

Long and winding road to the Grid – challenges and obstacles on the way to the FPP

Workshop on DEMO Physics and Technology R&D

5.-6. February 2018

Wolfgang Hering, E. Bubelis, S. Perez-Martin, Francisco Hernandez

Institute for Neutron Physics and Reactor Technology

Table of Contents

- Open issues
- Status of DEMO Balance of plant (BoP)
- Indirect/direct coupling strategies
- Grid development / FPP integration
- Summary and outlook

KIT - The Research University in the Helmholtz Association

www.kit.edu

German DEMO Group 05.02.2018 Jülich | KIT W. Hering

Institute for Neutron Physics and Reactor Technology Facility design, System dynamics and Safety (ASS)

2

Big open issues

HATEFUL 8

Req. by G. Frederici, PMU EUROfusion

What does it mean for DEMO BoP?

- What should DEMO be?
 - 1. Demonstrator to prove that Fusion is ready for grid support or
 - 2. Component test machine
- Can ITER be an ideal for DEMO?
- Can DEMO answer questions for FPP?
- What should an FPP deliver to grid?

Step by step!

HATEFUL® of PMU means:

- 1. RUs: Find solutions for Pulsed PCS (WCLL/HCPB)
- 2. Industry: Pulsed PCS for WCLL
- 3. Industry: Pulsed PCS for HCPB

to provide operating experience, calculation models tuned on operating plants and special thermo-mechanical calculation on steam turbine useful to assess feasibility of the solutions

- 4. HCPB PHTS&BOP design on DEMO-16
- 5. Internal Design Review of PHTS&BOP+ESS DEMO-18 (End of 2018)
- 6. Completion of design activity on WCLL Pulsed PCS in 2018
- 7. Internal Design Review of PHTS&BOP without ESS (End of 2019)
- 8. Pre-gate Review in June 2020

German DEMO Group 05.02.2018 Jülich | KIT W. Hering

Electrical Power Export Heat sink Energy Divertor, VV → Feedwater System Radwaste Power to heat 2050+ Building Cryostat **VVPSS** VV Sup. Sys. TER / Fuelling Vacuum V. Vacuum NBI / ECH CrvoPlan Magnets System Disrup. Mitig. Sys. Divertor _ Institute for Neutron Physics and Reactor Technology German DEMO Group 05.02.2018 Jülich | KIT W. Hering Facility design, System dynamics and Safety (ASS)

Status of DEMO BOP

Pulsed Tokamak with 120 min pulse and 10 min dwell time:

- 1. Indirect coupling (IHTS plus a thermal energy storage ESS): Today:
 - HTF technology from Concentrating Solar Power (CSP)
 - Helium technology (circulator, HX,...) checked and manufactural
 - Database for PHTS, IHTS and PCS established (not yet complete)
 - \rightarrow allows flexible plant operation
- 2. Direct coupling (without IHTS):

steam generator inside Tokamak, steam line penetrates confinement, req. additional heating for boiler, turbine and steam generator

 \rightarrow in development boosted by PMU allowing small ESS

Development of HCPB DEMO (2014→2017)

Development of HCPB DEMO (2014→2017)

German DEMO Group 05.02.2018 Jülich | KIT W. Hering

Institute for Neutron Physics and Reactor Technology Facility design, System dynamics and Safety (ASS)

9

Turbogenerato	r (PCS ST)
	130 bar(abs)
Live steam flow rate	842 kg/s
Live steam temperature	447 °C
Max. PCS Output	≈ 1009 <i>MW</i>
Turbogenerator weight	Approx. 1285000 kg
Turbine manufacturer	Siemens
Turbine type	SST5-6000: I50 / 6x12.5m ²
No. of turbine stages	1 IP turbine stage; 3 LP turbine stage
Turbine rated speed	3000 rpm
Electrical generator manufacturer	Siemens
Electrical generator type	SGen5-3000W
Electrical generator rating	965 MVA
Condenser cooling water quantity	35184 kg/s
Condenser cooling water inlet temperature	20 °C
Condenser cooling water outlet temperature	29.5 °C
Turbogenerator space reservation	L=52m;H=24m;W=19m

Examples: Turbo-Generator

www.siemens.com/steamturbines

11

German DEMO Group 05.02.2018 Jülich | KIT W. Hering

Institute for Neutron Physics and Reactor Technology Facility design, System dynamics and Safety (ASS)

Summary indirect coupling

- Solutions for all initial "show stoppers" found
 - not perfect ideal but accepted by industry for further development
- Circulation power still high (~150 MW)
- Helium inventory still too high:
 - \rightarrow segmentation
 - \rightarrow size reduction necessary

BoP interacts from the beginning with:

- Breeding blanket (BB): optimize interface and design, operation and emergency conditions
- Safety (SAE)
 such as: Plasma instability, Disruptions, Emergency shut down,...
 Safety provisions

Problem of boiler: fast temperature and pressure transients Steam Superheater drum Preheater Gas Steam Water/Steam Storage PHTS System (2-Phase) Gas \leftarrow Pulse \rightarrow ← Dwell Solution Boiler + 2-phase steam storage (+ superheater) But ineffective for higher pressures and energy capacities (no industrial experience at DEMO size) Institute for Neutron Physics and Reactor Technology 15 German DEMO Group 05.02.2018 Jülich | KIT W. Hering Facility design, System dynamics and Safety (ASS)

Advanced concept to reduce costs

Challenges to be solved

- Keep steam turbo-generator, feedwater-system, steam generator and pumps alive
- Transition between dwell and pulse risky due to fast power increase
- Limit temperature (<2K/min) and pressure changes (0,5 bar/min)</p>
- Obey limitations in turbo-generator speed to stay synchronized
- Keep an eye on additional investment and operating costs:
 - Full power boiler ~ 120 Mio €
 - Energy storage for water (innovative never build so far, cost?)
 - High capacity gas pipeline ~1 Mio €/mi (depending on gas grid)
 - Infrastructure investments ?
 - Maintenance costs at boiler: corrosion due transient gas burning
 - Costs of fuel (gas)?

Summary and Outlook

Direct coupling

- Turbine no manufacturer: (SIEMENS: indirect coupling, ANSALDO max change rate: ~10%/min)
- Buffer system ESS: additional boiler expensive
- Steam generator ramp up/down ~15 min (comp to Benson boiler)

Indirect coupling

- Follow DEMO tokamak change from 18 to 16 sectors (DEMO-16)
 - \rightarrow Modify design and simulations to 16 sectors
 - \rightarrow Incorporate new BB design
 - \rightarrow Industry involvement to address component feasibility
- Dynamic simulations for transitions pulse to dwell required (RELAP5-3D)
- BoP knowledge applicable to Stellerator

New hope from new BB design New design of BB (Francisco Hernandez) + higher FW cooling (just example configuration) capability + significant lower pressure drop 6 IHX, 12 circulators 9 IHX, 18 circulators $P_{circ} \approx 5 \div 6 MW/circ.$ $P_{circ} \approx 10$ MW/circ. P_{pump}≈60÷70MW P_{pump}≈150MW 18 German DEMO Group 05.02.2018 Jülich | KIT W. Hering

German DEMO Group 05.02.2018 Jülich | KIT W. Hering

Institute for Neutron Physics and Reactor Technology Facility design, System dynamics and Safety (ASS)

20