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Err a t a

1. On page 14, equation (7) should read:

* *k -k
o 1

Z

2. In table 5, page 22, Reactor Cost Data,the following data should read:

a a

AGR(UKAEA)

b c

Spec.Investment Cost(Dpf/kWh) 1.393 1.393 1.393 1.163 1.163 1.163
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1. Introduction and Statement of the Problem

Even during the early days of nuclear reactor development the problem

of the uranium reserves. i.e. the nuclear energy resources, had been

considered qUite seriously. W.H. ZINN in particular raised this question

between the years 1945 and 1950 and accordingly initiated the develop­

ment of fast breeder reactors. However. the magnitude of the uranium

resources was considerably underestimated at that time ~1-7. and

accordingly. the emphasis for the first generation of fast breeders

(EBR-I. EBR-II. Dounreay Fast Reactor) was put almost exclusively on

achieving a high breeding ratio. The development of the thermal breeder

reactor was promoted by A. WEINBERG along similar lines.

Three important developments could be noted during the period 1958-1961.
On the one hand, it had become clear that the optimistic expectations

for the development of nuclear energy which had been nourished at the

1st Geneva Conference in 1955 would not materialize so soon. On the other

hand, it had become apparant in the meantime that rather large resources

of cheap natural uranium were available. Both of these facts indicated

that there would not be an immediate crisis with regard to the uranium

supply. Finally. it had become very obvious. that nuclear reactors had

to operate economically and had to compete with fossil power stations

to achieve a break-through in the development of nuclear power.

The realisation of these facts turned the'attention of reactor develop-

ment groups to the closed plutonium cycle for fast breeders among other

concepts. Accordingly. fast breeders having large cores (5000 1) and

utilizing non-metallic fuel elements were conceived, i.e. the 2nd generation

of fast breeder reactors that puts emphasis on economics. even at the ex­

pense of a lower breeding ratio. In the field of thermal breeders these

developments. in a similar way. led to an increasing interest in high con­

version reactors, e.g. natural uranium-D20 reactors, in addition to

genuine thermal breeders. The situation of those years is best characte­

rized by the well known discussion between K. ERGEN and E.L. ZEBROSKI:

"Breeding, how soon a neceSSity?", as published in Nucleonics ["2J.

In pursuit of these ideas the proper utilization of those amounts of

plutonium being produced in thermal rea2tors, e.c. light water reactors,
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became a point of view, in addition to economics and breeding. As is

well known, the reactivity value of plutonium containing large amounts

of Pu-240 is higher at least by a factor of 1.4 for fast reactors as

compared to thermal reactors6 ).

In 1962 the "Report to the President" ['"4J created a turning point

insofar as to establish the right proportions between the economics of

reactor operation and efficient utilization of the natural uranium

and thDrium resources by presenting a condensed survey on the power

policy situation in general. This way of thinking was further intensi­

fied by J. DIETRICH's paper on "Efficient Utilization of Nuclear fuels"

1...-5J7). In this context the question of an "intermediate generation" of

high conversion reactors was brought up, a question that still today is

occasionally considered as an open one. Also, in 1963 the order for

the Oyster-Creek power station was placed with General Electric. Many

observers considered this event to be the break-through of nuclear

power stations to truly competitive operation. The problem concerning the

magnitudes of the uranium and thorium resources now had to be considered

more seriously. It is therefore not so surprisingly that this problem

now again was treated in a number of reports. The papers of R. GIBRAT ['"6J,
D. RITTER and G. BLAsSER ['"7J, J.J. WENT ['"SJ and in particular the

recently published EURATOM-report ['"9J may be mentioned in this context.

The possibility also to answer more generally questions from the view­

point of nuclear energy resources became soon apparent. In particular, this

applies to the interaction of certain reactor types. This means that costs

have to be considered in addition to the uranium and thorium resources in

question. Strategic games using resources, costs and reactor properties

can be carried out at different logical levels. This topic will be treated

6)Cf. E.A. ESCHBACH ;-37, for instance. He obtains for plutonium a relative
reactivity worth of O:S, as compared to U-235 in a thermal reactor. Cal­
culations done by the authors of the present study have shown the criti­
cality worth for plutonium containing large anounts of Pu-24o as compared
to U-235 in a fast reactor to amount to 1.5. Strictly speaking, this
results in an equivalence factor of 1.5/0.S~ 1.9.

7)ThiS publication employs rather pessimistic assumptions with regard to
the development of second generation fast breeders.
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more extensively in the 2nd chapter of this report. At this point we

just want to state that this study follows the if-then scheme. Accordingly,

there has not yet been any feedback between results and postulates. This

will be done in a future study. Nevertheless, the variation of the input

parameters leads to a number of important conclusions.

Among these conclusions is the specification of desirable reactor proper­

ties. By studying the boundary conditions (the general environment) as

established for the development of a certain reactor type the goals of

this development become clearer. The more time the development of a certain

reactor type will need, the less obvious is the exact goal for this long

term development. This goal rather has to be formulated by prospective

studies of those boundary conditions that we expect to prevail at the time

of the completion of the project. These facts may be made plain using the

problem of the breeding ratio as an example. It looks like one has to find

a compromise between breeding and economics for fast breeders. Assuming

that the development of a 1000 MW breeder-power station will take 15 to
e

20 years (e.g. 1960 - 1980), the desirable compromise between breeding

and economics that applies to 1980 has to be known already by about 1965.

This point is part of the original statement of the problem for this

study.

Nuclear energy has had its break-through in Germany too, admittedly in a

less dramatic manner, after the orders for the nuclear power stations

Gundremmingen, Obrigheim and Lingen had been placed, and there are long

term breeder projects being worked out in Germany: The Nuclear Research

Center Karlsruhe pursues the Karlsruhe Fast Breeder Project starting in

1960, while the Nuclear Research Center JUlich became interested in the

development of a thermal breeder some time ago. So there was sufficient

reason to work out a study, as extensive as possible, within the frame­

work of Germany. Along these lines this study, although being worked out

at the Institute of Applied Reactor Physics of the Karlsruhe Center, was

sponsored by the "Studienkreis Kernenergiereserven", which comprises

almost all the German organizations interested in this field. Therefore,

the results as published here are of a somewhat more general significance.
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2. Methods Employed in this Study

2.1 General Remarks

To combine the problem of nuclear energy resources in form of natural

uranium and thorium with problems of reactor development one has to

prepare a cost study. If all the pertinent input data are available it

is possible to calculate the cost for nuclear energy by means of reactor

data and by assuming prices for uranium and thorium ores. The inter­

action with electrical energy produced by conventional power stations

results in a market share of nuclear energy depending on location and

time. This market share in itself then will influence the utilization

of the natural uranium and thorium resources and in doing so it will

establish a feedback on prices for these materials. In planning new

power stations, nuclear as well as fossil, one proceeds in a similar

manner, if the planning period does not exceed about 5 years. Procedures

of this kind are known as "power casting" in the English literature L10J.

The present study has the objective to cover the period until the year

2040. It will become obvious rather soon that it is impossible to provide

the proper input data for the type of interplay mentioned above. This is

particularly true, as the development of nuclear reactors is still in

progress and as the demand for nuclear energy, that is being discussed

here, will not only feed back on the prices of uranium and thorium ores,

but will also influence the reactor development itself.

Without forgetting the final goal of the above mentioned interplay, it

turned out to be necessary first to limit our activities to a less

ambitious strategic game that we can carry out just now. In doing so,

a reasonable estimate of the demand for nuclear energy forms the basis

of our investigation. To be particularly careful, this estimate was done

in close co-operation with the Rheinisch-Westfalisches Elektrizitatswerk

(RWE) by M. RECKER, a member of the study group at the TH Aachen that

is directed by H. MANDEL (cf. chapter 2.2).

In addition, great care was taken to select data characteristic for the

reactors (cf. chapter 4). It seemed justifiable to compare 1000 MWe units

only, as these units are supposed to come into operation after 1970. The



-5-

reactor data, on the other hand, had to refer to 1970, because reasonable

predictions seem to be possible only in the sense of a time normalization.

This normalization, of course, implies that some reactor types will have

been carefully tested by that time while others will still be in the

state of planning or construction of the prototype, respectively.

Among the reactor types that have been selected one naturally finds the

light water reactor (LWR). Here we made use of the data block for a

pressurized water reactor supplied by the reactor development department

of the Siemens-Schuckertwerke (SSW) as well as of the data block for a

pressurized water reactor as was reported in an ORNL-study ~11-7. Both

cases deal with a pressurized water reactor, so it can be clearly seen

to what large extent the reactor input data lead to rather different

results for the same reactor type. However, it is important to note that

the ideas of the AEG concerning a light water reactor are in good agree­

ment with the data of the LWR-ORNL reactor.

Next, a gas grapnte (Magnox) reactor (GG), as advocated by the French

(CEA), was included in the list of reactors to be evaluated ~12-7.

Here it is worthwhile to mention that our cost estimates are more opti­

mistic than those obtained on the basis of an English type reactor. It

is not the purpose of this study to find out, which input data blocks

are the more realistic ones. It was more important to be in a position

to compare the results of this study with French results.

A natural uranium D
2

0 reactor (D
2
0) has been suggested by the Siemens­

-Schuckertwerke. This company also provided the data block. This reactor

type also should be rather typical for the Canadian line of development,

as advocated by W. LEWIS in particular. Insofar the results of this study

may turn out to be helpful for the persistent discussion on natural

uranium D20 reactors and fast breeders.

After the British recently decided to go in for their own Advanced

Gas-cooled Reactor line (AGR) instead of the American type light water

reactors it was interesting to consider this type as well. The AGR

data block was kindly provided by UKAEA through the company Nukleardienst.
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The Thorium-High Temperature Reactor (THTR) corresponds to the data

block given in the ORNL-study ~11-7 mentioned before. These data are

advocated by General Atomics (GA). They also agree rather well with

the ideas advocated by BBC-Krupp and Kernforschungsanlage JUlich.

We now turn to sodium-cooled fast breeders (Na-BR). In 1964 General

Electric (GE) published an extensive study of a reactor of this type

L-13-7. Kernforschungszentrum Karlsruhe (KFK) has published the study

Na-1 in 1964 ~14-7. The most important difference between these two

breeder studies perhaps is given by the magnitude of the breeding

ratio. The treatment of these two fast breeders in this study is

justified by the problem of what breeding ratio is desirable.

We want to re-emphasize that the Studienkreis Kernenergiereserven has

checked the internal c~~ency of all reactor data blocks and com­

pared them to other information available but has not considered it

to be its objective to rate these reactors and in particular the

respective cost data.

If the demand for nuclear energy is postulated and if the reactor

and cost data (these are assumed to be constant with time, i.e. a

conservative estimate) are given, it is possible to evaluate the

demand for thorium and uranium resources as well as the cost of

energy production. This has been done by means of either one or

two type strategies.

In the one type treatment (cf. chapter 5) only a single reactor type

was assumed to meet the entire nuclear energy demand. Admittedly,

the one type strategy in connection with GE or KFK breeders leads to

an unrealistic start-up situation, as there is no plutonium available

in nature. This logical gap can be closed by the two type strategy

(cf. chapter 6). There we assume that a breeder is built if and only

if there is enough plutonium available within the limits of these

strategies, i.e. without any external purchase. This establishes a

connection between the installation of converters and the installation

of breeders. Starting from that moment, when the doubling time of the
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population of fast breeders agrees with the doubling time of the

nuclear demand for nuclear energy which increases with time. one

will install breeders only. After this time the converter reactors

will die out because of their limited plant life.

In evaluating cost the annual cost for energy production as well as

the cumulative cost until the year 2000 have been calculated. These

cost have been calculated as present worth at a discount rate of

7 % referring to 1970 (cf. chapter 7). This method for instance

permits a comparison of the development cost as planned for 1970

to the total resulting cost up to the year 2000.

Some of the input parameters were varied within certain limits.

This applies in particular to the price trends of uranium and thorium

ores (cf. chapter 3). Similarly. a lower and an upper estimate of

the demand for nuclear energy was considered (cf. chapter 2.2). The

various reactor types as such represent a variation of reactor

parameters. in particular the pairs: LWR (SSW)/LWR (ORNL) and Na-BR

(GE)/Na-l BR (KFK). This makes it possible to estimate conclusions

that could be gained properly only by means of the strategic games

of the total interaction between prices for fossil fuels and uranium,

data for power stations. prices for energy and demands for nuclear

energy. We want to re-emphasize that the study submitted here follows

the "if-then" scheme: if we have this demand for nuclear energy these

cost for uranium and these particular reactor data, then we arrive

at those cost and at a certain demand for uranium and thorium ores.

The subsequent chapter will deal in more detail with the methods of

computation and the data that have been applied. For lack of space

it was not possible to include in this condensed survey an extensive

description of the mathematical models involved or in particular a

record of the very extensive data material (50 f~es for 20 reactors

each). As was mentioned before, this information will be provided in

a detailed publication ~15_7.
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As was stated before, M. RECKER ~16-7 has worked out the postulates

for demand that form the basis of this study. First the total ex­

pected demand for electrical energy was estimated. As a starting

point the respective postulates for the common market countries up

to 1975 L-17-7 were used. The extrapolation up to the year 2040 was

guided by American estimates ~18-7 and started with the following

assumptions: Doubling ef the population up to 2040, increase of the

annual per capita consumption to 40,000 kWh, average load factor of

0.48. The corresponding data are shown in the graph on page la.

On the basis of the known development programs it was possible to

estimate the demand for nuclear energy up to 1970. While there are

no quantitative data available for the further development, the

cost trends seem to indicate a steadily growing share of the newly

installed power increment for nuclear energy. Here we have to accept

some reasonably plausible working hypothesis. To account for the

uncertainty of the prediction which is unavoidable as well as to

stress the dependence of the demand for nuclear fuel on the rate of

development, we considered it useful to use two different models.

nuclear share of new installed power to in­

50 % between 1970 and 1980 and then to
oremain constant at 50 /0 up to the year 2000 (lower estimate). The

other model assumes this share to reach 80 % in 1980 and to in­

crease to 90 % in 2000 (upper estimate).

The average load factor for nuclear power stations was chosen to

be 0.8 up to 2000 in ~16-7. Supposing that nuclear energy will be

used to meet the peak demand on an increasing scale theillad factor

then will decrease to 0.48 by 2040. In working out the strategies

(chapter 5 and 6 or data block, chapter 4) we have conservatively

assumed a load factor of 0.70 for reactor use for the whole period.
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This difference represents a small change of the per capita

consumption only as estimated by M. RECKER. Table 1 and the graphs

on page 10 display the upper and lower curves of the demand for

nuclear energy in Germany as used in this study in addition to

the last EURATOM prognoses for the Common Market countries ~9-7.

Table 1 Nuclear Power Installed in Germany

Year Nuclear power installed Share of tgtal power
in GW installed /0e

lower (P ) I upper (p ) lower (P) I upper (P )u 0 0
estimate estimate

1965 - - - -

1970 2 2 3.6 3.6

1975 7 8 9.3 10.6

1980 16 20 16.3 20.4

1990 43 62 28.6 41.3

2000 85 132 37 57

2020 213 310 47 69

2040 405 760 53 100

The estimates of nuclear power P ~GW 7 installed may be expressed
e--

analytically as

lower estimate

upper estimate

P 0.0473
u

P 0.0302
o

(1)

The time t has to be counted starting from 1964, but the curves are

valid for years starting from 1970.
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There is a linear increase of the doubling time T related to the

growth formulas, as can be seen in the graph on page 10 as well:

(2 1/2. 34 _ 1) . t

T
u

T
o

1 ) t

(2)

The exponential increase with constant doubling time that is often

used does not express the gradual saturation of the demand.

If the power installed with a certain reactor type is known as a

function of time, following 2.2, the respective mass-flow of

fissile and fertile materials become of interest. In addition

to burnup and conversion the inventories, tied up in the reactors

as well as in fuel cycle, are of great importance and are strongly

influenced blf the rate of annual increase in the number of reactors.

To cover these dynamic effects, detailed balance equations based

on the work of R. GIBRAT ~19-7 were elaborated ~2o_7. Their

structure can be discussed only shortly. They start with relations

for the flowrate of a substance measured in units of t/a . The

initial flow rate D; at the start of the fuel production line is

given as

( b S) +'l91 s d ( S)P t - B + F 0 dt P t + F
dP

for dt> 0

ciF
for dt{ 0

(3)

The output ne of the reprocessing plant is given as

p{t - 8 B - S W)

/( dS . P (t _ 8 ) _ J,sdp(t _ $ )
1 W 1 dt W

dP
for dt> 0

dP
for dt ' 0

(4 )

where P{t) is the power of all reactors of type i in units GW and y
e

is the average load factor.
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The other symbols have the following meaning

s
~li

8 Fi

DWi

8 Bi

rt/GW . aJ
- e

rt/GW . aJ
- e

rt/GW 7- e-

rt/GW 7- e-

Recharge factor; measures the throughput
of substance s as necessitated by burn-up
and fabrication losses for one Gigawatt­
year

Discharge-factor; measures the amount of
substance s recovered from the repro­
cessing plant (allows for losses) for one
Gigawattyear

Inventory-buildup factor; gives the amount
of substance s necessary to install one
Gigawatt electrical power (including spare
elements)

Discharge inventory factor; gives the amount
of substance s available after shut down of
one Gigawatt electrical power and after
reprocessing

Fabrication time; covers the period between
delivery of fissionable material and charging
of the reactor

Reprocessing time; covers the period from
discharging of the reactor until arrival of
the fissionable material in store

Load delay; accounts for the fact that the
first refill will take place a certain time
after start-up of the power station.

The index s generally refers to the different fissile and fertile

nuclides. Subsequently, we shall consider natural uranium (s = n),

fissionable plutonium (s p) and thorium (s = t).

The net annual demand ZS (t) of substance s needed for the reactor

population in question in a one type strategy is obtained by properly

coupling equations of forms (3) and (4) and allowing for the materials

balance of a diffusion plant, if applicable. If multitype strategies

are concerned, the Z~ of different populations i may be easily com-
l

bined.

The most important example is the two type strategy of our study

(chapter 6) based on a common plutonium stock for breeders (B) and
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converters (K). This strategy is governed by the difference­

-differential equation

L
i=B,K

L D~ (t) - D~ (t)J

Here Zp(t) means an external Pu-source, that will be set equal to

zero in our examples.

A detailed presentation of this method is given in ~20_7 and ~15_7.

2.4 Cost Evaluation

Concerning the cost evaluation we have tried to go into details as

far as possible, as we have done before with regard to the mass flow

rate model. The limitation is set by the data available. The cost

evaluation is based on the present worth method throughout.

The specific cost of investment kr in units of Dpf/kWh were calcu­

lated by using the formula

1 [ R + S
8760 . K KA [ 1 R+S - L

- Cl+:-)100

(6)

The symbols have the following meaning

~ = loo LDM/kWe-1
-0 IR = 7 L /0 / a_

S = 2.7 LO/o / a_I

Vs 0·5 ~% / aJ
VH 0·5 La.;o / a_I

L = 25 LaJ

Specific investment cost, including the
direct and the indirect investment cost
plus interest during construction period

interest factor for foreign and own
capital

taxrate

capital insurance

liability insurance

plant life
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It is complicated to evaluate the share of the fuel cost following

the present worth method. This problem has been treated in complete

generality by H. SCHMALE et al. ~21-7. Our treatment ~22-7 repre­

sents essentially a simplified version of this work and is based

on the approximation formula for the average share of the fuel cost

k.Br in units of Dpf/ kWhe

The respective symbols have the following meaning

present worth of the cost for fresh fuel
(incl. taxes), referring to the date of
fuel insertion into the reactor

k:I ~DM/kg-71

El LkWh/kg-7

~ /"-1J

SH /..-a_7

Z L1_1

present worth of the net-proceeds for
used fuel (incl. taxes), referring to
the date of fuel discharge from the reactor

energy extracted from the fuel

excess elements on reserve

inpile-time of fuel

number of subcharges in the reactor

The quantities k and k themselves are defined by
o 1

k:I _/-1 +~ (S + 1. b ) I
o loo F 2 H-

SF
(1+ 1

H
)

00
(8)

S 1 -~
k:I = /1 - - (6 + - a 2J . (1+ 1H ) W /- 1 L VS X

S KS
- (K +K--+lC17 (9)1 - loo W 2 H 00 - loo 1 1 1 -A --ut -R

s

The symbols have the following meaning

K
F

LDM/kg-7

Fabrication cost for fuel, referring to
1 kg of fissile and fertile materials
contained therein

cost of the components s of the fuel for
insertion (0) or discharge (1)
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m
S i..-1J

vS L1J

KA'K.rn'~ LWl/kgJ

percentage of component s at insertion (0)
or discharge (1)

fabrication-loss factor

reprocessing-loss factor

cost for reprocessing, transportation,
and reconversion respectively.

3. On Nuclear Fuel Resources

In judging the various strategies to the respective amounts of fuels

needed, the fuel prices that enter in k* and k* are of major concern.
o 1

These prices develop by interaction of supply and demand; they were

predictable if the supply, i.e. the uranium and thorium resources of

the world and the demand, i.e. the plans for nuclear development of

all countries, were sufficiently well known. As will be shown below,

there areonly rather vague statements possible concerning the re­

sources of nuclear fuels as well as the development programs.

Therefore,we have limited ourselves to consider two price trends as

a working hypothesis, that seem plausible to us, to estimate the

influence of price changes, as we have done already with regard to

the power development programs. It may be stated in advance, that

the uranium prices have only little effect on the cost of nuclear

energy production, because fuel costs do not constitute a major

part of those. Therefore it is all the more justified to use price

models.

Hypothesis 11 assumes the cost of nuclear fuels in the "optimistic"

limit to remain at the level characteristic for 1970 - 1980, as

shown in table 2, which can be reasonably well substantiated.

To cover the influence of possible increases in price hypothesis 11, it

was confronted with the "pessimistic" hypothesis I, which has also

been shown in table 2.
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Table 2 Limits for Price Trends of Nuclear Fuels

Substance II optimistic I eessimistic
1970-2040 970-19S5 19 5-2000 2000-2040

U
3

0
S

($/lb) S S 20 30

Th0
2 ($/lb) S S 20 30

Pu ($/g fiss.) 10 10 27.5 27.5

These guiding values were gained by the following considerations:

The estimate of the world reserves of uranium that have been published

between 1959 and 1964 show a considerable fluctuation. In 1959 ~23-7

and in 1960 ~24-7 the reserves of cheap uranium (below S-10 $/lb U
3

0S )

were estimated at about 1 million tons and it was assumed that up to

the year 2000 3 further million tons could be mined at the same price

level. In 1962 ~25_7 the reserves of the USA alone was given to be

about O.S million tons of cheap uranium and further 0.7 million tons

in the category of 10-30 $/lb U
3

0
S

' The latest estimates in 1964 ~26-7

figured the resources still available after 19So in the United States

to 0.275 to 0.320 million tons in the lowest price category and to

0.63 million tons in the second lowest one.

A comparison of the latest estimates with the known development

programs leads one to the conclusion that the known cheap resources

would be exhausted in the So's, resulting in a transition to the next

category. The uranium prices, however, are assumed not to increase

too heavily in the foreseeable future. First of all, the possibility
9 - -to gain up to 10 tons of uranium out of the seawater L 27-1 would

set an upper price limit of about 30 $/lb U
3

0
S

' The growing demand

for uranium also will presumably lead to the prospection for uranium,

reduced for years, to discover new reserves. Finally, the start-up
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of fast breeder reactors will lead to a pronounced decrease in the

demand for uranium.

Extrapolating the US-data as given in ~25-7 to the world as a

whole and using the relations valid up to date, one gets the orders

of magnitude shown in table 3.

Because Germany produces about 5 % of the world's electric energy,
oone can assume as a guide line, she also can claim about 5 /0 of

these resources. If the demand for natural uranium in Germany will

stay within these limits - ard we will show on the basis of the two

type strategies that this is very well possible - one comes to the

conclusion that German decisionsjn the field of nuclear energy will

rarely have any influence on the market for uranium. This is an

argument to consider very reservedly the results of optimizing stra­

tegic games that are merely proceeding from the German situation.

Taking as a basis the curve for average uranium consumption for the

strategies here investigated, one obtains periods (right-most column

of table 3) that are characterized by a certain price category (left­

-most column of table 3).

Table 3 Uranium Resources and Price Trends

Price category world resources share available sufficient

~/lb U
3

08
6 for Germany for10 t U

3
08 310 t U

3
08

8 1 50 1970 - 1985

20 1 50 1985 - 2000

30 2,4 120 2000 - 2040

Our calculations, based on table 2, also did consider the dependence of

the cost of enriched uranium on the optimized waste-concentration of

the diffusion plants assuming the separation cost to remain constant at

30 ~/kg.
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The problem of the plutonium price embraces a number of assumptions

regarding the ratio of converter - to breeder power on a world basis.

Inspite of extensive theoretical work, e.g. ~26-7, no conclusive

results have yet been obtained. Therefore, we have based our price

models on plausibility assumptions, as we have done before in chapter

3.2 (cf. table 2). It has been shown in L-3, 29, 30-1 that the value

of plutonium as a substitute for U-235 in a thermal reactor amounts

to about 40 DM/g of fissionable material, based on the cost of U-235

supposed to be in effect in 1970 - 1980.

Higher plutonium prices would render recycling of plutonium to thermal

reactors unprofitable. Because the period from 1970 to 1980 is charac­

terized by the predominance of thermal reactors the plutonium price

will stay within the order of magnitude just mentioned. Hypothesis 11

assumes this price level to remain constant until the year 2040.

Hypothesis I is arrived at by the following argumentation. Starting

in the mid-eighties the installation of breeders may increase the

demand for plutonium. This would result in an increase of the price

for plutonium. As was mentioned before, criticality calculations

show 1 g of fissionable plutonium to be equivalent on the reactivity

scale to 1.5 g of U-235 in a fast breeder. Using the factor 1.5

results in a value of 110 DM/g of fissionable plutonium. Higher plu­

tonium prices would render it profitable to use U-235 in fast breeders.

This couples the price of plutonium for the period in question to

the price of uranium in 1985 to 2000. After the year 2000 the breeder

will produce enough plutonium to become independent of external

sources of fissionable material. Therefore,no change of the price of

plutonium is expected after the year 2000, one would rather expect

a decline of the price level.

3.4 Price Trends for Depleted Uranium, Thorium and U-233----------------------------------------------------

The price of depleted uranium was taken to be equal to the present

price of 12 ~1/kg for the whole period considered. To assume a price
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depending on the price of uranium concentrate would contradict

the fact that diffusion plants and converteIEwill produce large

amounts of depleted uranium from their start-up and the demand of

the breeders ~eing the only users of depleted uranium) will make

a small percentage of those only.

At present, the prices for thorium-oxide (Th0
2

) tends to follow the

prices for uranium concentrate. Therefore in a first approximation,

we assumed the price trends to be the same as those of uranium

concentrate.

Concerning the reactor type THTR, U-233 is recycled to the reactor

again and again without resulting in a surplus or needing a supply.

So we have not established any price, following the arguments of ~28-7.

4. Explanations Concerning the Reactor Data

The references for the sources of the reactor data have been mentioned

already in chapter 2.1 (tables 4 and 5).

The net electric output P was normalized to 1000 MWe, to obtain

numbers comparable to each other; this was necessary in particular

with respect to the reactors LWR (ORNL), GG (CEA), and Na-BR (GE).

Concerning the average specific power "r" and the average burn-up

"a" one has to note that core and blanket as a whole were counted as

fuel. This definition leads to unusually small figures.

The load-delays SB for reactors employing batch charges were gained

by diViding in-pile time by the number of batches and were taken as

0.5 ~a-7 for continuous charging.

The reprocessing time Sw and the refabrication time SF if not given

by the out of pile cycle as in the case for breeders were rather opti­

mistically taken to be 0.6 or 0.5 years respectively, taking future

development into account. The shorter cycle times for breeder reactors

arise from the argument that one should permit little fuel only to be

tied up in the out of pile cycle, otherwise high unproductive capital
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ties would result. The total out of pile time turns out to be 3 sub­

charges of 1/3 in-pile time each for the Na-1 BR (KFK) and 5 subcharges

with 2/5 in-pile time each for the Na-BR (GE).

The factors concerning recharge, inventory, and discharge have been

explained already in chapter 2.3.

The waste concentrations of the diffusion plant with respect to hypo­

thesis rr for the case of fixed separation cost are given at the bottom

of the table 2 (cf. chapter 3.4).

The specific plant cost KA contain the direct plant cost as well as the

indirect plant cost appearing as owner expenses, interest during con­

struction and contingencies. To obtain a common basis for comparison,

the indirect cost were calculated for all reactors in the same way by

adding to the direct cost 30 % owner expenses and contingencies and

further adding 11 % interest during construction on these total invest­

ment cost for the whole construction period. For the D20 reactor the

plant cost also includes the cost for the D20 without depreciation

(interest and taxes and insurance).

To have a common base, the annual operation cost J<E were taken to be the

same for all reactors only in the case of the D20 reactor the cost for

D20 losses were added.

The information concerning cost of fuel fabrication ~ were taken from

the respective references. With regard to the cost of reprocessing KA,

transport ~, and reconversion ~ we refer to the detailed report ~15-7.

The specific cost of investment Kr and fuel ~r per kWh are obtained by

applying equations (6) and (7) for a load factor of O.7~ 6000 h/a and

using the cost data from above.

The prices for U
3
0S-concentrate and the prices for plutonium of

hypothesis r coupled herewith (cf. chapter 3) have been repeated.
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5. Explanations Concerning the One Type Strategies

In the one type strategy the demand for nuclear energy will be

satisfied exclusively by additional installation of reactors of one

type. The graphs on pages 24 to 31 show the results for each one ot'

the reactors characterized in tables 4 and 5.

In all graphs the results for the upper estimate of the demand are

shown by a full line while those for the lower estimate are shown by

a dotted line. On the top left the graphs show the annual cost of

energy production, while on the top right they show the cumulative

demand for natural uranium or for plutonium in the case of breeders.

On the bottom left the cumulative output or demand for depleted

uranium from the diffusion plants respecti~ is given. On the bottom

right the cumulative output of fissionable plutonium is shown with

exception of the graph on page 29 which displays the demand for thorium.

Some of the curves branch starting in 1985 depending on what hypothesis

of the further price development for uranium and plutonium (I or 11) is

applied (cf. table 2). This is obvious for the annual cost. Concerning

the cumulative amounts of natural and depleted uranium the price in­

creases of hypothesis I will result in decreases because of a reduction

in the waste concentration of the diffusion plants (tables 4 and 5).

For fast breeders the cumulative output of plutoni~~ will not become

positive before the annual output exceeds the annual consumption and

before the accumulated demand for plutonium has been satisfied. The

initial demand is displayed cumulatively on the top right of the graph

for the fast breeders. The maximum corresponds to that year, starting

from which no plutonium has to be added.
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ONE TYPE STRATEGY [ LWR(ORNL)
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ONE TYPE STRATEGY ILWR (SSW)
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ONE TYPE STRA TEGY I GG (CEA)
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6. Explanations Concerning the Two Type Strategies

As was mentioned before, the growth of a breeder population may be

coupled to a converter population. This is achieved by two conditions

within the framework of the two type strategy. First new reactors

will be added only according to the energy demand-curve. Secondly the

newly added reactor will be a fast breeder, if enough plutonium from

converters and fast breeders already in existence has accumulated. Here

it has to be mentioned that to begin with 2 t of plutonium will be

withdrawn from the system for experimental purposes. Using this method,

the results for the four converters LWR (ORNL), LWR (SSW), D20 (SSW),

GG (CEA) combined each with the breeders Na-BR (GE) and Na-1 BR (KFK)

were obtained. The curves show the respective shares of the nuclear

power production. These allow one to compute the cost of power produc­

tion as well as the demand for nuclear fuel.

The results for each converter type are displayed in three consecutive

graphs. The first one shows on top the combination with Na-1 BR (KFK),

having a high breeding ratio (1.)8) and for comparison on the bottom

the combination with Na-BR (GE), having a lower breeding ratio (1.25).

The dotted and full lines refer to the lower and upper estimates of

the demand respectively. Because only 1000 MWe plants are considered,

the number of power stations in operation at a certain time may be

found immediately. One curve refers to the breeder while the other

refers to the converter. Both combined will result in the demand curve.

Each of the second graphs presents the annual cost of energy production

for the two demand curves and the respective reactor combinations.

These costs start branching from 1985 onwards and become higher for

increasing uranium prices.

Each of the third graphs shows the consumption of natural uranium for

a two type strategy as well as the amount of depleted uranium, taking

the combination with Na-1-BR (KFK) as an example. The fact that the

fast breeder will use some depleted uranium has been taken into account.

In the case of combinations with the two light water reactors the demand

curves branch, the lower one haVing resulted on account of the decreasing

depletion level in the diffusion plant for increasing uranium prices.
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ANNUAL COST OF ENERGY GENERATION
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7. Explanations on Summarized Results

The subsequent pages and tables present important characteristic

numbers that have been taken from the numerical evaluation of the

one and two type strategies. Considering the limited resources of

cheap natural uranium, the cumulative uranium consumption turns out

to be the crucial quantity of a certain strategy. This consumption

until the year 2000 is shown by the figures on page 46 for the one

as well as the two type strategies, for the lower as well as the

higher demand curves, and for the hypothesis I and 11 (concerning

fuel cost). The figures on page 46 emphasizes the strongly reduced

uranium consumption of the two type strategies by comparing the con­

sumption of a converter generation with that of a combination of the

same converters with Na-1 breeder, all data referring to the year 2040.

The annual cost of energy generation in the year 2000 form the second

characteristic number for the different strategies and are presented

on page 48.

Finally, the present worth of the cost of the total energy generated

from 1970 to 2000 constitutes a particularly characteristic number. It

is presented in table 6 for different strategies in addition to the

cumulative fuel demands and the annual cost.

Table 7 gives the annual cost of energy generation, investment cost,

capital cost, operating cost, and fuel cost for different years referring

to the examples IWR (ORNL) and IWR (ORNL)/Na-1 BR (KFK).

Table 8 repeats numerically the cumulative demand for natural uranium

that has been presented already in the graphs on pages 46 and 47.

Table 9 gives an estimate of the annual flow rate through the reprocessing

plants. This enables one to recognize the dependence of the amount to be

reprocessed on the different one and two type strategies for the years

1975, 1980, 1990, and 2000.
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8. Discussion of Results

The results as given in the last three chapters represent the actual

outcome of the studies of the "Studienkreis Kernenergiereserven". A

discussion of this wealth of results some of which are rather complex

in nature may contribute a certain amount of subjective bias to the

interpretations. Accordingly, the discussion of the results merely

represents the opinion of the authors of this study who have been

mentioned by name.

It will be useful first to consider the demand for nuclear energy

(equation 1). The curve referring to the maximum demand is increasing

with the 2.34
th

power of the time, i.e. does not increase exponentially.

One rather finds a linear increase with time of the doubling time for

nuclear energy (equation 2). In 1986 already, this doubling time

reaches the value of 7.5 years. Following the maximum estimate, in

1980 one expects a demand for 20 GW and in 2000 for 132 GW of
e e

nuclear generation capacity. The respective values for the minimum

estimate are 15 GW and 85 GW . These estimates are in good agreement
e e

with corresponding one done for instance by EURATOM and France. The

graph on page 10 shows a comparison of this information from different

sources. In addition, the doubling time of the curve for the German

energy demand has also been given.

Now turning to the results of the one and two type strategies, one has

to point to a remarkable fact: the original cost data as given in the

data blocks for different reactors (cf. table 5) are very close to

each other. This implies that the energy costs calculated from these

data will also be very similar to each other.

The French gas-graphite reactor, for instance, shows energy cost

higher by about 15 % and investment cost higher by about 30 0/0

only as compared to the LWR (ORNL), while an analoguous comparison

with the respective British data leads to a larger difference. As

has been mentioned before, however, it was not the task of this study

group to evaluate and weigh the input data.
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We now turn to the cost of one type strategies. If we limit

ourselves to the near future, the results of the one type

strategies are characteristic because the two type strategies

show that it will be a considerable time before the breeders

will take over a larger percentage of nuclear energy generation.

Because the cost are rather similar, it is not of much interest

to give exact numbers but to indicate the order of magnitude

and approximate date, when these costs will occur. In 1975 the

annual cost of energy, that are composed of capital charges,

operation and fuel costs, will reach the amount of about 1 billion

DM annually. In 1977, the investment cost alone will reach

1 billion DM per year, while in 1979 the capital charges related

to the investment cost will amount to 1 billion DM (cf. table 7).

Now turning to the cost of two type strategies we find that the

difference in annual cost of energy production accumulated until

1984 to amount to 1 billion DM, between the one type strategy

LWR (ORNL) and two type strategy LWR (ORNL)/Na-1 BR (KFK). It is

useful to keep these figures in mind, as at present the develop­

ment cost for a line of reactors are occasionally discussed to

amount to 1/2 to 1 billion DM.

The question concerning the cumulative amount of fissionable

plutonium represents another important point. Up to 1970, one

expects about 500 kg totally. In 1980 10 to 20 t of plutonium

will be available in the Federal Republic. This implies that the

technology of plutonium and of chemical reprocessing have to be

mastered within the next years. It also means that in contrast

to the U-233-thorium cycle these amounts of plutonium by means

of their mere existence will enforce a continuation of the

intensive study of the plutonium-U-23B cycle. This is internally

connected to the fact stressed here emphatically that the con­

sumption of natural uranium occurring for one type strategies

leads to the build-up of almost equal amounts of depleted uranium.
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The lWR (ORNL) strategy for example by the year 2000 will lead

to a cumulative demand for natural uranium of about 250 . 103 t

while the build-up of depleted uranium will amount to about

230 . 103 t. Both of these substances, the accumulated plutonium

as well as the accumulated depleted uranium, enforce a further

study of the plutonium-U-238 cycle.

It may be reasonable to add some remarks referring to the THTR

reactor in particular. As the mass balances show, by the year

2000 for instance a demand for natural uranium of 114 . 103 twill

exist, being accompanied by a demand for thorium of 14.9 . 103 t
o

only, i.e. 13 /0 of the former. So long as the THTR does not

breed truly, it rather represents a reactor with uranium-235 cycle,

that has a relatively smallco~af natural uranium as compared

to one type strategies. The high degree of uranium enrichment in

the THTR leads to energy cost higher than those of the fast breeder

reactors even 1:ln.lgl the investment cost in the data block for this

study are shown to be smaller as compared to those for fast breeders.

In this context we again want to point to the fact that in compiling

the data block for the THTR reactor the value of the U-233 circu­

lating in the fuel cycle of the THTR reactor was taken as zero.

Only a short discussion on the time dependence of the uranium price

would suffice. If the price of uranium concentrate (and being

connected with this, the price of plutonium) will rise from 8 to

30 $/lb the specific energy cost will change by about 3 % for
o

the Na- fast breeder, by about 8 /0 for the D20 reactor, by about
o 0

20 /0 for the lWR (ORNL), and by about 25 /0 for the AGR and the

LWR (SSW).

Finally we want to discuss the problem concerning the consumption

of the uranium resources that forms the basic question of this study.

In doing so, we will use the results of one type strategies as well

as two type strategies. We have to realize first, that according to
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the considerations of the third chapter there will be about 105 t

of urani~ ore available until the year 2000. If we are willing

to consider the third category of ore, being distinctly more ex­

pensive, we gain additional 105 t, resulting in a total of 200,000 t

of ore available. We will call these resources the resources of

class 1. Considering the uncertainty of prospection and taking into

account the opinion of many experts, one may figure there are

possibly 200,000 more tons available on a relatively high price

level for Germany (Federal Republic). These resources, only possibly

available, shall be called the resources of class 2. The resources

of classes 1 and 2 combined therefore amount to about 400,000 t.

Let us now consider the magnitude of the cumulative demand for

natural uranium first for the one type strategies up to the year

2000. The THTR needing 114 . 103 t and the D
2

0 reactor needing

168 . 103 t stay within the limits of class 1 resources (cf. page 49).

All the other reactor types, however, have to add some of the class 2

resources, beginning with 232 . 103 t needed for the AGR

reactor up to 327 . 103 t needed for the gas-graphite reactor. We

have not included the breeders in this comparison of one type strate­

gies because they are not able to start on their own. To summarize

one may state that until the year 2000 the uranium consumption of

the one type strategies is high for some particular types, but is

not prohibitive. The uranium consumption of the two type strategies,

on the other hand, amoQ~ts to smaller values, but not much smaller

on~ because up to 1985 to 1990 each two type strategy is very

similar to the corresponding one type strategy and the same applies

to the respective uranium consumptions. The uranium consumption

of the two type strategies lies between 69 '103 t for D
2
0/Na-1 and

133 . 103 t for IWR (ORNL)/Na-1, i.e. clearly stays within the

limits set by class 1.

The demand in 2040 (cf. page 51) on the contrary looks qualitatively

rather different. Each one type strategy implies a demand for

natural uranium ore that clearly exceeds the amoun~s supplied by

classes 1 and 2. The demand amounts to between 1700 . 103 t (D20)
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and 3200 . 103 t (gas-graphite). As far as we can presently

judge such a demand for natural uranium is prohibitive, even if

one takes into account the uncertainties of the prediction. Thus,

it is not possible in the long run to satisfy the demand for nuclear

energy using merely a converter reactor type.

There are two solutions to this problem. Either one starts to extract

uranium out of the seawater or one introduces breeder reactors.

If we consider the possiblity of breeding, as has been done in this

study, we will find it necessary to calculate the cumulative demand

for natural uranium at that time, when the last converter reactor

of our two type strategy has been shut down.

For the two-type strategies employing Na-1 BR (KFK) this will happen

before 2040. After this date in the long run one will need depleted

uranium only for newly installed breeder reactors. The total demand

up to 2040 may be found on page 51. It is smaller by 1.5 orders of

magnitude as compared to the demand of converting reactors for

natural uranium. Accordingly, the demand for natural uranium until

2040 will be as follows:

LWR (ORNL) / Na-1 BR (KFK) : 220 103 t

LWR (SSW) / Na-1 BR (KFK) : 210 103 t

GG (CEA) / Na-1 BR (KFK) : 160 103 t

D20 (SSW) / Na-1 BR (KFK) : 109 103 t

The maximum of the converter power installed will amount to:

LWR (ORNL) / Na-1 BR (KFK) : 50 GW in the year 1998
e

LWR (SSw) / Na-1 BR (KFK) : 3B GW in the year 1993e
GG (CEA) / Na-1 BR (KFK) : 32 GW in the year 1992e
D20 (SSW) / Na-1 BR (KFK) : 37 GW in the year 1994

e

The decrease of the power supplied by converters will start to take

place five or ten years later. Pursuing the two type strategies of

the GE breeders until 2040, when the converters will have been shut
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down too, results in the subsequent data:

llffi (ORNIJ) / Na-BR (GE): 650 103 t

lllR (SSW) / Na-BR (GE): 470 103 t

GG (CEA) / Na-BR (GE): 375 103 t

D2O(SSW) / Na-BR (GE) : 235 103 t

The maximum of the converter power installed will amount to:

UVR (ORNL) / Na-BR (GE) : 80 GW in the year 2008
e

llffi (SSW) / Na-BR (GE) : 60 GW in the year 2005e
GG (CEA) / Na-BR (GE) : 48 GW in the year 2002

e
D20 (SSW) / Na-BR (GE) : 58 GW in the year 2005e

This result is a very remarkable one. The GE breeder, employing

a rather low breeding ratio of 1.25, if combined with light water

reactors as converters leads to an absolutely inhibitive demand

for natural uranium while the KFK breeder, having a breeding ratio

of 1.38 even in combination with weak converters will result in

a demand that can just be satisfied within the limits set by class 1.

Even more: the best converter (D20) in combination with the less

efficient breeder (GE) leads to a total demand (235 . 103 t) larger

than that for the combination of the least efficient converter

(IWR-ORNL) and the more efficient breeder (KFK) (220 . 103 t).

We further state: In case the fast breeder here considered breeds

rather well, i.e. if the breeding ratio is larger than about 1.4,

it may be possible for a breeder of this type to be combined with

any converter type without exhausting the resources of class 1.

Therefore, judging from these facts, it is not necessary to develop

an intermediate generation of highly converting reactors and to

install those in 1985 - 1900. If, on the other hand, the fast breeder

under consideration has a rather small breeding ratio, the inter­

action solely with a lightwater reactor is not possible, i.e. there

will be a need for an intermediate generation, for instance one of

D20 reactors. The minimum uranium consumption that can be achieved
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in this way is given by the two type strategy D
2

0/GE and, again,

may be satisfied by the resources of class 1. These results render

it interesting to compare the additional cost of introducing an

intermediate generation of highly converting reactors with the

cost that may possibly arise in the achievement of a high breeding

ratio of a fast breeder.

we state in addition that an intermediate generation of highly

converting reactors will become necessary as soon as one considers

a cumulative natural uranium consumption of about 220 . 103 t to

be a risk. In this case, however, one also has to build breeders

that have higher breeding ratios.

The absolute minimum possible is achieved by means of the two type

strategy D20/Na-1 BR (KFK) consuming 109 . 103 t only.

The term intermediate generation does not mean this reactor genera­

tion should or could be pushed between the converter presently

available and the fast breeders. It rather will be necessary in

any case to start the installation of a breeder generation as soon

as possible, i.e. about 1980. Our two type strategies show that in

case breeders will become predominant by the year 2000, in 1985

already about 12 GW of breeder power have to be installed. This
e

then implies that the intermediate generation will be added to the

converters presently available. Accordingly, it is more like a

supplemental generation that should gain its maximum installation

in the nineties.

Confronting the possibility of breeding just discussed with the

paxPbDiwof gaining uranium out of the seawater, the statements

just made naturally do not apply. Judging from our present know­

ledge the resources made available by this method are so large as

to render any activities unnecessary in this country that concern

the economic use of uranium.

The problems concerning the extraction of uranium from seawater,

however, have to be considered technically and economically as
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unsolved, while the possibility of breeding seems to be techni­

cally feasible and will most likely provide morefavorable prices.

While the installation of fast breeders up to the year 2000 leads

to a difference concerning uranium consumption of 1.5 orders of

magnitude in the long run, anything similar with regard to costs

is impossible. Because in any plant, in which the reactor is used

as a heat source with heatexchangers, pipings, pumps, and turbines,

the cost difference cannot exceed 15 to 25 0/0. This means that

technical details will dictate the differences in cost. Within the

framework of the cost data presented here, we obtain the following

sequence of the specific cost for the two periods of 1970 to

1985 and 1985 to 2000 respectively:

I 1970 - 1985 1985 - 2000

Na-BR (GE) 1 .62 L DPf/kWh-,7 Na-1-BR (KFK) 1 .65 LOPf/kWE?

Na-1 BR (KFK) 1.62 " Na-BR (GE) 1. 76 "

THrR (GA) 1.80 " THTR (GA) 2.00 "

lWR (ORNL) 1.91 " D
2

0 (ssw) 2.08 "
AGR (UKAEA) 2.02 " lllR (ORNL) 2.09 "

I
D

2
0 (SSW) 2.09 " AGR (UKAEA ) 2.25 "

lWR (SSW) 2.12 " GG (CEA) 2.30 "
GG (CEA) 2.19 " lWR (SSW) 2.31

The data have to be considered with some reservation, because the cost

analysis as has been done here, was necessarily rather summarizing and

all estimates were based on 1970 data. Nevertheless, it may be possible

to state that the d~lopment of fast breeders gets an incentive merely

from the cost point of view too.

Thus, the advantages related to the conservation of uranium resources,

that have been treated before, do~ imply disadvantages concerning

cost. Rather, the contrary is the case.



-61-

In this context, it will be necessary, to enter once more in the

problem of the supplemental generation, for instance of D
2

0 reactors.

As long as the price for uranium concentrate will remain at 8 ~/lb,

the LWRs (ORNL) have a price advantage according to our data. However,

as soon as natural uranium resources with a price of 30 ~/lb of con­

centrate have to be used, even the price advantage of the LWRs (ORNL)

as compared to the D
2

0 reactor of our data block is lost. Both then

are characterized by specific energy cost of 2.25 or 2.30 DPf/kWh,

respectively. As compared to the LWR (SSW), the D
2

0 (SSW) reactor has

a price advantage anyhow.

Further, one has to consider, that the American diffusion plants

presently in existence are able to satisfy a demand of enriched

uranium corresponding to an installation of loo GW il~Rs. Thus, there
e

may very well come a bottle neck with regard to the supply of enriched

uranium into being in the 90'S, when our two type strategies predict

a maximum of converter power installed. This may happen in case not

only Germany but other countries as well pursue a il~ breeder strategy.

This difficulty may be overcome by the installation of a supplemental

generation of D
2

0 reactors at any case. So, it may be worth while to

investigate the problem concerning the installation of diffusion plants

more closely.

Concluding, some comments on our estimate of the reprocessing capacities

may be worth while. This estimate makes one point very clear: natural

uranium reactors need a much higher reprocessing capacity as compared

to reactors using enriched uranium and breeders as well. The magnitude

of the reprocessing capacity in a sense is complementary to that of the

separation plant capacities. Here, one may argue that there is no

reprocessing necessary for the natural uranium reactors in one type

strategies. The installation of breeders, however, will imply the re­

processing of natural uranium fuel at any rate. Because breeders will

become more and more predominant, the difference in annual throughputs

then will not be very large, at least not for the two type strategies

LWR (ORNL) - Na-1 BR (KFK) and D
2

0 (SSW) - Na-1 BR (KFK).
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In order to make the limitations of the arguments used here clear,

we should like to mention, that it was not possible for us to investi­

gate the following possibilities up to the date set by the FORATOM­

meeting:

1. Recycling plutonium into thermal reactors

2. Installing a generation of fast breeders using U-235 instead of

plutonium for start-up.

The alternative 1 may always be used, if a bottle neck with regard to

the supply of enriched uranium comes into beingj however, taking into

account the low criticality factor of plutonium as compared to U-235 in

a thermal reactor and realizing that the further installation of fast

breeders will become impossible means that the installation of the breeder

generation will be considerably delayed. This then will lead to an in­

creasing cumulative demand for natural uranium. The alternative 2 also

merits some attention. Fast breeders using U-235 have a breeding ratio

of at least 1.05 to 1.10 and so represent the most efficient "converter".

One has to investigate the cumulative demand for natural uranium in this

case as well as the date of the maximum demand for enriched uranium.

Concluding the discussion of the results, we want to point out repeatedly,

that this study has aimed at a limited goal. This goal was not, to come

to an extensive rating of all the aspects of the different types and the

respective strategies. A rating of this type had to enter into technical

details and into details of the cost factors more thoroughly. Problems

of foreign exchange had to be considered too in close connection to poli­

tical questions. All this is beyond the goal of this study. The data

supplied by this study, however, were supposed to provide a basis for

discussions of this type and to set a framework, considering the problem

of uranium resources in particular.

9. Conclusions

With special reference to the discussion of the results as presented in

chapter 8, it is possible to formulate the following conclusions:
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1. An upper estimate of the demand for nuclear power installed leads

one to expect 130 GW in the year 2000.
e

2. In 1975 the total annual cost of nuclear energy will amount to

about 1 billion DM. In 1977. the annual investments alone and in 1979,

the capital charges of the annual investments will reach the amount of

1 billion DM annually.

3. In 1970 about 500 kg of plutonium will have been produced within

the Federal Republic; in 1980 this will be between 10 and 20 t.

4. If the total consumption of natural uranium in the Federal Republic

is assumed not to exceed 200 to 300 . 103 t. fast breeders must be

used. Otherwise, the demand for natural uranium will rapidly increase

to some millions of tons after the year 2000. This amount most likely

could be made available out of the seawater only, should this turn out

to be technically as well as economically feasible.

5. The alternative, to install a generation of fast breeders initially

fueled with U-235 has not yet been investigated in this study. If the

plutonium demand of a fast breeder generation is satisfied by means of

converter reactors. the demand for natural uranium will remain below

about 200 . 103 t for any combination of converter/breeder. as long

as the breeder has a breeding ratio of about 1.4 or more. In this case.

no supplemental generation of high converting reactors will be necessary.

6. From the view point of conservation of the uranium resources one

should preferably combine a converter having a low conversion ratio

with a breeder, having a high breeding ratio instead of coupling a

converter having a high conversion ratio to a breeder having a low

breeding ratio.

7. If the fast breeder of the breeder generation has a breeding ratio

below 1.4, a supplemental generation of reactors. for instance D20­

-reactors. will become necessary. The installation of this generation

would reach its maximum between 1985 and 1990.
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8. In case one wants to keep the total consumption well below

200 . 103 t for Germany (Federal Republic), a breeding ratio of

at least 1.4 turns out to be necessary for the fast breeders and

a supplemental generation of D
2

0 reactors, for example will become

mandatory.

9. From an evaluation of all the available data blocks concerning

reactor cost, the fast breeder offers the most favorable cost

outlook.

10. The maximum converter installation is expected to occur in the

nineties. Should these turn out to be light water reactors, one

expects a capacity of 45 GW . This would tie up about half the capa-
e

city of the separation plants presently installed in the USA. It

still has to be shown that an adequate supply of enriched uranium

will be available under these circumstances.

11. The capacity of the reprocessing plants needed is relatively

small for reactors running on enriched uranium (about 4500 t annually

in 2000). Natural uranium converters, on the other hand, will need a

capacity up to 20,000 t annually, should they be required to satisfy

by themselves the total demand for nuclear energy. In the case of two

type strategies lWR (ORNL) - Na-1 BR (KFK) and D20 (SSW) - Na-1 BR

(KFK) this difference will not be very large in the year 2000 (4700

and 7600 t/a respectively).
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