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Abstract

Contribution: The contribution of this paper is a recursive generalized total least-squares (RGTLS) estimator that offers exponential
forgetting and treats data with unequally sized and correlated noise.
Application: RGTLS is used for estimation of vehicle driving resistance parameters. A vehicle longitudinal dynamics model and available
control area network (CAN) signals form appropriate estimator inputs and outputs.
Results: We present parameter estimates for the vehicle mass, two coefficients of rolling resistance, and drag coefficient of one test run
on public road. Moreover, we compare the results of the proposed RGTLS estimator with two kinds of recursive least-squares (RLS)
estimators.
Discussion: While RGTLS outperforms RLS with simulation data, the recursive least squares with multiple forgetting (RLSMF) estimator
[1] provides superior accuracy and sufficient robustness through orthogonal parameter projection with experimental data.

1. Introduction

ä Energy-efficient trajectory planning, range prediction, and recuperation strategies are highly
reliant on accurate models of the vehicle total driving resistance.

ä Parametric models are commonly used with unknown parameters that vary at different rates
such as the vehicle mass, coefficients of rolling resistance, and drag coefficient.

2. Total Least Squares

ä Total least squares is a data fitting method for the unconstrained perturbation problem (1)
that is known as errors-in-variables (EIV) model.

ä The input data A ∈ Rm×n and output data B ∈ Rm×d are sums of noise-free data A, B and
measurement noise Ã, B̃, respectively.

ä The unknown parameters are denoted by X ∈ Rn×d.

AX ≈ B, A = A + Ã, B = B + B̃. (1)

Figure. 1 visualizes the difference between LS and TLS. While LS corrects the data verti-
cally and assumes that A is exactly known, TLS performs perpendicular data corrections.
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Figure 1: Data fitting with LS on the left and TLS on the right. shows the data [A B], shows
approximations [Â B̂], shows the estimated model and shows the corrections [∆A ∆B].

3. Recursive Total Least-squares Algorithm

ä The recursive singular value decomposition (RSVD) Algorithm. 1 is based on the SVD
(Z = USV>) update algorithm of Gu and Eisenstat [2], but skips the update of U entirely.

ä We take advantage of the previous SVD matrices S(t − 1) and V(t − 1) when new data
arrives in Algorithm. 1 line 2.

ä Algorithm. 2 is iteratively executed throughout the data set from time step t = 1 to t = m.
ä The nested RSVD in Algorithm. 2 line 9 allows a recursive TLS solution.

input : A(t), B(t), S(t− 1), V(t− 1), v, λ
1 batch
2 z = [A(t) B(t)]>

a = V(t− 1)> · z

M =

[
λ · S(t− 1)

a>

]
JK = qr(z−V(t− 1) · a)
v =

√
det(K>K)

if v < v then
3 PNQ> = svd(M) S(t) = N1:q,1:q
4 else
5 PS(t)Q> = svd(M, ’econ’)

6 V(t) = V(t− 1) ·Q
output : S(t), V(t)

7 Algorithm 1: RSVD

for t← 1 to m do
input : A(t), B(t), S(t− 1),

V(t− 1), (A>A)(t− 1), v, λ
8 function call

input : A(t), B(t), S(t− 1),
V(t− 1), v, λ

9 Algorithm. 1 output : S(t), V(t)

10 V(t) :=

n d[
V11 V12
V21 V22

]
n
d

X̂(t) = −V12V22
−1

(A>A)(t) = ((A>A)(t − 1) · λ2) +
A(t)>A(t)
cov(X̂(t)) ≈ (1 + ‖X̂(t)‖2

2)σ
2

((A>A)(t)− t · σ2 · I)−1

σ2 ≈
S(t)q,q

t

output : X̂(t), cov(X̂(t)), S(t), V(t),
(A>A)(t)

Algorithm 2: RTLS

4. Vehicle Longitudinal Dynamics Model

ä We use the force equilibrium (2) between the tractive force F on the left-hand side and the
sum of rolling resistance, climbing resistance, aerodynamic drag, and acceleration resistance,
that is known as total driving resistance.

ä In (2), α, v, ρ, g, and ax are the road-grade, velocity, air density, gravity acceleration, and
longitudinal acceleration respectively.

F = m · g · cos α( fr0 + fr1 · v) + m · g · sin α + cx
ρ

2
A · v2 + (m + mrot)ax. (2)

CAN signals of F, α, v, ρ, and ax form adequate input and output data to feed the MISO model A11 . . . A1n
... ... ...

Am1 . . . Amn


︸ ︷︷ ︸

inputs

[
X1 . . . Xn

]>︸ ︷︷ ︸
parameters

≈

 B1
...

Bm


︸ ︷︷ ︸
output

. (3)

5. Results
Figure. 2 shows simulation results of a three input one output model with random data, a step
in X2 and noisy input and output measurements.
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Figure 2: Relative estimation error of RGTLS with W = cov([Ã B̃]) on the left and RLS on the right.
RGTLS clearly outperforms RLS when prior knowledge of the noise covariance W is present.

Figure. 3 gives results of two distinct coefficients of rolling resistance from a test run with a
grand touring sports car.
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Figure 3: Estimated coefficient of rolling resistance f̂r0 on the left and f̂r1 on the right. shows the value
of fr0 from rolling resistance measurements. Parameter projection is required for RGTLS and RLS to
prevent negative values on the right in this real world example.

6. Conclusions

ä The presented RGTLS estimator with exponential forgetting can treat basic TLS and the
extensions WTLS and GTLS in real-time by appropriate setting of the weighting matrix W.

ä If prior knowledge of the noise covariance matrix is present, RGTLS outperforms RLS.
ä RGTLS and RLS fail in the estimation of particular driving resistance parameters such as the

coefficients of rolling resistance. A parameter projection scheme is required in the future.
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