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Abstract—Shared control techniques have a great potential
to create synergies in human-machine interaction for efficient
and safe applications. However, an optimal interaction requires
the machine to consider the individual behavior of the human
partner. A widespread approach for modeling human behavior is
given by optimal control theory, where the movement trajectories
of a human arise from an optimized cost function. The aim of the
identification is thus to determine parameters of a cost function
which explains observed human motion. The central thesis of this
paper is that individual cost function parameters which describe
specific behavior can be determined by means of Inverse Rein-
forcement Learning. We show the applicability of the approach
with a tracking control task example. The experiment consists
in following a reference trajectory by means of a steering wheel.
The study confirms that optimal control is suitable for modeling
individual human behavior and demonstrates the suitability of
Inverse Reinforcement Learning in order to determine the cost
function parameters which explain measured data.

Index Terms—Human Behavior Identification, Inverse Optimal
Control, Inverse Reinforcement Learning, Shared Control.

I. INTRODUCTION

Recent trends in human-machine collaboration have led
to increased interest in shared control systems, where both
human and machine simultaneously interact with a dynamic
system. The shared control paradigm allows to keep the human
“in the control loop” [1], [2]. In this way, potential issues
in highly critical situations (see [3]–[5]) due to the lack of
situational awareness are prevented. While literature has shown
that shared control can increase overall performance while
reducing control effort, performance and user acceptance can
be further improved by taking individual human behavior
models into account [6]. Thus, suitable models for human
behavior are needed which allow the adaption of the machine
to the partner it is sharing control with. An identification
method for individual model parameters hence allows the
development of shared control systems based on individual
human skill [7].

The last decades have seen a growing trend towards opti-
mality principles and dynamic optimization in order to describe
human behavior. Within this theory, human motion arises
from the optimization of a cost function, a process which
is believed to take place in the central nervous system [8].
Various kinds of cost functions have been evaluated with regard
to the suitability to describe human motion. Some of these
include minimum jerk [9], minimum joint torque change [10]
or a combination of several cost functions [11]. These studies
motivate the use of optimal control theory in order to describe

human motor control intent in specific tasks [12]. In this
context, the human control trajectories are available and the
aim is to recover a cost function with respect to which the
observed movement patterns are optimal. This is known as the
inverse optimal control problem. Recently, literature has grown
around applying inverse optimal control for human behavior
identification, especially within the class of linear quadratic
regulator (LQR) theory [13]–[15]. Additionally, the retrieved
cost function is used in Learning by Demonstration in order
to teach a robotic device to act in a similar way as the humans
[16], [17].

Different approaches for the solution of the inverse optimal
control problem have been proposed. One possibility is an
iterative adaption of the cost function parameters based on a
comparison of the measurements with the trajectories produced
by the cost function with the current parameters [15], [16].
However, the computation time is in general huge since several
forward optimal control problems have to be solved in the
identification process. Other studies introduce the minimization
of residual functions which represent the extent to which first-
order optimality conditions are violated [18]–[20]. Further
methods either assume the control law as a function of the
state to be given [12] or propose a solution based on the Riccati
equation which leads to a limitation to LQR problems [13].

A related class of methods is given by Inverse Reinforce-
ment Learning (IRL) techniques. These have been developed
in the field of computer science and in the context of Markov
Decision Processes (MDP). Such models assume discrete and
finite control and state variables. More recently, IRL methods
for continuous variables were proposed, making them similar
to inverse optimal control and therefore suitable for modeling
human motion which is of continuous nature. Observed human
motion trajectories might slightly deviate from optimality due
to measurement noise, control noise and variability of human
motor control [21]. To account for these effects during identi-
fication, a probabilistic IRL approach is reasonable. Therefore,
we propose for human behavior identification the application
of a Maximum Entropy (MaxEnt) based IRL method. Using
the principle of maximum entropy (a concept introduced in
[22]) also helps to avoid issues concerning the ill-posedness
of inverse optimization.

In this paper, we present an approach for identification
of human behavior by means of inverse optimization. While
the structure of the cost function is a-priori defined, its
parametrization can describe the different movement patterns



of humans performing the same task. The results demonstrate
that specific cost function parameters can be found for each
individual performing a control task and hence lead to charac-
teristic models for each person.

The paper is organized as follows. In the next section,
we formulate the inverse optimization problem for the iden-
tification of cost function parameters. Section III introduces
MaxEnt IRL for the identification problem. We further show
in Section IV the applicability of the approach for human
behavior modeling by means of an experiment where several
subjects perform a specific control task. Finally, conclusions
are drawn in Section V.

II. PROBLEM DEFINITION

In this paper, we regard human behavior in the control of
a specific dynamic system. We assume the system to be time-
invariant and to be given by

𝑥(𝑘+1) = 𝑓(𝑥(𝑘),𝑢(𝑘)) (1a)
𝑥(1) = 𝑥1, (1b)

with discrete states 𝑥(𝑘) ∈ R𝑛 and controls 𝑢(𝑘) ∈ R𝑚, where
(·)(𝑘) indicates the 𝑘-th time step. Furthermore, 𝑥1 denotes the
initial state value. We define the control and state trajectories
generated by the human as

𝑥 =
[︁(︀
𝑥(1)

)︀⊤
. . .

(︀
𝑥(𝑇 )

)︀⊤]︁⊤ ∈ R𝑛𝑇 (2a)

and

𝑢 =
[︁(︀
𝑢(1)

)︀⊤
. . .

(︀
𝑢(𝑇 )

)︀⊤]︁⊤ ∈ R𝑚𝑇 (2b)

for 𝑇 time steps.
Following the line of optimal control theory for modeling

human behavior, the control and state sequence in (2) arise
from the minimization of a cost function. In other words, the
human determines a control strategy to minimize the individual
cost function 𝐽 (𝑥,𝑢) which leads to the optimization problem

𝑢* = argmin
𝑢

𝐽 (𝑥,𝑢) , (3)

w.r.t. (1), where (·)* denotes the optimal solution. The control
strategy 𝑢* leads to corresponding trajectories 𝑥*.
Within the scope of this paper, we assume the cost function to
be a linear combination of 𝑁 given features 𝜑(𝑥,𝑢), i.e.

𝐽 =

𝑇∑︁
𝑘=1

𝜃⊤𝜑(𝑥(𝑘),𝑢(𝑘)), (4)

with 𝜃 ∈ R𝑁 .
The problem of identifying 𝐽 is then formulated as follows.

Problem 1 [Identification of 𝐽]

Let measured state and control trajectories �̃�, �̃� of human
movement and the system dynamics (1) be given. Furthermore,
assume the observed states and controls to be optimal w.r.t. a
cost function with the structure given in (4).
Determine parameters 𝜃 of the cost function 𝐽 which is
minimized by �̃�.

III. IDENTIFICATION METHOD

The problem of recovering cost functions from observations
of expert’s demonstrations assumed as optimal is ill-posed. In
this case this means that multiple possible cost functions may
provide identical optimal trajectories. Moreover, as mentioned
previously, observed trajectories might slightly deviate from
optimality [21]. To account for these effects during identifi-
cation, a probabilistic approach is reasonable, where observed
trajectories are assumed to be sampled by a density 𝑝(𝜁), 𝜁 =
{𝑥,𝑢} and denoted as expert trajectories 𝜁𝐸𝑙

, 𝑙 ∈ {1, ..., 𝑑}.
Therefore, in order to resolve this ambiguity, we base the
identification method upon the MaxEnt IRL formulation first
introduced by [22] for discrete and finite values, which is based
on the principle of maximum entropy. This method leads to the
least biased estimate possible on the given information [23].

In order to describe human behavior, continuous valued
states and controls need to be considered. This leads to an
uncountable infinite set of possible trajectories. Maximizing
differential entropy leads to a probability distribution

𝑝 (𝜁𝐸𝑙
) =

e−𝐽(𝜁𝐸𝑙)∫︁ ∞

−∞
e−𝐽(𝜁) d𝜁

. (5)

Here, the integral is over all possible trajectories considering
(1).
Since we regard deterministic system dynamics, the expert tra-
jectories 𝜁𝐸𝑙

are uniquely defined by the initial state 𝑥(1) and
the control strategy 𝑢. Therefore, 𝑝 (𝜁𝐸𝑙

) = 𝑝
(︀
𝑢𝐸𝑙

⃒⃒
𝑥(1),𝜃

)︀
.

Following the formulation of [24] for deterministic, fixed-
horizon control tasks, rewriting (5) and using a quadratic
Taylor series expansion around 𝑢𝐸𝑙

for approximating the cost
function 𝐽 in the integral leads to

𝑝
(︁
𝑢𝐸𝑙

⃒⃒
𝑥(1),𝜃

)︁
=

e−𝐽
(︁
𝑢𝐸𝑙

⃒⃒⃒
𝑥(1),𝜃

)︁
∫︁ ∞

−∞
e−𝐽( �̃�|𝑥(1),𝜃) d�̃�

(6)

≈ e
(︁
− 1

2𝑔
⊤
𝐸𝑙

𝐻−1
𝐸𝑙

𝑔𝐸𝑙

)︁
det (𝐻𝐸𝑙

)
1
2 (2𝜋)−

𝑛𝑇
2 .

Here, 𝑔𝐸𝑙
∈ R𝑛𝑇 and 𝐻𝐸𝑙

∈ R𝑛𝑇×𝑛𝑇 are defined as

𝑔𝐸𝑙
:=

𝜕𝐽

𝜕𝑢
+𝐷

𝜕𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑢=𝑢𝐸𝑙
𝑥=𝑥𝐸𝑙

, (7)

𝐻𝐸𝑙
:=

𝜕2𝐽

𝜕𝑢2
+𝐷

𝜕2𝐽

𝜕𝑥2
𝐷⊤ +

𝜕2𝑥

𝜕𝑢2

𝜕𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑢=𝑢𝐸𝑙
𝑥=𝑥𝐸𝑙

(8)

The matrix 𝐷 = 𝜕𝑥
𝜕𝑢

⊤
represents the influence of changes

of 𝑢 on the state 𝑥 at each time step 𝑘 = 1, ..., 𝑇 [25]. The
entries of 𝐷 are given by



𝐷𝑘1,𝑘2 =
𝜕𝑥(𝑘2)

𝜕𝑢(𝑘1)

⊤

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑥(𝑘+1)

𝜕𝑢(𝑘)

⊤ ⃒⃒⃒⃒
𝑘=𝑘1

, 𝑘2 = 𝑘1 + 1

𝐷𝑘1,𝑘2−1
𝜕𝑥(𝑘+1)

𝜕𝑥(𝑘)

⊤ ⃒⃒⃒⃒
𝑘=𝑘2−1

, 𝑘2 > 𝑘1 + 1

(9)

The partial derivatives of the states with respect to the
control values are part of the numerical solution of the initial
value problem which approximates the next state. The matrix
𝐷 employs the partial derivatives with respect to 𝑢 in each
time step for the whole corresponding interval Δ𝑇 . Contrary
to this approach, we propose a modification of the matrix 𝐷 in
order to improve the approximation. Inspired by the trapezoid
method for solving initial value problems [26], we propose
an approximation of the effect of 𝑢(𝑘1) at 𝑘1Δ𝑇 on 𝑥(𝑘2) by
means of

�̃�𝑘1,𝑘2
:=

1

2

(︂
𝜕𝑥(𝑘2)

𝜕𝑢(𝑘1)
+

𝜕𝑥(𝑘2+1)

𝜕𝑢(𝑘1)

)︂⊤

. (10)

The modified matrix �̃� takes in to account the effect of the
control value 𝑢(𝑘1) on the interval of 𝑥(𝑘2) until 𝑥(𝑘2+1). This
allows a better approximation of the influence on the states by
changes in the control applied by the human.

After determining (10) and hence (7) and (8), the ap-
proximation for the probability distribution in (6) can be
calculated. Let 𝑑 observed expert demonstrations be given by
𝒟 = {𝜁𝐸1

, . . . , 𝜁𝐸𝑑
} with 𝜁𝐸𝑙

=
{︀
𝑥𝐸𝑙

,𝑢𝐸𝑙

}︀
, 𝑙 = 1, . . . , 𝑑.

Now we determine

𝜃𝐸 = argmax
𝜃

𝑑∏︁
𝑙=1

𝑝 (𝜁𝐸𝑙
) = argmax

𝜃

𝑑∑︁
𝑙=1

ln
(︀
𝑝 (𝜁𝐸𝑙

)
)︀
, (11)

where 𝜃𝐸 is an estimate for the parameters of the expert’s cost
function. This is a parameter optimization problem which can
be solved using standard algorithms. Maximizing 𝑝 (𝜁𝐸𝑙

) leads
to a high probability for the expert’s demonstrated trajectories
𝒟. This means, trajectories with similar costs as the expert’s
are favoured. At the same time, it requires that the demonstra-
tions receive minimal costs from the function parameterized by
𝜃. The solution 𝜃𝐸 of (11) solves the identification problem
defined in Section II.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the suitability of the previ-
ously presented IRL method for identification by means of an
experiment. Our aim is to determine individual cost function
parameters from measured data which describe the behavior
of each test person.

A. Experimental Framework and Participants

For the measurements, we used an experimental framework
consisting of three main components: an active steering wheel,
a monitor with a visualization window and a real-time envi-
ronment which contains the communication structure between

Fig. 1. Steering wheel and visualization monitor used for the experiment

TABLE I
STEERING WHEEL PARAMETERS

Parameter Value Description

Θ𝐿 0.04 kgm2 Steering wheel rotational inertia
𝑐 1.146 Nm/rad Spring constant
𝑑 0.286 Nm · s/rad Damping constant

all components. Fig. 1 shows the components of the conducted
experiment.

The measurements of the steering wheel angle 𝜙 are done
by an incremental encoder of 40000 increments per full
rotation at a sampling frequency of 𝑓𝑠 = 40Hz. The dynamics
of the steering wheel is given by

�̇� =

[︂
0 1

− 𝑐
Θ𝐿

− 𝑑
Θ𝐿

]︂
𝑥+

[︂
0
1

Θ𝐿

]︂
𝑢, (12)

where 𝑥 =
[︀
𝜙 �̇�

]︀⊤
and 𝑢 = 𝑀 is the steering torque applied

by the human. The parameters of the system are given in Table
I. This system was discretized using a sample time of 𝑇𝑠 =
1/𝑓𝑠 = 0.025 s in order to get the discrete-time representation
given in (1).

Fig. 2 shows a sequence of screen captures from the
experiment visualization. The participants are able to control
the horizontal position of the marker (square) in order to follow
a reference trajectory. A reference point crosses the complete
visualization window in 2 s. The vertical position of the marker
is fixed at a height of 25%.

The control task consists in following a reference trajectory
using the steering wheel. We further introduce the velocity and
the torque as possible features:

𝜑(𝑥(𝑘),𝑢(𝑘)) =

⎡⎢⎢⎢⎣
(︁
𝑥
(𝑘)
1 − 𝑥

(𝑘)
1,ref

)︁2(︁
𝑥
(𝑘)
2

)︁2(︀
𝑢(𝑘)

)︀2
⎤⎥⎥⎥⎦ . (13)



Fig. 2. Visualization of the control task. The picture sequence is from left
to right.

Hence, the cost function is given by (4), with the features
(13) and is parameterized by a vector 𝜃 ∈ R3.

Five people (age 24.6±2.19) participated in the study. They
did not have prior knowledge of the investigation subject and
also never participated in a study concering the experimental
design described previously. The test persons did a first run for
2 minutes with an arbitrary reference composed of constant,
steps and linear parts. They were told to move the steering
wheel freely and not necessarily with the aim of matching
the reference. In this way, they were able to get familiar with
the steering wheel and the visualization system. Afterwards,
before starting the test to be measured, they were told this
time to move the steering wheel in such a way that the marker
matches the reference trajectory. This reference had similar
components as the one the participants saw in the test run.
The final experiment had a duration of 90 seconds.

B. Evaluation Procedure
The identification algorithm demands an expert demonstra-

tion 𝜁𝐸 which consists of all states and the control variable
for all time steps 𝑘. In the experiment, only a sensor for
measuring the steering angle 𝑥1 is available. Therefore, the
steering angle velocity 𝑥2 and the steering torque 𝑢 were
obtained by differentiating the angle signal and calculated by
means of (12), respectively.

Afterwards, the expert demonstration of each test person
was used to determine their individual cost function param-
eters 𝜃 by solving (11) with a standard sequential quadratic
programming method. Since no ground truth exists for the
cost function parameters, it is not possible to evaluate the
obtained cost function parameters directly. Therefore, we use
them to calculate the trajectories 𝑥 and 𝑢 which are optimal
with respect to the identified cost function. The trajectories
are determined by solving the dynamic optimization problem
numerically. These are then compared to the expert demon-
strations. This evaluation procedure is depicted in Fig. 3. We
calculated the root mean squared (RMS) error between model
trajectory 𝑖 and measured trajectory 𝑗

𝛿𝜉(𝑖, 𝑗) =

⎯⎸⎸⎷ 1

𝑇

𝑇∑︁
𝑘=1

(︁
𝜉
(𝑘)
𝑖 − 𝜉

(𝑘)
𝑗

)︁2

(14)

for 𝜉 ∈ {𝑥1, 𝑥2, 𝑢} and then build the mean RMS error

𝛿MRMS(𝑖, 𝑗) =
1

3
(𝛿𝑥1(𝑖, 𝑗) + 𝛿𝑥2(𝑖, 𝑗) + 𝛿𝑢(𝑖, 𝑗)) (15)

for all combinations 𝑖, 𝑗 ∈ {1, ..., 5}.

C. Results

The identification algorithm determined different cost func-
tion parameters for each test person. The parameters are given
in Table II. We normalized all parameters with respect to 𝜃3
in order to ensure comparability. It is worth mentioning that
this does not affect the trajectories �̂� and �̂� since the ratio
between cost function parameters determines the course of the
trajectory and not their absolute values. We show exemplarily
the identification results for the whole experiment of subject 1.
The model trajectories generated by the identified parameters,
the expert demonstration and the reference trajectories are
depicted in Fig. 4. It can be seen that the model is capable
of describing the behavior of the subject while performing the
control task. However, several jumps can also be observed in
the model trajectory of the steering torque 𝑢. These occur at the
same time where the reference trajectory of the steering angle
has a step. These steps could be observed in all identification
results. Furthermore, we compared the identification results of
the steering angle of test subject 1 and 2. This is shown in
Fig. 5 for the time between 𝑡 = 0 and 𝑡 = 18. The form
of the trajectory of both subjects is similar. However, some
differences are noticeable. Test subject 2 is less smooth and
did not follow the reference with the same accuracy as subject
1. The following Table III shows the mean RMS error between
model and measured trajectories. For example, model 3 has the
least mean RMS error to the corresponding subject 3. However,
models 1 and 5 show similar values. A comparable result is
observed with subjects 2 and 4 which are very alike. This
similarities are also noticeable in the identified parameters in
Table II.

D. Discussion

The experiments indicate that different movement patterns
between humans can be observed, even though the control

𝑥*,𝑢*

Inverse Optimization

Trajectory
generation

Calculation of trajectory deviation

𝜃

�̂�, �̂�

𝛿MRMS

Fig. 3. Evaluation process for the identification results
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Fig. 4. Identification results for subject 1. The reference trajectories are
plotted in gray and the expert demonstration in green. The blue dotted
trajectories are optimal with respect to the cost function with the identified
parameters 𝜃.

TABLE II
IDENTIFICATION RESULTS

Test person 𝜃

1
[︀
28.7939 0.2092 1

]︀⊤
2

[︀
14.2072 0.5758 1

]︀⊤
3

[︀
24.3028 0.2566 1

]︀⊤
4

[︀
14.7202 0.6295 1

]︀⊤
5

[︀
22.8732 0.2231 1

]︀⊤
TABLE III

MEAN RMS ERROR 𝛿MRMS FOR ALL SUBJECTS

Data
1 2 3 4 5

M
od

el

1 0.1282 0.1965 0.1472 0.2292 0.1505
2 0.1799 0.1624 0.1728 0.1914 0.1820
3 0.1274 0.1826 0.1411 0.2153 0.1467
4 0.1806 0.1617 0.1732 0.1899 0.1824
5 0.1278 0.1835 0.1419 0.2171 0.1473

task was clearly specified by a trajectory. Considering higher-
level goals (e.g. reaching a certain final position) would lead
to an even greater variability as shown by several studies
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Fig. 5. Expert demonstrations (red) and model trajectories (orange, dashed)
for subject 1. Expert demonstrations (dark green) and model trajectories
(green, dotted) for subject 2.

[27], [28]. The observed differences in human behavior can
be described by the optimal control approach. Fig. 5 shows
that the steering angle trajectories of subject 1 and 2 are best
explained by the corresponding models. Table III confirms this
trend. The identification algorithm does not directly minimize
this metric. Therefore, in some cases the corresponding model
is outperformed by another similar model by a small margin.
These minor differences may also arise due to signal noise.
Table II shows that subjects 1, 3 and 5 as well as subjects 2
and 4 have similar parametrization. Since the parameters 𝜃1
of the first group are bigger, it can be asserted that this group
was more skilled in the tracking task than the second group.
This can also be seen in the comparison of subject 1 and 2 in
Fig. 5.

On the whole, the model is able to describe human behavior
adequately. Nevertheless, it is noticeable that some aspects
cannot be fully taken account of. For example, the final value
of a reference (e.g. after a step) is generally not reached. One
difficulty lies within the fact that the test persons sometimes
reached the final value and sometimes did not. This effect
could not be taken into account by the cost function. Moreover,
high-frequency components of signals cannot be described by
the model. This is especially noticeable in the steering angle
velocity trajectory, where the model can only reproduce an



average value. The reason is that these high-frequency signals
are not part of the cost function. The aforementioned jumps
in the model trajectory of the steering torque 𝑢, which can be
seen in Fig. 4 around 𝑡 = 10, 𝑡 = 30 and near the end, are
due to the discontinuities in the reference trajectory. Reason
for this is that the approach determines the optimal trajectories
w.r.t. the cost function and does not prohibit abrupt changes in
the values at the same time. In order to mitigate this effect, the
system dynamics could be extended with a submodel which
describes human arm dynamics.

To summarize, it can be stated that the identification algo-
rithm is able to describe individual behavior. Different behavior
leads to different cost function parameters which generate
trajectories which approximate the specific motion trajectories
adequately.

V. CONCLUSION

In this paper, we presented an approach for human behavior
identification by means of Inverse Reinforcement Learning.
The model of the human is given by the optimal control
approach where human behavior when performing a control
task is produced by optimizing a cost function. We proposed
an approach based on the principle of maximum entropy in
order to determine cost function parameters. The performed
experiment with 5 participants showed that inverse optimiza-
tion methods can be used to identify individual parameters
of a cost function underlying human behavior. It could also
be observed that the behavior of different subjects varies in
spite of performing the same specified task. The differences
in their behavior leads to different cost function parameters.
Furthermore, the approach allows the identification of differ-
ent skill groups. The experiment confirmed that the optimal
control approach is able to model specific human behavior
which is essential for shared control systems. In future work,
we will analyze different structures of the cost function for
identification. Additionally, we will perform similar studies
concerning identification of human behavior in a control task
in the presence of an automatic controller.
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