creation of indexes that are not beneficiary for any
query occupy unnecessary storage capacity. Therefore, it is important to create the
indexes with regard to the characteristics of the queries in the workload.

These characteristics can be described by the following parameters:

• Read to write Ratio: the existence of relevant indexes is purely beneficiary
for read queries. However, any time an update, insert or a delete query is issued,
all relevant indexes should be updated. Therefore, the more write operations in
the workload, the more maintenance costs for indexes. Therefore, the calculation
of the benefit and maintenance cost of each index with respect to the ratio of
read to write operations in the workload is an important parameter in the design
of an index recommendation system. The design of the objective function in
Section 5.1 is targeted to cover this issue.

• Frequency of Individual Queries: the importance of the queries in a work-
load is not equal to each other. The more frequent a query is issued, the more
important that query is in the workload.

Therefore, a weighting strategy based on the frequency of the queries is developed
in Section 4.3.1.

• Queries with Long Run-Time : weighting queries merely based on their fre-
quency can result in the elimination of queries that can not be issued more
frequently due to their very long run-time. In fact, these are the queries that
need indexes the most.

Therefore, as discussed in Section 4.3 the queries with long run-time should also
be treated specially by the design of the index recommendation system.

In this section, the effective parameters deliberated to design the index recommendation
system are introduced. These parameters are placed in various segments of the recommen-
dation system. Next, the integrated architecture design of AIRs that is constructed to cover
all these criteria is presented.

41

General Relevant Conditions Relevant Parameters

Initial State of the Database

• Database Type

• Cardinality of the Dataset Attributes

• Already Existing Indexes

Database Environment

• Storage Limitation

Type of Input Workload

• Read to Write Ratio

• Frequency of Individual Queries

• Queries with Long Run-Time

Table 4.1: General considerations and parameters that effect the design of the Adaptive Index
Recommendation system (AIRs).

42

4.2 The Architecture Design

The architecture of the Adaptive Index Recommendation System (AIRs) has a modular
design which is illustrated in Figure 4.1. The modules of the AIRs are segmented into
two sections. On the left-hand side, the module and components run regularly to monitor
changes in the database workload and data set. A profile of the incoming workload to each
dataset and a sample of the dataset are recorded by these components. The modules on
the right-hand side in Figure 4.1 run when the recommendation process is triggered. After
the evaluation of the workload and its corresponding dataset, these modules recommend a
configuration as the set of optimal indexes for the targeted database. AIRs is connected
to the targeted in-production database. The recommended configuration can either be
created directly on the in-production system or be suggested to the user. This section is
dedicated to explaining practical considerations for the design of such an adaptive index
recommendation system.

Although running the AIRs on the same system as the in-production (target) database
is possible, it is not recommended. Hosting AIRs on that same infrastructure means that

Figure 4.1: The Architecture of the Adaptive Index Recommendation System (AIRs).

43

it competes for the same valuable resources with the target database and possibly other
applications. Since AIRs connects to the target database only to extract the Workload
Profiles and to update its samples, the trade-off between transferring just small samples of
data and workload profiles to a remote machine and preserving resources for the original
database pays off.

The AIRs modules and components are introduced in the following under their particular
categories:

1) Routine Modules and Components: these segments gather information from
the Original Data Set on a regular basis as shown in Figure 4.1. They operate either on
periodic cycles or after receiving a triggering signal by the user.

• Workload Profiles Component: this component contains profiles of all of the
data manipulation queries (search, update, insert, and delete) issued to the targeted
database collection. The corresponding run-time timestamps of each query is also
recorded. A selection of these queries in a specific time interval for a particular collec-
tion can shape the workload. This workload is used as input to the Query Analyzer
module, once the recommendation process on the targeted collection is triggered.

• Sample DB Component: this component is actually a similar database instance
as the in-production one (specified as Target Database in Figure 4.1). It stores the
samples of the Original Data Sets. Additionally, the query optimizer of this database
instance is used to evaluate the costs of running each query with different config-
urations. Therefore, it is important that the sample database has the same query
optimizer version as the in-production database. If AIRs runs on the same system as
the target database, the original database instance itself would be used as this compo-
nent. This case is not recommended because of the occupation of available storage to
the database by AIRs and the extra load that evaluations of AIRs put on the target
database. In either case, the evaluation process of AIRs on the sample is carefully
designed in way that it does not alter the incoming workload records or the actual
data set of the targeted database.

• Sampler Module: this module extracts a sample of each of the targeted database
collections and stores them into the Sample DB component. The queries to extract the
representative sample are designed in a way that they do not influence the workload
of the targeted collections in the future runs of index recommendation process. This
module can be triggered at the same time as the Recommendation Modules which
increases the run-time duration of the AIRs. However, this module can be set to run
regularly. Based on the size of the sample and the number of write operations to
the corresponding collection, the related samples should be refreshed. Many practical
heuristics are utilized in the design of this module that are discussed in more details
later in this section.

2) Recommendation Modules: these modules run in sequence only if the recom-
mendation process is triggered. The series of these modules extracts the workload for the

44

selected database collection in a particular time interval. As shown in Figure 4.2, the output
of this series is the recommended index configuration.

• Query Analyzer: this module is responsible for the analysis of workload queries and
the extraction of the most relevant attribute sets from them to construct candidate
indexes. The output of this module is the union set of all candidate indexes for each
relevant query (Enumeration Space). This set is passed as input to the next module
in this series. The Query Analyzer module consists of three internal sub-modules as:
1) Cleanser, 2) Miner, and 3) Merger. The extraction of the candidate indexes from
relevant queries plays a key role in the reduction of the enumeration space and thus
for the scalability of the whole system. The approaches taken in each of sub-modules
of the Query Analyzer module are discussed in detail in Section 4.3.

• Configuration Evaluator: the goal of this module is to efficiently evaluate combi-
nations of indexes from the enumeration space and to derive so-called Atomic Config-
urations. For this purpose, the Index Benefit Graph (IBG) method (see Section 5.2)
is implemented in this module. Also, the storage costs of each index configuration
is estimated based on the estimation techniques described in Section 4.4. The stor-
age cost along with scan and update cost of each extracted atomic configuration are
passed to the Enumerator module.

• Enumerator: this module contains the implementation of the objective function
within the proper enumeration technique. The objective function implemented in
this module is the one described in Section 5.1.2. As discussed in that section, the
enumeration technique used in this module is the Branch-and-Bound in Integer Linear
Programming. The output of this module is the Recommended Configuration. If the
algorithm runs to its completion, then the recommended set of indexes is the optimal
solution, i.e. the global maximum of the objective function. However, if the running
process is interrupted before the optimal solution is obtained, this module returns a
sub-optimal configuration with its quality gap as later defined in Equation 5.10d.

As the enumeration process is finished, the recommended configuration can be created
on the targeted database. There are more factors to be considered before materializing the
recommended configuration. This process is described in Algorithm 4.1. If the targeted
database does not have any indexes, the index recommendation process is completed. How-
ever, it often happens that the targeted collection already has a set of indexes which form
an Existing Configuration CE . In that case, the quality of the Recommended Configuration

Figure 4.2: The input and output of the Recommendation Modules of AIRs.

45

CR should be compared to CE . This quality is compared to the benefit of each of these
configurations for the whole workload. Let the benefit of CR be ZR and the benefit of CE
for the workkload be ZE . Only if ZR is greater than ZE by at least the threshold τ , the
new configuration should replace the existing one. Introducing this threshold ensures that
the benefit gained by creating the new configuration is worth the materialization cost of
configurations (creation of new and removal of old indexes). To minimize the cost of index
materialization, only the indexes in CE that are not common between already existing and
recommended configurations are dropped and only the none-common indexes of CR would
be created.

Algorithm 4.1 Configuration Materialization(CR, CE)

ZR ← evaluate configuration(CR)
ZE ← evaluate configuration(CE)
if ZR − ZE > τ then

common ← CR ∪ CE
drop indexes(CE - common)
create indexes(CR - common)

end

To enable the query optimizer to evaluate execution plans with an arbitrary set of in-
dexes from the enumeration space, those indexes should be materialized on the dataset.
Part of the index materialization process is also to obtain and create related statistics of
that index. These statistics contain various information such as the cardinality of the pred-
icates that contain the specified key attributes in the index. These statistics are added to
a catalogue utilized by the query optimizer. Many database store these statistics in form
of histograms [1, Chapter 2]. Since the creation process of each index contains structuring
the values of the corresponding key attributes in a sorted order, the histogram creation
procedure can be carried out simultaneously. Histograms represent the data distribution.
The cardinality of each query predicate can be calculated from these histograms. Therefore,
by materializing each index, the query optimizer is given a better estimation of the certain
predicates in queries. Consecutively, these statistics can led to a choice of a different exe-
cution plan by the query optimizer. A common concern in utilization of one-dimensional
histograms in relational databases, especially in conjunction with SQL-based query lan-
guages, is that they do not return proper results for join queries [123]. However, they
perform excellent in response to range queries. Since document-based databases mostly
eliminate join queries, they can easily provide the necessary statistics with one-dimensional
histograms.

The cost evaluation process of arbitrary index sets requires those indexes to be created
and be removed after the evaluation is done. However, materialization of all candidate
indexes on the original datasets is both time- and resource-consuming. If the database is
capable of generating an execution plan with applying some filters that do not consider
existence of some of the indexes, all of the indexes in the enumeration space can only be

46

created and removed once. Without filtering capability of the database, the indexes should
be created and removed more often for each configuration. Nevertheless, even one time
creation and deletion of all of the indexes in the enumeration space can be a heavy load
on the in-production system, especially if it contain many documents. Additionally, the
evaluation process contains many calls to the query optimizer to return the cost of running
each query with various index sets. These queries produce additional queries load on the
database to the normal application queries. Therefore, for a database with heavy workload,
this evaluation process can affect the performance of the database negatively.

A solution to this problem is to apply the index materialization and cost evaluation pro-
cedure for the index recommendation to a virtual environment, instead of the in-production
system. This virtual environment consists of representative samples of the original targeted
datasets. The Sampler module of Figure 4.1 is responsible to collect the representative
samples and store them in the Sample DB component.

On the one hand, the idea of utilizing a virtual environment is similar to the basic idea of
the well-known What-if component (see Chapter 3). The difference is that in the What-if
environment, instead of creating the indexes the related histograms of those indexes are
injected to the catalogue of relevant statistics for the query optimizer. Therefore, instead of
actually materializing the indexes, their hypothetical existence is considered by the query
optimizer. For the creation of these hypothetical indexes, still their relevant statistics should
be extracted to build the histograms.

On the other hand, the idea of utilizing a representative sample of the original collection
as a virtual environment is similar to the idea of the construction of histograms with the
help of samples. This idea is practiced by many databases to construct their histograms.
Histograms are an approximation of the data distribution of the values in each attribute.
Hence, a histogram created for a uniform random sample of the original collection returns
relatively similar results as the one constructed for the original collection [1, Chapter 5].
One concern regarding the construction of a sample is how large the size of the sample
should be. Chaudhuri et al. in [96] proved a sample between 1 % to 10 % of the original
dataset size results in histograms similar to the ones on the original collection.

Therefore, a uniform sample can be extracted from the original dataset. For the purpose
of reducing the amount of data transformation, AIRs constructs a representative sample
with 5 % of the number of documents in the original collection. To extract the representative
sample of each targeted collection, this module performs a full collection scan on it. Like any
other query, these queries are also stored in the related Workload Profile of that collection.
However, the full collection scan queries are eliminated by the Query Analyzer module
in the process of extracting relevant queries. Therefore, the sampling procedure does not
influence the workloads of the targeted database and the results of the future runs of the
index recommendation process.

47

4.3 Exploration of Candidate Indexes

The number of all possible indexes for a data set typically makes a too large search space to
be exploited by the enumeration techniques. Utilizing adequate heuristics assist in reducing
the size of the search space. In this section, the heuristics utilized in AIRs, which consists of
a syntactical strategy and considerations of the most frequent queries and merging indexes,
are discussed.

The number of all possible indexes on a data set collection is dependent on the number
of unique attributes of the collection and available index types (e.g. ascending, descending,
geospatial, text, etc.) in the particular database instance. Let t be the maximum number
of unique attributes in documents of the targeted collection. Also assume that θ is the
number of index types that the database instance supports. Therefore, the number of all
possible indexes Nidx on that collection can be obtained as:

Nidx =
t∑

γ=1

θγt!

(t− γ)!
. (4.1)

There are t possible choices of indexes fro the first field of the document. Coordinately,
(t − 1) choices remain for the second field. By adding more fields to the combination, the
total number of possible indexes on those fields grows as t(t− 1)(t− 2)...(t− γ + 1) that is
equivalent to t!

(t−γ)! .
The number in Equation 4.1 grows exponentially with the number of attributes in the

dataset. This growth not only produces an enormous search space for the enumeration
technique but also occupies a lot of storage space. Additionally, having all of these indexes
in place not only might not be useful, but they can potentially be even harmful due to their
necessary maintenance cost in the case of many write operations to the system.

The goal is to reduce this number by only considering indexes on fields that appear
in queries of the workload. This is achieved by syntactical analysis of the corresponding
workload. The input to the Query Analyzer is the extracted Workload in the specified time
interval. This input is first passed to the Cleanser module, as shown in Figure 4.3. This
module is responsible for performing a syntactic analysis of the query string and extracting
the indexable attributes which are defined in Definition 4.3.1. This extraction is based on
a set of rules described in Section 2.4.3 that the query optimizer applies to selecting the
proper indexes.

Definition 4.3.1. Indexable :
The indexable attributes are the ones specified in the search-predicate and the sort-clause
of any query.

The attributes in the replacement-predicate of write queries do not benefit from having
indexes (see the procedural language structure in Section 2.4.2).

After parsing each query, the Cleanser module obtains all attributes with the equality
and range predicates from the parse tree of the query processor. For each query with a
single attribute in the search-predicate, a set containing that attribute is added to the

48

Repeat Att List output of the Cleanser. If the search-predicate of the query contains more
than one attribute, the structure of the obtained set of attributes depends on the conjunctive
operator associated with that part. For a query with an AND conjunctive operator, a list
of attributes including all attributes in the search-predicate is added to the output set.
Whereas for a query with an OR conjunctive operator, index intersection is used. As a
result, two separate lists containing each attribute in the predicate is added to the output
set.

Example 4.3.1. Assume the search-predicate is as the following: (A1 > 10∧A2 = 20). In
this case, the obtained set of attributes is {{A1, A2}}. However, for a query with an ”OR”
conjunctive operator like:(A2 = 200 ∨ A3 ≤ 12), two separated list as {{A2}, {A3}} each
containing one of the attributes are added to the Repeat Att List. The resulting Repeat Att
List of these two queries is {{A1.A2}, {A2}, {A3}}.

Many heuristics can be used to reduce this space. The Query Analyzer module contains
the designed heuristics for AIRs. These strategies include defining a fraction of queries in
the workload as relevant queries that are:

• repeated more frequently during the requested time interval,

• are taking too much time (more than a threshold) to receive their answers

during the requested time interval. The idea of only considering frequent and long queries
is named as the Frequent-Long strategy.

The Frequency Miner in Figure 4.3 exhibits the sub-modules of Query Analyzer where
the first strategy is implemented. The logic behind this module is explained later in this
section. The second strategy is implemented within the Cleanser module itself. This module

Figure 4.3: The input and output for sub-modules of the AIRs Query Analyzer module.

49

produces two sets of outputs: 1) Repeat Att List that is passed as input to the Frequency
Miner and 2) Long Att Set that is passed to the Merger module. Whereas the first one
includes the set of indexable attributes from all queries, the second one contains the same
information only from long queries.

Definition 4.3.2. Long Query :
Any query qi with run-time above a threshold µ is known as a long query.

Since a query that takes too long to retrieve its answer would not be issued that fre-
quently, it is necessary to gather the Long Att Set in addition to the Frequent att Set.
Whereas such queries are in urgent need to be indexed, the strategy of most repeated
attribute sets in Frequency Miner eliminate the corresponding list of attributes for these
queries. Passing the Long Att Set the module after Frequency Miner ensures that these
queries get a fair chance of being indexed.

In the rest of this section, the most frequency strategy and the merging of indexes to
cover less favorable indexes with better compromising benefit are explained respectively.

4.3.1 Frequency Query Strategy

After extracting the list of indexable attributes of each query, the candidate set of indexes
can be defined based on different methods. AIRs builds its initial candidate set based on
a heuristic of most frequency queries to the system. The assumption is that rarely issued
queries to the system are less likely to be issued again. Therefore, the candidate index set
can be built without considering the attribute set of such occasional queries.

The Frequency Miner module of the Query Analyzer, shown in Figure 4.3, contains
the implementation of this logic. To construct this logic, AIRs benefits from the Frequent
Itemset algorithm [124].

Two basic elements of this algorithm are items and itemsets. In this specific use-case,
each query in the workload forms an itemset and any of its individual attributes is an item
of that itemset. Therefore, the workload W is the list of all of the itemsets. The level of
significance of each subset of items can be measured with its support, which is defined in
Definition 4.3.3. Based on the associated support of each itemset, the frequent itemsets can
be signified based on the Definition 4.3.4.

Definition 4.3.3. Support :
Let X be a subset of items and W be the list of all itemsets with size n. Then, the support
s in association with subset X is defined as the portion of itemsets ω that contains subset
X:

s(X) =
|ω ∈W ;X ⊆ ω|

n
. (4.2)

Definition 4.3.4. Frequent itemset :
Given a number ξ as the support threshold, a subset M of items is known as frequent, if its
associated support s is greater than or equal the support threshold: s ≥ ξ.

50

The advantage of using frequent pattern mining is that it extracts all the single and
multi-attribute frequent patterns as the potential relevant indexes. The multi-attribute
patterns are only selected if all of their single attributes are above the specified threshold
ξ. Therefore, the risk of eliminating valuable single-attribute indexes is prevented.

This algorithm receives the Repeat Att List which contains lists of indexable attributes
of each query. The output of this algorithm is a set of key-value pairs with the frequent
attribute patterns as key and their frequency number as value. By sorting this list in
descending order of its values, it represents a prioritized set of most frequent attribute
patterns. This output which is shown as Frequent Att Set in Figure 4.3 is passed to the
Merger module. The functionality of the Merger module is discussed in Section 4.3.2.

4.3.2 Index Transformation through Merging

The first step in the Merger module is to unify its two input sets as: Frequent Att Set ∪
Long Att Set. The merging logic of this module is performed on this union set.

The implemented logic in the Merger module is based on the idea that query optimizers
are capable of combining indexes in the form of intersection and union of two indexes to
answer queries. However, constructing these transformed shapes of indexes on the fly by
the query optimizer rises the costs of processing the query. Therefore, if there are many
queries in the workload that can benefit from the transformed shape of indexes, it is worth
adding these transformed indexes to the candidate set of indexes and evaluate their benefit
rather. The transformed indexes set is constructed from the union of the two input sets of
the Merger module. The transformed shape considered in AIRs is the merge of two indexes
with similar leading keys as defined in Definition 4.3.5 and 4.3.6.

Definition 4.3.5. Index Merge :
Assume index I1 consists of the leading attribute A1 and a set of following attributes denoted
as R1, that can be shown as I1 = S(A1|R1). In the same way index I2 = S(A2|R2). Then,
the merge of I1 and I2 is defined as an index with the leading attribute of I1 as its leading
key and a union of all attributes in I2 with following attributes of I1. The merge of two
indexes I1 and I2 is denoted as I1 ⊕ I2 = S(A1|(R1 ∪A2 ∪R2)−A1).

A merge of two indexes results in an index that is usually smaller than the sum of two
original indexes while it maintains many of their qualifications to answer queries. Index
merging is not commutative in the order of indexes, i.e. I1⊕ I2 6= I2⊕ I1 because I2⊕ I1 =
S(A2|(R2 ∪A1 ∪R1)−A2).

An execution plan for a query constructed by the two original indexes has usually
smaller cost than the one with the merged index. Therefore, when the two original indexes
are present, the merged index most probably is not the first choice of the query optimizer to
run a query. However, in the case of limited storage capacity, the overall benefit of keeping
the merged index might exceed the benefit of the two individual indexes in the optimization
process.

Hence, it is possible to merge all indexes in the candidate set of indexes with each other.
However, for a candidate set with n indexes, adding the merged form of all indexes results

51

in a factor of n(n− 1) growth in the size of this set. This large number also projects a lot
of overhead to evaluate the cost of these indexes.

Therefore, as an optimization in the heuristic of AIRs, only merging of indexes that share
a leading attribute key is considered which is defined in Definition 4.3.6. The algorithm of
this heuristic that is implemented in the Merger is described in Algorithm 4.2.

Definition 4.3.6. Index Merge with Leading Keys:
Given I1 = S(A1|R1) and I2 = S(A1|R2), the merge of indexes with shared leading attribute
key follows from Definition 4.3.5 as: I1 ⊕ I2 = S(A1|(R1 ∪R2)−A1).

Algorithm 4.2 Merge Indexes(E)

Result: The enumeration space with merged indexes.

foreach Ii, Ij ∈ E, i 6= j do
Ai ← first att(Ii)
Aj ← first att(Ij)
if Ai == Aj then

E ← E ∪ merge(Ii, Ij)
end

end
return E

As a result, the merge function in the Algorithm 4.2 produces all of the possible combi-
nations out of merging the leading attributes of the input indexes Ii and Ij . The output of
this algorithm is a set of all single and multi-attribute candidate indexes for frequent and
long queries, as well as merged indexes of them. This output builds the Enumeration Space,
shown in Figure 4.3, which is the general output of the Query Analyzer module.

As summary, in this section the architecture design of the Adaptive Index Recommen-
dation System (AIRs) is described. The practical difficulties of extracting proper candidate
indexes and the heuristics of AIRs in this regard is explained. These heuristics include
considering most frequent queries and the ones with long run-time responses as relevant
queries. The candidate indexes are extracted from these queries. By merging the candidate
indexes that share the first leading attribute with each other and adding them to the set of
candidate indexes, the enumeration space of the index recommendation system is prepared.

4.4 Storage Estimation

For the optimization of recommended indexes the storage constraint should be taken into
account. Thus, the required storage for each index should be given. Since the indexes of
each configuration are built only on the sample data set, the size of each index on the original
data set should be estimated. There are at least two approaches to obtain this estimation:
based on a thorough study of the index sizes and different index combinations, or based on

52

theoretical estimate of size of all indexes. In the following of this section, the pros and cons
of each of these methods are discussed. The section is concluded by a description of the
chosen method to estimate the size in my approach.

Typically, the database generated metadata, data, and indexes are stored in Data Files.
Each Data File is build up of multiple logical containers named Extents to store data
and indexes. Databases use several optimized methods to store data, one of which is to
reserve extra storage space for future data addition. This additional space is influenced by
configurations of the database instance and the environment where the instance is running
on, such as the filesystem block size.

There are different measures related to the storage consumption of data and indexes.
In general, most of the measures in current databases include an additional storage space.
The other measure might include the size of all data extents in the database. This measure
is larger than the first one because it contains the vacated space by deleted or moved data
and space yet to be used.

Table 4.2 shows the essence of the problem when we deal with obtaining the index
size from the sample. This table presents the index size of three indexes. The first one
is structured on an attribute containing single integer values and the second on arrays of
integer values. The third one is a compound index containing these two attributes. The
original index sizes of these attributes differ from each other. However, the size of these
indexes on a sample of twenty documents is the same. Databases usually allocate more
storage than initially needed for data for more efficient memory management. As a result,

Existing Indexes I1 Single I2 Single [I1, I2] Compound

Value Type Int on single value Int on array of values Int-Int

No. Documents
in Original set 40,000 40,000 40,000

Original Index
Size (Bytes) 233,472 1,130,496 1,679,360

No. Documents
in Sample set 20 20 20

Sample Index
Size (Bytes) 16,384 16,384 16,384

Table 4.2: Comparison of index storage consumption on original data set and a sample set
for attributes with single and array of values. The original set of documents are created by
NoWog. The original set for the case of single index on I1 contains only one attribute with
integer value. For the single index on I2 the dataset contains only one attribute with array
value of average size 10 integer elements. Only in case of the compound index, the data set
contains two attributes which each of them has integer as their values. The results of this simple
comparison show the practical optimizations implemented in the database design to preallocate
blocks of storage. Despite the obvious dependency of the index size to the type of values for
indexes built on the original dataset, the size of the indexes on the sample are the same. So, a
direct estimation of the original index size from its sample size is not possible.

53

Figure 4.4: Index size growth pattern for attributes with Integer value types to the number
of documents in the dataset. The theoretical estimation is obtained with the assumption o f
τint = 8 Bytes.

for a sample with a small number of documents, the size of all of these indexes seem to be
the same. Therefore, it is not possible to deduce the original index sizes from information
provided by the sample. Thus, to pass a legitimate size for the constraint calculation in
Chapter 5, the size of original indexes should be estimated.

The first estimation model is based on the assumption that there is an approximately
linear dependency of the index size to the number of documents. The parametrization of
the linear curves needs to be done for each index type. Once a set of parametrizations is
obtained from various test databases, the size of a new index can be estimated just from
the number of documents and types of attributes to be indexed.

Figures 4.4, 4.5, 4.6, and 4.7 depict the index size with respect to the growth in size
of documents for various individual types of values. Each these figures shows the trend of
the index growth for syntactical datasets (generated by NoWog discussed in Section 6.1)
which each consists of only a single attribute. The type of the value differs in each figure as
integer, boolean, nested documents and array. Values are generated randomly. Therefore,
the generation of the dataset is repeated ten times. The error bars of the Data Set Size
markers that are indicated with green markers are produced by calculation of the standard

54

Figure 4.5: Index size growth pattern for attributes with Boolean value types to the number
of documents in the dataset. The theoretical estimation is obtained with the assumption of a
block size τint = 4 Bytes.

deviation of ten dataset generation in each figure. The actual Index Size on each of these
unique attributes are depicted with red crosses in each figure. The Index Fit shows a linear
fitting line for the growth of the index size. Since a negative intercept for the size of index
and data set does not have any logical interpretation, the fitting formula is defined as the
following:

f(x) = m ∗ x+ c2. (4.3)

Therefore, the fitting line is forced to have a non-negative intercept.

Since the slope of this fitting line for each of the attribute types is a fixed number, the
information of this line can be used to estimate the size of the index merely based on the
number of documents in the original dataset. For example, the Figure 4.4 shows the trend
of index growth for a data set that contains one attribute with random integer values. Since
the fitting line passed through all of the markers and the error bars are negligible, it shows
that the index size growth has a good linear dependency to the number of documents that
contain the corresponding attribute. Therefore the corresponding slope and intercept can
be used to estimate the size of single attribute indexes.

However, this approach is tightly coupled to the database instance and its particular

55

Figure 4.6: Index size growth pattern for attributes to the number of documents in the dataset.
Each attribute contains three layers of Nested Documents which at deepest layer includes
one attribute with integer value type. The theoretical estimation is calculated based only on
assuming a block size of τint = 8 Bytes for an integer value.

configurations and optimization methods. Therefore, the second approach is defined based
on theoretical knowledge of the required size to store indexes [125] which is indicated by
the yellow Index Size Estimation line in each of the Figures 4.4, 4.5, 4.6, and 4.7.

If a set of documents that all have a particular attribute contains n members, the
required size for storing the index can be estimated by

Ssingle = (τtype ∗ n) (4.4)

where τtype is the arbitrary block size that can be associated with each type of value. For
example, for an integer value in Figure 4.4, it is defined as τint = 8 Bytes. Whereas
Figure 4.5 with boolean type contains τbool = 4 Bytes. As shown in Figures 4.4, 4.5, 4.6,
and 4.7, this calculation provides a theoretical estimation for the index size.

Usage of a theoretical estimation has the advantage of being less dependent on hardware-
and implementation-specific properties. However, the disadvantage of using a theoretical
estimation is that if the distance between the estimated and the actual index size is large,
the cost of index storage consumption will be overestimated. As a result, a necessary index
might not be created.

56

Figure 4.7: Index size growth pattern for attributes with Array of integers as value type
to the number of documents in the dataset. The theoretical estimation in calculated based on
the equation 4.5 and the block size assumption of τint = 8 Bytes. The dataset is generated
with random array size generator that as average converge to a fix number (in this case ten).
Therefore, the Index Size Estimation shapes a straight line. It also explain the deviation of real
Index Size markers from the Index Fit line.

57

There are some additional concerns involved to calculate theoretical estimation for in-
dexes build on attributes with array value types. The documents of Figure 4.7 contain
arrays of an integer for each of the tested attributes. In this case, the equation to estimate
the index storage consumption can be defined as:

Sarray = τtype ∗

 n∑
j=1

lj

 = τtype ∗ n ∗ l (4.5)

where lj is the length of each array value of the attribute. The workload is generated
such that the average length of array values is a given number. This reason explains the
straight line for the theoretical estimation in Figure 4.7 in contrast to the slight curve of
the actual index sizes that has a slight deviation from it fitting line. Therefore, theoretical
estimation for index size of an attribute with array value type is done based on the maximum
array size of that attribute.

Additional information about the index estimation can also be obtained by comparison
of Figures 4.4 and 4.6 to each other. The index in Figure 4.6 is generated on an attribute
in a three layer deep nested document that contains integer values. The similarity between
the pattern of these figures shows that having layers of nested documents does not have any
direct influence on the required storage consumed by indexes. Therefore, the estimation
of index size for such attributes can also be merely based on the type of value (Snested =
Ssingle).

The same approaches can also be applied when the size of a compound index should
be estimated. At least three methods were considered to estimate the size of a compound
index:

1. find a typical pattern for the compound index size growth about the number of doc-
uments in the database,

2. utilization of sum of the storage sizes of single indexes,

3. utilization of sum of the theoretical storage sizes of single indexes

as a theoretical estimation.
Each of these methods has their advantages and disadvantages that are explained in the

rest of this section. In this regard, Figures 4.8, 4.9, 4.10, 4.11, 4.12, and 4.13 are produced
to demonstrate the associated measurements to each of these methods. For each of these
figures a particular dataset is used that consists of documents with two attributes containing
various data types. Each of these figures includes information about the size of two single
indexes that are built on each of the attributes of the database as well as the size of the
compound index constructed on both of these attributes. The fitting line that is drawn
for each of single and compound indexes shows the linear pattern for the size of indexes
with increasing number of documents. These figures contain indicator lines produced by
summing up the size of single indexes as Sum of Single Indexes and by summing up the
theoretical size of the single indexes as Compound Index Size Estimation.

58

Figure 4.8: Int-Bool: Comparison of index size growth pattern between two single indexes
and a compound index with increasing number of documents. The dataset consists of documents
with two attributes. The values of one attribute are integer numbers and the other booleans. A
single index is built on each of these attributes, and the compound index contains both of these
attributes. The fact that the Compound Index Size markers overlap with the Integer Index
Size crosses shows that the storage optimizations implemented in the targeted database almost
ignore the size of the boolean attribute when compounding it with an integer. The Sum of Single
Indexes is obtained by adding up the size of two single indexes which provides a theoretical
estimation for the size of compound indexes. The Compound Index Size Estimation depicts
the resulting theoretical estimation line obtained by Equation 4.6, which offers an alternative
theoretical estimation in this case.

59

The first assumed estimation method is to use the information gathered by the linear
pattern of the compound indexes for various value type combinations. However, the com-
pound index size of Figures 4.8, 4.9, 4.10, 4.11, 4.12, and 4.13 shows that the compound
index size has a different growth ratio depending on the various data types of the attributes.
It happens due to the storage-related optimization strategies implemented in the targeted
database. As an example, in the case of boolean value types, Figures 4.8, 4.9, and 4.10
show that the compound index size of a boolean attribute and any other type has almost
the same size of the single attribute of the other type. Also, comparison of Figure 4.11 and
4.13 confirms the conclusion that only the size of attributes in nested documents depends
on the type of the value. The nested level access path has an insignificant role in storage
space. The compound indexes in all of these cases show a linear fitting. However, to use the
compound fitting line information, an analysis of higher orders of compound attributes with
various value types than just two attributes is needed. If we do not consider any restriction
on the number of attributes that can be combined in a compound index, the number of
possible combinations of different value types that should be investigated is very large.

Therefore, an alternative approach is to consider the fact that compound indexes are
a combination of two or many single indexes. Therefore, by having the estimation of the
behavior of single indexes, the size of compound indexes can be estimated by summing up
the size of each single value type for the corresponding attributes. With this method, the
number of cases that should be investigated reduces to as many types of values considered
by the targeted database (in this case four).

The storage estimation based on this approach is shown in Figures 4.8, 4.9, 4.10, 4.11, 4.12,
and 4.13 as Sum of Single Indexes. In almost all of these cases, the database under study
uses less storage space for compound indexes than the sum of the single attribute index
sizes. The only exception is Figure 4.12 where sum of the values is an underestimation
of the actual compound index size. Hence, this method does not provide a theoretical
estimation in all of the cases.

Additionally, the problem of being dependent on the environment and the optimizations
implemented in the database still apply to this method. Furthermore, since this method
generates sizes for compound indexes that are different from the actual compound index
sizes, the resulted storage estimation might play an unfair role in favor or disadvantage of
compound indexes.

Thus, to have an environment-independent solution, a theoretical estimation for the
compound indexes can be obtained by the following equation:

Scompound = n ∗
∑
i∈P

τi, (4.6)

where P is the set of single value types of each compound index attribute. n is the
number of documents that contain both of the corresponding attributes of a compound
index. The only requirement of this method is to specify the size of each value type as
an input. By adapting this approach, similar estimation methods are used for both single
and compound index size estimations. Therefore, the chance of assigning an inequitable

60

Figure 4.9: Bool-Bool: Comparison of index size growth pattern of two single indexes each on
an attribute with boolean values and a compound indexes built on both of them with increasing
number of documents. The indicator markers of both Boolean Index Sizes and the Compound
Index Size are all overlapping in this case which reveals the storage optimization implementation
strategy of the targeted database regarding boolean values. The theoretical estimation of the
compound index size obtained by Equation 4.6 is depicted with Compound Index Size Estimation
line which in this case is less than the size estimated by the Sum of Single Indexes. However,
the theoretical line still provides a theoretical estimation of the storage estimation.

61

Figure 4.10: Bool-Array: Index size growth patterns on a dataset with two attributes, one
containing boolean values and the other array of integers. The overlap of index size marker
of the single index on arrays and the compound index again shows the implemented storage
optimization strategy in the target database to consider the size of boolean index types in com-
pound indexes negligible. The Sum of Single Indexes then provide a slightly higher estimation
of compound index size than the actual index. The theoretical estimation shown with line
Compound Index Size Estimation is calculated by Equation 4.7.

62

Figure 4.11: Int-Int: The comparison of the index size growth patterns on a dataset with
two attributes each containing integer values. The fact that the fitting line for both single
indexes and the compound index sizes passes through actual most of the error bar regions for
actual markers indicates that the linear fitting is appropriate. The difference between the ac-
tual Compound Index Fit and the Sum of Single Indexes line shows the implemented storage
optimization strategies in the targeted database which makes both of these estimation meth-
ods environment dependent. The theoretical Compound Index Size Estimation estimation is
calculated by Equation 4.6.

estimation in favor or disadvantage of one index again reduces.

Example 4.4.1. For a dataset of n = 10K documents, according to the Equation 4.6, the
estimated index of a compound index on two attributes one containing integer (τint = 8)
and the other boolean (τbool = 4) value types is calculated as:
Scompound = n ∗ (4 + 8) = 120K Bytes. This results is shown in Figures 4.8.

In order to include array attribute considerations in the compound index theoretical
estimation, the Equation 4.6 changes itself to:

Scompound array = n ∗
∑
i∈P

(τi ∗max(li)), (4.7)

where li is the length of the array of values in each document with an attribute of type

63

Figure 4.12: Int-Array: Comparison of the index size growth pattern with the number of
documents on a dataset consisting of two attributes. One attribute contains integer values
and the other arrays of integer values. This is the only case where the Sum of Single Indexes
provides a less estimated size for the compound index than the actual size of that index, due to
the storage optimization strategies implemented in the targeted database. This measurement
provides another reason besides being environment-dependent for not utilizing the sum of single
indexes as the theoretical estimation. However, the theoretical Compound Index Size Estimation
line obtained by Equation 4.7 provides a proper theoretical estimation.

i. This length for scalar values is one. Since document-based databases are schemaless,
one attribute might contain different value types in various documents. In such cases,
the practical solution is to consider the type with larger fitting line slope and use that to
estimate the storage required for that attribute. Thus obtaining a theoretical estimation is
guaranteed.

Example 4.4.2. Assume a dataset with n = 20K documents and two attributes, one
containing boolean values (τbool = 4,max(lbool) = 1) and the other arrays of integer values
(τint = 8) with maximum length of ten elements in an array (max(lint) = 10). The estimated
size of a compound index on these two attributes can be obtained according to Equation 4.7
as:
Scompoundarray = n ∗ (τint ∗max(lint) + τbool ∗max(lbool)) = 20K ∗ (8 ∗ 10 + 4 ∗ 1) = 1, 680K.

64

Figure 4.13: Int-Nested: Comparison of the index size growth patterns of single and com-
pound indexes to the number of documents in a dataset with one containing integer values and
another attribute containing three layers of nested documents which then include an attribute
with an integer value. The fact that the single index size markers on these two attributes overlap
reveal that only the internal value type of nested documents are playing a part in the index size.
Therefore, to calculate both the Sum of Single Indexes and the theoretical estimation of Com-
pound Index Size Estimation obtained by Equation 4.6, two integer value types are considered.
The results of this figure are similar to the results of Figure 4.11

This results is illustrated in Figure 4.10.

In this section, the importance and challenges of estimating the needed storage capacity
of indexes are discussed. Since the size of indexes for each configuration index can not be
directly measured on the chosen sample set, where the indexes are built, the actual size
of indexes on the original dataset should be estimated. For such an estimation, several
methods are proposed, and the pros and cons of each of them are discussed. The considered
methods are as the following:

• parametrization of index size based on number of documents containing the corre-
sponding attributes of that index,

• theoretical usage of a defined theoretical estimation and the attribute type.

65

To have a less environment-dependent approach, the usage of the theoretical estimation
is chosen as the most practical and fair estimation method. This theoretical estimation
is defined based on the type of values that the single attributes indexes contain. The
theoretical estimation for the compound indexes are calculated as the sum of this theoretical
estimation of the single index of each of the attributes in a compound index. Due to the
storage optimization methods that might be implemented in each targeted database, the
estimation of the indexes by the proposed theoretical estimation method can differ from
the actual index sizes. However, this approach provides a uniform method to define a
theoretical estimation on the index size estimation which is not expected to play in favor
or disadvantage of any of the indexes.

4.5 Summary

There are several aspects that had to be studied before finalizing this architecture. There-
fore, the extraction of the relevant factors is an important part of the study. Based on these
factors, then the architecture of the adaptive index recommendation system is designed.
To design the integrated index recommendation system, it is required to consider various
practical considerations. Each of modules of AIRs contains the implementation of at least
one of these practical studies and aspects.

A summary of the contributions that are debated in this chapter are as the following:

• The modular architecture design of an adaptive index recommendation system

• Development of the representative sample-based virtual environment to reduce the
load of the index evaluation part

• Utilization of the Frequent-Long strategy to reduce the search space for the index
recommendation problem

• Adaption of merging algorithm to provide a chance for the evaluation of the trans-
formed set of indexes

• Development of a strategy to estimate the approximated size of indexes without cre-
ating them

The comprehensive discussion over the theoretical studies that are conducted to develop
the index recommendation system, are deliberated in the next chapter.

66

Chapter 5

Cost Model for Configuration
Evaluation

This chapter discusses most of the theoretical issues regarding the design of the index
recommendation system.

As discussed in Problem 2.3.3 of Section 2.3, the profit of any set of indexes for a
given workload can be examined with a proper objective function. The essential theoretical
complexity of the index recommendation problem can be formulated with an objective
function with most of the identified parameters presented in Section 4.1. Maximization of
this objective function should result into the extraction of the optimal solution set of indexes
for a workload. The formulation of this objective function and an efficient enumeration
technique to traverse the search space of candidate indexes for this function are presented
in Section 5.1.

As stated in Problem 2.3.2 in Section 2.3, even for a moderate sized set of candidate
indexes, the number of possible combinations that should be traversed can be very large.
Also, an enormous number of calls are made to the query optimizer that projects a heavy
load on the in-production system to process all possible configurations. AIRs addresses a
solution for this matter based on the concept of atomic configurations. This solution, its
corresponding algorithm, and the analysis of its complexity are discussed in Section 5.2.
The chosen traverse method as a solution to the Problem 2.3.5 of Section 2.3 to find the
globally optimal set of indexes is presented in Section 5.1.1.

The initial formulation of the problem that is presented in this chapter is published
in [122].

5.1 Objective Function Formulation

As discussed in Section 4.1, to determine the optimal set of indexes for a workload, several
conditions and parameters should be taken into account. In general, these parameters
depend on: 1) the initial state of the database, 2) the type of input workload and 3) the
environment where the database is running (see Table 4.1). Formulating these parameters

67

into an objective function is necessary to find the best set of indexes. By maximization of
this objective function through an efficient enumeration technique, the optimal set of indexes
for that particular workload under the specified conditions can be recommended. This
section is dedicated to the formulation of an objective function in an adequate optimization
method.

The introduction of indexes reduces the response time of the database to read queries.
An appropriate selection of indexes reduces the number of documents that should be scanned
to retrieve necessary information for the query. Therefore, there is a benefit associated with
each index that serves a search query. However, the existence of each index introduces a
maintenance cost in case of any write operation into the system. This cost is caused by
required updates that should be made into corresponding indexes in the system. As an
example, the search-predicate of an update operation can benefit from a suitable index.
However, the update-predicate enforces adjustments into that index and all of the other
indexes in the system with the corresponding attributes.

Let workload W consists of n queries as W = {q1, q2, ..., qn}. Also, consider there are
m indexes in the full set of candidate indexes as E = {I1, I2, ..., Im}. This set includes all
single- and multi-attribute indexes that correspond to the attributes in the most frequently
used queries as well as merged indexes which are respectively discussed in Section 4.3.1
and 4.3.2. The associated size of each index is denoted by sj for j ∈ [1, 2, ...,m].

Definition 5.1.1. Configuration :
A set of indexes Ck = {Ik1, Ik2, ...} so that Ck ⊂ E is called a configuration.

As there are 2m possible configurations, I restrict my work to a subset of all config-
urations that contain index sets that are used by some query from the workload. Such
configurations are known as atomic configurations and are defined in Definition 5.1.2.

Definition 5.1.2. Atomic Configuration :
A configuration Ck is an atomic configuration for a query qi, if an execution plan of qi is
possible that uses all of the indexes in Ck. A configuration is also defined as an atomic
configuration for a workload W of all queries, if it is atomic to at least one query in that
workload [75].

The objective of the index recommendation system is to determine the optimal set of
indexes Ck that has highest benefit for the workload under the storage constraint applied
by the environment after considering the corresponding maintenance cost. Therefore, in
the presence of the configuration Ck, the objective function for a given query qi from the
workload W can be defined as:

Z(i)(Ck) = Ben(i)(Ck)− Maint(i)(Ck), (5.1)

where Ben(i)(Ck) and Maint(i)(Ck) are respectively the benefit and maintenance cost
terms.

68

Definition 5.1.3. Benefit :
The benefit of an index Ij for the query qi is defined as the reduction in the cost of running
qi, utilizing Ij in comparison to the cost without any index.

Thus, the Ben(i)(Ck) term can be defined as the difference between the number of docu-
ments that should be scanned in order to retrieve the required information for query qi by
using indexes in configuration Ck and the same number while no index exists in the system.
However, since indexes typically reduce the number of scanned documents by a few order
of magnitude, the logarithmic cost is considered.

Let the cost of scanning the database to run a query qi by using configuration Ck be
denoted as Costs(qi, Ck). This cost is equal to the logarithm of the number of documents
that should be scanned to retrieve necessary information for qi by using indexes in config-
uration Ck. Then the Ben(i)(Ck) can be defined as the difference between Costs(qi, Ck)
and the cost of running the query while no index exists in the system, which is shown as
Costs(qi, ∅). In mathematical form, the benefit of configuration Ck for running the query
qi is defined as the following:

Ben(i)(Ck) = Costs(qi, ∅)− Costs(qi, Ck). (5.2)

When no index is present in the system, all of the documents must be scanned to execute
a query. The number of scanned documents utilizing any set of indexes cannot exceed the
total number of documents. Therefore, the benefit of configuration Ck for a query qi is
greater if the difference between the costs in Equation 5.2 is larger. In the worst case, the
benefit of the configuration Ck for query qi is zero which happens in the case that qi does
not use any index of Ck. The definition of Equation 5.2 is also valid for the search-predicate
of write operations such as update and delete that benefit from having relevant indexes in
the system.

However, there is another cost associated with configuration Ck if the query qi is a write
operation (i.e. update, delete or insert). This cost is related to updating the relevant indexes
of configuration Ck that shapes the core of Maint(i)(Ck) in Equation 5.1. For any write
query qi in the workload, each index Ij in Ck should be updated if the update-predicate
of the write query qi has at least one common attribute with attributes in that index.
Equation 5.3a represents this concept:

Maint(i)(Ck) =
∑
Ij∈Ck

Maint(i)(Ij), (5.3a)

where Maint(i)(Ij) is defined as:

Maint(i)(Ij) ≡ Fij = fij ∗ Costu(j) (5.3b)

where fij ∈ {0, 1} is a coefficient that indicates the existence of common attributes in
index Ij and query qi as described in Equation 5.3c and Costu(j) is the cost of updating
the existing indexes as defined in Equation 5.3d. The indicator coefficient fij is one if there

69

is at least one common attribute in the search-predicate of the query qi and index Ij , and
is equal zero otherwise:

fij =

{
1 Ij

⋂
qi 6= ∅

0 otherwise.
(5.3c)

The Costu(j) is associated with the time complexity of updating any index in the cor-
responding configuration. Index structures, even in document-based databases, are mostly
in the form of a B-tree. The complexity of the insertion operation in a B-tree is of order
O(log n) [126], where n, in this case, is the number of nodes in the tree. The size of a B-tree
for an index depends on the cardinality of its attributes (see Definition 2.2.1). Therefore,
the associated cost of update operations Costu(j) is defined as:

∀j : Ij ∈ Ck Costu(j) = logCAah , (5.3d)

where CAah is the cardinality of the attribute indexed by index Ij . If index Ij is a single-
attribute index, obtaining its corresponding cardinality CAah is straightforward. However,
for a multi-attribute index, the educated guess is to use the cardinality of an attribute that
has the maximum cardinality among attributes of that index. In case of a failure to obtain
the cardinality, a common practice is to consider the number of documents in the dataset
as the cardinality of the index. Therefore, the cardinality that is considered for the cost
calculation in Equation 5.3a is defined as:

∀h : h ≥ 1, ah ∈ Ij CAa ≤ min{ {max
h

ah},#docs}. (5.3e)

where ah is an attribute in Ij and #docs is the total number of documents in the
collection.

Now, Equation 5.1 can be solved to obtain the profit of using configuration Ck to run
query qi. The goal is to find the single configuration that maximizes the profit for each
query. Therefore, the objective function is to find the single configuration that maximizes
the profit for the whole workload W and can be defined as the following:

Z(Ck) =
n∑
i=1

Z(i)(Ck). (5.4)

Moreover, the optimal solution should maximize Equation 5.4 considering the constraint
of the total available storage size S. This constraint can be defined as the following:

∀j : Ij ∈ Ck
m∑
j=1

s(Ij) ≤ S. (5.5)

To investigate all possible cases and to find the optimal solution, the objective function
should be formulated in the form of a proper optimization model. The rest of this section
contains a brief discussion of the reasons for the choice of a particular enumeration technique
(Section 5.1.1). Then, in Section 5.1.2, the reformulation of the objective function into the
chosen optimization model is presented.

70

5.1.1 Optimization Model and Enumeration Technique

To extract the optimal configuration from Equation 5.4, all configurations should be tra-
versed effectively. Configurations are formed by a union of all possible combinations of
indexes in the initial candidate index set for each query, which is known as the enumeration
space. The number of all possible configurations, even for a moderate size of candidate in-
dex set, can get very large. Therefore, it is important to apply a proper heuristic to reduce
the enumeration space.

Based on the approach explained in Section 4.3, the enumeration space contains all of
the frequently repeated patterns of single- and multi-attribute indexes and the required
merged indexes of them.

Nevertheless, the number of configurations that should be traversed is usually large
enough so that an exhaustive search would not be feasible and waste many resources. Thus,
it is important to apply an effective optimization method with an appropriate enumeration
technique to find the optimal configuration.

As discussed in Chapter 3, there are already many optimization methods that are used
to solve similar objective functions for index recommendation. The optimization methods
take advantage of two main enumeration categories: bottom-up and top-down enumeration
techniques.

The bottom-up approach starts with an empty set of indexes as of the initial configura-
tion and gradually adds indexes to this set. Many approaches to the index recommendation
problem formulate this problem with different forms of bottom-up models, such as the knap-
sack problem [66] or greedy hill-climbing problem [75], [127]. The bottom-up enumeration
strategies search the enumeration space for a subset that is a perfect fit to satisfy the storage
constraint and has the maximum profit for running the workload.

These bottom-up techniques are most beneficial when the storage limitation is small
because the final configuration is likely to consist of only a few indexes. On the other hand,
the bottom-up approach requires that each primary element of the system be specified in
detail. Therefore, it is necessary to define the profit of each index before the implication of
the enumeration technique. However, since modern query optimizers are usually capable of
intersecting indexes with each other, granting a predefined and fixed profit to each index
results in an inaccurate evaluation of configurations. Also, given the merged indexes are
not the first choice of the query optimizer to run a query when the original indexes are also
present, these approaches do not provide an exact benefit evaluation for merged indexes.
Additionally, neither of the techniques mentioned above guarantee to find the optimal global
solution, and they might end up at the locally optimal solution [1]. Therefore, it is worth
trading off more optimization time for a better solution.

In contrast, top-down approaches begin with large initial configurations that might over-
flow the storage threshold. Then, they gradually remove the low-impact indexes from this
configuration till the configuration fits into the storage constraint. The top-down approaches
have several advantages, especially if the storage limitation is not that tight. Top-down ap-
proaches provide information about approximately optimal solutions through a relaxation
of the constraints. Therefore, they provide additional information about more efficient con-

71

figurations than the recommended one which do not fit into the storage limitation. This
information in part can be helpful in decision making for the resource management of the
system (e.g. the increase of disk or memory storage of the current database environment).

Considering that the document-based databases are mostly favorable for their easy to
scale solutions, it is natural to assume that the available storage size is not that tight for
their instances. Therefore, it is decided to take advantage of the top-down algorithms.

Also, to make sure that the algorithm returns the globally optimal solution, working
with a deterministic optimization method [128] is chosen. Additionally, the fact that creat-
ing a partial of an index does not have practical meaning results in discrete feasible sets.
Consequently, the Integer Linear Programing (ILP) is chosen as the optimization method
that internally benefits from a top-down enumeration technique, i.e. a Branch-and-Bound
algorithm (see Section 5.1.2). Therefore, the algorithm guarantees to return the optimal
solution when it finishes running entirely. However, if the algorithm is interrupted due to
run-time limitations, a suboptimal solution with a quality indicator is returned that is based
on the distance of this solution from the optimal one.

In the rest of this section, the formulation of the general objective function in Equa-
tion 5.4 and its constraint in Equation 5.5 as Integer Linear Programming method will be
presented.

5.1.2 Integer Linear Programming Formulation of the Objective Function

The purpose of this subsection is to formulate the objective function 5.4 and the con-
straint 5.5 in the Integer Linear Programming. To define the objective function with ILP,
two condition variables xik and yj are introduced. For each query qi, there are p configu-
rations to be investigated and the query should be evaluated by each configuration Ck at a
time. Thus, the decision variable xik can be defined as the following:

∀i, k : 1 ≤ i ≤ n, 1 ≤ k ≤ p xik =

{
1 qi uses Ck
0 otherwise.

(5.6)

Moreover, as described by Equation 5.3a, there are few of m candidate indexes built in
any configuration Ck. Therefore, another decision variable yj can be defined as:

∀j : m ≥ 1, Ij ∈ Ck yj =

{
1 Ij is built
0 otherwise.

(5.7)

Utilizing these conditional variables, the objective function 5.4 can be rewritten as:

∀j : Ij ∈ Ck Z =

n∑
i=1

(p∑
k=1

bik · xik −
m∑
j=1

Ai · Fij · yj
)

(5.8)

where bik ≡ Ben(i)(Ck) is the benefit defined in Equation 5.2 and Fij corresponds to the
maintenance costs that is defined in Equation 5.3a. Ai is introduced so that the maintenance

72

cost is only calculated for write queries and is defined as:

Ai =

{
1 qi is write query
0 otherwise.

(5.9)

The optimal solution of the Equation 5.8 is denoted by Z∗. This solution should be
obtained by considering the proper constraints of the system that are expressed in the
series of Equations 5.10a-d.

As described in Equation 5.5, the first requirement to consider is that the sum of the
size of all indexes in the chosen configuration Ck should not exceed the total amount of
available storage S. Equation 5.10a is defined to satisfy this constraint:

∀j : Ij ∈ Ck
∑
j

sj · yj ≤ S. (5.10a)

Another constraint is based on the fact that the database should use only one configu-
ration at a time to execute any query qi. The constraint 5.10b represent that the existence
of any two configuration at the same time is mutually exclusive:

∀i : 1 ≤ i ≤ n
p∑

k=1

xik ≤ 1. (5.10b)

The less than sign in the mutually exclusive condition of Equation 5.10b suggests that
the case without any of the p (atomic) configurations to run the query qi is also possible.
By changing this sign to equality, the condition restricts to not include such case. However,
it is desirable to cover such a case, because for any workload W , there might be some query
qi that does not profit from any index set.

The next constrain originates from the dependency between the configuration Ck and
its corresponding indexes. For the database to be able to utilize any configuration Ck to
execute a query qi, all of the indexes of that configurations should be build. Therefore, the
variable xik suggests the query i using the configuration k is dependent on the variable yj
for all of the indexes in that configuration. The conditional constraint 5.10c formulates this
requirement:

∀i : 1 ≤ i ≤ n, ∀k : 1 ≤ k ≤ p, ∀j : Ij ∈ Ck xik ≤ yj . (5.10c)

The last constraint follows the nature of decision variables xik and yj as described in
Equations 5.6 and 5.7 respectively. These constraints represent the binary nature of the
introduced decision variables. The usage of integer decision variables for the case of index
recommendation system makes perfect sense; because building half of an index does not
have a practical meaning. Also, it is not possible for a query to use a fraction of an atomic
configuration. The Equation 5.8 can be solved by ILP under the constraints in series of
Equations 5.10a-d.

By formulating the problem as ILP model, some known methods can be applied to solve
the objective function for the enumeration space of the index recommendation problem.

73

The optimal solution (x∗ik, y
∗
j) for the objective function and its corresponding optimal value

Z∗ can be obtained by the ILP approach.

When the enumeration space is small, the ILP can quickly return the optimal solution [1].
However, finding a feasible solution for integer linear program problems is NP-hard [97].
Therefore, in general, there is no known algorithm to solve an ILP problem in polynomial
time. One standard approach to solving ILP problems is first to find a relaxation that is
numerically more feasible to solve and to obtain an approximation of the optimal solution
for ILP.

By dropping the integer restriction on the variables of an ILP problem, it converts to
a linear program. Nonetheless, there are efficient algorithms that can solve Linear Pro-
grams(LP) such as the Simplex algorithm [97]. By removing the integer constraint, a
relaxation of the ILP model is applied which is known as LP relaxation [108].

The reason to use the LP relaxation is not only because it can be done efficiently, but
also because the optimal solution of the ILP is never better than the optimal solution of
its LP relaxation [108, chapter 6]. Meaning that in the case of maximizing the objective
function, the solution to the linear problem (x0ik, y

0
j) has a better or similar profit to the ILP

optimal solution or Z∗ ≤ Z0. As a result, in maximization cases, LP relaxation solution Z0

provides an upper bound for the optimal value of the ILP objective function Z∗. Utilizing
the LP relaxation provides much useful information such as finding sub-optimal solutions
with excellent performance, but with larger size than the available storage limitation. The
Z0 is a fractional value. The optimal solution Z∗ cannot just be obtained by rounding Z0

down. Usually, an enumeration method should be used to find the feasible solutions for the
ILP problem.

There are several enumeration methods to solve the ILP problem, such as the Branch-
and-Bound (B&B), the Cutting Plane, and the Branch-and-Cut methods [105]. The Branch-
and-Bound is the most common method for enumeration method to solve ILP problems and
involves solving multiple LP relaxations.

Branch-and-Bound builds a tree of solutions that starts with solving the objective func-
tion with LP relaxation. Therefore the value of the root node of a B&B tree is the upper
bound Z0 to the ILP problem. Based on the heuristic that is used in the algorithm (e.g.
rounding down from fractional solution) the best integer solution (xintik , y

int
j) and its value

Zint can be obtained. The upper bound value Z0 can be used to measure the distance of
any best integer solution to the optimal solution. This distance is calculated as:

d(Z0, Zint) =
Z0 − Zint

Z0
. (5.10d)

Based on this distance, the quality gap of each solution to the optimal solution can be
defined as d(Z0, Zint)∗100. Since solving multiple LP problems can take too long, utilizing
the B&B algorithm has the advantage that the execution of the algorithm can be stopped
at any level. Then a suboptimal feasible solution is returned with a measurement of its
quality that is defined based on Equation 5.10d. Additionally, if this algorithm is run to its
completion, it returns the optimal solution Z∗.

74

The objective of an index recommendation system is presented in its mathematical form
in this section. The objective function is formed by considering parameters to cover the state
of the database, the environment where a database is running in and the entry workload.
After a brief discussion of the pros and cons of different optimization methods, the ILP is
chosen to solve the objective function. The objective function and its constraints in ILP
are formulated.

Solving ILP is done by utilizing LP relaxation in the form of the Branch-and-Bound
enumeration method. However, it is shown that the run-time for the B&B algorithm to
find the optimal solution can grow exponentially by the number of configurations that should
be investigated. Hence, it is beneficial and necessary to reduce the number of configurations
as much as possible. The next section presents the approach to find the minimum number
of basic configurations that should be investigated by the optimization method discussed in
this section.

5.2 Index Benefit Graph for Search Space Reduction

The query optimizer should evaluate the cost of running each query in the presence of a
particular index configuration. Therefore, to provide all of the cost evaluations for the
optimization of the indexes in Section 5.1, an enormous number of configurations should
be evaluated. Evaluating each of these configurations puts a heavy load on the optimizer.
One popular approach to reducing the number of calls to the optimizer is based on the
concept of atomic configurations. This section presents the idea to find all of the atomic
configurations by building a graph of the chosen indexes by the optimizer and evaluating
their costs that are provided by the optimizer. This method results in the reduction of the
number of calls to the query optimizer that reduces a load of index recommendation system
on the in-production system. Consecutively, the number of configurations that should be
evaluated by the enumeration method (see Section 5.1) is massively restricted.

Let E be the set of m candidate indexes as E = {I1, I2, . . . , Im} for a workload Q
that consists of n unique queries as Q = {q1, q2, . . . , qn} out of all queries in workload W .
Each subset of the candidate indexes forms a configuration that should be evaluated by
the enumeration method for any of the n queries. Therefore the number of configurations
(Nwkl config) that should be evaluated depends on the m number of indexes in the initial
candidate index set E and n number of unique queries. It is calculated in the following:

Nwkl config(n,m) = n ∗
m∑
j=1

m!

(m− j)! j!
. (5.10e)

This number grows exponentially with the number of candidate indexes in the E set.

Example 5.2.1. For only five individual queries (n = 5) and ten candidate indexes (m =
10), the number of configurations that should be evaluated is: Nwkl config(n,m) = 3, 855.

For the evaluation of the cost of running any of the queries in Q with each of these
configurations, many calls to the query optimizer are needed. It means, to provide the

75

necessary cost estimations to optimize the objective function in Section 5.1, a heavy load is
projected on the query optimizer to evaluate each query under each configuration. Thus,
developing a method to reduce the number of configurations and reducing the number of
calls to the query optimizer will result in a better performance for the index recommendation
system. One interesting approach to significantly reduce the number of configurations is
based on the concept of atomic configurations [75].

The cost of non-atomic configurations can be obtained from the cost of these atomic con-
figurations. Chaudhuri et al. in [75] prove that for running the query qi with any configura-
tion C, there is an atomic configuration Ck such that the Costscan(qi, C) = Costscan(qi, Ck).

The atomic configurations represent a small fraction of the whole possible number of
configurations. Since this number of configurations constructs the search space for the op-
timization method, this concept results in the reduction of the search space. Also, each
method that is used to identify the atomic configurations requires some calls to the opti-
mizer. Although the eventual number of calls to the optimizer will be reduced by the atomic
configuration concept, it is important to use an efficient and effective method to extract the
atomic configurations.

To extract the atomic configurations, the concept of Index Benefit Graph (IBG) [72] as
an adaptive strategy is leveraged and it is further developed for an optimizer with index
intersection property. This strategy provides a method to extract atomic configurations by
interacting with the query optimizer (see Section 6.3.2). Section 5.2.1 is dedicated to the
construction of an IBG and its corresponding algorithms to extract cost evaluations of a
given query. Then, the complexity of the algorithm is discussed in Section 5.2.2.

5.2.1 Construction of an Index Benefit Graph

Definition 5.2.1. Index Benefit Graph (IBG):
An Index Benefit Graph is a directed acyclic graph [129] that is constructed per any given
query. It is constructed by a top-down approach that starts projecting the query to all of the
indexes in the enumeration space. A complete IBG contains all of the atomic configurations
for its corresponding query under the give enumeration space.

Each IBG contains the following elements:

• The label of each edge represents the set of available indexes (configurations).

• Each node name indicates the set of chosen indexes by the query optimizer.

• The label of each node contains various costs such as storage size of chosen indexes,
the number of scanned documents, etc.

Examples of IBG graphs are depicted in Figures 5.1, 5.4 and 5.2. The Algorithm 5.1
represents the top-down approach to build an IBG.

76

Algorithm 5.1 Build IBG(qi, E)

Result: Root node of the IBG for the query qi and the initial candidate index set E.

C ′ ← chosen indexes by optimizer(qi, E)
CostC′ ← costs of chosen indexes(qi, E)

if node name = C ′ ∧ incoming edge = L then
add E − Ij as edge(N ,N ′)
return 0

else
N ← make node(C ′, CostC′)
foreach Ij ∈ C ′ do

N ′ ← Build IBG(qi, E − Ij)
add E − Ij as edge(N ,N ′)

end
return N

end

Let E = {I1, I2, . . . , Im} be the set of initial candidate indexes. It is the initial configu-
ration for all of the n index benefit graphs of queries in the set of unique queries Q of the
workload W . Also, it is the label of the first edge of the IBG. According to Algorithm 5.1,
the IBG for the query qi is constructed first by letting the query optimizer select the index
set C ′ from the initial candidate index set E. Also, the costs of running qi with configura-
tion C ′ are assigned to CostC′ . The CostC′ contains an execution cost, e.g. logarithm of
number of scanned documents, and storage cost, e.g. the sum of index size of configuration
C ′. A node of the graph is built with the C ′ as its name and the CostC′ as its label. Then
|C ′| sub-graphs are spawned starting with E − C ′i for 1 ≤ i ≤ |C ′|. Algorithm 5.1 stops
processing a configuration when a node exists in the graph that has the same name as the
candidate set of that configuration and the same incoming edge label as the available set of
indexes in that configuration.

The process of building the IBG is finished for each query when either no more indexes
are chosen by the optimizer to run the query, or the set of available indexes for the configu-
ration is empty. In either case, the cost of running the query at the end of the IBG is equal
to the cost of running the query without any index.

Pruning the chosen indexes and evaluating the rest of the available candidate indexes in
IBG method is a good strategy to make sure merged indexes (see Section 4.3.2) get a fair
chance to get picked and evaluated by the query optimizer. These indexes might not be the
first choice of the query optimizer but might satisfy the objective function better. Note in
Algorithm 5.1 that nodes can potentially be duplicated. This situation happens under the
condition that the query optimizer picks the same set of indexes to run the query under
two different configurations.

Example 5.2.2. An example of such a graph for a simple search query with only a few
attributes in its select-predicate is shown in Figure 5.1. The root node name shows an

77

empty set that indicates the existence of no index. The cost in the label shows the Number
of canned Documents (ND) for running this query with no index and the storage of no index
(S0). If the query was an ”update,” the cost label could contain more information such as
update cost. The label of the first edge shows the initial configuration C that is available
for this query. Although after choosing I5, a set of {I1, I4} indexes are still available, since
the optimizer apparently does not choose any of them to run the query, no new node is
added to the graph.

The execution of the simple query in Figure 5.1 did not require any index intersection
and there is only one index used at each level (Definition 5.2.3). Therefore, the structure
of the graph is simple.

However, query optimizers normally utilize techniques such as index intersection and
index union to answer multi-condition queries more efficiently. These are fundamental
operations in query processing in databases [130] (see Example 2.4.5).

The evaluation of the conjunctive condition will be done through the intersection of the
set of pointers to the documents. If all of the projection attributes are available via index
scan, this index intersection reduces the need to execute a full collection scan. Therefore,

Figure 5.1: Index Benefit Graph (IBG) structure for the execution plan of a query that
required no index intersection.

78

it can result in a significant performance improvement.
If the query optimizer uses an index intersection technique to run the query, the struc-

ture of the graph gets more complex. It can either utilize the entire index for the index
intersection or the index prefix that is introduced in Definition 5.2.2:

Definition 5.2.2. Index Prefix :
The index prefix consists of one or more attributes from the beginning of a multi-attribute
index. For index I defined as I = S(A|R) where A and R are the set of multiple attributes,
A is the index prefix.

Example 5.2.3. An example of such case is illustrated in Figure 5.2. This figure depicts
an IBG for a query from one syntactic workload with a conjunctive selection condition like:
A1 = int value OR A1 = string value. The query processor of the database under study
intersects up to two indexes to answer the query. The node names indicate the chosen
indexes for running the query. They show that at least two indexes are used to run this
query at each stage. E illustrates the entire set of candidate indexes that are available to
the query at first. Then, each branch shows a situation that one of the chosen indexes are
eliminated from the initial set E. It means, for a node with chosen index set {Ii, Ij} and
incoming edge label E −{Ik}, there are two further configurations that must be evaluated:
1) E − {Ik, Ii} and 2) E − {Ik, Ij}. These form the labels of the outgoing edges. For
simplicity, the cost labels are omitted from Figure 5.2. This example also contains many
duplicated nodes that have different incoming edge labels at different levels.

To explain the process of extracting the atomic configurations from any IBG, first the
concept of level in IBG should be introduced as in Definition 5.2.3. Algorithm 5.2 describes
the method to elect the atomic configurations.

Definition 5.2.3. Level :
The level in the IBG is defined as the distance of each node to the root node. This distance
is defined as the shortest path between node Nf to the root node N0.

Algorithm 5.2 Get Atomic Configurations(IBGi)

Result: Set of atomic configurations for query qi with index benefit graph IBGi with Nf

nodes

p ← Longest Distance to Root(Nf)
A ← set()
foreach 1 ≤ lv ≤ p do

C ← Least Cost Node(lv, Nv)
if C 6= { } then

add C to A
end

end
return A

79

The Longest Distance to Root method of this algorithm finds the maximum number of
levels p for the given IBGi by finding the node with the longest distance to the root node.
Since the distance is defined based on the shortest path, p is equal to the number of edges
of the node with the longest path to the root node. According to the Algorithm 5.2, the
most beneficial chosen-set (node in IBG) at each level lv can be extracted by comparing the
costs of these sets (such as the number of scanned documents) and picking the node with
the highest profit.

Example 5.2.4. The atomic configurations for the query in example 5.2.2 are: {I3}, {I2},

Figure 5.2: Index Benefit Graph (IBG) structure for the execution plan of an example query
that required index intersection. The query processor is assumed to be capable of intersecting
up to two indexes with each other.

80

and {I5}.

In the case of a tie, further costs (such as update cost for an update query or storage
cost) is examined. If these costs can also not remove the tie, the node that is repeated
the most in the whole IBG will be chosen. This algorithm makes sure that no empty set
representative node is added to the set of atomic configurations. However, even if the cost
of a winning atomic configuration is similar to the cost of the root node which represents
the cost of running the query without any index, that configuration should be added to the
atomic configuration set. This consideration is important for situations that a small sample
of the data set is chosen and the costs are evaluated on such sample and mostly result in
similar costs for many nodes. (see Section 4.2).

In the rest of this section, the complexity of extracting atomic configurations is discussed.

5.2.2 Complexity Analysis of IBG

First, few assumptions are made to analyze the behavior of the IBG algorithm in evaluating
the configurations and extracting the atomic ones. Then the complexity of this algorithm in
best and worst case scenarios are calculated with and without considering index intersection.

The first assumption is about the maturity of the query optimizer. It relies on the
assumption that the query optimizer is capable of finding the optimal plans. Frank et al.
in [72] describe some of the properties of a mature query optimizer. One of these properties
is described in Assumption 5.2.1:

Assumption 5.2.1. For each query qi, if the query optimizer chooses the set C of indexes
from among the available set of indexes E, it chooses the same set C from among any subset
of E that contain all the indexes of C.

One extreme case occurs when no index is chosen from the initial set of candidate
indexes. For the optimization purposes, such cases are irrelevant. Assumption 5.2.2 has
been made to prevent the consideration of such irrelevant index set optimizations:

Assumption 5.2.2. For each query qi in the workload W , there is at least one index in
the set of candidate indexes E that if it exists, it would be used by the optimizer to execute
that query.

5.2.2.1 Complexity of IBG with No Index Intersection

Considering the Assumption 5.2.2, the least number of calls to the optimizer happens when
each qi query can only be executed by one index in the initial set of candidate indexes E.
Therefore, for each query, two calls to the optimizer are made:

1. to extract the query execution plan after creating all candidate indexes,

2. to extract the execution plan after removing the only satisfiable index from the set of
available indexes (which in this case, returns a full collection scan).

81

Therefore the least number of calls Nmin C to the optimizer for the case of no index
intersection is 2n, where n is the number of unique queries |Q| of workload W . In this
particular case, there is always only one atomic configuration per query. Therefore, the
least number of atomic configurations is:

Nmin A =
1

2
∗Nmin C = n. (5.10f)

Example 5.2.5. For example with five unique queries n = 5, the process of extracting
atomic configurations requires only 10 calls to the optimizer and 5 atomic configurations
each containing one index are extracted.

In the same way, if the IBGs of none of n queries of set Q contain index intersection,
the maximum number of calls to the optimizer Nmax C can be calculated by the following
formula:

Nmax C(n,m) = n ∗m (5.10g)

where m is the number of indexes in the initial candidate index set. This special case
happens when all of the queries in set Q could be executed using any of the m indexes in
the candidate index set.

In the case of no index intersection, any node other than the empty set representatives
presents an atomic configuration. Thus, the maximum number of atomic configurations
Nmax A as defined in Equation 5.10h can be obtained by:

Nmax A(n,m) = Nmax C(n,m) = n ∗m. (5.10h)

Example 5.2.6. For the example of five unique queries n = 5 and ten candidate indexes
m = 10, the highest number of calls to the optimizer is equal to the number of the atomic
configurations for the whole workload which is: Nmax A(n,m) = Nmax C(n,m) = 50.

Comparing this number to 3,855 configurations - if no IBG optimization was applied -
shows even the largest number of configurations that should be evaluated is at least a few
orders of magnitude less than the original search space. The same is true for the reduction
of load on the query optimizer by scaling down the number of required calls to the optimizer
using IBG.

Table 5.1 contains the asymptotic notation indicating the limiting behavior of the IBG
algorithm in best and worst case. The best complexity for the schenario without inter-
section is extracted based on the Equation 5.10f and the worst case scenario is based on
Equation 5.10h.

5.2.2.2 Complexity of IBG with Index Intersection

So far the assumption was that either one index is sufficient to retrieve the required data for
a query or the query optimizer is essentially not capable of performing query execution with
more than one index per query. However, modern database query processors are mostly
capable of merging two or more indexes to serve multi-condition queries.

82

The least number of calls to the optimizer for a given workload can be obtained by
considering Assumption 5.2.2, Assumption 5.2.3 and Assumption 5.2.4.

Assumption 5.2.3. The query optimizer intersects the maximum number of indexes in the
enumeration space to execute the query.

Assumption 5.2.4. If any of the intersected indexes that are chosen to execute the query
are removed, the query optimizer prioritizes scanning the whole collection over utilizing any
other index to run the query.

Figure 5.3 illustrates the IBG of such a scenario. In this case, the number of calls to
the optimizer can be obtained as:

Nmin CI(n,m, k) =

{
n ∗ (k + 1) m > k
n ∗ (m+ 1) m ≤ k, (5.10i)

where k is the maximum number of indexes that the query optimizer is capable of
intersecting with each other to execute a query. Under such condition, there is only one
atomic configuration per query. Therefore, the number of atomic configurations is obtained
by:

Nmin AI = n. (5.10j)

The Best Case complexity of the IBG with intersection scenario in Table 5.1 is calculated
base on Equation 5.10i and 5.10j. With the Assumption 5.2.3 and consideration that the
query optimizer might be able to intersect arbitrary number of indexes, it is safe to only
consider the case of m ≤ k that results into a complexity of O(mn). However, the case
presented in Table 5.1 covers more general conditions.

On the other hand, Figure 5.4 illustrates the case of an index benefit graph for a maxi-
mum number of calls to the optimizer. The query optimizer can intersect up to a k indexes
to run a query. The maximum number of calls happens not only by considering the As-
sumption 5.2.2 but also by considering Assumption 5.2.5 as:

Assumption 5.2.5. Worst case: The query optimizer can run query qi with each of the
m indexes in the initial candidate index set E, and also with any of their intersections.

aaaaaaaaaaaa
Algorithm

Complexity

Best Case Worst Case

IBG without Intersection O(n) O(mn)

IBG with Intersection O(min(k,m)n) O(n2max(k,m))

Table 5.1: The complexity of the Index Benefit Graph algorithm in asymptotic notation. The
algorithm evaluates different chosen configurations and extracts the atomic configurations for
each query.

83

As shown in Figure 5.4, after building all of the indexes in the initial candidate set E,
one call to the optimizer is made at Level 1 to extract the best combination of maximum k
number of indexes from among m available ones. For a case where m ≥ k, there are m!

k!(m−k)!
possible combinations of k intersections that the query optimizer chooses only one with the
best cost from them. Thus, Level 1 contains only one call to the query optimizer even for
the case of m > k.

As a result, Level 2 contains k nodes. Each of these nodes requires one call to find the
cost of the chosen set of indexes which sums up to k calls to the query optimizer at Level 2.
What happens in the next level depends on the size of m in comparison to k. If the number
of indexes in the initial candidate set is greater than k, then at the third level of Figure 5.4
instead of k!

(k−2)!2! calls to the optimizer, k2 calls should be made. This multiplication of k

at each level will continue for (m − k) levels. This pattern continues until one level after
where exactly k indexes remain to intersect with each other (Level 3 in Figure 5.4). At this
level, each of k nodes results in (k − 1) evaluation call. However, not all of the resulted
nodes are unique. The duplicated numbers also have a similar set of enumeration space.
Therefore the number of calls reduces to their half. The number of unique choices can be
obtained by the binomial coefficient with

(
k
j

)
, where j grows incrementally at each level.

Consecutively, for a workload of n unique queries, the number of calls to the optimizer
does not only depend on n and m, but also on k. It can be obtained as:

Nmax CI(n,m, k) = n ∗
(
km−k

k−1∑
j=0

(
k

j

)
+ 1

)
, where m > k, k > 1 (5.10k)

Figure 5.3: Best case scenario in case of the IBG with intersection. The assumption is by
removing any of k intersected indexes, the cost of scanning the whole collection would be less
than using the new configuration.

84

and Nmax CI is the number of calls to the optimizer in case of using index intersection
for k ≥ 1. Note that this equation leverages to Equation 5.10g for the case of k = 1, only
if the number of choices at Level 1 is considered as (Nmax CI ∗ m!

k!(m−k)!)− 1.

If m is less than the number of indexes that the optimizer can intersect, then Nmax CI

does not depend on k anymore. It can be obtained by Equation 5.10l. This formula is
formed with the assumption that all indexes in the candidate index set are intersected at
first level to answer the query and the optimizer can even run the query with any of them:

Nmax CI(n,m) = n ∗
(m−1∑

j=0

(
m

j

)
+ 1

)
where m ≤ k, k > 1. (5.10l)

Example 5.2.7. An example of m < k with ten indexes in the enumeration space m = 10
and five individual queries n = 5 is: Nmax CI = 5, 110.

In any case, this number can be enormous. Nonetheless, this number is way greater than
the usual calls to the optimizer (see Section 6.3.2). The reason is that usually, there are
few queries in each workload that require index intersection. Even for such queries often,

Figure 5.4: IBG structure for the case of maximum number of calls to the query optimizer
when the query optimizer is capable of intersecting k indexes to respond to a query and m > k.

85

by removing few of the chosen indexes from the available index set, the query optimizer
prioritizes a full collection scan (see the example of Figure 5.2). All of these conditions
results in having much lower number of calls to the query optimizer than what is obtained
by any of Equation 5.10k or 5.10l.

Based on the fact that only one node in each level is chosen as the atomic configuration
and the level k + 1 contains only empty set representative nodes, the maximum number of
atomic configurations with index intersection is obtained by:

Nmax AI(n, k) =

{
n ∗ k m > k
n ∗m m ≤ k. (5.10m)

Equation 5.10k, 5.10l and 5.10m are considered to deduct the Worst Case of the IBG
algorithm with intersection scenario in Table 5.1. This asymptotic notation is calculated
by considering the worst case for the growth of the binomial coefficient [131].

Example 5.2.8. Although the Assumption 5.2.1 is expected to be right for a well-behaved
optimizer, it is shown in Figure 5.2 that not all query optimizers behave by this property.
Figure 5.2 contains some examples of the situation where the same set of indexes are chosen
to run the query under a different subset of available indexes. Consider the node {I5, I7}
that is duplicated in two places. First glance shows that this node is chosen under different
sets of available indexes. However, following this node in each of the branches displays that
the property 5.2.1 is not met by the query processor of the database under study. The node
{I4, I5} in the right side branch is chosen before node {I5, I7}. But in the other branch,
the order of picking these two sets is vice versa. This situation can happen under the
circumstances that the cost of running the query under these two configurations is almost
the same and the query optimizer uses the first index in its catalog list. Such a situation
makes an example of a tie between these two nodes at level 4 of the IBG. If none of the costs
of the nodes can break the tie, the {I4, I5} that is repeated the most in the IBG will be
chosen as the atomic configuration at that level. Although in such a situation the number
of calls to the optimizer utilizing the index benefit graph might be more than the situation
that meets the property 5.2.1, still the number of calls to the query optimizer is restricted.
Besides, using the IBG strategy, especially in such case with many similar nodes, helps to
ensure that all necessary configurations are evaluated.

In this section, a solution to minimizing the large search space of the enumeration
method to optimize the objective function is presented. This solution is based on the
concept of atomic configurations and the fact that the cost of all other configurations can
be derived from atomic configurations. To find these atomic configurations, a method called
Index Benefit Graph (IBG) is introduced. Utilizing the index benefit graph also helps to
make sure that indexes that might not be the immediate choice of the optimizer to run a
query (such as merged indexes) also get a chance to be evaluated. The process of exploiting
the IBG for the case that the query optimizer is capable of intersecting indexes is introduced
and discussed.

86

It is shown that the number of necessary calls to the query optimizer to evaluate the
appropriate configurations to build IBG, even for worst cases is much more restricted than
evaluating all configurations. Although in reality the number of calls to the query optimizer
is restricted (see Section 6.3.2), the study of the worst case scenario with index intersection
shows that they can potentially get very large. Such large number of evaluation calls can
affect the performance of the in-production database system. Therefore, the necessity to
introduce a virtual environment where the communication with the query optimizer has a
minimum effect on the fulfillment of the in-production system rises. Such a environment is
introduced in Section 4.2.

5.3 Summary

To properly solve the complex problem of selecting proper set of indexes with consideration
of all of the relevant factors a thorough mathematical model is required. This chapter
contains the mathematical formulation of AIRs objective function. The maximization of
this function results in finding an optimal configuration that its profit is maximum for the
particular workload under the given storage limitation.

Additionally, to assist the efficiency of the enumeration technique, it is important to
reduce the search space of the problem in the best way possible. The usage of atomic
configurations reduces the number of configurations that should be traversed by the enu-
meration technique. Therefore, the Index Benefit Graph algorithm is developed to extract
these atomic configurations.

The contributions of this chapter can be summarized as the following:

1. Definition of the objective function considering many parameters including:

• negative influence of each index for update operations

• ratio of read to write

• consideration of the influence of each attribute and its cardinality

2. Formulation of this objective function in Integer Linear Programming to ensure that
an optimal solution will eventually be obtained

3. Development and analysis of the complexity of the Index Benefit Graph algorithm for
databases with index intersection capability

In the next chapter, the evaluation studies of the solutions developed in each segment
of AIRs are presented.

87

88

Chapter 6

Performance Studies

The issues regarding the lack of standards and well-defined benchmarks for NoSQL databases
in general, and document-based databases in particular, are discussed in this chapter. Addi-
tionally, the performance evaluation of individual solutions developed in different segments
of AIRs is presented.

Section 6.1 contains a brief discussion on the difficulties of evaluating the performance
of document-based database related systems, already stated in the Problem 2.3.6. Also, the
specific research questions that lead to the development of a workload generator tool and
its characteristics are discussed in this section. The basic metric and baseline to specifi-
cally evaluate the index recommendation systems are explained. The continuation of the
discussion on the lack of standard benchmarks results in the definition of certain synthetic
workloads. Then, Section 6.2 introduces some of the workloads chosen from the real-world
meteorological applications. These real-world workloads are exploited for various perfor-
mance studies in Section 6.3. The results of the evaluation of different solutions of AIRs
and its overall performance are presented.

Parts of the following text and figures are published in [6].

6.1 Benchmarking Components and Workload Generator for
Document-Based Databases Performance Analysis

To measure the performance of any database-related systems in comparison to similar sys-
tems, well-defined and standardized benchmarks are needed. There are some traditionally
well-established applications associated with relational databases. Correspondingly, there
are standard benchmark workloads defined that are widely used to compare the perfor-
mance of these databases and their related systems to each other. However, considering
the fundamental differences between relational and non-relational databases, there is no
uniformly defined set of benchmarks to evaluate the performance of both of these database
systems. Additionally, the defined metrics of these macro-benchmarks is intended to as-
sess the overall performance of the database system, not specific database-related systems

89

such as index recommendation systems. The rest of this section contains the discussion
about and the definition of the necessary baseline, metrics, and workloads to evaluate the
performance of the index recommendation system.

Each benchmark consists of three essential components: 1) Baseline definition, 2)
Evaluation Metric, and 3) the Database/Workload [113]. A series of well-established
benchmarks are available to evaluate the overall performance of relational databases regard-
ing their various well-defined applications. The evaluation metric for these benchmarks that
aim the performance of the whole database system is normally throughput. The Transaction
Processing Performance Council (TPC) [52] provides a series of such application benchmarks
defined by a consortium of vendors. In addition to traditional relational applications such
as Online Transaction Processing (OLTP) or Online Analytical Processing (OLAP) [132],
there are even TPC benchmarks introduced to cover newer applications such as support
systems and web commerce [112]. The web commerce application can be considered as a
typical application for document-based databases as well.

However, due to the major differences in the data models and query languages of the
document-based databases and relational ones, these TPC benchmarks are not directly
applicable to evaluate the performance of document-based related systems. Also, a mapping
from the normalized relational model of the TPC benchmarks to the denormalized model
of document-based databases is complex and despite the efforts, a proper mapping between
these models is missing [120]. In general, the design of such general-purposing benchmarks
requires federated work to define standards which is out of the scope of this thesis.

Even if there were already such generalized benchmark to assess the performance of
relational and non-relational database, these macro-benchmarks would not be sufficient
to properly evaluate database-related systems with specific functionalities such as index
recommendation ones. Despite the extensive research on the index recommendation sys-
tems, there is a very limited number of studies on how to properly benchmark these sys-
tems [111], [113], [92]. Therefore, as part of my research, it is necessary to define an
appropriate evaluation baseline, metric and workload/databases to assess the performance
of the designed index recommendation solutions.

As discussed in Section 3.7, Consens et al. in [111] proposed to use all of the indexes
related to single-attribute queries as the baseline to compare the performance. However,
N. Bruno based on his research presented in [113] argues that such baseline is not a good
baseline in general and in specific for decision support workload that demands aggregation
and filtration of many attributes. Based on this research and also to be aligned with the
research conducted in [92], the baseline for the evaluations of this thesis is considered to be
as defined in Definition 6.1.1:

Definition 6.1.1. Base Configuration as Baseline : The Base Configuration is the
configuration containing no index other than the mandatory indexes of the system, e.g.
index on primary keys. This configuration is independent of the workload and can be easily
reproduced. Therefore, it can be defined as the baseline for the index recommendation
system performance. This configuration occupies the least amount of storage and has the
worst cost for read-only workloads.

90

The next crucial component of a benchmark or any evaluation method are Evaluation
Metrics. Typically, in most of the studies conducted on index recommendation systems a
metric named Percentage Improvement is utilized to determine the quality of the results.
The definition of Percentage Improvement is presented in Definition 6.1.2. It is a numerical
measure to compare the quality of the recommended optimal solution to the determined
baseline.

Definition 6.1.2. Percentage Improvement :
For each given baseline configuration C0, the percentage improvement of a recommended
configuration Ci of the workload W is defined as:

percentage improvement = (1− cost(Ci,W)

cost(C0,W)
) ∗ 100. (5.10a)

Negative values for percentage improvement indicate that the recommended configuration
is less efficient than the baseline configuration [1, Chapter 12].

Although this single number can be utilized conveniently to compare the quality of
recommended solutions, Consens et al. argued in [111] that a more precise metric that can
give more detailed information about the performance of index recommendation systems
is required. Therefore, they proposed an additional metric M in the way that for a given
workload W and a given configuration C the quality metric MC,W is defined as the ratio
of the number of queries of workload W that can be executed in the input time t, and the
total number of queries in the workload |W |:

MC,W (t) =
|run time(q)| ≤ t

|W |
. (5.10b)

According to the definition of the M metric, the run time(q) is the actual run-time
of each query. Utilization of the actual execution time of a workload in the metric can
be beneficiary when the evaluation of the whole database performance, including e.g. the
query optimizer, query processor and even the underlying operating system is intended [113].
However, when the target is to isolate the index recommendation system for assessment,
the run-time of the whole queries is not the best indicator. Instead, the cost of each query
estimated by the query optimizer can be utilized.

Nevertheless, the M metric reveals information about the quality of a configuration for
the whole workload, but it does not give any information about its quality regarding every
single query. A complementary evaluation metric I can be defined as in Definition 6.1.3
to disclose the quality of the recommended optimal configuration for each query in the
workload regarding the maintenance and storage cost.

Definition 6.1.3. I Quality Metric:
For any query qi of workload W with any two given configurations C1 and C2, a difference
value vi = cost(qi, C2) − cost(qi, C1) can be calculated where cost(qi, C1) is the number of
scanned documents for qi in presence of C1. The vi shows the gain of C1 over C2. The

91

evaluation metric IC1,C2 is a set of all difference values of the queries in the workload with
the two given configurations C1 and C2. For a workload with n queries the I Quality Metric
is presented as:

IC1,C2(W) = {v1, · · · , vn}. (5.10c)

A positive difference value vi indicates that C1 was a better configuration for running
qi than C2 and vice versa. If configuration C2 be replaced by the baseline configuration C0,
then the different value presents the gain of C1 to the baseline configuration. The I metric
is used then to investigate the quality of the proposed optimal configuration for a given
workload.

The third component of each evaluation method (benchmark) is the definition of the
database/workload. In [113], Bruno argues that any beneficiary database/workload of an
evaluation method should be build from at least one of these three ’buckets’:

• Micro-benchmarks: assess various abilities of the underlying database,

• Synthetic benchmarks: contain complex workloads to exercise the entire capabilities
of the database,

• Real benchmarks: cover the possible delicate scenarios that might be neglected in the
past two buckets.

To evaluate the proposed solution to the index recommendation system on real bench-
marks, few of the datasets and workloads of the meteorological projects are used which are
introduced in Section 2.1. The chosen real database and their corresponding workloads are
discussed in more details in Section 6.2.

Additionally, to enhance my research with studying the effect of different parameters
on the index recommendation process, e.g. the effect of having indexes on attributes with
different levels of nested documents or different ratio of read-to-write, and to extract the
parameters explained in Section 4.1, a combination of different micro- and synthetic queries
should be defined and investigated. Therefore, based on the criteria under study, a flexible
tool to produce various synthetic datasets and workload solutions called ”Not only Workload
generator” (NoWog) is developed.

To be able to cover the diversity of query languages of different databases, a unified
grammar is designed for NoWog that is presented in Appendix A. This grammar provides
a means for users to flexibly define a set of queries with arbitrary attributes in a workload.
This grammar facilitates the specification of the distribution and frequency of execution
of each query in a given time period. It also supports various operations that combine
database entities such as JOINs or nested documents. NoWog maps this set of rules in
its unified grammar to the query language of the targeted back-end database. The details
about the functionality of NoWog are discussed and published in [6].

NoWog provides sets of predefined scenarios that correspond to some typical character-
istics of applications such as being read-mostly, or update-intensive. However, the definition

92

of standard benchmark workloads demands federated work to establish common criteria.
Such a definition of a standard database/workload is out of the scope of my research and
this thesis. Instead, NoWog is utilized to generate a series of synthetic workloads to inves-
tigate the effect of various parameters and evaluate the performance of the AIRs solutions.
Some of the examples of these datasets and workloads were used in Section 4.4 to study
the effect of various data types on the storage size. Many other datasets and workloads are
generate by this tool to study various aspects of AIRs’ performance.

By specifying a definition for each of the three essential components of a benchmark, a
testbed framework is prepared to check out the performance of the target system. The target
is to estimate the performance of solutions proposed in the Adaptive Index Recommendation
system.

6.2 Real Meteorological Data Sources

As discussed in Section 2.1, the real-world applications in hand come from specific meteoro-
logical use cases. Two of these applications (satellite and GLORIA) are briefly introduced.
Their corresponding general workloads are depicted in Figure 2.2 and Figure 2.4, respec-
tively. In this section, two specific workloads of each of these applications are described in
more detail. Each of these workloads is intended for one collection. These workloads are
then used as real-world scenarios to test AIRs.

Table 6.1 contains statistics about four workloads each of which is issued against one
collection in the application database. Workload WKL 1 and WKL 2 belong to the satellite
application, whereas workload WKL 3 and WKL 4 are taken from the GLORIA application
(see Section 2.1). For each workload, the number of documents in their corresponding
collection is given in Table 6.1. The total number of queries as well as the number of
individual operations (i.e. search, update and insert) to each collection are also indicated
in this table. As Figure 2.2a and Figure 2.4a suggest none of these workloads contain any
delete operation. These snapshots of the datasets and their corresponding workloads are
used to assess the performance of AIRs in different evaluation scenarios.

The collection related to workload WKL 1 originally contains documents with informa-
tion about the position of the satellite, e.g. geolocation, in the form of nested documents
containing latitude and longitude, and the environmental factors, e.g. sun elevation at the
time of each measurement. The workload related to this collection is an update-intensive
workload with some search queries. A typical search query in this workload is shown in
Example 6.2.1. Each update operation, typically, searches for a document with specific
version number and geo id. Then, it sets new attributes with mostly large multi-array
values for the found document. Example 6.2.2 shows the structure of a typical update
operation on this collection.

Example 6.2.1. Typical search query of WKL 1:
db.coll.READ({TB < zpt time < TE ∧ 0 < sun elevation ∧

geo id = GID ∧ version number = V N}).SORT({zpt time})

93

Example 6.2.2. Typical update query of WKL 1:
db.coll.UPDATE({ version number = V N ∧ geo id = GID},

{ tangents = [T1, T2, · · ·], cloud index = [[N1, N2, · · ·], [M1,M2, · · ·], · · ·],
tang time = [{date : D1}, {date : D2}, · · ·] })

The related collection to workload WKL 2 contains simpler documents with information
about the satellite position of each measurement at any recorded time. WKL 2 is a read-
only workload. Each search query inquiries for the documents containing time and longitude
(stored in nested documents) in a specific range. An example of such a query is given below
in Example 6.2.3.

WKL 3 contains very simple search queries based on only one attribute as shown in
Example 6.2.4. The id attribute in this query is actually the primary key defined in
the database that is by default indexes. Therefore, AIRs only considers the other single
attribute of this query. However, WKL 3 is a write-intensive workload with many insertions
of documents into its corresponding collection. Unlike the simple search queries of this
workload, the inserted documents are relatively large and contain many attributes with a
nested document structure.

The last real-world workload is WKL 4 from the GLORIA application. This workload
is like WKL 1, an update-intensive workload. However, this workload contains about twice
as many search queries as update operations which are issued on a relatively small set of
documents in the collection. The typical search query of this workload includes an inquiry
only on one attribute, similar to Example 6.2.4. An example of its typical update query
is displayed in Example 6.2.5. This operation replaces the value of the already existing
attributes.

Example 6.2.3. Typical search query of WKL 2:
db.coll.READ({BLONG < loc.coordinate.0 < ELONG∧BT < time < ET}).SORT({time})

Example 6.2.4. Typical search query of WKL 3:
db.coll.READ({queue = QID, id = PRKEY })

Example 6.2.5. Typical update query of WKL 4:
db.coll.UPDATE({queue = QID ∧ routing key = RID ∧ exchange = EID},

{queue = new QID, routing key = new RID, exchange = new EID})

Workload #Documents #Total Queries #Search #Update #Insert

WKL 1 4,707,583 2,787 195 2,592 0

WKL 2 1,200,000 2,735 2,735 0 0

WKL 3 285,025 124,898 65,137 0 47,142

WKL 4 123 17,397 8,611 4,398 0

Table 6.1: Number of operations in the real workloads of meteorological applications and their
corresponding dataset size.

94

6.3 Evaluations with Real Data Sources

This section represents evaluations of some of the solutions developed through out this
thesis as well as the overall performance of AIRs results. For this purpose an experimental
environment is set up utilizing a server with two Intel(R) Xeon(R) CPU E5-2640 v2 @
2.00GHz with sixteen physical cores. However, running the AIRs is limited to use a single
core at each run-time for evaluating a workload. Accordingly, the storage limitation is
considered as half of the available memory size to each processor. This choice for the
storage limitation is made based on two regards: 1) the indexes are most beneficiary if they
can reside in memory, 2) at least half of the memory should be dedicated to retrieve the
corresponding data into memory. In this environment 128 GB memory is available that half
of it (64 GB) is considered to be the storage constraint.

For the evaluation of the effectiveness an instance of MongoDB v3.2 [133], which is a
well-known document-based database, is installed on this server. For these experiments,
the AIRs is also running on the same server as the database is running. Although this is
not the recommended set-up of the AIRs, it is done to prove the functionality of it even in
such a set up scenario.

All of the evaluation studies presented in the following of this section are run in this
environment.

6.3.1 Assessment of Effectiveness of Candidate Indexes Exploration Strat-
egies

The number of unique attributes in each collection indicates the number of possible combi-
nation of indexes that can be built on that collection. The strategies explained in Section 4.3
are applied by the AIRs to extract the number of the prime candidates based on the work-
load unique queries.

Table 6.2 exhibits the results of the application assessment of these strategies on the real
meteorological datasets and workloads as described in Table 6.1. This table contains the
maximum number of unique attributes (#Unique Atts) in the corresponding dataset of each
workload. Any individual attribute of a sub-document is counted as a unique attribute.

Example 6.3.1. The document in Code 6.1 contains two individual attributes:
”geo loc.geo lon” and ”geo loc.geo lat”. Thus (#Unique Atts = 2).

Code 6.1: Example of individual attributes in a nested documents.

{"geo_loc":
{"geo_lon": 42.3021,

"geo_lat": 66.0637

}
}

95

The number of all possible index combinations (#All Combinations) is calculated with
Equation 4.1. This number is obtained by assuming that there are only two index types
available for each attribute (θ = 2). The number of unique queries (#Unique Queries)
contains the sum of unique search and update operations in the workload. The column
(#Frequent-Long Items) includes the number of candidate indexes extracted from the fre-
quent and long queries (see Definition 4.3.4 and 4.3.2). The number of candidate indexes
after application of the merge strategy is demonstrated in column (#Enum Space), which
generates the final set of candidates indexes of the Query Analyzer of AIRs (see Figure 4.3).

The support threshold configured for the Frequent Itemsets, in this case, is 0.2. Accord-
ing to the statistics of these workloads shown in Table 6.1 and 6.2, the number of unique
queries of these workloads is much smaller than the number of issued queries. Therefore,
replacement of the chosen low support threshold with a higher one would not change that
much in the results of the Frequent-Long Items for these workloads.

The results of this table indicate how large the number of all possible index combi-
nations, even for a modest number unique attributes, can get (over 3 Billion for only 12
attributes). Comparison of some possible combinations and the number of candidates in
the final enumeration space shows the necessity of applying strategies to reduce the search
space of candidate indexes.

A comparison of the total number of queries of each workload in Table 6.1 with the final
set of candidate indexes in Table 6.2 reveals that the candidate selection strategies of AIRs
are independent of total queries in the workload. These strategies are only dependent on
the number of unique queries in the workload and their complexities. The complexity of the
query increases the number of attributes in its search-predicate, having range or equality
predicates and attributes in the sort-clause.

Consider workload WKL 2 and WKL 4 as examples which the former consists of only
one unique query and the latter contains two unique queries. The only query of WKL 2 is
described in Example 6.2.1. The output of the enumeration space for this query is a set
as shown in Code 6.2. Workload WKL 4 includes a simple single-attribute search query
and an update query as described in Example 6.2.5. There are fifteen candidate indexes
in the enumeration space of this query. Some of these candidates are shown in Code 6.3.
All candidates are either frequent or long. Neither of the final candidates is constructed by

Workload
#Unique

Atts
#All

Combinations
#Unique
Queries

#Frequent-Long
Items

#Enum
Space

WKL 1 12 > 3.2× 1010 7 35 46

WKL 2 4 632 1 3 3

WKL 3 2 12 1 1 1

WKL 4 4 632 2 15 15

Table 6.2: The effectiveness of the Frequent-Long itemsets and merging strategies in reduc-
ing the number of possible attribute combinations to build candidate indexes. The results of
frequent itemsets are obtained by a support = 0.2.

96

merging of attributes.

Code 6.2: Enumeration space output for the unique query of WKL 2 which contains three
candidate indexes out of the frequent attributes of the query. Since they are all extracted from
one query, the frequency number is similar for all of them and is equal to number of total queries
of this workload.

{ (["loc.coordinates.0"], 2735),

(["time"], 2735),

(["loc.coordinates.0", "time"], 2735) }

Code 6.3: Some of the candidate indexes in the Enumeration space of WKL 4 which contains
fifteen members. Each tuple contains the candidate index and the frequency of appearance of
that pattern in the workload. The order of the keys designed by prioratizing search-predicates
over sort-clause, quality over range predicate and the cardinality of the attributes in the dataset.

{ (["exchange"], 13009), (["routing_key"], 4398),

(["queue"], 4398), (["routing_key", "exchange"], 4398),

(["exchange", "queue"], 4398),

(["routing_key", "queue"], 4398),

(["routing_key", "exchange", "queue"], 4398), ...}

Workload WKL 1 is the only real-world meteorological example under which the merge
module of the Query Analyzer adds more candidates to shape the final Enumeration Space.

A comparison of the number of indexes in the Enumeration Space after applying the
Frequent-Long and merging strategies to all possible combinations shows a reduction of at
least 12 times and at most about 7.0× 108 in the number of candidates.

6.3.2 Measurement of IBG Algorithm Effectiveness

The run-time complexity of the IBG algorithm is discussed in Section 5.2.2. According
to that asymptotic behavioural analysis, the IBG algorithm in the worst-case can grow
exponentially. However, the claim is that in real cases, the solution to the IBG algorithm
is feasible.

Table 6.3 presents the evaluation of the effectiveness of the IBG algorithm for the real
meteorological workloads of Section 6.2. The #All Configs column of Table 6.3 represents
all of the possible configurations that can be build for each workload. The results in this
column are calculated by Equation 5.10e given the number of indexes in the Enumeration
Space of each workload listed in Table 6.2. Despite the reduction in the number of candidate
indexes that by extracting the attributes of the Frequent and Long queries in the previous
step, the number of configurations that can be built by these candidate indexes can be
very large. The growth of the number of configurations that should be evaluated by the
enumeration method is exponential. Compare the #All Configs for WKL 4 with only 15
candidate indexes to WKL 1 with 46 candidates. Also, collecting the required cost of

97

running the queries with each of these configurations enforces many additional calls to
the query optimizer. The load that this large number imposes on the whole system is
unacceptable.

The #Atomic Configs column in Table 6.3 shows the number of atomic configurations
extracted by the IBG algorithm. These are the atomic configurations for the whole work-
load. The #Call to Optimizer displays the number of calls that are made to the query
optimizer to extract the necessary cost evaluations for all of the atomic configurations in
the workload. Correspondingly, the Avg. #Calls is the average number of calls and the
Max. #Calls shows the maximum number of calls that is made per unique query.

The comparison of the number of atomic configurations extracted by the IBG algorithm
to all possible configurations of the enumeration space shows the effectiveness in reducing
the search space for the optimization method as discussed in Section 5.1.2. The amount
of the overall calls to the query optimizer for the whole workload also suggests that in
practice, the run-time of the IBG algorithm is feasible. According to these evaluations, the
highest number of maximum calls per query to the query optimizer happens in the case of
one complex sample query of WKL 1 that calls thirty-three times to evaluate a query. The
average number of calls to the query optimizer per query is not large. These results suggest
that in real-world examples, the number of calls to the query optimizer is not even close to
the worst case scenarios of IBG algorithm discussed in Section 5.2.2 (see Table 5.1).

The outcomes of the assessment of the IBG algorithm for the real meteorological work-
loads demonstrate its feasibility to extract the atomic configurations and their corresponding
cost estimations even for workloads with rather complex queries.

6.3.3 Recommended Configuration Optimality Evaluation

The optimality of the overall proposed solution of the index recommendation system can
be measured with metrics that are introduced in Section 6.1. In the following of this
section, the optimality of the recommended solution by AIRs is investigated for each of the
Meteorological workloads introduced in Table 6.2.

For the first meteorological workload (WKL 1), AIRs recommends a configuration that
consists of three indexes as the optimal solution for this workload. Although this workload

Workload
#All

Configs
#Atomic
Configs

#Call to
Optimizer

Avg.
#Calls

Max.
#Calls

WKL 1 7.036 874 417 77× 1013 73 81 ≈12 33

WKL 2 6 3 3 3 3

WKL 3 1 1 1 1 1

WKL 4 32,766 16 16 8 15

Table 6.3: The effectiveness of the IBG algorithm is in calling feasible number of times to the
query optimizer, despite its high theoretical worst-case. It also significantly reduces the number
of configurations that should be evaluated in the next optimization step.

98

contains about twelve times more update operations than read operations, still these indexes
are proposed to be created.

To show that these indexes are actually improving the execution of the workload, sev-
eral measurements are considered. Figure 6.1 illustrates the run-time measurement of this
workload. The run-time is measured once without any index in the system to make the
baseline, and the other time with having the indexes from the recommended optimal con-
figuration. The run-time of the intended workload for each of these cases is measured five
times. The standard deviation of these measurements is presented as the error bar of the
run-time measurements.

The overall Percentage Improvement for this workload with the given recommended
configuration is 21.05 %. Figure 6.2 illustrates the difference values of the quality metric.
It shows the recommended set of indexes for five chosen queries of workload WKL 1. Each
of these queries happen to be representative of a unique query in this workload. According
to the results in this figure, despite high improvement in cost of running two of these queries,
the recommended set of indexes are not helpful to improve execution cost of three other
queries. This can cause the decreasing overall Percentage Improvement with recommended
set of indexes for this workload.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

WKL1

R
u
n
ti
m

e
 (

s
)

Without Index
With Index

Figure 6.1: WKL 1: Run-time measurement of WKL 1 which includes about twelve times
more update operations than read operations. The run-time is measured once without any
index (as baseline measurement) and another time with the recommended indexes.

Surely, adding more indexes to support the other queries of the workload can improve the
Percentage Improvement. However, adding more indexes would enforce more maintenance

99

0

1.5*10
6

2.0*10
6

2.3*10
6

query-1 query-2 query-3 query-4 query-5

v
i
(#

s
c
a
n
n
e
d
 d

o
c
u
m

e
n
ts

)

Queries

Figure 6.2: Different values of five chosen queries of WKL 1. The chosen queries are each a
representative queries of a unique query in this workload. These results show that the recom-
mended set of indexes by AIRs improve the running cost of two of the queries, but are not used
to run the other three.

and storage cost. Since the measured run-time only includes the required time for the
database to search for the relevant documents and transfer the intended data, the necessary
time of updating the indexes is not included in the run-time. Therefore, this cost is not
directly visible in the run-time measurement.

Therefore, with the available metrics, it is still difficult to show the optimality of the
recommended solution by the AIRs for the workloads with update operation. Still demon-
stration of this optimality is easily feasible for a read-only workload.

For a read-only workload such as WKL 2, the optimality of each configuration depends
only on the benefit that it has for search queries according to Equation 5.8. The only
constraint is the size of the indexes. Since the definition of benefit is based on the number
of documents that should be scanned to find the relevant document, it has a direct relation
to the time required to find the documents. Therefore, run-time measurement can be
representative of the optimality of the solutions for such read-only workloads.

As shown in Table 6.2, the enumeration space of this workload contains only three
candidate indexes that are presented in Code 6.2. In the experimental environment with
not so tight storage limitations, AIRs recommends a configuration containing one single
index on the loc.coordinates and the compound index.

The run-time measurement of the second workload (WKL 2) is depicted in Figure 6.3.

100

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

CND-1 CND-2 CND-OPT

R
u
n
ti
m

e
 (

s
)

Without Index
With Index

Figure 6.3: WKL 2: Run-time measurement of optimal and sub-optimal candidates of
WKL 2. Since this is a read-only workload, its run-time improvement is a good indicator
for the optimality of the solution. The run-time improvement utilizing two sub-optimal con-
figurations CND-1 and CND-2 is less than the one with optimal recommended configuration
CND-OPT.

Figure 6.3 not only shows the run-time comparison of the base configuration (no indexes)
to the optimal recommended configuration (CND-OPT), but also the run-time of the other
two candidate configurations with single indexes of the enumeration space that are indi-
cated with CND-1 (for time index) and CND-2 (for loc.coordinates index). This compar-
ison clearly shows the optimality of the benefit of the recommended configuration for the
workload. The Percentage Improvement for this workload with the optimal recommended
configuration is 91,61%.

Despite the rather large number of insert operations, AIRs recommends to create the
single possible configuration with single attribute index. Figure 6.4 shows the run-time
improvement of this workload in the presence of the recommended optimal configuration
CND-OPT. The run-time only reflects the required time to search and retrieve data, but it
does not reflect necessarly time to insert documents.

Even without considering the time for insert operations, the run-time improvement of
this workload is high. The Percentage Improvement of the WKL 3 with consideration of
only read queries is equal to 99,99%. This is surprisingly more than the run-time improve-
ment and Percentage Improvement of WKL 2 which is a read-only workload. The reason is
that workload WKL 2 consists of very large range queries that require retrieval and trans-

101

 1

 10

 100

 1000

 10000

 100000

CND-OPT CND-OPT+PRKEY

R
u
n
ti
m

e
 (

s
)

Without Index
With Index

Figure 6.4: WKL 3: Run-time measurement of optimal solution and its combination with
the primary key for WKL 3 shown in logarithmic scale. Since the read queries of this workload
contain equality predicates, the run-time improvement with introducing the optimal index is
very high. The comparison of the single attribute recommended index CND-OPT and its
combination with the primary key does not show any difference in the run-time improvement.
This is result was expected because of the capability of the database to intersect the indexes
and the fact that the primary index is by default indexed.

fers of lots of data. On the contrary, workload WKL 3 contains equality queries that with
utilization of the index can pin point to the exact document.

Figure 6.4 also depicts the run-time improvement with the assumption of creating a
compound index exploiting both the optimal index attribute and the primary key attribute.
This comparison is done, to investigate the correctness of the AIRs design decision to
eliminate the primary key from being recommended. This investigation seems necessary,
because as shown in Example 6.2.4, the typical query of WKL 3 contains this primary key
that is by default indexed in the database. Comparison of the run-time with utilization of
this compound index and the single optimal index shows no difference. With the capability
of the database in intersecting existing indexes and having the primary key indexed by
default, this result was expected.

Workload WKL 4 has interesting characteristics. It consists of a mix of read and up-
date operation and a rather small corresponding dataset as represented in Table 6.1. The
update queries are frequent rewrites values of various existing attributes as presented in
Example 6.2.5.

102

 0

 2

 4

 6

 8

 10

 12

 14

 16

CND-OPT

R
u
n
ti
m

e
 (

s
)

Without Index
With Index

Figure 6.5: WKL 4: Run-time measurement of the optimal solution for WKL 4. Since this
rather large workload of read and update operations are issued on a small dataset, even its run-
time without any index is small. Therefore, to prevent from introducing additional maintenance
costs due to large number of updates in the workload, AIRs recommend to run this workload
without any index.

Despite various possibilities of candidate indexes in the enumeration space of this work-
load as mentioned in Table 6.2, the optimal solution recommended by AIRs is to run this
workload without any index. The reason is that the corresponding dataset of this work-
load contains a fairly small number of documents. Since the database engines are powerful
enough to search through hundreds of documents quickly, introducing an index for such
a small dataset does not improve search queries significantly. This is also noticeable from
the small required run-time of this rather large workload even without having any index as
shown in Figure 6.5. Since this workload has a heavy amount of update, introducing any
index would just create more maintenance cost for the workload.

The results of this part show the optimality of the configuration recommended by AIRs
as well as the improvement in running costs of each of these meteorological workloads causes
by this solution .

103

6.4 Summary

To enable evaluation of developed solutions of AIRs, the proper baseline and metrics are
defined. Accordingly, some of the real meteorological workloads and their corresponding
datasets are chosen to evaluate the performance of these solutions.

As the first solution, the effectiveness of the Frequent-Long strategy in extraction of
proper indexes is evaluated. The results show a reduction in the number of enumeration
space candidates for even up to 7.0× 108 times.

The evaluation of IBG algorithm shows its feasibility and applicability in real-world
applications. Also, with the help of the developed evaluation framework, the optimality of
the proposed solutions of AIRs for real meteorological applications are investigated.

Contributions of this chapter can be listed as the following:

• Introduction of proper metrics to enable direct performance evaluation of index rec-
ommendation system,

• Development of a generic workload generator to produce synthetic workloads for var-
ious evaluation purposes.

104

Chapter 7

Conclusion

Database indexes are the common structures to enable fast access to the data and thus
speed up the process of search and retrieval of data. However, the materialization of each
index enforces maintenance cost of updating them in case of any write to the system. The
selection of proper set of indexes for a workload is non-trivial. The focus of the work
presented in this thesis is to find an efficient approach and formulation to solve this NP-
complete problem.

The motivation to pursue the research presented in this thesis originated from the man-
agement of databases for several meteorological applications. Their datasets consist of large
schemaless data with scalar and multi-dimensional array values. This data is stored in a
document-based database that assists with handling multi-dimensional array values. The
management of the corresponding workload of these databases and the distribution of their
queries lead to the recognition of the need for an adaptive index recommendation system.

As the first step, the index recommendation problem in the context of document-based
databases is discussed. In this regard, the relevant criteria of the document-based databases
to develop a framework for automatically solving the index recommendation problem are
investigated. Based on the extracted relevant criteria and developed solutions to the index
recommendation problem, the Adaptive Index Recommendation system (AIRs) is devel-
oped. This framework is in direct communication to the query optimizer of the targeted
database.

To solve the index recommendation problem and to design AIRs, various practical and
theoretical solutions are developed. To reduce the search space of the index recommendation
problem, the Frequent-Long strategy is established utilizing the Frequent Itemset algorithm.

Another step to reduce the search space of this problem even further is based on utilizing
the atomic configuration concept. This concept limits the search space to those configura-
tions that are at least used by one query in the database. To extract these configurations,
the Index Benefit Graph algorithm is developed. The analysis of complexity of this al-
gorithm for databases with index intersection capability shows an exponential growth in
worst-case scenario. However, in the evaluation process with real meteorological databases

105

the feasibility of this algorithm is shown.

With help of this algorithm, the number of calls to the query optimizer is drastically
reduced. These calls produce extra load on the query optimizer. To avoid overload on
the in-production system due to the execution of the cost evaluation process by means of
the query optimizer, a virtual environment that consists of a representative sample of the
targeted dataset is presented. By materializing indexes on the representative sample set,
they are available to the query optimizer for the cost evaluation process of each running
query. Without materializing the indexes on the original dataset, their storage size is not
directly measurable. Therefore, a method to approximately estimate the size of indexes is
presented that is merely based on the number of documents containing their attributes and
their corresponding value type.

Then, the mathematical formulation of an objective function to model the index rec-
ommendation problem is presented. This function is designed to cover all of the relevant
criteria of the index recommendation problem. These criteria are related to both dataset
characteristics, such as cardinality of attribute values, and workload characteristics, such as
update cost of indexes for write operations. To guarantee finding the global optimal configu-
ration, this objective function is formulated in the Integer Linear Programming that utilizes
Branch-and-Bound enumeration technique to enumerate the space of candidate indexes.

Finally, to enable performance evaluation of the index recommendation system rather
than the whole database performance, proper metrics are introduced. Then, the perfor-
mance of the AIRs for some of the real meteorological workloads is evaluated with the help
of these metrics. Additionally, a generic workload generator is introduced to allow defining
various synthetic datasets and workloads that are used throughout the whole thesis.

However, as a result of utilization of various evaluation methodologies by different stud-
ies and their focus on relational databases, any direct comparison between the results of
performance evaluation of AIRs and the other studies are inequitable. This provides a
ground for further research possibilities.

7.1 Future Extensions

There is a vast potential for further studying the developed solution of this thesis to the index
recommendation problem. The modularity of this solution allows research in complexity,
performance and usability of additional methods.

So far, the research was restricted to the development and evaluation of the solution
to the index recommendation problem regarding document-based databases. However, this
solution is generic enough to be applicable to any other database types. Some changes are
required to adapt this solution to the capabilities of the query optimizer and language of the
targeted database. Doing so would provide an opportunity for a fair comparison between
the performance studies of this solution on various databases.

Such comparison has not been possible due to the fundamental difference between the
investigated document-based data model and the relational data model used by the majority
of other studies. The lack of generic benchmarking methodology between relational and

106

document-based models is also another problem that can be tackled in the future for further
studies.

Despite the effort in this thesis to develop proper metrics to evaluate only the perfor-
mance of the index recommendation system rather than the overall functionality of the
database, a more precise metric that can cover the maintenance and storage costs of the
indexes for the workload is also a subject for more investigations.

107

108

Appendix A

NoWog Grammar

Code A.1: EBNF of the generic language of NoWog. This language is used to determine the
characteristics of the workload that the user want to be generated.

rule_set, "=", "{", rule, "{", rule, "}", "}", ";"

rule, "=", rule_ID, ":",

"{", quadruple, "=", absolute,

"}", ";"

quadruple, "=", read, ",", write, ",", sort, ",",

time_period ";"

read, "=", "(", "{",
{ read_phrase }, "}", ")" | "ALL", ";"

write, "=", "(", "{",
{ write_phrase }, "}", ")" | "NULL", ";"

sort, "=", "(", "{",
{ attribute, ":", sort_op }, "}", ")" |

"NULL", ";"

time_period, "=" minute, "-", minute, ";"

read_phrase, "=", "(", attribute, ":", read_type)", ";"

write_phrase, "=", "(", attribute, ":", write_type ")", ";"

read_type, "=", bool_match | text_read | number_read |

array_read | document_read, ";"

write_type, "=", bool_match | text_write | number_write |

array_write | document_write, ";"

rule_ID, "=", identifier, ";"

attribute, "=", identifier, ";"

bool_match, "=", "True" | "False", ";"

number_read, "=", num_match | range_op | geo_op, ";"

109

number_write, "=", num_match, ";"

array_read, "=", arr_read_op, ".", [arr_read_type], ";"

array_write, "=", (arr_write_op | "Array"), ".",

arr_write_type, ";"

document_read, "=", read_phrase, { read_phrase }, ";"

document_write, "=", write_phrase, { write_phrase }, ";"

absolute, "=", distribution, "(", { arguments, "," },
total, ")", ";"

distribution, "=", "uniform" | "normal", ";"

arguments, "=", float_number, ";"

text_read, "=", "text_read", ";"

text_write, "=", "text_write", ";"

num_match, "=", "num_match", ";"

range_op, "=", "range_op", ";"

geo_op, "=", "geo_op", ";"

arr_read_op, "=", "arr_read_op", ";"

arr_write_op, "=", "arr_add_op" | "arr_remove_op", ";"

arr_read_type, "=", "Bool" | "Num" | "Text" | "range_op", ";"

arr_write_type, "=", "Bool" | "Num" | "Text", ";"

sort_op, "=", "1" | "-1", ";"

minute, "=", digit, { digit }, ";"

identifier, "=", (letter | "_"), { letter | digit | "_" },
";"

float_number, "=", ["-"], digit, { digit },
[".", digit, { digit }], ";"

digit, "=", "0" | "1" | "2" | "3" | "4" | "5" | "6"

| "7" | "8" | "9"

letter, "=", "A" | "B" | "C" | "D" | "E" | "F" | "G"

| "H" | "I" | "J" | "K" | "L" | "M" | "N"

| "O" | "P" | "Q" | "R" | "S" | "T" | "U"

| "V" | "W" | "X" | "Y" | "Z" | "a" | "b"

| "c" | "d" | "e" | "f" | "g" | "h" | "i"

| "j" | "k" | "l" | "m" | "n" | "o" | "p"

| "q" | "r" | "s" | "t" | "u" | "v" | "w"

| "x" | "y" | "z"

110

Appendix B

Glossary

• Atomic Configuration: any configuration with the property that all of its indexes are
used by some query in the workload is an atomic configuration for that workload.

• Benefit:

• Cardinality: the cardinality of an attribute in a data set is the number of unique
values of that attribute. (Definition 2.2.1)

• Configuration: a set of possible indexes. (Definition 5.1.1)

• Collection: a group of documents.

• Conjunctive Operators: OR and And.

• Data File: data, the database generated metadata and indexes are stored in data files.

• Document: any object without references in form of JSON or XML standard format.

• Extents: the logical containers inside each Data File to store data and indexes.

• Enumeration Space: the union of all of candidate indexes for each query.

• Indexable Attributes: the attributes specified in the search-predicate of a query with
addition of the attributes from the sort-clause. (Definition 4.3.1)

• Index Intersection: Exploit multiple-conditions selectivity by simultaneously scanning
the single indexes of each condition.

• Index Materialization: creation or removal of indexes.

• Level in IBG: The shortest path between any node in IBG and its root node. (Defi-
nition 5.2.3)

• Long Query: a query with a run-time longer than a threshold. (Definition 4.3.2)

111

• Merge of Indexes: merge of two indexes results in an index with the leading attribute
of the first index and the union of its following attributes with all attributes of the
second index. (Definition 4.3.5)

• NP-hard: a problem Q is said to be NP-hard if all problems in NP are reducible to Q
in polynomial time.

• Query Optimizer: a key component in a database that receives the parsed query as
input and is responsible for identifying an efficient plan to execute the query.

• Query Processor: the query processor is a component in any database that performs
two main task: query optimization and query execution.

• Selectivity: the cardinality of the attributes of an index over the total number of
documents in the collection. (Definition 2.2.2)

112

Bibliography

[1] N. Bruno, Automated Physical Database Design and Tuning, 1st ed. Boca Raton,
FL, USA: CRC Press, Inc., 2011. ISBN 1439815674, 9781439815670

[2] P. Ameri, U. Grabowski, J. Meyer, and A. Streit, “On the Application and Perfor-
mance of MongoDB for Climate Satellite Data,” 2014 IEEE 13th International Con-
ference on Trust, Security and Privacy in Computing and Communications (Trust-
Com), pp. 652–659, 2014. doi: 10.1109/TrustCom.2014.84

[3] R. Lutz, P. Ameri, T. Latzko, and J. Meyer, “Management of Meteorological Mass
Data with MongoDB,” in BIS-Verlag. BIS-Verlag, 2014, pp. 549–556, ISBN: 978-3-
8142-2317-9.

[4] M. Szuba, P. Ameri, U. Grabowski, J. Meyer, and A. Streit, “A Distributed Sys-
tem for Storing and Processing Data from Earth-Observing Satellites: System Design
and Performance Evaluation of the Visualisation Tool,” in IEEE/ACM 16th Interna-
tional Symposium on Cluster, Cloud and Grid Computing, CCGrid 2016, Cartagena,
Colombia, May 16-19, 2016. doi: 10.1109/CCGrid.2016.19 pp. 169–174.

[5] P. Ameri, “Database Techniques for Big Data,” in Big Data: Principles and
Paradigms, R. Buyya, R. Calheiros, and A. Dastjerdi, Eds. Morgan Kaufmann,
2017, ch. 6, ISBN: 978-0-12-805394-2.

[6] P. Ameri, N. Schlitter, J. Meyer, and A. Streit, “NoWog: A Workload Genera-
tor for Database Performance Benchmarking,” in IEEE International Conference on
Big Data Intelligence and Computing, 2016. doi: 10.1109/DASC-PICom-DataCom-
CyberSciTec.2016.120 pp. 666–673.

[7] P. Ameri, J. Meyer, and A. Streit, “On a New Approach to the Index Selection
Problem using Mining Algorithms,” in Big Data (Big Data), 2015 IEEE International
Conference on, 2015. doi: 10.1109/BigData.2015.7364084 pp. 2801–2810.

[8] “LSDMA-Earth and Environment DLCL,” 2016, Accessed on May 2017. [Online].
Available: https://www.helmholtz-lsdma.de/climatology.php

113

https://www.helmholtz-lsdma.de/climatology.php

[9] C. Jung, M. Gasthuber, A. Giesler, M. Hardt, J. Meyer, F. Rigoll, K. Schwarz,
R. Stotzka, and A. Streit, “Optimization of data life cycles,” Journal of Physics:
Conference Series, p. 032047, 2014, doi: 10.1088/1742-6596/513/3/032047.

[10] H. Fischer, M. Birk, C. Blom, B. Carli, M. Carlotti, T. von Clarmann, L. Del-
bouille, A. Dudhia, D. Ehhalt, M. Endemann, J. M. Flaud, R. Gessner, A. Kleinert,
R. Koopman, J. Langen, M. López-Puertas, P. Mosner, H. Nett, H. Oelhaf, G. Per-
ron, J. Remedios, M. Ridolfi, G. Stiller, and R. Zander, “Mipas: an instrument for
atmospheric and climate research,” Atmospheric Chemistry and Physics, no. 8, pp.
2151–2188, 2008. doi: 10.5194/acp-8-2151-2008

[11] “Envisat web site,” 2014, Accessed on May 2017. [Online]. Available: http:
//envisat.esa.int/

[12] J. Waters, L. Froidevaux, R. Harwood, R. Jarnot, H. Pickett, W. Read, P. Siegel,
R. Cofield, M. Filipiak, D. Flower, J. Holden, G. Lau, N. Livesey, G. Manney,
H. Pumphrey, M. Santee, D. Wu, D. Cuddy, R. Lay, M. Loo, V. Perun, M. Schwartz,
P. Stek, R. Thurstans, M. Boyles, K. Chandra, M. Chavez, G.-S. Chen, B. Chudasama,
R. Dodge, R. Fuller, M. Girard, J. Jiang, Y. Jiang, B. Knosp, R. LaBelle, J. Lam,
K. Lee, D. Miller, J. Oswald, N. Patel, D. Pukala, O. Quintero, D. Scaff, W. Van Sny-
der, M. Tope, P. Wagner, and M. Walch, “The Earth observing system microwave
limb sounder (EOS MLS) on the aura Satellite,” Geoscience and Remote Sensing,
IEEE Transactions on, pp. 1075–1092, 2006. doi: 10.1109/TGRS.2006.873771

[13] NASA Aura Team, “Aura web site,” 2014, Accessed on May 2017. [Online].
Available: http://aura.gsfc.nasa.gov/

[14] P. Jöckel, H. Tost, A. Pozzer, C. Brühl, J. Buchholz, L. Ganzeveld, P. Hoor, A. Kerk-
weg, M. Lawrence, R. Sander, B. Steil, G. Stiller, M. Tanarhte, D. Taraborrelli, J. van
Aardenne, and J. Lelieveld, “The Atmospheric Chemistry General Circulation Model
ECHAM5/MESSy1: Consistent Simulation of Ozone from the Surface to the Meso-
sphere,” Atmospheric Chemistry and Physics, pp. 5067–5104, 2006.

[15] B. Funke, A. Baumgaertner, M. Calisto, T. Egorova, C. H. Jackman, J. Kieser,
A. Krivolutsky, M. López-Puertas, D. R. Marsh, T. Reddmann, E. Rozanov, S.-M.
Salmi, M. Sinnhuber, G. P. Stiller, P. T. Verronen, S. Versick, T. von Clarmann,
T. Y. Vyushkova, N. Wieters, and J. M. Wissing, “Composition Changes After the
”Halloween” Solar Proton Event: the High Energy Particle Precipitation in the At-
mosphere (HEPPA) Model versus MIPAS Data Intercomparison Study,” Atmospheric
Chemistry and Physics, pp. 9089–9139, 2011. doi: 10.5194/acp-11-9089-2011

[16] B. Eaton, J. Gregory, B. Drach, K. Taylor, S. Hankin, J. Caron, R. Signell,
P. Bentley, and G. Rappa, “NetCDF Climate and Forecast (CF) Metadata
Conventions, Version 1.4,” 2009. [Online]. Available: http://www.cgd.ucar.edu/cms/
eaton/netcdf/CF-20010629.htm

114

http://envisat.esa.int/
http://envisat.esa.int/
http://aura.gsfc.nasa.gov/
http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-20010629.htm
http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-20010629.htm

[17] R. Rew, E. Hartnett, and J. Caron, “netCDF-4: Software Implementing an Enhanced
Data Model for the Geosciences,” in 22nd International Conference on Interactive
Information Processing Systems for Meteorology, Oceanograph, and Hydrology, 2006.

[18] R. Lutz, U. Grabowski, T. Beckmann, T. von Clarmann, H. Fischer, B. Funke,
N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, M. Milz,
S. Ressel, T. Steck, G. P. Stiller, G. Mengistu Tsidu, and D.-Y. Wang, “The
imk mipas retrieval processor environment,” in Proceedings of the 11th International
Workshop on Atmospheric Science from Space using Fourier Transform Spectrometry,
Bad Wildbad, Germany, Oct. 8–10, 2003. Forschungszentrum Karlsruhe, Institut
für Meteorologie und Klimaforschung, 2003. [Online]. Available: http://www.
imk-asf.kit.edu/downloads/sat/P I 13 Grabowski U

[19] D. Agrawal, S. Das, and A. El Abbadi, “Big Data and Cloud Computing: Current
State and Future Opportunities,” in Proceedings of the 14th International Conference
on Extending Database Technology, ser. EDBT/ICDT ’11. New York, NY, USA:
ACM, 2011. doi: 10.1145/1951365.1951432. ISBN 978-1-4503-0528-0 pp. 530–533.

[20] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clus-
ters,” Commun. ACM, pp. 107–113. doi: 10.1145/1327452.1327492

[21] D. DeWitt and J. Gray, “Parallel Database Systems: The Future of High Performance
Database Systems,” Commun. ACM, pp. 85–98. doi: 10.1145/129888.129894

[22] R. Sears, C. van Ingen, and J. Gray, “To blob or not to blob: Large object
storage in a database or a filesystem?” CoRR, 2007. [Online]. Available:
http://dblp.uni-trier.de/db/journals/corr/corr0701.html#abs-cs-0701168

[23] E. A. Brewer, “Towards Robust Distributed Systems (Abstract),” in Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, ser.
PODC ’00. New York, NY, USA: ACM, 2000. doi: 10.1145/343477.343502. ISBN
1-58113-183-6 pp. 7–.

[24] J. Gray, “Readings in database systems,” M. Stonebraker, Ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1988, ch. The Transaction Concept: Virtues
and Limitations, pp. 140–150. ISBN 0-934613-65-6

[25] D. Pritchett, “BASE: An Acid Alternative,” Queue, pp. 48–55. doi:
10.1145/1394127.1394128

[26] “JSON,” http://www.json.org/, Accessed on May 2017.

[27] “XML,” http://www.xml.com, Accessed on May 2017.

[28] “GeoJSON,” http://geojson.org/, 2014, Accessed on May 2017.

115

http://www.imk-asf.kit.edu/downloads/sat/P_I_13_Grabowski_U
http://www.imk-asf.kit.edu/downloads/sat/P_I_13_Grabowski_U
http://dblp.uni-trier.de/db/journals/corr/corr0701.html#abs-cs-0701168
http://www.json.org/
http://www.xml.com
http://geojson.org/

[29] “GLORIA Internet site of Earth Observation Portal,” https://directory.eoportal.org/
web/eoportal/airborne-sensors/gloria, Accessed on May 2017.

[30] “Internet site of DLR/HALO,” http://www.halo.dlr.de/, Accessed on May 2017.

[31] “GLORIA Internet site of Helmholtz Association,” http://gloria.helmholtz.de/, Ac-
cessed on May 2017.

[32] “Firebird: The true open source database for Windows, Linux, Mac OS X and more,”
https://firebirdsql.org/, Accessed on May 2017.

[33] R. Elmasri and S. Navathe, Fundamentals of Database Systems, 6th ed. USA:
Addison-Wesley Publishing Company, 2010. ISBN 0136086209, 9780136086208

[34] W. Kent, “A Simple Guide to Five Normal Forms in Relational Database Theory,”
Commun. ACM, pp. 120–125. doi: 10.1145/358024.358054

[35] H. Garcia-Molina, J. Widom, and J. D. Ullman, Database System Implementation.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1999. ISBN 0130402648

[36] G. Graefe, “Modern b-tree techniques,” Found. Trends databases, pp. 203–402. doi:
10.1561/1900000028

[37] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis, R-Trees:
Theory and Applications. Springer Publishing Company, Incorporated, 2005. ISBN
1852339772, 9781852339777

[38] S.-S. Kim, “Sung-Soo Kim’s Blog,” Accessed on May 2017. [Online]. Available:
http://sungsoo.github.io/2014/05/27/query-processing.html

[39] “Advanced Database Management System - Tutorials and Notes,” Accessed
on May 2017. [Online]. Available: http://www.exploredatabase.com/2014/09/
query-processing-in-database.html

[40] S. Chaudhuri, “An Overview of Query Optimization in Relational Systems,” in Pro-
ceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, ser. PODS ’98. New York, NY, USA: ACM, 1998. doi:
10.1145/275487.275492. ISBN 0-89791-996-3 pp. 34–43.

[41] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin, “Automatic
SQL Tuning in Oracle 10G,” in Proceedings of the Thirtieth International Conference
on Very Large Data Bases, ser. VLDB ’04. VLDB Endowment, 2004. ISBN 0-12-
088469-0 pp. 1098–1109.

[42] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, “Improved Histograms
for Selectivity Estimation of Range Predicates,” SIGMOD Rec., pp. 294–305. doi:
10.1145/235968.233342

116

https://directory.eoportal.org/web/eoportal/airborne-sensors/gloria
https://directory.eoportal.org/web/eoportal/airborne-sensors/gloria
http://www.halo.dlr.de/
http://gloria.helmholtz.de/
https://firebirdsql.org/
http://sungsoo.github.io/2014/05/27/query-processing.html
http://www.exploredatabase.com/2014/09/query-processing-in-database.html
http://www.exploredatabase.com/2014/09/query-processing-in-database.html

[43] R. P. Kooi, “The Optimization of Queries in Relational Databases,” Ph.D. disserta-
tion, Cleveland, OH, USA, 1980, AAI8109596.

[44] R. J. Lipton, J. F. Naughton, and D. A. Schneider, “Practical Selectivity Estimation
through Adaptive Sampling,” in Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, Atlantic City, NJ, May 23-25, 1990., 1990. doi:
10.1145/93597.93611 pp. 1–11.

[45] C. M. Chen and N. Roussopoulos, “Adaptive Selectivity Estimation Using Query
Feedback,” in Proceedings of the 1994 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’94. New York, NY, USA: ACM, 1994. doi:
10.1145/191839.191874. ISBN 0-89791-639-5 pp. 161–172.

[46] P. B. Gibbons, Y. Matias, and V. Poosala, “Fast Incremental Maintenance of Ap-
proximate Histograms,” in Proceedings of the 23rd International Conference on Very
Large Data Bases, ser. VLDB ’97. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1997. ISBN 1-55860-470-7 pp. 466–475.

[47] L. S. Bonura, The Art of Indexing. New York, NY, USA: John Wiley & Sons, Inc.,
1994. ISBN 0-471-01449-4

[48] D. Comer, “The Difficulty of Optimum Index Selection,” ACM Trans. Database Syst.,
pp. 440–445. doi: 10.1145/320289.320296

[49] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990. ISBN
0716710455

[50] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms,
2nd ed. McGraw-Hill Higher Education, 2001. ISBN 0070131511

[51] A. Molinaro, SQL Cookbook (Cookbooks (O’Reilly)). O’Reilly Media, Inc., 2005.
ISBN 0596009763

[52] TPC, 2016, Accessed on May 2017. [Online]. Available: http://www.tpc.org/
information/benchmarks.asp

[53] D. McCreary and A. Kelly, Making Sense of NoSQL: A Guide for Managers and the
Rest of Us. Manning, 2013. ISBN 9781617291074

[54] A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems Concepts, 5th ed.
New York, NY, USA: McGraw-Hill, Inc., 2006. ISBN 0072958863, 9780072958867

[55] C. J. Date and H. Darwen, A Guide to the SQL Standard (4th Ed.): A User’s Guide to
the Standard Database Language SQL. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1997. ISBN 0-201-96426-0

117

http://www.tpc.org/information/benchmarks.asp
http://www.tpc.org/information/benchmarks.asp

[56] S. Papadomanolakis and A. Ailamaki, “An Integer Linear Programming Approach
to Database Design.” in In ICDE Workshop on Self-Managing Databases, 2007. doi:
10.1109/ICDEW.2007.4401027

[57] S. Papadomanolakis, D. Dash, and A. Ailamaki, “Efficient Use of the Query Optimizer
for Automated Physical Design,” in Proceedings of the 33rd International Conference
on Very Large Data Bases, ser. VLDB ’07. VLDB Endowment, 2007. ISBN 978-1-
59593-649-3 pp. 1093–1104.

[58] S. Idreos, M. L. Kersten, and S. Manegold, “Database Cracking,” in CIDR 2007, Third
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, Jan-
uary 7-10, 2007, Online Proceedings, 2007. doi: 10.1145/2619228.2619232 pp. 68–78.

[59] N. Bruno, S. Chaudhuri, A. C. König, V. R. Narasayya, R. Ramamurthy, and M. Sya-
mala, “AutoAdmin Project at Microsoft Research: Lessons Learned,” IEEE Data
Eng. Bull., pp. 12–19, 2011.

[60] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano, and
S. Fadden, “DB2 Design Advisor: Integrated Automatic Physical Database Design,”
in Proceedings of the Thirtieth International Conference on Very Large Data Bases,
ser. VLDB ’04. VLDB Endowment, 2004. ISBN 0-12-088469-0 pp. 1087–1097.

[61] P. Ameri, “On a Self-Tuning Index Recommendation Approach for
Databases,” in IEEE International Conference on Data Engineering, 2016. doi:
10.1109/ICDEW.2016.7495648 pp. 201–205.

[62] R. Karp, “Reducibility Among Combinatorial Problems,” in Complexity of Computer
Computations, R. Miller and J. Thatcher, Eds. Plenum Press, 1972, pp. 85–103.

[63] G. Piatetsky-Shapiro, “The Optimal Selection of Secondary Indices is NP-complete,”
SIGMOD Rec., pp. 72–75. doi: 10.1145/984523.984530

[64] M. Datar, V. Narasayya, and S. Chaudhuri, “Index Selection for Databases: A Hard-
ness Study and a Principled Heuristic Solution,” IEEE Transactions on Knowledge
Data Engineering, pp. 1313–1323, 2004. doi: 10.1109/TKDE.2004.75

[65] U. Feige, G. Kortsarz, and D. Peleg, “The Dense k-Subgraph Problem,” Algorithmica,
p. 2001, 1999. doi: 10.1007/s004530010050

[66] A. Skelley, “DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own
Indexes,” in Proceedings of the 16th International Conference on Data Engineering,
ser. ICDE ’00. Washington, DC, USA: IEEE Computer Society, 2000. ISBN 0-7695-
0506-6 pp. 101–111.

[67] M. Zaman, J. Surabattula, and L. Gruenwald, “An Auto-Indexing Technique for
Databases Based on Clustering,” in 15th International Workshop on Database and

118

Expert Systems Applications (DEXA), 2004. doi: 10.1109/DEXA.2004.1333569 pp.
776–780.

[68] K. Aouiche and J. Darmont, “Data Mining-based Materialized View and Index Selec-
tion in Data Warehouses,” CoRR, 2007. doi: 10.1007/s10844-009-0080-0

[69] E. Barcucci and O. Pinzani, “Optimal Selection of Secondary Indexes,” IEEE Trans-
actions on Software Engineering, pp. 32–38, 1990. doi: 10.1109/32.44361

[70] S. Choenni, H. M. Blanken, and T. Chang, “On the Selection of Secondary Indices
in Relational Databases,” Data & Knowledge Engineering, pp. 207–233, 1993. doi:
10.1016/0169-023X(93)90023-I

[71] A. Caprara, M. Fischetti, and D. Maio, “Exact and Approximate Algorithms for the
Index Selection Problem in Physical Database Design,” IEEE Trans. on Knowl. and
Data Eng., pp. 955–967. doi: 10.1109/69.476501

[72] M. R. Frank, E. R. Omiecinski, and S. B. Navathe, “Adaptive and automated in-
dex selection in rdbms,” in In Proceedings of International Conference on Extending
Database Technology, 1992. doi: 10.1007/BFb0032437 pp. 277–292.

[73] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large
Databases,” in Proceedings of the 20th International Conference on Very Large Data
Bases, ser. VLDB ’94. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1994. ISBN 1-55860-153-8 pp. 487–499.

[74] S. Chaudhuri and V. Narasayya, “Index Merging,” in Proceedings of the International
Conference on data Engineering (ICDE), 1999. doi: 10.1109/ICDE.1999.754945

[75] S. Chaudhuri and V. R. Narasayya, “An Efficient Cost-Driven Index Selection Tool for
Microsoft SQL Server,” in Proceedings of the 23rd International Conference on Very
Large Data Bases, ser. VLDB ’97. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1997. ISBN 1-55860-470-7 pp. 146–155.

[76] J. Kratica, I. Ljubic, and D. Tošic, “A Genetic Algorithm for the Index Selection
Problem,” in Proceedings of the 2003 International Conference on Applications of
Evolutionary Computing, ser. EvoWorkshops’03. Berlin, Heidelberg: Springer-Verlag,
2003. doi: 10.1007/3-540-36605-9 26. ISBN 3-540-00976-0 pp. 280–290.

[77] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Index Selection for
OLAP,” in Proceedings of the Thirteenth International Conference on Data Engi-
neering, ser. ICDE ’97. Washington, DC, USA: IEEE Computer Society, 1997. doi:
10.1109/ICDE.1997.581755. ISBN 0-8186-7807-0 pp. 208–219.

[78] S. Finkelstein, M. Schkolnick, and P. Tiberio, “Physical Database Design for Rela-
tional Databases,” ACM Trans. Database Syst., pp. 91–128. doi: 10.1145/42201.42205

119

[79] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, and M. Syamala,
“Database Tuning Advisor for Microsoft SQL Server 2005,” in Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’05.
New York, NY, USA: ACM, 2005. doi: 10.1145/1066157.1066292. ISBN 1-59593-060-4
pp. 930–932.

[80] G. Graefe, “The Value of Merge-Join and Hash-Join in SQL Server,” in Proceedings
of the International Conference on Very Large Data Bases, ser. VLDB ’99. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999. ISBN 1-55860-615-7
pp. 250–253.

[81] W. P. Yan and P. Larson, “Performing Group-by before Join.” Institute of Electrical
and Electronics Engineers, Inc., 1994. doi: 10.1109/ICDE.1994.283001

[82] C. Galindo-Legaria and A. Rosenthal, “Outerjoin Simplification and Reorder-
ing for Query Optimization,” ACM Trans. Database Syst., pp. 43–74. doi:
10.1145/244810.244812

[83] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price,
“Access Path Selection in a Relational Database Management System,” in Proceedings
of the 1979 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’79. New York, NY, USA: ACM, 1979. doi: 10.1145/582095.582099. ISBN
0-89791-001-X pp. 23–34.

[84] W. J. McKenna, “Efficient Search in Extensible Database Query Optimization: The
Volcano Optimizer Generator,” Ph.D. dissertation, Boulder, CO, USA, 1993, UMI
Order No. GAX93-20458.

[85] G. Graefe, “The Cascades Framework for Query Optimization,” Data Engineering
Bulletin, vol. 18, 1995.

[86] K. Banker, MongoDB in Action. Greenwich, CT, USA: Manning Publications Co.,
2011. ISBN 1935182870, 9781935182870

[87] M. A. DocumentDB, “DocumentDB Microsoft Azure,” Accessed on May 2017.
[Online]. Available: https://azure.microsoft.com/en-us/services/documentdb/

[88] M. Azure, “Microsoft Introduces NoSQL Document Database for Microsoft Azure,”
Accessed on May 2017. [Online]. Available: https://www.infoq.com/news/2014/08/
microsoft-azure-documentdb

[89] S. Chaudhuri and V. R. Narasayya, “AutoAdmin ’What-if’ Index Analysis Utility.”
in SIGMOD Conference, L. M. Haas and A. Tiwary, Eds. ACM Press, 1998. doi:
10.1145/276304.276337. ISBN 0-89791-995-5 pp. 367–378.

120

https://azure.microsoft.com/en-us/services/documentdb/
https://www.infoq.com/news/2014/08/microsoft-azure-documentdb
https://www.infoq.com/news/2014/08/microsoft-azure-documentdb

[90] R. Wang, Q. T. Tran, I. Jimenez, and N. Polyzotis, “INUM+: A leaner, more
accurate and more efficient fast what-if optimizer,” 2013 IEEE 29th International
Conference on Data Engineering Workshops (ICDEW 2013), pp. 50–55, 2013. doi:
10.1109/ICDEW.2013.6547426

[91] W. Wu, J. F. Naughton, and H. Singh, “Sampling-Based Query Re-Optimization,”
in Proceedings of the 2016 International Conference on Management of Data, ser.
SIGMOD ’16. New York, NY, USA: ACM, 2016. doi: 10.1145/2882903.2882914.
ISBN 978-1-4503-3531-7 pp. 1721–1736.

[92] K. Schnaitter and N. Polyzotis, “A Benchmark for Online Index Selection,” IEEE
International Conference on Data Engineering. ICDE, pp. 1701–1708, 2009. doi:
10.1109/ICDE.2009.166

[93] P. J. Haas and A. N. Swami, “Sequential Sampling Procedures for Query Size Esti-
mation,” SIGMOD Rec., pp. 341–350. doi: 10.1145/141484.130335

[94] F. Olken and D. Rotem, “Random Sampling from Databases,” 1993. doi:
10.1007/BF00140664

[95] G. Piatetsky-Shapiro and C. Connell, “Accurate Estimation of the Number of Tuples
Satisfying a Condition,” SIGMOD Rec., pp. 256–276. doi: 10.1145/971697.602294

[96] S. Chaudhuri, R. Motwani, and V. Narasayya, “Random Sampling for His-
togram Construction: How Much is Enough?” SIGMOD Rec., pp. 436–447. doi:
10.1145/276305.276343

[97] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
Third Edition, 3rd ed. The MIT Press, 2009. ISBN 0262033844, 9780262033848

[98] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implemen-
tations. New York, NY, USA: John Wiley & Sons, Inc., 1990. ISBN 0-471-92420-2

[99] L. Saxton, V. Raghavan, and M. Ip, “On the Selection of an Optimal Set of
Indexes,” IEEE Transactions on Software Engineering, pp. 135–143, 1983. doi:
10.1109/TSE.1983.236458

[100] Y. A. Feldman and J. Reouven, “A Knowledge-based Approach for Index Selection
in Relational Databases,” Expert Systems with Applications, pp. 15–37, 2003. doi:
10.1016/S0957-4174(03)00003-4

[101] D. Zilio, S. Lightstone, K. Lyons, and G. Lohman, “Self-managing Technology in IBM
DB2 Universal Database,” in Proceedings of the Tenth International Conference on
Information and Knowledge Management, ser. CIKM ’01. New York, NY, USA:
ACM, 2001. doi: 10.1145/502585.502682. ISBN 1-58113-436-3 pp. 541–543.

121

[102] T. Gündem, “Near Optimal Multiple Choice Index Selection for Relational
Databases,” Computers Mathematics with Applications, pp. 111–120, 1999. doi:
10.1016/S0898-1221(98)00256-9

[103] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, 1st ed.
Springer Publishing Company, Incorporated, 2007. ISBN 354073189X, 9783540731894

[104] N. Bruno and S. Chaudhuri, “Automatic Physical Database Tuning: A Relaxation-
based Approach,” in Proceedings of the ACM International Conference on Manage-
ment of Data (SIGMOD). Association for Computing Machinery, Inc., 2005. doi:
10.1145/1066157.1066184

[105] M. Conforti, G. Cornuejols, and G. Zambelli, Integer Programming. Springer Pub-
lishing Company, Incorporated, 2014. ISBN 3319110071, 9783319110073

[106] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell, “Branch-and-Bound
Algorithms,” Discret. Optim., no. C, pp. 79–102. doi: 10.1016/j.disopt.2016.01.005

[107] K. Schnaitter, N. Polyzotis, and L. Getoor, “Index Interactions in Physical Design
Tuning: Modeling, Analysis, and Applications,” in International Conference on Very
Large Data Bases, 2009. doi: 10.14778/1687627.1687766

[108] A. Schrijver, Theory of Linear and Integer Programming. New York, NY, USA: John
Wiley & Sons, Inc., 1986. ISBN 0-471-90854-1

[109] J. Gray, Benchmark Handbook: For Database and Transaction Processing Systems.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992. ISBN 1558601597

[110] R. Jain, The Art of Computer Systems Performance Analysis - Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling., ser. Wiley professional
computing. Wiley, 1991. ISBN 978-0-471-50336-1

[111] M. P. Consens, D. Barbosa, A. Teisanu, and L. Mignet, “Goals and Benchmarks for
Autonomic Configuration Recommenders,” in ACM SIGMOD International Confer-
ence on Management of Data, ser. SIGMOD ’05. New York, NY, USA: ACM, 2005.
doi: 10.1145/1066157.1066185. ISBN 1-59593-060-4 pp. 239–250.

[112] M. Poess and C. Floyd, “New TPC Benchmarks for Decision Support and Web Com-
merce,” SIGMOD Rec., pp. 64–71. doi: 10.1145/369275.369291

[113] N. Bruno, “A Critical Look at the TAB Benchmark for Physical Design Tools,”
in Sigmod Record. Association for Computing Machinery, Inc., 2007. doi:
10.1145/1361348.1361349

[114] C. H. Wu, H. Huang, L. Arminski, J. Castro-Alvear, Y. Chen, Z.-Z. Hu, R. S. Ledley,
K. C. Lewis, H.-W. Mewes, B. C. Orcutt, B. Suzek, A. Tsugita, C. R. Vinayaka,
L.-S. L. Yeh, J. Zhang, and W. C. Barker, “The Protein Information Resource: an

122

Integrated Public Resource of Functional Annotation of Proteins,” Nucleic Acids Re-
search, p. 35, 2002. doi: 10.1093/nar/30.1.35

[115] “Transaction Processing Performance Council Benchmark H- Decision Support,”
Accessed on May 2017. [Online]. Available: http://www.tpc.org/tpch/default.asp

[116] S. Chaudhuri and V. R. Narasayya, “TPC-D Data Generation with Skew.” [Online].
Available: ftp.research.microsoft.com/users/viveknar/tpcdskew

[117] A. Caprara and J. J. S. González, “Separating lifted odd-hole inequalities to solve
the index selection problem,” Discrete Applied Mathematics, pp. 111 – 134, 1999. doi:
10.1016/S0166-218X(99)00050-5

[118] “TPC-H for NoSQL Performance benchmark,” Accessed on May 2017. [Online].
Available: http://blogs.impetus.com/test engineering/performance engineering/
tpchnosqlperformancebenchmark.do

[119] N. Rutishauser, “TPC-H applied to MongoDB: How a NoSQL Database Performs,”
2012, Accessed on May 2017. [Online]. Available: http://www.ifi.uzh.ch/dbtg/
teaching/thesesarch/VertiefungRutishauser.pdf

[120] O. Curé, R. Hecht, C. L. Duc, and M. Lamolle, “Data integration over nosql stores us-
ing access path based mappings,” in Proceedings of the 22Nd International Conference
on Database and Expert Systems Applications, ser. DEXA’11. Berlin, Heidelberg:
Springer-Verlag, 2011. ISBN 978-3-642-23087-5 pp. 481–495.

[121] YCSB, “YCSB wiki,” Accessed on May 2017. [Online]. Available: https:
//github.com/brianfrankcooper/YCSB/wiki

[122] P. Ameri, “Challenges of Index Recommendation for Databases,” in Proceedings of
the 28th GI-Workshop Grundlagen von Datenbanken, Nörten Hardenberg, Germany,
May 24-27, 2016., ser. CEUR Workshop Proceedings, L. Wiese, H. Bitzmann,
and T. Waage, Eds. CEUR-WS.org, 2016, pp. 10–14. [Online]. Available:
http://ceur-ws.org/Vol-1594/paper3.pdf

[123] C. Estan and J. F. Naughton, “End-biased Samples for Join Cardinality Esti-
mation,” in International Conference on Data Engineering (ICDE’06), 2006. doi:
10.1109/ICDE.2006.61. ISSN 1063-6382 pp. 20–20.

[124] T. Hoque, C. K.-S. Leung, and Q. I. Khan, “CanTree: A Tree Structure for Efficient
Incremental Mining of Frequent Patterns,” 2013 IEEE 13th International Conference
on Data Mining, pp. 274–281, 2005. doi: 10.1109/ICDM.2005.38

[125] S. S. Lightstone, T. J. Teorey, and T. Nadeau, Physical Database Design: The
Database Professional’s Guide to Exploiting Indexes, Views, Storage, and More. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007. ISBN 0123693896,
9780080552316

123

http://www.tpc.org/tpch/default.asp
ftp.research.microsoft.com/users/viveknar/tpcdskew
http://blogs.impetus.com/test_engineering/performance_engineering/tpchnosqlperformancebenchmark.do
http://blogs.impetus.com/test_engineering/performance_engineering/tpchnosqlperformancebenchmark.do
http://www.ifi.uzh.ch/dbtg/teaching/thesesarch/VertiefungRutishauser.pdf
http://www.ifi.uzh.ch/dbtg/teaching/thesesarch/VertiefungRutishauser.pdf
https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/brianfrankcooper/YCSB/wiki
http://ceur-ws.org/Vol-1594/paper3.pdf

[126] D. Comer, “Ubiquitous B-Tree,” ACM Comput. Surv., pp. 121–137. doi:
10.1145/356770.356776

[127] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated Selection of Material-
ized Views and Indexes in SQL Databases,” in Proceedings of the 26th International
Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000. ISBN 1-55860-715-3 pp. 496–505.

[128] R. Horst and T. Hoang, Global Optimization : Deterministic Approaches. Berlin,
New York: Springer-Verlag, 1993. ISBN 3-540-56094-7

[129] C. Godsil and G. Royle, Algebraic Graph Theory, ser. Graduate Texts in Mathematics.
volume 207 of Graduate Texts in Mathematics. Springer, 2001. ISBN 978-0-387-95220-
8

[130] D. Tsirogiannis, S. Guha, and N. Koudas, “Improving the Performance of List Inter-
section,” Proc. VLDB Endow., pp. 838–849. doi: 10.14778/1687627.1687722

[131] S. Tanny and M. Zuker, “Analytic Methods Applied to a Sequence of Binomial Coef-
ficients,” Elsavier. doi: 10.1016/0012-365X(78)90101-2

[132] S. S. Conn, “OLTP and OLAP Data Integration: a Review of Feasible Implementa-
tion Methods and Architectures for Real Time Data Analysis,” in Proceedings. IEEE
SoutheastCon, 2005., 2005. doi: 10.1109/SECON.2005.1423297. ISSN 1091-0050 pp.
515–520.

[133] MongoDB, “The MongoDB 3.2 Manual¶.” [Online]. Available: https://docs.
mongodb.com/v3.2/

124

https://docs.mongodb.com/v3.2/
https://docs.mongodb.com/v3.2/

	List of Figures
	List of Tables
	1 Introduction
	1.1 Main Contributions
	1.1.1 Reducing the Search Space of the Index Recommendation Problem
	1.1.2 Formulation of a more Profitable Index Sets as an Objective Function
	1.1.3 Evaluation of the Index Sets without Overloading the Query Optimizer
	1.1.4 Evaluation of the Performance of the Designed Solution

	1.2 Outline of the Thesis

	2 Setting the Scene
	2.1 Motivation: The Meteorological Application's Database
	2.2 Background
	2.3 Introduction to Index Recommendation Criteria
	2.4 Index Recommendation Specifications on Document-Based Databases
	2.4.1 Data Model and Indexing
	2.4.2 Procedural vs. Declarative Query Language
	2.4.3 Query Optimizer Behaviour

	2.5 Summary

	3 Related Work
	3.1 Complexity of Index Recommendation Problem
	3.2 Search Space of the Index Recommendation System
	3.3 Cost Model
	3.4 Query Optimizer Considerations
	3.5 Reduction of Load on the Query Optimizer
	3.6 Enumeration Technique
	3.7 Benchmarking Challenges

	4 The Adaptive Index Recommendation System
	4.1 Identification of Relevant Criteria
	4.2 The Architecture Design
	4.3 Exploration of Candidate Indexes
	4.3.1 Frequency Query Strategy
	4.3.2 Index Transformation through Merging

	4.4 Storage Estimation
	4.5 Summary

	5 Cost Model for Configuration Evaluation
	5.1 Objective Function Formulation
	5.1.1 Optimization Model and Enumeration Technique
	5.1.2 Integer Linear Programming Formulation of the Objective Function

	5.2 Index Benefit Graph for Search Space Reduction
	5.2.1 Construction of an Index Benefit Graph
	5.2.2 Complexity Analysis of IBG
	5.2.2.1 Complexity of IBG with No Index Intersection
	5.2.2.2 Complexity of IBG with Index Intersection

	5.3 Summary

	6 Performance Studies
	6.1 Benchmarking Components and Workload Generator for Document-Based Databases Performance Analysis
	6.2 Real Meteorological Data Sources
	6.3 Evaluations with Real Data Sources
	6.3.1 Assessment of Effectiveness of Candidate Indexes Exploration Strategies
	6.3.2 Measurement of IBG Algorithm Effectiveness
	6.3.3 Recommended Configuration Optimality Evaluation

	6.4 Summary

	7 Conclusion
	7.1 Future Extensions

	Appendices
	A NoWog Grammar
	B Glossary
	Bibliography

