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ABSTRACT 

Detached-Eddy-Simulations (DES) were performed for investigating the thermal-hydraulics of a 

one-sided heated and rib-roughened cooling channel at Reynolds numbers ranging from 2.5·104 

to 1.58·105. Heat transfer and flow characteristics for three different types of centrally 

positioned, transversally oriented rib-elements with a rib-height and rib-top-width of e and (a) 90 

deg. edged, (b) 2 e radius round-edged  or (c) 30 deg. inclined  front- and rear-rib-surface haven 

been analyzed. The rib-pitch-to-rib-height-ratio was p/e = 10 and the rib-height-to-hydraulic-

diameter-ratio was e/Dh = 0.0638. For all simulations, friction factors decrease and heat transfer 

coefficients increase for increasing Reynolds numbers. For varying rib-shapes, the averaged 

friction factor ratios differ up to 30 pct. and the Nusslet Numbers at the rib-roughened and the 

overall Nusselt Numbers differ up to 12 pct. and 8 pct., respectively. Maximum flow resistance 

and heat transfer occur for the 90 deg. edged rib-configuration. For all rib-shapes, the thermal 

performance factor (of increased heat conductance and equal pumping power) for cooling the 

rib-roughened wall decreases for increasing Reynolds numbers. Best thermal performance was 

obtained for the 90 deg. edged rib-configuration. Correlations for Nusselt number and average 

friction factor prediction were derived for the entire Reynolds number range. 

  



INTRODUCTION 

Rib-roughened channel walls enhance the heat transfer of internal cooling passages and are 

frequently applied in heat exchanger and cooling applications, i.e. gas turbine blade cooling or 

gas-cooled reactors. Corresponding flow and heat transfer phenomena have been studied for 

decades. Focusing on heat transfer enhancement mechanism, flow motion, mean velocity 

distributions, turbulent fluctuations and friction factor development, flows in heated channels 

with one- and two-sided, opposite rib-roughened walls of transversally oriented rib-elements 

were determined by LDA [1-4] and pressure drop measurement techniques or computed by 

Large- and Detached-Eddy-Simulation techniques [5-9]. Corresponding temperature field 

measurements were carried out by thermocouple probes, liquid-crystal thermometry [1] and 

holographic interferometry [2-4]. For global performance estimations the effects of varying flow 

conditions and rib-designs on heat transfer and flow characteristics were studied systematically 

by means of pressure drop and wall temperatures measurements [10-16].  

 

The present work aims at improved designs of high-pressure helium-gas running internal cooling 

passages for high heat flux components of fusion, nuclear or solar power plants. Detached-Eddy-

Simulations (DES) were performed for investigating the thermal-hydraulics of a one-sided and 

heated rib-roughened cooling channel with three different types of centrally positioned, 

transversally oriented rib-elements at Reynolds numbers, Re = ( ·Dh)/(A·μ), ranging from 

2.5·104 to 1.58·105. The thermal-hydraulic conditions and the computational domain correspond 

to the so-called HETREX experiment (at KIT, Germany) for pressure drop and heat transfer 

prediction. The presented computations provide additional results of spatially averaged heat and 

flow characteristics, which are not resolved by the experiments. 



METHODS 

Detached Eddy Simulation 

In the last years, DES has been established as a reliable computational method for turbulent 

flows of massive separation. It was successfully applied for thermal-hydraulic predictions in 

two-sided rib-roughened channels at Re = 2·104 [8,9] (with reduced numerical cost of about one 

order of magnitude compared to LES). DES is a non-zonal hybrid RANS/LES approach 

assigning RANS to attached boundary layer flows and LES to separated flow regions. Initially, it 

was introduced with the S-A turbulence model [17], the so-called DES97, and extended to the k-

ω-SST model [18,19]. In general, the DES methodology bases on implementing a DES limiter to 

a RANS turbulence model. The limiter is controlled by the local grid size (Δx, Δy, Δz) and 

turbulence flow length lt inducing the switching between the LES and RANS mode. For 

introducing the k-ω-SST model into the DES approach the dissipative term of the k-equation was 

modified. The turbulent flow length scale / / ∗ ∙  of the dissipative term is 

substituted by a new DES length scale min	 , ∙ Δ  with the DES constants  and 

the filter width ∆	 max	 ∆ , ∆ , ∆ . The DES constant  shifts between the k-ω and k-ε 

branch of the k-ω-SST model. In regions where the maximum spatial grid spacing is much larger 

than the flow turbulence length scale, DES functions in RANS mode with the conventional k-ω-

SST formulation [20] and in regions of comparable small maximum spatial grid spacing, DES 

functions in LES mode and the eddy-viscosity is calculated by a subgrid-scale like model 

formulation of / . In the present study the delayed DES approach with k-ω-SST 

model [21], the DES constant of 0.61 and of 0.78 and the turbulent Prandtl 

number of 0.85 were used.  



Computation, Boundary Conditions and Simulation Details  

The computational domain was derived from the HETREX (Heat TRansfer Enhancement 

eXperiements) test section. It represents a section of the experimental setup (for corresponding 

pointwise heat transfer and pressure drop measurements) and contains a fluid and a solid domain 

as displayed in Fig 1. The solid domain consists of the structure walls and the heating unit below 

the rib-roughened channel with a cylindrical heater cartridge. The fluid domain of the cooling 

channel contains the one-side heated and rib-roughened channel zone and a non-heated smooth 

outlet zone with identical channel dimensions. The rib-roughened channel zone is structured by 

16 centrally positioned, transversally oriented rib-elements with a rib-height and rib-top-width of 

e and (a) 90 deg. edged (TE), (b) 2 e radius round-edged (TR) or (c) 30 deg. inclined (TI) front- 

and rear-rib-surface, see Fig. 2. The channel cross section is 15 e x 15 e with 2 e inside radiuses, 

the rib-pitch-to-rib-height-ratio is p/e=10, the rib-height-to-hydraulic-diameter-ratio is e/Dh = 

0.0638 and the rib-width-to-channel-width-ratio is Le/W = 0.6 (TE) and 0.82 (TR, TI), as 

illustrated in Fig 2. The present channel was designed for channel- and rib-manufacturing by 

ordinary mill cutting with spherical and cylinder head cutters.  

 

The simulations were carried out for Reynolds numbers Re and heat up rates  ∙ / ∙

∙  of (Re; q+) = (2.5·104; 4.5·10-3), (5.1·104; 2.1·10-3), (7.75·104; 1.45·10-3), (1.1·105; 

1.0·10-3) and (1.58·105; 7.1·10-4). The thermal-hydraulic conditions represent common operating 

ranges of high pressure helium-gas running cooling channels of planned fusion reactors or 

helium-/air-gas- or thermo-oil-running absorber tubes of solar receivers. The fully turbulent 

developed inflow conditions were obtained separately by periodic, isothermal DES of a smooth 



channel fluid domain with identical dimensions as the channel inlet. Adiabatic boundary 

conditions were assumed for the outer walls of the solid domain and a constant heat flux density 

was applied at the heater cartridge surface of the solid domain. The fluid was air (at pin = 0.4 

MPa(abs) and Tin = 293.15 K) with ideal gas conditions and temperature dependent density , 

specific heat capacity , thermal conductivity κ  and fluid viscosity  [22]. The 

compressible fluid conditions yield slight axial change of the Reynolds numbers. The solid was 

stainless steel [X6CrNiMoTi17-12-2 (316Ti)] with a constant density of  = 7980 kg/m3 

and temperature dependent material parameters  and  [22]. 

Local grid refinement was performed in the vicinity of the rib-elements and within the inter-rib-

spacing resulting in a focus region aiming on maximum cells sizes of ∆x+ ≈ 11 and ∆y+ ≈ ∆z+ ≈ 8 

at Re = 2.5·104 and ∆x+ ≈ 55 and ∆y+ ≈ ∆z+ ≈ 35 at Re = 1.58·105 and a wall-normal first spacing 

of ∆z+ < 1. The aforementioned grid resolution bases on a grid sensitivity study. For the 

qualification of the uncertainty of grid convergence, numerical uncertainty was determined by 

the GCI method [23] as recommended for CFD studies [24]. Here, DES simulations have been 

carried out for three grid sizes (N1 < N2 < N3) of the TE rib-configuration at Reynolds number of 

Re = 5.1·104, Re = 1.1·105 and Re = 1.58·105 with a refinement factor of r21 = 1.19 and r32 = 1.3 

for Re ≤ 1.1·105 and r21 = r32 = 1.3 for Re = 1.58·105, respectively, leading to grid resolutions of 

N3 = 2.8·106, N2 = 6.15·106 and N1 = 10.4·106 (Re < 1.1·105) and N1 = 14.3·106 (Re = 1.58·105). 

The Grid Convergence Index (GCI) and the extrapolated error (ϕext) of the fine-grid solution in 

  and  ̅are listed in Tab. 1. The fluid domain cell numbers of the grids for the TE, TR and TI 

rib-configuration, used in the present study, range from N1 = 10.4·106 to 10.5·106 hexahedral 

cells for Re < 1.1·105 and from N1 = 14.3·106 to 14.9·106 for Re = 1.58·105. The meshes are 

displayed in Figure 2.  



Numerical Methods 

Computations were performed by the commercial solver FLUENT V.15 [25]. Three-dimensional, 

compressible flow, energy and turbulence model equations are solved within the fluid domain 

and a simplified energy equation ∙ / /  is solved within the solid region. 

Governing equations were solved by a segregated solver and the SIMPLE algorithm was applied for 

solving the pressure-velocity-field coupling. The convective terms of the momentum equation were 

the discretised by the bounded central differencing scheme. For the equations of turbulent kinetic 

energy, specific dissipation rate, density and energy second order upwind schemes were used. The 

diffusion terms were second order central difference and the pressure terms second order 

discretised. Temporal discretization were conducted by the bounded second order implicit 

scheme and gradients were Green-Gauss cell-based approximated. 

Data Evaluation 

The averaged Nusselt number at the rib-roughened wall  was calculated between the 13th and 

14th rib-element from 

∆
/ ∙ / 	 	

∆
  (1) 

with the time-average interval Δt of fifty flow-throughs over one rib-section, the heat transfer 

area Sr between both rib-elements, the spatially averaged bulk fluid temperature  and fluid 

temperature . The overall Nusselt number  of the total channel surface Sc for one rib-

section between the 13th and 14th rib-element was determined analogously. The friction factor 

was determined from the streamwise pressure drop ∆  over the distance L and the averaged mass 

flow rate  between the 7th and 14th rib: 



̅
∆

∆ ∙ ∙ ∙ / 2 ∙ ∙
∆

.   (2)  

It is noted that the flow was thermal-hydraulically fully developed within the analysed region of 

the present computational domain. 

Experimental Setup for Validation Tests 

The applied computational approach and method is validated against heat transfer and pressure 

drop measurement results of the experimental setup of HETREX. Experiments were carried out 

for comparable flow and heating conditions of the numerical simulations. For the sake of brevity, 

only the essentials of the experimental setup and measurement techniques are provided in the 

present publication. The experimental facility consists of the test section, a piping system and 

peripheral devices. The test section contains the channel and a heating unit and was made of 

stainless steel [X6CrNiMoTi17-12-2 (316Ti)]. The channel contains an unheated smooth inlet 

zone with a length of 500 mm, the heated test zone with a length of 300 mm and an unheated 

smooth outlet zone with a length of 50 mm. As mentioned above, the computational domain was 

derived from the experimental test section and, thus, the size of the test section and channel 

cross-section, the rib-elements and the structure material of the experimental and numerical setup 

are identical for e = 1 mm. The fluid flow was provided by a compressed air system and the mass 

flow rate and inlet pressure were regulated by a PID-controlled pneumatic valve integrated 

upstream the test section and manual valves located downstream the test section. The flow was 

conditioned by a static helical flow mixer, a honeycomb grid and a flow straightener installed 

upstream the test section. Constant heat flux density was supplied to the experiment by an 

electrical powered heater cartridge, Typ Graeff HLP custom-made, inserted into the heating unit. 

The fluid bulk temperatures were measured by PT100 thermocouples downstream of a flow 



conditioner at the test section inlet and downstream of a static helical flow mixer at the test 

section outlet. A linear bulk temperature distribution in axial direction was assumed for the rib-

roughened zone. The mass flow rate was measured by an Endress & Hauser 80F Coriolis flow 

meter. The wall temperatures were measured at the heated channel wall by calibrated 

thermocouples and the static pressure distribution along the test section were measured by 

Honeywell FD2000 pressure sensors. The temperatures at the sheet metal cover and the ambient 

temperature were measured for determining the heat loss rate of the test section. Here, free 

convection was assumed to occur at the isolation layer and the heat loss rates of the cylindrical 

thermal isolation layer and the vertical end caps were calculated with determined heat transfer 

coefficients of free convection for horizontal cylinders and vertical plates. 

 

RESULTS 

Validation 

For validation, the averaged friction factor ratio /̅  - determined from the pressure drop 

measurements between the 7th and 16th rib - and the local Nusselt Number ratios /  - 

based on pointwise measured temperatures between the 18th and 19th rib-element and a constant 

nominal heat flux density -  including the experimental uncertainties are shown in Fig. 3, with 

the Dittus-Boelter Nusslet number correlation of Nus = 0.023·Re0.8·Pr0.4 and the Blasius friction 

factor correlation of fs = 0.046·Re-0.2 for smooth circular channel flows. For comparison the 

corresponding computational Nusselt number ratio was determined between the 13th and 14th rib-

element. The maximum experimental uncertainty of the present results [26] was estimated to be 

less than 4.8 pct. in the friction factor and to be less than 5.4 pct. in the Nusselt Number. The 



numerical results of the nominal Nusslelt Number ratios /  agree well with the 

experimental data. The friction factor ratios derived by the numerical simulations differ slightly 

from the experiments, but are within the experimental uncertainty for most of the Reynolds 

number range. 

Friction Factor and Nusslet Number 

The averaged friction factor ,̅ the Nusselt Number  and  are displayed in Fig. 4 and 5. 

Based on the computational results, Reynolds number dependent power law correlations for the 

averaged friction factor and the Nusselt number were derived for 2.5·104 ≤ Re ≤ 1.58·105, 

̅ ∙ 4% (2.5·104 ≤ Re ≤ 1.58·105) (3) 

∙ . 2% (2.5·104 ≤ Re ≤ 1.58·105) (4) 

∙ . 3% (2.5·104 ≤ Re ≤ 1.58·105) (5) 

The coefficients are listed in Tab. 2 and the correlated distributions (interp.) and deviations are 

included in Fig. 4 and 5.  

 and  increase and  ̅decreases for increasing Reynolds numbers. Compared to previous 

investigations for turbulent flow in one-sided rib-roughened channels of p/e = 10 and e/Dh = 

0.066 at Reynolds number of Re ≤ 5·104 [3], Nusselt numbers, 	0.3678 ∙ . , are in a  

range of 5 pct. to 15 pct. Friction factor raise and heat transfer enhancement occur in the 

descending order of the rib-configurations: TE, TR and TI. The flow moves smoother over the 

rib-elements with inclined and round-edged rib-surface than over the 90° edged one. The rate of 

change of flow acceleration and deceleration decrease and the pressure and velocity gradients are 



reduced and smoothed. The friction and heat transfer enhancement reduction are assumed to be 

caused by (A) decreased vertical and lateral flow motion close to the rib-element, (B) decreased 

flow separation at the leading- and rear-edge of rib-top-surface, (C) reduced impingement of 

turbulent flow structures on the channel wall at the shear layer reattachment region and on the 

successive rib further downstream, (D) lower turbulence levels and (E) reduced secondary flow 

motion. It is assumed that the differences and similarities can be attributed to the aforementioned 

thermal- hydraulic effects (A)-(E) that contribute with various extents to flow resistance and heat 

transfer development for different rib- shapes. Whereas heat transfer enhancement is related to 

flow effects causing turbulence kinetic energy raise [4], the friction factor is primarily dominated 

by the form drag of the rib-elements [1,6]. As displayed in Fig. 6 the turbulence kinetic energy 

0.5 ∙  is decreased for the TR and TI rib-configuration and in a comparable range, 

with the velocity fluctuation  in direction i. Thus, in contrast to the friction factor, both 

Nusselt numbers,  and , are similar for the TR and TI rib-configuration and distinctly 

offset to the TE rib- configuration. 

Friction Factor and Nusselt Number Ratio 

The computed and correlated distributions of the friction factor ratios, /̅ , the Nusselt Number 

ratios at the rib-roughened wall, / , and the overall Nusselt number ratios of the channel, 

/ , for varying Reynolds numbers are displayed in Fig. 3. Analogous to previous studies 

[1,11-13], the heat transfer enhancement correlates with the raise of rib-induced flow resistance 

and heat transfer ratio at the rib-roughened wall, / , decreases and friction factor ratio, 

/̅ , increases for increasing Reynolds numbers. /  remains nearly constant for the 

entire Reynolds number range. The friction factor ratios are significantly effected by the rib-



shapes, whereas the heat transfer ratios differ marginally. Similar effects have been reported for 

rib-elements of semi- circular, triangular an trapezoid rib-shapes [14,16]. Maximum rib-induced 

flow resistance occurs for the TE rib-configuration and the friction factor is raised about 2.9-3.3 

times, compared to the Blasius smooth channel flow. A slightly reduced friction factor 

development is obtained for the TR rib-configuration with ratios of 2.9-3.1. Minimum friction 

factors are generated by TI rib-configuration with /̅  of about 2.5 for the entire Reynolds 

number range. The friction factor ratios for the TE or TR and the TI rib-configuration drift apart 

for increasing Reynolds numbers. The Reynolds number dependency of /  is in a 

comparable range for the three channel designs and the ratios decrease for increasing Reynolds 

numbers. Maximum heat transfer occurs for the TE rib-configuration. Compared to thermal-

hydraulics of smooth circular channels, the corresponding heat transfer at the rib-roughened wall 

is enhanced about 1.9 times at Re = 2.5·104 and about 1.7 times at Re = 1.58·105. The Nusselt 

numbers ratios for TR and TI differ slightly and ranges from /  = 1.7 at Re = 2.5·104 to 

/  = 1.5 at Re = 1.58·105. The overall Nusselt number ratios /  are in the range of 

1.15 to 1.25 for all rib-configurations. 

Thermal Performance 

The price paid for heat transfer enhancement is the large increase in flow resistance and the 

thermal performance of rib-roughened internal cooling passages have to be evaluated by the 

design criteria of increased heat conductance K/Ks, reduced pumping power P/Ps and reduced 

heat transfer area S/Ss [27], compared to smooth circular channel flows. Moreover, it is proposed 

to differentiate the evaluation criteria between the performance factor for cooling the rib-

roughened wall and the overall performance factor based on a rib-section. Increased heat 

conductance (for equal pumping power and heat transfer area) Kr/Ks and Kc/Ks vs. Re are 



displayed in Fig. 7. The overall performance factor varies in the range of 0.84 < Kc/Ks < 0.88, 

0.83 < Kc/Ks <0.84 and 0.85 < Kc/Ks < 0.87 for the TE, TR and TI rib-configuration. The benefit 

of the overall heat transfer enhancement is reversed by the accompanied pumping power raise. 

However, improved thermal performances for cooling the rib-roughened wall were obtained for 

all rib-shapes. Similar to previous studies [13], Kr/Ks decreases for increasing Reynolds numbers. 

The Reynolds number dependency is similar for the TE and TR rib-configuration and is reduced 

for the TI rib-configuration. Kr/Ks ranges from 1.14 to 1.34, from 1.11 to 1.24 and from 1.03 to 

1.23 for the TE, TR and TI rib- configuration. Best performance factors for cooling the rib-

roughened wall was obtained for the TE rib-configuration.   

CONCLUSION 

The thermal-hydraulics of a one-sided heated, rib-roughened cooling channel (p/e = 10, e/Dh = 

0.0638) with three different rib-shapes at 2.5·104 ≤ Re ≤ 1.58·105 were analysed. The following 

conclusions can be drawn: 

(1) The applicability of the computational methods for predicting the averaged friction factor and 

Nusselt numbers were validated against experimental data. The numerical results of the 

Nusselt numbers agree well with the experimental data and the averaged friction factors are 

within the experimental uncertainty for the entire Reynolds number range. 

(2) Maximum flow resistance and heat transfer occurs for the TE rib-configuration (90 deg. 

edged, square rib-element). Compared to the smooth channel flow, the friction factor is 

raised about 2.9-3.3 times and the Nusslet number is increased about 1.7-1.9 times.  

(3) Reynolds number dependent power law correlations for the averaged friction factor  ̅and the 

Nusselt number  and  were derived. 



(4) The averaged friction factor ratio differs up to 28 pct. for varying rib-shapes, whereas the 

averaged Nusslet Number ratios at the rib-roughened wall differ up to 12 pct. 

(5) Differences and similarities of Nusselt numbers and averaged friction factor for varying rib-

shapes are assumed to be attributed to thermal-hydraulic effects that contribute with various 

extents to flow resistance and heat transfer development.  

(6) Improved thermal performance for cooling the rib-roughened wall occurred for all rib-

shapes. 

(7) Best thermal performances was obtained for the TE rib-configuration, 1.14 < Kr/Ks  < 1.34. 

NOMENCLATURE 

A   [m2]  Channel cross section 

   [J/kg·K] Specific heat capacity 

   [-]  DES Constant 

Dh   [m]  Hydraulic diameter 

e   [m]  Rib-height 

E   [J/kg]   Total energy per unit mass 

 ̅  [-]   Averaged friction factor 

   [-]   Smooth channel friction factor 

,  [-]   Coefficients 

k   [m2/s2]  Turbulence kinetic energy 



K/Ks   [-]  Increased heat conductance ratio 

l   [m]  Length scale 

Le   [m]  Rib-length 

   [kg/s]  Mass flow rate 

  [-]   Averaged Nusselt Number 

   [-]   Smooth channel Nusselt Number 

p   [m]  Pitch 

P/Ps   [-]  Reduced pumping power ratio 

pin   [Pa]  Inlet Pressure 

Pr   [-]   Prandtl Number 

∆    [Pa]   Pressure Drop 

q+   [-]   Dimensionless heat up rate 

q   [W/m2]  Heat flux 

Re   [-]   Reynolds number 

S   [m2]  Heat transfer area 

S/Ss   [-]  Reduced heat transfer area ratio 

T   [K]  Temperature 



Tin   [K]  Inlet temperature 

Tb   [K]  Bulk Temperature 

∆    [s]  Integration time interval 

u   [m/s]   Streamwise flow velocity 

x   [m]  Coordinate 

∆ , ,   [m]  Local grid size 

Δx+, y+, z+     [-]   Non-dimensional coordinates in x,y,z -direction 

Greek symbols 

κ   [W/m·K] Thermal conductivity 

   [kg/m3] Density 

ν   [m2/s]  Viscosity 

   [m2/s3]  Turbulent dissipation rate 

   [1/s]  Spec. turbulent dissipation rate 

∗   [-]  Model constant 

∆   [m]  Filter width 

 

Subscripts 



c     Channel wall of one rib-section 

j     j=1,2,3 cartesian axis direction  

m    Mean 

r     Rib-roughened wall 

s     Smooth circular channel 

SGS     Subgrid Scale 

t     Turbulent 
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Table 1: Grid Convergence Index and extrapolated error 

Uncertainty [pct.] 
Re 5.1·104 1.1·105 1.58·105 

 1.61  2.98  1.62 

 1.29 2.38 1.30 

̅  0.44   1.02 0.58 

̅  0.35 0.81 0.47 
 
 

  



Table 2: Coefficients of the Correlations 

Coefficients  Rib-configurations 
 TE TR TI 

 0.072 0.077 0.103 
m 0.14 0.15 0.19 

 0.077 0.071 0.07 
 0.025 0.024 0.024 
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Figure 1 HETREX (a) experimental setup and  (b) computational domain. 



 

 

Figure 2 TE, TR and TI rib-configuration 

  



 

Figure 3 Averaged friction factor ratios and Nusselt Number ratios. 



 

 

Figure 4 Averaged friction factor vs. Reynolds numbers. 

 



 

Figure 5 Nusselt Numbers at the rib-roughened wall and of the channel vs. Reynolds numbers. 

  



 

Figure 6 Normalized turbulence kinetic energy k/um
2 at the center plane of the channel for the 
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Figure 7 Increased heat conductance (for equal pumping power and heat transfer area) vs. 
Reynolds numbers. 


