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Abstract We work out the phenomenology of untagged
time-dependent analysis with radiative D0-decays into CP
eigenstates, which allows to probe the photon polarization
by means of the charm mesons’ finite width difference. We
show that D0 → φγ or D0 → K̄ 0∗γ decays, which are
SM-dominated, or SM-like, respectively, together with U-
spin allow to obtain chirality-predictions for radiative decay
amplitudes. The order of magnitude of wrong-chirality con-
tributions in the SM can be cross-checked with an up–down
asymmetry in D0 → K̄ 0

1 (→ K̄ππ)γ . We explore the sen-
sitivity to new physics in |�c| = |�u| = 1 dipole couplings
in the decays D0 → ρ0γ . We point out the possibility to test
the SM with Ds → K+

1 (→ Kππ)γ decays.

1 Introduction

Rare charm decays provide a unique view to flavor in the up
sector, which, however, is mostly blurred by hadronic uncer-
tainties. These are particularly difficult to control in charm,
as unlike in K - or B-physics, effective theory methods are
not expected to work well. Observables related to approx-
imate symmetries of the standard model (SM), CP, lepton
flavor conservation and universality are examples where nev-
ertheless useful tests of the SM can be performed. Here we
investigate the photon polarization in |�c| = |�u| = 1 pro-
cesses. Short-distance contributions from the weak scale are
expected to inherit the V-A-structure of the SM, a feature that
is generically not shared by SM extensions. We propose to
test the SM with the photon polarization in c → uγ transi-
tions.

Methods to extract the photon polarization can be inferred
from B-physics [1–5]. These include the study of polarized
�c hadrons in �c → pγ decays [6], following the pro-

a e-mail: stefan.boer@kit.edu
b e-mail: ghiller@physik.uni-dortmund.de

posal for �b’s [5]. Another possibility is to probe the photon
dipole contribution in semileptonic decays at very low dilep-
ton invariant mass with angular observables [2,7–9].

In this work we study time-dependence in D → V γ

decays, where V denotes a vector meson, following a pro-
posal for Bs-mesons [10],1 and briefly discussed in [11]
for charm. As first-principle theory predictions have large
uncertainties, we propose to use data and U-spin to obtain
a data-driven SM prediction for the photon polarization in
D0 → V γ, V = K̄ ∗0, φ, ρ0, ω. We work out the phe-
nomenology, and provide predictions in models beyond the
SM (BSM). We further suggest to study an up–down asym-
metry in D → K̄1(→ K̄ππ)γ along the lines the one known
to B-decays [4,12–14], as a consistency check of the SM pre-
diction for the photon polarization. An analogous asymmetry
allows to test the SM with Ds → K+

1 (→ Kππ)γ decays.
The paper is organized as follows: In Sect. 2 we review

time-dependence in decays into CP-eigenstates and show
how the photon polarization in D → V γ decays can be
probed. Features of different charm decay observables and
their relations are discussed in Sect. 3. In Sect. 4 we show
how the SM can be tested and give BSM expectations. In
Sect. 5 we summarize. In the appendix we give the angular
distribution of D(s) → K1γ → Kππγ decays.

2 Time-dependence in D → Vγ

The D → V γ decay amplitudes can be written as

AL ,R = A(D → V γL ,R) =
∑

j

A( j)
L ,Re

iδ( j)
L ,R eiφ

( j)
L ,R , (1)

where L , R denote the chirality, j labels different amplitudes,
A( j)
L ,R ≥ 0, δ( j)

L ,R are strong phases and φ
( j)
L ,R are weak phases.

1 We thank Jolanta Brodzicka for bringing this to our attention.
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The corresponding CP-conjugated amplitudes are

ĀR = CP(AL) = ξ
∑

j

A( j)
L eiδ

( j)
L e−iφ( j)

L ,

ĀL = CP(AR) = ξ
∑

j

A( j)
R eiδ

( j)
R e−iφ( j)

R , (2)

where ξ denotes the CP eigenvalue of the self-conjugate vec-
tor meson V , i.e. ξ = +1 for V = ρ0, φ, K̄ ∗0(K 0

Sπ
0) and

ξ = −1 for V = K̄ ∗0(K 0
Lπ0).

We define the normalized CP asymmetry as usual

ACP(D → V γ ) = �(D → V γ ) − �̄(D → V γ )

�(D → V γ ) + �̄(D → V γ )
, (3)

where �(D → V γ ) = �(D → V γL) + �(D → V γR).
The time-dependent decay rate is given as

�(t) = N e−�t (cosh[��t/2] + A� sinh[��t/2]
+ ζC cos[�mt] − ζ S sin[�mt]) , (4)

where ζ = +1 for a D meson, ζ = −1 for a D̄ meson
and the normalization N can be found in, e.g., [15]. Here,
�� = �H−�L > 0 and �m = mH−mL are the differences
between the heavy and light D mass eigenstates and � is
the mean width. Note that different sign conventions and
notations are used in the literature. The direct CP asymmetry
Adir
CP = C and the observable S [10] can be measured only

when the initial flavor is tagged. On the other hand, A� can
be observed in untagged time-dependent measurements by
means of a finite width difference ��, as has been shown
already for the decays B0

s → φγ [16].
The observable A� is given in terms of the decay ampli-

tudes as

A� =
2 Re

[
q
p

(ĀLA∗
L + ĀRA∗

R

)]

|AL |2 + |AR |2 +
∣∣∣ qp

∣∣∣
2 (∣∣ĀL

∣∣2 + ∣∣ĀR
∣∣2

)

= 1

N
4 ξ

∣∣∣∣
q

p

∣∣∣∣
∑

j,k

A( j)
R A(k)

L cos
[
δ
( j)
R − δ

(k)
L

]

× cos
[
φ − φ

( j)
R − φ

(k)
L

]
, (5)

where

N =
∑

j,k

A( j)
L A(k)

L

((
1 +

∣∣∣∣
q

p

∣∣∣∣
2
)

cos
[
δ
( j)
L − δ

(k)
L

]
cos

[
φ

( j)
L − φ

(k)
L

]

−
(

1 −
∣∣∣∣
q

p

∣∣∣∣
2
)

sin
[
δ
( j)
L − δ

(k)
L

]
sin

[
φ

( j)
L − φ

(k)
L

])
+ [L ↔ R] .

(6)

The 95% C.L. intervals of the D0 − D̄0 mixing parameters
read [15]

∣∣∣∣
q

p

∣∣∣∣ ∈ [0.77, 1.12],
φ = Arg(q/p) ∈ [−30.2, 10.6]◦,
��/(2�) ∈ [0.50, 0.80]%. (7)

It is instructive to consider A� in the limit q/p � 1 and
assuming that the decays can be described by only one ampli-
tude per chirality. One obtains in this limit

A� � 2ξ
AL AR

|AL |2 + |AR |2 cos(δL − δR) cos(φL − φR), (8)

where Aa, δa and φa denote the modulus, strong and
weak phase, respectively of the chirality amplitude Aa =
Aaeiδa eiφa , a = L , R. Equation (8) holds if there is no CP
violation in the decay, or if strong phases are negligible. As
CKM-induced CP violation in charm is small due to the GIM-
mechanism this is a useful approximation within the SM and
in models with no BSM sources of CP-violation. Defining
the photon polarization fraction r as

r = AR

AL
, (9)

it follows

A� � 2ξ
r

1 + r2 cos(δL − δR) cos(φL − φR). (10)

The polarization fraction in D → V γ decays can be
extracted via A� obtained from the time-dependent distri-
bution (4) with an O(1%) coefficient (7). As direct CP vio-
lation requires the presence of both strong and weak phase, a
measurement of ACP is complementary to A�. In this work
we consider only BSM models with negligible CP-violation.
The expression for A� valid for this type of models including
the full dependence on the mixing parameters reads

A� =
4 ξ

∣∣∣ qp
∣∣∣ cos φ

(
1 +

∣∣∣ qp
∣∣∣
2
) r

1 + r2 cos(δL − δR). (11)

We discuss expectations for the strong phases δL ,R and rela-
tions between D0 → V γ modes in Sect. 3.

3 Decay anatomies

The decays D → V γ, V = K̄ ∗0, φ, ρ0, ω are dominated in
the SM by weak annihilation (WA) [6,11,17], see Fig. 1, plot
to the left.
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Fig. 1 Weak annihilation (left) and short-distance (right) diagrams for
D → V γ decays. There are additional diagrams (not shown) induced
by Q1,2 where the photon is emitted from other quark lines

While this holds model-independently for V = K̄ ∗0, the
final state mesons ρ0, ω and, to a lesser degree, the φ allow
for additional contributions in and beyond the SM. Here we
consider BSM effects in dipole operators,

Q7 = e mc

16π2 (ūLσμ1μ2cR)Fμ1μ2 ,

Q′
7 = e mc

16π2 (ū Rσμ1μ2cL)Fμ1μ2 ,

Q8 = gs mc

16π2 (ūLσμ1μ2T acR)Ga
μ1μ2

,

Q′
8 = gs mc

16π2 (ū Rσμ1μ2T acL)Ga
μ1μ2

, (12)

in the effective Lagrangian

Lweak
eff = 4GF√

2

⎛

⎝
∑

q=d,s

V ∗
cqVuq

2∑

i=1

Ci Q
(q)
i +

8∑

i=7

(
Ci Qi + C ′

i Q
′
i

)
⎞

⎠ ,

(13)

where GF is the Fermi constant and Vi j are CKM matrix ele-
ments. The left- and right-handed Wilson coefficients C7,8

and C ′
7,8, respectively, are purely BSM as their SM contri-

butions vanish by GIM-cancellations. The chromomagnetic
operators Q(′)

8 enter radiative decay amplitudes at higher
order [6,11,18], but there is a contribution from mixing onto
Q(′)

7 . It can be absorbed effectively into the coefficient C (′)
7 ,

see, e.g., [6] for explicit formulae. Corresponding contri-
butions to D → V γ are illustrated in Fig. 1, plot to the
right. The four-fermion operators Q(q)

1,2 ∼ ūLγμqLq̄Lγ μcL
are SM-like and induce WA amplitudes. It is possible that
chirality-flipped versions of Q(q)

1,2 are present in BSM scenar-
ios. As we neglect CP-violation such contributions are not
distinguishable from the V-A ones, and effectively accounted
for in our framework.

To test the SM using A� requires sufficient understanding
of its SM value – it is the main point of this paper to obtain
such a prediction experimentally by relating A� from SM-
dominated modes V = K̄ ∗0, φ to A� from V = ρ0, ω using
U-spin. We show in Sect. 4 that this framework describes
available data in a consistent way.

In the following we give details on D0 → V γ decays
for V = K̄ ∗0, ρ0 and φ in Sects. 3.1, 3.2 and 3.3, respec-

tively. These decays enter the SM tests described in Sect. 4.
In Sects. 3.4 and 3.5 we discuss D0 → K̄ 0

1 (→ K̄ππ)γ and
Ds → K+

1 (→ Kππ)γ decays, respectively. The former
mode assists the extraction of the SM’s photon polarization
from A� as argued in Sect. 3.1 as well as serves as a standard
candle for BSM searches with the latter, the Ds-decays.

3.1 D0 → K̄ ∗0γ decays

The decay D0 → K̄ ∗0γ is purely induced by WA and SM-
like. Strong phases are small [6,11,17], however, beyond
leading order effects could induce non-vanishing phases.2

Note that predictions for the D0 → K̄ ∗0γ branching ratio
obtained in other, hybrid chiral frameworks [19–21] are in
line with experimental data given in Table 1 only if interfering
amplitudes add coherently [6], i.e., for small relative strong
phases. Therefore, Eq. (11) simplifies

A�(D0 → K̄ ∗0γ ) �
4 ξK̄ ∗0

∣∣∣ qp
∣∣∣ cos φ

(
1 +

∣∣∣ qp
∣∣∣
2
) r0

1 + r2
0

, (14)

where r0 denotes the corresponding D0 → K̄ ∗0γ photon
polarization fraction. Theoretical predictions for r0 are rather
uncertain as AR is presently not known, except for being
power suppressed with respect to AL [6],

r0 = O

(
�QCD

mc

)
. (15)

Due to the low charm mass corrections can be considerable
and r0 unsuppressed [11]. As r0 < 1 for a convergent power
series a measurement of r0 allows to probe the performance
of the expansion.

In view of the sizeable uncertainties we refrain from using
theory input on r0 and propose to use the value that can be
determined experimentally via A�. To do so we assume that
the strong phase difference δL − δR and r0 are not both large,
because in this case a suppressed A� could not unambigu-
ously point to a suppressed r0, see Eq. (11). This possibility,
although being not the plain-vanilla theory expectation, can
only be cross-checked with other measurements:

We propose to study an up–down asymmetry in D0 →
K̄1γ with K̄1 → K̄ππ , constructed from the photon with
respect to the plane formed by the pions in the K̄1’s rest
frame, discussed further in Sect. 3.4, and defined in the
appendix. The advantage of measuring the up–down asym-
metry in D0 → K̄1γ decays is that it probes the photon
polarization parameter

2 Electromagnetic (soft) final state phases can be neglected [1].
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λγ = −1 − r2
0 (K̄1)

1 + r2
0 (K̄1)

, (16)

which is independent of the relative phase between AL

and AR . On the flip-side, D0-tagging is required, because
λγ changes sign between D0 and D̄0. Note, K−π+π0

final states are self-tagging, unlike K̄ 0π+π− ones. This
method returns predominantly the polarization fraction of
the K̄1(1270)-resonance, r0(K̄1), rather than of the one
of the vector K̄ ∗0(892), r0. As spin, flavor and color
counting are identical and masses not too much apart we
expect the dynamics to be sufficiently related. There is
a doubly-Cabibbo suppressed contamination from D0 →
K 0

1 γ, K1 → Kππ decays affecting λγ at order V ∗
cdVus , that

is, a few percent. One may also use the doubly-Cabibbo sup-
pressed but color-enhanced modes D+ → K+

1 γ to estimate
the size of the SM polarization.

Another way is to look for large relative (strong) phases
with CP-asymmetries in the D0 → ρ0γ time-dependent
distribution (4), which are sensitive to phases in a comple-
mentary way. The last method requires to establish a finite
CP-asymmetry in D0 → ρ0γ . The current measurement
ACP(D0 → ρ0γ ) = 0.056 ± 0.152 ± 0.006 [24] is consis-
tent with zero. We note that the phase differences probed in
CP-asymmetries are those corresponding to same chirality
amplitudes, so the relation to δL − δR is not immediate.

3.2 D0 → ρ0γ decays

The WA-contributions of D0 → ρ0γ and D0 → K̄ ∗0γ are
related by U-spin. Therefore, in the SM,

ASM
L ,R(ρ0) = AL ,R(K̄ ∗0) × [U-spin corrections]. (17)

Here we neglected contributions from the soft gluon oper-
ator c → uγ g [25], see also [26], to D → ρ0γ , where it
is GIM-suppressed [6]. The perturbative and hard spectator
interaction induced SM-amplitudes for c → u transitions are
negligible with respect to the WA-amplitude [6].

While the U-spin breaking from differences in masses and
CKM elements can be accounted for trivially, the residual one
on the left and right-chiral amplitude, denoted by fL , fR ,
respectively, depends on hadronic physics. Note, fL ,R are in
general complex-valued. Estimations based on factorization
identify the largest WA-contributions as the ones with the
photon being radiated off the initial state [6,17,27]. In this
case, the breaking in the matrix element is given by the final
vector meson’s matrix element, 〈V |q̄γμq ′|0〉 ∝ mV fV . For
the modes at hand, fL ,R = mρ fρ/(mK ∗0 fK ∗) � 0.9, an
effect within the nominal size of U-spin breaking in charm,
O(0.2−0.3), e.g., [28–30]. We find that in the hybrid model
[20,21], also [31], using the expressions compiled in [6], the

U-spin breaking is of similar size, fL ,R � 0.9 ± 0.1, where
we varied input parameters.

From (17) follows

rSM = r0, (18)

subject to corrections of the order fR/ fL . Eq. (18) provides,
once r0 is known from D0 → K̄ ∗0γ data, a SM-prediction
for D0 → ρ0γ . Hence, up to U-spin breaking,

A�
SM(D0 → ρ0γ ) � ξK̄ ∗0ξρ0 A�(D0 → K̄ ∗0γ ). (19)

Any sizeable deviation from Eq. (19) would signal BSM
physics in the c → u transition which contributes to D0 →
ρ0γ , but not to D0 → K̄ ∗0γ . On the other hand, exper-
imental confirmation of Eq. (19) would establish c → uγ

amplitudes other than WA ones to be subleading.

3.3 D0 → φγ decays

The decay D0 → φγ is not a pure WA-induced decay due
to the dd̄ + uū admixture, or rescattering [32]. We param-
eterize such effects by a complex-valued parameter y, and
y � O(0.1) as follows [6]

AL ,R(φ) � AWA
L ,R(φ) + y

(
AWA
L ,R(ρ0) − A7,8

L ,R(ρ0)
)

, (20)

where AL ,R(ρ0) = ASM
L ,R(ρ0) + A7,8

L ,R(ρ0). Here A7,8
L ,R

denote contributions from dipole operators Q(′)
7,8. The dif-

ferent sign between the φ and the ρ0 arises from the SU (3)-
decomposition. Up to U-spin breaking between the φ and the
K̄ ∗0 of the order fR/ fL holds

rφ = r0(1 + O(y)), (21)

where rφ denotes the polarization fraction of the photon in
D → φγ decays. Therefore,

A�(D0 → φγ ) � ξK̄ ∗0ξφ A
�(D0 → K̄ ∗0γ ) (1 + O(y)) .

(22)

As already discussed in Sect. 3.2 for the ρ0, the leading U-
spin breaking based on dominance of initial state radiation
is given by fL ,R = mφ fφ/(mK ∗0 fK ∗) � 1.3. Similarly, the
numerical agreement with the hybrid model is good. We find
fL ,R � 1.2 ± 0.1, where the amplitudes have been added
coherently. For destructive interference, which is in conflict
with data on the D0 → φγ branching ratio, fL ,R � 1.5.

When y can be neglected with respect to other uncertain-
ties or contributions, D0 → φγ becomes a standard candle
very much like D0 → K̄ ∗0γ . At higher precision, at O(y),
the decay D0 → φγ becomes sensitive to BSM physics
similar to D0 → ρ0γ .
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3.4 D0 → K̄ 0
1 γ decays

The up–down asymmetry in D0 → K̄ 0
1 γ with K̄ 0

1 → K̄ππ

probes the photon polarization by measuring the polarization
of the kaon resonance K̄ 0

1 . The asymmetry is the D-decay
version of the one in B → K1γ decays [12]. It is propor-
tional to the photon polarization parameter λγ (16), see the
appendix for details. The proportionality factor depends on
the details of hadronic decays of the K̄1. As such, it is inde-
pendent of the resonance’s production, hence, is the same
for B- and D-decays. The rate of K̄ππ events, of course,
differs as well as the relative importance of resonances and
their interference effects.

The contribution from the K (1400)-family and higher,
which includes resonances which dilute the asymmetry, is
phase space suppressed in charm relative to the K̄1(1270)

one by about a factor of two. This reduces the impact of
interference effects and suggests a single-resonance analysis
in terms of the K̄1(1270). As stressed in the more recent B-
physics literature [13,14,22,23], insufficient understanding
of the hadronic structure of the K̄1-decay prohibits a preci-
sion extraction of the photon polarization. While this can be
overcome [14,23], here, we merely need to check whether
the wrong-chirality amplitudes satisfy AR ∼ AL or not in a
SM-like decay.

The proportionality factor between the integrated up–
down asymmetry (A2) and λγ has been estimated for the
K̄1(1270) → K̄ 0π+π− to be within −13% to +24%, and
for K̄1(1270) → K−π+π0 to be around −(7 − 10)% [14].
Measurement of a near maximal asymmetry would imply
a small r0(K̄1). A detailed analysis of K̄1-distributions is
beyond the scope of this work.

3.5 Ds → K+
1 γ decays

The decay Ds → K+
1 (→ Kππ)γ is color-allowed, hence

the sensitivity to BSM physics is suppressed by 1/NC , where
NC denotes the number of colors, relative to the one in
D0 → (ρ0, ω)γ decays. A similar up–down asymmetry as
in D0 → K̄ 0

1 (→ K̄ππ)γ can be constructed, see appendix.
Predictions for the polarization fraction of Ds → K+

1 γ

decays, rs(K1), are

rs(K1) = r0(K̄1)(1 + O(1/(Vus NC )) or

rs(K1) ∼ O(1/NC )r if r0 � 0. (23)

In the latter case, for negligible SM-contribution to AR ,
λγ s + 1 becomes a null test of the SM, where λγ s denotes
the corresponding photon polarization parameter (16) in
Ds → K+

1 γ decays

λγ s = −1 − r2
s (K1)

1 + r2
s (K1)

. (24)

In the SM it has to be equal to λγ , Eq. (16), up to U-spin
corrections. Significant deviations can signal BSM physics.

4 Testing the SM

We provide explicit expressions on how to probe BSM-
sensitive contributions in the photon polarization fraction in
D0 → ρ0γ decays using D0 → K̄ ∗0γ in Sect. 4.1, and
using D0 → φγ in Sect. 4.2. We also show consistency of
the framework – WA dominance in SM-dominated modes
consistent with leading U-spin breaking – with current data
on branching ratios, and give expectations for the photon
polarization in D → ρ0γ decays in BSM models.

4.1 D0 → K̄ ∗0γ

The D0 → K̄ ∗0γ is a WA-induced mode. Its branching ratio
can be written as

B(D0 → K̄ ∗0γ ) = τD0

m3
D0

32π

(
1 − m2

K ∗

m2
D0

)3
αe(GFmc)

2

π3 · B0,

(25)

B0 = |a0|2 + |a′
0|2, (26)

where, in the notation of the previous sections, a0, a′
0 cor-

respond to AL , AR , respectively. Then, the ratio of right- to
left-handed photons is given as

r0 =
∣∣∣∣
a′

0

a0

∣∣∣∣ . (27)

A measurement of B0, r0 returns the magnitude of both
amplitudes

|a0| =
√

B0

1 + r2
0

, |a′
0| = r0

√
B0

1 + r2
0

. (28)

The BSM-sensitive mode D0 → ρ0γ can be affected by
contributions from left- and right-handed Wilson coefficients
C7 andC ′

7, respectively. We write the branching ratio as (note,
factor 1/2 for isospin)

B(D0 → ρ0γ ) = 1/2 τD0

m3
D0

32π

(
1 − m2

ρ

m2
D0

)3
αe(GFmc)

2

π3 · B,

B = |a + TC7|2 + |a′ + TC ′
7|2, (29)

a(′) = −V ∗
cd

V ∗
cs
a(′)

0 × fL(R), (30)

where T denotes the D0 → ρ0 dipole form factor at maxi-
mum momentum transfer, and fL ,R �= 1 accounts for U-spin
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Table 1 Experimental data on D0 → V γ branching ratios. The corresponding numerical values for the reduced branching ratios B, see Eqs. (26,
29) and analogously for φγ , are given in the last row. †Statistical and systematic uncertainties are added in quadrature

Branching ratio D0 → ρ0γ D0 → ωγ D0 → φγ D0 → K̄ ∗0γ

Belle [24]† (1.77 ± 0.31) × 10−5 – (2.76 ± 0.21) × 10−5 (4.66 ± 0.30) × 10−4

BaBar [33]†,a – – (2.81 ± 0.41) × 10−5 (3.31 ± 0.34) × 10−4

CLEO [34] – < 2.4 × 10−4 – –

BBelle 0.030 ± 0.005 – 0.039 ± 0.003 0.49 ± 0.03

BBaBar – – 0.039 ± 0.006 0.35 ± 0.04

a We update the normalization [35]

breaking effects beyond phase space and CKM already dis-
cussed in Sect. 3. The polarization fraction of D0 → ρ0γ is
given as

r =
∣∣∣∣
a′ + TC ′

7

a + TC7

∣∣∣∣ . (31)

Experimental findings for the reduced branching ratios B0,
B and Bφ , the latter corresponding to D → φγ decays, are
given in Table 1.

Measurement of 4 observables, B,B0, r, r0 determines 4
coefficients, the SM contributions a, a′ and the BSM ones
C7,C ′

7. By definition, r, r0 ≥ 0. Presently, only branching
ratios are measured, see Table 1. It would be desirable to have
more precise data available, in particular, the discrepancy in
D0 → K̄ ∗0γ between Belle and BaBar should be settled.

In absence and anticipation of future polarization data we
discuss the following limiting cases:

(a) C7,C ′
7 � 0. This corresponds to the SM, r � r0, dis-

cussed around Eq. (18).
(b) r0 � 0. It follows

r = |TC ′
7|√

B − |TC ′
7|2

. (32)

The polarization fraction r is a null test of the SM for
negligible r0. We can already now make a data-based
prediction for r given C ′

7 irrespective of C7. Possible
values of r from Eq. (32) are illustrated in Fig. 2, where
the blue band displays the one sigma range of B. Within
leptoquark models holds |C ′

7| � 0.02, which, using T =
0.7 [6], implies r � 0.09, indicated by the green box. On
the other hand, SUSY models can provide significantly
higher values |C ′

7| � 0.3, while model-independently
holds |C ′

7| � 0.5. As r diverges towards C ′
7 � 0.15, in

both latter cases there is no upper limit on r . Upper limits
on the Wilson coefficients are taken from [6].

(c) C7 � 0

r =
√
B − |a|2

|a| . (33)

This allows to predict r if one calculates a. Using the
results for the WA-amplitude in the heavy quark limit
obtained in [6] we find (for λD ≥ 0.1 GeV) r ≥ 2. Such
large values of r are consistent with the fact that the cor-
responding SM prediction for the D0 → ρ0γ branching
ratio B = 0.005 · (0.1 GeV/λD)2 is significantly below
the measured one given in Table 1. Note that for the SM-
dominated modes the agreement is much better, Bφ =
0.016 · (0.1 GeV/λD)2 and B0 = 0.16 · (0.1 GeV/λD)2.
Here, λD denotes a non-perturbative parameter expected
to be of the order �QCD.

(d) C ′
7 � 0

r = r0|a|√
B − r2

0 |a|2
. (34)

This will be useful once r0 in addition to B0 is measured
and, using Eq. (30), allows to illustrate viable ranges for
r in BSM scenarios.

Note, Eq. (32) and Fig. 2, and Eq. (33) are independent of
U-spin breaking.

In the present situation where only branching fraction
measurements are available, it is useful to define the ratio

R(ρ0/K̄ ∗0) =
∣∣∣∣
Vcs
Vcd

∣∣∣∣
2 B
B0

= 1 + r2

1 + r2
0

r ′2

r2

= 1 + r2

1 + r2
0

|1 + TC7/a|2, (35)

where r ′ = |(a′+TC ′
7)/a|, and we used Eq. (30). The ratio R

equals one if only WA contributes, that is, r = r0 and C7 =
C ′

7 = 0, irrespective of the size of the SM contributions.
With BSM physics, the ratio can be larger or smaller than
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Fig. 2 The polarization fraction r , Eq. (32) and 2r/(1 + r2), which
drives A�, Eq. (11), as a function of |TC ′

7| (blue shaded band) for the
current data on B assuming r0 � 0. The range accessible by lepto-

quark models is indicated by the green box. Model-independently, and
in generic SUSY models, there is no upper limit on r

one. Similar ratios have been mentioned in [36] as a test of
the SM.

In R only trivial U-spin breaking from phase space and
CKM-elements has been accounted for. We define in addition
the ratio R̄, in which also the leading dynamical one ∝ mV fV
is covered.

R̄(ρ0/K̄ ∗0) = 1

f 2

∣∣∣∣
Vcs
Vcd

∣∣∣∣
2 B
B0

, (36)

where, here, we use f = mρ fρ/(mK ∗0 fK ∗) � 0.9.
Using the data compiled in Table 1 and adding uncertain-

ties in quadrature, we find

R(ρ0/K̄ ∗0)Belle = 1.14 ± 0.21,

R(ρ0/K̄ ∗0)BaBar = 1.61 ± 0.33, (37)

R̄(ρ0/K̄ ∗0)Belle = 1.40 ± 0.26,

R̄(ρ0/K̄ ∗0)BaBar = 1.97 ± 0.40. (38)

Here, Belle and BaBar refers to the respective measure-
ment of the D → K̄ ∗0γ branching ratio, which unfortu-
nately, exhibit presently a significant experimental spread.
Inflating errors a la PDG [35] due to the Belle/BaBar dis-
crepancy, which exceeds one σ , we obtain for the average
R̄(ρ0/K̄ ∗0)ave = 1.57 ± 0.26.

In Fig. 3 we show r (plots to the left) for the cases (a), (c)
and (d) for R̄ = 1.6 ± 0.3 (upper row) and R̄ = 1.6 ± 0.45
(lower row), illustrating the data’s discriminative power. Case
(b) has already been considered in Fig. 2. We learn that r can
be order one, and that it can be close to r0, in which case
discrimination from the SM is not possible. In the plots to the
right we show 2r/(1+r2) as a function of 2r0/(1+r2

0 ), which
enter the observables A�(D0 → K̄ ∗0γ ) and A�(D0 →
ρ0γ ), respectively, for (a), (c) and (d). Within present data on

R̄, scenario (d) with no right-handed BSM physics (red band)
cannot be sufficiently separated from the SM (black dashed
curve), while scenario (c) with only C ′

7 present (green band),
exhibits a significant SM-deviation. For R̄ < 1 the green
band corresponding to scenario (c) would be below the SM
curve while the band corresponding to scenario (d) would
be above it. The lower plots in Fig. 3 correspond to a value
of R̄ with 50% larger uncertainty, mimicking larger U-spin
corrections. As the upper and lower plots are similar we learn
that such effects do not change the picture qualitatively.

We can apply this strategy to probe for new physics in the
decay D → ωγ , once its branching ratio and its polarization
fraction become available.

4.2 D0 → φγ

Due to the hybrid nature of the φ, one may ask whether the
D → φγ branching ratio is consistent with the assumption of
a predominantly WA-induced decay amplitude. Correspond-
ing ratios,

R(φ/K̄ ∗0) =
∣∣∣∣
Vud
Vus

∣∣∣∣
2 Bφ

B0
, R̄(φ/K̄ ∗0) = 1

f 2

∣∣∣∣
Vud
Vus

∣∣∣∣
2 Bφ

B0
,

(39)

where Bφ is the reduced branching ratio analogous to B for
D → ρ0γ , Eq. (29), and using f = mφ fφ/(mK ∗0 fK ∗) �
1.3, are obtained as

R(φ/K̄ ∗0)Belle = 1.46 ± 0.15,

R(φ/K̄ ∗0)BaBar = 2.10 ± 0.37, (40)

R̄(φ/K̄ ∗0)Belle = 0.87 ± 0.09,

R̄(φ/K̄ ∗0)BaBar = 1.24 ± 0.22. (41)
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Fig. 3 The polarization fraction r as a function of r0 (plots to the left)
and 2r/(1 + r2) as a function of 2r0/(1 + r2

0 ) (plots to the right), in
the cases a (SM case) C7,C ′

7 � 0 (black, dashed curve), c C7 � 0

(green, upper band) and d C ′
7 � 0 (red, lower band). The upper (lower)

plots correspond to R̄ = 1.6 ± 0.3 (R̄ = 1.6 ± 0.45 from 50% inflated
uncertainty)

Leading U-spin breaking makes both branching ratios of sim-
ilar size. This is consistent with

R̄(φ/K̄ ∗0) = 1 + O(y), (42)

which, together with Eq. (21), holds in the SM and beyond.
While this numerical agreement could be accidental, it does
give a consistent picture between the predominantly SM-like
modes and the size of U-spin breaking in the range obtained
within the lowest order heavy quark expansion [6], sum rules
[17] and hybrid models [20,21]. This is beneficial as time-
dependent analysis with K̄ ∗0 → KS,Lπ0 is more difficult
than with φ → K+K−. We therefore suggest to use rφ , the
polarization fraction of the photon in D → φγ decays, as a
SM prediction for r .

We repeat the analysis previously performed with ρ0 and
K̄ ∗0, Eqs. (37), (38), for the ρ0 and the φ. We obtain

R(ρ0/φ)Belle = 0.78 ± 0.17,

R(ρ0/φ)BaBar = 0.77 ± 0.21, (43)

R̄(ρ0/φ)Belle = 1.62 ± 0.34,

R̄(ρ0/φ)BaBar = 1.59 ± 0.43, (44)

and for the average R̄(ρ0/φ)ave = 1.61 ± 0.27. The good
agreement seen in the data, between Eqs. (38) and (44), sup-
ports that the φ indeed can be used as a standard candle as
long as effects of O(y) can be neglected, and that the work-
ing assumption of the leading U-spin breaking is consistent
with data.

5 Summary

Untagged, time-dependent analysis into CP eigenstates
allows to extract the photon polarization in radiative charm
decays. Given a measurement of the photon’s polarization
fraction, its interpretation requires control of SM contribu-
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tions to D → V γ decays. We explore the possibility to
obtain the size of the SM background to wrong-chirality
contributions from data and U-spin. While there are size-
able uncertainties related to this procedure, there is presently
no measurement available and large room for BSM physics.

Specifically, we propose measurement of A� in D0 →
φ(→ K+K−)γ decays to obtain the SM fraction, rφ . While
the φ is not purely ss̄ and therefore not purely WA-induced,
the final state is advantageous over the one from the pure
SM-mode, D0 → K̄ 0∗(→ KS,Lπ0)γ . If feasible, the latter
should be studied experimentally as well.

If rφ , or r0, the polarization fraction of D0 → K̄ 0∗γ
decays, is negligible, the photon polarization and therefore
A� in D0 → ρ0(→ π+π−)γ becomes a null test of the SM.
Possible ranges depending on the BSM model are illustrated
in Fig. 2. A� in D0 → ρ0γ decays can be O(1) in SUSY
models, while leptoquark models give SM-like values. The
method works as well for D0 → ωγ decays, however, the
branching ratios of the ω into suitable final states such as
π+π− are small [35].

We further explored the correlation between the SM and
BSM polarization fraction based on ratios of branching frac-
tion measurements, shown in Fig. 3. Our study shows that
U-spin breaking effects of nominal size are not qualitatively
changing the picture. In particular, we find that available
branching ratios, Table 1, are consistent with U-spin hier-
archies predicted by the heavy quark expansion, and other
theory frameworks [17,20,21]. However, uncertainties are
large, and more study is needed to achieve a completer pic-
ture. This includes the clarification of the discrepancy in the
B(D0 → K̄ ∗0γ ) data. A cleaner BSM interpretation would
require better knowledge of the dipole form factor T (0).

We point out that another way to probe the photon polar-
ization in radiative charm decays is provided by an up–
down asymmetry (A2). As in the time-dependent analysis
the SM value can be extracted from a SM-like decay, here
D0 → K̄ 0

1 γ , and then used together with U-spin for a SM
test in a BSM-sensitive mode, Ds → K+

1 γ decays. Due
to limited phase space the K1(1270) is more pronounced in
charm relative to higher resonances than in B-decays.

The study of the photon polarization complements BSM
searches with CP asymmetries in c → uγ transitions.
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Appendix A: Up–down asymmetry

The differential distribution of D → Rγ → P1P2P3γ

decays via a J P = 1+ resonance R can be written as [4,12–
14]

d�

ds13 ds23 d cos θ
∝ | �J |2(1 + cos2 θ)

+ λγ 2 Im[�n · ( �J × �J ∗)] cos θ, (A1)

where λγ = (|AR |2 − |AL |2)/(|AR |2 + |AL |2) denotes the
photon polarization parameter, si j = (pi + p j )

2 with the
four momenta pi of the mesons Pi and θ is the angle between
the normal n̂ = (( �p1 × �p2)/|( �p1 × �p2)|) and the direction
opposite to the photon in the rest frame of R. The integrated
up–down asymmetry reads

Aup−down =
(∫ 1

0

d�

d cos θ̃
d cos θ̃

−
∫ 0

−1

d�

d cos θ̃
d cos θ̃

) / ∫ 1

−1

d�

d cos θ̃
d cos θ̃

= 3

4

〈
Im[n̂ · ( �J × �J ∗)] sgn[s13 − s23]

〉

〈| �J |2〉 λγ , (A2)

where cos θ = sgn[s12 − s23] cos θ̃ and the 〈· · · 〉-brackets
denote integration over s13 and s23. Here, �J is defined by
the decay amplitude A(R → P1P2P3) = εμ Jμ with the
polarization vector ε of R. Formulas for J including con-
tributions from resonances with different spin and parity,
e.g., the K (1400)-family and their interference effects can
be extracted from [4,12–14]. Decay chains involving a kaon
resonance are collected in Table 2. Decays of D+ and Ds are
self-tagging.

Table 2 Decay chains involving a kaon resonance decaying via K+
1 →

(K ∗+π0, K ∗0π+, ρ+K 0) → K 0π+π0, K+
1 → (K ∗0π+, ρ0K+) →

K+π+π−, K 0
1 → (K ∗+π−, K ∗0π0, ρ−K+) → K+π−π0 and

K 0
1 → (K ∗+π−, ρ0K 0) → K 0π+π−. Here, CF, SCS and DCS denote

Cabibbo-favored, singly Cabibbo-suppressed and doubly Cabibbo-
suppressed WA-amplitudes, respectively. While ‘SM’ indicates a WA-
induced decay, ‘FCNC’ indicates the presence of c → u contributions

Decay chain Color CKM Type

D0 → K̄ 0
1 γ → K̄ππγ 1/NC CF SM

D0 → K 0
1 γ → Kππγ 1/NC DCS SM

D+ → K+
1 γ → Kππγ 1 DCS SM

Ds → K+
1 γ → Kππγ 1 SCS FCNC
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