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Abstract

Geophysical models are more and more complex and can describe, in a very careful way, the geodynamical pro-
cesses. These models depend on several geometrical and physical parameters, which characterize the models
behaviour. These parameters are not errorless since they are known with some uncertainties. Thus, model predic-
tions are affected by these parameter uncertainties. Usually, the model errors are not taken into account and are not
propagated to the estimated quantities. This can cause improper hypothesis testing when geodetic data and model
predictions are compared. In this paper, a method is presented which allows considering the model errors through
the definition of the spatial covariance function of the model. A simulation is set up to prove the method feasibility.

1 Introduction

The availability of precise observations is nowadays
rapidly increasing. This demands for a more care-
ful comparison between models (geometrical, physical
and so on) and observations in order to have a better
validation of these models. In geodesy, GNSS pre-
cise measurements are an invaluable tool for improv-
ing the geophysical models which are used to anal-
yse the geodynamic of the crust at different spatial and
time scales. The present day distribution of permanent
GNSS stations allows defining in some details the ac-
tual crustal deformation either at global and continen-
tal level (Drewes and Heidbach, 2012). Also, in par-
ticular cases, these analyses can be performed at the
level of a single fault (or of a fault system) (Riva et
al., 2007). These observations, further implemented
with non-permanent GNSS campaigns, give precise es-
timates of the velocities of the observed stations, based
on a daily coordinates repeatability of 1−2 mm. Sim-
ilarly, considering another geodetic example, radar-
altimetry data can estimate the sea surface heights with
respect to the ellipsoid at centimetre level precision.

These observations, coupled with a geoid estimate of
the same precision, allow defining the Dynamic Ocean
Topography (DOT), which is functionally related to
the geostrophic currents (Rummel, 1993). Also in this
case, the comparison between this kind of data and the
oceanographic circulation models allows their refine-
ments.

Commonly, the comparison between data and model
predictions is performed considering the observation
error of the data without considering any model er-
ror. These comparisons are usually carried out using
the Chi-square random variable (Mood et al., 1983)
in the hypothesis that the discrepancies between ob-
served values and model predictions divided for their
standard deviations are independent standard normal
random variables.

The observed values xobs are supposed to be a sam-
ple from a normal random variable having mean value
xmod . Thus, one can write

zobs =
xobs− xmod

σobs
,

(σobs = standard deviation of xobs)
(1.1)
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where z is a standard normal random variable. Since
we usually consider more than one observation, we can
define the Chi-square random variable as

χ2
n =

n

∑
k=1

(
xk

obs− xk
mod

)2

σ2
obs

,

(n = number of observations)

(1.2)

which can be used to test the coherence between ob-
served values and model predictions.

Following this approach, no error model is considered.
In case the model error can be estimated, the more cor-
rect Chi-square quantity could be defined as

χ2 = (xobs− xmod)
t (Cobs +Cmod)

−1 (xobs− xmod) ,

(1.3)
which implies that by hypothesis we assume that the
model predictions and the observations have the same
mean. Cobs can be straightforwardly derived from least
squares, which are usually applied for adjusting the
data. On the other hand, the Cmod cannot be easily es-
timated.

In case the model outcomes xmod are assumed to be
linearly depended by a set of parameters xpar, i. e., it
holds that

xmod = Axpar (1.4)

one can apply the covariance propagation law (Sansò,
2000) which gives Cmod as

Cmod = ACpar At . (1.5)

The Cpar matrix can be estimated based on, e. g., phys-
ical information on the model parameters.

As an example, if one is considering a geophysical
model which depends on parameters such as crustal
density and viscoelasticity, suitable mean and range
values of these quantities can be defined, based on geo-
physical assumptions. This will allow a proper defini-
tion of the Cpar. However, in many cases, this can-
not be done. In most of the cases, the model is not
described in the explicit form (1.4), being it a multi-
step complex procedure. Thus, for most of the mod-
els, the direct formula (1.5) cannot be applied. An
alternative way to estimate Cmod is to define the co-
variance function of xmod , which in turn can be used
to compute Cmod . Furthermore, by following this ap-
proach, one can derive also information on the covari-

ance structure of the model signal, such as its spatial
correlation. This information can be used to design in a
proper way geodetic monitoring networks (as an exam-
ple, one can consider to compare a geophysical model
predicting crustal deformations in a geodynamical ac-
tive area and the benchmark distribution of a GNSS
permanent network designed for monitoring this phys-
ical phenomenon). In the next paragraph, the numeri-
cal procedure, which allows estimating the model co-
variance function based on assumptions on the model
parameters variability, will be described.

2 The model covariance

function estimate

We assume that a linear (or linearized) relationship
holds between the model signal and the model param-
eters

xmod = L(ξ, xpar) , (2.1)

where ξ are other possible parameters defining the
model, such as the point position where to estimate the
model value xmod : these parameters will not be consid-
ered in the error propagation.

We further assume that xpar is a normal random vari-
able having m independent components. Based on
some feasible assumptions, the values of the mean μpar

and of the variances
(
σk

par
)2 (k = 1, . . . ,m) of the pa-

rameters can be defined. By sampling the x0
par values

by means of a random number generator, the corre-
sponding x0

mod values can be obtained and then used to
estimate the covariance function of xmod .

In order to give an example of the devised procedure,
let us assume that xmod is a two components signal in
the plane. Based on r field estimates computed fol-
lowing this approach, the two auto-covariances and the
cross-covariance between the two components of xmod

can be derived as

Clk(dn) =
1
r

r

∑
s=1

[
1
N

N

∑
i=1

δ(xmod)
i
l,r

1
Nj

Nj

∑
j=1

δ(xmod)
j
k,r

]
(2.2)

with
δ(xmod)

i
k,r =

(
x0

mod
)i

k,r− (x̄mod)
i
k , (2.3)

(x̄mod)
i
k =

1
r

r

∑
s=1

(
x0

mod
)i

k,s . (2.4)
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3 A simulated test

The index i= 1, . . . ,N runs on the points Pi in the plane
where the signal is estimated, the index j = 1, . . . ,Nj

runs on all the Nj points Pj having distance di j from
Pi such that dn ≤ di j < dn + Δd with a proper given
value Δd and (l,k) label the two components of xmod

(l = 1,2;k = 1,2).

In case l = k, the auto-covariances of the two model
components are estimated, while for l �= k the cross-
covariances between the two components are derived.

These empirical estimates must be then interpolated
with suitable model covariances, i. e., with positive
definite functions (Barzaghi and Sansò, 1984).

The auto-covariance and the cross-covariance func-
tions of xmod can be in turn used for estimating the Cmod

that can be used in the testing the model predictions
versus the observed data.

The devised procedure is of Bayesian kind since
the parameters xpar are considered as random vari-
ables. Furthermore, assuming that xpar is normally
distributed allows defining in a proper way the for-
mula (1.3), if we assume that also xobs is normally dis-
tributed and independent from xmod . In this hypoth-
esis, being xmod linearly dependent on xpar, one can
prove that xmod is normally distributed too (Mood et al.,
1983), with μmod = L(ξ, μpar) and covariance Cmod .

Finally, it has to be mentioned that this procedure, de-
veloped here for a two-dimensional process, can be
generalized to multi-dimensional process.

3 A simulated test

In order to test the feasibility of the proposed ap-
proach, a simulation has been devised. Starting from
a given covariance function, a covariance matrix on a
given set of points in the plane and the signal on these
points having this covariance structure can be com-
puted (Barzaghi et al., 1992).

This procedure has been carried out starting from the
following covariance function

C(d) = AJ0(αd) , (3.1)

where J0 is the zero order Bessel function (Watson,
1948) and d is the standard Cartesian distance in the
plane.

The values A = 50 and α = 0,15 km−1 have been set
and the related covariance matrix C has been computed

over points in the plane placed on a regular square
grid having a grid step of 5 km and linear dimension
of 100 km (the covariance matrix has thus dimension
n = 400).

The simulated signal in the plane is then estimated ac-
cording to the formula

s(P) = Tt υ (3.2)

with
C = Tt T (3.3)

following the Cholesky decomposition method (Benci-
olini and Mussio, 1984). υ is a sample from a random
variable having

E(υ) = 0 , Cυυ = I . (3.4)

As it can be easily proved, the covariance matrix of the
simulated signal (3.2) is exactly equal to C since

Css = E
[
sst]= E

[(
T t υ

)(
Tt υ

)t
]
=

= T t E
[
υυt] T = T t Cυυ T = T t T =C .

(3.5)

This procedure has been repeated 100 times, based on
different υ samples, so that 100 different realization of
the signal s have been computed. Given the simulated
values, the formula (2.2) has been applied: in this case
r = 100 and l = k = 1.

The values of the empirical covariance and the model
covariance (3.1), using the values of A and α previ-
ously defined, are presented in Figure 3.1.

As one can see, the estimated empirical values are re-
markably close to the model function. Thus, this sim-
ulation proves that formula (2.2) can give a correct es-
timate of the signal covariance.

Furthermore, in the presented simulation, every sin-
gle realization has, by definition, the given covariance
structure that can be estimated according to the ap-
proach described in Mussio (1984). In Figure 3.2, the
empirical covariances estimated with the signals s10,
s50 and s90, selected among the 100 computed simula-
tions of the signal, and the model (3.1) are plotted.
Contrary to the previous case, the empirical covari-
ance values are not so close to the model covariance,
particularly for large d values. This is quite obvious
since formula (2.2) is the mean of the empirical co-
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variances of the different signal realizations. Thus, the
values in (2.2) are more reliable than those computed
on a single realization.

Figure 3.1: The empirical covariance (formula (2.2) - black dots) and
the model covariance (solid red line).

Figure 3.2: The empirical covariances of the three signals and the
model function (solid line).

4 Conclusions

The proposed procedure can be efficiently applied for
the estimation of the covariance function of the sig-
nal implied by an arbitrary model, which depends on
a given set of parameters. If each parameter is con-
sidered as a normal random variable, having mean and
variance that can be derived from physical assumption

on the model, one can estimate the covariance func-
tion of the signal derived from the model. In turn, this
allows having a testing procedure between model and
observed values that takes into account not only the

covariance of the observation but also the model co-
variance. In a recent application of this method to a
geophysical model describing the crustal deformation
in the Calabrian Arc region, interesting results were
obtained that allowed a clearer definition of this geody-
namical process (Barzaghi et al., 2014). In the future,
the same procedure will be applied to other geodynam-
ical areas in the Italian region and to oceanographic cir-
culation models in the comparison with altimetry data.
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