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Introduction

inde fluunt lacrimae, stillataque sole rigescunt
de ramis electra novis, quae lucidus amnis
excipit et nuribus mittit gestanda Latinis.

Their tears still flow, and hardened by the sun,
fall as amber from the virgin branches,

to be taken by the bright river and sent onwards to adorn Roman brides.

—Ovid, Metamorphoses Book II, 364-366

These are the last words of a tragic story. Phaethon, son of the sun god Phoebus, requests to drive
his fathers chariot, the sun, over the sky. However, he looses control over the horses and comes too
close to earth. In order to save the oceans, rivers, and earth from the fate of being burned by the
sun, Jupiter throws a lightning onto Phaethon. Phaethon falls from the sky and dies on the riverside
of Eridanus, which is nowadays known as the river Po. His sisters, the Heliads, grieve at his grave
for four months without ever leaving it. Then a god takes pity on the sisters and turns the grieving
virgins into poplar trees and their tears into amber which falls into the river and is sent onwards to
Roman brides.

The reader may now wonder how this mythological tale is connected to Transport in isotropic
and anisotropic Dirac systems. It is a story which explains how amber, in Latin electrum and in
Greek ηλετρoν, comes to exist. This material fascinated many generations, since, besides its beautiful
color, it exhibits a mysterious force which attracts dust and paper. This attractive force was already
observed by the Roman philosopher Pliny the Elder and is a phenomenon that could not be explained
or understood for a long time. In 1600, the English physician and physicist William Gilbert was the
first to distinguish between different attractive forces and named this strange attractive force of amber
electrium and firstly introduced the term electric force. The physical reason for this attractive force
is that amber has a very high relative permittivity and thus becomes electrostatically charged upon
applying friction. Hence, amber –or electrum– gave its name to a whole field of physics: electrostatics,
electrodynamics and quantum electrodynamics.

Now, let us return to the quotation we started with. The tears of the grieving virgins are turned
into amber, electra, and the electra fall into the river and are transported in and by the river to the
Roman brides. Just like the amber is transported in the river, we study the transport of electrons in
condensed matter systems in this thesis: we investigate the electrical conductivity σ and the viscosity η
of two dimensional (2D) isotropic and anisotropic Dirac systems. These two transport quantities play
an important role in the transport theory of electrons (or rather quasiparticles) in condensed matter
systems. In the following, we describe these quantities in detail and motivate why they are interesting
to study.

The nature of the transport described by the electrical conductivity and by the viscosity is different:
The electrical conductivity describes the movement of electrons due to an electric field, while the
viscosity of a system describes the resistance of the quasiparticles to an applied gradient of the drift
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Introduction

velocity. These two transport quantities are very important for the characterization of materials.
Using the conductivity as a criterion, we can categorize different materials into different classes such
as insulator, semi-conductor, and metal. Since the viscosity of a fluid describes the resistance to a
hydrodynamic flow, the smaller the viscosity becomes, the more turbulent the flow dynamics of the
system is. Hence, the size of the viscosity significantly determines the flow dynamics of the system.

In this thesis, these transport quantities are studied in two different regimes: the hydrodynamic
regime (ω � τ−1) and the collisionless regime (ω � τ−1). Very different processes are responsible
for the transport of the electrons in the two regimes and as a consequence, we will also find different
behavior of the transport properties in the different regimes. In the hydrodynamic regime where the
characteristic scattering time τ between collisions is the fastest time scale, the physics is dominated
by scattering processes, whereas in the collisionless regime the excitation frequency ω sets the fastest
time scale and scattering processes are less dominant. In order to study the two regimes, the kinetic
Boltzmann equation is employed in the hydrodynamic regime, and the Kubo formalism in the colli-
sionless regime. Of course, the Kubo formalism works in both regimes, in the hydrodynamic regime
using the Boltzmann equation is only easier.

But why do we study the electrical conductivity and the viscosity in the two regimes for isotropic
and anisotropic Dirac systems? What is so special about Dirac systems? To answer these questions,
we refer to the energy-dispersion of these systems. The energy-dispersion relation of Dirac systems
is linear and gapless which makes these systems quasi-relativistic. They are quasi -relativistic, since
the electrons move with the Fermi velocity vF and not the speed of light c, where vF is in the case
of graphene 300 times smaller than c. The relativistic, gapless energy spectrum results in a distinct
behavior of the transport properties which is very different from conventional metal.

The most famous example for a 2D isotropic Dirac system is graphene whose transport properties
are investigated in this thesis. Graphene is a beautiful material with many fascinating characteristics.
On the one hand, it is the thinnest material in the world, since it only consists of one layer of carbon
atoms ordered in a honey-comb structure. On the other hand, graphene is one of the strongest materials
(even stronger than steal) and simultaneously it is very flexible. Its relativistic behavior is for example
reflected in a universal behavior of the conductivity in the optical regime [1], as can be seen in this
thesis. In addition, graphene has several symmetries such as the C3 rotational symmetry, time reversal
symmetry and invariance under spatial inversion.

In this thesis, we also want to address the question what happens to the transport properties in
systems with lower symmetry. The anisotropic Dirac systems (ADSs) are such systems, since they
are not rotationally invariant. These systems are formed by the merging of two Dirac cones. One
example of such an anisotropic Dirac system (ADS) is the organic charge transfer salt α-(BEDT-
TTF)2I3 where two Dirac cones merge under the application of uniaxial pressure. Another example is
the heterostructure TiO2/VO2 which has even four anisotropic Dirac cones in the first Brillouin zone.
The resulting energy dispersion of an ADS is parabolic in the direction of the merging Dirac cones and
linear in the perpendicular one. The anisotropy in the energy spectrum leads to fascinating transport
properties which we demonstrate in Chap. 8 and Chap. 9. We find classical and relativistic behavior
in the same material.

A common theme in every chapter of this thesis is the question how the Coulomb interaction between
the electrons influences the transport properties. The Coulomb potential V (r, r′) = e2/|r − r′| is a
long-range interaction which is not screened for graphene at the charge neutrality point, since at this
point the charge carrier density vanishes. It was a long standing question whether the influence of the
Coulomb interaction in graphene is large or not, since many phenomena such as Klein tunneling [2]
and the odd-integer quantum hall effect [3] can be explained without taking the Coulomb interaction
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into account. However, with cleaner samples, evidence for the influence of the Coulomb interaction was
seen, including as the fractional quantum hall effect [4, 5] and the logarithmic divergence of the Fermi
velocity [6]. There has also been a long dispute over the influence of the Coulomb interaction on the
optical conductivity in graphene [7–17], and we finally settle this dispute in this thesis. Furthermore,
we demonstrate that in the collisionless regime, the viscosity is a transport property which is strongly
influenced by the Coulomb interaction. But we will not only study the influence of the Coulomb
interaction in graphene. The effect of the Coulomb potential on the transport properties of the ADSs is
investigated as well and we determine how the Coulomb interaction modifies temperature and frequency
dependence of the viscosity and conductivity in both regimes.

Structure of the thesis

This thesis is divided into three parts. In the introductory Part I, the different regimes, the applied
methods and the studied transport properties are introduced and defined. In Part II, the essentials of
graphene are introduced and the electrical conductivity and the shear viscosity of graphene are studied
in the two different regimes. Part III is devoted to systems with lower symmetry, the anisotropic
Dirac systems, where the electrical conductivity and the viscosity in both the hydrodynamic and the
collisionless regime are studied.

A graphical guide through this thesis can be found in Fig. 1, where the sections indicated in gray
recapitulate results obtained by other authors, whereas the sections marked in black refer to my own
work. Let me now give a detailed overview of the content of the different chapters.

In Chap. 1, the hydrodynamic and the collisionless regime are introduced. The ratio between the
excitation frequency ω and the relaxation rate τ due to collision processes decides which regime is
applicable. Depending on the regime, the transport properties are either determined using the Kubo
formalism in the collisionless regime or using the Boltzmann equation in the hydrodynamic regime.
These different methods are introduced and defined here.

In Chap. 2, the electrical conductivity is defined, its scaling behavior under a renormalization group
(RG) analysis is studied, and we demonstrate how the conductivity is determined using either the Kubo
formalism or the Boltzmann equation.

In Chap. 3, the concept of the viscosity of a fluid is introduced. We summarize how the energy-
stress tensor, and thus the viscosity, is connected to the strain generators acting on spatial coordinates.
Moreover, we extend the concept of strain generators acting on spatial coordinates to strain generators
acting on the pseudospin space and show how the energy-stress tensor for a lattice with a pseudospin
is calculated. Furthermore, we show how the viscosity is determined either in the Kubo formalism
or in the Boltzmann equation and study how the viscosity scales under an RG flow with the help of
the Ward identity. At last, we introduce the famous lower bound of the ratio viscosity over entropy
η/s ≥ ~/(4πkB) [18] and give a physical interpretation of this lower bound, which gives a limit to the
validity of the quasiparticle picture of the system. We also discuss some examples from cosmology and
ultra cold atoms which violate the lower bound.

In Part II, we focus on graphene. To this end, we introduce the tight-binding description and the
Dirac model of graphene in Chap. 4. Furthermore, we show how the Coulomb interaction acting on
the quasiparticles of graphene is implemented via the Wilson RG scheme in this chapter.

After having laid the foundations, the electrical conductivity of graphene is studied in Chap. 5. For
the sake of completeness, the results of the conductivity in the hydrodynamic regime obtained by Fritz
et al. [19] are discussed in Sec. 5.1, before we study the optical conductivity in the remainder of this
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chapter. In particular, we focus on the question how the Coulomb interaction influences the optical
conductivity and settle a long dispute about the correction coefficient in first order of the Coulomb
interaction by performing a tight-binding calculation and correcting previous approaches in the Dirac
model. These results are based on my work in collaboration with Peter P. Orth, Daniel E. Sheehy and
Jörg Schmalian which is published in Ref. 16.

In Chap. 6, the viscosity of graphene is studied. We recapitulate the results of Müller et al. [20]
of the viscosity in the hydrodynamic regime. They showed that the quasiparticles of graphene behave
as a nearly perfect fluid, i. e., the ratio of viscosity over entropy approaches very closely the lower
bound. In addition we present the derivation of the Navier-Stokes equation by Briskot et al. [21]. Our
contribution to the investigation of the viscosity is the study of the viscosity in the collisionless regime.
We show that the viscosity is proportional to the frequency squared and that the Coulomb interaction
has a large influence on this transport quantity.

In Part III, we study how these transport quantities change for a system with a lower symmetry,
namely the anisotropic Dirac systems (ADSs). Hence, in Chap. 7, different physical systems are
introduced having such an anisotropic energy dispersion where the energy spectrum is parabolic along
one axis and linear in the perpendicular one. Furthermore, the Coulomb interaction is implemented
by an RG analysis in the large-N limit and in the strong coupling regime, and the collision integral
describing the Coulomb interaction in the Boltzmann equation for an ADS is derived.

In Chap. 8, building on the theoretical background obtained in the previous chapter, we are able
to determine the conductivity in the hydrodynamic and in the collisionless regime and demonstrate
that the material has the temperature dependence of an insulator in one direction and the temperature
dependence of a metal in the perpendicular direction.

In Chap. 9, the viscosity tensor of ADSs is investigated in both regimes. We demonstrate that
these ADSs are, to our knowledge, the first condensed matter realization which violate the lower bound
of viscosity over entropy which implies highly turbulent flow behavior of the system.
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Figure 1: Overview of this thesis. In this thesis, we determine the conductivity σ and the viscosity
η of graphene and ADSs as a function of frequency and temperature. Both materials are studied
at the charge neutrality point, i. e., their chemical potential µ is zero. The red area indicates the
collisionless regime where the Kubo formalism is used, while the blue area indicates the hydrody-
namic regime where the transport quantities are calculated using the Boltzmann equation. The
sections colored in gray represent results obtained by other authors, while the sections in black
represent the results obtained by me and my collaborators.
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1 Chapter 1

Regimes and Methods

In this thesis two transport properties, the electrical conductivity and the viscosity, of graphene and
of anisotropic Dirac systems (ADSs) are investigated. Thereby, we distinguish between two different
regimes. These regimes are the hydrodynamic regime where collision processes dominate and the
collisionless regime. The ratio between excitation frequency ω and the characteristic time scale for the
collisions τ decides in which regime we are. If ω � τ−1, the scattering time due to thermal collisions
is smaller than the time scale set by the excitation frequency. The dominant process responsible for
the transport or relaxation processes are thus collisions due to scattering of thermally excited electrons
and holes. However, if ω � τ−1, the fastest time scale is set by the excitation frequency and processes
due to thermally excited states can be neglected.

In the following chapter the two different regimes are introduced in detail as well as the different
formalisms used which are capable of describing the relevant physics, namely the Kubo formalism and
the Boltzmann equation.

1.1 Collisionless Regime

We start with a short introduction of the collisionless regime. In this regime, the excitation frequency
sets the shortest time scale and scattering processes of the particles can be neglected, i. e., ω � τ−1.
This regime can be experimentally accessed by optical experiments. An example is the measurement
of the optical transparency of graphene [22] which measures implicitly the optical conductivity of
graphene. In this thesis, the optical conductivity of graphene and the influence of the Coulomb
interaction on this transport property is studied in full detail in Chap. 5, while in Sec. 8.3 the optical
conductivity of ADSs is investigated. Further, we study the viscosity of graphene and ADSs in the
collisionless regime in Sec. 6.2 and in Sec. 9.3, respectively. A related experiment is angle-resolved
photoemission spectroscpoy (ARPES) [23] where the band structure of quasi-freestanding graphene
can be directly observed.

For a regime with high frequencies, we are going to use the Kubo-formalism in the remainder of this
thesis. This does by no means mean that the Kubo-formalism can only be applied in the collisionless
regime. With the Kubo-formalism, we are able to make predictions for both regimes, the hydrodynamic
and the optical regime. Far more, using the Kubo-formalism, we can access the collisionless regime
which could not be accessed by the Boltzmann equation which describes physics that are dominated
by collisions.
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1 Regimes and Methods

1.1.1 Kubo-Formalism

In this section we derive the Kubo formalism and thereby follow closely the derivation presented in the
book of Elk and Gasser [24]. Here, we study how the mean value of an observable Âi of a system with
an external perturbation is calculated. The system is described by the Hamiltonian H = H0 − µN ,
where H0 is the Hamiltonian of the non-interacting system, µ is the chemical potential of the system
and N the particle number. Next, an external, time-dependent perturbation Wt is introduced to the
system

Wt = −
∑
j

B̂jFj(t) , (1.1)

where Fj(t) is an external, classical time-dependent field and B̂j a quantum-mechanical operator
coupled to Fj(t). In order to evaluate the average of the operator Âi, we introduce the density

operator ρt, i. e.,
〈
Âi

〉
= Tr[Âiρt]. The density operator obeys the von-Neumann equation

i~
∂ρt
∂t

= [H+Wt, ρt] , (1.2)

which is the quantum-mechanical analogue of the Liouville equation. In the following, the von-
Neumann equation is solved to find the time dependence of the density operator. Firstly, in order
to solve this differential equation, the initial condition has to be found. Since the perturbation Wt van-
ishes for t→ −∞, the density operator is defined over the non-interacting system with H at t = −∞
which yields the initial condition

ρ−∞ = ρ =
e−H/T

Tr(e−H/T )
. (1.3)

Knowing this initial condition, we can now solve the von-Neumann equation. Therefore, we go into
the interaction picture1 where

ρt(t) = eiHt/~ρte
−iHt/~ . (1.4)

The time derivative of this operator is given by

i~
dρt(t)

dt
= −[H, ρt(t)] + eiHt/~ i~

∂ρt
∂t

e−iHt/~

= −[H, ρt(t)] + eiHt/~ [H+Wt, ρt] e−iHt/~
(1.5)

which can be rewritten as

i~
dρt(t)

dt
= [Wt(t), ρt(t)] (1.6)

with Wt(t) ≡ eiHt/~ Wt e−iHt/~. Using the initial condition (1.3), we obtain the following expression

ρt(t) = ρ+
1

i~

t∫
−∞

dt′[Wt′(t
′), ρt′(t

′)] ⇔ ρt = ρ+
1

i~

t∫
−∞

dt′e−iH(t−t′)/~[Wt′ , ρt′ ]e
iH(t−t′)/~ . (1.7)

This differential equation can be solved by iteration. For the first iteration step, we use that the system

is in thermal equilibrium for t→ −∞, insert ρ
(0)
t = ρ and obtain

ρ
(1)
t = ρ+

1

i~

t∫
−∞

dt′ [Wt′(t− t′), ρ] . (1.8)

1In this section, all operators with the additional time argument Ôi(t) are in the interaction picture.
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1.1 Collisionless Regime

This solution is linear in the perturbation and for small fields one can stop the iteration process here.
This solution is called linear response and it is the form which is going to be used in the remainder of
this thesis.

Now we are able to calculate the mean value of the observable Âi in linear response. It is given by

〈
Âi

〉
t

= Tr(ρÂi) +
1

i~

t∫
−∞

dt′Tr(e−iHt/~[Wt′(t
′), ρ]eiHt/~Âi)

= Tr(ρÂi) +
1

i~

t∫
−∞

dt′[Wt′(t
′), ρ]Âi(t)) = Tr(ρÂi) +

1

i~

t∫
−∞

dt′
〈

[Âi(t),Wt′(t
′)]
〉

= Tr(ρÂi) +
1

i~

t∫
−∞

dt′
∑
j

〈
[Âi(t), B̂j(t

′)]
〉
Fj(t

′) .

(1.9)

The mean value of the observable Âi in the interacting system is given by the average value of the
non-interacting system and a correlation function between the observable and the operator B̂j coupling

to the field Fj(t). This can be rewritten as
〈
Âi

〉
t

=
〈
Âi

〉
+
∞∫
−∞

dt
∑

j Gij(t−t′)Fj(t′) with the retarded

Green’s function Gij(t − t′) = −iθ(t − t′)
〈

[Âi(t), B̂j(t
′)]
〉

. In the following, we demonstrate how this

expression can also be cast into a different form. For this purpose, the Kubo-identity is applied which
is given by [24]

i[A(t), ρ] = ρ

β∫
0

dτȦ(t− iτ) , (1.10)

where the derivative is taken with respect to the imaginary time iτ and the boundary β of the integral
is proportional to the inverse temperature, i. e., β = (kBT )−1 with kB being the Boltzmann constant.
Hence, upon using the invariance of the trace under cyclic permutations, the retarded Green’s function
can be written as

Gij(t) = −θ(t)
β∫

0

dτ
〈
Ḃj(−t− iτ)Ai

〉
. (1.11)

Upon introducing the Fourier transform Gij(ω) =
∞∫
−∞

dteiω+tGij(t) with ω+ = ω+ i0+, we find for the

above expression

Gij(ω) = −
∞∫

0

dt

β∫
0

dτeiω+t
〈
Ḃj(−t− iτ)Ai

〉
. (1.12)

This expression can be integrated by parts, which leads to the following expression

Gij(ω) = − i

ω+

∫ ∞
0

dt

∫ β

0
dτeiω+t

〈
d

dt
Ḃj(−t− iτ)Ai

〉
+

i

ω+
eiω+t

∫ β

0
dτ

〈
d

dt
Ḃj(−t− iτ)Ai

〉∣∣∣∣∣∣
∞

0

,

(1.13)
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1 Regimes and Methods

where in the boundary terms, the term arising due to the the upper boundary vanishes because of the
convergence factor in ω+. Now we apply again the Kubo-identity (1.10) and cast the Fourier transform
of the retarded Green’s function into the form

Gij(ω) =
i

ω+
(χij(ω)− χTij) . (1.14)

The correlation function χij(ω) is the Fourier transform of the retarded Green’s function

χij(t, t
′) = −iθ(t− t′)

〈
[Ai(t),

d

dt′
Bj(t

′)]

〉
, (1.15)

while χTij is the Fourier transform of

χTij =
〈

[Ai(0), Bj(0)]
〉
, (1.16)

which corresponds to the isothermal susceptibility. An important implication of Eq. (1.14) occurs
when the zero frequency contribution of χij(ω) and the value of the isothermal susceptibility are not
equal, i. e.,

Dij = χij(0)− χTij 6= 0 . (1.17)

In this case the real part of the Green’s function is given by

ReGij(ω) = πDijδ(ω)− Imχij(ω)

ω
, (1.18)

where Dij denotes the generalized Drude term in the response function. We are going to use this
form of the retarded Green’s function in order to calculate the conductivity and the shear viscosity of
graphene and of ADSs in the collisionless regime.

1.2 Hydrodynamic Regime

In the hydrodynamic regime with ω � τ−1 the shortest time scale is the relaxation time due to
collisions and thus scattering processes dominate the physics. But, what exactly is Hydrodynamic?
Hydrodynamic describes the dynamic of fluids governed by conservation laws. Thus, it is a powerful
description which can be found in many different fields of physics.

An example for the universality of hydrodynamics is the Poiseuille flow of particles through a tube
with the radius R. Using the momentum and particle conservation, we find that the current through
the tube is I = (πnR4∆P )/(8ηl) where ∆P denotes the pressure gradient over the distance l, n the
particle density and η the viscosity of the fluid, while the resistivity is ρ = (16e2ηR−2)/n2 which is
proportional to the viscosity. This flow behavior becomes very important for the blood circulation in
our body. If an artery narrows in the radius by δR, the heart has to increase the pressure gradient by a
factor of 4 in order to maintain the same blood current. Astonishingly, the Poiseuille flow is again found
in a total different context, namely in solid state systems. Here, we find that the magneto-resistivity
of PdCoO2 depends on the length of the sample [25, 26]. It decreases with increasing width of the
sample, since ρ ∝ R−2. The reason for this behavior is that the friction occurs at the walls where
the layers of the fluid have zero velocity. If the sample size increases, this effect decreases. In these
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1.2 Hydrodynamic Regime

two examples we have seen how the same hydrodynamic effect occurs in two very different, physical
systems.

Hydrodynamics in condensed matter physics is a very fascinating area of research, since in this
regime, it is possible to investigate the universal collision-dominated dynamics of an isolated electron
fluid, while the couplings to the lattice and to impurities becomes secondary. The observation of
hydrodynamic behavior only became recently experimentally accessible, because, as mentioned before,
only the collisions between electrons are the dominating process which requires extreme clean samples.
Different examples for the experimentally observed hydrodynamic behavior in many-body physics are as
diverse as superfluid Helium [27], the breakdown of the Wiedemann-Franz law in graphene [28, 29], the
negative local resistance [30, 31] and the giant magnetodrag [32] in graphene and the above mentioned
length dependence of the magentoresistivity of PdCoO2 [25] and of the (Al, Ga)As heterostructure
[33]. A recent review of the hydrodynamics in graphene can be found in Ref. 34.

The main contributions for the conductivity and the shear viscosity in graphene are repeated in
Sec. 5.1 and Sec. 6.1, while the new results of the conductivity and the shear viscosity of ADSs are
presented in Sec. 8.1 and Sec. 9.2.

1.2.1 Quantum Boltzmann equation

Now, we introduce the method used to determine different transport properties in the hydrodynamic
regime. Hydrodynamic processes are described by the Boltzmann equation. The Boltzmann equation
determines the distribution function fλk of the quasiparticles and depends on the time t, the spa-
tial coordinate r and the momentum k. For a system with two energy bands (the valence and the
conductance band) with λ denoting the band index, the Boltzmann equation has the form(

∂

∂t
+ vλk · ∇r + F · ∇k

)
fλ,t,k,r = Icoll[fλk] , (1.19)

where the left-hand side of the equation is the Liouville operator describing the time evolution of the
system and the right-hand side of the equation is the collision integral which describes changes in the
distribution function due to different scattering processes. These scattering processes can have their
origin in scattering either due to impurities of the system or due to the Coulomb interaction between
the quasiparticles. Furthermore, F is the Lorentz force acting on the electrical charged particles with
F = e(E + vλk ×B/c), where E is the electrical field, B the magnetic field and vλk is the velocity of
the quasiparticle of the energy band λ. In this thesis, we focus on the electrical transport due to an
applied electrical field and are not going to investigate magneto-transport.

The Boltzmann equation and the corresponding collision integral can also be derived using quantum
mechanics, or more precisely the Keldysh formalism which can describe out-off equilibrium quantum
mechanics. In the following, we roughly sketch the derivation and refer for further details to the
corresponding literature [35, 36].

The special characteristic of the Keldysh formalism is its closed time contour which differs from the
time contour used in equilibrium physics, where the initial state evolves from t = −∞ to t = +∞.
Here, we have a system described by a time-dependent Hamiltonian H, and we assume that the system
is in a specific, known many-body state for t = −∞. To calculate the mean value of an observable in
the Keldysh formalism, the initial state has to be evolved forward and backwards, i. e.〈

Ô
〉

(t) ≡ Tr[Ôρ(t)]

Tr[ρ(t)]
=

1

Tr[ρ(t)]
Tr[Û−∞,tÔÛt,−∞ρ] , (1.20)

7



1 Regimes and Methods

where Ût,t′ = > exp(−i
∫ t′
t H(t′′)dt′′) is the time-ordered unitary evolution operator and > the time-

order operator. The time-dependent density matrix is determined using this evolution operator and
holds ρ(t) = Ût,−∞ρ(−∞)Û−∞,t where ρ = ρ(−∞) is the density matrix at t = −∞. Why do we not
have to evolve forward and backwards in time for an equilibrium system which is non-interacting at
t = −∞ and where the interaction is adiabatically switched on with increasing time? The reason is that
in equilibrium the non-interacting ground state |0〉 can only collect a phase upon forward and backward
evolving in time, i. e., Û−∞,∞ |0〉 = eiL |0〉. This leads to the fact that it is enough to evolve forwards in
time, i. e., 〈0| Û−∞,tÔÛt,−∞ |0〉 = 〈0| Û+∞,tÔÛt,−∞ |0〉 / 〈0| Û∞,−∞ |0〉 where the denominator describes
the accumulated phase factor e−iL.

After having established the needed time contour in the Keldysh formalism which describes the
out-off equilibrium physics, we are now able to derive the Boltzmann equation with the corresponding
collision integral. To this end, the equations of motions with the self-energy Σ(1, 2) for a Green’s
function G(1, 1′) are studied. They read(

i
∂

∂t1
+
∇2

1

2m

)
G(1, 1′) = δ(1, 1′) +

∫
C
d2 Σ(1, 2)G(2, 1′)(

−i
∂

∂t′1
+
∇2

1′

2m

)
G(1, 1′) = δ(1, 1′) +

∫
C
d2 G(1, 2)Σ(2, 1′) ,

(1.21)

where
∫
C symbolizes that the integral is performed along the closed time contour and we choose the

notation 1 ≡ (x1, t1) and δ(1, 1′) = δ(x1 − x′1)δt1,t′1 . The Green’s function is given by

G(x1, t1,x2, t2) = θ(t1, t2)G>(x1, t1,x2, t2) + θ(t2, t1)G<(x1, t1,x2, t2) , (1.22)

with θ(t1, t2) being defined on the time contour with θ(t1, t2) = 1 if t1 is later on the contour than t2 and
otherwise zero. The functions G>(1, 2) and G<(1, 2) are the greater and smaller Green’s function and

they are defined as the average of the following Heisenberg operators, i. e., −iG<(1, 2) =
〈
ψ̂†H(2)ψ̂(1)

〉
and iG>(1, 2) =

〈
ψ̂H(1)ψ̂†H(2)

〉
. Upon introducing relative coordinates in space and time, r = x1−x2,

t = t1− t2 and R = (x1 +x2)/2, T = (t1 + t2)/2 and Fourier transforming in the relative coordinates,
the lesser and greater Green’s functions can be related to the distribution function of the quasiparticles,
i. e.,

fλk,R,T =

∫
dω

2π
(−i)G<(p, ω,R, T )

1− fλk,R,T =

∫
dω

2π
iG>(p, ω,R, T ) .

(1.23)

If we fix the time arguments in the equations of motion (1.21) at opposite sides of the contour, we
obtain the Kadanoff-Baym equations for upper and lower contour. Under the assumption that the
temporal and spatial changes are small and do not vary much from the free evolution of a uniform
system, we obtain the Boltzmann equation upon subtracting the Kadanoff-Baym equation of upper
branch of the contour and of the lower branch of the contour for the time t1 = t′1 = T . Hence, the
Boltzmann equation reads

i

(
∂

∂T
+
p

m
· ∇R

)
G<(p,R, T ) = Σ>(p, ω;R, T )G<(p;R, T )− Σ<(p, ω;R, T )G>(p;R, T ) , (1.24)
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1.2 Hydrodynamic Regime

where we used that the lesser Green’s function is related to the distribution function. The right-hand
side of this equation defines the collision integral and we are going to use this definition of the collision
integral to determine the collision integral of the ADSs in Sec. 7.2.2.

After having introduced the Boltzmann equation (1.19) and having defined the collision integral
(1.24) via the lesser and greater self-energies, we now briefly sketch how the Boltzmann equation is
solved in order to determine the distribution function. Thereby, we choose for the distribution function
the following ansatz

fλk = f
(0)
λk + δfλk . (1.25)

The distribution function is split up into a part describing the equilibrium distribution function f
(0)
λk and

a part describing the out-off equilibrium correction to the distribution function δfλk. The equilibrium
function of the systems studied in this thesis is given by the Fermi-Dirac distribution function, i. e.,

f
(0)
λk = (1 + e(ελk−µλ)/T )−1, where ελk is the energy dispersion relation of the system studied, λ the

band index of the energy band, and µλ the chemical potential. For the out-off equilibrium correction,
we assume that the perturbation causing the deviation of the equilibrium of the system is small and
thus it is sufficient to take only the linear order in the perturbation into account. Hence, the out-off
equilibrium correction is assumed to be the product of the first derivative of the equilibrium distribution
and the perturbation and reads

δfλk =
1

T
f

(0)
λk (1− f (0)

λk )hλk , (1.26)

where the function hλk is proportional to the external field perturbing the equilibrium times an un-
known function gλk. Upon solving the Boltzmann equation, gλk and thus δfλk are determined. It is
important to know the out-off equilibrium distribution function, since different transport quantities
such as the electrical current, j =

∑
λ

∫
k vλkδfλk, and the energy-stress tensor, ταβ =

∑
λ

∫
k v

α
λkkβδfλk,

depend on δfλk. These quantities will play a crucial role in the remainder of this thesis.
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2 Chapter 2

Conductivity

2.1 Definition of the Conductivity

One important property of a material is the electrical conductivity σαβ. The conductivity plays a
prominent role in condensed matter physics, since it is the quantity used to characterize different
materials, such as insulators having a small conductivity and metals having a large conductivity. It
describes the reaction of quasiparticles in a crystal to the perturbation of an electrical field E. The
electrical conductivity is a rank two tensor which relates the electrical field to the electrical current of
the system as shown in Fig. 2.1, i. e.,

jα =
∑
β

σαβEβ , (2.1)

where α, β are the indices for the spatial coordinates. Since we are going to study two-dimensional
materials in this thesis, the indices run over α, β ∈ {x, y}.

One of the first physical models describing the conductivity of materials is the Drude model [37, 38],
which was introduced by Paul Drude in the year 1900. He described the movement of a single electron
in an electrical field and introduced a scattering time τ defining the time interval between successive
collisions in the crystal. He found that the conductivity is proportional to this scattering time, i. e.,
σ = e2nτ/m with m being the mass of the particle and n the particle density. Thereby, it was assumed
that all electrons move as single particles which lead to an overestimation of the electrical conductivity
by at least a factor of thousand. In the year 1927 Sommerfeld extended this model by taking the
quantum statistical distribution functions into account which describe the fact that only fermions at
the Fermi surface participate in the transport process and thus corrected the overestimation of the
conductivity.

In this thesis, we use a many-body description in order to determine the conductivity of graphene
and of a anisotropic Dirac system (ADS). In Sec. 2.2, we introduce the different Kubo formulas for
the conductivity which describe the linear response of the material to an external perturbation which
is in this case the electrical field E. Another method to calculate the conductivity is the Boltzmann
equation which gives the distribution function of the quasiparticles when an external perturbation
is applied. This distribution function determines the conductivity in the hydrodynamic regime and
further details can be found in Sec. 2.4.

An interesting question to ask is how the Coulomb interaction between the electrons influence the
conductivity. In order to answer this question, we will perform a renormalization group (RG) analysis
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2 Conductivity

Figure 2.1: The conductivity tensor connects an applied electrical field to an electrical current.

in Chap. 4 and Chap. 7. Here, in Sec. 2.3, we study the scaling behavior of the conductivity under
the RG flow.

2.2 Kubo-Formalism for the conductivity

In this section, we derive the expressions defining the conductivity in linear response via the Kubo-
formalism. The Kubo-formalism was introduced in Sec. 1.1.1 where we showed how the mean value
of an operator can be calculated when an external perturbation Wt occurs in the system. Here, the
perturbation generating an electrical current is given by

Wt = P̂ ·E , (2.2)

whereE is the time dependent electrical field coupling to the polarization operator P̂ . The polarization
operator is defined as

P̂ =
∑
x

xψ̂†xψ̂x , (2.3)

with ψ̂
(†)
x denoting the fermionic annihilation (creation) operator. Using the continuity equation of

the particle density, one finds that the derivative of the polarization operator determines the electrical
current, i. e., j = ∂P /∂t [39]. As we have seen before, the electrical conductivity is defined over
jα =

∑
β σαβEβ and hence, we have to determine the mean value of the electrical current in order to

obtain the electrical conductivity. Using the equations (1.9) and (1.15) of the Kubo formalism derived
in the previous chapter, we obtain for the conductivity tensor

σαβ(ω) = − i

~

∫ ∞
−∞

dt eiω+t

t∫
−∞

dt′
〈

[jα(t), Pβ(t′)]
〉

=
i

ω+
(χTjαjβ − χjαjβ (ω))

(2.4)

where χjαjβ (ω) is the Fourier transform of χjαjβ (t − t′) = −iθ(t − t′)
〈

[jα(t), jβ(t′)]
〉

, while χTjαjβ =

d
〈
jα
〉
/dAβ|Aβ=0 with A being the vector potential. We find that the real part of the conductivity
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tensor is given by

σαβ(ω) = πDαβδ(ω)−
ImχJαJβ (ω)

ω
, (2.5)

where Dαβ = χjαjβ (ω)T − χjαjβ (0) is the Drude conductivity. Thus, the conductivity is defined over
the current-current correlation function. However, we can also express the electrical conductivity by
a density-density correlation function. In order to derive the respective Kubo-formula, the continuity
equation of the particle density has to be applied. The continuity equation describes the particle
conservation and relates the time derivative of the particle density to the divergence of the electrical
current, i. e.,

∂tn(r, t) = −∇r · j(r, t) . (2.6)

The Fourier transform of the continuity equation into momentum and energy space is

ω n(q, ω) = q · j(q, ω) . (2.7)

Upon inserting this expression into the Kubo-formula, we obtain

σαβ(ω, q) = πDαβδ(ω)− Im
ω

qαqβ

∫ ∞
0

dteiω+t
〈
[n(t), n(0)]

〉
= πDαβδ(ω)− ω

qαqβ
Imχρ(q, ω) ,

(2.8)

where χρ(q, ω) is the density-density correlation function. In linear response the electrical conductivity
can either be determined by calculating the current-current correlation function or by evaluating the
density-density correlator and both methods will lead to the same result.

2.3 Scaling behavior of the conductivity

In the remainder of this thesis we want to study the influence of the Coulomb interaction on dif-
ferent transport properties such as the electrical conductivity and the shear viscosity. To this end,
we implement a RG analysis. A detailed discussion of the RG analysis in graphene can be found in
Sec. 4.3.2, while the detailed description of the RG analysis in ADS is given in Sec. 7.2.1. Here, we
briefly summarize the concept behind the RG and discuss the behavior of the conductivity under the
RG. For further details we refer to the corresponding chapters.

In the RG the fermionic operators are split up into fast and slow modes, i. e., ψ̂k = ψ̂<k + ψ̂>k . The

slow modes ψ̂<k = ψ̂k are defined for momentum 0 ≤ k ≤ Λ/b, while the fast modes ψ̂>k are defined in
the momentum integral Λ/b ≤ k ≤ Λ, where the parameter Λ is an UV cut-off. As first step, the fast
modes are integrated out. Then the momentum k′ = bk and the frequency ω′ = Z−1

T ω are rescaled in
such a way that the new variables run up to the old cut-off Λ. During this procedure the transport
properties are also rescaled by a scaling factor.

In this section, we determine the scaling factor of the conductivity for a d dimensional system and
show that the conductivity is scale invariant for two dimensional systems. The conductivity is given,
as we have seen in the previous section, by

σ(ω) = lim
q→0

e2ω

q2
Imχρ(q, ω) . (2.9)
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We find that the scaling of the conductivity is determined by

σ(ω, T ) = ZT b
2ZχρσR(Z−1

T T,Z−1
T ω) , (2.10)

with Zχρ being the scaling factor of the density-density correlation function consisting of Zχρ =
Z2
nZT b

−d. We want to identify the scaling factor Zn for the particle density and the scaling of the
current operator ZJ independent of the order of the RG applied. In an RG analysis up to first loop
order, we find that the current operator scales as

jα(k,Ω) = ZJjα,R(bk, Z−1
T Ω) (2.11)

with ZJ = b. In the following we prove that this scaling relation is correct for every order of the RG.
To this end, we use the Ward-identity. The Ward identity represents the conservation of the charged
particles and is derived from the continuity equation of the particle density, ∂tn(r, t) +∇r · j(r, t) = 0,
following the steps in [40, 41]. It reads

e∂τ

〈
Tτn(r, τ)ψ̂r1,τ1ψ̂

†
r2,τ2

〉
− i∇rα

〈
Tτ jα(r, τ)ψ̂r1,τ1ψ̂

†
r2,τ2

〉
= −ie[δ(d)(r − r1)δ(τ − τ1)− δ(d)(r − r2)δ(τ − τ2)]

〈
ψ̂r1,τ1ψ̂

†
r2,τ2

〉
,

(2.12)

where τ = it is the imaginary time and Tτ is the time-ordering operator. The Ward identity has to
be fulfilled in all orders of the RG analysis and thus all scaling relations derived from this identity are
valid for all orders of the RG. Now we examine the scaling relation of the Ward identity (2.12). To
this end, we Fourier transform the electrical current j(q, ω) and the particle density n(q, ω) to the real
space of a d-dimensional system and obtain the following scaling relations

jα(r, τ) = ZJZT b
−djα,R(r/b, τZT ) ,

n(r, τ) = ZnZT b
−dnR(r/b, τZT ) .

(2.13)

Inserting these relations into the Ward identity, rescaling r → br and τ → τ/ZT (and similarly for r1,
τ1, etc.), yields for the scaling factors

ZJ = b ,

Zn = Z−1
T .

(2.14)

Next these scaling factors are inserted into (2.10) which implies that the conductivity for a d- dimen-
sional system is

σ(ω, T ) = b2−dσR(Z−1
T ω,Z−1

T T ) . (2.15)

For a two dimensional (2D) system, this scaling relation leads to the scale invariance of the conductivity.
Independent of the frequency or temperature scale of the system the conductivity will have the same
value for two dimensional systems.

2.4 Ansatz for Quantum Boltzmann equation

In the hydrodynamic regime, the conductivity can also be determined using the Boltzmann equation.
With the help of the Boltzmann equation, the distribution function of the quasiparticles fλk can

be determined. The distribution function consists of the Fermi-Dirac function f
(0)
λk describing the

14



2.4 Ansatz for Quantum Boltzmann equation

equilibrium distribution and an out-off equilibrium correction δfλk. This out-off equilibrium correction
arising because of the perturbation due to the electrical field defines the electrical current, i. e.,

j =
∑
λ

∫
k

vλkδfλk , (2.16)

where vλk is the velocity of the quasiparticles and λ is the energy band index of the correspond-
ing quasiparticle. In order to determine this out-off equilibrium correction, the Boltzmann equation
needs to be solved. Here, we first study the Boltzmann equation in the relaxation-time approximation
which takes only scattering processes due to impurities into account and scattering processes between
the particles due to the Coulomb interaction are neglected. The scattering processes due to impuri-
ties are characterized by the relaxation time τdis and the Boltzmann equation in the relaxation-time
approximation is (

∂

∂t
+ eE

∂

∂k

)
fλk = −δfλk

τdis
, (2.17)

where δfλk = fλk −
〈
fλk
〉
ϕ

with 〈〉ϕ denoting the angular average over the directions of k of the
distribution function. The momentum derivative of the term proportional to the electrical field can be
rewritten as an energy-derivative times the velocity of the quasiparticle, i. e., ∂/∂k = vλk · ∂/∂ελk and
thus we obtain for the out-off equilibrium correction of the distribution function is given by

δfλk =
1

−iω − τ−1
dis

T−1f
(0)
λk (1− f (0)

λk )vλk ·E (2.18)

which leads to the following electrical current in the relaxation-time approximation

jα =
∑
λ

∫
k
vαλkδfλk

=
∑
λ

∫
k
vαλkv

β
λk

1

−iω − τ−1
dis

T−1f
(0)
λk (1− f (0)

λk )Eβ .

(2.19)

Now we want to generalize the above expression in such a way that we can go beyond the relaxation-
time approximation and are thus also able to take scattering processes due to Coulomb interaction into
account. To this end, we choose for the out-off equilibrium distribution function the following ansatz

δfλk = T−1f
(0)
λk (1− f (0)

λk )hλk (2.20)

with
hλk = vλk ·E gλk . (2.21)

The function hλk is proportional to the scalar product of the velocity vλk and the electrical field E

and the term containing the scattering time τdis is replaced by a by the function gλk =
∑

n ψnφ
(n)
λk ,

where φ
(n)
λk is a set of basis functions weighted by the unknown coefficients ψn. The coefficients ψn

can be calculated by an inversion of the Boltzmann equation. Hence, in the hydrodynamic regime the
conductivity is given by

σαβ =
∑
λ

∫
k
vαλkv

β
λkT

−1f
(0)
λk (1− f (0)

λk )gλk . (2.22)

This expression of the conductivity is used in Chap. 5 and Chap. 8 in order to calculate the conduc-
tivity of graphene and of ADSs.
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3 Chapter 3

Viscosity in lattices with pseudospin

An important transport quantity is the viscosity of a material. The viscosity describes the resistivity
of a system in response to a hydrodynamic flow. In Sec. 3.1, we define this important transport
property and give an intuitive picture of the viscosity before we formalize it. We show in Sec. 3.3
that the viscosity can be calculated using the Kubo-formalism which connects the correlation function
of energy-stress tensors to the viscosity tensor. The energy-stress tensor can be determined by the
time derivative of the strain generators [42]. Thereby, we extent the study of Bradlyn et al. [42] to
lattices with a pseudospin in Sec. 3.2. We demonstrate that an additional strain generator acting on
the pseudospin is needed to obtain the correct energy-stress tensor. In the same section, we also show
how the perturbation of the system due to the gradient of the drift velocity ∂uβ/∂xα is described by an
Hamiltonian, where the velocity gradient couples to the strain generators. This Hamiltonian is used in
Sec. 3.5 to derive the ansatz for the out-off equilibrium correction of the distribution function defined
by the Boltzmann equation. Furthermore, the scaling behavior of the viscosity under a renormalization
group (RG) analysis is determined via a Ward identity in Sec. 3.4. At last the famous lower bound of
the ratio viscosity over entropy η/s is introduced [18] and a physical interpretation of this lower bound
is given.

3.1 Definition of the viscosity

The viscosity of a fluid describes the effect of energy dissipation in a fluid due to internal friction [43].
This energy dissipation occurs, if different particles of the fluid move with different velocities. Here, we
firstly introduce an intuitive picture for the viscosity before we demonstrate how the viscosity modifies
the Euler equation which describes the dynamics of an ideal fluid.

Let us start with the following gedankenexperiment: There are two plates, one is fixed, while the
other one is moving and there is a liquid between the two plates. This situation is depicted in Fig. 3.1.
Due to these boundary conditions (one fixed, one moving plate) a velocity gradient ∂u/∂y is exhibited
in the fluid. Because of interaction, there is an irreversible energy transfer between particles with a
large velocity u(y′) to particles with a small velocity u(y). In order to maintain this velocity gradient,
a shear stress τ = F/A needs to be applied where F is the force acting on the moving plate with the
area A. This force keeps the plate moving. The stronger the force is to obtain the velocity gradient
the more viscous the fluid is. The viscosity η connects the shear stress to the velocity gradient

τ = η
∂u

∂y
. (3.1)
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3 Viscosity in lattices with pseudospin

Figure 3.1: Definition of the viscosity. We see two plates, one is moving, the other one is fixed.
Between the two plates is a fluid with the velocity gradient ∂u/∂y. The stronger the applied force
has to be to maintain the velocity gradient, the more viscous the fluid is.

The viscosity thus describes how resistive a fluid is to an hydrodynamic flow.
Now, we implement the concept of viscosity into the hydrodynamic equations of an ideal, Galilean

invariant fluid. An ideal fluid is described by the Euler equations which are defined as

∂

∂t
(ρuα) = −

∂Παβ

∂xβ
, (3.2)

where ρ is the density of the fluid moving with the velocity u and Παβ is the momentum flux density
tensor. The indices α, β denote the spatial components. This momentum flux density consists of the
pressure P of the system and the product of two velocity components weighted by the density. It reads

Παβ = Pδαβ + ρuαuβ . (3.3)

In order to take the dissipative processes due to internal friction into account, the momentum flux
density of an ideal gas is modified by adding the viscous energy-stress tensor −Tαβ. The form of
this viscous energy-stress tensor is derived in the following. Since the irreversible energy transfer
only occurs, when the particles of the fluid have different velocities, Tαβ should depend only on space
derivatives of the velocity, i. e., ∂uβ/∂xα. Upon assuming the velocity difference to be small, the
energy-stress tensor should also only consist of linear combinations of ∂uβ/∂xα. Hence, in the most
general form, the viscosity is a rank four tensor which relates the velocity gradient ∂uγ/∂xδ to the
viscous part of the energy-stress tensor

Tαβ =
∑
γδ

ηαβγδ
∂uδ
∂xγ

. (3.4)

For rotational invariant systems, the above expression can be simplified such that the energy-stress
tensor only depends on two viscosities, the shear viscosity η and the bulk viscosity ζ, which are both
positive quantities. Thereby, we use the fact that the viscous energy-stress tensor has to vanish when
the fluid is in uniform rotation. In the case of a uniform rotation no internal friction occurs. Thus,
the viscous part of the energy-stress tensor for a rotational symmetric system has the form [43]

Tαβ = η

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2

d
δαβ∇r · u

)
+ ζ δαβ∇r · u , (3.5)

where d is the dimension of the system. The viscosity coefficients for rotational invariant systems obey
the following condition [44]

ηαβγδ = η[δαγδβδ + δαδδβγ −
2

d
δαβδγδ] . (3.6)
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3.2 The strain generator and the energy stress tensor

The shear viscosity of a Galilean invariant system is connected to the non-local conductivity [42, 45],
i. e., σαα(q, ω) ∝ σαα(0, ω) + q2η/(mω)2. Thus, by measuring the non-local conductivity one can gain
experimental access to the viscosity of a Galilean invariant system.

3.2 The strain generator and the energy stress tensor

In this section, we show that the energy-stress tensor can also be derived from strain generators, since
the viscosity denotes the response of a fluid to the time derivative of strain, i. e., the deformation of
the original coordinates of a systems. Furthermore, we demonstrate how a perturbation due to strain
is implemented in the Hamiltonian of the fluid and how we can derive a Kubo formula for the viscosity
using this perturbation. Thereby, we follow the calculation of Bradlyn et al. [42]. However, we are
going to extend their considerations to electron liquids in lattices which have a pseudospin due to a
multi-atomic basis and show how the pseudospin has to be modified accordingly.

This extension is part of my work in collaboration with Daniel E. Sheehy, Boris N. Narozhny, and
Jörg Schmalian which is in preparation to be published [46].

Transformation of the spatial coordinates

Now, let us start with our calculation. The strain acting on the electron fluid is defined as

εγδ(t) =
∂uδ(t)

∂xγ
(3.7)

where u denotes the displacement of the coordinates from their original position. The new coordinates
under the strain εγδ are given by x→ x′ = x+u(x) where the deformation is realized by a homogeneous
but time-dependent invertible d× d matrix Λ(t)

x′ = Λ(t)Tx with Λ(t) = eε(t) . (3.8)

The new volume of the fluid becomes time dependent, i. e., V (t) = Λ(t)V0 where V0 is the volume of
the undeformed system. In the following, we want to express the Hamiltonian given in the displaced
coordinates again by the original coordinates

Ht =

∫
V (t)

d2x′ψ†(x′)ε(p′)ψ(x′)→ Ht =

∫
V0

d2xψ†ε(x)ε

(
p

Λ(t)

)
ψε(x) , (3.9)

where ε(p) is the energy dispersion of the system. To this purpose, the field operators are transformed
as

ψε(x) =
√

det Λ(t)ψ(Λ(t)Tx) , (3.10)

where the factor
√

det Λ(t) ensures the normalization of the field operators, i. e., proper canonical
commutation relations. Next, we want to find a unitary transformation, which fulfills the following
relation

ψε(x) = Uε(t)ψ(x) (3.11)

leading to a Hamiltonian which is completely rewritten in the original coordinates plus an additional
part

δHt = −i

∫
d2xψ†(x)Uε(t)(∂tU

−1
ε )ψ(x) , (3.12)
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3 Viscosity in lattices with pseudospin

which describes how the system couples to the applied strain. In order to determine the unitary
transformation (3.11), we investigate how the fermionic field operators change under the infinitesimal
transformation from ε to ε+ δε. We find

∂

∂εαβ
ψε(x) =

δαβ
2
ψε(x) + x′α

∂

∂x′β
ψε(x) , (3.13)

where in the last step, we took the derivative with respect to the displaced coordinates. But, since we
consider an infinitesimal small change we can set ε to zero and there is no distinction between the two
sets of coordinates. Hence, the strain generators due to a spatial transformation are

Lαβ = ixα
∂

∂xβ
+

i

2
δαβ

= −1

2
{xα, pβ} = −xαpβ +

i

2
δαβ .

(3.14)

Thus, we find for an infinitesimal transformation of the fermion fields

ψε(x) = ψ(x) +
∑
αβ

∂ψε(x)

∂εαβ

∣∣∣∣∣
ε=0

εαβ =
(

1− i
∑
αβ

εαβLαβ
)
ψ(x) (3.15)

which leads to the fact that the unitary transformation is given by

Uε(t) = e−i
∑
αβ εβαLαβ . (3.16)

The strain generators due to the spatial transformation of the coordinates Lαβ fulfill the commutation
relation of the corresponding Lie algebra

[Lαβ,Lγδ] = i(δβγLαδ − δαδLγβ) (3.17)

and the antisymmetric part of Lαβ determines the angular momentum

Lγ = −εαβγLαβ . (3.18)

Here, we have seen that under an applied strain which deforms the spatial coordinates, Lαβ =
−1/2{xα, pβ} generates the unitary transformation which at the end determines the form of the addi-
tional Hamiltonian δHt by (3.12).

Transformation of the pseudospin

Thus far, we only considered the transformation of the coordinates. However, lattices with a basis
consisting of multiple atoms have a pseudospin which we call ”lattice spin” that behaves like a real
angular momentum. One of these lattices is graphene [47] which has a two-atomic basis and whose
Hamiltonian is given by

HDirac = vF

∫
p
ψ̂†p(pxσx + pyσy)ψ̂p , (3.19)

where vF is the Fermi velocity and the Pauli matrices denote the valence and conductance band1. An
important example which demonstrates that the pseudospin of graphene is a real angular momentum

1For a detailed derivation of this Hamiltonian and a far more detailed description of graphene, we refer to Chap. 4.
Further, a detailed discussion of the viscosity in graphene will be presented in Chap. 6.
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3.2 The strain generator and the energy stress tensor

is given by the photon-mediated electron-hole pair production (recombination) in graphene [47]. An
electron with its pseudospin parallel to its momentum in the valence band is lifted into the conductance
band by absorbing a photon and thereby flipping its pseudospin [48]. Another physical quantity that
shows the importance of the pseudospin in graphene is the shear viscosity. This transport quantity is
going to be discussed in more detail in Sec. 6.2.1.

In order to treat the deformation of the liquid consistently, we also have to introduce strain generators
acting in the spin space. Analogous to the strain generator of the spatial coordinates, we define

Sαβ =
i

4
[Sα, Sβ] = −1

2
εαβγSγ = −1

4
εαβγσγ , (3.20)

where in the last line we gave the explicit expression for graphene. The antisymmetric part of this
strain generator determines again the spin/angular momentum (analogous to Lαβ)

Sγ = −εγαβSαβ . (3.21)

The total strain generator acting on both spin and real space is thus given by the sum of the above
introduced generators. It reads

Jαβ = Lαβ + Sαβ . (3.22)

The unitary matrix Uε(t), which describes how the fermionic fields transform under the applied strain,
and which determines also the additional Hamiltonian δHt, has now the form Uε(t) = e−i Tr εβαJαβ .
Hence, we are able to express the influence of the strain on the fluid by the Hamiltonian

Ht =

∫
V0

ddxψ†(x)ε(p)ψ(x)−
∫

ddxψ†(x)
∂εαβ
∂t
Jαβψ(x) , (3.23)

where the first term describes the unperturbed system, while the second term connects the velocity
gradient ∂uβ/∂xα, i. e., the time derivative of the strain tensor, to the total strain generator Jαβ.

The connection between strain generator and energy-stress tensor

As the next step, we have to relate the total strain generator Jαβ to the energy-stress tensor Tαβ,
since the energy-stress tensor is proportional to the viscosity tensor as we have seen in the previous
section. Therefore, the continuity equation of the momentum density gα(x, t) is studied, i. e., gα(x, t) =∫
x ψ̂
†
x,t(−i~∂xα)ψ̂x,t . This continuity equation [49]

∂tgα(x, t) = −∂xβTβα(x, t) (3.24)

sets the time derivative of the momentum density equal to the negative divergence of the energy-stress
tensor Tαβ(x, t). After a Fourier transformation w. r. t. the spatial coordinates, the above continuity
equation is given by

∂tgα(q, t) = −iqβTβα(q, t) . (3.25)

Upon expanding the momentum density g(q, t) for small momentum q, we find

gα(q, t) =

∫
ddxeiq·xgα(x, t) (3.26)

= gα(0, t) + iqβ

∫
ddxψ†(x, t)xβ(−i∂xα)ψ(x, t) + · · · , (3.27)
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3 Viscosity in lattices with pseudospin

and can identify the following formula for the energy-stress tensor

Tαβ = −∂tJαβ
= −i[H,Jαβ] .

(3.28)

The energy-stress tensor is defined as the time derivative of the total strain generator. Here, also
the strain generator Sαβ acting on the spin space is included, since the gradient of an antisymmetric
third-rank tensor can always be added without changing the energy-stress tensor, i. e., Tαβ + ∂xγZβαγ
[50, 51].

The energy stress tensor and the pressure of the system

In this section, we show that in the hydrodynamic regime the non-dissipative part of the energy-stress

tensor Παβ =
∑

λ

∫
k v

α
λkkβf

(0)
λk and the momentum density nαk =

∑
λ

∫
k kαf

(0)
λk can be set into relation

with the pressure P of the system. Here, the distribution function f
(0)
λk for a two-band lattice system

with the energy dispersion ελk where λ is the band index is given by f
(0)
λk = (1 + e(ελk−µλ−u·k)/T )−1.

The pressure can be obtained from the thermodynamic potential Ω = −PV . Hence, in the grand
canonical ensemble, for a two band system we find the pressure

P = T

∫
d2k

(2π)2
log

(
1 + e

−ε+k+u·k+µ+
T

)
+ T

∫
d2k

(2π)2
log

(
1 + e

−|ε−k|−u·k−µ−
T

)
. (3.29)

This expression can be simplified further by integration by parts. Thereby, it is important that for an
energy spectrum ελk and small enough u, the combination ε+k − u · k tends to infinity for k → ±∞
such that the boundary terms of the integration by parts vanish. Thus, we find for the pressure

P =
1

2

∫
d2k

(2π)2
(k · v+k − k · u)f

(0)
+k +

1

2

∫
d2k

(2π)2
(k · v−k − k · u)(f

(0)
−k − 1) , (3.30)

which can also be expressed by the non-dissipative part of the energy-stress tensor and the momentum
density as

P =
1

2
Tr Παβ − nk · u . (3.31)

This formula defining the pressure will become important in Sec. 9.4 where we derive the Navier-Stokes
equation for anisotropic Dirac systems (ADSs) which will also contain the pressure of the system.

3.3 Kubo-Formalism for the viscosity

Now, using the Kubo-formalism let us derive the different expressions defining the viscosity tensor
which connects the velocity gradient to the energy-stress tensor, i. e., Tαβ =

∑
γδ ηαβγδ∂uδ/∂xγ . These

different expressions for the viscosity can also be found in Ref. 42. We have seen in Sec. 3.2, that the
Hamiltonian describing the perturbation due to the velocity gradient is given by

δHt = −
∫

d2x
∑
α

ψ†(x)
∂uβ
∂xα
Jαβψ(x) , (3.32)

where Jαβ is the total strain generator which was also defined in the previously mentioned section.

We can insert this expression into Eq. (1.9) where the expectation value of the operator Âi for the
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3.4 Scaling behavior of the viscosity

perturbed system was evaluated. In this case, Âi is the energy-stress tensor, Âi = Tαβ, and the

operator B̂j coupling to the external perturbation is the total strain generator, B̂j = Jγδ. Hence, we
obtain 〈

Tαβ

〉
t

= − i

~

∞∫
−∞

dt′θ(t− t′)
〈

[Tαβ(t),Jγδ(t′)]
〉 ∂uδ
∂xγ

(3.33)

which leads to the following formula for the real part of the viscosity coefficients

Re ηαβγδ(t) = Im

∫ ∞
−∞

dt′θ(t− t′)
〈

[Tαβ(t),Jγδ(t′)]
〉
. (3.34)

As seen in Sec. 1.1.1, we can also rewrite this formula by applying the Kubo-identity (1.10) and then
integrate by parts which leads to

Re ηαβγδ(ω) =
i

ω+
(χTTαβTγδ − χTαβTγδ(ω)) , (3.35)

where ω+ is the imaginary frequency with ω+ = ω + i0+. The function χTαβTγδ(ω) is the Fourier

transform of the retarded Green’s function χTαβTγδ(t−t′) = −iθ(t−t′)
〈
Tαβ(t), Tγδ(t

′)
〉

while χTTαβTγδ =

d
〈
Tαβ

〉
/dεαβ|εαβ=0 being the isothermal susceptibility. Hence, we find for the real part of the viscosity

tensor

Re ηαβγδ(ω) = πDαβγδδ(ω)−
ImχTαβTγδ

ω
, (3.36)

where Dαβγδ = Dαβγδ(0) − χTTαβTγδ determines the Drude peak of the viscosity. This expression for
the viscosity tensor is used in Sec. 6.2.1 where the shear viscosity of graphene is determined in the
collisionless regime and in Sec. 9.3 where the viscosity tensor of ADSs is calculated.

At last, there is one more expression for the viscosity tensor. Again using Eq. (3.34) and combining
it with the fact that the time derivative of the strain tensor is equal to the energy-stress tensor, i. e.,
Tαβ = −∂tJαβ, we find after an integration by parts (analogous to the one performed in Sec. 1.1.1
form (1.12) to (1.13))

ηαβγδ(ω) = −i
〈

[Jαβ(0),Jγδ(0)]
〉

+ ω+

∫ ∞
0

dteiω+t
〈

[Jαβ(t),Jγδ(0)]
〉
. (3.37)

This formula for the viscosity tensor is used in Sec. 9.2.2 where the scaling factor of different contri-
butions of the viscosity tensor for ADSs is determined via the above expression of the viscosity.

3.4 Scaling behavior of the viscosity

Here, the scaling behavior of the viscosity for a d-dimensional system under a RG calculation is
investigated. Analogous to the analysis of the conductivity in the previous chapter Sec. 2.3, a Ward
identity is used to determine the scaling factor Zη for two-dimensional, renormalized systems.

Let us shortly repeat the very basics of the RG. After integrating out the fast fermionic modes in
the RG process, we obtain an effective theory which has the UV cut-off Λ/b and which only depends
on the slow fermionic modes. Next, the momentum and the frequency are rescaled by k′ = bk and
ω′ = Z−1

T ω in such a way that these new variables run to the old cut-off Λ. In this process also the
viscosity is rescaled.
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3 Viscosity in lattices with pseudospin

As seen in the previous section, the viscosity is defined for finite frequency as the correlation function
of the energy-stress tensors

ηαβγδ(ω) = − Im
χTαβTγδ(ω)

ω
, (3.38)

where the correlation function has the scaling factor ZχTαβTγδ = ZT b
−dZTαβ

2, which depends on the

scaling of the energy-stress tensor ZTαβ . This implies that the scaling factor of the viscosity has the
form

ηαβγδ(ω, T ) = b−dZ2
Tαβ

ηαβγδR(Z−1
T ω,Z−1

T T ) , (3.39)

which means that we have to determine ZTαβ . This is done using the Ward identity describing the
conservation of the momentum density. By applying the continuity equation for the momentum density,
∂tgα(r, t)+∇rβTβα(r, t) = 0, and following the steps described in Refs. 40 and 41 we obtain the Ward
identity

∂τ

〈
Tτgα(r, τ)ψ̂r1,τ1ψ̂

†
r2,τ2

〉
− i∇rβ

〈
TτTβα(r, τ)ψ̂r1,τ1ψ̂

†
r2,τ2

〉
= −i[δ(d)(r − r1)δ(τ − τ1)

〈
(−i∂rα)ψ̂r,τ ψ̂

†
r2,τ2

〉
− δ(d)(r − r2)δ(τ − τ2)

〈
ψ̂r1,τ1(−i∂rα)ψ̂†r,τ

〉
] .

(3.40)

In order to study the scaling of this equation, we Fourier transform the momentum density gα(q, ω)
and the energy-stress tensor Tαβ(q) which enter the above Kubo-formula (3.38) to the real space, and
find the following scaling behavior

gα(r, τ) = ZgZT b
−2gαR(r/b, τZT )

Tβα(r, τ) = ZTαβZT b
−2TβαR(r/b, τZT ) ,

(3.41)

where Zg is the scaling factor of the momentum density in momentum space, and ZTαβ the one of the
energy-stress tensor also in momentum space. Inserting these relations into the Ward identity (3.40),
rescaling r → br and τ → τ/ZT (and similarly for r1, τ1, etc.), the Ward-identity which can also be
applied in the renormalized system implies

Zg = bZ−1
T ,

ZTαβ = b0 = 1 .
(3.42)

When we compare the scaling of the momentum density Zg to the scaling of the particle density Zn
defined in Eq. (2.14), we see that Zg has an additional b factor. Furthermore, we see that the scaling
factor of the energy-stress tensor does neither depend on b nor on ZT , but is one. Hence, we find the
scaling behavior of the viscosity of a renormalized, d-dimensional system with

ηαβγδ(ω, T ) = b−d ηαβγδR(Z−1
T ω,Z−1

T T ) . (3.43)

The viscosity of a two dimensional system is thus not scale invariant, but scales with Zη = b−2.

3.5 Ansatz for out-off equilibrium function in the Boltzmann equation

As we have seen in the previous chapters, transport properties of materials can also be determined
by the Boltzmann equation in the hydrodynamic regime. The Boltzmann equation describes the time
evolution of the distribution function of the particles of the fluid. This distribution function fλk

24



3.5 Ansatz for out-off equilibrium function in the Boltzmann equation

consists of an equilibrium distribution of the fluid f
(0)
λk and an out-off equilibrium correction δfλk,

i. e., fλk = f
(0)
λk + δfλk. The equilibrium distribution function is given by a Fermi-Dirac distribution

function, while the out-off equilibrium correction denoting the response to a perturbation which in the
case of the viscosity the gradient of the drift velocity ∂uβ/∂xα is unknown.

In this section, we derive an ansatz for this out-off equilibrium distribution function from the Hamil-
tonian of a perturbed, two-band system. This Hamiltonian is given by

Ht =

∫
V0

d2xψ̂†xελpψ̂x −
∫

d2xψ̂†xLαβ
∂uβ
∂xα

ψ̂x (3.44)

with Lαβ = −xαpβ + i
2δαβ being the strain generator coupling to a velocity gradient ∂uα/∂xβ. Upon

inserting this definition of the strain tensor into the above equation and applying integration by parts
for the term proportional to −xαpβ and using that the momentum is defined as pβ = −i~∂xα for the
term proportional to δαβ, we find

Ht =

∫
V0

d2xψ̂†x

(
ελp − pβuβ

[
1−

δαβ
2

])
ψ̂x . (3.45)

The energy ελp of the system is modified by the drift velocity u. We can thus write for the distribution
function

fλp =
1

1 + e

(
ελp−pβuβ(1−δαβ/2)

)
/T

+ δfλp , (3.46)

where the energy dispersion ελp of the equilibrium distribution function is replaced by the modified
energy. In leading order of the velocity gradient ∂uα

∂xβ
, we find

∂fλk
∂xβ

= −kα
∂uα
∂xβ

(
−
∂f

(0)
λk

∂ελk

)[
1− δαβ/2

]
. (3.47)

Upon inserting the above expression into the Boltzmann equation, it holds for the Boltzmann equation
in the relaxation-time approximation

∂fλk
∂t

+ vβλkkα

(
1−

δαβ
2

)∂uα
∂xβ

f
(0)
λk (1− f (0)

λk )/T = −δfλk
τdis

, (3.48)

where τdis is the scattering time due to impurities in the system and δfλk = fλk −
〈
fλk
〉
ϕ

with
〈
fλk
〉
ϕ

being the angular average performed over the directions of k. In the following, we take a closer look
at the term proportional to the velocity gradient

(vβλkkα − v
β
λkkαδαβ/2) = (vβλkkα −

∂ελk
∂kα

kα︸ ︷︷ ︸
≈ελk

δαβ/2) . (3.49)

The term proportional to δαβ can again be rewritten as the energy ελk of the unperturbed system.
Using this approximation, we obtain, upon solving the Boltzmann equation (3.48), for the out-off
equilibrium correction in the relaxation-time approximation2

δfλk =
∑
αβ

T−1f
(0)
λk (1− f (0)

λk )

−iω − τ−1
dis

(
vβλkkα − ελkδαβ/2

)∂uα
∂xβ

. (3.50)

2In the relaxation-time approximation, we assume that the energy can only relax via scattering off impurities within
the scattering time τdis and no other processes are taken into account.
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3 Viscosity in lattices with pseudospin

Now, knowing the out-off equilibrium correction, we are able to determine the dissipative part of
energy-stress tensor〈

ταβ

〉
=
∑
λ

∫
k
vαλkkβδfλk

=
∑
λ

∫
k
vαλkkβ

∑
αβ

T−1f
(0)
λk (1− f (0)

λk )

−iω − τ−1
dis

(
vβλkkα − ελkδαβ/2

)∂uα
∂xβ

,

(3.51)

which defines the viscosity tensor in the relaxation-time approximation. When we want to go beyond
the relaxation-time approximation and take also scattering processes due to Coulomb interaction into
account, we generalize the above expression for the out-off equilibrium distribution function to

δfλk =
1

T
f

(0)
λk

(
1− f (0)

λk

)
hλk , (3.52)

with

hλk =
∑
αβ

(
vβλkkα − ελkδαβ/2

)∂uα
∂xβ

gλk
β , (3.53)

where the function gβλk is can be expanded into a set of basis functions which are weighted with

unknown coefficients ψβn , i. e., gβλk =
∑

n ψ
β
nφ

(n)
λ,k.

3.6 The Lower Bound

So far, we defined the viscosity tensor and showed how the viscosity can be determined in different
formalisms. However, we have not introduced a measure for the magnitude of the viscosity, or in
other words: we have no indicator if the determined viscosity is large or not. In the following section,
the ratio viscosity η over entropy density s is introduced for this purpose. We repeat the arguments
of Kovtun, Son, and Starinets [18] and show that there exist a lower bound for the ratio η/s. The
closer the ratio η/s of a fluid is to the lower bound, the more perfect the fluid is. Here, a fluid with
zero viscosity is referred to as an ideal fluid. Most fluids have a ratio of η/s which is larger than the
lower bound, and so far all known condensed matter systems fulfill it. However, there are systems in
cosmology [52–57] and an ultra-cold gas system [58, 59] which violate the lower bound in the second
part of this section.

Furthermore, in the third part of this thesis, we present the up to our knowledge first condensed
matter realization which violates the lower bound of η/s. These systems are the anisotropic Dirac
system (ADS) and the viscosity of these systems and the violation of the lower bound is discussed in
Chap. 9.

3.6.1 Derivation of the lower bound

In order to derive the famous lower bound of the ratio η/s the anti-de Sitter/conformal field the-
ory (AdS/CFT) correspondence is applied. The AdS/CFT correspondence connects the N = 4
super-symmetric Yang-Mills (SYM) theory in the strong coupling, large N limit with a classical ten-
dimensional supergravity theory [60–63].

The idea behind this correspondence is the following. In a type IIB string theory, N black branes are
stacked on top of each other [64]. Black branes are black holes with translationally invariant horizons
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3.6 The Lower Bound

in higher-dimensional gravity theories [18, 65]. The N = 4 SYM is the low-energy theory which lives
on the branes [64] and the typical parameters are the gauge coupling g and the number of colors N .
This theory describes a strongly coupled quark-gluon plasma. For large N the stack of the branes has
a large tension, which curves space-time [64]. In the limit of large ’t Hooft coupling λ = g2N , the
curvature radius of the space-time is large in comparison to the string length, and the string theory
can be reduced to a ten-dimensional supergravity theory [66]. Thus, the physics of a strongly coupled
field theory can also be described by a higher dimensional, classical gravity theory.

As a consequence of the AdS/CFT correspondence, the viscosity η can be calculated by the ab-
sorption cross section σ(ω) of a graviton polarized parallel to the brane which falls in a 90 degrees
angle on the brane. This absorption cross section is defined by the correlation function between two
energy-stress tensors as it is the case for the viscosity tensor, see (3.36). Hence, the absorption cross
section and the viscosity are connected via

σ(ω) =
κ2

ω

∫
dtdx eiωt

〈
Txy(t,x), Txy(0, 0)

〉
= 2κ2η(ω)

(3.54)

where κ =
√

8πG and G is the ten-dimensional gravitational constant [64]. This cross section is
calculated upon linearizing the Einstein’s equations which connects the Einstein tensor describing the
curvature of the space to the energy-stress tensor and thus solving this linearized wave equation.

Furthermore, the entropy of the strongly coupled quantum field theory can also be determined by
the AdS/CFT correspondence, since the entropy of the field theory is equal to entropy of a black brane.
The entropy of a black brane is proportional to the area A of its event horizon [18]

S =
A

4G
. (3.55)

The entropy density s is given by s = a/(4G) with a = A/V . After determining these quantities,
Kovtun et al. [18] find

η

s
≥ 1

4π

~
kB
≈ 6.08× 10−13Ks . (3.56)

The ratio of these two quantities cannot become smaller than the ratio of the reduced Planck constant
and the Boltzmann factor. Naturally the question of the physical meaning of this lower bound arises.
This question can be answered in the following way: The viscosity of a system is proportional to the
transport mean free time of a quasi-particle τ and the energy density nε, i. e., η ∝ τnε, while the
entropy density of the system is proportional to the particle density n and the Boltzmann constant,
i. e., s ∝ kBn. Thus, the ratio of viscosity over entropy is proportional to η/s ∝ k−1

B τnε/n, where nε/n
is the energy per particle. Due to Heisenberg’s uncertainty principle, the product of nε/n and τ cannot
be smaller than ~ and we find the bound condition η/s & ~/kB. Another interpretation can be given
upon taking into account that the ratio viscosity over entropy is also proportional to

η

s
∼
`mfp

λ
, (3.57)

where `mfp is the mean free path of the quasiparticles and λ denotes the de Broglie wavelength [66]. If
the quasi-particle picture is valid, `mfp has to be larger than λ which leads again to the lower bound
for the ratio.

Up till now, all known condensed matter systems fulfill the lower bound. The temperature depen-
dence of the ratio η/s for different fluids such as helium, nitrogen and water can be found in Fig. 3.2,
where we see explicitly that these fluids have a ratio η/s which is well above the lower bound.
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3 Viscosity in lattices with pseudospin

Figure 3.2: The temperature dependence of the ratio η/s for different fluids. The figure was
taken from [18].

3.6.2 Violation of the lower bound

Soon after the introduction of the lower bound to the ratio η/s, some counter examples where found.
These systems are anisotropic black holes where the anisotropy is introduced by higher order deriva-
tive theories of gravity [53–55]. It was shown that when these systems violate the lower bound, the
microcausality in the conformal field theory is violated which makes the theory inconsistent [54].

Another example which violates the lower bound is an anisotropic, strongly coupled N = 4 SYM
where the anisotropy is introduced by an additional parameter which depends linearly on one of the
spatial dimensions [52]. The corresponding gravity theory is given by an anisotropic axion-dilation-
gravity background [52].

The violation of the lower bound can also be found in super-conformal gauge theories with non-
equal central charge [56] and in black branes which break rotational symmetry while preserving the
translational invariance [67].

These are all examples of systems violating the lower bound in cosmology. But, another system
violating the lower bound which is not an anisotropic black hole are the ultra-cold atomic gases in an
anharmonic trap [58, 59]. The interaction between the ultra-cold gases can be tuned via a Feshbach
resonance [68] to the very strong coupling limit. Upon making the trap potential extreme anisotropic,
the ratio η/s can theoretically violate the lower bound.

We have seen that anisotropic black holes and ultra-cold atomic gases in an asymmetric trap can
violate the lower bound. In Chap. 9, we study the first condensed matter system which will violate
the lower bound.

28



3.7 Summary

3.7 Summary

In this chapter, we defined the viscosity tensor which connects the energy-stress tensor to the gradient
of the drift velocity

Tαβ =
∑
γδ

ηαβγδ
∂uδ
∂xγ

. (3.58)

The energy-stress tensor can be derived from the total strain generator Jαβ, i. e., Tαβ = −∂tJαβ. The
strain generator consists of a contribution acting on the spatial coordinates Lαβ = {xα, pβ}/2, while
the other contribution acts on the pseudospin space Sαβ = i[Sα, Sβ]/2. Furthermore, we derived the
Kubo-formula for the viscosity which is given by

ηαβγδ(ω) = πDαβγδδ(ω)−
ImχTαβTγδ

ω
, (3.59)

where χTαβTγδ is the correlation function of two energy-stress tensors and Dαβγδ the corresponding
Drude peak. In the next section, we derived using momentum conservation and the respective Ward
identity the scaling factor of the viscosity under a renormalization group (RG) analysis and found

η(ω, T ) = b−2ηR(Z−1
T ω,Z−1

T T ) . (3.60)

Next, upon determining the viscosity in the hydrodynamic regime with the help of the Boltzmann

equation, we derived the ansatz for the out-off equilibrium contribution δfλk = f
(0)
λk (1 − f (0)

λk )hλk/T
with

hλk =
∑
αβ

(
vβλkkα − ελkδαβ/2

)∂uα
∂xβ

gλk
β . (3.61)

In the last section the famous lower bound of the ratio viscosity over entropy density

η

s
≥ ~

4πkB
(3.62)

was obtained and a physical interpretation was given.
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Part II

Graphene
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4 Chapter 4

Field theoretical description and the
Coulomb interaction

Graphene is a two dimensional material consisting of carbon atoms ordered in a honeycomb lattice. It
is a material with many fascinating properties, such as a high mobility of the charge carriers at room
temperature, a high transmissivity of optical light and its the strongest material in the world [69–71].
Graphene is also the building block of many carbon based crystals due to its high flexibility. If one
rolls graphene up, one obtains the one-dimensional carbon nanotubes, whereas the three dimensional
graphite crystal is build up of many different layers of graphene which are stacked on top of each other.
It was long believed that graphene does not exist on its own due to the the thermodynamical unstable
behavior of two dimensional crystals predicted by Landau and Peierls [70] and manifested further by
Mermin [72]. Nevertheless, it rose the interest to theoretical studies as a building block for graphite.
Already in 1947, Wallace predicted the band structure of graphene [73] and further studies followed by
McClure [74] and Slonczewski [75]. It took almost 60 years untill graphene was experimentally isolated
by Novoselov et al. in the year 2004 [76]. They used mechanical exfoliating techniques, where they
repeatedly peeled different layers from a graphite crystal with the help of an adhesive band until they
isolated a graphene flake. In 2010, Andre Geim and Konstantin Novoselov were awarded the Nobel
Prize in physics for the discovery of graphene.
A further characteristic of graphene lies in its linear, gapless energy dispersion at the Dirac points.
Because of the linear energy dispersion, the quasiparticles of graphene can be described by massless
Dirac fermions, which makes graphene a quasirelativistic system. Hence, we have in graphene a con-
densed matter system that can simulate quantum electrodynamics in 2 + 1 dimensions. The difference
to QED2+1 is that the Dirac fermions of graphene move with the Fermi velocity vF = 1 · 106 m

s [69]
which is approximately 300 times smaller than the speed of light c. The electron-electron Coulomb
interaction can thus be regarded as instantaneous.
The influence of the Coulomb interaction can be found in the hydrodynamic regime of graphene, where
we see the breakdown of the Wiedemann-Franz law [28], a giant magnetodrag [32], and a local nega-
tive resistivity [30]. Further sings of the effect of the Coulomb potential are found in the logarithmic
divergence of the Fermi velocity [6], and angular resolved photoemission spectroscopy [23].

In the first part of this chapter, Sec. 4.1 and Sec. 4.2, we will lay the foundations for a theoretical
description of graphene. Thereby, we will start with the tight-binding description of graphene and
define the most important operators in this description such as the current operator. Further using
the tight-binding model as a starting point, we will derive the relativistic Dirac model. After being able
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4 Field theoretical description and the Coulomb interaction

Figure 4.1: The structure of graphene is a honeycomb lattice spanned by the Bravais lattice
vector a1 and a2. It has a two-atomic basis with the basis vectors v1,2 depicted by the red and
blue color of the carbon atoms. The nearest neighbor vectors are uα = δα + v2 − v1 with the
nearest Bravais lattice vectors δ1 = (0, 0), δ2 = a2, and δ3 = a2.

to describe the non-interacting graphene, we want to pose, in the second part of this chapter, Sec. 4.3,
one of the main questions asked in this thesis: What is the role of the Coulomb interaction acting
on the electrons of the system and how can this influence of the interaction on optical and transport
properties be described theoretically.

4.1 The tight-binding description

Graphene as a two dimensional (2D) crystal consists only of one layer of atoms. Due to the sp2-
hybridization of the s- and p-orbitals of the carbon atoms, graphene has a honeycomb structure. This
structure can be described by a lattice with a two-atomic basis which is generated by the Bravais
lattice vectors Ri = i1a1 + i2a2 with i1, i2 ∈ Z. The primitive vectors have the form

a1 =
a

2

(√
3

3

)
and a2 =

a

2

(
−
√

3
3

)
, (4.1)

where a is the carbon-carbon distance. The two-atomic basis of the lattice is given by the basis vectors
v1,2 where we choose v1 = 0 and v2 =

(
0,−a

)
, and is depicted by the red and blue atoms in Fig. 4.1.

The tight-binding Hamiltonian models the kinetic energy of the electrons hopping from one site to
another site and is defined as

H0,r =
∑

〈Rn,Rm〉
−tnm

(
â†Rn b̂Rm + âRn b̂

†
Rm

)
, (4.2)

where the fermionic operator â†Rn creates an electron at the site
(
Rn,v1

)
and the operator b̂†Rn creates

an atom at the same site
(
Rn,v2

)
, while the operators âRn and b̂Rn annihilate an electron from the
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4.1 The tight-binding description

Figure 4.2: The energy dispersion of graphene is shown. The two energy bands touch at two
points in the first Brillouin zone indicated by the red line. These points are known as Dirac points
and a linear energy spectrum emerges around these points.

respective site. The kinetic energy needed to jump from site (Rn,v1) to the site (Rm,v2) is given
by the hopping matrix element tnm

1. In the following, we will restrict ourselves only to nearest
neighbor hopping and introduce the Fourier transformation ĉRi = 1√

N

∑
k

eikRi ĉk with ĉ ∈ {â, b̂}. The

Hamiltonian of the tight-binding model in momentum space can now be cast into the form

H0 = −t
∑
k

(
a†k b†k

)( 0 hk
h∗k 0

)(
ak
bk

)
, (4.3)

with
hk = 1 + eika1 + eika2 . (4.4)

For our choice of the primitive vectors, we find hk = 1 + 2 cos

(√
3

2 kxa

)
ei 3

2
kya. The energy dispersion

of graphene consists of two energy bands which are given by:

ε±k = ±t|hk| = ±t

√√√√3 + 2 cos
(√

3akx

)
+ 4 cos

(
1

2

√
3akx

)
cos

(
3aky

2

)
. (4.5)

The two energy bands touch at two points in the first Brillouin zone, as can be seen in Fig. 4.2. These

two points are known as Dirac points and are positioned at K± = 2π
3a

(
± 1√

3
, 1

)
. A linear energy

dispersion emerges around these Dirac points and we will derive the Dirac model for graphene in the
next Sec. 4.2. But before we study the Dirac model in more details, we will define different important
quantities of the tight-binding description needed in the remainder of the thesis.

1The braket notation in the summation index should indicate that we do not double count the hopping processes.
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4 Field theoretical description and the Coulomb interaction

One of these quantities is the Matsubara Green’s function which is given by Gk,iω =
(
iω −H0

)−1
and

has the explicit form

Gk,iω =
1

ω2 + t2|hk|2

(
−iω t hk
t h∗k −iω

)
. (4.6)

The other quantity which needs to be defined in the tight-binding description is the electrical current ĵ.
This operator can be derived in two different ways. One way is the well known Peierls substitution [77]
and the other way is the calculation of the time derivative of the polarization operator after Mahan [39].
In the following, we briefly sketch the two approaches that give identical results. Let us first start with
the derivation by Mahan. According to Mahan, the electrical current is defined by the formula

Ĵ = i[H, P̂ ] (4.7)

with the polarization P̂ =
∑

iRini which can be derived using the continuity equation of the particle
density. In our honeycomb lattice with the two-atomic basis, the polarization operator consists of two
parts, one part describing the density of the electrons on the A sublattice and the other part is the
density of the B sublattice, leading to the following expression of the polarization operator

P̂ = −t
∑
i∈Z

[ (
Ri + v1

)
â†Ri âRi +

(
Ri + v2

)
b̂†Ri b̂Ri

]
. (4.8)

After computing the commutator of Eq. (4.7), we find for the current operator

ĴR = −it
∑
i∈Z,α

(
δα + v2 − v1

) (
â†Ri b̂Ri+δα − âRi b̂

†
Ri+δα

)
, (4.9)

with δ1 = 0, δ2 = a1 and δ3 = a2 and the nearest-neighbor vectors uα = δα + v2 − v1.
The same expression can also be obtained by the Peierls substitution [77]. In an electromagnetic
vector potential A the hopping element t gains an additional phase when the electron jumps along
the direction of the nearest-neighbor vector uα to a neighboring site, i. e., t → t eieAuα . Upon
differentiating the modified Hamiltonian with respect to the vector field A, one obtains the electrical
current, i. e.,

ĴR = − ∂H0,r(t→ t eieAuα)

∂A

∣∣∣∣∣
0

, (4.10)

which also leads to Eq. (4.9). The Fourier transform of the current operator is

Ĵq =
∑
k

(
â†k+q b̂†k+q

)
J (k, q)

(
âk
b̂k

)
(4.11)

with

J (k, q) =

(
0 jk+q

j∗k+q 0

)

= − it

~

[
u3

(
0 1
−1 0

)
+ u1

(
0 eik·a1

−ei(k+q)·a1 0

)
+ u2

(
0 eik·a2

−ei(k+q)·a2 0

)]
.

(4.12a)
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4.2 The Dirac model

The different components of the current operator can be rewritten using the function hk in the q → 0
limit. We find for the x-component:

J x(k, q) =

√
3ta

~
sin

(√
3

2
kxa

) 0 ei 3
2
kya

e−i 3
2
kya 0


= − t

~

(
0 ∂kxhk

∂kxh
∗
k 0

)
,

(4.12b)

and for the y-component:

J y(k, q) = − ita

~


0 cos

(√
3

2 kxa

)
ei 3

2
kya − 1

− cos

(√
3

2 kxa

)
e−i 3

2
kya + 1 0


= − t

~

(
0 1

3∂kyhk − a
1
3∂kyh

∗
k + a 0

)
.

(4.12c)

4.2 The Dirac model

In this section, we are going to derive the Dirac-Hamiltonian from the tight-binding description and
study the symmetries of the system. For a more detailed study of the symmetries of graphene, we refer
to Refs. 78 and 79. In the tight-binding description, we have seen that the two energy bands touch

in two points of the first Brillouin zone. These points are the Dirac points K± = 2π
3a

(
± 1√

3
, 1

)
. A

linear dispersion relation emerges around these points. By expanding the function hK±+k, Eq. (4.4),
around these two points we find the Dirac-Hamiltonian2

HD = vF

∫
k


â†K++k

b̂†K++k

b̂†K−+k

â†K−+k


T 

0 kx − iky 0 0
kx + iky 0 0 0

0 0 0 −kx + iky
0 0 −kx − iky 0



âK++k

b̂K++k

b̂K−+k

âK−+k

 , (4.13)

where k is the relative momentum to the Dirac points and vF = 3
2 ta is the Fermi velocity with

vF ' 1 · 106 m
s [69]. This Hamiltonian can be compactly written as:

HD = vF

∫
k

Ψ̂†kτz ⊗
(
kxσx + kyσy

)
Ψ̂k , (4.14)

where the Pauli-matrices σx and σy describe the pseudo-spin which arises due to the two sublattices
of graphene and the Pauli-matrix τz describes the subspace of the two Dirac cones. The system
consisting of two Dirac cones is invariant under spatial inversion P, i. e. HD → PHDP−1 = HD. The

2Note that we interchanged the operators of the A- and B sites for the Dirac point K−.
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spatial inversion exchanges both the A- and B-sublattices as well as the Dirac points and the spinor
transform as [78]

Ψ̂k =


âK++k

b̂K++k

b̂K−+k

âK−+k

 P→ PΨ̂k =


b̂K−−k
âK−−k
âK+−k
b̂K+−k

 , (4.15)

with P = τx ⊗ σ0 and P2 = 1. Here, σ0 is the 2 × 2 unity matrix. The Hamiltonian density HD,k

of Eq. (4.13) has to fulfill the condition PHD,kP = HD,−k, in order to conserve the spatial inversion
symmetry. Another symmetry of the system is the time reversal T which only interchanges the Dirac
points and the spin but nothing else. The spinors transform under time reversal as [78]

Ψ̂k =


âK++k

b̂K++k

b̂K−+k

âK−+k

 T→ T Ψ̂−k =


âK−−k
b̂K−−k
b̂K+−k
âK+−k

 , (4.16)

with T = τx ⊗ σx and T 2 = 1 3. The invariance under time reversal is only fulfilled, if the Hamilto-
nian density obeys the condition T H∗D,kT = HD,−k, which is here the case. We have seen that both
symmetries P and T are only fulfilled upon taking both Dirac cones into account. An other symmetry
of the Eq. (4.13) is the chirality. The chirality operator γ5 can be introduced to the Hamiltonian by
defining the γ-matrices: γ = −iτy ⊗ (σx, σy, σz), γ

0 = τx⊗ σ0, and γ5 = iγ0γ1γ2γ3. Since the chirality
operator commutates with the Hamiltonian, γ5 is a conserved quantum number and its eigenvalues
denote the chirality and we find that the two Dirac cones have the opposite chirality. In this thesis,
the effect of the Coulomb interaction on two different transport quantities, the conductivity σ and the
viscosity η, is studied. However, the Coulomb interaction does not break chiral symmetry of graphene
except for the Hall conductivity. Thus, we can treat the two Dirac cones separately and the Dirac
Hamiltonian of graphene can be described by a 2× 2 matrix

HDirac = Nsv

∫
k

ψ̂†kvF

(
kxσx + kyσy

)
ψ̂k , (4.17)

where Nsv = 4, since we find two possible spin-directions of the electron and two different Dirac cones.
This Hamiltonian describes massless Dirac fermions with the energy dispersion

ελk = λvF~|k| , (4.18)

where λ is the band index with λ = +1 for the conductance and λ = −1 valence band. What still
remains to be done, is to define the Matsubara Green’s function of graphene in the Dirac model. It
holds

Gk,iω = (iω −HDirac)
−1 = − iωσ0 + vFkσ

ω2 +
(
vFk

)2 . (4.19)

The current operator of the Dirac model is derived using the minimal substitution k → k − eA and
taking again the derivative of the modified Hamiltonian with respect to the vector potential A. It is

ĵµ = e

∫
k

ψ̂†kσµψ̂k . (4.20)

3Here, T is the unitary part of the time reversal operator θ = T C with C being the complex conjugation.
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This expression is in agreement with the continuum’s limit of the current operator of Eq. (4.12).

4.3 Coulomb interaction in Graphene

What role plays the Coulomb interaction in graphene? This frequently asked question is studied in
this section. Especially since shortly after the discovery of graphene, many experiments showed no
pronounced signature of the Coulomb interaction. The minimal conductivity in disordered samples [80],
the odd-integer quantum Hall effect in high magnetic fields [3] and the observation of Klein tunneling
through a potential barrier [2] can be explained with a theory of free, noninteracting Dirac fermions.
However, while cleaner samples of graphene become accessible, the influence of the electron-electron
Coulomb interaction was observed in such phenomena as the fractional quantum Hall effect [4, 5],
hydrodynamic behavior [21, 28, 30–32, 34, 81], the logarithmic divergence of the Fermi velocity [6],
and angular resolved photoemission spectroscopy [23]. We want to give an overview of the expected
role of the Coulomb interaction in this section and show how the Coulomb interaction is theoretically
treated in the Wilson RG approach.

4.3.1 The role of Coulomb interaction in Graphene

The repulsive interaction between two equally charged particles is the Coulomb interaction. The
interaction Hamiltonian describing the Coulomb potential of two Dirac fermions is

HC =
1

2

∫
r

∫
r′

ψ̂†rψ̂
†
r′

e2

ε|r − r′|
ψ̂r′ψ̂r , (4.21)

where ε = (ε1 + ε2)/2 is the dielectrical constant which consists of the sum of the two dielectrical
constants of the materials on either side of the graphene sheet. The Fourier transform of the Coulomb
potential is proportional to V (q)3D = 2πe2

ε|q|2 for three dimensional crystals. However, in the two di-

mensional graphene, the fermions live in 2D while the Coulomb interaction still acts in the three
dimensional space, i. e. V (q)3D = 2πe2

ε(q2
⊥+q2

‖)
. Thus, the Coulomb interaction has to be projected to the

two dimensional space of the fermions by integrating out the perpendicular momentum component q⊥.
The Fourier transform of the Coulomb potential for graphene has the form

V (q) =
2πe2

ε|q|
, (4.22)

where the momentum q now lives in the plane of the honeycomb lattice. At the Dirac point, this
Coulomb interaction is not screened because of the vanishing density of charge carriers which will
lead to logarithmic divergent corrections, as we will see in the following section. The strength of the
Coulomb interaction is governed by the coupling constant

α =
e2

ε ~vF
. (4.23)

For vacuum ε = 1, the coupling constant of graphene is α ' 2.2 which is approximately 300 times
larger than the fine structure constant of QED, αQED = 1

137 , whereas for graphene on a SiO2 substrate
with εi ' 3.9 [82], we find α ' 0.79. Hence, the value of the coupling constant can be manipulated
by the substrate on which graphene stands. The influence of the variation of strength of the Coulomb
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4 Field theoretical description and the Coulomb interaction

Figure 4.3: The semi-metal to insulator transition induced by the Coulomb interaction calculated
by Monte Carlo methods.

interaction was studied by Refs. 83, 84, and 85. Upon applying a lattice Monte Carlo method, they
found a phase transition between a semi-metal and an insulator. The critical coupling constant are
at αc = 1.1 for the fermion flavor Nsv = 2 and αc = 1.59 for Nsv = 4 [84]. This phase transition is
depicted in Fig. 4.3. Hence, these lattice Monte Carlo simulations predict that suspended graphene
has a gapped energy spectrum. However, the precise value of αc is expected to depend on microscopic
details such as the regularization scheme used to reach the continuum’s limit. In addition, there
is no experimental evidence that free standing graphene is an insulator and thus we will treat the
coupling constant of graphene as being smaller than the critical coupling constant. Thus, because of
the experimental observation that the Coulomb interaction does not gap the system, the Coulomb
interaction conserves the chiral symmetry.

4.3.2 Wilson RG in Graphene

The renormalization group analysis is a powerful theoretical approach that uses the change of different
observables under scale transformation.

In the high-energy physics context, the logic is as follows: Upon calculating the scattering cross
section of particles with perturbation theory in the coupling constant α, ultraviolet (UV) divergences
were found for the different correction terms, whereas the experiment indicated a finite result. In the
RG-analysis, the UV divergences are regularized by a high-energy cut-off Λ and the coupling constants
are chosen in such a way that they incorporate the cut-off and thus the final physical observable
becomes finite and cut-off independent. That means that for different values of the cut-off one finds
different values of the coupling constant. In high energy physics, it is natural to send the cut-off to
infinity, Λ→∞, at the end of the day.

In condensed-matter physics applications, the situation is a different one. In contrast to high-energy
physics, there is a natural cut-off in the system which is the inverse of the lattice constant, Λ ∝ a−1.
Also we are not interested in the regime of high energy but in a low energy description of the system
which describes long range physics. This means we use RG in a conceptual different way than in high
energy physics. This ”new” RG was first thought about by Kadanoff [86] and Wilson [87, 88]. The
fermionic fields are separated into slow and fast modes, where the slow modes are given by ψ<k = ψk
for 0 < k < Λ/b and the fast modes are ψ>k = ψk for Λ/b < k < Λ. The function b is b = el with l as
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4.3 Coulomb interaction in Graphene

Figure 4.4: The fast modes ψ>k are integrated out and the action is rescaled to the new cut-off
Λ/b→ Λ by introducing rescaled momenta k′ = bk.

the RG flow parameter. Next, fast modes are integrated out and the system is described in terms of
the slow modes with the new cut-off Λ/b. After rescaling the momenta and frequencies of the system,
k′ = bk and ω′ = bω, which now run up to the old cut-off Λ, the only thing which remains to be done,
is to introduce rescaled fields ψ<

b−1k′,b−1ω′
= Zψψk,ω. Fig. 4.4 shows schematically this renormalization

procedure. For a detailed review on the Wilson RG, we refer to Ref. 89.
Now let us focus on the Wilson RG for clean graphene. The action of clean graphene at the charge

neutrality point, i. e., the chemical potential is zero µ = 0, is

S = Nsv

∫
P
ψ̂†P
[
−iωnσ0 + vFσ · p

]
ψ̂P +

∫
Q,P1,P2

2πe2

|q|
ψ̂†P1

ψ̂P1+Qψ̂
†
P2
ψ̂P2−Q , (4.24)

where P is the four-component vector P = (ωn,p) with the Matsubara frequency ωn. Furthermore, it

is
∫
P = T

∑
n

∫ d2p
(2π)2 with T

∑
n

being the Matsubara sum4. The first part of the action describes non-

interacting graphene and the second terms arises due to the Coulomb interaction. For the tree-level
RG, which is the zeroth order in the RG equation, we introduce the rescaled variables

p′ = bp (4.25)

ω′ = bω (4.26)

T ′ = bT . (4.27)

It follows for the rescaled fields that the scaling factor is Zψ = b2. A consequence of this rescaling is
that the Coulomb interaction is marginal for graphene, i. e., it is invariant under the RG flow. This
is a consequence of the fact that the kinetic energy of graphene is of the same order of magnitude as
the Coulomb interaction. Only further orders of the RG equation will decide, whether the Coulomb
interaction is marginal irrelevant or marginal relevant. The next order in the RG-calculation is given
by corrections due to one loop diagrams. The crucial diagram which contributes to the quantum
corrections is the Fock self energy

Σ(k) = −T
∑
n

∫ Λ/b<|k−k′|<Λ

k′

2πe2

|k − k′|
Gk,iω

∼ α

4
vFkσ log b+O

(
k2
)
.

(4.28)

4Let us also introduce the notation
∫
k

=
∫

d2k
(2π)2

for the remainder of this thesis.
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4 Field theoretical description and the Coulomb interaction

The Hartee self energy does not contribute to the quantum corrections because of the overall charge
conservation of the system and is also responsible that the chemical potential is fixed to zero. Fur-
thermore, the Fock self energy contribution is frequency independent which leads to the fact that the
electrical charge e will not be renormalized in the RG-flow. (Only higher order diagrams in the RG
[90, 91] or strong coupling effects [92] will lead to a renormalization of the electrical charge.) The
rescaling factor of the electrical charge Ze is defined over the Ward-identity

Γk = e

(
1− ∂Σ(k, ω)

∂iω

)
= eZe , (4.29)

where Γk is the vertex correction. This relation is derived from the charge conservation of the system.
Thus, the self energy correction renormalizes only the Fermi velocity of graphene:

vF → vF

(
1 +

α

4
log b

)
. (4.30)

A consequence of the renormalization of the Fermi velocity is that the momenta and the frequen-
cies/temperature scale differently. We find for the scaling function Zω = ZT of the temperature T and
the frequency ω

ZT (b) =

(
1 +

α

4
log b

)
b−1 . (4.31)

The renormalized temperature is thus given by T
(
b
)

= Z−1
T T , where T is the initial value at b = 1,

i. e., the physical value of the temperature. We see that with increasing RG flow, the renormalized
temperature increases. The frequency behaves analogous to the temperature. For the rescaled fermionic
fields, the scaling factor is given by Zψ = b Z−1

T . These rescalings also affect the Coulomb interaction.
We find for the coupling constant which determines the strength of the Coulomb interaction the
following flow equation:

dα(b)

d log b
= −1

4
α
(
b
)2
. (4.32)

The solution to this equation is

α(b) =
α

1 + α
4 log b

, (4.33)

where α is again the initial value of the RG flow (i. e., the physical value of the coupling constant).
Thus, as the RG flow increases with increasing b, the coupling constant decreases. Hence, the Coulomb
interaction is a marginal irrelevant interaction in graphene.
As it is shown in Ref. 93, clean graphene is located at a quantum critical point for T = B = µ = n = 0.

(Fig. 4.5 shows the quantum critical phase diagram as a function of the carrier density n and the
temperature T . At T = 0, we see the phase transition from an electron Fermi liquid with a large
circular Fermi surface to an hole Fermi liquid with an equally large circular Fermi surface where the
phase transition is tuned by varying the doping of the system. Using crossover scaling arguments
around the quantum critical point, the behavior of different physical quantities can be predicted. It is

O(T, ω, α) = ZOO(Z−1
T (b)T,Z−1

T (b)ω, α(b)) = ZOOR (4.34)

where O(T, ω, α) is the physical observable, OR the renormalized quantity, and ZO the scaling factor of
the observable. One example for the combination of scaling arguments and RG analysis can be given by
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4.3 Coulomb interaction in Graphene

Figure 4.5: Quantum critical phase diagram of graphene as a function of the carrier density n
and temperature T , for the vacuum case ε = 1 taken from [93].

the electronic compressibility κ−1(T ) of graphene. Hereby, we follow closely the steps of Ref. 93. After
renormalization, one finds for the number of charge carriers per area the following scaling behavior
n(T, µ, α) = b−2nR. Since the compressibility is obtained by differentiating the charge carrier density
with respect to the chemical potential µ, the scaling of the compressibility is given by κ = b−2Z−1

T κR.
The renormalized compressibility is defined in a regime with a small effective coupling constant α(b)
and a high temperature T (b). Since the temperature cannot become larger than T0 = D/kB with
the bandwidth D = ~vFΛ, we find the renormalization condition T (b∗) = T0. Furthermore, the
renormalized high temperature compressibility can be approximated by the free fermion result, i. e.,
κ−1
R ' π(~vF)2/(4kBT0 log 2). This yields

κ−1(T ) =
π(~vF)2

4kBT log 2

(
1 +

α

4
log

T0

T

)2

. (4.35)

In the same manner, the charge carrier dependence of the incompressibility can be found with κ−1(n) =

~vF

√
π

4|n|

(
1 + α

8 log n0
|n|

)
with n0 = Λ2/π. In Fig. 4.5, the experimental data for the dependence of the

inverse compressibility on the charge carrier density measured by Martin et al. [94] is shown. There is
a very good agreement between the experimental data and the theoretical prediction. Another example
for the agreement between the RG prediction and the experiment is the measurement of the Fermi
velocity, see Fig. 4.5. In this experiment [6], Elias et al. measured for differently doped graphene in
a magnetic field B the Shubnikov–de Haas oscillations and deduced from this oscillations the Fermi
velocity. The Fermi velocity shows the logarithmic divergence due to the Coulomb interaction predicted
by the RG calculation. We can conclude that the RG-analysis captures pretty well the influence of the
Coulomb interaction on physical quantities.
In this thesis, we will follow this reasoning, using RG in combination with the scaling behavior of the
physical observable, in several different places.
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4 Field theoretical description and the Coulomb interaction

Figure 4.6: Measured data of the renormalized velocity and inverse compressibility. In panel (a)
the experimentally measured Fermi velocity is depicted and we can observe clearly the logarithmic
divergence of vF. (This figure was taken from Ref. 6). In panel (b), we see the inverse compress-
ibility which is also logarithmically diverging. The data of κ−1 was measured by Martin et al. [94],
while the figure was taken from Ref. 93.
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5 Chapter 5

The conductivity in graphene

One of the most important transport properties in a condensed matter system is the conductivity. It
describes the response of the quasiparticles with an electrical charge to an applied electrical field. In this
chapter, the conductivity of graphene at the charge neutrality point is studied in the hydrodynamic and
in the collisionless regime. The charge neutrality point is characterized by zero chemical potential µ. In
the hydrodynamic regime the shortest time scale is the relaxation time due to collisions, i. e., τ−1 � ω,
and thus collision processes between the electrons determine the physics, whereas in the collisionless
regime the fastest time scale is the excitation frequency of the electrical field, i. e., ω � τ−1, which
leads to the fact that collisions can be neglected. For a more detailed description of the two regimes,
we refer to Chap. 1.

In Sec. 5.1 we start in the hydrodynamic regime. Here, the conductivity of pristine graphene
is proportional to α(T )−2 as was shown by Fritz et al. in Ref. 19 using the Boltzmann equa-
tion. With increasing temperature, the low-frequency conductivity converges to its universal value
σ0(Dirac)disorder = 2

π2
e2

~ , which arises due to disorder in graphene and is determined in the self-
consistent Born approximation, see Ref. 95.

In the remainder of this chapter, we will focus on the collisionless regime. First we will point out
the connection between the optical conductivity and the light transmissivity through graphene and
discuss experimental data of the transmissivity [22]. These data points of the light transmissivity
can be theoretically described already quite well by noninteracting Dirac fermions which raises the
question of the role of the Coulomb interaction in graphene. This question is a frequently and very
controversially discussed question in the literature [7–17]. The course of this discussion is elaborated in
Sec. 5.2.2. The reason for this debate is that the involved Feynman diagrams are each logarithmically
divergent in the Dirac model and need to be regularized. Depending on the regularization scheme
used one finds different answers. In Sec. 5.4, we demonstrate which subtleties have to be considered
upon using the different regularization schemes in the correct way. We also show that dimensional
regularization (DR) in combination with the Wilson renormalization group (RG) analysis leads to a
non-commuting order of limits between the parameter of the dimensionless regularization ε and the
UV cut-off Λ to which we refer to as UV quirk. And we further elaborate Ref. 15 which shows how
DR can be correctly used if it is combined with a continuum field RG.

In the Sec. 5.3, we present a calculation of the optical conductivity of graphene which is independent
of any regularization schemes. This calculation of the optical conductivity is performed in the tight-
binding description. The advantage of the tight-binding model over the Dirac model is the natural
momentum cut-off in the system, which is the inverse lattice constant Λ ∼ a−1.
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5 The conductivity in graphene

To this end, we give a final answer to the question of the importance of the Coulomb interaction
on the optical conductivity in graphene upon presenting a regularization independent calculation and
demonstrate the correct way to apply the different regularization schemes in the Dirac model.

Sec. 5.3 and Sec. 5.4 are based on my work in collaboration with Peter P. Orth, Daniel E. Sheehy
and Jörg Schmalian which is published in Ref. 16.

5.1 ... in the hydrodynamic regime

In this section, we present the results for the conductivity in the hydrodynamic regime (τ−1 � ω)
obtained by Fritz et al. in Ref. 19. In the hydrodynamic regime, the dominating physical processes
are the collisions between the electrons due to Coulomb interaction. In this regime, the method of
choice to determine the conductivity is the quantum Boltzmann equation as already pointed out in
Sec. 1.2. For a more detailed presentation of the quantum Boltzmann equation, we refer to Sec. 1.2.1.
The quantum Boltzmann equation has the form(

∂

∂t
+ eE · ∂

∂k

)
fλk = Iee[fλk] , (5.1)

where E is the electrical field acting on the quasiparticles with the electrical charge e and Iee[fλk] is
the collision integral which originates from the Coulomb interaction. The distribution function fλk
with λ being the band index of the system is parameterized as

fλk = f
(0)
λk + δfλk . (5.2)

Here, f
(0)
λk is the Fermi-Dirac distribution function and δfλk gives the out-of-equilibrium corrections. In

linear response, the out-of-equilibrium correction is δfλk = evλkEf
(0)
λk (1 − f (0)

λk )g(k, λ), where g(k, λ)
can be expanded in a set of basis functions φn(k, λ) which we call the modes of the system, i. e.,
g(k, λ) =

∑
n ψnφn(k, λ) and the velocity of the quasiparticles is given by vλk = λvFk/k. The

function g(k, λ) also determines the conductivity tensor, since it holds σαβ = e2
∫
k

∑
λ v

α
λkv

β
λkf

(0)
λk (1−

f
(0)
λk )g(k, λ) . Next, the collision integral due to Coulomb interaction is to be determined. Due to

momentum and energy conservation, not all scattering processes are allowed1. The authors of Ref. 19
found that the collision integral including the allowed scattering processes is given by

Iee[fλk] = −2π

vF

∫
k

∫
q

[
δ(k − k1 − |k + q|+ |k1 − q|)R1(k,k1, q)

×

(
fλkf−λk1 [1− fλk+q][1− f−λk1−q]− [1− fλk][1− f−λk1 ]fλk+qf−λk1−q

)
+ δ(k + k1 − |k + q| − |k1 − q|)R2(k,k1, q)

×

(
fλkfλk1 [1− fλk+q][1− fλk1−q]− [1− fλk][1− fλk1 ]fλk+qfλk1−q

)]
.

(5.3)

1For example Auger-processes or ionization are forbidden. Furthermore, also scattering processes where the two initial
states are both in the upper energy band and the final states are both in the lower band, and vice versa, are forbidden
due to energy conservation.
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5.1 ... in the hydrodynamic regime

The scattering amplitude R1 corresponds collisions of particles with opposite charge and is defined as

R1 = −

+,i +,i

−,i−,i

2
+,i +,j

−,i

2

−,j

+(N −1)

2

+(N −1)

+,i +,i

−,i−,i

+,i +,i

−,j−,j

, (5.4)

where the additional index i and j indicates the two Dirac cones. The collisions of particles with the
same electrical charge are given by the scattering amplitude R2:

R2 =
1
2

+,i +,i +,i +,i+,i +,i

−

+,i+,i

2

+(N −1)

2

+,j+,j+,i+,i

. (5.5)

Upon linearization, the collision integral is given by

Iee[g(k, λ)] = −2π

vF

∫
k

∫
q

[
δ(k − k1 − |k + q|+ |k1 − q|)R1(k,k1, q)f

(0)
−kf

(0)
+k1

f
(0)
+|k+q|f

(0)
−|k1−q|(

vλkg(k, λ) + v−λk1g(k1,−λ)− vλk+qg(k + q, λ)− v−λk1−qg(k1 − q, λ)
)

+ δ(k + k1 − |k + q| − |k1 − q|)R2(k,k1, q)f
(0)
−kf

(0)
−k1f

(0)
+k+qf

(0)
+k1−q(

vλkg(k, λ) + vλk1g(k1, λ)− vλk+qg(k + q, λ)− vλk1−qg(k1 − q, λ)
)]

.

(5.6)

We find a peculiarity in the collinear scattering limit. The scattering time of nearly collinear particles
diverges, since particles with different energies move with the same velocity vλk = λvF

k
k , due to the

linear energy dispersion. This logarithmic divergence can be seen explicitly in the phase-space density,
e. g., for particle-particle scattering processes proportional to R2. In order to observe the divergence,
let us introduce the momenta k = (k, 0), k1 = (k1, k⊥), and q = (q, q⊥) with k⊥ and q⊥ small. (For
scattering of particles with opposite charge, the logarithmically divergence occurs for anticollinear
collisions since the group velocity depends on λ.) Thus, after expanding in small q⊥, the phase space
density can be written as∫

dk⊥dq⊥δ(k + k1 − |k + q| − |k1 − q|) = 2

√
k1(k + q)(k1 − q)

k

∫
dk⊥
|k⊥|

∝ 2 log

(
1

α

)
,

(5.7)

where the phase-space density is proportional to log(1/α) with α = e2/(~vF) being the coupling
constant. Now the collision integral can be split into a part arising due to (anti-)collinear scattering
and the other one describes the non-collinear scattering, i. e., Iee[g] = Ieenc[g] + Ieec [g]. In the collinear
limit, we find that φ0(k, λ) = const. is a zero mode of the collinear collision integral Ieec . But if we go
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Figure 5.1: Temperature dependence of the dc conductivity in the hydrodynamic regime. The
blue line shows the temperature dependence for the dc conductivity which enters via the renor-
malized coupling constant α(T )−2 [19]. Here, the temperature ranges from T = 0K up to room
temperature for a reasonable cut-off Λ of several eV. The red curve indicates the low-frequency
value of the dc conductivity with disorder obtained by a self-consistent Born approximation [95].

beyond the collinear scattering regime, this mode will have an eigenvalue which is not proportional to
log(1/α) in the limit of small α. Hence, the Boltzmann equation can be cast into the form

α2Ĩeenc[g] + α2 log

(
1

α

)
Ĩeec [g] = ϕ , (5.8)

where ϕ denotes the left-hand side of the Boltzmann equation defined in Eq. (5.1). In order to obtain
the coefficients ψn of the different modes φn(k, λ) which determine the conductivity, we need to invert
the Boltzmann equation. Thus, the conductivity is in first order proportional to α−2 and the higher

corrections in α will be of order
∣∣∣ 1
α2| log(α−1)|

∣∣∣. It is

σ0(T ) =
e2

hα2(T )

[
0.760 +O

(
1

| logα(T )|

)]
(5.9)

with the renormalized coupling constant α(T ) = α/[1 + 1
4α log

(
Λ
T

)
] which can be obtained using the

Wilson RG. For more details of the Wilson RG in graphene we refer to Sec. 4.3.2. The temperature
dependence of the conductivity is shown in Fig. 5.1. The conductivity converges with increasing
temperature to the universal value of the dc conductivity at small frequencies σ = 2

π2
e2

~ which was
obtained in the presence of disorder within a self-consistent Born-approximation [95].

5.2 Transmissivity and optical conductivity

Now we go into the opposite regime of the hydrodynamic one. This regime is the optical regime where
the excitation frequency of the electrical field sets the shortest time scale i. e., ω � τ−1 which leads
to the fact that collision processes can be neglected since they occur on a larger time scale. However,
now being in a different regime, does not stop us from posing the question how the electrons and
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Figure 5.2: Measurement of the transmissivity of light through a graphene sheet. The figure of
panel (a) shows how each layer of graphene absorbs 2.3% of the incident light. In figure (b), the
experimental data for the light transmissivity in dependence of the wavelength of the incident light
is depicted by the red dots. This data is taken from [22]. The green line depicts the theoretical
prediction of the transmissivity using the optical conductivity of non-interacting Dirac fermions.
(Figure (a) and the inset of Figure (b) was taken from [22].)

holes in graphene respond to an electrical field. Hence, in this section, we want to study the optical
conductivity of graphene and the influence of the Coulomb interaction on this transport quantity. The
role of the Coulomb interaction for the optical conductivity is a highly controversial discussed question
[7–17]. In Sec. 5.2.2, we summarize the course of the debate and give some details of the various
methods applied to determine the influence of the Coulomb interaction, before we resolve the dispute
in Sec. 5.3 and Sec. 5.4.

5.2.1 The light transmissivity of graphene

One of the fascinating properties of graphene is that it transmits only 97.7% of incident light although
graphene consists only of one layer of atoms. This was experimentally measured by Nair et al. [22] and
Fig. 5.2 (a) shows a graphene flake upon which light falls. One sees clearly, that graphene absorbs 2.3%
of the incident light and each new layer absorbs the same amount of light (see inset on the Fig. 5.2 (b)).
Furthermore, the transmissivity T (ω) is almost constant for incident light with wavelength in the range
of 480−800 nm, whereas we see a small decrease of the transmissivity for light with smaller wavelengths.
The transmissivity T (ω) is directly related to the optical conductivity σ(ω). The detailed derivation
of this relation can be found in App. A.1. It reads

T (ω) =

(
1 +

σ(ω)

2 cε0

)−2

, (5.10)
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5 The conductivity in graphene

where we assumed a normal incident of p-polarized light to the graphene layer in vacuum2.
On the one hand, the experimental data of the transmissivity can already be explained by the

universal value for the conductivity σ0(Dirac) at high frequencies

σ0(Dirac) =
Nsv

16

e2

~
, (5.11)

with Nsv = 4 taking into account the spin degree of freedom and the two Dirac cones in the first
Brillouin zone. This value for the optical conductivity is obtained by using the Kubo-Formalism at
T = 0 for free Dirac fermions [1] and we can rewrite the formula for the transmissivity as T (ω) = (1 +
π
2αQED)−2 where αQED is αQED = e2/(~c) = 1/137. This theoretical prediction of the transmissivity
using σ0(Dirac) is depicted as the green dashed line in Fig. 5.2 (b). We see that this prediction fits
the data already quite well.

On the other hand, σ0(Dirac) was obtained using free Dirac fermions and therefore, the Coulomb
interaction was not taken into account. We must ask ourself the question, why we do not see the
influence of the Coulomb interaction. What is the reason that already the prediction for non-interacting
Dirac fermions fits the experimental data quite well? And can we find an explanation for the deviation
between theory and experiment for small wavelengths?

These questions are going to be answered in the following sections.

5.2.2 The debate in the literature

In order to answer the question, why we see no large effect of the Coulomb interaction on the opti-
cal conductivity, we will make use of our Wilson renormalization group (RG) analysis introduced in
Sec. 4.3.2. Let me briefly repeat here the flow equation for the coupling constant α and the scaling
function of the frequency Zω. It holds

dα(b)

d log b
= −1

4
α
(
b
)2

and Zω(b) =

(
1 +

α

4
log b

)
b−1 , (5.12)

with b = el and l > 0 being the RG flow parameter. We see that with increasing RG flow, the coupling
constant decreases, while the frequency increases, i. e., ωR → Z−1

ω ω. The RG flow can only run to the
point where the renormalized frequency has the size of the bandwidth D = vFΛ and we obtain the
renormalization condition ωR = D and α(b∗) = α/[1 + α

4 log D
ω ]. Due to the scale invariance of the

conductivity [97], we find

σ(ω, α) = σ(Z−1
ω ω, α(b)) = σ(D,α(b∗)� 1) . (5.13)

The optical conductivity at any given frequency Z−1
ω ω with the corresponding coupling constant α(b)

can also be determined by the value of the optical conductivity where the frequency is equal to the
bandwith D of the energy spectrum of graphene. As we have seen before, the coupling constant is
extremely small in this regime and hence, we can use it as a small parameter to perform perturbation
theory. The optical conductivity σ(ω) can be written as

σ(ω, α) = − ImχJ(ω)

ω

= σ0

(
1 + α(b∗)Cσ +O

(
α(b∗)2

))
,

(5.14)

2Another experiment measuring the optical conductivity can be found in Ref. 96.

50



5.2 Transmissivity and optical conductivity

Figure 5.3: Contributions to the current-current correlation function up to first order in α. Panel

(a) shows the noninteracting current-current correlation function χ
(0)
J (ω). The remaining panels

show the diagrams contributing to first order in α to the current-current correlation function.
Panels (b) and (c) show the self-energy correction to the correlation function and panel (d) the
vertex correction.

where we expanded the current-current correlation function χJ(ω) in the small parameter α(b∗), i. e.,

χJ = χ
(0)
J +χ

(1)
J + · · · with σ(i) = − Imχ

(i)
J /ω. Here, σ0 refers to the conductivity of free Dirac fermions

and Cσ is the correction coefficient of leading-order in α. The conductivity of the free Dirac fermions

σ0 = −[Imχ
(0)
J (ω)]/ω is defined in terms of the current-current correlation function χ

(0)
J (ω) with

χ
(0)
J (ω) =

Nsv

2

∑
µ

∫
dε

2π

∫
d2k

(2π)2
Tr
(
ĵµGk,i(ε+ω)ĵµGk,iε

)
, (5.15)

while the correction coefficient Cσ consists of three contributions: the two self-energy diagrams χ
(1,bc)
J

and the vertex-correction χ
(1,d)
J . They are represented in terms of Feynman diagrams in Fig. 5.3. These

correlation functions are given by the expressions

χ
(1,bc)
J (iω) = −2Nsv

∫
ε,ε′

∫
k,q

V (q) Tr
(
ĵνGk,i(ω+ε)ĵνGk,iεGk+q,iε′Gk,iε

)
= −2Nsv

∫
ε

∫
k

Tr
(
ĵνGk,i(ω+ε)ĵνGk,iεΣ(k)Gk,iε

)
, (5.16)

χ
(1,d)
J (iω) = Nsv

∫
ε,ε′

∫
k,q

V (q) Tr
(
ĵνGk,i(ω+ε)Gk+q,i(ω+ε′)ĵνGk+q,iε′Gk,iε

)
. (5.17)

The three diagrams are individually logarithmically divergent, however, upon adding up the diagrams,
the logarithmic divergences cancel each other and we obtain a finite correction coefficient Cσ which
does not depend on the cut-off. Different groups have approached this problem [7–17], and one finds
three different values for the correction coefficient Cσ in the literature, namely

C̃σ
′
=

25− 6π

12
≈ 0.51 , C̃σ =

22− 19

12
≈ 0.26 , and Cσ =

19− 6π

12
≈ 0.01 . (5.18)
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These different values have been obtained using different regularization methods. However, the value
of the correction coefficient describes the influence of the Coulomb interaction on the optical conduc-
tivity and thus, only one value can be correct. Therefore, it is crucial to determine which regularization
scheme produces the correct result and also to point out where the other regularization schemes go
wrong or where they neglect important subtleties.

First,we demonstrate how it is possible that a hard-momentum cut-off procedure which regularizes
the fermionic degrees of freedom yields a different result than a soft-cut-off acting on the Coulomb
interaction. To this purpose, we study the self-energy and see that the self-energy can be rewritten as
a surface integral and becomes dependent on the parameter ζ. The value of this parameter, determines
which cut-off procedure is applied and hence, one has to find a way which fixes ζ.

But now let us start with a more detailed study of the self-energy. The self-energy is independent
of the frequency and can be written as

Σ(k) = −
∫
ε

∫
q

2πα

|k − q|
Gq,iε = φ(k) k · σ (5.19)

with φ(k) = α2

4πk2

∫
|q|<Λ

1
|k−q|

k·q
q , where the first factor is the Coulomb potential and the second factor

comes from the Green’s function. Next a shift in the integration variable q → q − ζk is introduced
while the cut-off Λ stays fixed. The value of the factor ζ represents which regularization method is
used. The function φ(k) can then be rewritten as

φζ(k) =
α2

4πk2

∫
|q|<Λ

1

|k(1− ζ)− q|
(q + ζk)k

|q + ζk|
, (5.20)

and the self-energy is

Σζ(k) =
α

4
log

(
4Λ
√
e

k

)
k · σ + ζ

α

4
k · σ . (5.21)

Hence, the self-energy becomes dependent on the regularization scheme used and this leads to different
values of the correction coefficient.

On the one hand, according to Eq. (5.20), the integral is regularized by a hard-momentum cut-off

for ζ = 0, i. e., Gq,iε → Gq,iεθ
(
Λ− q

)
. In this case, the self-energy is Σζ=0(k) = α

4 log(4Λ
√
e

k )k ·σ which

produces the value C̃σ
′
.

On the other hand, if ζ = 1, the cut-off is introduced for the Coulomb interaction, i. e., V (q) →
V (q)θ

(
Λ− q

)
. Then the self-energy is given by Σζ=1(k) = α

4 log(4Λ
√
e

k )k ·σ+ α
4k ·σ, which yields the

value Cσ.

At last, the value ζ = 1/2, which would correspond to a mixture of both regularization schemes,
would yield the value C̃σ.

Thus, we have to find a method which fixes ζ. In the following, we give an overview of the discourse
of the debate and thereby introduce a way to fix ζ, but we will also introduce yet other different
approaches yielding one of the three values of the correction coefficient.

In the year 2008, Herbut et al. calculated the correction coefficient Cσ for the first time [7] using

a hard-momentum cut-off and obtained C̃σ
′

= 25−6π
12 ≈ 0.51. However, in the same year, Mishchenko
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5.3 The tight-binding approach to the optical conductivity

determined the correction coefficient by calculating the polarization operator Π(ω, q), i. e. σ(ω) =

lim
q→0

Im e2ω
|q|2 Π(ω, q), and obtained Cσ = 19−6π

12 ≈ 0.01, see Ref. 8. The result is one order of magnitude

smaller than the previous one. The contradiction between the two values was resolved by Sheehy and
Schmalian in Ref. 9. They showed that the hard-momentum cut-off violates the Ward identity (4.29),
which describes the charge conservation. This is due the fact that the hard momentum cut off modifies
the fermionic density of states. Thus, the hard-momentum regularization scheme should not be used
in this case and C̃σ

′
is wrong. Whereas, if the cut-off is at the Coulomb interaction, the Ward-identity

is fulfilled and the value Cσ is found. The parameter ζ is thus fixed by charge conservation. Gazzola et
al. fixed ζ by using the spatial O(2) symmetry which translates to the transversality of the polarization
operator [98] and obtained the same result Cσ. The discussion seemed to be settled.

However, Juricic et al. published a calculation which uses dimensional regularization (DR) and
which does not violate the Ward-identity [10] . Their new value for the correction coefficient was

C̃σ = 22−6π
12 ≈ 0.26, which is by a factor of two smaller than the previous old wrong value C̃σ

′
, but it

still deviates from Cσ.

In 2012 further work was published by Sodemann and Fogler [13] who found Cσ by using a cut-off in
the Coulomb interaction and using the Kubo-formula based on the polarization operator. Teber and
Kotikov also obtained Cσ using DR and a continuum RG, see Ref. 15. A list of the different papers
with their evaluated value of Cσ and the method applied can be found in Tab. 5.1.

The whole discourse over the correction coefficient Cσ has its origin in the fact that the Dirac theory
description has no natural cut-off in its system which leads to the divergent integrals that have to be
regularized. Thus, the cut-off has to be introduced “by hand” and a certain regularization method
needs to be chosen. In contrast, in the tight-binding description, the cut-off comes in naturally. Here,
the cut-off is determined by the lattice constant

√
3a. Furthermore, in contrast to the Dirac model,

the energy-dispersion of the tight-binding description is also finite due to its curvature. Hence, a
calculation of the correction coefficient in the tight-binding model should give the definite answer.

In 2013, Rosenstein et al. claimed that they obtained C̃σ in a tight-binding calculation, see Ref. 14.
They concluded that a proper treatment of the entire energy spectrum of the first Brillouin zone was
needed and that this unexpected behavior is related to a chiral anomaly or due to nonlocal optical
effects [99]. However, the supplemental material suggests that they derived an expression for the
correction coefficient in the tight-binding description but numerically evaluated the coefficient again
in the Dirac approximation. Furthermore, as we are going to show in the next section, they also did
not treat the Coulomb interaction on the lattice correctly.

In the following section, we will present a true lattice calculation of the correction coefficient and
resolve all issues. We do not only determine the correction value, but also answer the question, whether
the correction coefficient is a universal quantity. Or, in other words: Does the correction coefficient
depend on microscopic quantities of the system, such as the ratio of the lattice constant over the width
of the Wannier orbital λ of the carbon atoms?

This work was done in collaboration with Peter P. Orth, Daniel E. Sheehy, and Jörg Schmalian and
can be found in Ref. 16.

5.3 The tight-binding approach to the optical conductivity

In this section, we present a calculation of the optical conductivity and the correction coefficient in
the tight-binding description. This section is based on my work in collaboration with Peter P. Orth,
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Paper Year Method used 25−6π
12

22−6π
12

19−6π
12

Herbut et al. [7] 2008 Hard momentum cut-off ~
Mishchenko [8] 2008 Polarization operator ~
Sheehy et al. [9] 2009 Cut off in the Coulomb-potential & cur-

rent/current correlation fct
~

Juricic et al. [10] 2010 Dimensional regularization & Wilson RG ~
Sodemann et al. [13] 2012 Cut off in the Coulomb-potential & Polar-

ization operator
~

Rosenstein et al. [14] 2013 “Tight-binding”-calculation ~
Gazzola et al. [98] 2013 spatial O(2) symmetry ~
Teber et al. [15] 2014 Dimensional regularization & Continuum

RG
~

Link et al. [16] 2016 Tight-binding calculation & UV-Quirk ~
Boyda et al. [17] 2016 Quantum Monte Carlo ~

Table 5.1: List of the different papers calculating the correction coefficient Cσ.

Daniel E. Sheehy, and Jörg Schmalian, which was published in Ref. 16.
In order to determine Cσ in a lattice calculation, we first study the Coulomb interaction Hamiltonian
and the self-energy in the tight-binding model and answer the question how these quantities depend
on the size of the Wannier orbitals λ of the carbon atoms, see Sec. 5.3.1. In contrast to the Dirac
approximation, the self-energy is not divergent due to the existence of a natural cut-off, i. e. the lattice
constant

√
3a, as can be seen using a real-space analysis.

Furthermore, before we determine the correction coefficient in Sec. 5.3.2, we will see how the curva-
ture of the full energy dispersion influences the non-interacting contribution of the optical conductivity
σ0(TB).

5.3.1 The Coulomb interaction Hamiltonian

The interaction between electrons is described by the Coulomb interaction and the corresponding
contribution to the Hamiltonian is3

HC =
1

2

∫
r

∫
r′

ψ̂†rψ̂
†
r′

e2

|r − r′|
ψ̂r′ψ̂r . (5.22)

The Coulomb interaction acts in the three-dimensional space and thus vectors r, r′ are three-dimensional
real-space position vectors, i. e., r = (ρ, z) with ρ = (x, y). The two-dimensional graphene crystal is
considered to be located in the x− y plane with z = 0. The fermionic field operators are

ψ̂r =
∑
Ri

[
ϕ(r −Ri − v1)âRi

+ ϕ(r −Ri − v2)b̂Ri

]
, (5.23)

where ϕ(r − Ri − v`) are the Wannier pz-orbitals of the sp2-hybridized carbon atoms at the site
(Ri,v`). We assume that the pz-orbitals are localized, or with other words that the overlap between

3Here and in the remainder of this section, we will drop the spin index of the field operators.
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5.3 The tight-binding approach to the optical conductivity

neighboring atoms is small in comparison to the on-site overlap ϕ∗(r −Ri − v`)ϕ(r −Rj − v`′) for
i = j and ` = `′. The density can thus be approximated by

ψ̂†rψ̂r ≈
∑
Ri

[∣∣ϕ(r −Ri − v1)
∣∣2 â†Ri âRi +

∣∣ϕ(r −Ri − v2)
∣∣2 b̂†Ri b̂Ri] . (5.24)

In the following, we will use the notation ĉRi1 = âRi and ĉRi2 = b̂Ri for simplicity. The expression for

the density thus simplifies to ψ̂†rψ̂r =
∑
Ri

∑
`=1,2

∣∣φ(r −Ri − v`)
∣∣2 ĉ†Ri`ĉRi` . Inserting this definition

of the density and the Fourier transform e2

ε|r−r′| =
∫
q

∫ dpz
2π eiq(ρ−ρ′)eipz(z−z′) 4π

ε(q2+p2
z)

into Eq. (5.22), we

obtain

HC =

∫
d3r

∫
d3r′

∫
d2q

(2π)2

∫
dpz
2π

eiq(ρ−ρ′)eipz(z−z′) 4π

ε(q2 + p2
z)

×
∑
Ri,`

∑
Rj ,`′

∣∣φ(r −Ri − v`)
∣∣2 ∣∣∣φ(r′ −Rj − v`′)

∣∣∣2 ĉ†Ri`ĉ†Rj`′ ĉRj`′ ĉRi` . (5.25)

To evaluate the r and r′ integration, we shift the integration variable r → r +Ri + v` and the r′

respectively. This shift in the integration variables gives rise to an additional phase factor eiq·(Ri+v`).
The sum over the lattice vector Ri and Rj implements the lattice Fourier transform of the field
operators ĉRi` =

∑
k

ĉk`e
−ik·Ri . We find:

Hint =
1

2

∫
q

V (q)
∑
`=1,2

∑
`′=1,2

eiq·(v`−v`′ )
∑
k,k′

ĉ†k+q`ĉ
†
k′−q`′ ĉk′`′ ĉk`

=
1

2

∫
q

V (q)
∑
k1,k2

ψ̂†k2−q,kψ̂
†
k1+q,iψ̂k1,jψ̂k2,`Mij(q)Mk`(−q) ,

(5.26)

where the matrix

Mq =

(
eiq·v1 0

0 eiq·v2

)
(5.27)

arises because of the two-atomic basis of graphene. The phase factor described by Mq is responsible
for the convergence of the different contributions to the correction coefficient. The matrix element of
the Coulomb interaction of Eq. (5.26) is

V
(
q
)

=

∫ ∞
−∞

dpz
2π

4πe2
∣∣ρ(q, pz)

∣∣2
ε(q2 + p2

z)
, (5.28)

where ρ
(
q, pz

)
is the electron density of the three-dimensional orbital with ρ(q, pz) =

∫
d3r|ϕ(r)|2ei(qρ+qzz).

Upon using the pz-orbitals with the effective Bohr radius a∗B, one obtains V (q) = 2πe2F(q)/(ε|q|)
with the form factor F(q) = exp(−|q|a∗B) and a∗B ' 0.9 Å [100]. In the following, we will as-
sume that the orbitals are point-like in z-direction, but Gaussian-shaped in the 2D plane, ϕ(r) =

1
λ
√
π

exp[−(x2 + y2)/2λ2]δ(z), which leads to the Coulomb matrix element

V (q) =
2πe2

ε|q|
e−|q|

2λ2/2 . (5.29)
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The size of the Wannier orbitals λ suppresses the Coulomb potential for large values of the q-
momentum, whereas for small q the Coulomb interaction is barely affected by the size of the orbitals.
Hence, the long-range physics is not determined by the orbital size λ. The above expression simplifies
(λ→ 0) for a point-like orbital to V (q) = 2πe2

ε|q| .

Crucial for the remainder of the calculation is that the sums
∑
k,k′ in Eq. (5.26) run only over the

first Brioullin zone, whereas the integral over q goes over the infinite momentum space. This distinction
was ignored in earlier work [14].

The self-energy in the tight-binding description

We have seen in the previous section that the self-energy is logarithmically divergent in the Dirac
approximation. Hence, the cut-off Λ needed to be introduced, which results in Σ(k)Dirac ∝ k ·

σ log

(
4Λ
√
e

k

)
. However, in the tight-binding description, we expect the self-energy to be finite on

its own and no cut-off has to be introduced by hand, in spite of the fact that the Coulomb integration
runs over the infinite momentum space, since the inverse lattice constant 1/(

√
3a) acts as an ultravio-

lett cut-off.
The self-energy of graphene in the tight-binding description is given by

Σ(k) = −
∫
q

V (q)T
∑
ω

M−qGk+q,iωMq . (5.30)

Upon inserting the definition of the Green’s function Eq. (4.6) with Gk,iω =
(
iω −H0

)−1
and hk =

|hk|eiφ(k) into the above expression and after performing the Matsubara sum over the frequency, we
obtain

Σ(k) = −1

2

∫
q

V (q)M−q

(
0 eiφ(k+q)

e−iφ(k+q) 0

)
Mq . (5.31)

For simplicity, in the remainder of the section, we focus on the upper right matrix element of the
self-energy which already describes the whole self-energy, since Σ21(k) = Σ∗12(k), and which is given
by

Σ12(k) = −1

2

∫
q
V (q)ei[φ(k+q)−q(v1−v2)] . (5.32)

The phase factor eiq·(v2−v1) is highly oscillatory for large q and is thus responsible for the convergence
of the self-energy diagram. However, it is numerically very costly to perform the q integration over
the infinite momentum space. A better approach is to analyze the self-energy in real space. Since
the self-energy is lattice periodic, i. e., Σ(k) = Σ(k +G) with G being the reciprocal lattice vector,
the self-energy can be expressed as a function of Bravais-lattice vectors upon applying the Fourier
transform

Σ12(Ri) =
∑
k

Σ12(k)e−ik·Ri . (5.33)

Thus, the Fourier transformation into momentum space of the self energy is given by Σ12(k) =
A
∑
Ri

Σ12(Ri)e
ik·Ri , where A = 3

√
3a2/2 is the area of a unit-cell in real-space. The self-energy

component in real-space, Eq. (5.33), can be determined by shifting the momentum k → k − q, since
the integrand Σ12(k) is periodic in the reciprocal lattice. Σ12(k) is not restricted to the first Brillouin
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zone and can expanded to the whole momentum space, since by adding a reciprocal lattice vectors G
to a momentum in the first Brillouin zone, k→ k+G, every value of the whole momentum space can
be realized. Hence, we find for the self-energy in real-space

Σ12(Ri) = −1

2

∫
q

V (q)eiq·(Ri+v2−v1)F (Ri) (5.34)

with the coefficients
F (Ri) =

∑
k′

ei[φ(k′)−k′·Ri] . (5.35)

Upon inserting the above expression into the Fourier transform into the momentum space, we find
the following expression for the self-energy in momentum space with point-like Wannier orbitals, i. e.,
λ→ 0:

Σ12(k) = −e
2

2ε
A
∑
Ri

eik·Ri 1∣∣Ri + v2 − v1

∣∣F (Ri) . (5.36)

Here, we have exchanged a numerically intensive momentum integration by an infinite sum over Bravais
lattice vectors. We can see explicitly that even for Ri = (0, 0) all summands of the self-energy will be
finite (since the denominator 1

|Ri+v2−v1| never reaches zero). The convergence of the self-energy relies

on the fact that the coefficients F (Ri) decay sufficiently fast as a function of |Ri|, as can bee seen in
Fig. 5.4 (b). If we take the finite size of the Wannier orbitals into account, it holds

Σ12(k) = −e
2

2ε

A

λ

∑
Ri

eik·Ri
√
π

2
e−|Ri+v2−v1|2/(4λ2)I0

∣∣Ri + v2 − v1

∣∣2
4λ2

F (Ri) , (5.37)

where I0(x) is the modified Bessel function of the first kind. In order to calculate the self-energy
diagram in the tight-binding description we used 4.6 × 104 Bravais lattice vectors. The results are
shown in Fig. 5.4 (c), where we see the self-energy for different sizes of the Wannier orbitals. Even for
varying size of the Wannier orbitals, the self-energy does not diverge. Only the slope of the self-energy
shows logarithmically divergent behavior around the Dirac points, as would be expected in the Dirac
approximation. The different sizes of the Wannier orbitals only modify the prefactor of this logarithm.

5.3.2 Optical conductivity

Now, the real part of the optical conductivity is determined via the Kubo formal

σ(ω) = − ImχJ(ω)

ω
, (5.38)

where χJ is the current-current correlation function. As already discussed in the previous sections, we
are interested in the high-frequency regime, where the renormalized coupling constant is small, and use

perturbation theory to expand the correlation function in small α, i. e., χJ(ω) = χ
(0)
J (ω)+χ

(1)
J (ω)+ · · · .

Here, χ
(0)
J is the non-interacting contribution to the optical conductivity, whereas χ

(1)
J is the leading-

order correction in α and consists of the two self-energy diagrams χ
(1,bc)
J and the vertex correction χ

(1,d)
J .

The different contributions to the current-current correlation function relate to the conductivity via

σ(i) = − Imχ
(i)
J (ω)/ω.
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Figure 5.4: The self-energy of graphene in the tight-binding description. Panel (a) shows the
self-energy diagram. In panel (b), the coefficients F (Ri) are plotted as a function of |Ri|/a. They
decrease fast and thus ensure the convergence of the self-energy. This convergence is illustrated in
panel (c), where we show the self-energy around the Dirac point for different sizes of the Wannier
orbitals. Panel (d) shows the slope of the self-energy, and only here we see a logarithmically
divergent behavior as the momentum kxa approaches zero.
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Result for non-interacting electrons

The optical conductivity for non-interacting quasiparticles is determined by the free current-current
correlation function

χ
(0)
J (iω) = −T

2

∑
k,ε,ν

Tr
[
J νk Gk,iεJ νk Gk,i(ε+ω)

]

= −1

2

∑
k,ν

(
hk
∗jν,k − hkj∗ν,k

)2

t |hk|
(

4|hk|2 + ω2/t2
) , (5.39)

where in the last line, we already performed the sum over the Matsubara frequency iε and ν = x, y.
The function hk = 1 + eik·a1 + eik·a2 is the off-diagonal element of the tight-binding Hamiltonian
in momentum space defined in (4.4), while the current operator jy,k = −ita(hk − 3)/2 is defined in
(4.12a), and t denotes the hopping element. Upon analytically continuing iω → ω+ iδ, we find for the
denominator of the correlation function

1

4|hk|2 + ω2
→ P.V.

1

4|hk|2 − ω2
+ i

π

2ω
δ
(
ω − 2|hk|

)
+ i

π

2ω
δ
(
ω + 2|hk|

)
, (5.40)

where P.V. denotes the principal value integral and it is sufficient to study ω > 0 in the following. The
imaginary part of the retarded current-current correlator is thus

Imχ
(0)
J (ω) =

∑
k

(
ta2π

32

)[
18 + 4

∣∣hk∣∣2 + 18

∣∣Rehk
∣∣2 − ∣∣Imhk

∣∣2∣∣hk∣∣2 − 24
∣∣hk∣∣

]
δ

(
|hk| −

ω

2t

)
. (5.41)

The first two terms can be evaluated analytically exact, whereas the remaining terms are going to
be Taylor expanded to order O((ω/t)3) around the Dirac points. Hence, the noninteracting optical
conductivity in the tight-binding description is, setting t = 1,4

σ(ω) =
π

32ω
ρ

(
ω

2

)
(18 + ω2)− 1

8

ω2

36
(5.42)

≈ σ0

(
1 +

1

9
ω2 +O(ω3)

)
(5.43)

with the density of state

ρ(E) =
1

(2π)2

32E
√

1− E
3 K

[
−16E

(E−3)(1+E)3

]
3(3− E)(1 + E)3/2

. (5.44)

Here, K[m] is the complete elliptic integral of the first kind and σ0 = Ns
8
e2

~ is the result for the
non-interacting optical conductivity in the Dirac approximation. (The factor Ns = 2 arises because
our fermions have a spin degree of freedom. The valley degree of freedom was already taken into
account by the tight-binding calculation.) As shown in Fig. 5.5, the Dirac approximation is valid for
ω � t and breaks down close to the van Hove singularity at ω = 2t, where the optical conductivity
increases proportional to ω2. This effect of the curvature of the energy spectrum can also be seen

4The frequencies are now measured in units of the hopping element.
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Figure 5.5: Conductivity σ0(ω) for noninteracting electrons in the tight-binding approximation

with only nearest-neighbor interaction. For small frequencies, the Dirac approximation σ0(0) = 1
4
e2

~
is valid, whereas it breaks down at the van Hove singularity at ω = 2t.

in the experimental data of the light transmissivity of graphene, which decreases for increasing light
frequency.
We want to emphasize that our results differ from previously reported ones [22, 101]. This is of
tremendous importance for the prediction of the light transmissivity which differs more strongly from
the non-interacting Dirac limit than previously reported. The transmissivity will decrease faster for
decreasing wavelength as was predicted by Stauber et al. [101]. The detailed calculation of the non-
interacting optical conductivity can be found in App. A.2.1.

Interaction corrections to the optical conductivity

The correction coefficient Cσ is determined by three diagrams: the two self-energy diagrams (diagram
(b) and (c) in Fig. 5.3) and the vertex correction (diagram (d) shown in Fig. 5.3). The corresponding
current-current correlation functions are

χ
(1,bc)
J (iω) = −T 2

∑
kεε′ν

∫
d2q

(2π)2
V (q)Tr

(
J νk Gk,i(ω+ε)J νk Gk,iεMqGk+q,iε′M−qGk,iε

)
(5.45)

χ
(1,d)
J (iω) =

T 2

2

∑
kεε′ν

∫
d2q

(2π)2
V (q)Tr

(
J νk Gk,i(ω+ε)MqGk+q,i(ω+ε′)J νk Gk+q,iε′M−qGk,iε

)
. (5.46)

In order to evaluate these expressions, we will implement a crucial simplification: we rewrite these
integrals in such a way that the q integral can be done analytically. Therefore, we will evaluate the
diagrams by going to real-space and re-express them as sums over Bravais lattice vectors.

In the following, we roughly sketch how the diagrams are evaluated. For a detailed version of the
calculation, we refer to App. A.2.2.

Let us start with the two self-energy diagrams. After the frequency integration, the self-energy
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5.3 The tight-binding approach to the optical conductivity

diagrams can be cast into the form

χ
(1,bc)
J (iΩ) = −

∑
k

1

4|hk|2

[
D1(k)

4|hk|2 + Ω2
+D2(k)

4|hk|2 − Ω2(
4|hk|2 + Ω2

)2

]
, (5.47)

where D1(k) and D2(k) are functions of combinations of hk, Σ12(k) and jk. The explicit expression can
be found in App. A.2.2. The analytical continuation iΩ→ ω + iδ can be performed, using Eq. (5.40)
for the term proportional to D1(p), and

4|hk|2 − Ω2(
4|hk|2 + Ω2

)2 →
d

dω

ω

4|hk|

[
1

2|hk|+ ω + iδ
+

1

2|hk| − ω − iδ

]
(5.48)

for the term proportional to D2(k). After taking the imaginary part of the current-current correlation
function and assuming ω > 0, it holds

Imχ
(1,bc)
J (iΩ) = −π

∑
k

1

16|hk|4
D1(k)δ(ω − 2|hk|)− π

d

dω

∑
k

ω

16|hk|2
D2(k)δ(ω − 2|hk|) . (5.49)

To evaluate this term, we determine Σ12(k) for k within the first Brillouin zone by evaluating the sum
over 4.6× 104 Bravais lattice vectors. What then remains to be done is to perform the k integration,
which is pinned to equal energy contours around the Dirac points, due to the δ-functions.

Now let us turn our attention to the vertex correction. The current-current correlation function can
be written even more compactly by introducing the quantity

Iµ(k, iΩ) =

∫
dω

2π
Gk,iωJ µk Gk,i(ω−Ω) =

1

|hk|(4|hk|2 + Ω2)
Vµ(k,Ω) , (5.50)

where Vµ(k, ω) is a matrix whose matrix elements depend on the functions hk, and jk. (For the exact
definitions, we again refer to the App. A.2.2.) Hence, after performing the frequency integration, the
correlation function is given by the expression

χ
(1,d)
J =

∑
k

1

|hk|(4|hk|2 + Ω2)
Tr
[
Vµ(k,Ω)Qµ(k,−Ω)

]
(5.51)

with

Qµ(k,−Ω) ≡
∫
q

V (q)
M−qVµ(k + q,−Ω)Mq

|hk+q|(4|hk+q|2 + Ω2)
. (5.52)

Analogous to the self-energy, we rewrite Qµ(k,−Ω) as a sum over Bravais lattice vectors by applying
the Fourier transform, i. e., Qµ(k,−Ω) = A

∑
Ri
Qµ(Ri,−Ω)eik·Ri . Here again, the matrix Mq ensures

the convergence for the q-integration. After analytical continuation, we find for the retarded correlator:

χ
(1,d)
J (ω) = −e2A

∑
µ=x,y

∑
Ri

∑
k,k′

ei(k−k′)·Ri [hkj
∗
µ,k − h∗kjµ,k][hk′j

∗
µ,k′ − h

∗
k′jµ,k′ ]

×

[
ω2

2|Ri|
+

h∗khk′

|Ri − aŷ|
+

hkhk′
∗

|Ri + aŷ|

]
π

2ω
δ(ω − 2|hk|)

1

|hk||hk′ |
P.V.

1

4|hk′ |2 − ω2
.

(5.53)
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Figure 5.6: In panel (a), the self-energy σ(1,bc) and vertex-correction σ(1,d) contribution to the
frequency-dependent conductivity, normalized to σ0α.
In panel (b), the red dots depict our results for the interaction coefficient as a function of the
frequency ω/D, where D = 6t is the bandwidth of graphene. They are clearly in agreement with
the analytical prediction Cσ = 19−6π

22 . The inset shows the dependence of the correction coefficient
on the size of the Wannier orbitals for ω/D = 0.015. The correction coefficient is independent of
λ and thus universal.

To evaluate this expression, we numerically evaluate the integrations over the first Brillouin zone and
sum over all Bravais lattice vector Ri. The above formula is deduced from point-like Wannier orbitals.

Upon substituting the expression 1
|Ri−aŷ| by

√
π
2

1
λI0( |Ri−aŷ|

2

4λ2 )e−|Ri−aŷ|
2/(4λ2) and analogously for 1

Ri

and 1
|Ri+aŷ| , Eq. (5.53) can be extended to Wannier orbitals with finite size λ.

Both contributions, the two self-energy diagrams and the vertex diagram, diverge logarithmically in
the low-frequency limit ω/D → 0, where D = 6t is the bandwidth of graphene. This can be seen in
Fig. 5.6 (a), where the different contributions to the conductivity (normalized to σ0α) are depicted as
a function of the frequency. Upon adding up the self-energy and the vertex contribution, the value of
the correction coefficient is determined by

σ(1) = σ(1,bc) + σ(1,d) = σ0α
(
Cσbc + Cσd

)
= σ0αCσ . (5.54)

In Fig. 5.6 (b), the correction coefficients determined by our tight-binging calculation (red dots) are
shown as a function of the frequency of the incoming light. Our numerical values of the correction
coefficient are in very good agreement with the analytical value Cσ = 19−6π

12 and clearly rules out

C̃σ = 22−6π
12 . Furthermore, we are able to study the possible dependence of the correction coefficient on

the size of the Wannier orbitals λ. The inset in Fig. 5.6(b) shows the calculated values of the correction
coefficient for different sizes of the Wannier orbitals at ω/D = 0.015. No dependence of the correction
coefficient on the size of the Wannier orbitals can be observed. Hence, the correction coefficient

Cσ =
19− 6π

22
(5.55)

is universal, i. e., it neither depends on the frequency nor on the size of the Wannier orbitals.
Now let us compare the results of our tight-binding calculation to the experimental data of the
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Figure 5.7: Optical transmission through graphene as a function of the wavelength λω.
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light transmissivity through graphene T (λω), which were measured by Nair et al. [22]. Upon relating
our frequency-dependent result of the non-interacting optical conductivity to the wavelength of the
incoming light by λω = 2πc/ω, we find different theoretical predictions for the transmissivity. These
predictions are shown as different curves in Fig. 5.7. As we have already seen at the beginning of
this section, the prediction obtained using free Dirac fermions σ0(Dirac) (green, dashed line) does
not capture the decrease of the transmissivity for smaller wavelengths. However, already the non-
interacting conductivity of the tight-binding model σ0(TB) (red, dashed curve) describes this decrease
quite well, since it takes into account the nonlinearity of the energy spectrum and the resulting parabolic
increase of the conductivity with increasing frequency.

Finally, we want to answer the question “what role plays the Coulomb interaction in graphene”.
Therefore, we include the corrections to the non-interacting part of the optical conductivity which
are proportional to σ0(TB)α(λω)Cσ. The incorrect value of the correction coefficient C̃σ strongly
decreases the transmissivity (blue, dashed line) and is not in agreement with the experimental data.
However, our value of the correction coefficient Cσ only introduces a small shift of the non-interacting
optical conductivity in the tight-binding description (red, full line) which is in full agreement with the
experimental data. In conclusion, we do not see any big influence of the Coulomb interaction on the
optical conductivity, since the correction coefficient is small by chance.

5.4 Field theoretical approach in the Dirac limit

In this section, we reconcile the result C̃σ = 22−6π
12 obtained by Juricic, Vafek and Herbut (JVH) from

the dimensional regularization (DR) scheme [10] combined with the Wilson-renormalization group
(RG) analysis with our result Cσ = 19−6π

12 obtained in the tight-binding calculation.
To this end, we first present a DR scheme combined with the modified minimal subtraction MS

scheme (a continuum RG) as was published by Teber and Kotikov (TK) in Ref. 15. Determining the
two self-energy diagrams and the vertex correction in the DR scheme, TK also find C̃σ which was
previously obtained by JHV. However, upon combining this result of the DR with the MS scheme,
counter terms canceling the divergences are introduced which lead to a renormalization of the bare
bubble diagram. This renormalization will fix the value of the correction coefficient to Cσ. In the first
part of the section, we elaborate this calculation in detail and confirm the TK results.

In the second part of the section, we present how the DR scheme is correctly implemented in the
context of Wilson-momentum RG analysis. We show that upon calculating the correction coefficient
in d = 2 − ε with an ultraviolet momentum cut-off Λ, a UV quirk arises, i. e., the limits of Λ → ∞
and ε→ 0 do not commute. By describing Mishchenko’s approach, where he used the density-density
correlator χρ to calculate the correction coefficient [8], we will locate the origin of the UV quirk at the
self-energy of the Dirac model.

This section is based again on my work in collaboration with Peter P. Orth, Daniel E. Sheehy and
Jörg Schmalian published in Ref. 16.

5.4.1 Continuum renormalization group and modified minimal subtraction MS
scheme

Here, we demonstrate how the DR scheme produces the correct value of the correction coefficient by
combining it with a continuum-field RG. Thereby, we follow closely Teber and Kotikov [15] and give a
more detailed presentation of the calculation. The difference between Wilson RG and the modified min-
imal subtraction scheme MS is emphasized. In contrast to the Wilson RG, no UV momentum cut-off
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5.4 Field theoretical approach in the Dirac limit

Λ is introduced in the MS scheme. Here, a physical energy scale µ renders the in 1/ε diverging observ-
ables finite, where ε is the parameter of the DR. As shown by JVH and TK, the self-energy diagram
and the vertex correction yield C̃σ = 22−6π

12 in the dimensional-regularization scheme. However, TK
realized that the theory is divergent and needs to be be regularized by the continuum-renormalization
group analysis. This is done by introducing counter terms, which remove the divergences. After the
regularization procedure, we obtain the correction value Cσ = 19−6π

12 .
Let us start with the action of graphene

S =

∫
dτ

∫
ddxψ̂†0

(
∂τ + ie0A

0
0 + vF0(−i∇ · σ)

)
ψ̂0 +

∫
dτ

∫
ddγx(∂xA

0
0)2 , (5.56)

where d = 2− ε is the spatial dimension of the electronic degrees of freedom while for the gauge fields
Aν0 ≡ A0 with ν ∈ {τ, x, y} it is dγ = 3. The subscript “0” denotes the bare physical quantities, such

as the bare fermionic fields ψ̂ and the gauge fields A0 which mediate the Coulomb potential

V (q) =
2πe2

|q|

r−ε0 πε/2 Γ
(

1
2

)
Γ
(

1−ε
2

) , (5.57)

where the length scale r0 is introduced in such a way that the Coulomb potential has the correct units
in d = 2− ε dimensions. This action yields physical observables which are divergent in the limit ε→ 0.
One of these quantities is the self energy

Σ(p) = φ(p) vFp · σ = α0

22ε−3 Γ
(
ε
2

)
Γ
(

1− ε
2

) (r0p)
−ε vFp · σ . (5.58)

The self-energy is divergent in the limit ε→ 0, since it is proportional to 1/ε, as can be seen explicitly
by expanding the function φ(p)

φ(p) ≈ α0

4ε
+
α0

4

(
log(4)− log(pr0)− γ

)
. (5.59)

In order to render the theory finite, we introduce renormalized quantities, i. e., ψ0 =
√
ZψψR, A0 =√

ZAAR, vF0 = ZvvFR and e0 = ZeeR, which leads to the following renormalized Lagrangian density

LR = Zψ ψ̂
†
R∂τ ψ̂R + ie0

√
ZAZψ ψ̂

†
RA

0
Rψ̂R + ZvZψ vFRψ̂

†
R(−i∇ · σ)ψ̂R + ZA

(
∂xA

0
R

)2
. (5.60)

Next, counter terms are introduced by parameterizing the scaling factors with Zi → 1+δi. The counter
terms δi are chosen in such a way that they cancel the divergences of the system. In the renormalized
self-energy, the following counter terms occur

Σ(p)R ∼ φR(p) vFRp · σ + δv vFRp · σ + δψ
(
iΩ + vFRpσ

)
. (5.61)

Due to the self-energy being frequency independent, the counter term of the fermionic fields is zero,
δψ = 0, which leads to the scaling factor Zψ = 1. However, the velocity counter term must cancel the
divergence of the self-energy, which yields

δv = −αR
4

1

ε
→ Zv =

(
1− αR

4ε

)
. (5.62)
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To obtain a finite physical quantity, we the modified minimal subtraction MS scheme to the self-
energy. In the MS scheme, a physical energy scale µ is introduced in such a way that the physical
observable becomes dimensionless and the divergence is removed [41]. Hence, the divergence 1/ε will
be substituted by a logarithm depending on the physical scale µ

1

ε
→ log

(
µ/ω

)
. (5.63)

Thus upon applying the MS scheme to the self-energy, we find

φ(p) =
αR
4

1

ε
+
αR
4

(
log(4)− log(pr0)− γ

)
→ −αR

4
log

(
pr0

µ̃/ω

)
(5.64)

with µ̃ = 4e−γµ. Here, let us stress the difference of this continuum-field RG to the Wilson momentum
RG: In the Wilson RG, due to the UV momentum cut-off Λ, the self-energy does not diverge but
depends logarithmically on Λ. In the DR scheme, the self-energy is divergent, as seen above, and only
introducing the physical scale µ (using a continuum RG) renders the quantity finite.

Now, let us focus again on the remaining physical observables, the Fermi velocity and the coupling
constant, and see how these quantities are rendered finite. Firstly, the dependence of the electrical
charge on the physical scale is studied. The electrical charge stays unrenormalized in graphene, i. e.,
Ze = 1. The dimensionality of the electrical charge is [e] = ε, which can be deduced from the fact that
the action is a dimensionless quantity and the dimension of the fermionic fields are [ψ0] = d/2 and the
bosonic fields are [Aν0 ] = 1− ε. Thus, in order to have a dimensionless electrical charge, we introduce
again the physical scale µ and obtain for the electrical charge the following dependence on µ

e2
0

µ2ε
= e2(µ)Ze ⇔ e2

0 =
e2(µ)

4ε
e2γεµ̃2ε ⇔ e2(µ) = e2

04εe−2γεµ̃−2ε . (5.65)

For the Fermi velocity, vF0 = ZvvFR, we find the following renormalization using the counter term δv
defined in Eq. (5.62)

vF0 =

[
1− α(µ)

4ε

]
vF(µ)⇔ vF(µ) =

4εvF0

4ε− α(µ)
. (5.66)

Upon combining the Eq. (5.65) and Eq. (5.66), the coupling constant can be rewritten as

α(µ) =
e2(µ)

vF(µ)
=

α04εe−2γεµ̃−2ε

1 + α0
4

1
ε4
εe−2γεµ̃−2ε

→ α(µ) =
α0

1 + α0
4 log

(
µ
ω

) , (5.67)

where in the last step, we again applied the MS scheme, substituting 1/ε by log
(
µ/ω

)
, and took the

limit ε→ 0. Analogously, we find for the velocity

vF0 = vF(µ)− 1

4ε
e2(µ)⇔ vF(µ) = vF0 +

1

4ε
e2

04εe−2γεµ̃−2ε → vF(µ) = vF0 +
e2

0

4
log

(
µ

ω

)
. (5.68)

Now, we are able to study the noninteracting conductivity of Dirac fermions in d = 2− ε dimensions.
The unrenormalized optical conductivity is given by

σ0,0(ω) = e2
0NsvAε

∣∣∣∣v0

ω

∣∣∣∣ε , (5.69)
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with

Aε = 4−2+επε/2
(1− ε)

Γ
(

1− ε
2

) . (5.70)

In order to obtain a theory which does not have any divergences, we have to express the above
expression by the renormalized physical quantities. This procedure gives us the following expression

σ0,R(ω) =
e2(µ)

4ε
e2γεµ̃2εNsvAε

∣∣∣∣∣∣∣
(

1− α(µ)
4ε

)
vR

ω

∣∣∣∣∣∣∣
ε

. (5.71)

Since there exists a regime where the coupling constant is small, as can be seen in Eq. (5.67), we can
expand the following expression in small α(µ) and obtain(

1− α(µ)

4ε

)ε
≈ 1− α(µ)

4
. (5.72)

After inserting this approximation into Eq. (5.71) and taking the limit ε → 0, the noninteracting
conductivity is given by

σ0(ω) =
Nsv

16

e2
0

~

(
1− α(ω)

4

)
, (5.73)

where σ0(Dirac) = Nsv
16

e20
~ is the universal value of the optical conductivity for noninteracting Dirac

fermions. Upon combining this frequency dependence of σ0(ω) with the value of the correction coeffi-
cient C̃σ obtained in DR, we find

σ(ω) = σ0(Dirac)

(
1− α(ω)

4
+ C̃σ α(ω)

)
= σ0(Dirac)

(
1 + Cσ α(ω)

)
. (5.74)

Thus, at the end of the continuum RG procedure, the correction coefficient is Cσ = 19−6π
12 . The addi-

tional term associated with
(
−α(ω)

4

)
in the noninteracting conductivity arising due to the continuum

RG, corrects the value C̃σ of the dimensional regularization scheme. Hence, if no UV cut-off Λ is intro-
duced to the system and the diagrams are regularized only by DR, one has to combine this DR-scheme
with a continuum-field RG and not with a Wilson RG. Only by applying the continuum RG, divergent
physical observables will become finite.

5.4.2 Wilson momentum-shell RG combined with dimensional regularization

In this section, we combine the Wilson RG and the DR scheme and demonstrate how the correct value
of the correction coefficient Cσ is obtained in the combination of DR and Wilson RG. To this end, the
optical conductivity is calculated in d = 2 − ε dimensions and an ultraviolet momentum cut-off Λ is
introduced. In d = 2− ε dimensions, the flow equation of the Wilson RG for the coupling constant α
and the scaling factor ZT will become ε-dependent and we find

α(b) =
4εαbε

4ε+ α
(
bε − 1

) and ZT (b) =
4ε+ α

(
bε − 1

)
4εb

, (5.75)
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with b = el and l > 0. Furthermore, we will identify which integral is responsible for obtaining the
different values of the interaction coefficient via the Mishchenko’s approach, where the conductivity is
determined by the density-density correlator. With the help of this integral, we can demonstrate how
the DR obtains C̃σ, where on the first glance only log Λ is substituted by 1/ε. Finally, we show that
the limits λ→∞ and ε→ 0 do not commute, a phenomenon which we call the UV quirk. Only when
the UV cut-off is send to infinity at the very last step of the calculation, we obtain Cσ. Hence, we find
for the conductivity

σ(ω, α) = lim
Λ→∞

lim
ε→0

bεσ(Z−1
T ω, α(b),Λ) . (5.76)

Conductivity via Mishchenko’s approach

Let us now identify the origin of the different values of the interaction coefficient by studying the
optical conductivity in the Mishchenko approach. The optical conductivity is determined by the
density-density correlation function χρ via

σ(ω) = lim
q→0

ω

q2
Imχρ(q, ω) . (5.77)

The bare bubble diagram, describing the noninteracting contribution to the optical conductivity, yields

χ
(0)
ρ (q, ω) = Nsv

16
ω2√

ω2−|q|2
e2

~ which simplifies to the well known σ0(Dirac) = Nsv
16

e2

~ in the limit q → 0.

The self energy is given, as already seen in Eq. (5.19), by

Σ(k) = −
∫
ε

∫
q

2πα

|q|
Gq+k,iε =

α

4
log

(
4Λ
√
e

k

)
k · σ , (5.78)

where Λ is the UV cut-off which restricts the q-momentum of the Coulomb interaction to a finite value.
The density-density correlator describing the correction due to the self-energy is

χ(1,bc)
ρ (q, ω) = T

∑
ε

∫
k

Tr
[
Gk,iεΣ(k)Gk,iεGk+q,i(ε+ω)

]
. (5.79)

After performing the Matsubara sum and expanding the correlation function for small q, we find

χ(1,bc)
ρ (q, ω) = −1

2
Nsve

2α
q2

8π3

1

ω

∫ ∞
0

p̃dp̃ log

(
vFΛ
√
e

p̃ω

)
π2(4p̃2 − 1)

p̃(4p̃2 + 1)2
(5.80)

=
q2Nsvα

64ω
, (5.81)

where p̃ is a dimensionless variable. Let us note here that the integral over p is consisting of the sum
of two integrands, since the logarithm can be rewritten as

log

(
vFΛ
√
e

p̃ω

)
= log

(
vFΛ
√
e

ω

)
− log

(
p̃
)
. (5.82)

The first integrand depending on the cut-off will vanish upon performing the p̃-integral. Only the
integrand proportional to log

(
p̃
)

will yield a finite result. Thus, the contribution to the correction
coefficient due to the divergent self-energy will be finite and cut-off independent. This integral will
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play an important role in our further discussion of the origin of the different values of Cσ.
Now let us turn back to the leading-order corrections in α. After evaluating the density correlation

function χ
(1,bc)
ρ , we find the following contribution to the conductivity

σ(1,bc)(ω) =
α(ω)

4
σ0(Dirac) , (5.83)

which agrees with Eq. (13) of Ref. 8. The advantage of determining the conductivity via the density-
density correlation function is that the vertex correction diagram has no logarithmic dependence on
the cut-off Λ and yields the finite result

σ(1,d)(ω) =
8− 3π

6
α(ω)σ0(Dirac) , (5.84)

which finally leads to

σ(ω) = σ0(Dirac)

(
1 + α(ω)

19− 6π

12

)
. (5.85)

Hence, the correction coefficient is Cσ = 19−6π
12 which is in agreement with our tight-binding calculation.

Dimensional regularization

How can the dimensional regularization (DR) produce a different result for the correction coefficient?
In order to answer this question, we first study the self-energy in d = 2− ε dimensions. It is

Σ(p) ∝ p−ε
Γ
[

1−ε
2

]
Γ
[

3−ε
2

]
Γ
[
ε
2

]
πΓ[2− ε]

, (5.86)

' 1

ε
− 1

2
γ + log 4− log p . (5.87)

Upon comparing this expression of the self-energy in d = 2 − ε to the one obtained in d = 2 with an
ultraviolet cut-off, Eq. (5.78), we see that the cut-off-dependent term log(Λ) is replaced by 1/ε. But
both expressions of the self-energy are proportional to log(p). As we have seen before, only this term
contributes to the finite value of the self-energy diagram and naively one would expect the same result,

σ(1,bc) ∝ α
4 , as in the previous section. Thus, in strictly two dimensions we find for χ

(1,bc)
ρ with an

self-energy evaluated in d = 2− ε and the cut-off Λ set to infinity

Id=2,Λ=∞ ≡ χ(1,bc)
ρ

16π3

Nsve2αq2

=

∫ ∞
0

pdp

[
1

ε
− 1

2
γ + ln

4

p

]
4p2 − 1

p(4p2 + 1)2
=

∫ ∞
0

pdp ln
1

p

4p2 − 1

p(4p2 + 1)2
= −π

4
,

(5.88)

which would be lead to Cσ. However, in d = 2−ε dimensions, the measure of the p-momentum integral
changes and it is

Id=2−ε,Λ=∞ =

∫ ∞
0

p1−εdp
[1

ε
− 1

2
γ + ln

4

p

] 4p2 − 1

p(4p2 + 1)2
= −π

2
, (5.89)

where we took the limit ε → 0 at the end of the calculation. Now, the momentum-independent
terms in Eq. (5.89) do not vanish anymore. They are proportional to ε and yield a finite contribution
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when multiplied by 1/ε. This small difference is seen to double the size of the χ
(1,bc)
ρ diagrams.

Since the vertex diagram χ
(1,d)
ρ is convergent and thus has the same value regardless of whether it is

calculated in d = 2 or d = 2− ε, one finds for the correction coefficient C̃σ = 22−6π
12 using dimensional

regularization. However, as we have seen previously, dimensional regularization has to be combined
with the modified subtraction scheme in order to obtain the correct value. But if one wants to use
dimensional regularization in combination with Wilson RG, the momentum cut-off Λ must be kept
finite and only at the end of the calculation, it can be send to infinity. The reason for this is that
the Wilson RG implicitly requires a momentum cut-off which divides the fermionic fields into fast and
slow modes. In the following section, we will see explicitly that the two limits ε → 0 and Λ → ∞ do
not commute, which we call UV quirk.

Spatial dimension d = 2− ε but sharp cut-off

Now let us assume that we evaluate the diagrams in d = 2− ε dimensions but maintain the momentum
cut-off Λ, since as above mentioned the Wilson RG implicitly requires the cut-off Λ around which the
momentum shells are integrated out. The self-energy is then given by

Σ(p) ∝
∫ Λ

p

qd−1dq

q2
=

1

ε

(
p−ε − Λ−ε

)
. (5.90)

Upon inserting this expression into Eq. (5.80), we find

Id=2−ε,Λ =

∫ ∞
0

dp p1−ε 1

ε

(
p−ε − Λ−ε

)
4(vFp)

2 − ω2

p(4(vFp)2 + ω2)2
=

(
ω

vF

)1−2ε π
4

(
ω
vFΛ

)ε
− π

2

ω2
, (5.91)

which leads to the following form of the correction coefficient

Cσ
(
ε,
ω

Λ

)
=

22− 6π − 3
(

ω
vFΛ

)ε
12

. (5.92)

Here we see the UV quirk clearly: The order of limits of the UV cut-off Λ and the dimensional
parameter ε do not commute. If we first take the limit of ε → 0 before subsequently taking the limit
Λ→∞, we obtain Cσ. However, if we instead take Λ→∞ first before subsequently taking ε→ 0, we
obtain C̃σ:

lim
ε→0

 lim
Λ→∞

C (ε, ω
Λ

)
=

22− 6π − 3
(
ω
vΛ

)ε
12


 = C̃σ , (5.93)

lim
Λ→∞

lim
ε→0

C (ε, ω
Λ

)
=

22− 6π − 3
(
ω
vΛ

)ε
12


 = Cσ . (5.94)

The same UV quirk is also found when the dimensional regularization scheme is combined with a
smooth cut-off on the Coulomb potential which is implemented by

V (q)→ Vη(q) =
2πα

|q|1+η
. (5.95)
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5.5 Summary

After some tedious calculation (the details can be found in the App. A.2.3) and combining the DR
with the smooth cutoff on the Coulomb potential, we obtain for the correction coefficient

Cσ(η, ε) =
1

η + ε

(
(16− 6π)(η + ε) + 3η + 6ε

12

)
. (5.96)

Here again, we only find the correct value of the correction coefficient, if we take the limit η → 0 at
the very end of the calculation.

In conclusion, we showed that it is crucial, if one wants to combine DR with Wilson RG, the UV
cut-off Λ (or in the case of the smooth cut-off η) must be kept till the very end of the calculation and
should be the last limit being performed.

5.5 Summary

In this chapter, we investigated as important transport property of graphene at the charge neutrality
point the electrical conductivity in linear response.

In the hydrodynamic regime, due to the diverging scattering time in the collinear scattering regime,
the conductivity is proportional to the square of the inverse coupling constant, i. e., σ(T ) = 0.760

α(T )2
e2

h

[19]. It converges for increasing temperatures to the universal conductivity value of low frequencies

σ0(Dirac)disorder = 2
π2

e2

~ [95].
Now, in the the optical regime, we determined the noninteracting optical conductivity and its leading

order correction in α(ω) in the tight-binding description. We could correct the expression for the non-
interacting optical conductivity obtained by Stauber et al. in Ref. 101 and found that the non-linearity
of the full energy spectrum leads to the following correction

σ(0)(ω) = σ0(Dirac)

(
1 +

1

9
ω2 +O(ω3)

)
. (5.97)

Furthermore, we determined the value of the correction coefficient in the tight-binding model to be

Cσ =
19− 6π

12
. (5.98)

We showed that Cσ is universal and does neither depend on the frequency of the incoming light nor
on the size of the Wannier orbitals of the carbon atoms. Hence, we could settle the debate over
the correct value of Cσ, since the tight-binding description yields no diverging quantity having as
natural cut-off the inverse lattice constant Λ ∼ a−1. Moreover, we demonstrated the many subtleties
which needed to be taken care of, if the correction coefficient is evaluated in the Dirac model via
dimensional regularization (DR). We come to the conclusion that it is crucial to combine the DR with
a continuum-renormalization group analysis, namely the minimal subtraction scheme, if no UV cut-off
is being introduced to the system. However, if the DR is combined with the Wilson RG which has an
implicit UV cut-off, the UV momentum cut-off has to be kept finite till the very end of the calculation
in order to avoid the UV quirk.
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6 Chapter 6

The viscosity in Graphene

So far, we have studied the conductivity of graphene which describes the response of the quasiparticles
to an electrical field and thus represents an important transport quantity. However, the electrons and
holes in graphene can also be described as a quasiparticle fluid. This fluid is a non-ideal fluid and
its characteristics is determined by the shear viscosity, where the viscosity describes the resistance
of the fluid to a hydrodynamic flow and connects the gradient of the drift velocity ∂uβ/∂xα to the
dissipative part of the energy-stress tensor Tαβ. For a two-dimensional, rotational invariant system,
such as graphene, the energy-stress tensor is connected to the drift velocity via

Tαβ = η

(
∂uα
∂xβ

+
∂uβ
∂xα

− δαβ∇ · u
)

+ ζδαβ∇ · u , (6.1)

where η is the shear viscosity and ζ the bulk viscosity which vanishes for graphene. In this chapter,
we investigate the shear viscosity of graphene at the charge neutrality point in the hydrodynamic and
in the collisionless regime.

In Sec. 6.1 we start with the study of the viscosity in the hydrodynamic regime (ω � τ−1) and
show that graphene is a nearly perfect fluid [20] which leads to highly turbulent flow behavior of the
quasiparticles [31] and a highly non-linear Navier-Stokes equation [21].

The shear viscosity in the collisionless regime (ω � τ−1) is investigated in Sec. 6.2. Here, we
demonstrate that the pseudospin of graphene has an important influence on the shear viscosity and
leads, if it is not taken into account, to a shear viscosity tensor which does not fulfill the symmetry
property (3.6) introduced in Sec. 3.1.

Furthermore, we consider the question, how the Coulomb interaction influences this important trans-
port property. To this end, we apply again the renormalization group (RG) analysis, go to the regime
with the small renormalized coupling constant and perform a perturbation theory. The correction coef-
ficient Cη defines the correction due to the Coulomb potential in the first order of perturbation theory.
This coefficient is given by individually divergent diagrams, i. e., the self-energy diagram, the vertex
diagram and the honey diagram. In order to cancel the individually divergences of the self-energy and
the vertex diagram, an additional diagram needs to be introduced, the honey diagram. This diagram
describes the interacting part of the energy-stress tensor and is derived in Sec. 6.2.2. We will regularize
all these diagrams with a soft cut-off acting on the Coulomb potential which is a regularization scheme
that avoids the UV quirk, as we have demonstrated in the previous chapter. At last we will determine
the Hall viscosity of graphene in the collisionless regime.
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Sec. 6.2 is based on my work in collaboration with Daniel E. Sheehy, Boris N. Narozhny and Jörg
Schmalian which is going to be published in [46].

6.1 ...in the hydrodynamic regime

In this section, we present the properties of the shear viscosity of graphene at the charge neutrality
point in the hydrodynamic regime which were obtained by Müller et al. in Ref. 20. The calculation
of the shear viscosity is analogous to the determination of the conductivity in the hydrodynamic
regime, described in Sec. 5.1. Again the quantum Boltzmann equation is used in order to obtain the

distribution function of the quasiparticles fλk = f
(0)
λk + δfλk, where f

(0)
λk is the equilibrium Fermi-

Dirac distribution and δfλk describes the out-off equilibrium contribution to the total distribution

function. This time, δfλk =
∑

λ

∫
k f

(0)
λk (1− f (0)

λk )Iαβ
∂uβ
∂xα

gβλk with Iαβ = λ(vαλkkβ − δαβελk/2) is chosen
as ansatz for the out-off equilibrium correction as described in Sec. 3.5. The three modes defining
gβλk =

∑
n ψnφn(k, λ) are a constant φ0 = ψ0, the band index φ1 = λ, and the energy of the system

φ2 = λελk, which describe respectively the conservation of the total charge, of the total number
of particles and holes, and of the energy. The corresponding coefficients ψn are determined by the
inversion of the linearized quantum Boltzmann equation and at last the shear viscosity can be evaluated

by ηαβγδ =
∑
λ

∫
k

λvαλkkβ

(
vγλkkδ − δγδελk/2

)
gβλkf

(0)
λk (1− f (0)

λk )/T . Hence, the smallest eigenvalue of the

collision integral determines the shear viscosity η = ηxyxy = ηyxyx = · · · . Again, in the collinear
scattering regime the scattering time diverges logarithmically which leads to the fact that the shear
viscosity is (similar to the conductivity) proportional to α(T )−2 and higher order corrections will be
of order 1/ logα(T ). The shear viscosity is thus given by [20]

η(T ) = 0.449
Nsv

4

1

~

(
kBT

)2(
vF(T )α(T )

)2
1 +O

(
1

logα

) , (6.2)

where Nsv = 4 because of the spin degree of freedom and the additional degree of freedom due to the
two Dirac points in the first Brillouin zone. Now as in Sec. 3.6, we want to compare the shear viscosity
to the entropy of graphene. The entropy is

s =
9ζ(3)

π
kB

(
kBT

)2[
~vF(T )α(T )

]2α(T )2 . (6.3)

Hence, the ratio of viscosity over entropy can be written as

η/s =
~
kB

0.499π

9ζ(3)

1

α(T )2
' 0.00815 ·

(
log

TΛ

T

)2

. (6.4)

The ratio η/s decreases logarithmically with increasing temperature as shown in Fig. 6.1. Due to
the small numerical prefactor, the ratio approaches the famous lower bound η/s ≥ ~

4πkB
[18], see

Eq. (3.56) and Sec. 3.6 for a more detailed discussion, which makes graphene a nearly perfect fluid.
Its ratio is even smaller than the ratio of ultra cold atoms with diverging scattering length [102, 103]
and of Helium at the λ-point [20]. The small viscosity will lead to highly turbulent flow dynamics.
The flow dynamics are governed by the Navier-Stokes equation which will be derived for graphene in
the following subsection.
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6.1 ...in the hydrodynamic regime

Figure 6.1: Graphene is a nearly perfect liquid. The ratio viscosity over entropy approaches for
increasing temperature the famous lower bound of this ratio [18] which is indicated by the green
dashed line. The figure is taken from [20].

6.1.1 Navier-Stokes

In this section, we sketch the derivation of the Navier-Stokes equation. Thereby, we follow closely the
derivation presented by Briskot et al. in Ref. 21. The following three continuity equations can be
derived from the quantum Boltzmann equation

∂tn +∇r · j = 0 (6.5)

∂tnI +∇r · jI = 0 (6.6)

∂tnε +∇r · jε = eE · j . (6.7)

The first one, Eq. (6.5), describes the continuity equation for the total charge carrier density n =
n+−n−, where n+ is the number of charge carriers in the upper energy band and n− in the lower one. It
relates the time derivative of the total charge carrier density to the electrical current j = nu+δj, where
δj is the dissipative part of the current arising due to the viscosity of the system. The hydrodynamic
(or “drift”) velocity is denoted by u. The second equation, Eq. (6.6), is the continuity equation of
the imbalance density, i. e., the total quasiparticle density nI = n+ + n−, with the imbalance current
jI = nIu+δjI . While the last of the three continuity equations, Eq. (6.7), connects the time derivative
of the energy density nε to the divergence of the energy current jε = vF

2nk + δjε = 3nεu
2+u2/vF

2 + δjε.

Here, we see a special feature of graphene. Due to its linear energy spectrum, the energy current jε is
equal to the momentum density nk whose continuity equation is given by

∂tn
α
k +∇β

rΠβα − enEα +
e

c

[
j ×B

]α
= −

nαk
τdis

, (6.8)

where Παβ is the energy-stress tensor and τdis is the scattering time due to disorder. In the case of
graphene, the energy-stress tensor depends on the energy density and the hydrodynamic velocity and
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is

Παβ =
nε

2 + u2/vF
2

δαβ
(

1− u2

vF
2

)
+

3uαuβ
vF

2

+ ταβ . (6.9)

where ταβ describes the dissipative part proportional to the shear viscosity, see Eq. (6.1). Now, ac-
cording to Eq. (3.31), we can relate the elements of the energy-stress tensor to the pressure of the
system, which is

P = nε
1− (u/vF)2

2 + (u/vF)2
. (6.10)

Already here, it can be seen that the Navier-Stokes equation will be highly nonlinear due to the
quadratic dependence of the pressure on u. However, for small velocity u, the standard value of a
scale-invariant gas P0 = nε/2 is recovered. The enthalpy of the system is

W = nε + P =
3nε

2 + (u/vF)2
. (6.11)

Upon inserting these definitions into Eq. (6.8) and applying the continuity equations Eq. (6.5) to
Eq. (6.7), we find the Navier-Stokes equation

W∂tu+W
(
u ·∇

)
u+∇P + u∂tP + u

(
δj ·E

)
= en

[
E − u

(
u ·E

)]
+ η∇2u . (6.12)

This Navier-Stokes equation differs from the one of a Galilean invariant system by the additional term
u∂tP . This term arises due to the linear energy spectrum and describes the relativistic nature of the
quasiparticles in graphene. This equation governs the flow dynamics of the liquid. If the viscosity is
very small, as in the case of graphene, the nonlinearities will be the dominant process which will lead
to a highly turbulent flow. An example for the viscous flow pattern was given for graphene with a finite
chemical potential by Levitov and Falkovich in Ref. 31. Vortices appear in the viscous flow pattern as
can be seen in Fig. 6.2.

Further investigations of the hydrodynamics in graphene for all regimes, both the degenerate regime
µ� T and the charge neutrality point, can be found in Ref. 81.

6.2 The viscosity in the collisionless regime

Now, the shear viscosity of graphene is determined in the collisionless regime. In the collisionless
regime, the excitation frequency sets the dominant energy scale compared to the inverse scattering
time, i. e., ω � τ−1. The time scale on which collisions occur is much larger than the time scale set by
the frequency and thus the collisions can be neglected and the only relevant interaction is the Coulomb
potential. In the second part of this section, we are going to determine the influence of the Coulomb
interaction on the shear viscosity by calculating the corresponding correction coefficient Cη in the Dirac
model. Thereby, we use a smooth cut-off on the Coulomb interaction, V (q) → Vη(q) = 2πα/|q|1+η,
which is a regularization scheme that avoids the previously mentioned UV quirk and yields the correct
result for the correction coefficient of the conductivity Cσ, see Sec. 5.4. But before the correction
coefficient Cη is determined, the non-interacting contribution to the shear viscosity at finite frequencies
is investigated and in Sec. 6.2.3, the Hall viscosity ηxxxy for graphene is studied.
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6.2 The viscosity in the collisionless regime

Figure 6.2: Viscous flow of graphene. The viscosity generates vorticity. The figure is taken from
[31].

6.2.1 The viscosity of non-interacting free Dirac fermions in the optical regime

In order to study the shear viscosity of graphene in the collisionless regime, the Kubo-formula for the
viscosity coefficient ηαβγδ defined in Sec. 3.3 is being used. The expression is given by

ηαβγδ = − Im
χTαβTγδ
ω

, (6.13)

where χTαβTγδ is the correlation function between two energy-stress tensors having the form

χTαβTγδ =

∫
ω

∫
k

Tr
[
Gk,iωTαβ(k)Gk,i(ω+Ω)Tγδ(k)

]
. (6.14)

The Green’s function Gk,iω = −(iωσ0 +vFk ·σ)/(ω2 +(vFk)2) is defined in Sec. 4.2. Hence, to calculate
this correlation function, we need to determine the energy-stress tensor Tαβ(k) of graphene. Thereby,
we follow the procedure introduced in Sec. 3.2, where we showed that the energy-stress tensor is related
to the time derivative of the strain generators. These strain generators describe the transformation of
the system due to external strain. Let us first determine the part of the energy-stress tensor due to
the strain generator acting on the spatial coordinates of the system Lαβ = −{xα, pβ}. We find for the
energy-stress tensor

TLαβ(k) = −i[HDirac,Lαβ]

= σαkβ .
(6.15)

This energy-stress tensor is not symmetric and upon determining the different viscosity coefficients we
find

ηxxxx(ω) =
Nsv

256
ω2 ηyyyy(ω) =

Nsv

256
ω2 ηxxyy(ω) = −Nsv

256
ω2

ηxyyx(ω) = −Nsv

256
ω2 ηxyxy(ω) = 3

Nsv

256
ω2 ηyxyx(ω) = 3

Nsv

256
ω2 , (6.16)
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where Nsv = 4. These evaluated viscosity coefficients do not fulfill the symmetry properties of a
rotational invariant system [44]

ηαβγδ(ω) = η(ω)[δαγδβδ + δαδδβγ − δαβδγδ] . (6.17)

However, graphene is a rotational invariant system and should fulfill this symmetry property. The
reason for this peculiar behavior is that we have not taken the pseudospin of graphene into account.
The pseudospin describes the two sub-lattices of graphene and it behaves as a real angular momentum
[47]. The strain generator acting on the pseudospin space Sαβ = i[Sα, Sβ]/4 yields the following
contribution to the energy-stress tensor of graphene

TSαβ(k) = −i[HDirac,Sαβ]

=
1

2
(σβkα − σαkβ) ,

(6.18)

which leads when all contributions are added up to the symmetrized energy-stress tensor

TJαβ(k) = T
(0)
αβ (k) =

1

2
(σβkα + σαkβ) . (6.19)

The viscosity coefficients determined with this symmetrized energy-stress tensor fulfill the symmetry
property (6.17) of a rotational invariant system and yields after inserting ~ and vF

η0(ω) =
~
v2

F

Nsv

256
ω2 =

1

64

~
v2

F

ω2 . (6.20)

The shear viscosity of graphene is not universal but depends on the square of the frequency and has a
small prefactor.

6.2.2 The correction coefficient of the viscosity in the optical regime

It is again natural to ask the question, how the Coulomb interaction influences the transport quantity.
In order to answer this question, we apply a RG analysis analogous to the previous chapter and go to
the regime where the coupling constant is small and perform a perturbation theory in α(b∗) for the
shear viscosity. Hence, the frequency-dependent shear viscosity is given by

η(ω) = η0

(
1 + Cηα(b∗) +O(α(b∗)2)

)
, (6.21)

where the non-interacting shear viscosity of graphene η0 was calculated in the previous section. Here,
we want to determine the value of the correction coefficient Cη in first order of perturbation theory
and want to find out, if this value is small as it is in the case of the optical conductivity in graphene or
if the influence of the Coulomb interaction on the shear viscosity is large. The value of the correction
coefficient Cη is determined by four different contributions, the self-energy diagram, the vertex diagram
and the honey diagram. The corresponding Feynman diagrams are depicted in Fig. 6.3 (b)-(d). We
are going to find again that each of these diagrams is individually logarithmically divergent but when
they are summed up the divergences cancel each other and we obtain a finite correction coefficient.

Upon comparing these diagrams with the diagrams contributing to the correction coefficient Cσ of
the optical conductivity, we see that an additional Feynman diagram needs to be calculated. This
diagram is the honey diagram which is going to be derived in this section.
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Figure 6.3: The Feynman diagrams defining the shear viscosity in graphene up to the first order
in perturbation theory in α(ω). Panel (a) illustrates the bare bubble diagram describing the
non-interacting shear viscosity. The diagrams (b) to (e) depict the different contributions to the
correction coefficient Cη. Diagrams (b) and (c) are the self-energy diagrams, diagram (d) is the
vertex diagram, and diagram (e) represents the honey diagram.

By the way, the great viscosity of honey is caused by the great interaction between the honey
molecules. Thus by analogy, we call this additional diagram honey diagram, since it is the diagram
which takes the interacting part of the energy-stress tensor into account.

But, let us now start with the calculation of the different Feynman diagrams contributing to the
correction coefficient.

Self-energy diagram

The self-energy diagram is defined via the correlation function

χ
(1,bc)

T
(0)
xy T

(0)
xy

(iΩ) = −2

∫
p

∫
ω

Tr
[
Gp,i(ω+Ω)T

(0)
xy (p)Gp,iωΣ(p)Gp,iωT

(0)
xy (p)

]
, (6.22)

where the self-energy for a Coulomb potential with a soft cut-off Vη = 2πα/|q|1+η is given by Σ(p) =
φ(p)p · σ with

φ(p) = αr−η0

2η Γ
(
η
2

)
8 Γ
(

4−η
2

)p−η , (6.23)

where r0 is an additional length scale introduced in such a way that the Coulomb potential still has
the correct dimension. In order to calculate the diagram, we proceed the following way. First the
frequency integral is evaluated. After the integration, we subtract twice the zero-frequency part of the
above correlation function. Now, why do we subtract the zero-frequency part here? We know that the
imaginary part of the correlation function of two non-interacting enery-stress tensors is proportional
to ω3. With the help of the Kramer-Kronig relation [24], the form of the correlation function χ

T
(0)
xy T

(0)
xy

can be deduced, ie., χ
T

(0)
xy T

(0)
xy

(ω) ∝ aΛ3 + bΛω2 + ciω3, where Λ is the UV cut-off and a, b, and c are

constants. In the complex plane this expression is related to χ
T

(0)
xy T

(0)
xy

(iΩ) ∝ aΛ3+bΛΩ2+c|Ω|3. In order

to obtain the coefficient c, which we are interested in, first the difference f
(0)
xyxy(iΩ) = (χ

T
(0)
xy T

(0)
xy

(iΩ)−
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χ
T

(0)
xy T

(0)
xy

(0))/Ω2 = bΛ+ c|Ω| is to be taken and than we have to calculate (f
(0)
xyxy(iΩ)−f (0)

xyxy(0))/Ω = c.

The same procedure is applied in order to evaluate the self-energy diagram and is also going to be
applied in the case of the vertex diagram.

We find for the self-energy diagram

f
(1,bc)
xyxy (iΩ)− f (1,bc)

xyxy (0)

Ω
= −

4η−6(η − 4)Ω
(

1
Ω2

) η+1
2

sec
(
πη
2

)
Γ
(
η
2

)
Γ
(

2− η
2

)
≈ Nsvα

512η
+Nsvα

−4 log(r0Ω)− 4γ + 1 + 4 log(4)

2048
+O(η) ,

(6.24)

which is divergent in the parameter 1/η and has a finite value.

Vertex diagram

Next, we evaluate the vertex diagram. This vertex diagram is defined by the correlation function

χ
(1,d)

T
(0)
xy T

(0)
xy

(iΩ) = −Nsvαη
4

∫
p,ω

∫
k,ω′

2π

|p− k|1+η
Tr
[
Gp,iωT

(0)
xy (p)Gp,i(ω+Ω)Gk,i(ω′+Ω)T

(0)
xy (k)Gk,iω′

]
,

(6.25)
with αη = αr−η0 2η Γ

(
(1 + η)/2

)
/Γ
(
(1− η)/2

)
. Again, after the two frequency integrations are per-

formed, we subtract twice the zero-frequency part of the correlation function and obtain

f
(1,d)
xyxy(iΩ)− f (1,d)

xyxy(0)

Ω
= Q1 +Q2 +Q3 , (6.26)

which consists of three different integrals Q1, Q2, and Q3. The first two integrals are convergent for
η = 0 and are given by

Q1 = −Nsvαη
8(2π)2

Ω−η
∞∫

0

dp

∞∫
0

dq 2

π∫
0

dϕ
pq

32p2q2
(

4p2 + 1
)(

4q2 + 1
) 4pq cos(2ϕ) + 16p2q2 cos(ϕ) cos(2ϕ)(

p2 + q2 − 2pq cos(ϕ)
) 1+η

2

= −Nsvαη
960

(6.27)

and

Q2 = −Nsvαη
4

Ω−η

(2π)2

∞∫
0

dp
1

p(4p2 + 1)

∞∫
0

dq
1

q(4q2 + 1)

π∫
0

dϕ
p3q cos(2ϕ)

(p2 + q2 − 2pq cos(ϕ))
1+η

2

= −Nsvαη
4

Ω−η

(2π)2
2η−4π sec

(
πη

2

)
π

6
(11− 3π)

≈ −Nsvα

2

(
11

768
− π

256

)
,

(6.28)
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where the detailed calculation can be found in the App. A.3. The last integral Q3 diverges when η
goes to zero. It reads

Q3 = −Nsvαη
8

1

(2π)2

Ω−η

32

∞∫
0

dp
p

p2(4p2 + 1)

∞∫
0

dq
q

q2(4q2 + 1)

2π∫
0

dϕ
cos(ϕ) cos(2ϕ)(

p2 + q2 − 2pq cos(ϕ)
) 1+η

2

× {4p2(4p2 + 1) + 4q2(4q2 + 1)}

= −Nsvαη
32

Ω−η

(2π)2
2−2+ηπ

sec
(
πη
2

)
Γ
(

1+η
2

) π(η + 2)Γ
(

1
2 −

η
2

)
Γ
(
η
2

)
4Γ
(

3− η
2

)
≈ − Nsvα

1024η
− αNsv(4 log(r0Ω) + 4γ − 5− 8 log(2))

4096
+O(η) .

(6.29)

The vertex diagram is also divergent in the parameter 1/η. However, when the self-energy diagram and
the vertex diagram are summed up, the two divergences do not cancel each other. A third diagram,
namely the honey diagram, has to be introduced that all divergences cancel each other.

The honey diagram

So far we only took the non-interacting part of the energy-stress tensor into account. In order to
calculate the energy-stress tensor we determined the time derivative of the strain generator Jαβ, i. e.,

T
(0)
αβ (p) = −i[HDirac,Jαβ]. However, graphene is described by the non-interacting Hamiltonian HDirac

and the Coulomb interaction HC =
∫
r,r′ ψ̂

†
rψ̂
†
r′V (r, r′)ψ̂r′ψ̂r with V (r, r′) =

r−η0
|r−r′|1−η . Hence, there ex-

ists also a contribution of the energy-stress tensor T intαβ which represents the Coulomb interaction in the
system. This contribution is again determined by calculating the commutator of the Coulomb Hamil-
tonian and the total strain generator Jαβ. The part of the strain generator acting in the pseudospin
space commute with the interaction Hamiltonian and we only have to determine

T intαβ (r) = −i[HC ,Lαβ] =
1

2
(1− η)r−η0

∫
r1,r2

ψ̂†r1ψ̂
†
r2ψ̂r2ψ̂r1

(r1 − r2)α(r1 − r2)β
|r1 − r2|3−η

. (6.30)

This result is in agreement with the expression of the interacting energy-stress tensor which was ob-
tained in the derivation by Martin and Schwinger in Ref. 49, where the authors derived the interacting
part of the energy-stress tensor using the continuity equation of the momentum density (3.24). The
Fourier transform of the interacting energy-stress tensor is

T intαβ (q = 0, τ) =
1

2
(1− η)r−η0 21−ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
k,p,l

lαlβ
|l|3+η

ψ̂†k(τ)ψ̂†p(τ)ψ̂p−l(τ)ψ̂k+l(τ)

=
1

2
(1− η)r−η0 21−ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
l

lαlβ
|l|3+η

n(l, τ)n(−l, τ) ,

(6.31)

with

n(l, τ) =

∫
p

ψ̂†p(τ)ψ̂p+l(τ) . (6.32)
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6 The viscosity in Graphene

This interacting part of the energy-stress tensor contributes to the correction coefficient of the shear
viscosity due to the Coulomb interaction, when the correlation function of an interacting energy-stress

tensor T intαβ with a non-interacting part of the energy-stress tensor T
(0)
αβ is calculated. We refer to this

Feynman diagram depicted in Fig. 6.3 (d) as the honey diagram.
The honey diagram is defined as

χ
T intαβ ,T

(0)
γδ

(iνr) = −1

2
(1−η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
k,l,m,s

lαlβ
|l|3+η

Tr

[
Gk+l,iωsGk,i(ωm+νr)

(
kγσδ + kδσγ

)
Gk,iωm

]
.

(6.33)
After performing the two frequency integrations, we find

χ
T intαβ ,T

(0)
αβ

(iνr) =
1

2
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) 1

(2π)4

×
∞∫

0
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∞∫
0
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2π∫
0

dα

2π∫
0

dβ
k3 sin(2α) cos(2β)l1−η sin(α− β)(

4k2 + Ω2
)√

k2 + 2kl cos(α− β) + l2
.

(6.34)

This expression can be analytically continued (iΩ→ ω + iδ), using the relation

1

4k2 + Ω2
→ P.V.

1

4k2 − ω2
+

iπ

4ω
δ

(
k − ω

2

)
+

iπ

4ω
δ

(
k +

ω

2

)
, (6.35)

with P.V. denoting the principal value integral, which yields after taking the imaginary part of the
above expression

Imχ
T intαβ ,T

(0)
αβ

(iνr) =
22η−11(η − 1)ω3

(
ω2
)− η

2
r−η0 Γ

(
η
2

)
Γ
(

3− η
2

)
≈ − ω3

2048η
−
−4ω3 log(r0)− 4γω3 − ω3 + 8ω3 log(2)− 2ω3 log

(
ω2
)

8192
+O(η) .

(6.36)

This expression also diverges in 1/η and has a finite part. An important fact is that we have to multiply

the above expression by the factor 2, since both correlation functions

〈
T

(0)
αβ T

int
αβ

〉
and

〈
T intαβ T

(0)
αβ

〉
give

the same result.
Hence, upon combining the self-energy diagram, the vertex-diagram and the honey-diagram, the

logarithmic divergences cancel and the following value of the correction coefficient is found

Cη =
89− 20π

40
≈ 0.65 . (6.37)

We find that the additional diagram which describes the interacting part of the energy-stress tensor
reduces the shear viscosity, since it makes a before diverging quantity (the sum of the self-energy
diagram and the vertex diagram) finite. Furthermore, we see that the value of the correction coefficient
is quite large and thus found a transport quantity in graphene, which shows a big influence of the
Coulomb interaction. The frequency dependence of the non-interacting shear viscosity and the influence
of the Coulomb interaction is shown in Fig. 6.4.
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Figure 6.4: The frequency dependence of the shear viscosity of graphene in the collisionless regime.
The frequency ranges up to the optical regime. The blue curve depicts the non-interacting part
of the viscosity, while the red curve shows the the viscosity modified by the Coulomb interaction.
In panel (a) the parabolic frequency dependence of the shear viscosity is presented, while in panel
(b), where η(ω)/ω2 is depicted, we see clearly that the Coulomb interaction enhances the viscosity
of graphene logarithmically.

6.2.3 Hall viscosity

As last topic in this chapter, we study the Hall viscosity ηxxxy and ηyyyx of a single Dirac cone in
graphene. In order to render the integrals to be calculated analytically, we introduce a mass term m
to the system. The Green’s functions are than modified the following way

Gk,iω = − iω + vFk · σ +mσz
ω2 + (vFk)2 +m2

, (6.38)

with the dispersion relation ελk = λ
√

(vFk)2 +m2, where the introduced mass opens a gap in the
energy spectrum of graphene. Next, the imaginary part of the correction function

χ
T

(0)
ααT

(0)
αβ

(iΩ) = vF

∫
k

∫
ω

Tr[T (0)
αα (k)Gk,iωT

(0)
αβ (k)Gk,i(ω+Ω)] (6.39)

is determined. Thereby, we find that the evaluation of the trace over the pseudospin yields an additional
imaginary unit i in comparison to the shear viscosity ηxyxy = η. Hence, the on-shell processes of the
correlation function are now entering the real part of the correlator, while the imaginary part of
the correlator is governed by off-shell excitations. After evaluating the corresponding integrals and
introducing an UV cut-off, we find for the Hall viscosities

ηxxxy = − 1

16πv2
F

mΛ− sign(m)
1

96πv2
F

ω2

ηyyyx = +
1

16πv2
F

mΛ + sign(m)
1

96πv2
F

ω2 .

(6.40)

The Hall viscosities are not universal, since they depend on the UV cut-off Λ. Furthermore, similar
to the Hall conductivity of graphene with σxy = −sign(m)/(8π), the Hall viscosities also consist of a
term proportional to the sign of the mass m.
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6 The viscosity in Graphene

6.3 Summary

In the first part of this chapter, we presented calculations of the shear viscosity of graphene in the
hydrodynamic regime [20] and showed that graphene is a nearly perfect liquid [20], i. e., its ratio of
shear viscosity over entropy approaches the famous lower bound of this physical quantity [18]. Further,
the derivation of the Navier-Stokes equation [21] was shown, since the Navier-Stokes equation gives
experimental access to the shear viscosity.

In the second part of this chapter, we presented our calculation of the shear viscosity in the col-
lisionless regime. Thereby, we demonstrated that the pseudospin of graphene has to be taken into
account in order to obtain a viscosity tensor with the symmetry properties of a two-dimensional, rota-
tional invariant system. Furthermore, we determined the influence of the Coulomb interaction on the
shear viscosity upon calculating the corresponding correction coefficient Cη using a soft cut-off on the
Coulomb interaction. We find

η(ω) =
1

64

~
v2

F

ω2
[
1 +

89− 20π

40
α(ω)

]
, (6.41)

with α(ω) = α/(1+α/4 log(Λ/ω)). The shear viscosity is not universal, but proportional to the square
of the frequency. The correction coefficient is with Cη ≈ 0.65 large and thus we find a transport
quantity of graphene which is greatly influenced by the Coulomb interaction. Furthermore, we found
the Hall viscosity of graphene, which is given by ηyyyx,xxxy = ± 1

16πv2
F
mΛ± sign(m) 1

96πv2
F
ω2.

84



Part III

Anisotropic Dirac Systems
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7 Chapter 7

Field-theoretical description and Coulomb
interaction

In the previous part, we have studied the conductivity and viscosity of graphene and the influence
of the Coulomb interaction on these transport properties. We found that in the collisionless regime
the conductivity is universal and the Coulomb interaction has no large impact on it [1, 16]. In the
hydrodynamic regime the temperature dependence of the conductivity only enters via the renormalized
coupling constant [19]. Furthermore, we have seen that in the collisionless regime graphene behaves
as a nearly perfect fluid [20], i. e., the ratio of shear viscosity over entropy decreases with increasing
temperature and approaches the lower bound [18]. In the course of this, it was important that graphene
is invariant under spatial inversion and time reversal and that the energy dispersion relation is isotropic.

However, the reader may wonder what happens with these transport quantities in systems with
lower symmetry. Do the conductivity and the shear viscosity show a different characteristic behavior
or do they stay unchanged? And we can ask ourself one more time the question, how the Coulomb
interaction influences the transport properties of a system with lower symmetry. These questions are
going to be answered in the following three chapters.

In this chapter, we want to introduce two dimensional systems which have a lower symmetry than
graphene. These systems are the anisotropic Dirac systems (ADSs). Their peculiarity is that their
energy spectrum is anisotropic at the Dirac point, i. e., in one direction the energy spectrum is linear,
as it is the case in graphene, whereas in the perpendicular direction we will find a parabolic energy dis-
persion [104–111]. The anisotropic energy dispersion will give rise to classical and relativistic behavior
depending on the chosen direction and leads to fascinating properties of the transport quantities. In
Chap. 8, we will demonstrate that both in the hydrodynamic and in the collisionless regime, the system
is either metallic or insulating depending on the direction of the applied electrical field. Furthermore,
the shear viscosity coefficients of an ADS exhibit fundamentally different scaling with temperature,
depending on the direction of the momentum flow, as is shown in Chap. 9. Even more drastically,
some of these viscosity coefficients will violate the famous lower bound of viscosity over entropy [18].
The origin of the violation lies in the emergence of two different length scales due to the anisotropy of
the energy spectrum which will lead to different scaling laws of the viscosity coefficients.

Now let us focus on the content of this chapter. In Sec. 7.1, as mentioned above, we will introduce
the ADSs and their Hamiltonian and the most important physical quantities. Also different materials
which exhibit an anisotropic energy spectrum are presented, such as the organic conductor α-(BEDT-
TTF)2I3 [112–115] and the heterostructure 5/3 TiO2/VO2 [108, 109]. In Sec. 7.2 we will include the
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7 Field-theoretical description and Coulomb interaction

Coulomb interaction and study the influence of the Coulomb potential on the ADSs. For this purpose,
a large N renormalization group analysis of ADSs in the strong coupling limit [116] is presented in
Sec. 7.2.1. Also the collision integral of the quantum Boltzmann equation arising due to the Coulomb
interaction is derived in the last section.

7.1 The model and possible realizations

Anisotropic Dirac systems occur when two Dirac cones merge in momentum space [116]. There are
different materials which yield the anisotropic energy dispersion, where in one crystallographic direction
the energy dispersion is Newtonian-like and in the other Dirac-like [104–111]. One of these materials is
the organic charge transfer salt α-(BEDT-TTF)2I3 [105, 112–115]. Here, two Dirac cones merge under
the application of uniaxial pressure as is explicitly shown in Sec. 7.1.1. Another material yielding this
anisotropic energy dispersion is the heterostructure 5/3 TiO2/VO2 [108, 109]. This heterostructure has
four anisotropic Dirac cones in the first Brillouin zone, which are rotated by 45 degrees with respect
to each other, as can be seen in Sec. 7.1.2.

7.1.1 Mergence of two Dirac cones

Let us start our contemplation of the ADSs with the organic charge transfer salt α-(BEDT-TTF)2I3.
Here, we follow closely the Refs. 112, 113, and 114. The two dimensional organic conductor has a unit
cell which consists of four molecules on the sites A, A’, B, and C, where all molecules but the ones at
the sites A and A’ are inequivalent. This unit cell is shown in Fig. 7.1(c). The organic conductor is
described by the following Hubbard-Hamiltonian:

Hα-(BEDT-TTF)2I3,r =
∑

(iα,jβ),σ

(
tiα:jβ â

†
iασâjβσ + h.c.

)
+
∑
iα

Uαâ
†
iα↑â

†
iα↓âiα↓âiα↑ +

∑
(iα:jβ),σ,σ′

Vαβ â
†
iασâ

†
jβσ′ âjβσ′ âiασ ,

(7.1)

where the index i, j gives the site index of the unit cell, σ, σ′ denotes the spin index, and the index
α, β labels the position of the molecules with α, β ∈ {A,A′, B,C} . The hopping elements tiα:jβ give
the energy needed for an electron to jump from the site (i, α) to the site (j, β), while Uα describes the
repulsive on-site interaction, and Vαβ the repulsive interaction between neighboring molecules. Upon
going into momentum space and taking only nearest neighbor hopping into account, we obtain for the
Hamiltonian

Hα-(BEDT-TTF)2I3,k =
∑
k,σ,αβ

εαβ(k)â†kασâkβσ +
∑

k,k′,q,α

Uαâ
†
k−qα↑â

†
k′+qα↓âk′α↓âkα↑

+
∑

k,k′,q,σ,σ′,α,β

Vαβ(q)â†k−qασâ
†
k′+qβσ′

âk′βσ′ âkασ ,
(7.2)

with

εαβ(k) =
∑
δ

tAeik·δ and Vαβ(q) =
1

2

∑
δ

VBe−iq·δ . (7.3)

Here, δ are the vectors connecting nearest-neighbor molecules while the subscript A denotes A =
c1, c2, · · · , p4 and the subscript B is B = c, p which are being defined in Fig. 7.1 (c). The explicit
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7.1 The model and possible realizations

Figure 7.1: In panel (a) the four energy bands of the organic charge transfer salt α-(BEDT-
TTF)2I3 for the uniaxial pressure Pa = 30kbar is shown. Panel (b) focuses on the upper two
energy bands and shows the mergence of the two Dirac cones with increasing pressure. Panel
(c) (adapted from [113]) shows the unit cell of α-(BEDT-TTF)2I3 salt which consists of four
molecules. Panel(d) shows the experimental data [115] for the critical temperature of the phase
transition between a charged ordered insulator and massless Dirac fermions. Panel (d) was taken
from [115].

expressions of the matrix elements εαβ and Vαβ are (with ε∗βα = εαβ and V ∗βα = Vαβ)

ε12(k) = tc1 + tc2e−iky V12(q) = (1/2)(Vc + Vce
iqy)

ε13(k) = tp1 + tp4eikx V13(q) = (1/2)(Vp + Vpe
−iqx)

ε14(k) = tp2 + tp3eikx V14(q) = (1/2)(Vp + Vpe
−iqx)

ε23(k) = tp4eiky + tp1eikx+iky V23(q) = (1/2)(Vpe
−iqy + Vpe

−iqx−iqy)

ε24(k) = tp3 + tp2eikx V24(q) = (1/2)(Vp + Vpe
−iqx)

ε34(k) = tc3 + tc4e−iky V34(q) = (1/2)(Vc + Vce
iqy) .

(7.4)

The hopping elements increase or decrease respectively under the application of uniaxial pressure. For
a uniaxial pressure Pa along the a-axis with the units [kbar], the modified matrix elements are

tA(Pa) = tA(0)(1 +KAPa) . (7.5)

Experimentally one finds the following values of the hopping elements: tp1(0) = 0.140, tp2(0) = 0.123,
tp3(0) = −0.025, tp4(0) = −0.062, tc1(0) = 0.048, tc2(0) = −0.020, tc3(0) = −0.028, tc4(0) =
−0.028 [eV], and the following slopes Kp1 = 0.011, Kp2 = 0, Kp3 = 0, Kp4 = 0.032, Kc1 = 0.167,
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Kc2 = −0.025, Kc3 = 0.089, and Kc4 = 0.89 [eV/kbar]. These values are taken from Refs. 113 and 114.

Let us now discuss the phase diagram and the energy dispersion of α-(BEDT-TTF)2I3. At small
pressure, there is a phase transition between a charged ordered insulator and massless Dirac fermions,
see Refs. 114 and 115. At zero temperature, this phase transition occurs at Pa,c ≈ 12.5 kbar as can be
seen in the experimental data [115] shown in Fig. 7.1 (d). Hence, at zero temperature and for pressures
greater than the critical value, i. e., Pa ≥ Pa,c, the organic charge transfer salt is in the phase, where
the system has two Dirac cones. The energy dispersion for α-(BEDT-TTF)2I3 at Pa = 30 kbar is
shown in Fig. 7.1 (a). There are four energy bands, however, only the three lowest one are filled.
The Fermi energy lies between the two highest energy bands. Let us now focus on these two highest
energy bands. As can be seen in Fig. 7.1 (b), the two Dirac cones merge with increasing pressure. At
Pa = 40 kbar the two Dirac cones have merged to one anisotropic Dirac cone. We can clearly see the
parabolic energy dispersion along the direction from which the two Dirac cones have moved to each
other. In the perpendicular direction, the energy dispersion is still linear. Upon increasing the pressure
further, a gap opens in the the energy spectrum.

7.1.2 The Heterostructure TiO2/VO2

Another material having anisotropic Dirac cones is the heterostructure 5/3 TiO2/VO2. An image of
the real-space representation of the heterostructure is depicted in Fig. 7.2 (a), where we see the VO2

trilayer which is enclosed by 5 layers of TiO2. This heterostructure has four Dirac cones in the first
Brillouin zone as can be seen in Fig. 7.2 (b). The energy spectrum around these Dirac cones shows
again Newtonian-like behavior along one direction and Dirac-like along the perpendicular one. But
these main axis are rotated by 45 degrees with respect to each other for the different Dirac cones. This
was first demonstrated by Pardo and Pickett in Ref. 108 where they calculated the energy dispersion
of TiO2/VO2 via a first-principles density functional method. A few months later a tight-binding
calculation of the dispersion relation of TiO2/VO2 by Banerjee et al. published in Ref. 109 followed.
In this section, we will shortly present this tight-binding calculation. The Hamiltonian describes a
three band model of spinless fermions and is given by

HTiO2/VO2,r =
3∑

α=1

∑
i

εαni,α +
∑
〈ij〉

tα

(
c†i,αcj,α + h.c.

)
+ λ1

∑
〈i〉,±

(
c†i,1ci±x̂,3 − c

†
i,1ci±ŷ,3 + h.c.

)
+ λ2

∑
〈i〉,±

(
c†i,2ci±x̂,3 − c

†
i,2ci±ŷ,3 + h.c.

)
,

(7.6)

where α is the band index and tα describes intraband hopping processes. Furthermore, we assume that
the third energy band is far away from the Fermi energy, which we thus assume being dispersionless,
and it does not overlap with the energy bands ε1 and ε2 ,i. e., ε3 � ε1, ε2. The two lower bands
only couple to the third energy band by an interaction which changes its sign under a rotation by
90 degrees. This interaction is modeled by the λ1 and λ2 terms. Next, for simplicity, we choose the
hopping parameters as t1 = −t2 = t and λ1 = λ2 = t′ and obtain in momentum space the Hamiltonian

HTiO2/VO2,k =
∑
k

Ψ̂†k

ε̃1,k 0 Vk
0 ε̃2,k Vk
Vk Vk ε3

 Ψ̂k , (7.7)
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Figure 7.2: Panel (a) shows the heterostructure 5/3 TiO2/VO2 where V2, V3, and V1 label
the V ion sites. (This figure was taken from [108]). In panel (b), the energy dispersion of the
heterostructure TiO2/VO2 can be seen. There are four anisotropic Dirac cones in the first Brillouin
zone which are rotated by 45 degrees with respect to each other.

where Ψk is a three component fermionic field and

ε̃1,k = ε1 + 2t
(

cos(kxa) + cos(kya)
)

(7.8)

ε̃2,k = ε2 − 2t
(

cos(kxa) + cos(kya)
)

(7.9)

Vk = 2t′
(

cos(kxa)− cos(kya)
)
, (7.10)

with a being the lattice constant. Since the third energy band is energetic far off, the above Hamiltonian
can be downfolded to a renormalized two orbital problem with

HTiO2/VO2,k =
∑
k

ψ̂†k

ε̃1,k V 2
k
ε3

V 2
k
ε3

ε̃2,k

 ψ̂k . (7.11)

The energy dispersion of TiO2/VO2 in the tight-binding model is thus

ε±k =
ε̃1,k + ε̃2,k

2
± 1

2

√√√√(ε̃1,k − ε̃2,k)2
+ 4

(
V 2
k

ε3

)2

, (7.12)

which is shown in Fig. 7.2 (b). There are four anisotropic Dirac points located at K±,± = π
2a(±1,±1).

As already mentioned before, the energy dispersion is linear along one axis and parabolic along the
perpendicular one. However, these main axis are rotated by 45 degrees to each other for the four
different Dirac cones. Next, the energy dispersions are Taylor expanded around the four Dirac points
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and we obtain the following Hamiltonian:

HTiO2/VO2,K±,±+k =
∑
k

ψ̂†K+,++k

(
2(kx + ky)t 4(kx − ky)2t′2

4(kx − ky)2t′2 −2(kx + ky)t

)
ψ̂K+,++k

+
∑
k

ψ̂†K−,−+k

(
−2(kx + ky)t 4(kx − ky)2t′2

4(kx − ky)2t′2 2(kx + ky)t

)
ψ̂K−,−+k

+
∑
k

ψ̂†K+,−+k

(
2(kx − ky)t 4(kx + ky)

2t′2

4(kx + ky)
2t′2 −2(kx − ky)t

)
ψ̂K+,−+k

+
∑
k

ψ̂†K−,++k

(
−2(kx − ky)t 4(kx + ky)

2t′2

4(kx + ky)
2t′2 2(kx − ky)t

)
ψ̂K−,++k .

(7.13)

Due to the four rotated anisotropic Dirac cones, the above energy dispersion of the TiO2/VO2 will
lead to a superposition of effects arising because of the relativistic energy dispersion and of the ones
arising due to the classical part of the energy spectrum. In order to distinguish clearly which physics
occur because of the linear part of the energy spectrum and which due to the parabolic part, we will
focus for the remainder of this thesis on systems with only one anisotropic Dirac cone per Brillouin
zone. This system will be described by the Hamiltonian introduced in the next subsection.

7.1.3 The Hamiltonian

All four terms of the Hamiltonian in Eq. (7.13) can be cast into the form

H0,ADS =

∫
d2rψ̂†r

(
− 1

2m
∇2
xσx − iv∇yσy

)
ψ̂r . (7.14)

Here, m is the effective mass along the x-direction and v the velocity along the y-direction. The Pauli
matrices σx and σy describe the pseudo-spin space and denote the valence and conductance band.
Furthermore, we introduce the momentum scale k0 = 2mv. The energy spectrum originating from this
Hamiltonian is

ελk = λ

√√√√( k2
x

2m

)2

+
(
vky

)2
, (7.15)

with the velocity of the quasiparticles vλk = ∂ελk/∂k. In Fig. 7.3, the energy spectrum is shown over
the equal energy contour plot. We clearly see the parabolic energy dispersion in the kx-direction and
the linear behavior along the ky-direction. The density of states is proportional to the square root of

the frequency, i. e., ρ(ω) =
Γ(5/2)

√
|ω|k0

4π3/2 Γ(3/4)v
.

Next, we are going to define the Matsubara Green’s function

Gk,iω =
(

iωσ0 −H0,ADS

)−1
= −

iωσ0 + k2
x

2mσx + vσy

ω2 + ε2λk
. (7.16)

The last quantity, we will introduce here, is the current operator. The current operator is derived by
substituting k→ k − eA in the Hamiltonian Eq. (7.14) and taking the derivative with respect to the
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7.2 Coulomb interaction in ADS

Figure 7.3: The energy dispersion of a single anisotropic Dirac cone is depicted over an equal
energy contour. In the kx-direction, the energy spectrum is parabolic, whereas in the ky-direction
the energy spectrum shows linear behavior with the velocity v.

vector potential A which yields

jx =

∫
k

ψ̂†k
kx
m
σxψ̂k and jy =

∫
k

ψ̂†kvσyψ̂k . (7.17)

After having defined the non-interacting Hamiltonian of ADSs, we are now going to include the
Coulomb interaction between the quasiparticles

HC =
1

2

∫
r

∫
r′

ψ̂†rψ̂
†
r′

e2

ε|r − r′|
ψ̂r′ψ̂r , (7.18)

and implement this interaction via a renormalization group (RG) analysis in the next section.

7.2 Coulomb interaction in ADS

Again we pose the question how the Coulomb interaction between the quasiparticles in ADSs influences
the different transport properties. For an ADS described by the Hamiltonian H0,ADS +HC a renormal-
ization group (RG) analysis in the large N limit is introduced in Sec. 7.2.1. In the same section, we
will see how physical observables such as the compressibility, the heat capacity and the entropy behave
upon combining scaling arguments and RG. This RG analysis will be applied both in the collisionless
and in the hydrodynamic regime. However, in the hydrodynamic regime the Coulomb interaction
enters the calculation one more time in form of the collision integral. Since the coupling constant
of ADSs decreases under growing RG-flow, the collision integral can be obtained using perturbation
theory in 1/N . The derivation of the collision integral is elaborated in Sec. 7.2.2.

7.2.1 Large N Renormalization group analysis in the strong coupling limit

As in the previous part treating the transport properties of graphene, we want to study the influence of
the Coulomb interaction on the transport properties of ADSs. Therefore, we will apply a RG analysis
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7 Field-theoretical description and Coulomb interaction

in the large N -limit, where N is the number of fermionic flavors. We find for the organic conductor α-
(BEDT-TTF)2I3 N = 2 because of its spin degrees of freedom while for the heterostructure TiO2/VO2

we find N = 8 because of the four Dirac cones and the spin of the fermions. The RG analysis in
the large N -limit is a powerful method as was previous shown for isotropic systems such as graphene
in Refs. 117 and 118. The RG analysis for ADSs presented here, was published by Isobe et al. in
Ref. 116 and we will follow closely their derivation.

Let us start with the action of ADSs treating the Coulomb interaction with the help of a Hubbard-
Stratonovich field φQ with Q being the relativistic four-component momentum Q = (Ω, q). It is

S = −
∫
P
ψ̂†P

(
iω −H0,ADS

)
ψ̂P + i

√
2πe

∫
P,Q

ψ̂†P+Qψ̂P φ̂Q +
1

2

∫
Q
|q|φ̂Qφ̂Q . (7.19)

Next, let us take a closer at the self-energy corrections of the bosonic fields φ̂Q and the fermionic fields

ψ̂P in first-order of the coupling constant αN . The coupling constant of the system is

α =
e2

~v
and αN = N

e2

~v
, (7.20)

where αN is finite for large N . In the following, we set again ~ = 1 and restore it where needed. The
self-energy of the Hubbard-Stratonovich fields is given by the polarization operator

Π(q, ω) = e2

∫
Ω

∫
k

Tr
(
Gk+q,i(ω+Ω)Gk,iΩ

)

= −αNv

dx (2m)−1/2 q2
x

∆(ω, q)1/4
+
dy (2m)1/2 q2

y

∆(ω, q)3/4

 ,

(7.21)

where ∆(ω, q) = ω2 + c

(
q2
x

2m

)2

+ v2q2
y and dx = 1

8
√
π

Γ(3/4)
Γ(9/4)

, dy = 1
8
√
π

Γ(5/4)
Γ(7/4)

, and c =

(
2√
π

Γ(3/4)
Γ(9/4)

)4

(see Ref. 116). Thus, the full boson propagator is defined by the expression D(q,Ω)−1 = |q|−Π(q,Ω).
Now, we can evaluate the self-energy of the ADSs at the charge neutrality point. Thereby we use the
full bosonic operator and obtain

Σ(k, ω) = −2π
vαN
N

∫
d2q

(2π)2

∫
dΩ

2π
D(q,Ω)Gk−q,i(ω−Ω) . (7.22)

This fermionic self-energy can be parametrized in the following way

Σ(k, ω) = (1−Zω)iω + v(Zx − 1)
k2
x

k0
σx + v(Zy − 1)kyσy , (7.23)

with

Zω = 1 +
Cω
N

log
(
vΛ/k

)
+O(N−2)

Zx = 1 +
Cx
N

log
(
vΛ/k

)
+O(N−2)

Zy = 1 +
Cy
N

log
(
vΛ/k

)
+O(N−2) ,

(7.24)
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where k = max
(
k2
x/k0, ky, ω

)
, Λ is the UV cut-off, and Cω,x,y are numerical constants. The electron-

plasmon vertex is again determined using the Ward-identity Eq. (4.29), i. e., Γk = e
(

1− ∂Σ(k,ω)
∂iω

)
=

eZe. Thus, we obtain for the action of ADS at the charge neutrality point

S = −
∫
P
ψ̂†P

(
iω −H0,ADS − Σ(k, ω)

)
ψ̂P + i

√
2πe

∫
P,Q

Γqψ̂
†
P+Qψ̂P φ̂Q +

1

2

∫
Q

(
|q| −Π(k, ω)

)
φ̂Qφ̂Q .

(7.25)

which can be cast into the form Eq. (7.19) by introducing the renormalized quantities ψ̂R = ψ̂Z1/2
ω ,

vR = v
Zy
Zω , k0,R = k0

Zy
Zx , and eR = ΓZ−1

ω = e, where we obtained the last relation using the Ward-
identity. Now we find for the renormalized coupling constant and the momentum scale

αR =
e2
R

vR
= α
Zω
Zy

= α

(
1 +

Cω − Cy
N

log(Λ/k)

)

k0,R = k0
Zy
Zx

= k0

(
1 +

Cy − Cx
N

log(Λ/k)

)
,

(7.26)

which can be cast into the following flow equations

dα

dl
= α

Cω − Cy
N

= −γvα ⇒ α(b) = αb−γv

dk0

dl
= k0

Cy − Cx
N

= γk0k0 ⇒ k0(b) = k0b
γk0 .

(7.27)

The numerical values of the coefficients Cω, Cx, and Cy are obtained in the strong coupling limit
and yield γv = 0.3625/N and γk0 = 0.2364/N [116]. With increasing RG flow, the coupling constant
decreases while the momentum scale increases. What consequence does this behavior under growing
RG flow have on the energy spectrum of the ADSs? To answer this question, we consider how the
mass and the velocity flow under growing RG flow parameter l, i. e., b = el. In the strong coupling
limit, their flow equations are

dm

dl
= −0.1261

N
m = −γm m and

dv

dl
=

0.3625

N
v . (7.28)

The anisotropy of the energy spectrum increases with increasing RG flow, since both the velocity v
and the inverse mass m−1 will grow under the RG flow, but the velocity will increase much faster than
the inverse mass. This is depicted in Fig. 7.4.

The RG in the strong coupling regime will give rise to power laws in the observables. However, in
the weak coupling limit these power laws are substituted by logarithmic factors, see Ref. 116.

Physical Observables

In the following, we will combine the RG analysis in the large N -limit and in the strong coupling
regime and the physical scaling arguments to determine different observables. The physical observable
O is connected to their renormalized value by

O(kx, ky, ω, α) = ZOO(Zx(l)kx, bky, Zω(l)ω, α(l)) , (7.29)
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7 Field-theoretical description and Coulomb interaction

Figure 7.4: The renormalized energy spectrum (transparent one) and the unrenormalized energy
spectrum are shown. Panel (a) shows the parabolic part of the energy spectrum, which is less
strongly renormalized than the linear one which is shown in panel (b).

where ZO is the scaling factor. Furthermore the momentum ky is rescaled by ky → bky with b = el.
The frequency and temperature are renormalized by the scaling factor Zω and the x-component of the
momentum by Zx. We find for these scaling factors the following RG flow equations

dZω
dl

= Zω

(
1 +

Cω − Cy
N

)
⇒ Zω = b1−γv

dZx
dl

= Zx
1

2

(
1 +

Cx − Cy
N

)
⇒ Zx = b

1
2

(
1−γk0

)
.

(7.30)

As an example let us study again, as in the case of graphene in Sec. 4.3.2, the compressibility of ADSs
which is defined as the derivative of the charge carrier density with respect to the chemical potential,
i. e., κ = ∂n

∂µ . Here, the particle density n has the scaling factor Zn = b−1Z−1
x and thus we find for the

compressibility Zκ = Zω/(bZx). These scaling arguments imply

κ(T ) = b−γv−
1
2

(1−γk0
) κ(b1−γv) ∝ TΦκ , (7.31)

with Φκ = 1
2 −

1
2(γk0 − 3γv) = 1

2 + 0.4255
N . The compressibility vanishes less slowly with decreasing

temperature than in the case of free anisotropic Dirac fermions κ0 ∝ T 1/2. The next two physical
quantities being studied are the heat capacity and the entropy of the ADSs. Therefore, we first take
a closer look at the free energy density with f(T, µ) = b−1Z−1

x Zω f(ZωT,Zωµ) which reproduces the
scaling dimensions of the particle density via n = ∂f

∂µ . Thus, it follows for the heat capacity

C(T ) = b−1Z−1
x Z−1

ω C(ZωT ) = b−
1
2

(3−γk0
)C(b1−γvT ) ∝ T φs (7.32)

with φs = 3
2 −

1
2(γk0 − γv) = 3

2 + 0.4255
N . The heat capacity is connected to the entropy of the system

via C = T ∂S
∂T and we obtain for the entropy

s(T ) ∝ T φs ∝ T
3
2

+ 0.4255
N . (7.33)
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The entropy of free anisotropic Dirac fermions is proportional to T 3/2 and due to the renormalization
arising from the Coulomb interaction it also vanishes less slowly with decreasing temperature to the
power T 0.4255/N .
As we have seen above due to the anisotropy of the energy spectrum, the two momentum components
kx and ky scale differently. The anisotropy generates two different length scales in our system which
are given in the hydrodynamic regime by

ξx ∝ T
− 1

2

(
1+ 0.1261

N

)
ξy ∝ T−(1+ 0.3625

N
) ,

(7.34)

and for the collisionless regime the temperature is substituted by frequency. The occurrence of the two
different length scales will become very important in our analysis of the transport properties of ADS.
They will be the reason for the beautiful and fascinating characteristics of the electrical conductivity
and for the violation of the lower bound which occurs for one of the viscosity coefficients.

7.2.2 The collision integral in the hydrodynamic regime

In the hydrodynamic regime, the interaction between the electrons due to the Coulomb potential is
implemented in the quantum Boltzmann equation via the collision integral Ieeλ . In this section we
are going to derive the collision integral for ADSs which is based on my work in collaboration with
Boris N. Narozhny and Jörg Schmalian pulished in Ref. 119. Due to the previous RG analysis, we
can evaluate the collision integral using perturbation theory where the small parameter is 1/N . The
collision integral due to Coulomb interaction is defined by [36]

Ieeλ (k, ω) = Σ>
λ (k, ω)G<λk,ω − Σ<

λ (k, ω)G>λk,ω , (7.35)

where Σ<,>
λ (k, ω) and G<,>λkω are the lesser and greater self-energies and Green’s functions. The lesser

and greater Green’s functions are defined as

G<λλ′k,ω = ifλkA(k, ω)δλλ′ (7.36)

G>λλ′k,ω = i[1− fλk]A(k, ω)δλλ′ , (7.37)

where fλk is the distribution function of the quasiparticles/quasiholes and A(k, ω) is the spectral
function of the Green’s function, which we approximate here for simplicity as A(k, ω) = 2πδ(ω −
λεk). This simplification has the same temperature dependence as the general form of A(k, ω) =

−2 Im ΣR(k,ω)
(ω−ζp−Re ΣR(k,ω))2+(Im ΣR)2 . The lesser self-energy in first order of 1

N is given by

Σ<
λ (k, ω) = e2

∑
α

∫
ω′

∫
q

n(ω′) ImD(q, ω′)G<αk,ωNαλ(k,k − q) , (7.38)

where Nαλ(k1,k2) is

Nαλ(k1,k2) =
1

2

1 +
1

εαk1ελk2

(
k2

1,xk
2
2,x

k2
0

+ k1,yk2,y

) , (7.39)

and Im D(q, ω′) = Im(q − Π(ω′, q))−1 is the spectral function for the bosons which in the strong
coupling limit has the form Im Π(q, ω′)−1, see Eq. (7.21) for the explicit expression. The form of
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7 Field-theoretical description and Coulomb interaction

the greater self energy is analogous to the one of the lesser self energy. Hence, the collision integral
describing the Coulomb interaction can be written as

Ieeλ (k, ω) = −
∫
q

Im Π(q, ω − εαk−q)−1 Nαλ(k,k − q)Aλ(k, ω)

×
{[

1− fαp−q
]
fλω + n0(ω − εαk−q)

[
fλω − fαp−q

]}
, (7.40)

where n0(ω) is the bosonic distribution function in equilibrium and we sum over equal indices. Every-
thing is known in the above equation but the distribution functions of the quasiparticles/holes fλk. In
the linear response regime we can expand the fermionic distribution function up to first order of the
source term responsible for the motion of the quasiparticles, i.e. in the case of the electrical transport
the electrical field E and in the case in the hydrodynamic transport the external velocity gradient
∂uα/∂xβ. Thus, we choose for the distribution function the ansatz

fλk = f
(0)
λk +

1

T
f

(0)
λk

(
1− f (0)

λk

)
hλk . (7.41)

The function hλk is proportional to the source term of the perturbation and to the function gλk =∑
n ψnφ

(n)
λ,k. The function gλk is expanded into a set of basis functions φ

(n)
λ,k and the corresponding

coefficients ψn. For ADS the basis functions φ
(n)
λ,k which are the different modes of the system are

given by the energy φ
(0)
λ,k = λελk and the band index φ

(1)
λ,k = λ. For the electrical transport and for the

transport due to a velocity gradient, it is respectively [43, 46]

hλkE = λvλk ·EgEλk (7.42)

hλkuβ,α = λ

(
vαλkkβ − δαβ

ελk
2

)
∂uβ
∂xα

gλk
β . (7.43)

Upon inserting the linearized distribution function into the collision term and integrating over the
frequency with the spectral function A(k, ω) = 2πδ

(
ω − ελk

)
, we obtain

Ieeλ (k) =
1

T

∫
q

Im Π
(
q, ελk − ελk−q

)−1
Nλλ(k,k − q)

× n(0)(ελk − ελk−q)
[
1− f (0)

λk

]
f

(0)
λk−q

[
hλk − hλk−q

]
+

1

T

∫
q

Im Π
(
q, ελk + ελk−q

)−1
Nλ−λ(k,k − q)

× n(0)(ελk + ελk−q)

[
1− f (0)

λk

]
f

(0)
−λk−q

[
hλk − h−λk−q

]
.

(7.44)

The first term describes intra-band scattering and the second term inter-band scattering processes
mediated by the Coulomb interaction.

Now after setting the stage, we can begin to study the transport properties of ADSs. Let us start
with the conductivity in the following chapter.
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8 Chapter 8

The conductivity...

In Chap. 5, we discussed the conductivity of graphene in the hydrodynamic and collisionless regime.
We found that in the high-frequency limit the conductivity is universal and depends neither on
frequency nor on temperature with σ0(Dirac) = e2

4~ [1]. However, in the hydrodynamic regime, a
logarithmic temperature dependence enters via the renormalized coupling constant α(T ) = α/(1 +

α log(ΛT /T )/4), i. e., σ0(Dirac) = 0.0193 e2

~α(T )2 [19] and the conductivity approaches for increasing

temperatures the value σ0 = 2
π2

e2

~ [95].

In this chapter, we study the conductivity of anisotropic Dirac systems (ADSs) which have with
respect to the energy dispersion a lower symmetry than graphene. Thus, a natural question to ask
is how does the conductivity change for systems with lower symmetry and how does the Coulomb
interaction influence this transport quantity? These questions are answered in Sec. 8.1 where the con-
ductivity is studied using the quantum Boltzmann equation in the hydrodynamic regime (ω � τ−1).
We find fascinating transport properties, since the ADSs show insulating and metallic temperature
behavior depending on the direction of the applied electrical field. Using the occurrence of the two
length scales, mentioned in Sec. 7.2.1, we will explain this impressive behavior of the conductivity and
show the breakdown of single parameter scaling. In Sec. 8.3, the characteristics of the conductivity
are studied in the collisionless regime (ω � τ−1) where we find the same beautiful transport properties
as in the hydrodynamic regime.

This chapter is based on my work in collaboration with Boris N. Narozhny and Jörg Schmalian
which is published in Ref. 119.

8.1 ...in the hydrodynamic regime

Now, let us start our investigation of the conductivity in the hydrodynamic regime at the charge
neutrality point, i. e., µ = 0. As we have seen in Sec. 1.2 and Sec. 5.1, the quantum Boltzmann
equation is used to determine the conductivity. The Boltzmann equation is given by

∂fλk
∂t

+ F
∂fλk
∂k

= −δfλk
τdis

+ Ieeλ (k) , (8.1)

where F = e
(
E + vλk ×B/c

)
is the Lorentz force with the electrical field E and the magnetic field

B and τdis is the relaxation time due to impurity scattering. The derivation of the collision integral
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describing the scattering processes due to the Coulomb potential between the electrons can be found in
Sec. 7.2.2, while the explicit expression is given in Eq. (7.44). The distribution function fλk is assumed

to be the sum of the Fermi-Dirac distribution f
(0)
λk =

(
1 + eελk/T

)−1
describing the equilibrium part

and the out-off equilibrium correction δfλk. We perform our analysis in the linear response regime
where the out-off equilibrium correction is proportional to the source of the perturbation. Thus, the
distribution function is given by

fλk = f
(0)
λk + δfλk

= f
(0)
λk +

1

T
f

(0)
λk (1− f (0)

λk )hλk .
(8.2)

Thereby, we choose as ansatz for the non-equilibrium correction of the distribution function [43, 120]

hλk
E = λvλk ·E gEλk , (8.3)

where gEλk is an unknown function which is going to be determined by solving the Boltzmann equation.

In order to determine the function gEλk, gEλk is expanded in a set of basis functions φ
(n)
λk with the

unknown coefficients ψEn , i. e., g
‖
λk =

∑
n ψ
‖
nφ

(n)
λk . In general, these basis functions can be given by

Chebyshev polynomials. Here however, we implemented a two-mode approximation, i. e., we describe
the system only using two different basis functions. These two dominant modes are the eigenenergy of

the system φ
(0)
λk = λελk and the band index denoting the conductance or valence band φ

(1)
λk = λ. Upon

inserting these definitions in the Boltzmann equation Eq. (8.1), multiplying the Boltzmann equation

from the left with the basis function φ
(n)
λk , and after integrating and summing over the momentum k

and the band index λ respectively, the Boltzmann equation can be cast into the following matrix form

MEψ
E = GE , (8.4)

where the matrix

Mee
nm =

1

T

∑
λ

∫
k,q

Im Π
(
q, ελk − ελk−q

)−1
Nλλ(k,k − q)

× n(0)(ελk − ελk−q)
[
1− f (0)

λk

]
f

(0)
λk−q

[
φ

(n)
λk φ

(m)
λk −φ

(n)
λk−qφ

(m)
λk

]
+

1

T

∑
λ

∫
k,q

Im Π
(
q, ελk + ελk−q

)−1
Nλ−λ(k,k − q)

× n(0)(ελk + ελk−q)

[
1− f (0)

λk

]
f

(0)
−λk−q

[
φ

(n)
λk φ

(m)
λk − φ

(n)
−λk−qφ

(m)
λk

]
arises due to the collision integral and the vector

Gm,E =
1

T

∑
λ

∫
k
λφ

(m)
λk f

(0)
λk

[
1− f (0)

λk

]
(8.5)

consists of the terms proportional to the electrical field. Here, we assumed that no magnetic field is
applied and no impurity scattering occurs. Next, the explicit expressions are given and furthermore,
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upon introducing dimensionless variables, Ω = ω/T , x =
√

1/(Tk0)kx, and y = ky/T , the temperature
dependence of the different terms is determined. Thereby, attention should be drawn to the fact
that due to the anisotropy of the system the two components of the momentum scale differently with
temperature. For the y-component, we find ky ∝ T while for the x-component it is kx ∝

√
T . The

matrices are given by the expressions

Mee
nm = T 3/2 k

1/2
0 [φ

(m)
λk ][φ

(n)
λk ] Ceenm,E (8.6)

and
Gm,E = T 1/2[φ

(m)
λk ]Cfm,E , (8.7)

where Ceenm,E and Cfm,E are numerical coefficients and the modes have the dimensionality [φ
(0)
λk ] =

[λελk] = T . Now, we can invert the matrix equation Eq. (8.4) to obtain the coefficients ψEn . These
coefficients determine the electrical current

j =
∑
λ

∫
k

vλkδfλk =
e

T

∑
λ,n

∫
k

λvλkf
(0)
λk

(
1− f (0)

λk

)(
vλk ·E

)
ψEn φ

(n)
λk , (8.8)

or written in components as

jα =
e

T

∑
λ,n

∫
k
λf

(0)
λk

(
1− f (0)

λk

)(
vαλk
)2
ψEn φ

(n)
λkEα , (8.9)

where we used the fact that the integral of the two different velocity components over the momentum
is zero, i. e.,

∫
k v

x
λkv

y
λ′k = 0. Now, the conductivity tensor can be defined since, as we have seen in

Chap. 2, the conductivity tensor connects the electrical current to the electrical field via

jα =
∑
β

σαβEβ . (8.10)

Hence, the conductivity tensor is given at the charge neutrality point by

σαα =
∑
λ

∫
k

(vαλk)2

T

2eελk/T(
1 + eελk/T

)2ψ
‖
1 (8.11)

with ψ
‖
1 = vk0

T

Cf1,EC
ee
00,E

Cee00,E C
ee
11,E−C

ee
01,E

2 , where we used the fact that the mode φ
(0)
λk = λελk does not contribute

to the current. Only the mode φ
(1)
λk = λ determines the electrical current. Thus we find for the

conductivity tensor

σxx,yy(T ) ∝ N

(
T

vk0

)±( 1
2

+φσ)

, (8.12)

with φσ = (γv + γk0)/2 = 0.299/N . The off-diagonal elements of the conductivity tensor σxy and
σyx are zero, since as mentioned above the integral of two different velocity components over the
momentum is zero. The temperature dependence of the diagonal elements of the conductivity tensor
is depicted in Fig. 8.1 (b). For decreasing temperature, σxx vanishes and we find insulating behavior,
if the electrical field is aligned along the x-axis which has the parabolic energy spectrum in momentum
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Figure 8.1: Panel (a) shows the spatial distribution of the electrical current for different temper-
atures. In panel (b) we see the temperature dependence of the conductivity tensor. It becomes
insulating in the direction with the parabolic energy dispersion and metallic in the linear one.

space. Whereas, the σyy component of the conductivity tensor increases with decreasing temperature.
Thus, the ADSs are metallic, if the electrical field is aligned along the y-axis which corresponds to the
linear energy dispersion. The additional exponent φσ is obtained using the renormalization group (RG)
analysis of Sec. 7.2.1 and combining it with the scaling arguments. A detailed derivation can be found
in App. B.1.1. In Fig. 8.1 (a), we see the spatial distribution of the electrical current depending on the
direction of the electrical field for different temperatures. For small temperatures, the jy-component
is the dominating current component as expected, while for large temperatures the jx-component
becomes more and more important and the jy-component decreases.

Hitherto, we studied pristine ADSs systems, i. e., system with no impurity scattering. The main
effect of impurities is on the σyy component of the conductivity tensor which would instead of diverging
at zero temperature have a finite value. Upon implementing the impurity scattering, a self-consistent
Born-approximation should be performed as in Refs. 121 and 95.

Furthermore, so far only systems with one anisotropic Dirac cone in the first Brillouin zone were
investigated, as it is the case for the organic charge transfer salt α-(BEDT-TTF)2I3. However, in the
case of the TiO2/VO2 heterostructure there are 4 Dirac cones in the first Brillouin zone which are
rotated by 45 degrees with respect to each other. Here, the insulating behavior is not to be seen, since
the diagonal elements of the conductivity tensor are a superposition of our insulating component σxx
and the metallic component σyy. It is

σαα,TiO2/VO2
= N

[(
T

vk0

)−( 1
2

+φσ)

+

(
T

vk0

)+( 1
2

+φσ) ]
. (8.13)

The reason for this is simple. Due to the energy dispersion of the heterostructure, described by
Eq. (7.13) the velocity components of TiO2/VO2 are a superposition of the velocity component vxλk
and vyλk, i. e., vx,yλk ,TiO2/VO2

= vyλk±v
x
λk. This superposition of the two velocity components propagates

to the conductivity tensor of TiO2/VO2 and thus the metallic temperature behavior always dominates.
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8.2 Scaling Behavior

Now let us turn back to ADSs with only one anisotropic Dirac cone in the first Brillouin zone. Here,
a natural question to be asked is: how can a material be metallic and insulating depending on the
direction of the applied electrical field? In order to answer this question, the scaling behavior of
the conductivity for ADSs is investigated. Therefore, let us first remind ourselves of the physical
scaling of the conductivity for an isotropic system such as graphene. We have seen in Sec. 2.3 that
the conductivity is scale invariant under RG for an isotropic system in two dimensions. Hence, for
graphene it is

σαα
(
T
)

= ξ0σαα
(
ZTT

)
. (8.14)

The temperature is rescaled by ZT which is defined in Eq. (4.31) and the two components of the
momentum are rescaled by the same length scale ξ. However for ADSs, this single parameter scaling
breaks down. Due to the anisotropy of the energy dispersion, being Newtonian-like in the x-direction
and Dirac-like in the y-direction, two different length scales arise with

ξx ∝ T
− 1

2

(
1+ 0.1261

N

)
,

ξy ∝ T−(1+ 0.3625
N

) ,
(8.15)

where the exponents proportional to 1/N originate from the RG analysis in the large N -limit and in the
strong coupling regime, see Sec. 7.2.1 for more details of the RG. These two length scales will rescale
the two components of the momentum. The kx-component is rescaled by ξx which is proportional to
the inverse square root of the temperature and the ky-component by ξy which is proportional to the
inverse temperature. The scale factor of the conductivity is the ratio of these two length scales and we
find for the conductivity tensor

σxx(T ) =
ξx
ξy
σxx

(
ξzyT

)
∝ T+

(
1
2

+ 0.299
N

)
,

σyy(k, T ) =
ξy
ξx
σxx

(
ξzyT

)
∝ T−

(
1
2

+ 0.299
N

)
,

(8.16)

where ξzyT ≈ const. and z = 1 − γv is a dynamic scaling exponent. For σxx the scaling factor is
Zσxx = ξx/ξy, while for the σyy component of the conductivity tensor it is the inverse Zσyy = ξy/ξx.
These two different scaling factors are the reason for the different temperature dependence and thus
are the reason for the metallic and insulating behavior with decreasing temperature in ADSs.

8.3 ...in the collisionless regime

Now, let us see how the conductivity of ADSs at the charge neutrality point behaves in the collision-
less regime. In the collisionless regime the frequency is the fastest time scale ω � τ−1 opposed to the
hydrodynamic regime where the scattering time is the the fastest scale ω � τ−1. For the conductiv-
ity tensor in the collisionless regime the same energy dependence as in the hydrodynamic regime is
expected. The only difference should be that the temperature is now substituted by the frequency.
Using the Kubo-formula, we are going to check if this expectation is justified. The Kubo-formula for
the conductivity is

σαβ = −
ImχJαβ

ω
, (8.17)
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8 The conductivity...

where χJαβ is the correlation function between the α- and β- component of the current operator. The
current operator and the Green’s function are defined in Sec. 7.1.3 in Eq. (7.17) and Eq. (7.16). The
conductivity of free anisotropic Dirac fermions is given by the bare bubble diagrams

χJxx = N T
∑
n

∫
k

Tr
(
ĵxGk,iωn ĵxGk,i(ωn+Ωm)

)
=

N

m2
T
∑
n

∫
k

k2
x Tr

(
σxGk,iωnσxGk,i(ωn+Ωm)

) (8.18)

and

χJyy = T
∑
n

∫
k

Tr
(
ĵyGk,iωn ĵyGk,i(ωn+Ωm)

)
= Nv2

∑
n

∫
k

Tr
(
σyGk,iωnσyGk,i(ωn+Ωm)

)
.

(8.19)

Again the two off-diagonal components χJxy and χJyx are zero due to momentum integration. The
evaluation of the two remaining diagrams yields

σxx(ω) = N

(
ω

vk0

)1/2

Cxx,1

[
f (0)

(
−ω

2

)
− f (0)

(
ω

2

)]
+NCxx,2

(
kBT

vk0

)1/2

δ

(
ω

T

)

σyy(ω) = N

(
ω

vk0

)−1/2

Cyy,1

[
f (0)

(
−ω

2

)
− f (0)

(
ω

2

)]
+NCyy,2

(
kBT

vk0

)−1/2

δ

(
ω

T

)
.

(8.20)

with Cxx,1 = 2π1/2

5 Γ(1/4)
2 , Cxx,2 = 0.931, Cyy,1 =

√
2

12πK(−1) and Cyy,2 = 0.298 where K(m) is the complete

elliptical integral of the first kind.

Let us first consider the limit of zero-frequency which corresponds to the hydrodynamic regime. We
find the same temperature dependence of the conductivity as in the previous section. Hence, both
formalism, the Kubo-formula and the quantum Boltzmann approach, yield two consistent results.

Next, we study the conductivity tensor at finite frequencies and find that the conductivity tensor
shows the same fascinating transport properties as in the hydrodynamic regime. The σxx-component
of the conductivity tensor is proportional to ω+1/2 and shows insulating behavior with decreasing
frequency, while the σyy-component is proportional to ω−1/2 and thus shows metallic behavior with
decreasing frequency. Next, the Coulomb interaction is included into our considerations by applying our
RG analysis. The conductivity will gain again an additional power-law exponent which is proportional
to 1/N . This exponent has the same form in the collisionless regime as in the hydrodynamic. The
conductivity tensor can now be expressed by

σxx,yy(ω) ∝ N
(
ω

vk0

)±( 1
2

+φσ)

, (8.21)

with φσ = (γv + γk0)/2 = 0.299/N . This calculation showed that our expectations were justified.
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8.4 Summary

8.4 Summary

For graphene, a system with isotropic energy dispersion, the conductivity is universal, i. e., it neither
depends on frequency nor on temperature. Only in the hydrodynamic regime a temperature dependence
enters via the renormalized coupling constant and both components of the conductivity tensor behave
on the same way.

In contrast to the isotropic systems, the conductivity tensor of ADSs is energy dependent. Even
more, both in the hydrodynamic and in the collisionless regime, the ADSs are either insulating or
metallic depending on the direction of the applied electrical field. The temperature dependence in the
hydrodynamic regime and the frequency dependence in the collisionless regime are

σxx,yy(T ) ∝ N

(
T

vk0

)±( 1
2

+φσ)

and σxx,yy(ω) ∝ N
(
ω

vk0

)±( 1
2

+φσ)

, (8.22)

with φσ = (γv + γk0)/2 = 0.299/N . These beautiful electrical transport properties occur due to the
breakdown of single parameter scaling. Two different length scales govern the physics of the system
and the conductivity scales as

σαα(ω\T ) =

(
ξx
ξy

)ϕα
σαα(ξzyω\ξzyT ) , (8.23)

where ϕx = 1 and ϕy = −1.
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9 Chapter 9

The viscosity...

In this chapter the viscosity of anisotropic Dirac systems (ADSs) at charge neutrality is investigated.
As can be seen in Chap. 3, the viscosity is a rank four tensor which connects the velocity gradient
∂uδ/∂xγ of a fluid to its energy-stress tensor ταβ. In isotropic systems the energy-stress tensor is
determined by two viscosities, the bulk and the shear viscosity. In contrast to isotropic systems such
as graphene, the dissipative part of the energy-stress tensor is not determined by two viscosities but
by eight viscosity coefficients

τxx
τxy
τyx
τyy

=


ηxxxx 0 0 ηxxyy

0 ηxyyx ηxyxy 0
0 ηyxyx ηyxxy 0

ηyyxx 0 0 ηyyyy



∂ux/∂x
∂ux/∂y
∂uy/∂x
∂uy/∂y

 . (9.1)

The viscosity coefficients are symmetric under a pairwise exchange of the indices, i. e., ηαβγδ = ηγδαβ.
This is most easily seen upon studying the Kubo formula which connects the viscosity coefficients to
the correlation function of two energy-stress tensors, see Eq. (3.36). Applying this symmetry property
reduces the number of independent viscosity coefficients which are needed to be calculated to six.

In the course of this chapter, we will see that the six viscosity coefficients depend strongly on
the flow direction and show fundamentally different temperature dependence. At low temperatures,
the ratio ηαβγδ/s either diverges or stays constant for most viscosity coefficients. Most notably, one
viscosity coefficient ηxyxy violates the famous lower bound of the ratio between viscosity and entropy
η/s [18]1. The ADSs are the first realization in condensed matter physics violating the lower bound.
Further systems violating the bound can be found in anisotropic versions of a super-Yang-Mills plasma
[52, 57, 67], and in ultra cold gases [59], see Sec. 3.6.2. Here, we will present a clear explanation for
the violation of the lower bound and show that again the breakdown of the single parameter scaling
yields this beautiful physics. A consequence of the extremely small shear viscosity can be electron
turbulence, nonlocal transport and extreme sensitivity to nanoelectronics settings.

Thus, we start the contemplation of the viscosity with the derivation of the energy-stress tensor
in Sec. 9.1. Thereby we use the procedure introduced in Sec. 3.2. In Sec. 9.2 the shear viscosity
and its scaling is investigated in the hydrodynamic regime followed by a study of the viscosity in the
collisionless regime in Sec. 9.3. In the last Sec. 9.4, the Navier-Stokes equation is going to be derived.
This extremely important equation governs the flow dynamics of our quasi-particle fluid. Due to the

1The derivation of the lower bound can be found in Sec. 3.6.
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9 The viscosity...

smallness of the viscosity coefficient violating the lower bound, turbulent flow is expected.

This chapter is again based on my work in collaboration with Boris N. Narozhny and Jörg Schmalian
published in Ref. 119.

9.1 The energy-stress tensor

Let us start with the derivation of the energy-stress tensor. Thereby, we follow the steps described
in Sec. 3.2 where the energy-stress tensor is derived from the strain generators. Let us shortly repeat
the most important equations. The total strain generator Jαβ consists of a summand exhibiting the
transformation of the spatial coordinates Lαβ and the other summand generates the transformations
in the pseudospin space Sαβ, i. e., Jαβ = Lαβ + Sαβ. These strain generators have the explicit form
Lαβ = −xαpβ + i

2δαβ and Sαβ = −
∑

γ
1
4εαβγσγ . The total strain generator is connected to the

energy-stress tensor via the time derivative

Tαβ = −∂tJαβ . (9.2)

Next, we state the expression of the energy-stress tensor due to Lαβ which is

T
(L)
αβ = −i

[
H0,ADS,Lαβ

]
=

∫
k

ψ̂†k

(
2 v
k0
σxkx
vσy

)
α

(
kx
ky

)
β

ψ̂k , (9.3)

and the expression due to Sαβ

T
(S)
αβ = −i[H0,ADS,Sαβ] =

∫
k

ψ̂†k

(1
2
v
k0
k2
x

1
2vky

)
α

σβ − σα

(
1
2
v
k0
k2
x

1
2vky

)
β

 ψ̂k . (9.4)

The different coefficients of the energy-stress tensor have thus the form:

Txx =

∫
k
ψ̂†k 2

v

k0
k2
xσx ψ̂k ,

Tyy =

∫
k
ψ̂†k vσyky ψ̂k ,

Txy =

∫
k
ψ̂†k

[
σx

(
2
v

k0
kxky −

1

2
vky

)
+

1

2

v

k0
k2
xσy

]
ψ̂k ,

Tyx =

∫
k
ψ̂†k

[
σy

(
vkx −

1

2

v

k0
k2
x

)
+

1

2
vkyσx

]
ψ̂k .

(9.5)

Upon introducing the energy band representation (ψ†k = γ†kP
−1
k and ψk = Pkγk) and using the following

transformation properties of the Pauli matrices

P−1
k σxPk = − k2

x

k0εk
σz +

ky
εk
σy , (9.6)

P−1
k σyPk = −ky

εk
σz −

k2
x

k0εk
σy , (9.7)
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we obtain the energy-stress tensor due to intra-band scattering:

Παβ =
∑
λ

∫
k
vαλkkβ γ̂

†
λkγ̂λk , (9.8)

which has the same form as the one we obtained from the commutator of the momentum density with
the Hamiltonian and thus takes only the transformation of the spatial coordinates into account. In the
following, Tαβ will be used to determine the viscosity coefficients in the collisionless regime, whereas we
use Παβ in the hydrodynamic regime. This is justified because of the low energies in the hydrodynamic
regime, interband processes are not significant. Only in the collisionless regime, the influence of the
pseudospin and the interband processes is seen.

9.2 ...in the hydrodynamic regime

Now, let us investigate the viscosity in the hydrodynamic regime. The viscosity tensor connects
the velocity gradient field to the dissipative part of the energy-stress tensor. Hence, we start our
examination of the viscosity by calculating the average of the energy-stress tensor Παβ. In linear
response, the averaged energy-stress tensor is the sum of the equilibrium part of the energy-stress
tensor παβ which is determined by the Euler equations and the dissipative part ταβ. Thus, it is〈

Παβ

〉
=
∑
λ

∫
k

vαλkkβ

〈
γ̂†λkγ̂λk

〉
=
∑
λ

∫
k

vαλkkβfλk = παβ + ταβ , (9.9)

where fλk is the distribution function of the quasiparticles. The distribution function consists of

an equilibrium part described by the Fermi-Dirac function, f
(0)
λk = (1 + e(ελk+u·k)/T )−1, and a part

describing the out-off equilibrium corrections δfλk, i. e., fλk = f
(0)
λk + δfλk. The dissipative part of the

energy-stress tensor is defined by this out-off equilibrium correction, i. e.,

ταβ =
∑
λ

∫
k

vαλkkβδfλk . (9.10)

In linear response, the out-off equilibrium correction to the distribution function can be expanded in

first order to the perturbation of the system, i. e., δfλk = f
(0)
λk (1 − f (0)

λk )hλkuβ,α/T . In our case, the

perturbation is the gradient of the hydrodynamic velocity,
∂uβ
∂xα

, and hence for hλkuβ,α the following
ansatz is chosen

hλkuβ,α =
∑
αβ

λ

(
vαλkkβ − δαβ

ελk
2

)
gβλk

∂uβ
∂xα

. (9.11)

A detailed derivation of this ansatz can be found in Sec. 3.5. The function gβλk is expanded into a

set of basis functions weighted with coefficients ψβn , i. e., gβλk =
∑

n ψ
β
nφ

(n)
λk . These basis functions are

different modes of the system. In ADSs the dominant modes are given by the energy φ
(0)
λk = λελk and

the band index φ
(1)
λk = λ. What remains to be done is to identify the coefficients ψβn . They pin down

the out-off equilibrium correction δfλk and thus fix the dissipative part of the energy-stress tensor. In
order to determine δfλk, the above described ansatz of the distribution function is inserted into the
quantum Boltzmann equation

∂fλk
∂t

+ vλk
∂fλk
∂x

= Ieeλ . (9.12)
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Upon multiplying the quantum Boltzmann equation with the mode φ
(m)
λk and integrating and summing

over the momentum and the band index respectively, the Boltzmann equation can be cast into a matrix
form (

Mee
ux,y 0

0 Mee
uy,x

)(
ψx

ψy

)
=

(
Gux,y

Guy,x

)
, (9.13)

where the matrix Mee
uα,β

corresponds to the collision integral due to the Coulomb potential between
the quasiparticles and the vector Guα,β corresponds to the term proportional to vλα in the Boltzmann
equation Eq. (9.12). The vector ψα consists of the coefficients ψn and is given by ψα = (ψα0 , ψ

α
1 ).

(For simplicity it was assumed that the distribution function is time independent. However, a time
dependence of the distribution function can easily be implemented in this procedure.) The explicit
expressions of these terms can be found in App. B.2. Upon introducing dimensionless variables, Ω =
ω/T , x =

√
1/(Tk0) kx, and y = ky/T , the temperature dependence of the different terms are found

Mee
nm,ux,y = T 2

[
φ

(m)
λk

] [
φ

(n)
λk

]
Ceenm,ux,y ,

Mee
nm,uy,x = T 3

[
φ

(m)
λk

] [
φ

(n)
λk

]
Ceenm,uy,x ,

(9.14)

and

Gm,ux,y = T [φ
(m)
λk ] Gm,ux,y ,

Gm,uy,x = T 2 [φ
(m)
λk ] Gm,uy,x ,

(9.15)

where Ceenm,ux,y , C
ee
nm,uy,x , Gm,ux,y , and Gm,uy,x are numerical coefficients. The modes have the following

temperature behavior [φ
(0)
λk ] = [λελk] = T and [φ

(1)
λk ] = [λ] = 1. Upon inverting the matrix equation

Eq. (9.13), the coefficients ψβn and their temperature dependence are determined. The components of
the shear viscosity tensor can now be calculated by

ηαβγδ =
∑
λ

∫
k

λvαλkkβ

(
vγλkkδ − δγδ

ελk
2

)
gβλkf

(0)
λk (1− f (0)

λk )/T . (9.16)

The resulting shear viscosities at the charge neutrality point are given by

ηαβγδ = N Cαβγδ
k2

0

~

(
T

vk0

)φαβγδ
, (9.17)

which are proportional to the fermionic flavor N and the numerical constants Cαβγδ of order unity.
The temperature of the viscosity coefficients ηxyxy and ηyxyx scale with the exponents

φxyxy =
5

2
+

1

2

(
γk0 + 5γv

)
=

5

2
+

1.02445

N
,

φyxyx =
1

2
− 1

2

(
3γk0 − γv

)
=

1

2
− 0.17335

N
.

(9.18)

The remaining viscosity coefficients ηijkl scale with the exponent

φs =
3

2
− 1

2

(
γk0 − 3γv

)
=

3

2
+

0.4255

N
, (9.19)
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9.2 ...in the hydrodynamic regime

Figure 9.1: The temperature dependence of the ratio of the viscosity coefficients over the entropy
is shown. The lower bound of this ratio [18] is given by the red dashed line. For most viscosity
coefficients ηijkl the ratio is proportional to N and thus constant, whereas for the coefficient ηyxyx
the ratio diverges. For ηxyxy the ratio violates the lower bound at Tbound.

which is the same exponent governing the entropy as is shown in the next section. Note that we
switched the notation from Greek to Roman letters. Every time this occurs, all viscosity coefficients
but ηxyyx and ηyxxy are meant. The factors proportional to N−1 arise due to the renormalization group
(RG) analysis. In order to characterize how perfect the fluid is, the viscosity coefficients are compared
to the entropy of the system.

9.2.1 The lower bound

As seen in Sec. 3.6, the ratio of the viscosity over the entropy of the system indicates how perfect a
fluid is. (A fluid whose viscosity is zero is referred to as a perfect fluid.) This ratio has an universal
lower bound η/s ≥ ~

4πkB
which was derived by Kovtun, Son, and Starinets in Ref. 18 where they used

the correspondence between strongly coupled gauge theories and gravity. For ADSs the entropy is (see
Sec. 7.2.1)

s(T ) ∝ T φs ∝ T
3
2

+ 0.4255
N . (9.20)

The ratio of the viscosity coefficients over the entropy is depicted in Fig. 9.1, where the red dashed
line indicates the value of the lower bound. For most viscosity coefficients the ratio is constant.
However, for the viscosity coefficient ηyxyx the ratio diverges at low temperatures with T−(1+0.59895/N)

and even more fascinating, for the coefficient ηxyxy the ratio violates the lower bound at Tbound =

O
(

1/(N1/(1+0.59895/N))
)

and vanishes for decreasing temperatures as T+(1+0.59895/N). Hence, the

ADSs are to our knowledge the first realization in condensed matter physics which violates the lower
bound.

How can in the same material some viscosity coefficients fulfill the lower bound, while for one
coefficient the ratio diverges and for another the lower bound is violated? To answer this question,
the flow of different momentum components is studied. The viscosity tensor connects the dissipative
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part of the energy-stress tensor to the hydrodynamic velocity gradient, ταβ =
∑

γδ ηαβγδ∂uδ/∂xγ , see
Eq. (3.4). This velocity gradient ∂uδ/∂xγ is depicted in Fig. 9.2 (0) by the purple arrows. Because
of the gradient, the momentum component kδ, which is parallel to uδ, is transported with the velocity
component vγλk into the γ-direction. Simultaneously, the momentum component kβ is transported with
the velocity component vαλk into the α-direction. Due to the anisotropic energy dispersion shown by the
equal energy contourplots in Fig. 9.2 (a)-(d), the velocity component vyλk is larger than vxλk for small
temperatures. Hence, for the components ηyxxy the momentum kx flows with vyλk in the y-direction
and the momentum ky with vxλk in the x-direction and similar behavior we see for ηxyyx. So both
momentum components flow respectively with the smaller and the larger velocity component and thus
do not violate the lower bound. In contrast, we find for ηyxyx that the momentum component kx flows
twice with the larger velocity vyλk and thus the ratio diverges. While for ηxyxy, the momentum ky flows
twice with the smaller velocity vxλk in the x-direction and thus violates the lower bound.

Another explanation can be given by studying the scaling of the viscosity, which is done in the next
section.

9.2.2 Scaling of the viscosity tensor

Before we explore the scaling behavior of the viscosity of ADSs, let us repeat how this transport
property behaves for isotropic systems as graphene. For graphene the viscosity and entropy scale as

η(T ) = ξ−2η(ZTT ) ,

s(T ) = ξ−2s(ZTT ) .
(9.21)

(see Sec. 3.4 for a detailed derivation of the viscosity’s scaling in isotropic systems.) Since there is
only one length scale ξ = b = el in the system, we find single-parameter scaling. The ratio η/s is scale
invariant under a RG analysis because the two scaling factors Zη = ξ−2 and Zs = ξ−2 cancel each
other. However, for ADSs the situation is a different one. The single parameter scaling breaks down
due to the occurrence of the two different length scales arising from the anisotropic energy dispersion.
The scaling factors of the different viscosity coefficients are given by

Zηs = ξ−1
x ξ−1

y ,

Zηxyxy = ξxξ
−3
y ,

Zηyxyx = ξ−3
x ξy ,

(9.22)

while we find for the entropy the scaling factor

Zs = ξ−1
x ξ−1

y . (9.23)

The scaling factors Zη are derived from the Kubo-formula for the viscosity coefficients, i. e., ηαβγδ =

ω Im
〈

[Jαβ,Jγδ]
〉

. Thereby, the scaling factor of the total strain generator Jαβ is equal to the particle

density times the scaling of the space coordinate xα and the momentum pβ, since the total strain

generator only differs from the particle density by the product of xα and pβ, i. e., Jαβ =
∫
x ψ̂
†
xxαpβψ̂x.

The detailed derivation can be found in App. B.1.2. Hence, the ratio of the viscosity coefficient over
entropy for ADSs is determined by the following quotient of the two length scales

ηαβγδ
s
∝ N ~

kB

(
ξx
ξy

)ϕ
, (9.24)
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9.2 ...in the hydrodynamic regime

Figure 9.2: The momentum flow of the different viscosity coefficients is shown. Panel (0) shows
one part of the momentum flow due to the velocity gradient ∂uδ/∂xγ which is implicit assumed in
the panels (a) to (d), where the momentum kδ flows with vγλk in the γ-direction. Simultaneously
the momentum kβ (red arrows) flow with the velocity component vαλk (white, wiggled line) in the
α-direction. For the coefficient ηyxyx the ratio diverges, while ηxyxy violates the lower bound. Note
that in panel (a) and (b) the velocity gradient ∂uy/∂xy is applied, while in the panels (c) and (d)
we find the velocity gradient ∂ux/∂xx.
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where we find ϕ = 0, 2, and −2 depending on the values for α, β, · · · ∈ {x, y}. For ϕ = 0, the ratio is
constant, while we find ϕ = −2 for the diverging coefficient ηyxyx and ϕ = 2 for the coefficient violating
the lower bound.

9.3 ...in the collisionless regime

Let us now investigate the viscosity tensor at the charge neutrality point in the collisionless regime. In
the collisionless regime the excitation frequency is the fastest time scale, i. e., ω � τ−1, while in the
hydrodynamic regime it is the scattering time, i. e., τ−1 � ω. We use the Kubo-formula to determine
the viscosity tensor which is given for finite frequencies by

ηαβγδ ∝
Imχταβτγδ

ω
, (9.25)

where χταβτγδ is the correlation function between two energy-stress tensors. For non-interacting
anisotropic Dirac fermions the correlation function is given by the bare bubble diagram which is

χταβτγδ = NT
∑
n

∫
k

Tr
(
TαβGk,iωnTγδGk,i(ωn+Ωm)

)
, (9.26)

with the Matsubara Green’s function given in Eq. (7.16) and the energy-stress tensor defined in
Eq. (9.5). Upon evaluating the correlation function by analytical continuation and taking the imagi-
nary part, we find for the different viscosity coefficients the following expressions

ηxxxx = +

√
k0

v

1

v

K(−1)

21
√

2π
ω3/2

[
f

(F )
−ω/2 − f

(F )
ω/2

]
, (9.27)

ηyyyy = +

√
k0

v

1

v

K(−1)

84
√

2π
ω3/2

[
f

(F )
−ω/2 − f

(F )
ω/2

]
, (9.28)

ηxxyy = −
√
k0

v

1

v

K(−1)

42
√

2π
ω3/2

[
f

(F )
−ω/2 − f

(F )
ω/2

]
, (9.29)

ηxyxy =

(√
v

k0

1

v3
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√
π

1024Γ
(

9
4

)
Γ
(

13
4

) ω5/2 +

√
k0

v

1

v

Γ
(

5
4

)2

16π3/2
ω3/2
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f

(F )
−ω/2 − f

(F )
ω/2

]
, (9.30)

ηyxyx =

(√
k0

v
k0

3
√
π

20Γ
(

1
4

)2 ω1/2 +

√
k0

v

1

v

Γ
(

5
4

)4

π3/2Γ
(

1
4

)2 ω3/2

) [
f

(F )
−ω/2 − f

(F )
ω/2

]
, (9.31)

ηxyyx = −
√
k0

v

1

v

37Γ
(

5
4

)
672
√

2πΓ
(

3
4

) ω3/2

[
f

(F )
−ω/2 − f

(F )
ω/2

]
, (9.32)

where f
(F )
λω = (1 + eλω/(kBT ))−1 is the Fermi-Dirac function and K(x) is the complete elliptic integral

of the first kind. Let us first focus on the first three components of the viscosity tensor ηxxxx, ηyyyy,
and ηxxyy. These three coefficients determine the bulk viscosity ζ of the system, since it is ζ =

ηxxxx + ηyyyy + 2ηxxyy. Hence, the ADSs have a finite bulk viscosity with ζ =
√

k0
v

1
v
K(−1)

84
√

2π
ω3/2 at zero
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9.4 Navier-Stokes equation

temperature. This stands in contrast to graphene which has no bulk viscosity but only a shear viscosity.
Furthermore, the components ηxyxy and ηyxyx, for which in the hydrodynamic regime the ratio of
η/s is either diverging or vanishing, have an additional factor proportional to ω3/2. This additional
factor originates in interband processes which are not taken into account in the hydrodynamic regime.
However, the energy-stress tensor Tαβ derived from the total strain generator, Jαβ = Lαβ + Sαβ,
includes both inter- and intraband processes. Upon applying the RG analysis of Sec. 7.2.1 to the
above viscosity coefficient, the same exponents are found as in the hydrodynamic regime. It is

φs =
3

2
+

1

2

(
3γv − γk0

)
=

3

2
+

0.4255

N

φxyxy =
5

2
+

1

2

(
5γv + γk0

)
=

5

2
+

0.14455

N

φyxyx =
1

2
+

1

2

(
γv − 3γk0

)
=

1

2
− 0.17335

N
.

(9.33)

For the viscosity coefficients with the exponent 3/2 and 5/2, the viscosity coefficients grow faster with
increasing frequencies due to the additional factor exhibited by the Coulomb interaction. Whereas,
the viscosity coefficient with the exponent 1/2 grows more slowly with increasing frequency due to the
Coulomb interaction.

9.4 Navier-Stokes equation

How can the viscosity coefficients be measured? What is the influence of the viscosity on the dynamics
of the fluid? To answer these questions, the quantum Boltzmann equation is used to set the particle
density n, the energy density nε, and the momentum density nk into relation to their respective current.
The continuity equation of the momentum density is known as Navier-Stokes equation. The Navier-
Stokes equation governs the flow dynamics of a fluid and determines if the flow is laminar or turbulent.
Thus, let us derive this important equation in this section. We start by defining the different densities.
The number of carriers in the upper and lower energy band is given by

n+ = N

∫
k

f+k and n− = N

∫
k

f−k , (9.34)

with the total charge (or carrier) density n = n+−n− and the “imbalace” density nI = n+ +n− which
corresponds to the total number of quasiparticles. The energy density nε and the momentum density
nk are

nε = N
∑
λ

∫
k

ελkfλk − nε0 and nk = N
∑
λ

∫
k

kfλk (9.35)

with nε0 = N
∫
k ε−k being the energy of a filled valence band. Upon multiplying the quantum Boltz-

mann equation by the momentum k and the energy ελk and summing and integrating over the band
index and the momentum respectively, the following continuity equations for the different densities are
obtained

∂tn+∇r ·j = 0, (9.36a)

∂tnε +∇r ·jε = eE · j, (9.36b)

∂tn
α
k +∇βrΠβα − enEα −

e

c

[
j×B

]α
= −

nαk
τdis

. (9.36c)
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9 The viscosity...

In the first continuity equation Eq. (9.36a) the total charge n of the system is conserved and the time
derivative of the total charge density is set equal to the divergence of the electrical current. The total
charge carrier density can only change, if the electrical current flows in or out of a certain volume.
The second continuity equation Eq. (9.36b) relates the energy density nε and the energy current jε
to the product of the electrical current j with the electrical field E. The last equation Eq. (9.36c)
is the continuity equation of the α-component of momentum density nk. Here, the time derivative
of the momentum density is not only equal to the divergence of the energy-stress tensor Παβ, but
also depends on the product of the particle density with the α-component of the electrical field and
on the cross product of the electrical current with the magnetic field2. In the following, we want to
express the densities and currents by the hydrodynamic velocity u (which is also called drift velocity)
and the pressure P of the system. Therefore, for simplicity the magnetic field B is set to zero and
we assume that the ADSs are pristine, i. e., τ−1

dis = 0. The drift velocity enters the calculation by the

local equilibrium distribution function which is given by f
(0)
λk (r) =

(
1 + exp

[
ελk−µλ(r)−u(r)·k

T (r)

])−1

.

In order to evaluate the different densities and currents, this local equilibrium distribution function is
expanded in a power series in u, where u is small compared to either v or the velocity of the parabolic
direction. It holds

f
(0)
λk ≈ f

(F )
λk − u · k

∂f
(F )
λk

∂ελk
+

1

2

(
u · k

)2 ∂2f
(F )
λk

∂ε2λk
+ · · · . (9.37)

At the charge neutrality point we find for the imbalance density and the energy density

nI = N
2
√
k0

π2v3/2
K(−1)X1/2 T

3/2 and nε = N
2
√
k0

π2v3/2
K(−1)X3/2 T

5/2 , (9.38)

with X1/2 = 1
2

(
1−

√
π
2 ζ(3/2)

)
, X3/2 = 3

4

(
1−

√
2

4

)
√
πζ(5/2), and K being the complete elliptic

integral of the first kind. We see that the imbalance density is proportional to T 3/2, while the energy
density has a T 5/2 temperature dependence. Now, for the momentum density of ADSs it is

nxk = m∗nI ux and nyk =
5

3v
nε uy , (9.39)

with m∗ = 3[E(−1) − K(−1)]/K(−1)m ≈ 1.37m. The two components of the momentum density
have a different temperature behavior exhibited due to the anisotropy of the energy spectrum. Next,
we focus on the currents of the ADSs. They are given by the expression

j = nu+ δj and jε =
5

3
nεu+ δjε , (9.40)

where δj and δjε are the dissipative corrections to the (energy-) current defined by the out-of-
equilibrium distribution function δfλk. What still remains to be expressed by the densities and the
drift velocity is the energy-stress tensor of the ADSs which was defined in Eq. (9.9) with Παβ =

N
∑

λ

∫
d2k

(2π)2vkαk
βfλk . This energy-stress tensor can be related to the pressure of the systems, as seen

2The minus sign before the terms proportional to the electrical and the magnetic field in Eq. (9.36c) arises due to
integration-by-parts of the Boltzmann equation
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9.4 Navier-Stokes equation

in Sec. 3.2, by P = 1
2 Tr Παβ − nk · u . Hence, under the assumption of local equilibrium, the energy-

stress tensor is given by

Πxx =
2

3
nε +

3

2
m∗nIu

2
x +

5

6v2
nεu

2
y + τxx = P +m∗nIu

2
x + τxx

Πyy =
2

3
nε +

1

2
m∗nIu

2
x +

5

2v2
nεu

2
y + τyy = P +

5

3v2
nεu

2
y + τyy

Πxy = m∗nIuxuy + τxy

Πyx =
5

3v2
nεuxuy + τyx ,

(9.41)

where ταβ is the dissipative part of the energy-stress tensor which is proportional to the gradient of the
drift velocity and to the viscosity tensor. Upon inserting these definitions into the continuity equation
of the momentum density Eq. (9.36c) and applying the remaining continuity equations Eq. (9.36),
we find the Navier-Stokes equation. If the system flows with ux along the parabolic dispersion, the
Navier-Stokes equation is

m∗ nI

∂tux +
∑
γ

uγ∂γux

+ ∂xP = Fs,x + eExn+
∑
γ

m∗ nI ∂xγδjγ , (9.42)

with Fs,α =
∑

β ∂βτβα =
∑

βγδ ∂βηβαγδ
∂uδ
∂xγ

. Here, Fs,α is the dissipative Stokes-force and it is defined
as the gradient of the dissipative part of the energy-stress tensor. This Navier-Stokes equation for the
velocity component ux has the same form as a Naiver-Stokes equation of a Galilean invariant system
[43]. The velocity terms are multiplied by the mass m∗ of the parabolic energy dispersion and the
imbalance density. However, the Navier-Stokes equation of uy shows relativistic characteristics with

w

∂tuy +
∑
γ

uγ∂γuy

+∂yP+uy∂tP = Fs,y+en

Ey − uy∑
γ

uγEγ

−∑
γ

uyEγδjγ+
∑
γ

uy∂xγδjε,γ .

(9.43)
As in graphene [20, 21] which is, as previously shown, a relativistic system, the additional time deriva-
tive of the pressure appears. Furthermore, the velocity terms on the left-hand side of the equation
are now multiplied by the enthalpy density, w = nε + P , instead of m∗nI . This enthalpy density can
be related by the Gibbs-Duhem relation to the entropy of the system at the charge neutrality point,
i. e., w = Ts. These two equations will rule the flow dynamics of our quasi-particle fluid. Due to the
smallness of the viscosity coefficient ηxyxy for small temperatures, turbulent flow dynamic is expected
as well as an extreme sensitivity to boundary conditions. A further analysis of the Navier-Stokes
equation will give access to experimentally measurable quantities which are sensitive to the different
viscosity coefficients and to the violation of the lower bound. One of these quantities are the shear
modes with the corresponding shear frequencies depicted in Fig. 9.3. If the incident momentum is
pointing along the “relativistic” y-direction, the two shear frequencies ω+ = iqyηyxyx/(m∗nI) ∝ 1/T
and ω− = iqyv

2ηyyyy/(Ts) ∝ 1/T are proportional to the inverse temperature. These viscosity coeffi-
cients do not violate the lower bound. However, for incident momenta pointing along the “parabolic”
x-direction the two shear frequencies ω+ = iq2

xηxxxx/(m∗nI) and ω− = iq2
xv

2ηxyxy/(Ts) are constant.
Hence, the temperature independence of the shear frequency ω− is a consequence of the violation of
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Figure 9.3: This figure shows the polar plot of the shear frequencies ω+ and ω− for different
temperatures and the absolute value of the momentum q = 1. The shear frequencies are constant
for incident qx momentum and are proportional to the inverse temperature if the momentum is
aligned along the y-direction.

the lower bound. The explicit formula of the shear frequencies for general incident momenta is

ω± =i
q2
x
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(
v2ηxyxy
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+
ηxxxx
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q2
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v2ηyyyy
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ηyxyx
m∗nI

)
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2m∗nIsT
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)2
]1/2

.

(9.44)

Another way to measure the viscosity coefficients individually is to apply external pressure and use
the relation ∂αP =

∑
βγδ ∂βηβαγδ∂uδ/∂xγ to analyze the anisotropic version of the Poiseuille flow.

9.5 Summary

In this chapter the viscosity tensor of ADSs was investigated both in the hydrodynamic and in the
collisionless regime. In the hydrodynamic regime the components of the viscosity tensor are given by

ηαβγδ = NCαβγδ
k2

0

~

(
T

vk0

)φαβγδ
, (9.45)

where Cαβγδ are numerical coefficients and the exponents have the form
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2
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,
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N
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3

2
− 1

2

(
γk0 − 3γv

)
=

3

2
+

0.4255

N
.

(9.46)
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9.5 Summary

The viscosity coefficient ηxyxy violates the famous lower bound of η/s ≥ ~/(4πkB) [18] for low tempera-
tures due to the breakdown of the single parameter scaling. The actual bound for the matrix elements
should be

ηαβγδ
s
≥ ~

4πkB

(
ξx
ξy

)ϕ
(9.47)

with ϕ = −2, 0, 2 depending on the values for α, β · · · ∈ {x, y}. This is to our knowledge the first
condensed matter realization which violates the lower bound. Furthermore, the Navier-Stokes equation
was derived for ADSs. The anisotropy of the energy dispersion propagates to this equation, since the ux
component of the drift velocity obeys a Navier-Stokes equation of a Galilean invariant system whereas
the uy component has a relativistic Navier-Stokes equation. The smallness of the viscosity coefficient
will lead to extreme turbulent flow dynamics. The different components of the viscosity tensor will
become experimentally accessible by studying the shear frequencies of the system.
In the collisionless regime the temperature dependence of the viscosity tensor is replaced by a frequency
dependence. The components ηxyxy and ηyxyx gain an additional term proportional to ωφs due to
interband processes which are not taken into account in the hydrodynamic regime.
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Conclusions

This thesis is devoted to the Transport in isotropic and anisotropic Dirac systems where we
focused on the electrical conductivity σ and the viscosity η in the collisionless (ω � τ−1) and in the
hydrodynamic regime (ω � τ−1) and determined the influence of the Coulomb interaction on them.

These transport properties behave very differently in the two regimes, since the physical processes
dominating the transport of the quasiparticles are quite distinct in the corresponding regimes. In
the hydrodynamic regime, ω � τ−1, the relaxation time τ due to collisions is the fastest time scale
and hence collision processes dominate the transport. On the other hand, in the collisionless regime,
ω � τ−1, the excitation frequency sets the fastest time scale and collision processes can be neglected.
The two regimes are accessed by different methods: the hydrodynamic regime by the Boltzmann
equation, and the collisionless regime by the Kubo formalism.

However, the two different regimes are not the only aspect of transport between we want to distin-
guish. The nature of the transport described by the electrical conductivity and the viscosity is a very
different one and we elaborate this in more detail.

The electrical conductivity σ describes how the quasiparticles in a material behave in the presence of
an applied electric field. It is a very important quantity which characterizes different materials, since
it can be used to distinguish between insulators, semi-conductors, and metals. We showed that the
electrical conductivity for a two dimensional (2D) system is scale invariant by using the Ward identity
which describes the charge conservation of the system. The consequence of this scale invariance is that
in a renormalization group (RG) analysis, the conductivity turns out to be independent of the rescaled
temperature and the rescaled frequency.

The other important transport quantity is the viscosity η. The viscosity of a fluid describes energy
dissipation due to internal friction between particles with different velocities. It plays an important
role in the dynamical behavior of a fluid. Since the quasiparticles in a material can be described
under certain conditions (very clean sample and no phonons in the material) as a fluid, the viscosity
determines the dynamics of the quasiparticle fluid. If the viscosity of a system is very small, the flow
dynamics become turbulent. The quantity which indicates whether the viscosity is large or not is
the ratio of viscosity over entropy. Kovtun et al. postulated that this ratio has a lower bound [18]
which can be understood as a lower bound to the validity of the quasiparticle picture. Up till now, all
condensed matter systems fulfilled the lower bound and only some systems in cosmology [52–57] and
ultra cold gases [58, 59] violated it. With the anisotropic Dirac system, we found the first condensed
matter realization which violates the lower bound.

Furthermore, the viscosity is a rank four tensor which relates the gradient of the drift velocity to
the energy-stress tensor Tαβ. Bradlyn et al. [42] showed that this energy-stress tensor is equal to
the time derivative of the total strain generator Jαβ, i. e., Tαβ = −∂tJαβ. The strain generators are
the generators of the unitary transformation which describes the deformation of the fluid. Bradlyn et
al. showed that the strain generator acting on the spatial coordinates is given by Lαβ = {xα, pβ}/2.
In this work, we extended this description to lattices with a pseudospin which describes the multi-
atomic basis of a lattice. We show that the strain generator Sαβ acting on the pseudospin space
is crucial in order to fulfill the symmetry properties of the viscosity tensor that are expected for a
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rotationally invariant system, as was demonstrated using graphene as an example. Hence, the total
strain generator consists of a contribution acting on the spatial coordinates, while the other acts in
the pseudospin space, i. e.,

Jαβ = Lαβ + Sαβ
= {xα, pβ}/2 + i[Sα, Sβ]/2 .

(10.1)

After setting the stage, we now turned to the question why the electrical conductivity and the viscosity
are investigated in isotropic and anisotropic Dirac systems (ADSs). The special feature of the Dirac
systems is their energy spectrum. The energy dispersion is linear and gapless which leads to quasi-
relativistic behavior of these systems. The system is quasi -relativistic, since the particles move with
the Fermi velocity vF and not with the speed of light c. This leads to the fact that the Coulomb
interaction can be regarded as instantaneous. The effect of the linear energy dispersion relation is seen
in the transport properties and a summary of the results in the different regimes is shown in Fig. 10.1
where the transport properties colored in gray recapitulate results obtained by other authors, whereas
the results marked in black present my own work.

Graphene A very important example for an isotropic Dirac system is graphene whose transport
properties are studied in this thesis. Graphene is a fascinating material due to its many beautiful
properties. It is the thinnest material of the world consisting only of one layer of carbon atoms, has
a very high charge carrier density at room temperature, has a high transmissivity of light [22], and is
very strong and very flexible.

In the hydrodynamic regime, where the Coulomb interaction is responsible for the scattering pro-
cesses, Fritz et al. [120] found that the collinear scattering regime exhibits a logarithmic divergence
in the collision integral which leads to the fact that only a few modes, such as the energy and the
band index, are needed to describe the hydrodynamics in graphene. Furthermore, they find that the
conductivity depends on the inverse of the coupling squared constant and higher correction terms in
the coupling constant are of order O([logα(T )]−1), i. e.,

σ(T ) =
0.760

α(T )2

e2

h
, (10.2)

with the renormalized coupling constant α(T ) = α/(1+ 1
4α log(Λ/T )). Furthermore, Müller et al. [19]

showed that the quasiparticles in graphene behave as a nearly perfect fluid. The ratio of viscosity over
entropy

η(T )/s(T ) =
0.00815

α(T )2
(10.3)

approaches the lower bound with increasing temperature. A consequence of this behavior is that the
flow dynamics are very sensitive to boundary conditions and that vortices for the viscous flow are to
be expected [31].

In this thesis, we complete the picture of transport in graphene by the calculation of the two transport
properties in the collisionless regime. In the collisionless regime, the electrical conductivity of graphene
behaves differently than in the hydrodynamic regime. Most notably, we resolve a long controversy about
the question how the Coulomb interaction influences the optical conductivity of graphene. Details on
our calculation can be found in Ref. 16. Different groups studied this question and found (at the end)
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two different answers to this question, namely two different values of the correction coefficient Cσ of
the optical conductivity to leading order in the coupling constant, i. e.,

σ(ω) =
e2

4~
(
1 + Cσ α(ω)

)
, (10.4)

where α(ω) = α/(1 + 1
4α log(Λ/ω)) is the renormalized coupling constant. The origin of these different

values for the same physical quantity lies in the fact that the different Feynman diagrams contributing
to the correction coefficient –the self-energy diagram and the vertex diagram– are individually loga-
rithmically divergent upon evaluating them within the Dirac model and hence need to be regularized.
However, the different regularization schemes yield different results and it is by no means obvious
which regularization scheme is the correct one. In order to settle this question, we implemented a
tight-binding calculation of the correction coefficient, since in the tight-binding description the lattice
constant automatically regularizes the Feynman diagrams. Furthermore, we showed where some of the
regularization schemes used in the Dirac model went wrong and which subtleties needed to be taken
into account, where we proceeded as follows. First, we studied the non-interacting optical conductivity
in the tight-binding description and found that the conductivity has an additional frequency-dependent
correction

σ(0)(ω) =
e2

4~

[
1 +

1

9

(
ω

t

)2 ]
, (10.5)

where t is the hopping constant. Here, we corrected the result for the optical conductivity obtained by
Stauber et al. [101], who predicted the prefactor of the frequency correction to be 1/36 instead of 1/9.
Then, we determined the self-energy diagram and the vertex diagram in the tight-binding description
and found that the value of the correction coefficient Cσ is

Cσ =
19− 6π

12
' 0.01 . (10.6)

Moreover, we showed that this value is universal and does not depend on microscopic quantities such
as the size of the Wannier orbitals of the carbon atoms. Furthermore, we demonstrated how the
dimensional regularization (DR) scheme is used correctly when the correction coefficient is calculated
in the Dirac model. Either the DR has to be combined with a continuum-renormalization scheme, the
minimal subtraction scheme, when no UV cut-off is introduced to the system. Alternatively, the DR
can be combined with the Wilson RG which has an implicit UV cut-off. If the latter is the case, the
UV cut-off has to be kept till the very end of the calculation in order to avoid the UV quirk.

Now let us return to the question how the Coulomb potential influences the optical conductivity. We
have evaluated that the correction coefficient has the value Cσ ' 0.01 and thus is quite small. Hence,
the influence of the Coulomb interaction is relatively small besides the logarithmic correction of the
coupling constant.

But this is not the case for all transport quantities in graphene. Indeed, we found that the Coulomb
interaction has a big influence for the viscosity η in the collisionless regime. To demonstrate this, we
used that fact that the viscosity can be calculated as the correlation function between two energy-stress
tensors over the frequency. In the course of the calculation, it became clear that there has to be a
strain generator acting in the pseudospin space of graphene in order to obtain the correct symmetric
form of the energy-stress tensor and thus a viscosity tensor which has the symmetry properties of a
rotationally invariant system. We found that the viscosity of graphene described by non-interacting
Dirac fermions is proportional to the frequency squared,

η(0)(ω) =
ω2

64

~
vF

. (10.7)
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In order to determine the influence of the Coulomb interaction, the correction coefficient Cη is calculated
using the same approach as in the determination of Cσ of the optical conductivity in the Dirac model.
A special feature in the determination of the correction coefficient Cη for the viscosity is that –in
addition to the self-energy diagram and the vertex diagram– a third diagram is needed to cancel the
logarithmic divergences of the individual diagrams. This third diagram is dubbed the honey diagram
and describes the interacting part of the energy-stress tensor. We find

η(ω) =
ω2

64

~
vF

(
1 +

89− 20π

40
α(ω)

)
, (10.8)

where the correction coefficient has the value Cη = (89− 20π)/40 ' 0.65 and is thus quite large. In
conclusion, the viscosity is a transport quantity which is, in contrast to the optical conductivity, greatly
influenced by the Coulomb interaction. These results are to be published in Ref. 46.

Anisotropic Dirac systems Does the transport behavior of the electrical conductivity and the vis-
cosity change when we lower the symmetry of the systems? Indeed, in anisotropic Dirac systems
(ADSs), we find fascinating transport properties which differ strongly from the transport quantities of
graphene.

The ADSs have an anisotropic energy dispersion which arises when two Dirac cones merge. In the
direction where the fusion of the Dirac cones occurred, the energy dispersion is parabolic, whereas
in the perpendicular direction the energy dispersion is still linear. Two examples exhibiting such
an anisotropic energy dispersion are the organic charge transfer salt α-(BEDT-TTF)2I3 and the het-
erostructure 5/3 TiO2/VO2. In the case of the organic charge transfer salt, two Dirac cones merge
under the application of uniaxial pressure and for P = 40kbar there exists one Dirac cone with the
anisotropic energy dispersion relation. In the case of the heterostructure TiO2/VO2, there are four
anisotropic Dirac cones in the first Brillouin zone which are rotated by 45 degrees with respect to each
other.3

Both in the hydrodynamic and in the collisionless regime, the conductivity tensor shows a very
interesting behavior. In the direction of the parabolic energy dispersion relation, we find insulating
behavior, while in the direction of the linear energy dispersion, we find metallic behavior, i. e.,

σxx,yy(T ) ∝ N

(
T

vk0

)±( 1
2

+ 0.299
N

)

in the hydrodynamic regime , and

σxx,yy(ω) ∝ N
(
ω

vk0

)±( 1
2

+ 0.299
N

)

in the collisionless regime .

(10.9)

Hence, we find in the same material insulating or metallic behavior depending on the direction of the
electrical field. Fascinatingly, the Coulomb interaction even enhances this behavior. The influence
of the Coulomb potential is taken into account by an RG analysis in the large-N limit and in the
strong-coupling regime. It gives rise to the additional exponents proportional to 1/N , where N is the
fermionic flavor. In the case of the organic charge transfer salt, N = 2 because of the two spin degrees
of freedom, while for the heterostructure TiO2/VO2 we have N = 8, since there are four Dirac cones
in the first Brillouin zone with two spin degrees of freedom each.

3For the purpose of this thesis, we focused on just one anisotropic Dirac cone in the first Brillouin zone. Due to the
rotation of the Dirac cones, we find a superposition of the transport properties arising due to the linear and due to
the parabolic energy dispersion in the heterostructure TiO2/VO2.
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The viscosity tensor of an ADS differs from the viscosity of graphene even more strongly and has
some fascinating properties. Due to the anisotropy of the energy spectrum, the system is not described
by the shear viscosity η anymore, but by a viscosity tensor consisting of eight independent viscosity
coefficients. The functional temperature (frequency) dependence of these viscosity coefficients in the
hydrodynamic (collisionless) regime depends on the momentum flow and reads for the different viscosity
coefficients as

ηαβγδ(T ) = NCαβγδ
k2

0

~

(
T

vk0

)φαβγδ
in the hydrodynamic regime , and

ηαβγδ(ω) = NC1,αβγδ
k2

0

~

(
ω

vk0

)φαβγδ
+NC2,αβγδ

k2
0

~

(
ω

vk0

)φs
in the collisionless regime ,

(10.10)

where N is the fermionic flavor, and Cαβγδ, C1,αβγδ, and C2,αβγδ are numerical constants with α · · · δ ∈
{x, y}. (In our notation, the parabolic energy dispersion is aligned along the x-axis and the linear one
along the y-axis.) In the collisionless regime, the additional term proportional to C2,αβγδ arises due to
interband processes. These interband processes do not occur in the hydrodynamic regime where only
intraband processes dominate and thus there is no such term.

But now let us focus on the exponents of the viscosity coefficients. The exponents of ηxyxy and ηyxyx
are given by

φxyxy =
5

2
+

1.02445

N
,

φyxyx =
1

2
− 0.17335

N
,

(10.11)

while the exponent of the remaining viscosity coefficient ηijkl is

φijkl = φs =
3

2
+

0.4255

N
. (10.12)

Again, the Coulomb potential enhances the temperature dependence for all viscosity coefficients but
for the viscosity coefficient ηyxyx where the Coulomb potential reduces the exponent.

In order to see, whether the viscosity coefficients are large or not, we compare these coefficients
with the entropy of the system whose exponent is proportional to φs. We find that all viscosity
coefficients ηijkl fulfill the lower bound to the ratio of viscosity over entropy and we further find that
for the viscosity coefficient ηyxyx the ratio diverges with decreasing temperature. However, the viscosity
coefficient ηxyxy violates the lower bound. This violation of the lower bound in ADSs is, up to our
knowledge, the first condensed-matter realization of the violation. The physical interpretation of the
lower bound to the ratio η/s can be given by the Heisenberg uncertainty principle. But now that this
lower bound is violated, does this mean that the Heisenberg uncertainty principle is not valid anymore?
The answer to this question is no. The reason for the violation of the lower bound is the following:
due to the anisotropy of the system, two different length scales ξx and ξy arise which rescale the x-
and y-component of the momentum differently. Hence, we introduced a version of the lower bound
applicable to anisotropic systems which depends on these length scales and is

ηαβγδ
s
≥ ~

4πkB

(
ξx
ξy

)ϕ
, (10.13)
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with ϕ = 0, 2,−2 depending on the values for α, β, · · · ∈ {x, y}.
Nevertheless, the extreme smallness of the viscosity coefficient will lead to extreme flow behavior.

Experimentally measurable quantities which give access to these viscosity coefficients can be obtained
using the Navier-Stokes equation. The Navier-Stokes equation for the velocity component in the di-
rection of the parabolic energy dispersion is the Navier-Stokes equation of a Galilean invariant system,
while for the velocity component in the direction with the linear energy dispersion, we find the Navier-
Stokes equation of a relativistic system. This set of equations governs the flow dynamics and the
extremely small viscosity coefficient leads to extremely turbulent flow. We also presented other exper-
imental quantities showing signs of the violation of the lower bound: the shear frequencies and shear
modes of the system.

All these fascinating transport properties of ADSs are to be published in Ref. 119.

As can be seen in Fig. 10.1, this thesis gives a complete picture of the electrical conductivity σ and
the viscosity η in the collisionless and hydrodynamic regime of isotropic and anisotropic Dirac systems.
As a common theme, we investigated the influence of the Coulomb interaction on the two transport
properties in the two different regimes.

This does by no way mean that it is an exhaustive picture of the transport in graphene and ADSs.
There exist different effects which lead to possible corrections of these transport properties. One
example is an applied magnetic field which modifies the electrical conductivity and the viscosity. While
there have already been works on the magnetotransport in graphene [81], the effect on the conductivity
of ADS is an interesting aspect that remains to be studied. Another example are impurities in the
system. In order to study the correction due to defects, a self-consistent Born approximation should
be performed. For the conductivity of an ADS, we expect that the metallic temperature dependence of
one contribution of the conductivity tensor becomes constant, while the insulating contribution stays
insulating.

However, all these additional effects will only lead to corrections of our results which are recovered
in the limit of zero magnetic field/clear system. Hence, with this thesis we lay a foundation for the
behavior of the different transport properties, σ and η, in the different regimes on which we can build
in the future.

—Frei nach meinem Opi:

Hätte ich mit dieser Seite angefangen zu schreiben,
wäre ich gleich fertig gewesen.
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Figure 10.1: Overview of the results. In this thesis, we determine the conductivity σ and the
viscosity η of graphene and ADSs as a function of frequency and temperature. Both materials are
studied at the charge neutrality point, i. e., their chemical potential µ is zero. The red area indi-
cates the collisionless regime where the Kubo formalism is used, while the blue area indicates the
hydrodynamic regime where the transport quantities are calculated using the Boltzmann equation.
The equations colored in gray represent results obtained by other authors, while the equations in
black represent the results obtained by me and my collaborators.
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A Appendix A

Graphene

A.1 Derivation of the Transmission coefficient

In this section we derive the formula which relates the transmission coefficient T (ω) of the incident
light to the optical conductivity σ(ω) of the system. This derivation follows the calculation of Stauber
et al. [101].
We will focus on a situation, where p-polarized light scatters between two media that are separated by

a graphene flake, see figure A.1. The graphene flake lays in the x-y-plane. It separates the two media
characterized by the electrical permittivity εiε0 with i = 1, 2, where ε0 is the vacuum permittivity,
and ε1 and ε2 are the relative permittivity of the two media. The incident electrical field given by
E =

(
Ex, 0, Ez

)
propagates in the direction k =

(
kx, 0, kz

)
. When the incident light scatters on the

graphene flake, it has to fulfill the electrical boundary conditions which are(
D2 −D1

)
n = ρ , (A.1)

n×
(
E2 −E1

)
= 0 . (A.2)

Here, Di is the electrical displacement field in the medium i, and ρ is the charge density of graphene.
The vector n is perpendicular to the plane of the graphene flake. The electrical field in medium 1
consists of the incident electrical field Ei and the reflected field Er = rEi, i. e., E1 = Ei +Er, while

Figure A.1: The incident p-polarized light Ei scatters between two media which are separated
by a graphene flake. After scattering on the graphene flake, the light is either reflected Er or
transmitted Et.
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A Graphene

in the second medium the transmitted field E2 = Et = tEi is found. Using these definitions of the
electrical field, we can cast the electrical boundary conditions in the form

−ε0ε2Et sin θ2 + ε0ε1
(
Ei + Er

)
sin θ1 = ρ (A.3)(

Ei − Er
)

cos θ1 = Et cos θ2 , (A.4)

where θ1 and θ2 are the incident and refracted angle respectively. Next, we use the continuity equation

∂ρ

∂t
+∇j = 0 (A.5)

which describes the charge conservation of the system. In the momentum space it has the form

ρ(ω) =
kx
ω
jx(ω) , (A.6)

where we used the fact that the incoming light is p-polarized with E = (Ex, 0, Ez) inducing only a
current in the x-direction of the graphene flake. Furthermore, inserting Ohm’s law

jx(ω) = σ(ω)Ex = σ(ω)Et cos θ2 , (A.7)

and Snell’s law
√
ε1 sin θ1 =

√
ε2 sin θ2 (A.8)

into the above electrical boundary equations (A.3) and (A.4) yields the following expression for the
transmission coefficient

t(ω) =
2ε0ε1 cos θ1

ε0ε1 cos θ2 +
√
ε1ε2 cos θ1 +

√
ε1σ(ω)/c cos θ1 cos θ2

. (A.9)

This expression simplifies further for a normal incident of the light and we obtain the transmission
probability

T (ω) =
∣∣t(ω)

∣∣2 ktz
kiz

=

√
ε2
ε1

4 (ε1ε0)2∣∣∣∣(√ε1ε2 + ε1

)
ε0 +

√
ε1σ(ω)/c

∣∣∣∣2
. (A.10)

If both media are vacuum, we find that the transmissivity is given by

T (ω) =

(
1 +

σ(ω)

2 cε0

)−2

, (A.11)

which relates the transmission coefficient to the optical conductivity. Calculating the conductivity
of graphene at half filling using noninteracting Dirac fermions, the above expression simplifies even
further and we find

T (ω) =

(
1 +

π

2
αQED

)−2

, (A.12)

where αQED = e2

4πε0c~ = 1
137 .
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A.2 The optical conductivity of graphene

A.2 The optical conductivity of graphene

In this part of the appendix, details of the calculation of the optical conductivity presented in Chap. 5
are given. In order to determine the optical conductivity, the Kubo formula (2.5) is used, σαβ(ω) =
πDαβδ(ω) − ImχJαJβ (ω)/ω. The current-current correlation function χJ can be expanded in the

coupling constant α(ω) after performing a renormalization group (RG) analysis, i. e., χJ = χ
(0)
J +

χ
(1)
J + · · · . In the first part of this section, we demonstrate how the non-interacting part χ

(0)
J of the

correlation function is calculated in the Dirac model and in the tight-binding description, before we

turn to the calculation of χ
(1)
J in the tight-binding model, which determines the correction coefficient

Cσ.

A.2.1 The non-interacting part of the optical conductivity

Let us start determining the non-interaction part of the optical conductivity, where we first shortly
summarize the calculation in the Dirac model and than give the details for the tight-binding description.

The Dirac model

The current-current correlation function is given by the following expression

χ
(0)
J (iω) =

Nsv

2

∑
µ

∫
dε

2π

∫
d2k

(2π)2
Tr
(
ĵx+yGk,i(ε+ω)ĵx+yGk,iε

)
, (A.13)

where the Green’s function Gk,iε is defined in (4.19) and the current operator, ĵx+y = ĵx + ĵy, with the
x- and y- components of the current are defined in (4.20). Inserting these definitions, and performing
the angle integration yields

χ
(0)
J (iω) =

Nsv

2

∑
µ

∫
dε

2π

∫
d2k

(2π)2
Tr
(
ĵx+yGk,i(ε+ω)ĵx+yGk,iε

)
= −Nsv

2

∫
dε

2π

∫
d2k

(2π)2

4ε(ε+ ω)(
(vFk)2 + ε2

)(
(vFk)2 + (ε+ ω)2

)
= −Nsv

2

∫
d2k

(2π)2

4vFk

(2vFk)2 + ω2
.

(A.14)

After analytical continuation iωn → ω + iδ, which is given by

1

4(vFk)2 − (iωn)
→ P.V.

1

4(vFk)2 − ω
+

iπ

2ω
δ(2p− ω) +

iπ

2ω
δ(2p+ ω) (A.15)

and taking the imaginary part of the correlation function, we obtain

σ0 =
Nsv

16

e2

~
, (A.16)

for the conductivity [1] with Nsv = 4.

131



A Graphene

The tight-binding description

The current-current correlation in the tight-binding description has the same structure as found in
(A.13). Only the expressions of the current operator and the Green’s function are replaced by the
corresponding expression in the tight-binding description. Setting µ = ν = y yields:

χ
(0)
J (iω) = −T

2

∑
k,ε,ν

Tr
[
J νk Gk,iεJ νk Gk,i(ε+ω)

]

= −1

2

∑
k,ν

(
hk
∗jν,k − hkj∗ν,k

)2

t |hk|
(

4|hk|2 + ω2/t2
) , (A.17)

In the second line we evaluated the frequency integration and performed the trace in the pseudospin
space. Next, we rewrite the current-component jy(k), defined in Eq. (4.12a), as:

jy(k) =
−ita

2

[
hk − 3

]
(A.18)

j∗y(k) =
ita

2

[
hk
∗ − 3

]
, (A.19)

and obtain for our retarded current correlator:

χ
(0)
J (iΩ) =

ta2

4

∫
BZ

d2k

(2π)2

18|hk|2 + 4|hk|4 − 12|hk|2
(
hk + hk

∗)+ 9
(
h2
k + h∗k

2
)

|hk|(4|hk|2 + Ω2/t2)
. (A.20)

Upon analytically continuing iΩ→ ω + iδ,

1

4|hk|2 + Ω2
→ P.V.

1

4|hk|2 − ω2
+ i

π

2ω
δ(ω − 2|hk|) + i

π

2ω
δ(ω + 2|hk|) , (A.21)

with P.V. denoting the principal value, assuming ω > 0, and taking the imaginary part of the above
expression, we obtain for the retarded correlator:

χ
(0)
J (ω) =

∑
k

(
ta2π

32

)[
18 + 4|hk|2 + 18

[Rehk]2 − [Imhk]2

|hk|2
− 24[Rehk]

]
δ

(
|hk| −

ω

2t

)

=
∑
k

(
ta2π

32

)
g
(
hk
)
δ

(
|hk| −

ω

2t

)
.

(A.22)

In this expression, we have kept the dimensionful quantities a and t, although henceforth we shall
set them to unity and measure the frequency relative to t. Due to the delta function constraint, we
can integrate the above expression analytically. Therefore, we split up the function g

(
hk
)

into two
functions and define:

g1(|hk|) = 18 + 4|hk|2 (A.23)

g2

(
hk
)

= 18
[Rehk]2 − [Imhk]2

|hk|2
− 24[Rehk] . (A.24)
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A.2 The optical conductivity of graphene

Firstly, we evaluate the expression:

χ
(0)
J,1(ω) =

π

16

∑
k

g1(|hk|)δ(2|hk| − ω) . (A.25)

To this end, we introduce the density of state per unit cell as

ρ(E) =

∫
d2k

(2π)2
δ(E − |hk|)

=

∫
d2k

(2π)2

4∑
i=1

1

|∂kx,i |h(kx,i, ky)||
δ(kx − kx,i) , (A.26)

with the kx,i being the solution to E = |hk|:

kx,i = ± 2√
3

arccos

[
1

4
(−2 cos

(
3ky
2

)
±
√

2

√
2E2 − 1 + cos

(
3ky

)
)

]
, (A.27)

describing curves that encircle the Dirac points at kR = 4π
3a ( 1

2
√

3
x̂ + 1

2 ŷ) and kL = 4π
3a (− 1

2
√

3
x̂ + 1

2 ŷ)

when the y component is restricted to ky,− < ky < k+,y with

ky,±(E) =
2π

3
±

arccos
(

1− 2E2
)

3
. (A.28)

We can evaluate the density of states analytically and obtain:

ρ(E) =
1

(2π)2

32 E
√

1− E
3 K

[
− 16E

(E−3)(1+E)3

]
3(3− E)(1 + E)3/2

, (A.29)

where K[m] is the complete elliptic integral of the first kind. One part of the correlation function is
thus given by:

χ
(0)
J,1(ω) =

π

32

∑
k

g1(|hk|)δ(|hk| − ω/2)

=
π

32
ρ

(
ω

2

)
g

(
ω

2

)
=

π

32
ρ

(
ω

2

)
(18 + ω2) . (A.30)

In order to evaluate the expression:

χ
(0)
J,2(ω) =

π

16

∑
k

g2(hk)δ(2|hk| − ω) , (A.31)

we expand the above formula near the node, hkR+k, and write the deviation from the node in polar
coordinates k = (k, θ),

|hkR+k| '
3

128
k(64− 7k2 + 16k cos 3θ − k2 cos 6θ), (A.32)
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valid to O(k3). The approximate solution to ω = 2|hkR+k| is:

k1(θ, ω) =
1

3
ω − 1

36
ω2 cos 3θ +

1

1728
[7 + 8 cos2 3θ + cos 6θ]ω3 , (A.33)

that is valid to O(ω3). The factor g2(hk) is, to the same order,

g2(kR + k) ' 9

32

[
k3(− cos 11θ) + 3(5k2 − 16)k cos θ +

(
64− 20k2

)
cos 2θ

+ 2k
(

2
(
k2 − 16

)
cos 3θ − 8(cos 5θ + 3k)

+ k(8 cos 4θ + 8 cos 6θ + 3k cos 5θ + 2 cos 8θ(1− 2k cos θ))
)]
.

(A.34)

From the delta function, we also need

d

dk
|hkR+k| =

3

64

(
64 + 32k cos 3θ − 21k2 − 3k2 cos 6θ

)
. (A.35)

Then, assuming the same contribution comes from each node (which we have verified), we’ll have:

χ
(0)
J,2(ω) =

π

8

2π∫
0

dθ

∞∫
0

dk k g2(k)δ(2|hk| − ω) (A.36)

=
π

8

2π∫
0

dθ k1(θ, ω)
1

| ddk1
2|hkR+k1 ||

g2(kR + k1) , (A.37)

where we evaluated the radial k integral. To evaluate the integral, we simply insert k1(θ, ω) into the
factors Eq. (A.35) and Eq. (A.36), insert them into the integrand and Taylor expand order by order
in ω before evaluating the angle integrations. We obtain:

χ
(0)
J,2(ω) = −ω

8

ω2

36
. (A.38)

Upon inserting the combined result into Eq. (5.38), we find the frequency-dependent conductivity
given by the formula:

σ(ω) =
π

32ω
ρ

(
ω

2

)
(18 + ω2)− 1

8

ω2

36
(A.39)

≈ σ0

(
1 +

1

9
ω +O(ω3)

)
, (A.40)

with σ0 the zero-frequency limit (reinserting correct factors of e2 and ~, previously set to unity).

σ0 =
N

8

e2

~
. (A.41)

In comparing to the known result for the conductivity of Nsv species of Dirac fermions, σ0 = Nsv
16

e2

~ ,
recall that here we have N = 2, since we are considering the spinless case (but have summed over two
nodes).
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A.2.2 Correction coefficient in tight-binding description

After having calculated the non-interacting part of the optical conductivity in the tight-binding de-
scription, the influence of the Coulomb interaction is investigated. To this end, we evaluate the

Feynman diagrams contributing to χ
(1)
J , namely the self-energy diagram and the vertex diagram, and

thus determine the value of the correction coefficient Cσ.

Self-energy diagram

For the self-energy type diagrams contributing to order α(ω), we obtain

χ
(1,bc)
J (iω) = −T 2

∑
kεε′ν

∫
d2q

(2π)2
V (q) Tr

(
J νk Gk,i(ω+ε)J νk Gk,iεMqGk+q,iε′M−qGk,iε

)

= −T 2
∑
kεε′ν

∫
d2q

(2π)2
Tr
(
J νk Gk,i(ω+ε)J νk Gk,iεΣ(k)Gk,iε

)
,

(A.42)

where to get to the second line we identified the self energy subdiagram. Inserting the Green’s function
and evaluating the frequency summation at T = 0, we find

χ
(1,bc)
J (iω) = −

∑
p

∫
dω

2π

1

(ω − Ω)2 + |hp|2
1

(ω2 + |hp|2)2
× Tr

[
· · · jµ · · · jµ · · ·

]
, (A.43)

where in the following we proceed to evaluate the trace and sum over the xx and yy components which
yields

Tr
[
· · · jx · · · jx · · ·

]
+ Tr

[
· · · jy · · · jy · · ·

]
= T1 + ωT2 + ω2T3 . (A.44)

The trace is given by

Tr

(−i(ω − Ω) h∗p
hp −i(ω − Ω)

)(
0 j∗p
jp 0

)(
−iω h∗p
hp −iω

)(
0 Σ21

Σ12 0

)(
−iω h∗p
hp −iω

)(
0 j∗p
jp 0

)
= h∗p

3(j2
x + j2

y)Σ12 + h3
p(j∗x

2 + j∗y
2)Σ21 + 2ωΩ

[
h∗p(jxj

∗
x + jyj

∗
y)Σ12 + hp(jxj

∗
x + jyj

∗
y)Σ21

]
+ ω2

[
Σ12

(
−2h∗p(jxj

∗
x + jyj

∗
y)− hp(j∗x

2 + j∗y
2)
)

+ Σ21

(
−2hp(jxj

∗
x + jyj

∗
y)− h∗p(jx

2 + jy
2)
)]

= T1 + ωT2 + ω2T3 ,

(A.45)

where we identify the following expressions for T1, T2, and T3

T1 = h∗p
3(j2

x + j2
y)Σ12 + h.c.

T2 = 2Ω
[
h∗p(jxj

∗
x + jyj

∗
y)Σ12

]
+ h.c.

T3 = Σ12

(
−2h∗p(jxj

∗
x + jyj

∗
y)− hp(j∗x

2 + j∗y
2)
)

+ h.c. .

(A.46)
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Thus, we have to calculate the following frequency integral:

IΣ =

∫
dω

2π

1

(ω − Ω)2 + |hp|2
1

(ω2 + |hp|2)2

[
T1 + ωT2 + ω2T3

]
=

1

4|hp|3(4|hp|2 + Ω2)2

[
(12|hp|2 + Ω2)T1 + (4|hp|2Ω)T2 + (4|hp|4 + 3|hp|2Ω2)T3

]
.

(A.47)

The self-energy contribution to the current-current correlation function is (summing over xx and yy
terms and including the overall minus):

χ
(1,bc)
J (iω) = −

∑
p

1

4|hp|3
1

(4|hp|2 + Ω2)2

[
(4|hp|2 + Ω2)D1(p) + (4|hp|2 − Ω2)D2(p)

]
= −

∑
p

1

4|hp|3

[
D1(p)

4|hp|2 + Ω2
+D2(p)

4|hp|2 − Ω2

(4|hp|2 + Ω2)2

]
,

(A.48)

where

D1(p) = 2(h∗Σ12 − hΣ21)

[
(h∗)2

(
j2
x + j2

y

)
− h2

(
(j∗x)2 + (j∗y)2

)]
, (A.49)

D2(p) = (h∗Σ12 + hΣ21)

[
(h∗)2(j2

x + j2
y) + h2

(
(j∗x)2 + (j∗y)2

)
− 2

(
jxj
∗
x + jyj

∗
y

)
|h|2
]
. (A.50)

Next, we analytically continue iΩ→ ω + iδ to get:

1

4|h|2 + Ω2
=

1

4|h|

[
1

2|h|+ iΩ
+

1

2|h| − iΩ

]
→ 1

4|h|

[
1

2|h|+ ω + iδ
+

1

2|h| − ω − iδ

]
, (A.51)

and
4|h|2 − Ω2

(4|h|2 + Ω2)2
=

d

dΩ

Ω

4|h|2 + Ω2
→ d

dω

ω

4|h|

[
1

2|h|+ ω + iδ
+

1

2|h| − ω − iδ

]
, (A.52)

which, after taking the imaginary part (and assuming ω > 0), leads to:

Imχ
(1,bc)
J (ω) = −π

∑
p

1

16|hp|4
D1(p)δ

(
ω − 2|hp|

)
− π d

dω

∑
p

ω

16|hp|4
D2(p)δ

(
ω − 2|hp|

)
. (A.53)

The delta functions in each term will pin ω = 2|hp|. Using the delta function which leads to (A.27)
and (A.28), we obtain

Imχ
(1,bc)
J (ω) =− πA

4∑
i=1

py,+∫
py,−

dpy
(2π)2

1

2|(∂px |hp|)|px,i |
D1(px,i, py)

ω4

+ πA
d

dω

4∑
i=1

py,+∫
py,−

dpy
(2π)2

1

2|(∂px |hp|)|px,i |
D2(px,i, py)

ω3
,

(A.54)

where A is the area of a unit cell in real-space. This is the contribution of the self-energy diagram to
the correction coefficient Cσ. Now let us turn to the vertex diagram.
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Vertex-Diagram

To calculate the correction of the conductivity due to the vertex correction, we have to evaluate the
expression:

χ
(1,d)
J (iω) =

∑
p

∫
d2q

(2π)2
V̂ (q) Tr

[
Iµ(p, iΩ)MqIµ(p+ q,−iΩ)M−q

]
, (A.55)

where Iµ(p, iΩ) is given by:

Iµ(p, iΩ) = T
∑
ω

Gp,iωJ µp Gp,i(ω−Ω)

= T
∑
ω

1

(ω − Ω)2 + |hp|2
1

ω2 + |hp|2

(
−iω h∗p
hp −iω

)(
0 j∗µ
jµ 0

)(
−i(ω − Ω) h∗p

hp −i(ω − Ω)

)
= T

∑
ω

1

(ω − Ω)2 + |hp|2
1

ω2 + |hp|2
[
M0 + ωM1 + ω2M2

]
(A.56)

with

M0 =

(
ih∗p jµ Ω h∗p

2 jµ
h2
p j
∗
µ +ihp j

∗
µ Ω

)
, (A.57)

M1 =

−i
[
h∗pjµ + hpj

∗
µ

]
j∗µΩ

jµΩ −i
[
h∗pjµ + hpj

∗
µ

]
 , (A.58)

M2 =

(
0 −j∗µ
−jµ 0

)
. (A.59)

Next, we take again the zero temperature limit T → 0, which means that the sum over the Matsubara
frequencies becomes an integral T

∑
ω
→
∫
dω
2π . Thus, we have to evaluate the following frequency

integrals:

+∞∫
−∞

dω

2π

1

(ω − Ω)2 + |hp|2
1

ω2 + |hp|2
=

1

4|hp|2 + Ω2

1

|hp|
, (A.60)

+∞∫
−∞

dω

2π

ω

(ω − Ω)2 + |hp|2
1

ω2 + |hp|2
=

Ω

4|hp|2 + Ω2

1

2|hp|
, (A.61)

+∞∫
−∞

dω

2π

ω2

(ω − Ω)2 + |hp|2
1

ω2 + |hp|2
=

2|hp|2 + Ω2

4|hp|2 + Ω2

1

2|hp|
. (A.62)
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Using these frequency integrals, the matrix Iµ(p,Ω) has the form:

Iµ(p, iΩ) =
1

|hp|
1(

4|hp|2 + Ω2
)
iΩ1

2

[
h∗pjµ − hpj∗µ

]
h∗(p)2jµ − |hp|2j∗µ

h(p)2j∗µ − |hp|2jµ iΩ1
2

[
hpj

∗
µ − h∗pjµ

]


=
1

|hp|
1(

4|hp|2 + Ω2
)Vµ(p,Ω) .

(A.63)

Now, we can rewrite our expression for the vertex diagram in the following form:

χ
(1,d)
J (iω) =

∑
p

1

|hp|
(

4|hp|2 + Ω2
) Tr

[
Vµ(p,Ω)Qµ(p,−Ω)

]
, (A.64)

where

Qµ(p,−Ω) =

∫
d2q

(2π)2
V̂ (q)

MqVµ(p+ q,−Ω)M−q

|hp+q|
(

4|hp+q|2 + Ω2
) . (A.65)

We now write Qµ(R,−Ω) as a Fourier series:

Qµ(p,−Ω) = A
∑
R

e+ip·RQµ(R,−Ω), (A.66)

Qµ(R,−Ω) =
∑
p

e−ip·RQµ(p,−Ω). (A.67)

Next, we simplify Qµ(R,−Ω):

Qµ(R,−Ω) =
∑
p

e−ip·R
∫

d2q

(2π)2
V̂ (q)

MqVµ(p+ q,−Ω)M−q

|hp+q|
(

4|hp+q|2 + Ω2
) (A.68)

=
∑
p

∫
d2q

(2π)2
e−i(p−q)·RV̂ (q)

MqVµ(p,−Ω)M−q

|hp|
(

4|hp|2 + Ω2
) , (A.69)

where in the second line we switched the order of integration and shifted p→ p− q, using the pe-
riodicity of the integrand. As the next step, we introduce the Fourier transform of the Coulomb
potential ∫

d2q

(2π)2
V̂ (q)e+iq·R =

∞∫
0

dq

(2π)2
q

2π∫
0

dθ
2π

q
e+iqR cos(θ) =

1

|R|
, (A.70)

in order to calculate the following expression∫
d2q

(2π)2
e+iq·RMqVµ(p,−Ω)M−q =

∫
d2q

(2π)2
V̂ (q)e+iq·R

(
Vµ,11 Vµ,12e

+iqya

Vµ,21e
−iqya Vµ,22

)

=

 Vµ,11
1
|R| Vµ,12

1
|R+aŷ|

Vµ,21
1

|R−aŷ| Vµ,22
1
|R|

 ,

(A.71)
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where we wrote out the explicit four components of Vµ(p,−Ω). The current-current correlation function
of the vertex-correction can now be written as:

χ
(1,d)
J (iω) =A

∑
R

∑
p,k

1

|hp|(4|hp|2 + Ω2)

1

|hk|(4|hk|2 + Ω2)
· e+i(p−k)·R

· Tr

(Vµ,11(p,Ω) Vµ,12(p,Ω)
Vµ,21(p,Ω) Vµ,22(p,Ω)

) Vµ,11(k,−Ω) e
2

|R| Vµ,12(k,−Ω) e2

|R+aŷ|
Vµ,21(k,−Ω) 1

|R−aŷ| Vµ,22(k,−Ω) 1
|R|


 . (A.72)

Evaluating the trace gives:

χ
(1,d)
J (iω) = e2A

∑
R

∑
p,k

e+i(p−k)·R 1

|hp|(4|hp|2 + Ω2)

1

|hk|(4|hk|2 + Ω2)

×
[Vµ,11(p,Ω)Vµ,11(k,−Ω) + Vµ,22(p,Ω)Vµ,22(k,−Ω)

|R|

+
Vµ,12(p,Ω)Vµ,21(k,−Ω)

|R− aŷ|
+
Vµ,21(p,Ω)Vµ,12(k,−Ω)

|R+ aŷ|

]
.

(A.73)

The matrix elements are given by:

Vµ,11(p,Ω)Vµ,11(k,−Ω) + Vµ,22(p,Ω)Vµ,22(k,−Ω) =
1

2
Ω2
[
h∗pjµ,p − hpjµ,p∗

] [
hk
∗jµ,k − hkjµ,k∗

]
=

1

2
Ω2
[
hpjµ,p

∗ − h∗pjµ,p
] [
hkjµ,k

∗ − hk∗jµ,k
]
,

(A.74)

Vµ,12(p,Ω) · Vµ,21(k,−Ω)
1

|R− aŷ|
=

1

|R− aŷ|
hkh

∗
p

[
hkj

∗
µ(k)− hk∗jµ,k

] [
h∗pjµ,p − hpj∗µ,p

]
= −

h∗phk

|R− aŷ|

[
hkjµ,k

∗ − hk∗jµ,k
] [
hpjµ,p

∗ − h∗pjµ,p
]
,

(A.75)

Vµ,21(p,Ω)Vµ,12(k,−Ω)
1

|R+ aŷ|
=

1

|R+ aŷ|
hk
∗hp

[
hk
∗jµ,k − hkj∗µ(k)

] [
hpj

∗
µ(p)− h∗pjµ,p

]
= − hphk

∗

|R+ aŷ|

[
hkjµ,k

∗ − hk∗jµ,k
] [
hpjµ,p

∗ − h∗pjµ,p
]
.

(A.76)

Next, we define the function

− iηµ(p) = hpj
∗
µ,p − h∗pjµ,p (A.77)
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and the coefficients:

C1,µ(R, ω) = P.V.
∑
p

ηµ(p)

|hp|
(

4|hp|2 − Ω2
) cos

(
p ·R

)
∈ R , (A.78)

C2,µ(R, ω) = P.V.
∑
p

ηµ(p)hp

|hp|
(

4|hp|2 − Ω2
) cos

(
p ·R

)
∈ R , (A.79)

S1,µ(R, ω) = P.V.
∑
p

ηµ(p)

|hp|
(

4|hp|2 − Ω2
) sin

(
p ·R

)
= 0 , (A.80)

S2,µ(R, ω) = P.V.
∑
p

ηµ(p)hp

|hp|
(

4|hp|2 − Ω2
) sin

(
p ·R

)
∈ iR , (A.81)

where P.V. indicates that the corresponding integrals are principal value integrals. The principal value
integrals are calculated by introducing the small parameter ε the following way:

C1,µ(R, ω) = P.V.
∑
p

ηµ(p)

|hp|
(

4|hp|2 − Ω2
) cos

(
p ·R

)
∈ R

=
∑
p

ηµ(p)

|hp|
1

4|hp|

(
1

2|hp| − ω + iε
+

1

2|hp|+ ω

)
cos
(
p ·R

)
.

(A.82)

We introduce the real functions

Ej,µ(R, ω) = Cj,µ(R, ω)− iSj,µ(R, ω) ∈ R , (A.83)

which are explicitly given by E1,µ = C1,µ and E2,µ = Re(C2,µ) + Im(S2,µ). Using these definitions, we
can rewrite the current-current correlator as:

Imχ
(1,d)
J (ω) = 2e2A

∑
R

∑
p

ηµ(p)

|hp|
π

2ω
δ(ω − 2|hp|)

×

[
ω2

2|R|
cos
(
pR
)
C1,µ(R, ω) +

2

|R− aŷ|
E2,µ(R, ω) Re

(
e−ipRhp

)]
.

(A.84)

Defining now the functions:

Γ1,µ(p, ω) =
∑
R

1

2|R|
C1,µ(R, ω) cos(pR) (A.85)

Γ2,µ(p, ω) =
1

ω2

∑
R

2

|R− aŷ|
E2,µ(R, ω) Re

(
hpe

−ipR
)
, (A.86)

we can rewrite

Imχ
(1,d)
J (ω) = 2e2A

∑
p

ηµ(p)

|hp|
π

2ω
δ(ω − 2|hp|)ω2{Γ1,µ(p, ω) + Γ2,µ(p, ω)} . (A.87)
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Evaluating the δ−function gives

Imχ
(1,d)
J (ω) = 2e2A

4∑
i=1

∫ py,+

py,−

dpy
(2π)2

πηµ(p)

2|∂px |hp|
∣∣∣
px,i
|
{Γ1,µ(p, ω) + Γ2,µ(p, ω)}

= e2A

4∑
i=1

∫ py,+

py,−

dpy
4π

ηµ(p)

|∂px |hp|
∣∣∣
px,i
|
{Γ1,µ(p, ω) + Γ2,µ(p, ω)} .

(A.88)

Hence, to determine the contribution of the vertex diagram to the correction coefficient, the above
expression has been evaluated.

A.2.3 Correction coefficient in the Dirac model

Here, we present a calculation of the correction coefficient in the Dirac model by combining a soft
cut-off acting on the Coulomb interaction, V (r) → Vη(r), and the dimensional regularization (DR),
d = 2− ε, and demonstrate explicitly that the order of limits of the two parameters η and ε does not
commute. We refer to this non commuting of the order of limits as the UV quirk.

The Coulomb potential and the self-energy

The deformed Coulomb interaction is given by the potential

V (r) =
e2

r

(
r

r0

)η ( r

r0

)ε
. (A.89)

where we introduced the length scale r0 in such a way that the dimensionality of the Coulomb potential
stays unchanged. The Fourier transform of this potential in d = 2− ε dimensions is

V (q) =
2πe2r

−(η+ε)
0 ζηε
q1+η

with ζηε =
2ηπ−ε/2Γ

(
1+η

2

)
Γ
(

1−η−ε
2

) . (A.90)

Next, we define the parameter dependent coupling constant

αηε = αr
−(η+ε)
0 ζηε . (A.91)

As the next step, the self-energy is evaluated by using the Feynman parametrization1 and a shift in
momentum q → q − yp which yields

Σ(p) = Φ(p)pσ

= −2παηε

∫
dω

2π

ddq

(2π)d
1

|p− q|1+η
Gq,iω

=
παηε

(4π)d/2

Γ
(

1 + η
2 −

D
2

)
Γ
(
d+1

2

)
Γ
(
D−η−1

2

)
Γ
(

1
2 + η

2

)
Γ
(

1
2

)
Γ
(
d− η

2

) p · σ
|p|2+η−d ,

(A.92)

1Here, the Feynman parametrization is given by 1
AαBβ

= Γ(α+β)
Γ(α)Γ(β)

∫ 1

0
dy yα−1(1−y)β−1

[yA+(1−y)B]α+β . Furthermore, in the following we

use the Feynman integrals
∫

ddl
(2π)d

1
(l2+∆)n

= Γ(n−d/2)

(4π)d/2Γ(n)

1

∆n−d/2 and
∫

ddl
(2π)d

l2

(l2+∆)n
= 1

(4π)d/2
d
2

Γ(n−1−d/2)
Γ(n)

1

∆n−1−d/2 .
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with d = 2− ε. Thus, Φ(p) is defined as

Φ(p) = Aηε · pD−2−η (A.93)

with

Aηε =
παr

−(η+ε)
0

(4π)d/2

2ηπ−ε/2Γ
(

1 + η−D
2

)
Γ
(
d+1

2

)
Γ
(
d−η−1

2

)
Γ
(

1−η−ε
2

)
Γ
(

1
2

)
Γ
(
d− η

2

) . (A.94)

Now, we can start to evaluate the self-energy diagram and the vertex diagram. Let us start with the
self-energy diagram.

The self-energy diagram

In order to calculate the correction of the conductivity due to the self energy, we evaluate the corre-
sponding Feynman diagram. The diagram is thus given by the following expression:

χ
(1,bc)
J (iΩ) = −2Nsv

∫
p

∫
ω

Tr
(
Gp,i(ω+Ω)jµGp,iωΣ(p)Gp,iωjµ

)
= −2Nsv

∫
ddp

(2π)d
dω

2π

Φ(p)

p2 + (ω + Ω)2

1(
p2 + ω2

)2

× Tr
[
(iω + σp)(i(ω + Ω) + 2σxpx − σ · p)(iω + σ · p)σ · p

]
,

(A.95)

where Φ(p) is determined by the self-energy and is defined in equation (A.93). Next, we perform the
trace over the Pauli matrices. Thereby, it is important to take into account that the Pauli matrices
living in d dimensions are defined by the Clifford algebra {σa, σb} = 2δa,b. Using the Clifford algebra,
the following relations can be derived∑

a

σaσµσa = d δ0,µσ0 + (2− d)
∑
a

σaδa,µ ,∑
a

σ2
a = dσ0 , Tr(

∑
a

σ2
a = d2) , Tr(σ0) = d , Tr(σa) = 0 ,

(A.96)

where Roman letters are spatial indices and Greek letters denote spacetime indices. Upon applying
these relations, we can perform the trace over the Pauli matrices which yields

χ
(1,bc)
J (iΩ) = −2Nsv

∫
ddp

(2π)d
dω

2π

Φ(p)

p2 + (ω + Ω)2

d(
p2 + ω2

)2

{
−2ω(ω + Ω)p2 +

(
1− 2

d

)(
ω2 − p2

)
p2

}
.

(A.97)
Next, we integrate over the frequency and obtain

χ
(1,bc)
J (iΩ) = 2Nsvd

(
1− 1

d

)∫
ddp

(2π)d
Φ(p)p(4p2 − Ω2)

(4p2 + Ω2)2
. (A.98)

Inserting Φ(p) = Aηεp
D−2−η yields

χ
(1,bc)
J (iΩ) = 2Nsvd(1− 1/d)

∫
ddp

(2π)d
Aηεp

d−2−η p(4p2 − Ω2)

(4p2 + Ω2)2

= 4Nsvd(1− 1/d)
πd/2Aηε

(2π)dΓ
(
d/2
) ∫ ∞

0
dp
p2d−2−η(4p2 − Ω2)

(4p2 + Ω2)2
.

(A.99)
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Since we want to calculate the imaginary part on the real axis, the zero frequency part is subtracted
and we find

χ
(1,bc)
J (iΩ)− χ(1,bc)

J (0) = −Nsvd(1− 1/d)πd/2Aηε
(2π)dΓ(d/2)

∫ ∞
0

dp
p−4+2d−ηΩ2(12p2 + Ω2)

(4p2 + Ω2)2
. (A.100)

Substituting x = p/Ω yields

χ
(1,bc)
J (iΩ)− χ(1,bc)

J (0) = −Nsvd(1− 1/d)πd/2AηεΩΩ−4+2d−η

(2π)dΓ(d/2)

∫ ∞
0

dx
(12x2 + 1)x−4+2D−η

(4x2 + 1)2

= −Nd(1− 1/d)πd/2AηεΩΩ−4+2d−η

(2π)dΓ(d/2)
22−2d+ηπ(2d− 2− η) sec

(
dπ − πη

2

)
.

(A.101)

In d = 2 dimensions the expression (χ
(1,bc)
J (iΩ)− χ(1,bc)

J (0))/Ω is dimensionless. But if we go to d = 2−ε
dimensions, the expression gains the dimension Lε, where L is a length scale. Hence, before expanding
the expression, we have to multiply it with the factor r−ε0 . Now, we set d = 2−ε in the above expression
and expand our result for small but finite ε and η. This yields

r−ε0 ·
χ

(1,bc)
J (iΩ)− χ(1,bc)

J (0)

Ω
≈− Nsvα

32(η + ε)
+

+
Nα

32(ε+ η)

[
η{γ − log(4/(r0Ω))}+

+ ε{1 + 2γ − 2 log
(
4/(r0Ω)

)
+ 1/2(2− γ − log(4π))}

]
.

(A.102)

The self-energy diagram is divergent in 1/(ε + η) for η, ε → 0. The vertex diagram cancels this
divergence.

The vertex diagram

The vertex diagram is defined as

χ
(1,d)
J (iΩ) = Nsv

∫
ddp

(2π)d
dω

2π

∫
ddq

(2π)d
dω′

2παηε

2παηε

|p− q|(1+η)
Tr
[
Gp,iωjµGp,i(ω+Ω)Gq,i(ω′+Ω)jµGq,iω′

]
.

(A.103)
Performing the trace over the Pauli matrices and the frequency integration yields

χ
(1,d)
J (iΩ) = 2πNsvαηε

∫
dDp

(2π)D

∫
ddq

(2π)d
1

|p− q|1+η

d

pq(4p2 + Ω2)(4q2 + Ω2)
×

× [Ω2(pxqx − pq) + 4(pxqxpq + p2q2 − p2q2
x − p2

xq
2)] .

(A.104)

As for the self-energy diagram, we have to subtract the zero-frequency part of the correlation function
which results in

χ
(1,d)
J (iΩ)− χ(1,d)

J (0) = −Nsv

∫
ddp

(2π)d

∫
ddq

(2π)d
2παηε
|p− q|1+η

d Ω2

4p3q3(4p2 + Ω2)(4q2 + Ω2)
×

× {4p2q2(pq − pxqx) + (pqqxpx + p2q2 − p2
xq

2 − p2q2
x)(Ω2 + 4(p2 + q2))} ,

(A.105)
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or equivalently

χ
(1,d)
J (iΩ)− χ(1,d)

J (0) = −Nsv

∫
ddp

(2π)d
ddq

(2π)d
παηεd Ω

8p3q3
(
p2 + (Ω/2)2

)(
q2 + (Ω/2)2

)
p2q2(pq − qxpx) + (qpqxpx + p2q2 − p2

xq
2 − p2q2

x)(p2 + q2 + (Ω/2)2)

|p− q|1+η
.

(A.106)

Next, we split up this integral in two separate integrals. (One integral contains the divergent part
while the other is convergent for η = 0 and ε = 0.) These integrals are defined as

χ
(1,d)
J (iΩ)− χ(1,d)

J (0)

Ω

∣∣∣
1

=
−Nsvπαηεd Ω

8

∫
ddp

(2π)d
ddq

(2π)d
pq − qxpx

pq(p2 + (Ω/2)2)(q2 + (Ω/2)2)|p− q|1+η
,
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and

χ
(1,d)
J (iΩ)− χ(1,d)

J (0)

Ω

∣∣∣
2

= −Nsv

∫
ddp

(2π)d
ddq

(2π)d
παηεd Ω

8p3q3
(
p2 + (Ω/2)2

)(
q2 + (Ω/2)2

)
(qpqxpx + p2q2 − p2

xq
2 − p2q2

x)(p2 + q2 + (Ω/2)2)

|p− q|1+η
.

(A.108)

We split the last integral in three different parts by adding and subtracting (Ω/2)2. By this procedure,
we separate the diverging part of the above integral from the convergent one. It reads

χ
(1,d)
J (iΩ)− χ(1,d)

J (0)

Ω

∣∣∣
2,a

= −Nsv

∫
ddp

(2π)d
ddq

(2π)d
παηε d Ω

8p3q3
(
p2 + (Ω/2)2

)(
q2 + (Ω/2)2

)
(qpqxpx + p2q2 − p2

xq
2 − p2q2

x)(p2 + (Ω/2)2 + q2 + (Ω/2)2)

|p− q|1+η

=
−παηε d Ω

4

∫
ddp

(2π)d
ddq

(2π)d
pqqxpx + p2q2 − p2

xq
2 − p2q2

x

p3q3(q2 + (Ω/2)2)|p− q|1+η
,

(A.109)

χ
(1,d)
J (iΩ)− χ(1,d)

J (0)

Ω

∣∣∣
2,b

=
+Nsvπαηεd Ω3

32

∫
ddp

(2π)d
ddq

(2π)d
1

pq(p2 + (Ω/2)2)(q2 + (Ω/2)2)|p− q|1+η
,

(A.110)
and

χ
(1,d)
J (iΩ)− χ(1,d)

J (0)

Ω

∣∣∣
2,c

=
+Nsvπαηε d Ω3

32

∫
ddp

(2π)d
ddq

(2π)d
pqpxqx − p2

xq
2 − p2q2

x

p3q3(p2 + (Ω/2)2)(q2 + (Ω/2)2)|p− q|1+η

=
+Nsvπαηε d Ω3

32

∫
ddp

(2π)d
ddq

(2π)d
pqpxqx − 2p2q2

x

p3q3(p2 + (Ω/2)2)(q2 + (Ω/2)2)|p− q|1+η
, ,
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where we used rotational symmetry. The integral [χ
(1,d)
J (iΩ)−χ(1,d)

J (0)]/Ω|2,a is divergent for (η, ε)→ 0,
while the remaining integrals exhibit a finite value for eta, ε = 0. This finite value is

χ
(1,d)
J (iΩ)− χ(1,d)

J (0)

Ω

∣∣∣
1

+
χ

(1,d)
J (iΩ)− χ(1,d)

J (0)

Ω

∣∣∣
2,b

+
χ

(1,d)
J (iΩ)− χ(1,d)

J (0)

Ω

∣∣∣
2,c

=
Nsvα

32

(
π − 8

3

)
.
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A.2 The optical conductivity of graphene

Now let us calculate the divergent part, which corresponds to the integral (A.109). The Feynman
parametrization2 and the shift in momentum is again used to solve this integral which leads to the
following expression

χ
(1,d)
J (iΩ)− χ(1,d)

J (0)

Ω

∣∣∣
2,a

=
−Nsvπαηε d Ω

4

∫
ddp

(2π)d
ddq

(2π)d
pqqxpx + p2q2 − p2

xq
2 − p2q2

x

p3q3(q2 + (Ω/2)2)|p− q|1+η

=
−Nsvπαηε d Ω

4

2Γ[3 + η/2]
√
πΓ
[

1+η
2

] ∫ 1

0
dx

∫ 1−x

0
dy(1− x− y)1/2x−1/2+η/2×

×
∫

ddp

(2π)d
ddl

(2π)d
p2 − p2

x

p3︸ ︷︷ ︸
=(1−1/d) 1

p

x2p2 + (1− 1/d)l2[
l2 + p2x(1− x) + y(Ω/2)2

]3+η/2

= −παηεNsv2
3−2d+ηΩ2d−4−η d (1− 1/d)

(4π)d
√
π

×

×
Γ
[
d+1

2

]
Γ
[

5
2 − d+ η

2

]
Γ
[
d− 3

2 −
η
2

]
Γ
[
1− d

2 + η
2

]
Γ
[
d−1−η

2

]
Γ
[

1+η
2

]
Γ
[
d
2

]
Γ
[
d− η

2

] .
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Next, we expand the dimensionless expression for small η and ε and obtain

r−ε0

χ
(1,d)
J (iΩ)− χ(1,d)

J (0)

Ω

∣∣∣
2,a
≈− Nsvα

32(η + ε)
+

+
Nsvα

32(ε+ η)

[
η(−1/2 + γ − log(4/(r0Ω)))+

+ ε{2γ − 2 log
(
4/(r0Ω)

)
+ 1/2(2− γ − log(4π))}

]
.

(A.114)

Also the vertex diagram is divergent in 1/(η+ ε) for (η, ε)→ 0. This divergence cancels the divergence
of the self-energy diagram and we obtain a finite correction value.

The correction coefficient

Upon adding the vertex diagram and the self-energy, we find the following correction coefficient

Cσ(η, ε) =
1

η + ε

(
(16− 6π)(η + ε) + 3η + 6ε

12

)
. (A.115)

Depending if we first set η → 0 and then ε→ 0 or vice versa, we either obtain C̃σ or Cσ. Only when we
take the limit η → 0 at the very end of the calculation, the correct value Cσ = (19− 6π)/12 is found.

2The Feynman parametrization is given by 1
AαBβCγ

= Γ[α+β+γ]
Γ[α]Γ[β]Γ[γ]

∫ 1

0
dx

∫ 1−x
0

dy (1−x−y)α−1xβ−1yγ−1

[(1−x−y)A+xB+yC]α+β+γ .
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A.3 Viscosity in the collisionless regime

In this section we give a detailed description of the calculation of the viscosity of graphene in the colli-
sionless regime. In order to determine the viscosity, the Kubo formula (3.36), ηαβγδ = ImχTαβTγδ/ω, is
used. As for the optical conductivity, we expand the correlation function between the energy-stress ten-

sor Tαβ to leading order in the renormalized coupling constant α(ω), i. e., χTxyTxy = χ
(0)
TxyTxy

+χ
(1)
TxyTxy

.

First, we start with the calculation of the viscosity described by free Dirac fermions η0(ω), before we
determine the Feynman diagrams in leading order of α(ω) which contribute to the correction coefficient
Cη. This calculation is performed in the Dirac model.

A.3.1 Non-interacting part of the viscosity

In order to calculate the shear viscosity η of graphene, we have to use the symmetrized energy-stress

T
(0)
αβ (k), as we have seen in Sec. 6.2.1. The correlation function in zeroth order of the coupling constant

is given by

χ
T

(0)
xy ,T

(0)
xy

(iω) = Nsv

∫
p

∫
ω

Tr
[
Gp,i(ω+Ω)T

(0)
xy (p)Gp,iωT

(0)
xy (p)

]
= Nsv

∫
p

∫
ω

1

4

1

p2 + (ω + Ω)2

1

p2 + ω2
Tr
[
M
]

=

∫
p

∫
ω

Nsv

p2 + (ω + Ω)2

1

p2 + ω2

[
p4
x + p2

x

(
ω(ω + Ω)− 6p2

y

)
+ p2

y

(
p2
y + ω(ω + Ω)

)]
,

(A.116)

where M is

M =

(
i(ω + Ω) px − ipy
px + ipy i(ω + Ω)

)(
0 py − ipx

py + ipx 0

)(
iω px − ipy

px + ipy iω

)(
0 py − ipx

py + ipx 0

)
.

(A.117)
Performing the frequency and angle integration, yields

χ
T

(0)
xy ,T

(0)
xy

(iω) =
Nsv

2

∫
d2p

(2π)2

p2
(
p2
x + p2

y

)
+ p4

x − 6p2
xp

2
y + p4

y

p
(

4p2 + Ω2
)

=
Nsv

2

∞∫
0

dp

2π

p4(
4p2 + Ω2

) .
(A.118)

Now, we use the analytical continuation iΩ→ ω + iδ and obtain

1

4p2 + Ω2
= P.V.

[
1

4p2 − ω2

]
+

iπ

2ω
δ(2p+ ω) +

iπ

2ω
δ(2p− ω) . (A.119)

Taking the imaginary part of the correlation function and choosing ω > 0, gives

Imχ
T

(0)
xy ,T

(0)
xy

(ω) =
Nsv

2

∞∫
0

dp

2π
p4 π

2ω
δ(2p− ω)

=
Nsv

256
ω3 .

(A.120)
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A.3 Viscosity in the collisionless regime

The shear viscosity for the non-interacting graphene is thus

Re η(ω) =
ω2

64

~
v2

F

, (A.121)

where we reinstalled ~ and vF which were set to one during the calculation and we inserted that
Nsv = 4, since there are two spin degrees of freedom and two Dirac cones.

A.3.2 Correction coefficient of the viscosity in the collisionless regime

Now let us answer the question how the Coulomb interaction influences the viscosity. To this end,
we have (as shown in Sec. 6.2.2) to evaluate the self-energy diagram, the vertex diagram and the
honey diagram. In this section, we give a detailed presentation of the calculation of the different
diagrams. To evaluate the different diagrams, we introduce a soft cut-off to the Coulomb interaction
Vη(q) = 2πα/q1+η where the parameter η regularizes the integrals.

The self-energy diagram

We start with the evaluation of the self-energy diagram. The self-energy is given by

Σ(k) = φ(k)k · σ (A.122)

with

φ(k) = Ak−η = αr−η0

2η Γ
(
η
2

)
8 Γ
(

4−η
2

)k−η , (A.123)

where the parameter η regularizes the self energy. Now the correlation function of the self-energy
diagram is defined as

χ
(1,bc)

T
(0)
xy T

(0)
xy

(iΩ) = −2

∫
P

Tr
[
Gp,i(ω+Ω)T

(0)
xy (p)Gp,iωΣ(p)Gp,iωT

(0)
xy (p)

]
= −αr−η0

1

2

2η Γ
(
η
2

)
8 Γ
(

4−η
2

) ∫ d2k

(2π)2

∫
dω

2π

p−η

(k2 + (ω + Ω)2)

1

(k2 + ω2)2
Tr(B)

(A.124)

with

Tr(B)

= Tr
[
(i(ω + Ω)σ0 + kxσx + kyσy)(kxσy + kyσx)(iωσ0 + kxσx + kyσy)(kxσx + kyσy)

× (iωσ0 + kxσx + kyσy)(kxσy + kyσx)
]

= −2kx(kx + ky)
(
k4
x + k2

x

[
ω(ω + 2Ω)− 10k2

y

]
+ k2

y

[
5
(
k2
y + ω2

)
+ 2ωΩ

])
.

(A.125)

After performing the frequency integral and the integration over the angle, we obtain

χ
(1,bc)

T
(0)
xy T

(0)
xy

(iΩ) =

∞∫
0

dk
2η−6Γ

(
η
2

)
k4−η

(
4k2 − Ω2

)
πΓ
(

2− η
2

)(
4k2 + Ω2

)2 . (A.126)
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Next, we have to calculate the difference

f (1,bc)
xyxy (iΩ) =

χ
T

(0)
xy T

(0)
xy

(iΩ)− χ
T

(0)
xy T

(0)
xy

(0)

Ω2

= −
∞∫

0

dk
2η−8Γ

(
η
2

)
k2−η

(
12k2 + Ω2

)
πΓ
(

2− η
2

)(
4k2 + Ω2

)2

(A.127)

and

f
(1,bc)
xyxy (iΩ)− f (1,bc)

xyxy (0)

Ω
=

∞∫
0

dk
2η−10ΩΓ

(
η
2

)
k−η

(
20k2 + 3Ω2

)
πΓ
(

2− η
2

)(
4k2 + Ω2

)2

= −
4η−6(η − 4)Ω

(
1

Ω2

) η+1
2

sec
(
πη
2

)
Γ
(
η
2

)
Γ
(

2− η
2

)
≈ Nsvα

512η
+Nsvα

−4 log(roΩ)− 4γ + 1 + 4 log(4)

2048
+O(η) ,

(A.128)

where we reinserted Nsv and the coupling constant α in the last step. The self-energy diagram diverges
when we take the limit η → 0. The other two Feynman diagrams are going to cancel this divergence.

The vertex diagram

In this section we focus on the vertex diagram. First we introduce a coupling constant which depends
on our regularization parameter η

αη = α0 r
−η
0 ζη (A.129)

with

ζη =
2ηΓ

(
1+η

2

)
Γ
(

1−η
2

) , (A.130)

where we introduced the length scale r0 in such a way that the unit of Coulomb interaction remains
unchanged. Now, we can calculate the correlation function of the vertex correction. This function is
defined as

χ
(1,d)

T
(0)
xy T

(0)
xy

(iΩ) = −Nsvαη
4

∫
p,ω

∫
k,ω′

2π

|p− k|1+η
Tr
[
Gp,iωT

(0)
xy (p)Gp,i(ω+Ω)Gk,i(ω′+Ω)T

(0)
xy (k)Gk,iω′

]
.

(A.131)
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A.3 Viscosity in the collisionless regime

After inserting the corresponding expressions of the Green’s functions and the energy-stress tensor and
performing the two frequency integrals, we find

χ
(1,d)

T
(0)
xy T

(0)
xy

(iΩ) = −Nsvαη
4

∫
d2p

(2π)2

∫
d2q

(2π)2

2π

|p− q|1+η

2

pq
(

4p2 + Ω2
)(

4q2 + Ω2
)

× {p2

(
pxqx

(
q2 + q2

x − 3q2
y

)
+ pyqy

(
q2 − 3q2

x + q2
y

))
+ p3

xqx

(
q2 + q2

x − 3q2
y

)
+ p2

x

(
Ω2
(
q2
y − q2

x

)
− 3pyqy

(
q2 − 3q2

x + q2
y

))
− 3pxp

2
yqx

(
q2 + q2

x − 3q2
y

)
+ p2

y

(
pyqy

(
q2 − 3q2

x + q2
y

)
+ Ω2(qx − qy)(qx + qy)

)
} .

(A.132)

Next, we subtract the zero-frequency part from the above expression to obtain

f (1,d)
xyxy(iΩ) =

χ
(1,d)

T
(0)
xy T

(0)
xy

(iΩ)− χ(1,d)

T
(0)
xy T

(0)
xy

(0)

Ω2
. (A.133)

To finally determine the contribution to the correction coefficient, we have to (as explained in Sec. 6.2.2)
subtract again the zero-frequency part which yields

f
(1,d)
xyxy(iΩ)− f (1,d)

xyxy(0)

Ω
= Q1 +Q2 +Q3 , (A.134)

where Q1 and Q2 are convergent for η = 0, whereas the integral Q3 is divergent for η → 0. In the
following, we demonstrate how the different integrals are evaluated.

Calulation of Q1 First, we calculate the Q1 integral. The integral is given by

Q1 = −Nsvαη
8

2

(2π)2
Ω−η

∞∫
0

dp

∞∫
0

dq

π∫
0

dϕ
pq

32p2q2
(

4p2 + 1
)(

4q2 + 1
) 4pq cos(2ϕ) + 16p2q2 cos(ϕ) cos(2ϕ)(
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2

= −Nsvαη
8

1

(2π)2
Ω−η

∞∫
0
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1

p(4p2 + 1)

∞∫
0

dq
1

q(4q2 + 1)

π∫
0

dϕ
1
4pq cos(2ϕ) + p2q2 cos(ϕ) cos(2ϕ)(

p2 + q2 − 2pq cos(ϕ)
) 1+η

2

.(A.135)

Next, we substitute the variable q the following way: q = xp and obtain:

Q1 = −Nsvαη
8

1

(2π)2
Ω−η

∞∫
0

dp
1

p(4p2 + 1)

∞∫
0

dx
1

(4x2p2 + 1)

π∫
0

dϕ
1
4p

2 cos(2ϕ) + xp4 cos(ϕ) cos(2ϕ)

p1+η
(

1 + x2 − 2x cos(ϕ)
) 1+η

2

.

(A.136)
This integral is convergent for η = 0 and we thus have to evaluate the following integral:

Q1 = −Nsvαη
8

1

(2π)2
Ω−η

∞∫
0

dp
1

(4p2 + 1)

∞∫
0

dx
1

(4x2p2 + 1)

π∫
0

dϕ
1
4 cos(2ϕ) + xp2 cos(ϕ) cos(2ϕ)√

1 + x2 − 2x cos(ϕ)
.

(A.137)
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The integration over p can be done and gives:

∞∫
0

dp
1

4p2 + 1

1

4x2p2 + 1
=

π

4(1 + x)
(A.138)

∞∫
0

dp
1

4p2 + 1

p2

4x2p2 + 1
=

π

16x(1 + x)
. (A.139)

What remains to be evaluated is the following:

Q1 = −Nsvαη
8

π

(2π)2
Ω−η

1

16

∞∫
0

dx
1

(1 + x)
√

1 + x2 − 2x cos(ϕ)

π∫
0

dϕ
[
cos(2ϕ) + cos(ϕ) cos(2ϕ)

]
.

(A.140)
Next we evaluate the x-integral and than the angular integral:

Q1 = −Nsvαη
8

π

(2π)2
Ω−η

1

16

π∫
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[
cos(2ϕ) + cos(ϕ) cos(2ϕ)

]
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(
cot

(
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4
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2
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960

. (A.141)

Calulation of Q2 Next we evaluate the integral Q2. It is given by the expression:

Q2 = −Nsvαη
8

∫ ∞
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One additional factor of 2 arises because the expression is symmetric under exchange of p and q. The
other factor 2 arises because the cosine is symmetric in the interval [0, 2π] and thus the angle integral

can be changed to
2π∫
0

dϕ = 2
π∫
0

dϕ. Next, we substitute the variable again q = xp and obtain:

Q2 = −Nsvαη
4
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∞∫
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(A.143)
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with

q = −Nsvαη
4

Ω−η

(2π)2
2η−4π sec

(
πη

2

)
. (A.144)

Again we split up the integral in two parts. The two integrals are defined as:

Q2,a = 2q

∞∫
0

dx
1− xη−1

x2 − 1

π∫
0

dϕ
cos(ϕ)2(

1 + x2 − 2x cos(ϕ)
) 1+η

2

(A.145)

Q2,b = −q
∞∫

0

dx
1− xη−1

x2 − 1

π∫
0

dϕ
1(

1 + x2 − 2x cos(ϕ)
) 1+η

2

. (A.146)

Analysis of Q2,a Now, we analyze the integral Q2,a. This integral can be split in a singular and a
non-singular contribution Q2,a = Qs2,a +Qns2,a, where

Qs2,a = 2q

∞∫
0

dx
1− xη−1

x2 − 1

π∫
0

dϕ cos(ϕ)2

= 2q
π

2
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(π

2
η
)π

2
.
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Next, the non-singular contribution is analyzed, which is defined as

Qns2,a = Q2,a −Qs2,a

= 2q

∞∫
0
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x2 − 1

π∫
0
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2
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)
.

(A.148)

Since this integral is convergent for η = 0, it can be evaluated in this limit. We find

Qns2,a = 2q

∞∫
0
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x(1 + x)

π∫
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dϕ cos(ϕ)2
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1√
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12
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11− 6π + log (4096)

)
,
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where we performed first the x-integral and than the ϕ-integral.

Analysis of Q2,b Next, we analyze the Q2,b integral analogous to the previous one. We can again
split it up into a singular and a non-singular contribution. The singular contribution is given by

Qs2,b = −q
∞∫

0

dx
1− xη−1

x2 − 1

π∫
0

dϕ 1

= −qπ
2

cot

(
π

2
η

)
π .

(A.150)
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The non-singular part reads

Qns2,b = Q2,b −Qs2,b

= −q
∞∫

0

dx
1− xη−1

x2 − 1

π∫
0

dϕ

 1

[1 + x2 − 2x cos(ϕ)]
1+η

2

− 1

 .
(A.151)

This integral can again be evaluated in the limit η = 0 and yields:

Qns2,b = −q
∞∫

0

dx
1

x(1 + x)

π∫
0

dϕ

(
1√

1 + x2 − 2x cos(ϕ)
− 1

)

= +q
π

2

(
π − 2 log(4)

)
.

(A.152)

Result of Q2 Thus, upon combining Q2,a and Q2,b, we obtain for the Q2 integral the following value:

Q2 = Q2,a +Q2,b

= q[
π2

2
cot

(
π

2
η

)
+
π

6

(
11− 6π + log (4096)

)
− π2

2
cot

(
π

2
η

)
+
π

2

(
π − 2 log(4)

)
]

= q
π

6
(11− 3π)

= −Nsvαη
4

Ω−η

(2π)2
2η−4π sec

(
πη

2

)
π

6
(11− 3π)

≈ −Nsvα

2

(
11

768
− π

256

)
.

(A.153)

Calulation of Q3 In this section we analyze the divergent diagram Q3. This integral is given by the
expression:

Q3 = −Nsvαη
8

1

(2π)2

Ω−η

32

∞∫
0

dp
p

p2(4p2 + 1)

∞∫
0

dq
q

q2(4q2 + 1)

2π∫
0

dϕ
cos(ϕ) cos(2ϕ)(

p2 + q2 − 2pq cos(ϕ)
) 1+η

2

× {4p2(4p2 + 1) + 4q2(4q2 + 1)}

= −Nsvαη
8

1

(2π)2

Ω−η

32

∞∫
0

dp
8p3(4p2 + 1)

p2(4p2 + 1)

∞∫
0

dq
q

q2(4q2 + 1)

2π∫
0

dϕ
cos(ϕ) cos(2ϕ)(

p2 + q2 − 2pq cos(ϕ)
) 1+η

2

= −Nsvαη
32

Ω−η

(2π)2

∞∫
0

dp p

∞∫
0

dq
1

q(4q2 + 1)

2π∫
0

dϕ
cos(ϕ) cos(2ϕ)(

p2 + q2 − 2pq cos(ϕ)
) 1+η

2

.

(A.154)

Next, we substitute the integration variable p by p = xq and obtain:

Q3 = −Nsvαη
32

Ω−η

(2π)2

∞∫
0

dq
q−η

4q2 + 1

∞∫
0

dx

2π∫
0

dϕ
x cos(ϕ) cos(2ϕ)(

1 + x2 − 2x cos(ϕ)
) 1+η

2

. (A.155)
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In the following step we use the identity:

|k|−(1+η) = Γ

(
1 + η

2

)−1
∞∫

0

dz
e−k

2z

z
1−η

2

, (A.156)

and obtain3

Q3 = −Nsvαη
32

Ω−η

(2π)2
2−2+ηπ

sec
(
πη
2

)
Γ
(

1+η
2

) ∞∫
0

dx

2π∫
0

dϕ

∞∫
0

dz
x

z
1−η

2

cos(ϕ) cos(2ϕ)e
−
(

1+x2−2x cos(ϕ)
)
z

= −Nsvαη
32

Ω−η

(2π)2
2−2+ηπ

sec
(
πη
2

)
Γ
(

1+η
2

) ∞∫
0

dx

∞∫
0

dz
x

z
1−η

2

2πe−(1+x2)zxz[ 1F̃1(2;x2; z2)− 1F̃1(3;x2; z2)]

= −Nsvαη
32

Ω−η

(2π)2
2−2+ηπ

sec
(
πη
2

)
Γ
(

1+η
2

) ∞∫
0

dz
1

2
π3/2e−

z
2 z

η
2
−2

(
zI0

(
z

2

)
+ (z − 2)I1

(
z

2

))

= −Nsvαη
32

Ω−η

(2π)2
2−2+ηπ

sec
(
πη
2

)
Γ
(

1+η
2

) π(η + 2)Γ
(

1
2 −

η
2

)
Γ
(
η
2

)
4Γ
(

3− η
2

)
≈ − α

1024η
− α(4 log(r0Ω) + 4γ − 5− 8 log(2))

4096
+O(η) .

(A.157)

Result of the vertex diagram Combining all three integral gives

f
(1,d)
xyxy(iΩ)− f (1,d)

xyxy(0)

Ω
=
α(20η log(Ωr0) + 40πη + 20γη − 193η − 40η log(2)− 20)

20480 η
. (A.158)

The vertex diagram is also divergent for η → 0, but does not fully cancel the divergence of the self-
energy diagram. A third Feynman diagram is needed to cancel all divergences.

The Honey diagram

The last diagram contributing to the correction coefficient Cη is the honey diagram. It takes the
interacting part of the energy-stress tensor into account. This interacting part of the energy-stress
tensor is determined by calculating the commutator between the Coulomb potential and the strain
generator. We find for the interacting energy-stress tensor in real space

T intαβ (R, τ) = [HC ,Lαβ]

=−
∫
x,r

ψ̂†x(τ)ψ̂†r(τ)ψ̂r(τ)xα
∂

∂xβ

(
V (r,x)

)
ψ̂x(τ)−

∫
x,r′

ψ̂†x(τ)ψ̂†
r′

(τ)ψ̂r′(τ)xα
∂

∂xβ

(
V (x, r′)

)
ψ̂x(τ)

=
1

2
(1− η)r−η0

∫
r1,r2

ψ̂†r1(τ)ψ̂†r2(τ)ψ̂r2(τ)ψ̂r1(τ)
(r1 − r2)α(r1 − r2)β
|r1 − r2|3−η

,

(A.159)

3where 1F̃1(a; b; c) is the regularized confluent hypergeometric function and In(x) are the modified Bessel functions of
the first kind.
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where we assumed the Coulomb potential to have the form V (r, r′) =
r−η0

|r−r′|1−η . This result is in agree-

ment with the expression of the interacting energy-stress tensor which we obtained in the derivation
analogous to the Martin and Schwinger calculation [49]. The Fourier transform is

T intαβ (q = 0, τ) =
1

2
(1− η)r−η0 21−ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
k,p,l

lαlβ
|l|3+η

ψ̂†k(τ)ψ̂†p(τ)ψ̂p−l(τ)ψ̂k+l(τ)

=
1

2
(1− η)r−η0 21−ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
l

lαlβ
|l|3+η

n(l, τ)n(−l, τ) ,

(A.160)

with

n(l, τ) =

∫
p

ψ̂†p(τ)ψ̂p+l(τ) . (A.161)

After having calculated the interacting part of the energy-stress tensor T intαβ , the additional diagram
contributing to the correction coefficient is determined by the correlator between the non-interacting

and interacting energy-stress tensor

〈
T intαβ , T

(0)
αβ

〉
. Just to remind ourselves, T

(0)
αβ is for graphene

T
(0)
αβ = 1

2

∫
q
ψ̂†q

(
qασβ + qβσα

)
ψ̂q. Thus, the following four contractions have to been evaluated:

(A.162)

Only these four contractions will result in connected diagrams. In principal, there are two more
contractions possible which lead to disconnected diagrams, which we do not take into account here. The
first two diagrams emerging from contractions (a) and (b) are both equal to zero. Let me demonstrate

154



A.3 Viscosity in the collisionless regime

exemplary why they are zero at the contraction (a). We find for this contraction

χ
(a)

T intαβ ,T
(0)
αβ

=
1

4
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
q,k,p,l

lαlβ
|l|3+η

(
qγσδ + qδσα

)
cd

×
(
Gp,0

)
bb

(
Gk+l,+τ

)
ac

(
Gk,−τ

)
da
δ(k − q)δ(p− p+ l)δ(k + l− q)

=
1

4
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
k,p,l

lαlβ
|l|3+η

Tr(Gp,0) Tr(Gk+l,+τ

(
kγσδ + kδσα

)
Gk,−τ )δ(l)

= 0 .

(A.163)

Upon evaluating the l momentum integral, the correlation function vanishes. The contraction (b) has
an analogous expression which will be zero for the same reasons. Now, we turn to the contractions
(c) and (d) and the resulting diagrams. The correlation function resulting from the contraction (c) is
given by

χ
(c)

T intαβ ,T
(0)
αβ

(τ) = −1

4
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
q,k,p,l

lαlβ
|l|3+η

(
qγσδ + qδσα

)
cd

× (Gp,0)ab(Gp−l,τ )bc(Gk,−τ )daδ(k − q)δ(k + l− p)δ
(
p− l− q

)
= −1

4
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
k,l

lαlβ
|l|3+η

Tr

[
Gk+l,0Gk,τ

(
kγσδ + kδσγ

)
Gk,−τ

]
.

(A.164)

Next, we will re-expresses the above expression by Matsubara frequencies. It holds

χ
(c)

T intαβ ,T
(0)
αβ

(iνr) = −1

4
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

)
×

∫
k,l,n,m,s

∫ β

0
dτ

lαlβ
|l|3+η

Tr

[
Gk+l,iωsGk,iωn

(
kγσδ + kδσγ

)
Gk,iωm

]
ei(νr−ωn+ωm)τ

= −1

4
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
k,l,m,s

lαlβ
|l|3+η

Tr

[
Gk+l,iωsGk,i(ωm+νr)

(
kγσδ + kδσγ

)
Gk,iωm

]
.

(A.165)

The last contraction (d) yields exactly the same expression. Thus, the additional diagram to the
correction coefficient (the honey diagram) is twice the above expression and reads

χ
T intαβ ,T

(0)
αβ

(iνr) = −1

2
(1−η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
k,l,m,s

lαlβ
|l|3+η

Tr

[
Gk+l,iωsGk,i(ωm+νr)

(
kγσδ + kδσγ

)
Gk,iωm

]
.

(A.166)
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Figure A.2: The honey diagram.

Let us now evaluate this Feynman diagram. It is depicted in Fig. A.2. Upon rewriting the above
expression explicitly with the corresponding expressions of the Green’s functions, we find

χ
T intαβ ,T

(0)
αβ

(iνr) = −1

2
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) ∫
k,l,m,s

lαlβ
|l|3+η

Tr[A]

(ω′2 + |l+ k|2)(k2 + ω2)(k2 + (ω + Ω)2)
,

(A.167)
where the trace is given by

Tr[A] =

Tr
(

[iω′σ0 + (kx + lx)σx + (ky + ly)σy][i(ω + Ω)σ0 + kxσx + kyσy][kxσy + kyσx][iωσ0 + kxσx + kyσy]
)

= −2

(
(kx + lx)ky

(
−3k2

x + k2
y + ω(ω + Ω)

)
+ (ky + ly)kx

(
k2
x − 3k2

y + ω(ω + Ω)
)

+ 2kxkyω
′(2ω + Ω)

)
.

(A.168)

Next, we perform the two frequency integrations and find

χ
T intαβ ,T

(0)
αβ

(iνr) =
1

2
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) 1

(2π)4

×
∞∫

0

dk

∞∫
0

dl

2π∫
0

dα

2π∫
0

dβ
k3 sin(2α) cos(2β)l1−η sin(α− β)(

4k2 + Ω2
)√

k2 + 2kl cos(α− β) + l2
.

(A.169)

Then the Matsubara frequency is analytically continued, i. e., iΩ→ ω + iδ, which yields

1

4k2 + Ω
→ P.V.

1

4k2 − ω2
+

iπ

4ω
δ

(
k − ω

2

)
+

iπ

4ω
δ

(
k +

ω

2

)
. (A.170)
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The imaginary part of the correlation function can now be cast into the form

Imχ
T intαβ ,T

(0)
αβ

(iνr) =
1

2
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) 1

(2π)4

×
∞∫

0

dl

2π∫
0

dα

2π∫
0

dβ
πω2 sin(2α) cos(2β)l1−η sin(α− β)

16
√

4l2 + 4lω cos(α− β) + ω2
.

(A.171)

Next, we substitute the angle α→ ϕ+ β and perform the β integration and obtain

Imχ
T intαβ ,T

(0)
αβ

(iνr) =
1

2
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) 1

(2π)4

∞∫
0

dl

2π∫
0

dϕ
π2ω2l1−η sin2(ϕ) cos(ϕ)

16
√
l2 + lω cos(ϕ) + ω2/4

. (A.172)

Upon using the relation

|k|1−η = Γ

(
1 + η

2

)−1
∞∫

0

dz
e−k

2z

z
1−η

2

, (A.173)

we obtain

Imχ
T intαβ ,T

(0)
αβ

(iνr) =
1

2
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) 1

(2π)4

×
∞∫

0

dl

2π∫
0

dϕ

∞∫
0

dzπ3/2ω2l1−η sin2(ϕ) cos(ϕ)
e
−z
(
l2+lω cos(ϕ)+ω2

4

)
16
√
z

.

(A.174)

After performing the last angle-integration, it is

Imχ
T intαβ ,T

(0)
αβ

(iνr) =
1

2
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) 1

(2π)4

∞∫
0

dl

∞∫
0

dz
π5/2ωl−ηe

− 1
4
z
(

4l2+ω2
)
I2(lzω)

8z3/2
,

(A.175)

where In(z) is the modified Bessel function of the first kind. Next, we integrate over the momentum l
and find

Imχ
T intαβ ,T

(0)
αβ

(iνr) =
1

2
(1− η)r−η0 21+ηπ

Γ
(

3+η
2

)
Γ
(

3−η
2

) 1

(2π)4

×
∞∫

0

dz
1

128
π5/2ω3Γ

(
3

2
− η

2

)
z
η+1

2
− 3

2 1F1

(
η + 3

2
; 3;−1

4

(
zω2

))
,

(A.176)

where 1F (a, b, z) is the Kummer confluent hypergeometric function. Hence, the imaginary part of the
correlation function is given by

Imχ
T intαβ ,T

(0)
αβ

(iνr) =
22η−11(η − 1)ω3

(
ω2
)− η

2
Γ
(
η
2

)
Γ
(

3− η
2

) . (A.177)

157



A Graphene

When we expand the above expression for small η, we find

Imχ
T intαβ ,T

(0)
αβ

(iνr) = − ω3

2048η
−
−4ω3 log(r0)− 4γω3 − ω3 + 8ω3 log(2)− 2ω3 log

(
ω2
)

8192
+O(η) . (A.178)

We have to multiply the above expression by a factor of 2, since the correlation function

〈
T intαβ , T

(0)
γδ

〉
and

〈
T

(0)
αβ , T

int
γδ

〉
give the same result and both combinations contribute to the correction coefficient.

Thus, the final contribution to the correction coefficient due to the honey diagram is

Imχ
T intαβ ,T

(0)
αβ

(iνr) = − 1

1024η
− −4 log(r0)− 4 log(Ω)− 4γ − 1 + 8 log(2)

4096
(A.179)

The honey diagram is also divergent for η → 0. When all three diagrams are summed up, these
divergences cancel each other.

The correction coefficient

Upon combining all three Feynman diagrams, we find for the correction coefficient Cη

Cη =
89− 20π

40
' 0.65 . (A.180)

This is a relatively large correction coefficient and hence, the impact of the Coulomb interaction on
the shear viscosity of graphene in the collisionless regime is large.
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B Appendix B

Anisotropic Dirac System (ADS)

B.1 Derivation of the Scaling behavior of the Conductivity and the
Viscosity tensor

In this section, we derive the scaling behavior of the conductivity and the viscosity tensor for an
anisotropic Dirac system (ADS). Thereby, we build on the foundation laid in Sec. 7.2.1 where we
introduced how physical observables behave under a Wilson renormalization group (RG) analysis.
The observable is related to their renormalized value by [116]

O(kx, ky, ω, α) = ZOO(Zx(l)kx, bky, Zω(l)ω, α(l)) , (B.1)

where ZO is the scaling factor and the scaling factor Zx and Zω are given by

Zx = b1−γv and Zω = b
1
2

(1−γk0
) (B.2)

with

γv =
0.3625

N
and γk0 =

0.2364

N
. (B.3)

Now, let us see how the conductivity σαβ and the viscosity ηαβγδ behave under an RG flow.

B.1.1 Derivation of the Scaling of the Conductivity

We want to determine the scaling dimension of the electrical conductivity σαα with α ∈ x, y. Therefore,
we consider the optical conductivity σαα in the collisionless regime. The same power laws are expected
for the temperature dependent conductivity in the collision dominated regime. We use the Kubo-
formula (2.8)

σαα = lim
q→0

ω

q2
α

χρ
(
q, ω

)
(B.4)

with the charge susceptibility χρ. The charge susceptibility is proportional to the compressibility in
the limit of zero momentum and frequency

χρ
(
q → 0, ω = 0

)
= κ . (B.5)

Hence, we can assume that the charge susceptibility has the same scaling dimension as the compress-
ibility, i. e., Zχρ = Zκ = Zω/(bZx) . This implies that we find for the conductivity the following scaling
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dimensions

σxx =
Zx
b
σxx

(
ZωT

)
(B.6)

σyy =
b

Zx
σyy

(
ZωT

)
. (B.7)

Inserting (B.2) into the above scaling equations, we find for the conductivity in the collision dominated
regime the following temperature dependence

σxx,yy(T ) ∝

(
T

vk0

)±( 1
2

+φσ)

, (B.8)

with φσ = 1
2(γv + γk0) = 0.299/N . The Coulomb interaction enhances the metallic and insulating

temperature dependence.

B.1.2 Derivation of the Scaling of the Shear viscosity

Now, let us turn to the scaling behavior of the viscosity where we expect the same power laws for the
temperature dependent viscosity ηαβγδ(T ) as for ηαβγδ(ω). The shear viscosity ηαβγδ is defined by the
Kubo-formula (3.36)

ηαβγδ ∝
1

ω
ImχTαβTγδ , (B.9)

where ImχTαβTγδ is the correlation function between the energy-stress tensors. However, in order to
derive the scaling behavior of the viscosity tensor, we are going to use a different version of the Kubo
formula for the viscosity. This is possible, as seen in Sec. 3.2, since the energy-stress tensor can also
be expressed by the time derivative of the strain generator Jαβ = Lαβ + Sαβ, where

Lαβ = xαpβ +
i

2
δαβ and Sαβ = −1

4
εαβγσγ . (B.10)

Using this fact, the Kubo formula, (3.37), for the viscosity is given by the following expression

ηαβγδ ∝ ω Im
〈

[Jαβ,Jγδ]
〉
. (B.11)

For further details of the derivation of this expression for the viscosity tensor, we refer to Sec. 3.3. Next,
we assume that the operator Sαβ has the same dimensionality as the particle density, ZSαβ = Zn. Upon
assuming for the operator Lαβ the same dimensionality as the particle density times the momentum
and the corresponding spatial coordinate, which has the dimensionality of the inverse momentum, we
find

ZLxx = Zn , (B.12)

ZLyy = Zn , (B.13)

ZLxy =
Zx
b
Zn , (B.14)

ZLyx =
b

Zx
Zn , (B.15)

ZSab = Zn . (B.16)
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These scaling factors are used to determine the scaling factors of the two point correlation function of
the strain generators. They are given by

Z〈LxxLxx〉 = Zκ =
Zω
bZx

, (B.17)

Z〈LyyLyy〉 = Zκ =
Zω
bZx

, (B.18)

Z〈LxxLyy〉 = Zκ =
Zω
bZx

, (B.19)

Z〈LxyLxy〉 = Zκ
Z2
x

b2
=

Zω
b3Zx

, (B.20)

Z〈LyxLyx〉 = Zκ
b2

Z2
x

=
Zω
bZ3

x

, (B.21)

Z〈LxyLyx〉 = Zκ =
Zω
bZx

, (B.22)

Z〈SαβSγδ〉 = Zκ =
Zω
bZx

. (B.23)

We do not study the combination
〈
LabScd

〉
, since these terms are always zero because of the momentum

integration. Now, all scaling factors needed to determine the scaling behavior of the viscosity are
known, and upon inserting them into the Kubo formula (3.37), we find the following scaling factors of
the viscosity coefficients

Zη1 = Zηxyyx = Z−1
x b−1 , (B.24)

Zη2 = Zηxyxy =

Zxb
−3 for the

〈
LxyLxy

〉
-part

Z−1
x b−1 for the

〈
SxySxy

〉
-part

, (B.25)

Zη3 = Zηyxyx =

Z
−3
x b for the

〈
LxyLxy

〉
-part

Z−1
x b−1 for the

〈
SxySxy

〉
-part

. (B.26)

The scaling implies for the temperature dependence of the viscosity coefficients

ηxyxy(T ) = b−
5
2
− 1

2
γk0 η2,L(b1−γvT ) + b−

3
2

+ 1
2
γk0 η2,S(b1−γvT ) , (B.27)

ηyxyx(T ) = b−
1
2

+ 3
2
γk0 η3,L(b1−γvT ) + b−

3
2

+ 1
2
γk0 η3,S(b1−γvT ) , (B.28)

ηabcd(T ) = b−
3
2

+ 1
2
γk0 η1,L+S(b1−γvT ) , (B.29)

where ηabcd are all possible combinations of a, b, c, d ∈ {x, y} but the coefficients ηxyyx and ηyxxy. Also,
we exclude the coefficients ηaaab, ηaaba, · · · , since these are the Hall viscosity coefficients which are zero
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due to the momentum integration. The explicit temperature dependence for the coefficients are thus

ηabcd(T ) =

(
T

vk0

)3/2−1/2γk0
+3/2γv

k2
0

~
C1 =

(
T

vk0

)3/2+ 0.4255
N k2

0

~
C1 , (B.30)
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~
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~
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ηyxyx(T ) =
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~
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0

~
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=
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N k2

0

~
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N k2

0

~
C3,S . (B.32)

The Coulomb interaction enhances exponent of the temperature and only for ηyxxy it becomes reduced.

B.2 The viscosity derived by the Boltzmann equation

In this section, we give the explicit form of the matrix Mee
nm, uβ,α

and the vector Gm,uβ,α which were
introduced in Sec. 9.2. This matrix and vector appear when we multiply the Boltzmann equation which

depends on the modes φ
(n)
λk with the mode φ

(m)
λk and integrate and sum over the respective quantum

numbers. The matrix Mee
nm, uβ,α

describes the scattering processes due to Coulomb interaction, while
the vector Guβ,α arises from the term in the Boltzmann equation which is proportional to the spatial
derivative of the distribution function and thus proportional to the gradient of the drift velocity uβ,α.
The matrix is given by the expression

Mee
nm, uβ,α

=
N

T

∑
λ
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(B.33)

and the vector Guβ,α by

Gm,uβ,α =
N

T

∑
λ

∫
d2k

(2π)2
φ

(m)
λk f

(0)
λk

[
1− f (0)

λk

](
vαλkkβ −

1

2
δαβελk

)
. (B.34)

The temperature dependence of these quantities determines at the end the temperature dependence
of the conductivity, as we have shown in the corresponding Sec. 9.2.
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[105] G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig, “Merging of dirac points in a
two-dimensional crystal,” Phys. Rev. B, vol. 80, p. 153412, Oct 2009.
(Cited on page 88.)

171



Bibliography
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für meine Heidelberger Freunde Andrea Bergschneider, Emer Brady und Caroline Heneka. Was wäre
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