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Abstract 

Many countries have adopted schemes to promote investments into renewable energy 

sources resulting, amongst others, in a high penetration of solar PV energy. The system 

integration of the increasing amount of variable electricity generation is therefore a highly 

important task. This paper focuses on a residential quarter with PV systems and explores 

how heat pumps and thermal and electrical storages can help to integrate the PV generation 

through self-consumption. However, self-consumption and PV integration are not only 

affected by technologies but also by pricing mechanisms. This paper therefore analyses the 

impact of different tariffs on the investment and operation decisions in a residential quarter 

and its interaction with the external grid. The considered tariffs include a standard fixed per-

kilowatt-hour price, a dynamic pricing scheme and a capacity pricing scheme. To account for 

the inter-dependent uncertainties of energy supply, demand and electricity prices, we use a 

module-based framework including a Markov process and a two-stage stochastic mixed-

integer program. Analysing a residential quarter in Southern Germany as a case study, we 

find that the integration of a PV system is economically advantageous for all considered 

tariffs. The self-consumption rate varies between 58 − 75%. The largest PV system is built 

when dynamic prices are applied. However, the peak load from the external grid increases 

by a factor of two under this tariff without any incentive for reduction. In contrast, capacity 

pricing results in a reduction of the peak load by up to 35%. 
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1 Introduction 

On 30 November 2016, the European Commission published its “Winter Package”, 

consisting of more than 40 planned measures, aimed at accomplishing climate targets on 

energy efficiency, greenhouse gases, and renewable energies (RE). One of the key 

objectives is to promote a better integration of electricity produced from renewable sources 

through market-based mechanisms. “The regulatory changes introduced by the current 

package and the shift from centralised conventional generation to decentralised, smart and 

interconnected markets will also make it easier for consumers to generate their own energy, 

store it, share it, consume it or sell it back to the market – directly or as energy cooperatives 

[…] these changes will make it easier for households and businesses to become more 

involved in the energy system and respond to price signals.” (European Commission, 2016) 

With regards to Germany, the transition towards a more decentralised energy system 

(DES) with emphasis on RE is pre-eminently driven by the regulatory framework. It defines 

the target of 80% RE covering German gross electricity consumption in 2050 (BRD 

(Bundesrepublik Deutschland) [Federal Republic of Germany], 2012). In line with this target, 

Germany has been the world’s top photovoltaic (PV) installer for several years (Rodrigues et 

al., 2016), outperformed only by China since 2015 (IEA, 2016). Particularly, the German 

Renewable Energy Sources Act (EEG) catalyses the expansion of decentralised renewable 

energy sources such as PV by guaranteeing a fixed feed-in tariff for the energy that is fed 

into the local grid. Since its introduction in 2000, electricity retail prices have risen about 5% 

per year on average until today. At the same time, the average costs of PV systems have 

decreased by an average of 9% per year (BSW (Bundesverband Solarwirtschaft) [German 

Solar Association], 2015). This cost decrease was accompanied by a continuous reduction of 

the PV feed-in tariff, which makes the self-consumption of electricity produced by PV more 

profitable and flexibilities to shift load (e.g., storages) more attractive. Fig. 1 shows the 

development of the household electricity price in comparison to the electricity production 

costs of PV systems for Germany, showing that the so-called grid parity has been achieved 

recently. 
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Fig. 1: Historical development of PV feed-in tariffs and end-user electricity price for households in Germany 
(Wirth, 2017). 

 

In the light of these developments and the statements by the EU promoting self-consumption 

as a means to support RE integration, the question arises (from a consumer perspective) 

what flexibilities to shift load and increase self-consumption are most profitable and how to 

optimally combine different sources of flexibility in the presence of uncertainty. Some 

researchers, however, also hold critical views on self-consumption (Khalilpour and Vassallo, 

2015; Simshauser, 2016; Bertsch et al., 2017). Their criticism is not directed at self-

consumption and PV expansion as such, but mainly raises distributional concerns. In 

systems where consumers pay for costs to build and maintain the energy system 

infrastructure on a per-unit basis (e.g., network charges), those consumers that can afford 

investments into technologies increasing self-consumption contribute less to maintaining the 

system while still benefiting from the security of supply from being connected to the grid. As a 

consequence, a decreasing amount of consumers who cannot invest into self-consumption 

bear the costs of the system. Several approaches to overcome these concerns are 

discussed, including the introduction of capacity-based price components, also called 

demand tariffs in the literature (Kaschub et al., 2016; Simshauser, 2016). This gives rise to 

the question how such different retail tariffs (pricing mechanisms) impact the profitability of 

different flexibility sources such as power-to-heat applications or energy storages and their 

optimal combination. Also, the question emerges what levels of self-consumption can be 

expected and how these are influenced by different tariffs under RE uncertainty. 

This paper therefore presents a two-stage stochastic program to analyse different pricing 

mechanisms for a residential quarter with the option of a PV system and electrical as well as 

thermal storages. The stochastic program is embedded in an integrated, module-based 

framework. The required input data (e.g., load profiles on the demand and supply side) are 

generated on the basis of Markov processes under consideration of their mutual 

dependencies. Our analysis focusses on the optimal investment decisions under different 

tariffs and on essential energy values such as total energy costs, the PV self-consumption 

rate and grid load under uncertain weather-related conditions. 

The structure of the paper is as follows. Section 2 provides a brief overview of related 

literature. In the subsequent Section 3, the modelling framework is described including the 
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generation of input data as well as the stochastic program. Section 4 introduces the case 

study of a real-world residential quarter. The results are presented in Section 5, followed by a 

discussion and acknowledgement of limitations in Section 6. A conclusion and an outlook 

finalise the paper in Section 7. 

2 Related literature and work 

In general, DES are considered as systems that provide a portion of the energy required to 

satisfy their demand on-site, within the boundaries of, or located nearby and directly 

connected to, a building, community or development (Wolfe, 2008). The literature on 

optimisation of DES is large and growing. Due to the fluctuating properties of some system 

elements, the majority is based on a high temporal resolution of 15min or 1h, considering a 

time horizon of less than a day up to 25 years. Prevalently, electrical demand and supply is 

simulated or optimised (McHenry, 2012; Erdinc, 2014; Komiyama and Fujii, 2014; Dufo-

López and Bernal-Agustín, 2015; ElNozahy et al., 2015; Kaschub et al., 2016; Zebarjadi and 

Askarzadeh, 2016). Other research focusses on the heat management (Zhang et al., 2007; 

Wei et al., 2015; Bahria et al., 2016; Fischer et al., 2017). Several cases analyse both 

electricity and heat: 

 Evins et al. (2014) formulate a general ‘energy hub concept’ that can methodologically 

represent the interactions of many energy conversion and storage technologies for 

applications such as power plants, industrial facilities and urban areas. While their 

modelling approach to aggregate and optimise energetic resources on a relatively small 

scale and with relatively high detail exhibits some similarity to the representation in our 

study, they focus less on the economic implications of the various system designs. 

However, they find a strong potential of system components such as heat pumps to 

reduce carbon emissions by up to 22%. 

 Kanngießer (2014) considers scheduling optimisation of energy storages by trading load 

shifting potential and operating reserve on the electricity market for an exemplary 

compressed air reservoir and pumped-storage power plant.  

 Shang et. al (2017) schedule storages with a combined heat and power (CHP) 

application. They apply a non-dominated sorting genetic algorithm as metaheuristic to an 

illustrative building and evaluate the potential for the reduction of fuel consumption 

through including electrical and thermal energy storage in the system. Jochem et al. 

(2015) and, similarly, Kia et al. (2017) optimise the day ahead scheduling of CHP units 

with electrical and thermal storage. While Jochem et al. (2015) focus on decentralised 

micro-CHP at the household level and find significant potential to self-consume the CHP’s 

electricity output to more than 50%, Kia et al. (2017) evaluate the CHP’s added value to 

avoid costs imposed by security constraints in two alternative IEEE electricity networks. 

Vögelin et al. (2017) analyse gas engine CHP plants for building and industry heat 

demand under varying price structures. Núñez-Reyes et al. (2017) optimise the 

scheduling of grid-connected PV plants with energy storage for integration in the electricity 

market.  

 Lorenzi and Silva (2016) optimise the dimension of PV systems and the self-consumption 

with energy storages as well as Beck et al. (2017) do with a power-to-heat application. 

Similarly, but at the scale of an entire city, Salpakari et al. (2016) analyse how different 
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technologies, including power-to-heat, storage and load-shifting, can decrease surplus of 

variable renewable energy.  

 Shirazi and Jadid (2017) have developed an energy management to optimise the 

household’s energy operation cost by peak shaving through domestic load shifting and 

distributed energy resources with varying prices. Over the analysed 24h period they find 

significant potential to reduce the maximum amount of power needed to be imported to 

the household system from the electricity grid: Depending on the time of year, the 

optimisation algorithm active and the tariff scheme, the maximum imported power ranges 

from 1.7 kW to 17.2 kW. 

 McKenna et al. (2017) model heat and electricity on the household level with a specific 

focus on self-consumption and energy autonomy. Their work goes beyond considering 

single households and they specifically look into the economies of scale when 

aggregating different numbers of households. However, they do not consider the impact of 

different pricing mechanisms at the retail level. Including micro-CHP, PV, gas boilers and 

thermal and electrical storage within their modelled energy systems, they find a range of 

30% to nearly 100% of energy autonomy economically feasible, largely depending on the 

amount of aggregated households. 

In these cases, however, deterministic programs are usually employed, in spite of the 

different uncertainties that influence the computational results. In line with this, uncertainties 

are often considered by using average values or by sensitivity or scenario analyses. 

However, such analyses can only provide an estimation of the impact on the optimisation 

results while the complex effect cannot be captured entirely. Stochastic modelling techniques 

enable an adequate consideration of the manifold uncertainties in the investment and 

operation planning processes of DES (see for example (Göbelt, 2001; Kelman et al., 2001; 

Wallace and Fleten, 2003; Möst and Keles, 2010)). Birge (1982) comprehensibly discusses 

the advantages and disadvantages of deterministic compared to stochastic programming.  

The main contribution of this paper is the combined consideration of heat and electrical 

demand as well as supply of DES over a long time horizon and a high temporal resolution 

taking into account different tariffs and uncertain conditions in a stochastic program, which is 

novel to our knowledge. This study demonstrates the optimisation of a residential quarter 

modelled as a stochastic program with a temporal resolution of 15 min and a 20-year time 

horizon. The approach is related to Schwarz et al. (2017) and extended by endogenising 

investment decisions into PV, power-to-heat technology and electrical storage as well as the 

consideration of different tariffs including a dynamic electricity price generation module (see 

Section 3).  

3 Methodology  

The methodology relates to Schwarz et al. (2017) who describe a module-based model chain 

including stochastic programming to take into account weather-related uncertainties, e.g., PV 

supply, energy demand or electricity prices, and to endogenously determine optimal 

investment in the system’s components. The model framework is explained in Section 3.1, 

the data generation and optimisation process are explained in detail in Section 3.2 and 3.3. 
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3.1 Model framework 

This paper uses the comprehensive approach of Schwarz et al. (2017) that consistently 

models and propagates uncertainties through a model chain comprising three layers (see 

Fig. 2): 

a) input layer, 

b) transformation layer and 

c) optimisation layer.  

 

The approach accounts for the associated uncertainties by generating consistent ensembles 

of meteorological input parameter profiles at the input layer considering their probabilistic 

properties. These profiles are used at the transformation layer to provide energy supply and 

demand profiles or price profiles for the subsequent optimisation layer. 

 

Fig. 2:  Modell framework for DES taking into account uncertainties. The figure is obtained from Schwarz et al. 
(2017) and adapted to the focus of this study. Extensions and additions are explicitly marked by blue (bold) 
box-framing. 

3.2 Data generation process 

When simulating meteorological input parameter profiles, such as solar radiation and 

temperature, it is important to consider their fluctuating and stochastic nature as well as the 

interdependencies between them. Given the focus of the paper, which is investment and 

operational planning for PV integration under different tariffs and uncertainty, the simulation 

approach needs to take into account both: the short-term fluctuations and uncertainties of 

different load profiles as well as the long-term variations (e.g., ‘good’ and ‘bad’ solar years). 

Both have an impact on the choice of adequate dimensions for the energy system 

components and the short-term uncertainties also affect the operational planning. Moreover, 

since the considered energy system includes components on the demand and supply side, 

the approach needs to consider the interdependencies between profiles on both sides under 

consideration of meteorological conditions. This implies that the different profiles cannot be 
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simulated independently.1 Thus, our approach simulates meteorological conditions, such as 

the cloudiness, and its interdependencies with temperature and solar radiation. 

Existing approaches for stochastic simulation of meteorological parameters can generally 

be divided into two groups. The first group includes regression models based on estimations 

of probability distribution functions of observations (see Diagne et al. (2013) for an overview). 

The second group includes Markov processes being based on a transition matrix 

representing the probabilities of future states depending on past realisations. For instance, 

Amato et al. (1986) focus on long-term variations of daily solar radiation using a Markov 

process, while Ehnberg and Bollen (2005) use cloud observations in three-hour intervals. 

Focussing on more short-term variations in a higher temporal resolution, Morf (1998) uses a 

Markov process to simulate the dynamic behaviour of solar radiation. An advantage of 

Markov processes is that they are well suited to consider interdependencies between 

cloudiness, temperature and solar radiation, which have been mentioned above as a central 

requirement.  

We extend the Markov process used by Ehnberg and Bollen (2005) by including seasonal 

information. This is achieved by using transition probabilities that vary from month to month 

(see below). We also simulate temperature profiles, which are consistently compatible with 

the simulated solar radiation profiles. Aimed at considering long-term and short-term 

variations, we suggest a two-step approach.  

First, to take the long-term variations into account, we use a Markov process to model the 

daily cloudiness index 𝜁 ∈ {0,… ,8} considered in Oktas. Oktas describe how many eighths of 

the sky are covered by clouds. 𝜁 = 0 indicates a completely clear sky while 𝜁 = 8 indicates a 

completely clouded sky (Jones, 1992). We define the transition matrix Θ𝜁
𝑚 (where 𝑚 indicates 

the month) for this Markov process as follows: 

Θ𝜁
𝑚 = (

𝜋00
𝜁,𝑚

… 𝜋08
𝜁,𝑚

⋮ ⋱ ⋮

𝜋80
𝜁,𝑚

… 𝜋88
𝜁,𝑚
). (1) 

The transition probabilities 𝜋𝑖𝑗
𝜁,𝑚

 in eq. (1) are derived from publicly available weather data 

provided by Germany’s National Meteorological Service (‘Deutscher Wetterdienst (DWD)’). 

These are available for a variety of locations in Germany for periods of usually five or more 

decades. The transition probability 𝜋𝑖𝑗
𝜁,𝑚

 for month 𝑚 denotes the conditional probability that 

the cloudiness 𝜁𝛿 on day 𝛿 equals 𝑗 knowing that the cloudiness 𝜁𝛿−1 on day 𝛿 − 1 was 𝑖: 

𝜋𝑖𝑗
𝜁,𝑚

= 𝑃(𝜁𝛿 = 𝑗 | 𝜁𝛿−1 = 𝑖); ∑𝜋𝑖𝑗
𝜁,𝑚

𝑗

= 1  ∀𝑚 ∀𝑖. (2) 

The Markov process for the cloudiness based on the transition probabilities in (2) then 

takes the form: 

𝜁𝛿 = 𝑓(𝜁𝛿−1, Ξ), (3) 

where Ξ is a uniformly distributed random variable in [0,1]. Let now ξ be a realisation of Ξ. ζδ 

can then be obtained as: 

                                                           
1
 For example, electricity generation from solar PV does not only depend on solar radiation but also on the 

temperature affecting the panels’ efficiency. Likewise, heat demand depends on temperature and cloudiness. 
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𝜁𝛿 = 

{
 
 
 
 

 
 
 
 0 𝑖𝑓 𝜉 ∈ [0, 𝜋𝜁𝛿−10

𝜁,𝑚
[ ,

1 𝑖𝑓 𝜉 ∈ [𝜋𝜁𝛿−10
𝜁,𝑚

,∑𝜋𝜁𝛿−1𝑗
𝜁,𝑚

1

𝑗=0

[ ,

⋮

8 𝑖𝑓 𝜉 ∈ [∑𝜋𝜁𝛿−1𝑗
𝜁,𝑚

7

𝑗=0

, 1] .

   (4) 

To simulate the daily solar radiation on the basis of the cloudiness, we use an additional 

Markov process. The transition probabilities of the corresponding transition matrix Θ𝜌
𝑚,𝜁

 for 

the solar radiation 𝜌𝛿 on day 𝛿 can be expressed as a function of the month 𝑚, the 

cloudiness 𝜁𝛿 on day 𝛿 and the solar radiation 𝜌𝛿−1 on day 𝛿 − 1: 

𝜋𝑘𝑙
𝜌,𝑚,𝑗

= 𝑃(𝜌𝛿 = 𝑙 | 𝜌𝛿−1 = 𝑘 ∩ 𝜁𝛿 = 𝑗); ∑𝜋𝑘𝑙
𝜌,𝑚,𝑗

= 1

𝑙

  ∀𝑚 ∀𝑗 ∀𝑘. (5) 

Similarly, values for average daily temperatures are derived. Overall, our analysis shows 

that deriving the transition probabilities on a monthly basis delivers more accurate results 

than using yearly transition probabilities.  

Second, a separate stochastic process is used to generate profiles in 15min resolution on 

the basis of the daily simulation described above. This second step addresses the short-term 

variations. These short-term variations are simulated by an empirically determined, 

statistically varying term under the constraint that a given daily solar radiation is achieved. 

The Markov process generates time series of the required input parameters for the following 

subsystems and is applied to obtain a predefined number of scenarios. For further details, 

please see Bertsch et al. (2014) and Schwarz et al. (2017). 

The transformation layer transforms the output of the input layer into data required for the 

subsequent optimisation. For the case study in Section 4, the meteorological data are 

transformed into electrical and thermal demand, PV supply and electricity price.  

An energy demand module provides electricity demand profiles and heat demand profiles 

for space heating (SH) and domestic hot water (DHW). Therefore, a reference load approach 

is integrated that uses parameters such as weekday, season, temperature, cloudiness, 

insulation, location and occupancy. The generation of electricity demand profiles is based on 

the so-called ‘standard load’ or H0 profiles (Fünfgeld and Meier, 1999). To generate heat 

demand profiles for SH and DHW, the VDI guideline 4655 (VDI (Verein Deutscher 

Ingenieure) [Association of German Engineers], 2008) is used. Concerning PV supply 

profiles, a physical model on the basis of Ritzenhoff (2006) is used. It describes the 

dependencies of electrical yield primarily to incident light, solar module efficiency, orientation 

and capacity of the PV system. Thereby, the low-light performance and temperature 

dependency of the modules is taken into account. The global solar radiation profiles, coming 

from the input layer, are split into direct and diffuse solar radiation on the PV system on the 

basis of Liu and Jordan (1960). These radiation profiles are used in conjunction with ambient 

temperature to determine accurate electrical PV supply profiles for the optimisation layer. 

A residential quarter will exchange electricity with the wider energy system by means of 

the electricity grid. Aside from electricity feed-in from generation units eligible to a feed-in 

tariff, any electricity exchange from or to the grid is assumed to cost or yield the wholesale 

market price plus a considerable amount of levies and taxes. While levies and taxes stay at a 

constant per-unit charge, aside from administrative adjustments from time to time, the 
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wholesale market price for electricity is fluctuating. A major influence on the market price, 

amongst others, is the generation of renewable energy within the market area of interest. To 

harmonise the wholesale market prices we assume for our simulated scenarios, we derive 

electricity prices as a function of the same meteorological data which are utilised for the 

generation of irradiation profiles described above. This electricity price generation module 

constitutes a newly implemented component within the input layer and is explained in further 

detail in the following. 

Firstly, we acquire historical data from the “PHELIX” day ahead spot market auction of the 

EPEX which represents the primal market place for power exchange in Germany 

(EPEX SPOT, 2017). We choose the price profiles from the four years 2012, 2013, 2014 and 

2015 as data basis for the simulation.  

Secondly, we aggregate global irradiation data over the same years 2012-2015 from a 

data set supplied by Anemos (2016) to daily irradiation. The original data is generated 

through downscaling of reanalysis data from the NASA program Modern-Era Retrospective 

Analysis for Research and Applications (MERRA) applying the mesoscale model MM5 

(PSU/NCAR, 2003). It has a temporal resolution of 10min (spanning from 1990 to 2015) and 

a spatial resolution of 20km x 20km. We choose a location as close as possible to the 

measurement station that the above described generation of irradiation profiles is based on. 

We account for the systematic overestimation for global irradiation of the data set found by 

Schermeyer et al. (2015) through a correction factor. 

Thirdly, given daily price profiles and corresponding daily irradiation, we cluster the price 

profiles by the following three dimensions: 

 Daily irradiation [Wh/m²]: We partition the observations over the four years in five groups 

in such a way that the number of observations per group are equal (Fig. 3). 

 

Fig. 3: Histogram of aggregated daily irradiation observations with bins sized such that every irradiation-class has 
an equal number of observations. 

 Seasons: In order to account for seasonal influences on electricity prices (e.g. changing 

electricity demand driven by temperature or daylight length) we separate the observed 

price profiles by the four seasons. 

 Day type: We also differentiate the observed price profiles by the day types weekday, 

Saturday or Sunday in order to account for systematic difference in electricity demand 

influencing electricity prices.   

Altogether, we separate the observed daily price profiles into 5 ∙ 4 ∙ 3 = 60 groups. For the 

final generation of price scenarios matching the generated weather scenarios, we classify 

each daily profile of the generated weather scenarios to belong to one of the 60 price groups. 

Then, we draw one of the daily price profiles assigned to this price group by a uniformly 
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distributed random variable. Fig. 4 shows the results of the price simulation of four randomly 

selected years as a duration curve compared to the duration curve of the historic prices in 

2012 – 2015. 

  

 

Fig. 4: Price duration curve of historically observed and modelled day-ahead market prices over the hourly time 
steps of 4 years. 

Additionally, Tab. 1 compares some key figures of the generated price scenarios with the 

historical price realisations. 

Tab. 1: Basic statistics comparing the observed historical prices to the modelled prices. 

 Historic prices (2012-2015) Modelled prices (100 scenarios) 

  in €/MWhel in €/MWhel 
Quantiles   
     0.1 quantile 18.47 18.29 
     0.4 quantile 31.96 31.92 
     0.7 quantile 42.84 42.54 
     0.9 quantile 55.97 55.54 

Mean 
36.21 36.39 

Max 
210.00 210.00 

Min 
−222.99 −222.99 

Standard deviation 
15.95 16.23 

Volatility 
44% 44% 

 

 

 

 

3.3 Optimisation process 

In order to determine minimal total energy costs and optimal investment in the system’s 

components under uncertain conditions, the residential quarter is modelled as a two-stage 

stochastic program in the optimisation layer.2 As mentioned above, the stochastic program is 

based on Schwarz et al. (2017). The main investment variable of the original model was the 

heat storage size while the PV capacity was given exogenously and electrical storage was 

                                                           
2
 For a compact introduction in two-stage stochastic programming, see Ahmed (2010). 
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not considered. The objective function of the original program therefore took the following 

form:  

𝑐𝑜𝑠𝑡𝑠∗ = min
𝑐𝑔,𝑖,𝑒𝜔,𝑡

𝑔𝑟𝑖𝑑𝑖𝑛
, 𝑒𝜔,𝑡
𝑃𝑉𝑓𝑖

 ∑𝐴𝑁𝐹𝑖(𝑐𝑜𝑠𝑡𝑖
fix + 𝑐𝑜𝑠𝑡𝑖

var ∙ 𝑐𝑖)

𝐼

𝑖

+
1

𝑁
(∑∑(𝑝𝜔,𝑡

𝑔𝑟𝑖𝑑𝑖𝑛
∙ 𝑒𝜔,𝑡

𝑔𝑟𝑖𝑑𝑖𝑛
− 𝑝𝜔,𝑡

𝑃𝑉𝑓𝑖
∙ 𝑒𝜔,𝑡

𝑃𝑉𝑓𝑖
)

𝑇

𝑡=1

𝑁

𝜔=1

). 

(6) 

At the first stage, the capital costs of each investment 𝑖 ∈ 𝐼 are converted into an 

equivalent series of uniform amounts per period, where 𝐼 is the set of all possible investment 

options (e.g., PV system, heat pump, el. storage etc.) including all possible combinations. 

The lifetime 𝐿𝑇𝑖 of the investment and an alternative investment possibility at a certain 

interest rate 𝑟 of the fixed capital is taken into account by the annuity factor. 

At the second stage, energy costs of each scenario 𝜔 = {1,… ,𝑁} result from the electricity 

obtained from the external grid 𝑒𝜔,𝑡
𝑔𝑟𝑖𝑑𝑖𝑛

at price 𝑝𝜔,𝑡
𝑔𝑟𝑖𝑑𝑖𝑛

 minus the PV energy fed into the grid 

𝑒𝜔,𝑡
𝑃𝑉𝑓𝑖

 at compensation rate 𝑝𝜔,𝑡
𝑃𝑉𝑓𝑖

 at each time step 𝑡 = {1,… , 𝑇}. In total, the energy costs are 

minimised by finding the unique investment at the first stage that is optimal for 𝑁 equi-

probable scenarios at the second stage. 

An essential constraint of the system is that the electrical and thermal demand and supply 

are balanced at any time. Furthermore, the electrical or thermal supply in the system can be 

limited by technological or other restrictions. Storage units in the system connect the states 

of time step 𝑡 and 𝑡 + 1 and lead to a complex stochastic linear program (SLP) or stochastic 

mixed-integer linear program (SMILP) depending on the used component technologies. See  

Schwarz et al. (2017) for further information about the stochastic program.This paper 

extends the stochastic program as outlined in equation (7) in order to analyse different 

pricing mechanisms.  

𝑐𝑜𝑠𝑡𝑠∗ = min
𝑐𝑔,𝑖,𝑒𝜔

𝑔𝑟𝑖𝑑𝑖𝑛,𝑚𝑎𝑥
,𝑒𝜔,𝑡
𝑔𝑟𝑖𝑑𝑖𝑛

,𝑒𝜔,𝑡
𝑔𝑟𝑖𝑑𝑜𝑢𝑡

,𝑒𝜔,𝑡
𝑓𝑖
 ∑(𝐴𝑁𝐹𝑖 +𝑀𝐹𝑖) (𝑐𝑜𝑠𝑡𝑖

fix +
𝑐𝑜𝑠𝑡𝑖

var

(1 − 𝐷𝐹𝑖)
 ∙ 𝑐𝑖)

𝐼

𝑖=1

 

+
1

𝑁
(∑ 𝐶𝑃 ∙ 𝑒𝜔

𝑔𝑟𝑖𝑑𝑖𝑛,𝑚𝑎𝑥
+∑(𝑝𝜔,𝑡

𝑔𝑟𝑖𝑑𝑖𝑛
∙ 𝑒𝜔,𝑡

𝑔𝑟𝑖𝑑𝑖𝑛
− 𝑝𝜔,𝑡

𝑔𝑟𝑖𝑑𝑜𝑢𝑡
∙ 𝑒𝜔,𝑡

𝑔𝑟𝑖𝑑𝑜𝑢𝑡
− 𝑝𝜔,𝑡

𝑃𝑉𝑓𝑖
∙ 𝑒𝜔,𝑡

𝑃𝑉𝑓𝑖
)

𝑇

𝑡=1

𝑁

𝜔=1

). 

(7) 

We additionally integrate maintenance costs by a maintenance factor 𝑀𝐹𝑖 multiplied by 

the investment of component 𝑖 that complies with Kaschub et al. (2016). Due to the possible 

aging of a component 𝑖, we also adjust each investment by a degradation factor 𝐷𝐹𝑖. It takes 

into account the reduction of the initial capacity by the end of the life time. At the second 

stage, we add the possibility to feed electricity into the external grid 𝑒𝜔,𝑡
𝑔𝑟𝑖𝑑𝑜𝑢𝑡

 at price 𝑝𝜔,𝑡
𝑔𝑟𝑖𝑑𝑜𝑢𝑡

 . 

Also, a capacity price of the external grid 𝐶𝑃 multiplied by the maximal obtained electricity 

(peak load) 𝑒𝜔
𝑔𝑟𝑖𝑑𝑖𝑛,𝑚𝑎𝑥

 is implemented. 

In particular for the electrical storage, the capacity 𝑐𝑖=𝑒𝑠 needs to be extended to: 

𝑐𝑖=𝑒𝑠 = 𝑐𝑖=𝑒𝑠
′ +

0.3

𝑇
∙∑𝑠𝜔,𝑡

𝑒𝑠

𝑇

𝑡=1

, (8) 

to include a reduced calendar lifetime for high states of charge (SoC) according to Lunz et al. 

(2012) and Kaschub et al. (2016). This simplified linear relationship suggests that a storage 

that is always fully charged reduces its whole life time by about one third. In this context, the 
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life time reduction is considered by a partial replacement investment. In analogy to the 

thermal storage, the SoC has to be smaller than the capacity 𝑠𝜔,𝑡
𝑒𝑠 ≤ 𝑐𝑖=𝑒𝑠

′ . Additionally, the 

charging power cannot exceed a certain limit ∆𝑠𝜔,𝑡 ≤ ∆𝑠𝜔,𝑡
𝑒𝑠,𝑚𝑎𝑥. 

Practically, the charging is connected with a loss that depends on the charging efficiency 

𝜂𝑒𝑠 of the storage. Therefore, positive auxiliary variables are used to differentiate between 

charging and discharging: 

𝑠𝜔,𝑡+1
𝑒𝑠 − 𝑠𝜔,𝑡

𝑒𝑠 = 𝑝𝑜𝑠𝜔,𝑡
𝑒𝑠 − 𝑛𝑒𝑔𝜔,𝑡

𝑒𝑠   ∀𝜔, 𝑡. (9) 

The energy losses for charging and discharging are incorporated into the balancing 

constraint for electrical demand and supply by the negative terms (1 − 𝜂𝑒𝑠) ∙ 𝑝𝑜𝑠𝜔,𝑔,𝑢,𝑡
𝑒𝑠  and  

(1 − 𝜂𝑒𝑠) ∙ 𝑛𝑒𝑔𝜔,𝑔,𝑢,𝑡
𝑒𝑠 . Furthermore, a self-discharging over time in dependency of the storage 

level is taken into account by an additional negative term 𝑙𝑒𝑠 ∙ 𝑠𝜔,𝑡
𝑒𝑠 . 

In addition, the charging power is limited for high SoC with respect to Kaschub et al. 

(2016) and Kaschub et al. (2013): 

∆𝑠𝜔,𝑡
𝑒𝑠,𝑚𝑎𝑥,𝑟𝑒𝑑 ≥ 𝐶 ∙ (4𝑠𝜔,𝑡

𝑒𝑠 − 3𝑐𝑖=𝑒𝑠
′ )  ∀𝜔, 𝑡, (10) 

 

∆𝑠𝜔,𝑡
𝑒𝑠,𝑚𝑎𝑥 = 𝐶𝑟𝑎𝑡𝑒 ∙ 𝑐𝑖=𝑒𝑠

′ − ∆𝑠𝜔,𝑡
𝑒𝑠,𝑚𝑎𝑥,𝑟𝑒𝑑   ∀𝜔, 𝑡. (11) 

The maximum possible charging power ∆𝑠𝜔,𝑡
𝑒𝑠,𝑚𝑎𝑥 is generally limited by the battery 

capacity 𝑐𝑖=𝑒𝑠
′  and the C-rate 𝐶𝑟𝑎𝑡𝑒. This charging power ∆𝑠𝜔,𝑡

𝑒𝑠,𝑚𝑎𝑥 is linearly reduced by 

∆𝑠𝜔,𝑡
𝑒𝑠,𝑚𝑎𝑥,𝑟𝑒𝑑 for a SoC above 75% depending on the charged energy 𝑠𝜔,𝑡

𝑒𝑠 , the battery capacity 

𝑐𝑖=𝑒𝑠
′  and the C-rate. Thus, the charging power ∆𝑠𝜔,𝑡

𝑒𝑠,𝑚𝑎𝑥 is not reduced below a SoC of 75% 

and it amounts to zero at a SoC of 100% (when 𝐶𝑟𝑎𝑡𝑒 ∙ 𝑐𝑖=𝑒𝑠
′  equals ∆𝑠𝜔,𝑡

𝑒𝑠,𝑚𝑎𝑥,𝑟𝑒𝑑). The 

discharging minimum limit is implemented correspondingly. 

Computationally, the stochastic program is feasible by decoupling in combination with 

distributed optimisation on high-performance computing (HPC) systems. Therefore, intra- 

and inter-scenario connections are explicitly given such as the different investment in the 

quarter’s components among the scenarios or storage levels over time steps within the 

scenario. Then the program is decoupled in many subprograms that are optimised by 

CPLEX, a commercial LP and MILP solver, on several computing nodes. Subsequently, the 

subprograms are coupled to compute the minimal costs of the fixed variables. The 

optimisation of these fixed variables is performed by an outer derivative-free optimisation 

(DFO): a steepest-ascent hill-climbing approach (Taborda and Zdravkovic, 2012). Note that 

the used hill-climbing approach is a local search approach that can only guarantee local 

optimality. It can be replaced by any other DFO algorithmic, even by a global search 

approach, if enough computational power is available. We have deliberately chosen a hill-

climbing algorithm in this paper, because it requires only a few iterations of the very 

expensive evaluations to find an optimal solution. Also important is its reliable and robust 

solution process, especially a high tolerance to inaccuracy of the solutions of the 

subprograms. That allows using lower relative gaps for the subprograms to considerably 

reduce the computing time (more accuracy of the subprograms is needed to get closer to the 

optimum).  
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4 Case study and data assumptions 

In our case study, a residential quarter as DES pools 29 residential units in row and multi-

family houses into a living and energy community. Its demand of electricity, DHW and SH is 

covered by a PV system, heat pumps, heating elements and an external energy supplier. 

The option of flexible electrical and thermal storage units enables an increased self-

consumption and solar PV integration. Fig. 5 illustrates the energy setup of the quarter. 

 

Fig. 5: Energy setup of the residential quarter. 

The PV system of the quarter is east-west orientated with regards to a higher self-

consumption in the morning and evening hours. In addition, through the lower tilt of 15° and a 

lower shadowing, it allows a higher installable capacity on the roof in comparison to usually 

mounted, south-orientated systems with a tilt of about 40°. The maximal system capacity is 

restricted by the available roof area. The average net costs for PV systems up to 100kWp 

amounts to 1300€/kWp in 2015 (BSW (Bundesverband Solarwirtschaft) [German Solar 

Association], 2015). This includes all PV system parts and installation costs, whereas the 

solar modules have a share of about 50%. The initial capacity is reduced by a degradation 

factor of 𝐷𝐹𝑖=𝑝𝑣 = 16% meaning that the usable capacity at the end of the life time is 84%. 

Annual maintenance costs are considered as 1.5% of the investment in the PV system. 

When the local electrical demand of the households and the heating system exceeds the 

supply of the PV system and the possible electrical storage, electricity can be obtained from 

the external grid. Otherwise, PV surplus can be fed into the external grid or buffered in the 

electrical storage (depending on the corresponding investment decision). 

For the electrical storage, a generic Li-Ion based battery is used in the model. This paper 

assumes a price of 600€/kWhel, which includes all system components, such as battery cell 

packs, with management system or inverter based on Kaschub et al. (2016) and Tesla 

(2015). A calendar lifetime of 20 years with degradation of 𝐷𝐹𝑖=𝑒𝑠 = 20% is assumed 
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according to Schmiegel and Kleine (2014) and Weniger et al. (2014). The C-rate3 is set to 1, 

the charging efficiency 𝜂𝑒𝑠 equals 94% and a self-discharging of 2% per month is considered 

as in Quaschning (2015). Maintenance costs are set to 1% of the investment in 

correspondence with Kaschub et al. (2016). 

The heating system is separated into two cycles, each with its own water tank storage in 

combination with a power-to heat technology: Air-water heat pumps provide heat up to 

120kWth depending on the ambient air temperature. For the DHW cycle, fresh water is 

obtained from an external water supplier and heated by heat pumps in an open loop from 

about 10°C to 50°C. The closed cycle for SH runs at a lower temperature of 35°C resulting in 

a higher coefficient of performance (COP) of the other heat pumps and lower heat losses of 

the storage. This target temperature can drop by approximately 10K which results in smaller 

energy content at the same volume compared to storages for DHW. In case of very cold 

ambient temperatures and high SH demand, heat pumps of both cycles can be used for 

keeping the target temperature. Additional heating elements in both storage types secure the 

thermal coverage in times of peak demand and the disinfection function in the DHW storage. 

While the heating elements can modulate their heat output on a continuous scale, the heat 

pumps can only run stepwise at idle, half or full load leading to a mixed-integer linear 

stochastic program. This paper uses a maintenance factor of 𝑀𝐹 = 1.5% for all elements of 

the heating system. 

In Germany, the current feed-in tariff for PV is approx. 0.11€/kWhel (Wirth, 2017). 

Typically, electricity is obtained from the external energy supplier by a fixed per-unit price 

and a small basic charge in the household sector. This average electricity price for 

households was at 0.29€/kWhel in 2015 (BNetzA (Bundesnetzagentur) [Federal Network 

Agency for Electricity, Gas, Telecommunications, Post and Railway], 2015). In the future, 

dynamic prices for households may be introduced along with a smart meter rollout. Besides, 

capacity-based price components are in discussion to charge the actual power load of the 

grid (e.g., (Kaschub et al., 2016; Simshauser, 2016)). This would be a new tariff component 

for German household customers, whereas such a demand charge is already used for 

industrial customers. 

With the different pricing mechanisms and under weather-related uncertainties, this paper 

endogenously dimensions the energy system components of an exemplary residential 

quarter in Southern Germany (Karlsruhe). The optimisation task includes investment and 

operational decisions. In terms of the investment optimisation, the task consists in 

determining the optimal sizes of the different system’s components. In terms of optimising 

the operational decisions, energy demand for SH and DHW can be shifted to times when a 

PV surplus is available by using heat pumps in combination with heat storage units. The 

electrical storage can also be used to shift PV surplus to times when it is needed within the 

quarter. Besides, the electrical storage can be used to trade electricity with the external 

energy supplier. In addition, minimisation of storage losses as well as ramp-up losses of the 

heat pumps and avoiding the use of the inefficient heating elements will lower the energy 

costs. Both electrical and thermal demand is subject to weather-related uncertainties. 

Furthermore, PV and heat pump supply depend on uncertain meteorological parameters 

such as temperature and solar radiation. The paper generates 100 different scenarios to take 

into account these uncertainties. The following Tab. 2 lists all model assumptions for the 

components of the residential quarter. 

                                                           
3
 The C-rate gives rate of charging/discharging in relation to its maximum capacity. A C-rate of one means that a 

1kWhel battery  can be charged/discharged in one hour, 
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Tab. 2: Model assumption for the components of the residential quarter. 

  PV system heat pump SH storage DHW storage electr. storage 

𝑐𝑜𝑠𝑡𝑖 (net)      

     fix  1000€ 0€ 436€ 610€ 0€ 

     variable  1300€/kWp 25500€/pc. 91.8€/kWhth 70.7€/kWhth 600€/kWhel 

Maintenance 
factor 𝑀𝐹𝑖 

1.5% 1.5% 1.5% 1.5% 1% 

Degredation 
factor 𝐷𝐹𝑖 

16% 0% 0% 0% 20% 

Life time 𝐿𝑇𝑖 20 years 20 years 20 years 20 years 20 years 

Losses 6% of  
PV yield* 

5% of load 
change 

when ramp 
up 

0.3% of storage 

level per 15min 

0.6% of storage 

level per 15min 

0.0007% of 
storage level per 

15min 

6% when  
(dis)charg.  

Restrictions capacity ≤
70kWp 

heat supply ≤ 
temp.- 
depending 
max. power  

storage level ≤ 
max. capacity 

storage level ≤ 
max. capacity 

storage level ≤ 
max. capacity 

(dis)charg. ≤ max. 
(dis)charg. power 

* This loss is already subtracted from the PV yield in the PV generation module of the transformation layer 

 

In terms of the tariff options, this paper considers three different cases: 

 Reference (REF) case: In this case, the paper assumes an electricity price of the external 

energy supplier of 0.29€/kWhel, and the option of selling electricity at the dynamic 

wholesale market price that excludes the value added tax of 19%, other governments' 

taxes and levies and the distribution provision of the energy supplier and is 0.036€/kWhel 

on average. 

 Dynamic Pricing (DP) case: This case uses dynamic retail electricity prices that are 

0.29€/kWhel on average and dynamic wholesale market electricity prices that are 

0.036€/kWhel on average. Both time series are generated as described in Section 3.2 but 

scaled to the differently. 

 Capacity Pricing (CP) case: This case excludes network charges of 0.07€/kWhel from the 

per-unit price and considers this part as demand charge of the electricity tariff by charging 

the maximum peak load during one year with 18€/kWel based on Kaschub et al. (2016). 

The dynamic wholesale market electricity price is assumed to remain unaffected at 

0.036€/kWhel on average. The capacity price of 18€/kWel represents the network 

charges of 204€ per year. This is the average amount that each household with a mean 

peak load of about 11.5kWel pays by the retail electricity prices.4  

In addition, each case is computed deterministically with the expected values of the 100 

scenarios.  

5 Computational results 

Fig. 6 shows the optimal investment in the residential quarter’s components for the three 

different tariffs considered. The optimal number of heat pumps is two in all three cases and 

                                                           
4
 The cost of 204€ per household results from 40 million German household with a mean consumption of 
3200kWhel multiplied by the network charges of 0.065€/kWhel in 2014. 
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also in the deterministically considered reference case, one used for SH and one mainly for 

DHW. This result is therefore not included in the figure. 

 

Fig. 6: Optimal investment in the energy system components of the residential quarter for the reference (REF), 
dynamic pricing (DP) and capacity pricing (CP) cases. In addition, the maximum obtained electricity energy 
from the external grid (peak load) for each case is plotted and assigned to the right ordinate. 

The optimal stochastic solution for the PV system capacity is 63kWp in the REF case. It is 

10% larger in case of DP and reaches almost the maximal possible installation capacity of 

70kWp (resulting from rooftop area limitations). When CP is applied, the optimal PV system is 

40% smaller, which can be mainly explained by the reduced retail electricity price of 0.22€/

kWhel.  

However, the stochastically optimal investment in SH storage is the same in all three 

cases with a size of 19kWhth. The reason for this is the need of heat in very cold winter 

scenarios to cover peak demand and compensate the low heat supply provided by the heat 

pumps at cold ambient temperatures. Another reason for negligible changes in SH size 

between the different tariffs is the negative seasonal correlation between SH demand and PV 

supply. This also leads to a strongly limited suitability of SH storage for PV integration which 

makes this flexibility option less attractive compared to other sources of flexibility.  

On the contrary, the DHW storage increases by 23% in the DP case in comparison to the 

REF case (60kWhth) and decreases by around 50% in the CP case, i.e. its size changes 

along with the size of the PV system.  

An investment into an electrical storage is not optimal in the REF or CP case. Only in the 

DP case, the stochastically optimal size is 1kWhel. 

Regarding the peak load from the external grid, this amounts to a maximum of 60kWel in 

the REF case, up to 90kWel in the DP case and only up to 39kWel in the CP case. 

The various computational results for the different tariff options are also listed in Tab. 3. 

The deterministic solutions using expected values of the uncertain parameters are listed in 

parentheses for each case. 

Tab. 3: Various computational results of the case study for 100 scenarios (deterministic solutions in parentheses).  

 reference (REF)  dynamic pricing (DP) capacity pricing (CP) 

Retail electricity price  
       capacity (fix)  0€/kWp 0€/kWp 18€/kWp 

     per unit (variable) 0.29€/kWhel Ø 0.29€/kWhel 0.22€/kWhel 
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Wholesale market  
electricity price 

Ø 0.036€/kWhel Ø 0.036€/kWhel Ø 0.036€/kWhel 

Interest rate 5% 5% 5% 

Investment in    

     PV system 63kWp (66kWp) 68kWp (73kWp) 36kWp (40kWp) 

     heat pumps 2pc (2pc) 2pc (2pc) 2pc (2pc) 

     SH storage 19kWhth (16kWhth) 19kWhth (17kWhth) 19kWhth (14kWhth) 

     DHW storage 60kWhth (65kWhth) 74kWhth (56kWhth) 28kWhth (19kWhth) 

     electr. storage 0kWhel (1kWhel) 1kWhel (1kWhel) 0kWhel (0kWhel) 

PV supply 43 784 − 50 286kWhel 
(49 515kWhel) 

47 241 − 54 256kWhel 
(54 467kWhel) 

25 349 − 29 113kWhel 
(29 709kWhel) 

PV self-cons. rate
5
  58.9 − 65.2% (65.4%) 58.3 − 64.9% (62.2%) 72.0 − 78.1% (73.7%) 

Self-sufficiency rate
6
 29.3 − 33.9% (35.0%) 31.3 − 36.2% (36.5%) 20.5 − 23.7% (23.7%) 

Peak load (ext. grid) 43 − 60kWel (45kWel) 44 − 92kWel (45kWel) 35 − 39kWel (37kWel) 

Min. total costs 29 978€ (29 548€) 30 453€ (29 718€) 25 607€ (25 397€) 

6 Discussion and limitations 

In general, the PV system is economically advantageous for residential quarters in both 

deterministic and stochastic variants. This result holds under all considered pricing 

mechanisms. The PV self-consumption rate of 58 − 75% coupled with the self-sufficiency 

rate of 21 − 36% primarily varies with the size of the PV system. In the REF case, the optimal 

size does not reach the maximal possible expansion on the roof area as it would be the case 

in previous years. High feed-in compensation rates had guaranteed a secure financial return. 

This had incentivised a complete utilisation of the available roof area. Nevertheless, PV 

systems remain attractive in the household sector with the current compensation and 

electricity prices. They become more attractive when dynamic pricing is applied and utilise 

almost the complete roof area. The main reason is that the electricity price is negatively 

correlated with the PV supply and positively correlated with the residual demand of the 

quarter. This results in higher costs for electricity at the retail level on average and, hence, a 

higher value of the PV system for the quarter. 

In contrast, the PV system is smaller in the CP case. In this case, the network charges are 

priced by the peak load of the residential quarter and not included in the per-unit prices. The 

reduced per-unit price makes the consumption of energy from the external grid more 

attractive. In general, DES such as residential quarters benefit from capacity pricing of 

network charges. The load peaks of the living units are strongly balanced within the quarter 

because of a diversity effect of occurrence. The result is a low peak load per living unit and 

reduced energy costs.  

Thermal storage units are clearly preferred over electrical storage units. The main reason 

is that the specific investment costs are only 10 − 15% of those for electrical storages. 

Moreover, an expected higher value of shifting 1kWhel instead of 1kWhth is not competitive 

                                                           
5
 The self-consumption rate is calculated as relation of the PV generation that is consumed within the quarter 

to the total PV generation over the entire period. 
6
 The self-sufficiency rate is calculated as relation of the total PV self-consumption to the total electrical 

demand of the quarter over the entire period. 
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with the thermal storage units in combination with heat pumps that provide heat of 3.0 −

3.7kWhth on average while demanding electricity of 1kWhel (Ø 𝐶𝑂𝑃𝑆𝐻 = 3.7 and Ø 𝐶𝑂𝑃𝐷𝐻𝑊 =

3.0). 

The DHW storage size is larger than the SH storage size, because the energy demand for 

DHW is more or less constant over the year. Consequently, the load flexibility provided by 

DHW storage units is also distributed more constantly over the year than the flexibility of SH 

storage units, i.e. DHW storage units provide a noteworthy load flexibility also in times of high 

PV supply. Hence, larger DHW storage units enable a more cost-efficient opportunity for self-

consumption of the PV system and can help enhance PV integration. That is also why the 

DHW storage units increase when the PV system increases and vice versa. As discussed 

above, the value of the SH storage units is less in load shifting: Beyond reducing the number 

of ramp ups, they cover peak demands in winter, when the air-water heat pumps may supply 

low heat due to cold ambient air temperatures. This requires SH storage units of at least 

19kWhth in all cases caused by scenarios with very cold winters. 

Electrical storage units only play a minor part in the residential quarter under current (cost) 

assumptions. Even for the CP case, the annualised capital costs for electrical storage of 

about 60€/kWhel versus a capacity price of 18€/kWel are still too high. This holds also for a 

high assumed C-rate of 1. The load flexibility to reduce the peak load comes already from the 

heat pumps. Moreover, bearing in mind that this paper considers a residential quarter rather 

than individual households, balancing between the individual households’ loads occurs 

‘automatically’ increasing the self-consumption and PV integration.  

Furthermore, our results show that for the optimal combinations of flexibility options, the 

PV self-consumption rate varies between 58% (lower limit of REF/DP) and 75% (upper limit 

of CP). The self-sufficiency rate varies between 21% (lower limit of CP) and 36% (upper limit 

of DP). Concerning the levels of self-consumption, our results suggest that power-to-heat 

with heat storages can make a significant contribution to solar PV integration. The highest 

levels of self-consumption are achieved under the CP case. The main reason for this finding 

is obviously the lower PV capacity. However, one could also argue that the CP tariff 

incentivises investments into PV systems whose generation can be largely self-consumed 

and thus help avoid stress on the grid. This finding also applies to the consumption of 

electricity from the grid where the CP case leads to the lowest peak demand among all 

considered tariffs. Looking at the self-sufficiency levels, this paper finds that consumers in 

residential quarters as considered in our paper will only need between 64% and 79% of their 

electricity from the grid. Since our analysis assumes current market prices and conditions, 

this finding does not describe a future scenario but is an imminent development. While the 

EU generally supports this development (European Commission, 2016), it is important to 

understand that it brings about changes and challenges for both electricity retail companies 

and policy makers. For retail companies, this development means that the volumes that they 

supplied in the past are expected to decrease which can seriously affect their business. For 

policy makers, the main challenge is that a decreasing amount of electricity consumption and 

electricity consumers will need to come up for the costs of the energy system infrastructure, 

particularly in systems where consumers pay for these costs on a per-unit basis. 

Consequently, one can expect that the per-unit system charges will increase over time as 

less and less electricity is extracted from the grid and contributes to paying the same overall 

pot. This may soon result in a spiral where incentives for self-sufficiency and per-unit charges 

increase continuously (Bertsch et al., 2017). This brings about distributional implications but 

is also worrying because of the overall system (in)efficiency. If self-sufficiency of residential 

quarters is incentivised, this implies that potential efficiency gains from balancing supply and 

demand over areas of different sizes (using the existing grid infrastructure) are lost. 
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Capacity-based price components are discussed, among other approaches, to overcome the 

distributional implications. While this paper finds that the maximum grid load is the lowest for 

the CP case (reduction of the external grid load by up to 35% in comparison to the REF 

case) and PV integration is highest, capacity pricing is also criticised for its distributional 

implications in its own right. This criticism usually points out that small households that have 

a low overall consumption but may have some demand peaks at few occasions in a year 

would be affected negatively by capacity pricing. On the other hand, consumers such as 

those in a residential quarter as considered in this paper would definitively benefit from such 

a tariff. The load peaks of the individual living units within the quarter can be expected to be 

well balanced resulting in a low peak load per living unit and reduced energy costs which our 

findings support. 

To set our results into perspective, we compare selected findings to those of the studies 

referred to in section 2. In general, this proves difficult since each study has a different focus 

and none of the studies we are aware of are exactly comparable. In particular, literature on 

interactions between technologies (such as heat pumps and different storage technologies) 

and retail tariffs (including dynamic pricing and capacity pricing) is rare. Nevertheless, the 

comparison of some high-level findings is interesting. In terms of the rates of self-

consumption of around 27%-74% reported by Jochem et al. (2015), these are in a similar 

range for the self-consumption in our model despite the source of electricity being PV. With 

regard to the maximum demand from the electricity grid, this paper finds less variation than 

Shirazi and Jadid (2017). Across the scenarios, the maximum amount of imported electricity 

from the grid changes by not more than a factor of 2, while Shirazi and Jadid (2017) find 

much larger differences between their scenarios. However, it should be noted that their 

scenarios differ from ours. While the overall framework of McKenna et al. (2017) is also quite 

different from our study (they specifically look into energy autonomy with regard to the heat 

and power), it seems worth mentioning that they conclude higher levels of electrical self-

sufficiency to be economically feasible: 80% when at least 100 households are aggregated 

and 65% for 29 households which corresponds with the size of our case study. However, the 

somewhat higher levels of self-sufficiency can mainly be explained by their consideration of 

micro-CHP. Hence, the levels of self-sufficiency are not entirely comparable as the micro-

CHP plants require a (usually conventional) fuel to produce electricity and heat, which needs 

to be imported in to the home, quarter or district, which is fundamentally different from 

electricity produced by PV modules.  

Limitations of the model in this paper include that it does not consider the lifetime of the 

heat pumps which is sometimes additionally restricted by the cycles of ramp-ups. The 

achieved cycles in our computations of less than 70 000 cycles never hit the limitation of 

100 000 up to 150 000 cycles according to the manufacturer information. The same applies 

to the electrical storage restricted by the cycles of charging and discharging as in Kaschub et 

al. (2016). They assume 7 000 equivalent full cycles with a lifetime of 20 years7. Because this 

limit is not achieved on average, this paper does not implement this constraint in the 

computations as this would increase the computational effort enormously. Further, this paper 

considers a temporal consideration of 15min steps. With respect to CP for instance, this 

could already reduce some peak loads within this time step or the need for load shifting and 

therefore lead to an underestimation of the storage value. Moreover, although the electricity 

price module represents the historical spot market prices accurately, changes in the energy 

market that may affect these prices are not considered such as expansion of RE or phasing-

                                                           
7
 The equivalent full cycles are based on the specification of 5000 full cycles and are higher, because more 

cycles can be achieved when the battery is only partially charged and discharged. 
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out of nuclear power in Germany until 2022. Finally, the employed hill climbing approach as 

DFO of the investment variables can only guarantee local optimality. However, it reliably, 

robustly and efficiently proceeds to this optimum within few iterations. 

7 Conclusions und outlook 

This paper endogenously determines the optimal investment and operation of the energy 

system components for a residential quarter in Southern Germany. This investment and 

operation planning is subject to manifold uncertainties with mutual dependences. Therefore, 

the paper uses a comprehensive module-based framework to consistently model and 

propagate these uncertainties and their inter-dependencies through the model chain. The 

paper starts with the generation of meteorological input data scenarios. These are used in a 

subsequent transformation process to provide the required data for the optimisation module. 

Finally, a two-stage stochastic mixed-integer linear program evaluates and optimises the 

energy system components of the quarter, including PV systems, power-to-heat and thermal 

as well as electrical storages.  

In conclusion, PV systems in such residential quarters under the considered tariffs are 

economically advantageous. The PV self-consumption and self-sufficiency rates primarily 

vary with the size of the PV system. In terms of the demand side flexibility options for 

enhanced PV integration, this paper finds that thermal storage units in combination with a 

power-to-heat application are more beneficial than electrical storage units in such a system. 

Especially, storage units for domestic hot water are profitable and beneficial because of their 

low investment needs and an utilisation throughout the year. Storage units for space heating 

serve more to reduce the risk of not covering the heat demand in cold winters.  

In relation to the usage of stochastic programming, this study finds that it reduces the risk 

of insufficient or even infeasible investments under uncertain future conditions. When 

optimising the problem deterministically, the PV system tends to be over-dimensioned by 

about 10%. However, the thermal storage units rather tend to be too small compared to the 

stochastic solution which results in the possibility of not being able to cover thermal peak 

demands in cold winters. The minimal costs are always lower in the deterministic program, 

because the investment is specifically optimal for one scenario of the uncertain parameter. In 

contrast, the stochastic solution is not optimal for a single scenario but expected to be 

optimal for all scenarios.  

With respect to the aims of the Winter Package of the European Comission, a higher 

penetration of renewable energies (such as PV) can be achieved by dynamic prices instead 

of a fixed per-unit price. The main reason is that the energy costs of the quarter under 

dynamic prices are slightly higher because the market prices at those times where the 

quarter needs electricity from the grid are higher than the average prices. Times where 

market prices are below average are often correlated with high PV supply both on the market 

and in the quarter. Consequently, there is a low or no demand from the quarter to buy 

electricity at these times of low prices. Moreover, this paper shows that dynamic pricing can 

strongly increase the peak load without any incentive for reduction whereas capacity pricing 

reduces the peak load up to 35%. Energy communities such as residential quarters would 

profit from such a tariff option. In contrast, single households with high peak loads in relation 

to low energy consumption would be worse off. Also, the expansion of renewable energies 

(such as PV) might be moderated under capacity pricing, at least with the current electricity 

retail prices for households.  
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Future research should focus on analysing more tariff options for decentralised energy 

systems. In this context, the impact of an increasing self-sufficiency on the grid and on the 

other participants in the entire energy system should be considered. Especially with regards 

to the Winter Package and our results, there is a high need for research in distributional 

fairness in the future and how tariffs might be designed to perform best in terms of social, 

ecological and economic restrictions and aims. 
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