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Introduction
The transformation of the current energy grid into a Smart Grid [1] is an ongoing chal-
lenge in the pursuit of an environmentally-friendly energy supply. This transformation is 
exemplified—from a data perspective—by the European Union’s decision to replace 80 
percent of electricity meters with smart meters by the year 2020 [2] and by the desire to 
automate and monitor each of the power grid’s voltage levels [3]. The increasing instal-
lation of information and communication technologies (ICT) comes hand in hand with 
an increment in the volume and variety of the collected data, i.e. Big Data. The difficul-
ties present in the analysis and utilization of this Big Data—in the context of the Smart 
Grid—have caught the interest of the energy research community. Possible solutions 
have been proposed in the literature, e.g., the use of cloud computing [4, 5]. Nonetheless, 
the utilization of Big Data is not the only complication in the development of the future 
energy grid. The continuous integration of volatile renewable power systems (e.g., pho-
tovoltaic (PV) and wind power systems) poses an additional challenge, since power gen-
eration volatility complicates the required balancing of energy supply and demand [6]. 
However, data-driven forecasting models trained using the available Big Data may be a 
possible solution.

Unlocking the hidden potential in Big Data requires distributed algorithms and data 
storage systems. To this end, the present contribution offers a description of a Big Data 
forecasting concept that utilizes the distributed computing framework Apache Spark1 

1 spark.apache.org/.

Abstract 

The present article describes a concept for the creation and application of energy 
forecasting models in a distributed environment. Additionally, a benchmark comparing 
the time required for the training and application of data-driven forecasting models on 
a single computer and a computing cluster is presented. This comparison is based on 
a simulated dataset and both R and Apache Spark are used. Furthermore, the obtained 
results show certain points in which the utilization of distributed computing based on 
Spark may be advantageous.
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for the creation and application of forecasting models. Spark possesses a number of Big 
Data processing methodologies that may be helpful when analyzing and using Smart 
Grid Big Data [7]. In addition, the presented Big Data forecasting concept can serve in 
the development of Big Data forecasting tools, for example, in the Helmholtz Associa-
tion’s Energy System 2050 (ES 2050) project.2

There is widespread belief that the utilization of Big Data can improve forecasting 
results if its underlying patterns can be analyzed  [8]. However, the creation of data-
driven forecasting models with Big Data proves to be challenging, since most data-
driven approaches have not been designed to work on a distributed environment  [8]. 
Therefore, the present contribution presents a benchmark to determine the possibility 
of training and applying data-driven forecasting models on Big Data. The goals of the 
benchmark are the assessment of the necessary time to obtain data-driven forecasting 
models when using Big Data and to determine the point at which a distributed com-
puting framework based on, e.g., Spark becomes necessary. These goals are achieved by 
comparing the required time for training and applying different data-driven forecast-
ing models on a computing cluster (using Spark) and on a single computer (using R and 
Spark). A similar study with a focus in the analysis of smart meter data using distributed 
computing can be found in [9]. It is important to mention, that the discussion and con-
clusion of the present work does not come from a Spark/Big Data expert point of view, 
but rather from a user’s (e.g., energy researcher) perspective.

The present work is structured as follows: first general information on energy related 
forecasting is given. Thereafter, the Big Data forecasting concept and the conducted 
benchmark are presented. Afterwards, the obtained results are shown and discussed. 
Lastly, the conclusion and outlook are offered.

Energy forecasting
Time series forecasting models are useful at predicting values that are changing over 
time  [10]. Hence, they are commonly used to forecast energy values, as e.g., electrical 
load and volatile renewable power generation. Energy forecasting models can gener-
ally be divided into white-box models, data-driven models (i.e. black-box models), and 
their combination (i.e. gray-box models)  [11]. While white-box models conduct their 
forecasts through the utilization of known relations and expert knowledge (e.g., physi-
cal models for volatile renewable power generation   [12, 13]), data-driven models try 
to infer—via data mining techniques—the relation between their input values and the 
future time series values.

Data-driven models (e.g., artificial neural networks, regression models, support vec-
tor regressions) have become quite popular in the energy forecasting community  [11]. 
These models have the advantage of not requiring an explicit description of system spe-
cific properties (e.g., wind power curves, PV modules’ tilt, power line losses, customer 
behaviour) to conduct their forecast, as this information is implicitly contained in the 
measured data. Examples of data-driven energy forecasting models found in literature 
are given in [14–16].

2 helmholtz.de/en/research/energy/energy_system_2050/.

http://helmholtz.de/en/research/energy/energy_system_2050/
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Time series forecasting models aim to estimate the future values of a time series 
{y[k]; k = 1, . . . ,K } at a specific forecast horizon H (e.g., 24 h) using all available infor-
mation. For example, a forecasting model using current and past auto-regressive values 
as well as, current and past values of other exogenous time series (e.g., forecast weather 
data, calendar information) can be described by the functional relation:

where ŷ[k +H ] is the forecast value, H1 describes the number of used time-lags, u[k] to 
u[k −H1] are vectors containing the exogenous time series values, and θ is a vector con-
taining the parameters defining the model.

As already mentioned, forecasting models that are able to predict the future power 
generation and/or load are of major importance in assuring the power grid’s stability. 
Therefore, both load and renewable power forecasting have been thoroughly discussed 
in literature. Several reviews outlining the state of the art of energy forecasting are pre-
sented in [17] (PV power forecasting), in [18] (load forecasting), and in [19] (wind power 
forecasting).

Big Data forecasting concept
Preliminary work regarding the Big Data concept described in the present section, 
including a first concept and benchmarks, can be found in [20]. The new widened con-
cept for the Big Data forecasting infrastructure—i.e. an extended view of the infrastruc-
ture presented in [21] and [22]—is depicted in Fig. 1.

The foundation of the infrastructure shown in Fig. 1 is a series of Linux nodes with 
many CPUs and large data storage arrays. To create a computing cluster using the avail-
able Linux nodes, a distributed cluster computing system needs to be installed. Two sys-
tems that are currently being considered for the Big Data forecasting infrastructure are 

(1)ŷ[k +H ] = f (y[k], . . . , y[k −H1],u[k], . . . ,u[k −H1]; θ), k > H1;

Fig. 1 Big Data energy forecasting infrastructure
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MapR3 and DC/OS.4 These systems allow the installation of a large range of Big Data 
components, as e.g., Apache Hadoop5  [23–25] and Spark  [26], and different databases 
for the storage of time series data.

As shown in Fig. 1, different services are situated—in a microservice-based architec-
ture—on top of the Big Data software stack. The data analysis service is the one that 
allows frontend applications to start, monitor, and manage forecasting computations on 
the cluster. Such applications can access the service through a REST API. Additionally, 
with the help of a Web UI, i.e. a more convenient frontend application, the data analyst 
can operate the services using a highly customizable and dynamic user interface. These 
frontend applications spare the data analyst any interaction with the actual cluster and 
hide the complexity of the different Big Data tools. Furthermore, to develop different 
algorithms using Spark the data analyst can use the Apache Zeppelin6 tool to implement 
and document new computation jobs dynamically.

A usage scenario for the Big Data forecasting concept is illustrated in Fig. 2. First, the 
data analyst implements a forecasting model using the Zeppelin software. After thor-
ough tests, the source code can be uploaded to the cluster using the Web UI. Thereafter, 
the data analysis service triggers the compilation of the source code and the creation of 
a new Spark job that is then persisted in the Hadoop Distributed File System (HDFS). 
In the next step, the data analyst selects a time series training set and starts the train-
ing algorithm. The resulting model and parameters are stored in the cluster. Using these 
results, the forecasting model can be applied to new data. Afterwards, the forecast 

3 mapr.com/.
4 dcos.io/.
5 hadoop.apache.org/.
6 zeppelin.apache.org/.

Fig. 2 Usage scenario of the Big Data forecasting concept

https://mapr.com/
https://dcos.io/
http://hadoop.apache.org/
https://zeppelin.apache.org/
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results are stored in the time series database with a link to the forecasting model for later 
retrieval. The Spark job itself has to be able to access the databases in order to load the 
data in a distributed way. This is an important criterion in terms of performance.

Some examples in which the high amounts of data may require the utilization of Big 
Data forecasting infrastructure are:

  • Building-specific or consumer-specific forecasts for a whole region
  • Coherent hierarchical forecasts [27] at various spatial/temporal aggregation levels
  • Ensemble  [28] or probabilistic  [29] high resolution forecasts, e.g., 1-day or 1-week 

ahead ensemble forecasts with a high temporal resolution

Methods (benchmark)
The benchmark conducted in the present paper has two main goals: (i) to assess the nec-
essary time to obtain data-driven forecasting models on a distributed environment and 
(ii) to determine the point at which a Big Data computing framework based on Spark 
becomes necessary. To achieve these goals, a test scenario is conducted in which the 
times needed for training and evaluating data-driven forecasting models on a single 
computer and in a distributed environment are calculated and compared. The specif-
ics of the tested scenario, as well as of the data and data mining techniques used, are 
described below. Moreover, only the computation times for training and evaluating the 
forecasting models are of interest in the present contribution.

Data

The present contribution uses a dataset containing a simulated dimensionless single 
household electrical load time series. The time series values represent measurements 
taken every second over the course of 10 years, i.e. K = 3.16 · 108. This time series is cre-
ated using the signal generator developed by Stefan Klaiber that was also used to gener-
ate the data in [30]. The time series used in the present contribution was not selected for 
its timespan nor its temporal resolution, but rather for the amount of available measure-
ments considered to be acceptable to achieve the present contribution’s goals. Figure 3 
depicts a year of the simulated household load time series. The amount of measurements 
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Fig. 3 One year of the simulated household load time series
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is quite conservative considering that electrical data recorders are currently able to 
obtain up to 256 measurements per period of a 50 [Hz] input signal [31].

Data mining techniques

In the present paper three different data mining techniques are used to obtain the vari-
ous data-driven forecasting models: a multiple linear regression (MLR)  [32], a least 
absolute shrinkage and selection operator (LASSO) [32], and a random forest [33]. All 
created models use only five previously selected past load values as input.

While the models created from the multiple linear regression approach and LASSO 
are linear combinations of their used features, the models obtained from the random 
forest are not. A random forest is what is called an ensemble learning method, mean-
ing that its computed forecasting model is a combination of several different underlying 
models created using the same data mining technique. It is important to mention that all 
techniques used in Spark were taken from its machine learning libraries.

Test scenario

In the test scenario, data-driven forecasting models are trained on a single computer 
or on a computing cluster using the previously described techniques and an amount of 
training data corresponding either to 1 day (1D), 1 week (1W), 1 month (1M), 6 months 
(6M), 1 year (1Y), 5 years (5Y), or 10 years (10Y) of the load time series. R and Spark – 
with Spark using eight (SC8) computing cores—are used in the case of the single com-
puter, while on the computing cluster only Spark is utilized (SCl). The combination of 
the different amounts of training data and the different approaches for training the mod-
els results in 21 different tests. The abbreviations used to refer to the conducted tests are 
contained in Table 1. The forecasting models are, thereafter, evaluated on their training 
data. This evaluation consists of applying the forecasting model and calculating a corre-
sponding evaluation value (e.g., the mean absolute error). The application and evaluation 
procedures are coupled since Spark does not apply a forecasting model unless it is nec-
essary (i.e. lazy evaluation). The necessary computation time for both the models’ train-
ing and evaluation in each test is measured and compared. The time needed for loading 
the data in-memory is not measured in the present contribution. Additionally, since only 
the computation times and not the forecasting accuracy are relevant in the present arti-
cle, the data set is not separated in a training and a test set.

Table 1 Conducted tests

SC8 Spark with eight processing cores on a single computer, SCl Spark on the computing cluster

Data amount R SC8 SCl

1D (8.64 · 104 values) R1D SC81D SCl1D

1W (6.05 · 105 values) R1W SC81W SCl1W

1M (2.68 · 106 values) R1M SC81M SCl1M

6M (1.57 · 107 values) R6M SC86M SCl6M

1Y (3.14 · 107 values) R1Y SC81Y SCl1Y

5Y (1.58 · 108 values) R5Y SC85Y SCl5Y

10Y (3.16 · 108 values) R10Y SC810Y SCl10Y
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The single computer possesses an Intel Core i7-6700 processor with 3.40 GHz and 16 
GBs of RAM, while the computing cluster is comprised of three nodes, each with two 8 
Core Intel(R) Xeon(R) (with active hyper-threading) processors with 2.40 GHz and 128 
GB of RAM. Moreover, the utilized versions of R and Spark are 3.3.3 and 2.1 respectively.

Results and discussion
The computation times required for the training and evaluation of forecasting mod-
els for the different tests and the three different data mining techniques are shown in 
Table 2. The presented results are mean and standard deviation values obtained by train-
ing and evaluating the different models ten separate times. Note that the tests for a ran-
dom forest with Spark on the single computer using 5 and 10 years of training data were 
not conducted.

The obtained results show that R is only faster than both variants of Spark at training 
and evaluating MLR models when the lowest amounts of data (1 day to 1 month) are used. 
However, once amounts of data equal to or larger than 6 months are utilized, Spark on the 
computing cluster outpaces R at both training and evaluating the MLR models. In addi-
tion, the single computer running R runs out of memory when data amounts larger than 
or equal to 5 years are used. For the sake of illustration, Fig. 4 depicts—using a logarithmic 
axis—the computation times for training a MLR in R and Spark on the computing cluster.

Table 2 Mean computation times (seconds) for forecasting models training and evaluation

The values in parenthesis are the standard deviation values

Italics: lowest computation time for a given data mining technique and a certain amount of training/evaluation data

OoM out of memory, NT not tested, IOF integer overflow

Tests Training Evaluation

MLR LASSO Random forest MLR LASSO Random forest

R1D 0.014 (0.009) 0.407 (0.074) 1773.078 (18.274) 0.01 (0.008) 0.073 (0.026) 583.438 (16.824)

SC81D 0.208 (0.015) 0.223 (0.026) 22.122 (1.639) 0.192 (0.027) 0.188 (0.015) 20.905 (1.755)

SCl1D 0.399 (0.022) 0.404 (0.040) 10.342 (0.202) 0.462 (0.029) 0.440 (0.020) 7.247 (0.199)

R1W 0.07 (0.006) 2.7 (0.075) OoM 0.072 (0.007) 0.27 (0.021) OoM

SC81W 0.271 (0.013) 0.281 (0.013) 108.993 (6.285) 0.348 (0.022) 0.353 (0.012) 71.187 (7.316)

SCl1W 0.390 (0.022) 0.409 (0.025) 28.418 (0.491) 0.475 (0.025) 0.476 (0.018) 14.416 (0.169)

R1M 0.324 (0.056) 13.438 (0.247) OoM 0.267 (0.074) 1.346 (0.223) OoM

SC81M 0.627 (0.015) 0.638 (0.018) 454.759 (3.311) 1.058 (0.15) 1.074 (0.031) 243.008 (6.786)

SCl1M 0.463 (0.021) 0.482 (0.032) 67.469 (2.125) 0.644 (0.042) 0.652 (0.036) 33.546 (1.908)

R6M 1.862 (0.146) 115.960 (17.589) OoM 3.206 (0.311) 13.610 (11.116) OoM

SC86M 2.822 (0.060) 2.857 (0.077) 3101.202 (14.726) 5.420 (0.101) 5.457 (0.150) 1722.941 (36.603)

SCl6M 1.133 (0.055) 1.115 (0.028) 357.388 (5.037) 1.747 (0.050) 1.757 (0.061) 161.561 (2.156)

R1Y 4.061 (0.165) OoM OoM 6.903 (0.718) OoM OoM

SC81Y 5.588 (0.050) 5.604 (0.041) 6291.860 (43.074) 10.809 (0.049) 10.800 (0.053) 3246.918 (35.248)

SCl1Y 1.934 (0.061) 1.903 (0.055) 784.018 (11.487) 1.934 (0.061) 1.903 (0.055) 304.891 (3.768)

R5Y OoM OoM OoM OoM OoM OoM

SC85Y 41.464 (0.575) 42.520 (1.937) NT 72.940 (1.726) 73.728 (2.644) NT

SCl5Y 16.104 (0.711) 15.474 (0.683) IOF 26.528 (1.346) 26.380 (1.000) IOF

R10Y OoM OoM OoM OoM OoM OoM

SC810Y NT NT NT NT NT NT

SCl10Y 38.997 (1.869) 39.300 (1.755) IOF 63.044 (2.157) 63.127 (2.301) IOF
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For the most complex approach in this contribution, the random forest, the Spark 
cluster shows its full potential and is clearly the fastest. Neither the single computer 
Spark variant nor the R variant comes close to the cluster’s computation times. Addi-
tionally, the single computer using R runs out of memory quickly. The computer can 
only train a random forest with the data corresponding to one day. However, the com-
puting cluster also fails to train a random forest with data larger than 1 year. This failure 
most likely stems from an integer overflow. As it can be seen in Table 2, finding a single 
winner for all models and amounts of data is not possible. Looking at the results for the 
LASSO model, R exhibits the worst computation times for training, regardless of the 
data amount. Yet, it is not clear which of the remaining two variants is best. While the 
Spark computing cluster is faster for data larger than 1 month, its single machine variant 
is the best choice for smaller amounts of data. With respect to the evaluation computa-
tion times, the Spark cluster is again the fastest for data larger than a week. This time 
however, R is the fastest for the smallest two amounts of data.

Certain features of Spark have to be taken into account to achieve low computation 
times. During the writing of the present work, caching was found to be one of those 
relevant features. The reason being, Spark is limited by available RAM and must know 
which data has to be kept in-memory in order to overcome this limitation. To deter-
mine the influence caching has on performance, the following test is conducted: MLR 
forecasting models are trained and evaluated using 6 months of data and utilizing both 
Spark on the single computer and Spark on the computing cluster. Furthermore, three 
different caching strategies (CS) are used:

1. CS1: No caching
2. CS2: Caching of input data, but not of intermediate results
3. CS3: Caching of input data and of intermediate results

The input data and the intermediate results—both represented as data frames—are 
manually cached if their caching is required by the used strategy. The results obtained 
from the three different caching strategies are contained in Table 3.

1D 1W 1M 6M 1Y 5Y 10Y
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Fig. 4 Computation time required for training a MLR using different amounts of data
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As seen by the results obtained for CS1, no caching results in poor computation per-
formance; this can be explained by the fact that Spark is unable to keep the necessary 
data in-memory. Hence, Spark is forced to read the data from the provided source using 
slow read operations every time the data is required. Interestingly, caching the necessary 
input data and all the intermediate results (CS3) is not the optimal solution either; since 
the used workers may run out of memory. Nonetheless, CS3 still results in the fastest 
training of an MLR using Spark on the cluster. CS2, i.e. caching only the necessary input 
data, resulted in the lowest evaluation computation times. It is important to note that 
CS2 is the caching strategy used to obtain the results shown in Table 2.

Another important factor to consider is the repartitioning of data. In order to distrib-
ute the computation, the original dataset must be split into partitions and distributed 
to the available workers. For small datasets, a one to one ratio between partitions and 
workers is recommended. As the amount of data increases, the number of partitions 
must increase accordingly; otherwise, the partitions will become too large to be pro-
cessed by a single worker and will result in out of memory errors.

Conclusion and outlook
In the present contribution, a Big Data forecasting concept is described. Afterwards, a 
benchmark comparing the training and evaluation of data-driven forecasting models 
using different amounts of data, as well as R and Spark on a single computer and Spark 
on a computing cluster is presented. The obtained results show the points at which a 
Big Data computing framework based on Spark may be advantageous, for instance, 
when using a complex data mining technique or when surpassing a specific amount of 
data. The former is shown by the fact that Spark on the cluster has–—for the conducted 
benchmark—the lowest computation times for training and evaluating a complex data-
driven model, i.e. a random forest; the latter is shown by Spark on the computing clus-
ter outpacing both single computer approaches independently of the utilized technique 
once a data amount threshold is surpassed (i.e. in the presented benchmark a training 
set comprised of 1.57 · 107 values). The results also show that Spark is sensitive towards 
certain factors like caching and the repartitioning of data; factors that when disregarded 
may reduce the computational advantages provided by Spark.

Even though the present contribution showed certain benefits of utilizing Spark on a 
computer cluster for the creation and application of energy forecasting models, there 
is still a number of questions that need to be answered in future works. For example, 
how does the behaviour and computation times of Spark change if the necessary data 

Table 3 Mean computation times (seconds) for MLR forecasting models training and eval-
uation using different caching strategies

The values in parenthesis are the standard deviation values

Italic: lowest computation time for a given caching strategy

Tests Training Evaluation

CS1 CS2 CS3 CS1 CS2 CS3

SC86M 356.695 (4.019) 2.822 (0.060) 2.925 (0.047) 233.737 (2.003) 5.420 (0.101) 9.467 (0.364)

SCl6M 37.562 (0.290) 1.133 (0.055) 1.128 (0.041) 47.532 (0.374) 1.747 (0.050) 1.777 (0.055)
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is loaded from and saved into a database or if a forecasting model is implemented as an 
online streaming service.
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