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a b s t r a c t 

This article presents the coupling of magnetic resonance imaging (MRI) measurements and computa- 

tional fluid dynamics (CFD) for accurate characterisation of fluid flow and identification of flow domains. 

Currently, MRI measurements are averaged over time and space, assuming a certain smoothness of the 

velocity and pressure space. However, a possible solution of a fluid problem must fulfil the Navier–Stokes 

equations, which sets up a condition that is much more restrictive than the usual smoothness assump- 

tions in e.g. curve fitting. The novel CFD-MRI method uses this insight to reduce the statistical noise 

and to identify finer structures of the underlying domain. The problem is formulated as a distributed 

control problem which minimises the distance between measured and simulated flow field. Thereby, the 

simulated flow field is the solution of a parametrised porous media BGK-Boltzmann equation which ap- 

proaches a homogenised Navier–Stokes equation in the hydrodynamic limit. The parameters represent 

the porosity distributed in the domain which yields a domain and a fluid flow that fits best to the mea- 

sured data. This enables the method they locate an obstacle and the flow field from limited 2 D spatially 

resolved MRI data with one velocity component. The problem is solved with an adjoint lattice Boltzmann 

method (ALBM) using the open source software OpenLB 1 . 

1. Introduction 

Improving magnetic resonance imaging (MRI), in particular flow 

phase contrast MRI (flow MRI), which can depict fluid flows in 

complex geometries, is a very important task. In medical applica- 

tions, improved accuracy can help diagnose severe health issues, 

e.g. by locating artery narrowing that indicates the risk of a heart 

attack. In technical applications, it can help to identify problems, 

for example in filtration processes, in fluidic bypass solution or in 

refining steps in crude oil industry. 

MRI is known to be a versatile tool to investigate the inter- 

esting object non-destructively and non-invasively with a low en- 

ergy input compared to e.g. x-ray tomography [1–3] . Structural and 

functional images as well as flow fields are known to reveal in- 

depth insight. As often time-dependent processes are investigated 

or patients and animals may stay only a limited time in a magnet, 
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the measurement time is limited. The MRI community is therefore 

searching to improve the time resolution, i.e. to shorten the time 

required to perform an MRI experiment, while retaining the spatial 

resolution and the level of information. Current approaches are the 

use of higher magnetic fields and the application of compressed 

sensing algorithms. 

A different way to improve flow MRI is to combine measure- 

ment and simulation, here called CFD-MRI method. This coupling 

can be achieved by formulating a restricted optimisation problem, 

called fluid flow domain identification problems, which minimises 

the distance of measured and simulated flow fields. The optimi- 

sation problem thereby only allows solutions which fulfil corre- 

sponding physical properties and equations, here the Navier–Stokes 

equations for fluid flow problems. This promises to lead to a con- 

siderably more accurate characterisation of fluid flows and flow 

domains in complex geometries. 

The main aim of this manuscript is to introduce, realise and val- 

idate the proposed CFD-MRI method for the coupling of measured 

data and simulation using the adjoint lattice Boltzmann method 

(ALBM) for solving fluid flow domain identification problems [4,5] . 

The method is used to locate an object and the flow field using 
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only limited 2 D spatially resolved MRI data with one velocity com- 

ponent. 

The combination of MRI data and CFD simulation is often used 

in medical applications, where the MR images are used to obtain 

velocity profiles or the reconstruction of geometries in patient data 

[6–9] . However, to the knowledge of the authors there has never 

been a coupling of simulation and measurement data as input for 

a topology optimisation problem in order to improve the quality of 

the data. 

In the field of computational fluid dynamics (CFD), the lat- 

tice Boltzmann method (LBM) is a well established method for 

solving incompressible Navier–Stokes equations [10–13] . Thereby, 

the big advantages of LBM are its easy implementation due to 

the simple core algorithm and its local computations, making it 

a very powerful numerical tool in high performance simulation 

of fluid flow problems [14,15] . For adjoint based optimisation in 

LBM there are two main methods: The first-discretise-then-optimise , 

where the adjoint equations are derived from the discrete lat- 

tice Boltzmann equations, and the first-optimise-then-discretise ap- 

proach, where the adjoints are derived from the continuous BGK- 

Boltzmann equation and discretised afterwards. The first method 

was proposed by Tekitek et al. [16] for parameter identification, 

and was later used for topology optimisation by Liu et al. [17] or 

Nørgaard et al. [18] . The latter method, called adjoint lattice Boltz- 

mann method (ALBM), was proposed by Krause et al. [19] show- 

ing its effectiveness for parallel implementation and high perfor- 

mance. ALBM is nowadays most often used for topology optimi- 

sation, e.g. by Yaji et al. [20,21] . The first to use LBM for topol- 

ogy optimisation were Pingen et al. [22] using a porous media 

model. Based on this, Krause et al. [4,5] have proposed an exten- 

sion to the ALBM for the determination of flow areas and flow dy- 

namics. Thereby, porosity is the control variable of an optimisa- 

tion problem that minimises the resulting velocity distributions to 

those of a measured one. The optimisation problem is solved with 

a gradient-based method, e.g. L-BFGS [23] , where the result is the 

distribution of porosity inside the domain. The ALBM was validated 

for domain identification problems for different and increasingly 

complex objects and with complete and partially available artifi- 

cial data (cf. [4,5] ). However, no validation of the algorithm with 

measurement data was performed, which is one of the formulated 

aims of this manuscript. 

The manuscript is structured as follows: Section 2 intro- 

duces the CFD-MRI method. As simulation method, a parametrised 

porous media BGK-Boltzmann method for the flow through porous 

media will be presented. Next, the flow MRI to obtain the fluid 

flow data in physical experiments is introduced. Finally, simula- 

tion and measurement are combined to an optimisation problem, 

the fluid flow domain identification problem, which is solved using 

an adjoint lattice Boltzmann method. Section 3 contains the con- 

ducted experiments and validation of the method. First the MRI ex- 

periment and its results are described and then the resulting mea- 

surement data is used for the CFD-MRI method in the numerical 

experiments. 

2. CFD-MRI method 

The general idea of the CFD-MRI method is to use MRI data as 

initial values for the simulation. That is, the geometry, represented 

as porosity distribution, and physical quantities like maximum ve- 

locity or velocity profile for example. The MRI data and the sim- 

ulation are then combined to an optimisation problem, where the 

difference of simulated and measured flow field is minimised. This 

leads to a new distribution of porosity in the domain and is re- 

peated until the flow fields coincide. The result is then a distribu- 

tion of porosity and velocity that matches the data. 

2.1. Parametrised fluid flow simulation 

For the simulation of incompressible Newtonian fluid flows a 

LBM is chosen. A porous media model is used here, since the 

method needs to be able to change the topology of the domain. 

This is based on the idea of Pingen et al. [22] , who used a poros- 

ity function to scale the velocity in the equilibrium distribution 

function, which recovers the Brinkman equations for flow through 

porous media. The porous media BGK Boltzmann equation intro- 

duced by Krause et al. [4,5] is defined as 

h 

2 d 

dt 
f + 

1 

3 ν

(
f − f eq 

d 

)
= 0 , (1) 

where f = f (t, r , c ) is the particle distribution function , with time 

t ∈ I = [ t 0 , t 1 ) ⊆ R ≥0 , position r ∈ � ⊆ R 

d , velocity c ∈ R 

d , model 

parameter h ∈ R > 0 and kinematic viscosity ν ∈ R . The equilibrium 

distribution function f 
eq 

d 
(ρ, u ) is a function of the macroscopic 

density ρ and velocity u and depends on the porosity function 

d : �→ [0, 1]. For every r ∈ � the porosity can then be defined as 

d(r ) = 0 for solid, d(r ) = 1 for fluid and d ( r ) ∈ (0, 1) for porous ma- 

terials. 

For discretisation, we use the lattice Boltzmann method (LBM), 

which leads to the lattice Boltzmann equation (LBE) defined as 

f i (x + c i h 

2 , t + h 

2 ) − f i (x , t) = − 1 

τ

(
f i (x , t) − f eq 

i,d h 
(ρ, u ) 

)
. (2) 

Here, f i : �h × I h → R 

+ for i = 0 , . . . , q − 1 are the distribution func- 

tions with �h ⊂� the lattice, I h := 

{
t | t = kh 2 , k = 0 , . . . , n k 

}
the 

discrete time interval and h now the discretisation parameter. 

The relaxation time τ is associated with the kinematic viscosity 

ν by the relation τ = 3 ν + 1 / 2 . The discrete velocities c i ∈ R 

d ( i = 

0 , . . . , q − 1 ) are chosen such that c i + x h 2 ∈ �h , where the dis- 

cretisation model is defined as DdQq . Based on Spaid and Phe- 

lan [24] , Krause et al. [4,5] proposed a grid independent function 

d h : �h → [0, 1] defined as 

d h := d h (x ) = 1 − h 

2 ντ

K 

(3) 

with permeability K . Here, d h is defined as the lattice porosity , 

which is related to physical porosity in the sense that a point 

�
 x ∈ �h is regarded as solid for d h = 0 (zero permeability), as fluid 

for d h = 1 (infinite permeability) and occupied by a porousmedium 

for d h ∈ (0 , 1) [22] . The porous media equilibrium distribution func- 

tion f 
eq 

i,d h 
( i = 0 , . . . , q − 1 ) is then defined as 

f eq 

i,d h 
(ρ, u ) = w i ρ

(
1 + 3 h 

2 (c i · d h u ) − 3 

2 

h 

2 (d h u · d h u ) 

+ 

9 

2 

h 

4 (c i · d h u ) 2 
)
. (4) 

For D 3 Q 19 the weights w i are defined as w 0 = 1 / 9 w, 

w i = 1 / 18 w (i = 1 , . . . , 6 ), w i = 1 / 36 w (i = 7 , . . . , 18) and 

w = 2 / 3 π3 / 2 h −3 exp 

(
3 / 2 c 2 

i 

)
. This method is also a special 

case of the homogenised lattice Boltzmann method (HLBM) [25] . 

The macroscopic quantities velocity u : �h × I h → R 

d and density 

ρ : �h × I h → R can be computed as moments of the distribution 

function as follows: 

ρ(x , t) = 

q −1 ∑ 

i =0 

f i (x , t) , ρu (x , t) = 

q −1 ∑ 

i =0 

c i f i (x , t) . (5) 

2.2. Flow MRI 

Flow fields can be measured by MRI by exploring the nuclear 

magnetisation’s phase and the impact of coherent motion of spins 

onto this nuclear magnetic resonance (NMR) quantity [1–3] . It is 

well known that by encoding and decoding of the magnetisation’s 

phase at a later time, velocity can be calculated spatially resolved. 



Fig. 1. MRI experiment. Left, the schematic setup of the experiment. A cylindrical object (red) inside a tube of length 0.0255 m and radius of 0.004 m. Right, the results of 

the MRI experiment. The data is the y -velocity component of the flow in the x − y plane located in the middle of the tube. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Several experimental realisations are known, first the Fourier ve- 

locity imaging which results in velocity maps and additionally in 

maps of velocity amplitude. A much faster approach is the Flow- 

PC approach where only one flow phase encoding gradient ampli- 

tude is employed rather than a sampling of the complete inverse, 

Fourier conjugated space. This approach usually leads to a time 

reduction of a factor of 8 − 32 in 2 D spatially resolved flow ex- 

periments. It can be realised as gradient echo sequence or as spin 

echo sequence. Data in this publication were acquired by the flow 

encoding gradient echo sequence. As the aim of the investigation 

was to show the capability of the combined CFD-MRI approach, the 

measurement parameters were chosen to minimise the measure- 

ment time, i.e. the spatial resolution as well as the signal-to-noise 

ratio were at the lower limit of acceptance. 

2.3. Fluid flow characterisation and domain identification 

For the fluid flow characterisation we use an optimisation ap- 

proach for solving domain identification problems [4,5] . This is done 

by introducing a goal function defined as 

J( f, α) = 

1 

2 

∫ 
�J 

(u f − u 

∗) 2 dr , (6) 

which calculates the difference between a given flow field u 

∗ and 

a simulated flow field u f inside an objective domain �J ⊂ � ⊂ R 

d . 

The goal function is minimised using a control α, where α changes 

the lattice porosity inside the objective domain by a projection B : 

α �→ B α := d . Thereby, only states f are admissible which fulfil the 

porous media BGK Boltzmann equation (1) , linking control and 

state. This is the side condition G ( f, α) of the optimisation prob- 

lem and here defined as 

G ( f (α) , α) := h 

2 d 

dt 
f + 

1 

3 ν

(
f − f eq 

Bα

)
. (7) 

Note that in this method a steady state solution is assumed. 

In order to find the optimal control a quasi-Newton method is 

used (e.g. L-BFGS [23] ), for which the total derivative of the goal 

function with respect to the control is needed. In [4,5] this total 

derivative is found to be 

d 

dα
J( f (α) , α) = u f τ

∫ 
R d 

ϕ 3 h 

2 (v − Bαu f ) f 
eq 
Bα dv + 

∂ 

∂ f 
J (8) 

where ϕ is determined by solving an adjoint porous media BGK- 

Boltzmann equation 

d 

dt 
ϕ − 1 

3 ν
(ϕ − ϕ 

eq 
Bα) + 

∂ 

∂ f 
J = 0 , (9) 

with adjoint equilibrium distribution function ϕ 

eq 
Bα, which depends 

on the macroscopic quantities of the porous media BGK-Boltzmann 

equation (1) . 

Using the adjoint lattice Boltzmann method (ALBM) [19] the 

discrete adjoint porous media lattice Boltzmann equation is found to 

be 

ϕ j (x − c j h 

2 , t − h 

2 ) − ϕ j (x , t) = − 1 

τ

(
ϕ j (x , t) − ϕ 

eq 
j,Bα

(x , t) 
)

+ 

3 ν

τ
h 

2 dJ j (10) 

with dJ j = − (u ∗−u )(c j −u ∗) 

ρ and discrete adjoint equilibrium distribu- 

tion function 

ϕ 

eq 
j,Bα

= 

q −1 ∑ 

i =0 

ϕ i 

(3 Bα(Bαh u − c j )(h u − c i ) + 1) 

ρ
f eq 
i,Bα

. (11) 

Note that the adjoint equilibrium distribution function depends 

on the LBE (2) and its moments. The discrete adjoint porous me- 

dia lattice Boltzmann equation (10) is also very similar to the 

porous media lattice Boltzmann equation (2) , leading itself to the 

same high efficient parallelisation. This makes it possible to cal- 

culate the derivatives and the objective function, required for the 

quasi-Newton method, very fast. By using an efficient optimisation 

method such as L-BFGS, the performance can be further improved. 

For the numerical experiments in Section 3 a L-BFGS method was 

implemented in the OpenLB framework. 
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Fig. 3. Design Domain. Start of the design domain (red) corresponding where the 

cylinder is assumed in the MRI data (plane). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

3. Validation and application 

In this section, the experimental and numerical setup is de- 

scribed, and the results for the CFD-MRI method are discussed. 

3.1. MRI experimental setup 

The experiments were performed on a 200 MHz super 

wide bore MRI instrument (Bruker BioSpin GmbH, Rheinstetten) 

equipped with an Avance HDIII console. The probe used for the 

experiments was a MICWB 40 with a 10 mm birdcage. Gradients 

up to 1 T/m for the imaging and flow encoding were available. As 

the aim was to condense information into fast experiments, only 

2 D spatially resolved flow images were acquired in a measurement 

time of several minutes via Flow map in the Bruker Paravision 6.0 

software. Data processing was performed by in house written Mat- 

lab scripts. 

A model was realised for the flow measurements. A straight, 

stiff tube was modified by placing an obstacle, here a cylindrical 

specimen (see Fig. 1 (a)). This stiff tube was connected via flexible 

tubes to a chromatographic pump with minimal pulsation to re- 

alise a stationary flow field in the model. As flowing liquid, iso- 

propanol was chosen. The MRI experimental result is shown in 

Fig. 1 (b). 

3.2. Simulation setup 

For the numerical experiments, the tube is assumed to be a 

cylinder with length of 0.0255 m and radius of 0.004 m, which 
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matches the MRI experiment (cf. Section 3.1 ). The domain is dis- 

cretised using a resolution of 100 × 256 × 100 cells, resulting in 

around 2.5 million lattice nodes total. The MRI data consists of 

128 × 256 data points, where the outer approximately 50 data 

points are only noise. A bilinear interpolation is used to provide 

the velocity information of the MRI data on the lattice. There- 

fore, the method is independent of the resolution of the measure- 

ment data. A velocity boundary condition is set at the inflow, with 

Poiseuille profile and maximum velocity of 0.0036 m/s correspond- 
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ing to the velocity profile of the data (cf. Fig. 2 ). A pressure condi- 

tion is used for the outlet and Bounce Back for the remaining shell 

of the pipe. For the fluid, here isopropanol, a kinematic viscosity 

of 2 . 798 · 10 −6 m 

2 /s and density of 786 kg/m 

3 is chosen. Further, 

a relaxation time of τ = 0 . 57 is used. For the adjoint equation the 

boundary conditions are all set to bounce back (cf. [26] ). The de- 

sign domain, where the control for the optimisation is applied and 

the object is assumed, is a cylinder with length 0.004 m, radius of 

0.002 m and center at (0.004 m, 0.013 m, 0.004 m) T , see Fig. 3 . The 

start value for the control is set to α = −19 resulting in a lattice 

porosity of d h = 0 . 98 . The start value was chosen such that it is 

sensitive for the optimisation method (cf. [5] ). The corresponding 

permeability can be calculated using (3) . The objective domain �J 

is defined, matching the two-dimensional surface of the MRI data, 

with x ∈ [0.0 0 05 m, 0.0 075 m], y ∈ [0 m, 0.0254 m] and z = 0 . 004 m . 

As the MRI data only contains the y − velocity component, the goal 

function now reads 

J = 

1 

2 

|| u 

f 
y − u 

∗
y || L 2 (�J ) , 

where u 
f 
y and u ∗y are the velocity components in y − direction for 

the simulation and measurement, respectively. 

The simulations were carried out on the parallel cluster ForHLR 

II at Karlsruhe Institute of Technology (KIT). 

3.3. CFD-MRI results 

The challenge here is that the MRI data is only two-dimensional 

in space and one-dimensional in velocity. Taking a look at the er- 

ror, here the relative L2 error || · || 
L 2 

rel 
:= 

|| u −u ∗|| 
L 2 || u ∗|| 

L 2 
, one can see that 

the method starts at 41.72%, after only 5 optimisation steps the 

error is reduced by half and then reaches 11.83% after 20 steps 

(cf. Fig. 4 ). The error stays at around 12%, but as can be seen in 

Figs. 5–7 the measurement noise is significantly reduced. It can 

also be seen that the solutions are constrained by the measure- 

ment noise. However, the big advantage of the CFD-MRI method 

is that the solutions now fulfil the porous media BGK-Boltzmann 

equation, which is not the case for the measurement data. In 

Fig. 8 the results for the object identification is shown. For this and 

the following figures a threshold of d h ≤ 0.99 is used for better vis- 

ibility. In the background a segment of the MRI data can be seen, 

and in front a slice of the design domain represented as points 

showing the lattice porosity. After only 5 steps the basic outline of 

Fig. 8. Object identification. Results for the object identification, with the MRI data ( y -velocity) in the background and lattice porosity represented as points, where red 

indicates high and blue low lattice porosity values. The CFD-MRI method locates the cylinder very well in the first 5 steps, but with high lattice porosity. After 18 steps the 

object has very low lattice porosity, resulting in a solid object. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 



Fig. 9. Fluid flow characterisation. Results for the y -velocity flow of the simulation for different optimisation step with extraction around the object. The step numbers 

correspond to those of Fig. 8 . 

Fig. 10. Object identification. In step 0 the start of the design domain is shown, 

after 10 steps the method identifies the object inside the MRI plane very well and 

then adds lower lattice porosity values on the top and the bottom of the object 

(steps 15 and 20). 

Fig. 11. Object identification. Result of the optimisation algorithm for the cylinder 

inside the MRI data. Note, that a three-dimensional object is found by only having 

2 D spatially resolved flow MRI data (plane). 

the object is found, but with high lattice porosity. After 8 steps the 

method finds a solid shell, with high lattice porosity interior. The 

interior gets more solid after 10 steps, with porous outer shell. Af- 

ter 18 steps the interior as well as the outer layer is very solid. Cor- 

responding to the same steps Fig. 9 shows the result for the flow 

characterisation. It can be seen that the flow is accurately charac- 

terised after the object is found. Note that the high start value of 

d h = 0 . 98 is able to stop the flow. This is due to the fact, that d h 
is not the physical, but the lattice porosity (cf. [5] ). Although only 

2 D spatially resolved data with one velocity component is given, 

the method finds a three-dimensional object (cf. Fig. 10 ). At first, 

the object is only found in the MRI plane, but then becomes more 

three-dimensional. Note that although the object is not in the mid- 

dle of the domain, or the objective domain, it is accurately located. 

Fig. 11 shows the resulting object combined with the MRI data. It 

can be seen that the two-dimensional data is insufficient to iden- 

tify the exact three-dimensional object. However, at the same time 

it shows that the method is not constrained by the dimension of 



Fig. 12. Comparison. Direct comparison of the CFD-MRI result after 18 steps (left) 

to the MRI data (right). The fluid flow is accurately characterised with significant 

reduction of the measurement noise. 

the data. Therefore spatially differently oriented data sets can be 

used within this method. A direct comparison of MRI data and 

CFD-MRI result can be seen in Fig. 12 , which shows a very simi- 

lar fluid behaviour, but with physical properties and the potential 

for further analysis in the CFD-MRI result. 

4. Conclusion 

In this article the novel CFD-MRI method for accurate fluid flow 

characterisation and domain identification was presented. This 

combination of simulation and measurement data was realised and 

validated. Thereby a parametrised porous media BGK-Boltzmann 

equation is used to represent the domain as a porosity distribution. 

Using the adjoint lattice Boltzmann method for domain identifica- 

tion problems the porosity distribution was changed, such that the 

fluid field meets the flow MRI data. By this, the CFD-MRI method 

was able to locate an object and accurately characterise the fluid 

flow using only 2 D spatially resolved MRI data. The measurement 

noise was thereby significantly reduced with solution that satisfy 

the physical equations for fluid flow. This results in a powerful tool 

for the analysis of MRI data. 

In the future, noise reduction techniques such as Gaussian fil- 

ters could be used to reduce noise before or even during sim- 

ulation. This could combine the advantages of both methods. By 

smoothing the measurement noise, the optimisation method could 

find solutions that match the physical models faster. The method 

should also be extended to characterise porous materials and for 

calculating various physical quantities like wall shear stresses. The 

CFD-MRI method could thus help to gain deeper insights into com- 

plex applications and underlying physical properties. 
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