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Abstract 

Ultrasound transmission tomography offers quantitative characterization of the tissue or 
materials by their speed of sound and attenuation. Reconstruction of such images is an 
inverse problem which is solved iteratively based on a forward model of the Helmholtz 
equation by paraxial approximation and thus is time-consuming. Hence, developing optimiz-
ers that decrease this time, in particular reducing the number of forward propagations is of 
high relevance in order to bring this technology into clinical practice. In this paper, we solve 
the inverse problem of reconstruction in a two-level strategy, by an outer and an inner loop. 
At each iteration of the outer loop, the system is linearized and this linear subproblem is 
solved in the inner loop with a preconditioned conjugate gradient (CG). A standard Cholesky 
preconditioning method based on the system matrix is compared with a matrix-free Quasi-
Newton update approach, where a preconditioned matrix-vector product is computed at the 
beginning of every CG iteration. We also use a multigrid scheme with multi-frequency 
reconstruction to get a convergent rough reconstruction at a lower frequency and then refine 
it on a higher-resolution grid. The Cholesky preconditioning reduces the number of CG 
iterations by approx. 70%~85%; but the computation time for determining the system matrix 
for the Cholesky preconditioner is dominating, offsetting the gains of the reduction of itera-
tions. The matrix-free preconditioning method saves approx. 30% of the computation time 
on average for single-frequency and multi-frequency reconstruction. For the robust multi-
frequency reconstruction, we test three breast-like numerical phantoms resulting in a devia-
tion of 0.13 m/s on average in speed of sound reconstruction and a deviation of 5.4% on 
average in attenuation reconstruction, from the ground truth simulation. 
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1 Introduction 

Breast cancer diagnostics based on ultrasound computed tomography (USCT) promises high 
specificity for early cancer detection. Some 2D or 3D USCT devices [1] measure reflection 
and transmission tomography at the same time. Transmission tomography offers quantitative 
characterization of the imaged tissue or materials by speed of sound and attenuation profiles 
[2]. In this paper, we focus on the image reconstruction of transmission tomography based on 
the Karlsruhe USCT system [1]. 

For image reconstruction of transmission tomography, we consider the wave equation in the 
frequency domain. The Helmholtz equation models the wave propagation of ultrasound 
through an acoustic background medium including refraction, diffraction and multiple 
scattering as 

,    (1.1) 

with the frequency dependent pressure field . The acoustic medium is described by the 
background wave number  and the refractive index , where  ac-
counts for the angular frequency for frequency  and speed of sound (SoS)  of the back-
ground medium, and  accounts for the deviation of the SoS from the background medium. 
The full solution of the Helmholtz equation poses a very high computational burden. To 
mitigate this limitation for medical imaging, the paraxial approximation was chosen [3][4] 
which is fast enough to be applied for radiological and material diagnosis at the same day. 
The paraxial approximation describes the ultrasound field via nearly plane waves in forward 
direction. We use the wide-angle parabolic equation (WAPE) [5] and perform Lie-Trotter 
splitting [6] to the (formal) solution of the parabolic/paraxial approximation. The forward 
solution on the computational grid can be calculated by 

.   (1.2) 

The index  at  and  denote the considered  slice, whereas the indices for the other 
directions are omitted. The spectral variable is denoted by  and the discrete Fourier trans-
formations are denoted by fft and ifft in 1D or 2D, whether the problem is 2D or 3D respec-
tively. 

The image reconstruction consists of determining the distribution of SoS and attenuation 
which are both derived from . To be specific,    , where    
describes the deviation in the SoS (  is the SoS in the object and  in the background 
medium), and  accounts for frequency dependent attenuation. Hence, we need to 
estimate the parameter  according to the forward model (1.2) given the measurements taken 
by the USCT system. This is known as an inverse problem usually provided as a nonlinear 
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least-squares problem, and it is ill-posed due to the nonlinearity and the extremely large scale 
of the problem. Therefore, we use Newton type methods to linearize the problem together 
with preconditioned conjugate gradient (CG) method to solve the linearized system at every 
Newton iteration.  

Iterative methods such as CG [8] and generalized minimal residual (GMRES) [14] are 
widespread to solve a sequence of linear systems that arise in Newton’s framework, without 
forming the Jacobian matrices explicitly while the Jacobian-vector multiplications are 
approximated by the finite difference method. A challenge is to determine a preconditioner 
to accelerate the convergence of the Jacobian-free iterative methods. Existing precondition-
ing methods [15][16] require the full information of the Jacobian for the first outer iteration 
and the lower or upper triangular part of the Jacobian for each outer iteration. For large 
problems, it is still expensive to compute the Jacobian even for the first outer iteration. 
Moreover, if the Jacobian is dense or has some sparse structure, computing the lower or 
upper triangular part can be as expensive as computing the whole matrix [16]. On the other 
hand, few existing preconditioning techniques are truly “matrix-free”, where neither the full 
nor the partial system matrix needs to be formed explicitly [17]. One example can be found 
in [9], where Morales and Nocedal proposed a preconditioner for CG which has the form of a 
limited memory Quasi-Newton matrix and is generated using information from CG iterations 
without requiring explicit knowledge of the system (Jacobian) matrix. Xu et al. [17] pro-
posed an inner-iteration preconditioner based on the weighted Jacobi method, and used it for 
preconditioning the CGLS [18] and BA-GMRES [19] methods in a trust region framework. 
In this paper, we adopt the Quasi-Newton updating preconditioning techniques [9][10] for 
CG in our USCT image reconstruction task. 

2 Methods 

2.1 Gauss-Newton method 

The reconstruction is defined by the least-squares problem on the squared �� norm of the 
residual 

���� �
�

�
‖����‖�

� ,    (2.1) 
where vector ����� �� � �� , called residual vector, is given by ���� � ���� � ��. Here, 
�� � �� are the measured pressure field from the USCT system, and ����� �� � �� is the 
predicted pressure field computed according to the forward model of (1.2), i.e., � � ����. 
The unknowns � � �� are the parameters that we want to estimate for reconstruction. The 
derivatives of ���� can be expressed in terms of the Jacobian ����, which is the � �� 
matrix of the first partial derivatives of the residuals, defined by 

43



Int. Workshop on Medical Ultrasound Tomography 

 

���� � �
���
���
����������
���������

� ��������� �������� � � ���������.  (2.2) 

The gradient and Hessian of ���� can then be expressed as follows: 

����� � ∑ �����������
�
��� � ���������,   (2.3) 

 ������ � ∑ �������
��� ������� � ∑ �������������

��� � ��������� � ∑ �������������
��� .     (2.4) 

To minimize the nonlinear objective function ���� of (2.1), we use the Gauss-Newton (GN) 
method, which can be viewed as a modified Newton’s method [7]. Instead of solving the 
standard Newton equations ��������� � ������� for a search direction �� (which can be 
overdetermined or underdetermined depending on ���), we solve the following system, i.e. 
the normal equations, to obtain the search direction ����: 

��
�����

�� � ���
���.    (2.5) 

Here, the use of the approximation ���� � ��
��� relieves us to compute individual residual 

Hessians ����� � � ���� � ��, which are needed in the second term in (2.4).  

To solve the linearized system of (2.5), where the system matrix now corresponds to �����, we 
selected the conjugate gradient (CG) method [8] which does not need the system matrix 
explicitly but only matrix-vector products on both sides of the equation (2.5). Based on the 
forward model, we can formulate two iterative schemes for the evaluation of the derivative 
of the forward operator and its adjoint. They are respectively called the sensitivity operator �� 
and the adjoint operator ��� in [4]: the former produces the product of �� and its input vector 
while the latter produces the product of ��� and its input vector. 

After the search direction ����is computed by the CG method, we would like to choose a step 
length �� to give a substaintial reduction of � along this direction, but at the same time we 
do not want to spend too much time making this choice. The ideal choice would be the 
global minimizer of the univariate function ����� � ���� � ����

���. There is a closed-form 
solution for ��  if � is a simple quadratic function. In our case, however, � is much more 
complicated and to find even a local minimizer of � requires many evaluations of � and 
possibly ��. Therefore, we use a practical backtracking line search method [7] to decide the 
step length �� along the search direction ����. A general description of the iterative Gauss-
Newton method follows. 

Algorithm 2.1 (Gauss-Newton method) 
Given initial solution ��; 
for  � � ������ � 
       Solve ������������� � ��������� for ��by the conjugate gradient method; 
       Find the step length �� for �� using line search; 
       Set ���� � �� � ����; 
       if  ��� � �����  then  stop;  endif  % MSE stands for mean squared error. 
endfor 
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2.2 Preconditioners for the conjugate gradient method 

For large-scale applications with symmetric system matrices, CG is usually used with pre-
conditioners. A widely used and efficient preconditioner is the incomplete Cholesky precon-
ditioning. The Cholesky factorization is a decomposition of a matrix  into the form 

, where  is a lower triangular matrix. Incomplete Cholesky factorization is a variant in 
which  might be restricted to have the same pattern of nonzero elements as ; other ele-
ments of  are ignored [8]. 

The incomplete Cholesky preconditioning is based on the system matrix while in our forward 
model computing and storing the Jacobian is expensive both in time and memory consump-
tion. Moreover, when the matrix gets large, factorization is a nontrivial task even though the 
matrix is sparse. Therefore, matrix-free preconditioning techniques are preferable for our 
application. An elaborate and recent approach is through limited memory Quasi-Newton 
update [9][10] given the gradient function without forming the Hessian. This approach 
approximates the diagonal of the Hessian via Quasi-Newton updates as preconditioners, 
using information gathered and updated from CG iterations. The preconditioner does not 
require explicit knowledge of the system matrix and is therefore suitable for our application 
where only products of the system matrix times a vector can be computed.  

Let us denote the problem of (2.5) as  (i.e., , , ), which 
we use the preconditioned CG method to solve for the Gauss-Newton search direction , i.e., 

. It is equivalent to the following optimization problem  

.    (2.6)  

The Quasi-Newton matrices are updated by means of the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) formula, 

 ,   (2.7) 
where  

  ,   ,   ,  .  (2.8) 

The pair of vectors  is called a correction pair. Practically, we do not form the matri-
ces , but only store the correction pairs and the scalars , and then use a recursive 
formula as described in [11] to compute the product of  and the CG residual vector. A 
general description of the preconditioned CG method with Quasi-Newton update precondi-
tioner (PREQN) follows. 
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Algorithm 2.2 (preconditioned CG method with PREQN preconditioner) 
Given ;                 % Note that  means the number of iteration in the outer Gauss-Newton loop. 

; 
for   
       Compute  using PREQN preconditioner routine; 
        ; 
       if    then   ; 
       else   ;   ;  endif 
       ;  ;  ; 
       if    then  stop;  endif 

endfor 

In Algorithm 2.2, only one call to the PREQN preconditioner routine is needed for each CG 
iteration. The routine is summarized as Algorithm 2.3.   

Algorithm 2.3 (PREQN preconditioner) 
Given   ;     %  is the number of iteration in the outer Gauss-Newton loop. 
                                 %  is the number of iteration in the inner CG loop. 
if    then  decide if  is to be saved;  endif 
if    then  ;                 % No preconditioning for CG at the first outer iteration. 
else { if    then  build preconditioner   ;  endif }  ;  endif 

2.3 Multi-frequency reconstruction 

Convergence for single-frequency reconstruction is only guaranteed if the typical size of the 
reconstructed object multiplied by the ultrasound frequency is smaller than a given constant 
[12]. If this condition is not fulfilled, the starting solution must be sufficiently near to the true 
solution; a simple starting solution like the average SoS in the object fails to converge. 
Therefore, if we want to reconstruct larger objects at higher frequencies, we can use a multi-
frequency method. For each frequency, the problem is solved on a grid resolution that is 
matching the condition for the used frequency [12]. Firstly, we obtain a convergent rough 
reconstruction at a lower frequency. From this rough reconstruction with fewer parame-
ters/pixels, we then interpolate a starting solution for the finer reconstruction with more 
parameters, which corresponds to the reconstruction at higher frequency. This starting 
solution should be close to the true solution for the high-frequency reconstruction, and hence 
using it we expect a convergent solution for the high-frequency reconstruction. A general 
description of our multi-frequency reconstruction follows.  

Algorithm 2.4 (Multi-frequency reconstruction) 
Given initial solution , the starting frequency , the maximum frequency ; 
for    
        ;  ; 
        Increase   by ; 
        if    then  stop;  endif 
endfor 
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3 Results 

In our simulated reconstruction tests, the measurements of pressure field  are modeled as 
 plus additive Gaussian noise characterized by the signal-to-noise ratio (SNR). By 

minimizing the least-squares problem (2.1), we obtain a solution  that approximates . 
Considering the robustness of reconstruction with noisy data, we also test Tikhonov regulari-
zation where instead of solving (2.5) by CG at every outer iteration (Gauss-Newton itera-
tion), we solve  where  is the identity matrix and  is the 
Tikhonov regularization parameter determined by the L-curve method [13]. 

We firstly test the incomplete Cholesky preconditioning. We use the Matlab build-in func-
tion ichol to obtain the incomplete Cholesky factorization of the system matrix (Jacobian), as 
a preconditioner to the Matlab build-in conjugate gradient function pcg. We use the sensitivi-
ty operator  to generate the complete Jacobian by giving it a series of input vectors 

. Since the computation of the Jacobian is expensive, we do 
not apply it at every outer iteration, and a preconditioner generated at a given outer iteration 
is reused for multiple outer iterations. We test five different scenarios denoted as “precondi-
tioner (re)”, where re = {1, 5, 10, 20, and 1000} indicates that the preconditioner is updated 
after re outer iterations. So for example, “preconditioner (5)” means a new preconditioner is 
generated at every fifth outer iteration. Besides, we also test the situation without precondi-
tioner. For all the six situations, we run four versions of our reconstruction algorithm: (1), (3) 
no regularization with data of SNR=60dB, SNR=40dB, resp.; (2), (4) Tikhonov regulariza-
tion with data of SNR=60dB, SNR=40dB, resp. Therefore, we test 24 combinations in total 
and we report for each combination the sum of outer iterations (Souter), the sum of CG itera-
tions (Scg), and the average CG iterations per outer iteration (Smean), as shown in Figure 1. 
Note that Smean = Scg/Souter. The results show that the incomplete Cholesky preconditioning 
can reduce about 70%~85% of the CG iterations. It can also reduce outer iterations. The 
preconditioner update rate, on the other hand, has almost trivial impact on CG iterations. 
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Figure 1:  Test results for incomplete Cholesky preconditioning with and without regularization (reg) and at 
different SNR levels (60dB or 40dB). Upper left: the sum of outer iterations (Souter). Upper right: the sum 
of CG iterations (Scg). Bottom: the average CG iterations per outer iteration (Smean). 

Although the incomplete Cholesky preconditioning reduces CG iterations, it actually does 
not save computation time in our tests. This is because of the extra computation for forming 
the Jacobian, especially for large-scale problems where the Jacobian computation is too 
expensive even though we only have to do it once at the first outer iteration. In contrast, the 
matrix-free preconditioner PREQN does not need to calculate the Jacobian explicitly. We 
have rewritten the Fortran PREQN routine1 [10] into Matlab code and then tested it in our 
algorithm with several configurations. Specifically, we test six configurations where the 
main differences are frequency, problem size  (number of parameters/pixels to be recon-
structed), and CG tolerance (see the  parameter in Algorithm 2.2). The six tested 
configurations are:  

test1 = (2.5MHz, 48×38, 0.05),  test2 = (2.5MHz, 48×38, 0.01),  
test3 = (2.5MHz, 96×76, 0.01), test4 = (2.5MHz, 96×76, 0.005), 
test5 = (1.5MHz, 104×80, 0.01),  test6 = (1.5MHz, 104×80, 0.005). 

We set the stop condition of the Gauss-Newton reconstruction (see the  parameter in 
Algorithm 2.1) to 1e-5. The sum of outer iterations, sum of CG iterations, average CG 
iterations per outer iteration, and the computation time are reported in Figure 2. The program 
was executed under MATLAB R2017a on a laptop equipped with Intel Core i7-6700HQ (4 

                                                           
1   http://users.iems.northwestern.edu/~nocedal/preqn.html 
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cores, 2.6GHz) CPU and 16 GB RAM. As shown from the last chart of Figure 2, the PREQN 
preconditioning does save computation time for all the tests. For smaller problems or larger 
CG tolerances, the time saved by PREQN preconditioning is not impressive. This implies 
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number of CG iterations. However, for larger problems such as test5 and test6, the PREQN 
preconditioner saves about 50% computation time. On average, the computation time saved 
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Figure 2: Results of PREQN preconditioning. 

The above six reconstruction tests we have reported are for small objects, where the radius of 
region of interest (ROI) is about 10~20 mm. The radius of measuring device for Karlsruhe 
USCT II is 130 mm, and we have used scaling factors of 0.14 and 0.25 for the previous tests. 
For reconstruction without scaling, we use the multi-frequency reconstruction method. We 
start at 250kHz and increase the frequency with a factor of 1.1 each time, reaching the max. 
frequency 2.5MHz after 26 frequency steps. For all the frequencies before the final one, we 
use a relatively loose tolerance for reconstruction, in order to get a quick approximate solu-
tion which is then interpolated as the starting solution of the next higher frequency. We test 
multi-frequency reconstruction with three numerical phantoms under MATLAB R2016a 
running on a standard node of bwForCluster2, which is equipped with 2×Intel Xeon E5-
2630v3 (Haswell) (8 cores, 2.4 GHz) CPU and 64 GB Memory. The phantom 1 is a simple 
simulation of a breast where the background is water, and from outside to inside are skin, fat, 

                                                           
2   https://www.bwhpc-c5.de/wiki/index.php/Main_Page 
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gland, and tumor. The phantom 2 is with more shapes allowing identifying sharp edges. The 
phantom 3 contains the structure of a breast as segmented from a clinical MRI image. The 
results are reported in Figure 4, where the values are accumulated values of 26 frequencies 
from 250kHz to 2.5MHz. The PREQN preconditioning reduces both the outer iterations and 
the CG iterations for multi-frequency reconstruction. The computation time saved is about 
30% on average for the three tested phantoms. At the final frequency of 2.5MHz, the number 
of parameters/pixels is 344×270 with the pixel size of 0.59 mm (also the ultrasound wave-
length).  

As for visualized results, we report in Figure 3 the Matlab program (running on the laptop 
used before) snapshots for phantom 3. The multi-frequency reconstruction begins from a 
starting frequency of 0.5MHz, reaching the final frequency 2.5MHz after 8 frequencies, 
where the number of parameters/pixels is 110×68 at the final frequency. In Figure 3, the top 
row 2D images are reconstructed SoS and attenuation respectively. The bottom row 1D 
profiles focus on the parameters/pixels at the pink dotted lines, where the reconstructed 
profiles are given in red and their simulated reference in blue. For the 1D profiles, the stand-
ard deviation from the simulation for SoS is 0.001 m/s, while the standard deviation for 
attenuation is 3.4%. 

 

Fig. 3: Visulization of reconstructed speed of sound (blue image) and attenuation (yellow imag) of phantom 3. 
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Figure 4: Results of multi-frequency reconstruction with PREQN preconditioning. 

4 Conclusions 

We use the Gauss-Newton method for USCT image reconstruction by minimizing a nonline-
ar least-squares problem defined according to measurements data and the forward split-step 
formulation of the wide-angle parabolic equation (WAPE). The system is linearized in the 
form of a Jacobian and we choose the conjugate gradient (CG) method to solve the normal 
equation inside the Gauss-Newton loop, since CG does not need the explicit Jacobian matrix 
but only matrix-vector products. The commonly used incomplete Cholesky preconditioning 
for CG can reduce about 70%~85% CG iterations but the computation time for the Jacobian 
matrix is dominating, and as a result, it fails to reduce the overall computation time signifi-
cantly. The matrix-free preconditioner via Quasi-Newton update, on the other hand, does not 
need to form the Jacobian explicitly and saves about 30% of the computation time on aver-
age. Reconstruction for large-size problems with high ultrasound frequencies requires start-
ing solutions which are near to the true solutions. We use a multigrid scheme to firstly get a 
convergent rough reconstruction at lower frequency and then interpolate it for the starting 
solution with higher frequency. Together with the matrix-free preconditioning, multi-
frequency reconstruction gives decent SoS reconstruction for 344×270 parameters at 2.5MHz 
in reasonable computation time. In future work, more effective problem-dependent precondi-
tioning techniques will be studied for our USCT image reconstruction. Especially for the 
multigrid reconstruction framework, the non-uniform convergence rates for coarse scale 
features and fine scale features should be taken into consideration. 
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