
Pretty Understandable Democracy - A Secure and
Understandable Internet Voting Scheme

Jurlind Budurushi, Stephan Neumann, Maina M. Olembo and Melanie Volkamer
CASED / TU Darmstadt

Hochschulstraße 10, 64289, Darmstadt, Germany
Name.Surname@cased.de

Abstract—Internet voting continues to raise interest. A large
number of Internet voting schemes are available, both in use,
as well as in research literature. While these schemes are all
based on different security models, most of these models are not
adequate for high-stake elections. Furthermore, it is not known
how to evaluate the understandability of these schemes (although
this is important to enable voters’ trust in the election result).
Therefore, we propose and justify an adequate security model
and criteria to evaluate understandability. We also describe an
Internet voting scheme, Pretty Understandable Democracy, show
that it satisfies the adequate security model and that it is more
understandable than Pretty Good Democracy, currently the only
scheme that also satisfies the proposed security model.

Index Terms—Cryptography, Internet Voting, Code Voting,
Security Model, Understandability

This work has been published in Proceedings of the Eighth International Conference on Availability, Reliability, and Security (p./pp. 198-207): IEEE Computer
Society. ISBN: 978-0-7695-5008-4. DOI: http://dx.doi.org/10.1109/ARES.2013.27
c©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

Internet voting continues to be a topic of interest with
widespread use in different contexts, for example, university
president elections at the Université Catholique de Louvain.
Even in Germany, where voting machines have been rejected, a
recent survey [1] reveals that more than 50% of eligible voters
would cast their vote over the Internet for federal elections.

Despite this interest, and the fact that many Internet voting
schemes are already available, further research is needed
regarding security and understandability. The underlying se-
curity model of most existing schemes is not adequate for
high-stake elections. The problem with these schemes is that
one single entity can violate secrecy and/or integrity, while
in traditional elections at least two entities control each other
(the four-eyes principle). For instance, in the Estonian voting
scheme [12], trust is placed in one server component; in
the Norwegian voting scheme [25], trust regarding secrecy is
placed in each individual voter’s computer; and in VeryVote
[19] trust is placed on each voter not to violate secrecy.

Little attention has been paid to the understandability of
Internet voting schemes and related understandability criteria
in research literature. Consequently, those schemes which
provide adequate security for high-stake elections have not
yet been evaluated with respect to understandability for the
average voter. However, understandability directly affects the
trust that voters place on a voting scheme [3], [5]. Therefore,
although these schemes provide adequate security, they are not
likely to be used in real-world elections. As a result of this
state of affairs, there is a need for an adequate security model,

understandability criteria, and an Internet voting scheme that
meets both.

In this paper, we describe a security model and justify why
it is adequate for Internet voting in established democracies. In
addition, understandability criteria are proposed. An Internet
voting scheme - Pretty Understandable Democracy (PUD)
- is developed. We evaluate this scheme and show that it
ensures secrecy and integrity under the proposed adequate
adversary model. Furthermore, we evaluate PUD using the un-
derstandability criteria and show that it is more understandable
than Pretty Good Democracy [26], currently the only Internet
voting scheme that satisfies the proposed security model.

II. ADEQUATE SECURITY MODEL

A security model consists of security criteria and an adver-
sary model. In this section, we introduce both parts and justify
the adequacy of the adversary model.

A. Security Criteria

Internet voting literature provides a number of standard se-
curity criteria catalogs [9], [29]. Certainly, the most important
security criteria of Internet voting schemes are secrecy and
integrity. We use the following definitions:
Secrecy: For each voter who casts a vote for an arbitrary
candidate c, it holds that the adversary1 cannot get more
evidence about the fact that the voter selected c or any other
selection c′ as he can get from the final tally.
Integrity: The aggregation of all participating eligible voters’
intentions2 matches the declared election result.
Integrity is ensured if the following sub-criteria are fulfilled:
Encoded-as-intended Integrity: The participating voter’s inten-
tion is correctly encoded. Note that a voter’s intention might
be encoded by techniques like encryption or permutation of
candidates. In the following, we refer to a voter’s encoded
intention as her encoded vote.
Cast-as-encoded Integrity: The participating voter’s encoded
vote is correctly cast, that is, it correctly leaves the voter’s
platform.
Stored-as-cast Integrity: The participating voter’s cast vote is
correctly stored for tallying during the whole voting phase.

1Note, obviously the adversary in that case cannot be the voter herself, as
she always knows her own intention.

2If a voter is coerced and follows the coercer’s instructions, we consider
this to be the voter’s intention.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by KITopen

https://core.ac.uk/display/197496828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tallied-as-stored Integrity: All participating voters’ stored
votes are correctly tallied.
Eligibility Integrity: Only eligible voters’ intentions are in-
cluded in the election result.
Democracy Integrity: Only one intention per eligible voter is
included in the election result.

Note that if an integrity sub-criterion is ensured without pos-
ing restrictions on the adversary, the sub-criterion is referred
to in literature as verifiable. Ideally, all integrity sub-criteria
should be verifiable [2], [8], [23]. Verifiability conflicts with
the secrecy criterion such that tradeoffs between secrecy and
integrity must be accepted.

B. Adversary Model

The adversary has the following capabilities:
• The adversary is able to corrupt one single entity from

the set of authorities3, voters, and voters’ platforms.
• The adversary controls network channels between all

entities, i.e., the network between platforms involved in
the scheme as well as the network between humans, e.g.,
postal mail.

On the other hand, we assume the adversary to be restricted
in the following way:
• The adversary is not able to break standard cryptography,

such as ElGamal or Diffie-Hellman. This assumption is
justified by the fact that long-term secrecy is not a crucial
problem in established democracies.

• The adversary cannot coerce the voter (according to
the definition by Juels et al. [21]). More precisely, the
adversary cannot force voters to abstain from the election,
control the voter during the whole voting phase, or force
the voter to cast a vote in a randomized way. These three
assumptions are justified by the fact that, in established
democracies, voters in these cases of coercion would alert
the police.

• The adversary cannot convince voters to participate in
integrity violations. This assumption is justified by the
fact that the voter might always vote differently from her
intention and consequently violate integrity trivially.

• The adversary cannot obtain authentication material from
voters. This assumption is justified by the fact that the
voting process is based on authentication material4 that
is used to access further services.

• The adversary cannot trick the voters into phishing web-
sites. This is justified by the fact that strong authentication
is in place and voters know the authentic website from
media reports and voting instructions.

• The adversary cannot corrupt more than one entity. This
assumption is justified by the fact that in traditional
elections two malicious poll workers can violate secrecy
and integrity.

3Authorities are composed of the human, the platform used by that entity,
as well as all hardware and software developers of the platform.

4For instance, in Estonia and Norway, eIDs have been used to authenticate
eligible voters. In non-political elections, one might consider student IDs or
Facebook, Google, or other similar platforms for authentication.

III. UNDERSTANDABILITY CRITERIA

Maaten [22] proposes increasing the overall understand-
ability of Internet voting schemes by making them as easy
to explain as possible. She, however, does not provide con-
crete criteria to measure the degree of understandability of
Internet voting schemes. Independently, Essex et al. [10]
propose guidelines to increase understandability within voting
schemes. According to their guidelines, voting schemes should
rely on a small set of simple cryptographic algorithms5. While
their work focuses on improving the understandability of the
tallying phase, we propose to apply these guidelines to all
phases of Internet voting schemes. Accordingly, we propose
the criterion number of cryptographic algorithms in use as
a measure for the overall understandability of Internet voting
schemes. This sub-criterion identifies how many cryptographic
algorithms are applied in the Internet voting scheme. Examples
of cryptographic algorithms are encryption, re-encryption,
signing, permutation, and zero-knowledge proofs. A verifiable
re-encryption mix-net consists of the cryptographic algorithms
re-encryption, permutation, and zero-knowledge proofs.

It becomes apparent that, even if the number of crypto-
graphic algorithms is low, these algorithms might be used
several times and in an interfering manner such that under-
standability of the overall Internet voting scheme decreases.
Therefore, we propose as a second criterion to measure
understandability of Internet voting schemes by the number
of essential process steps. This sub-criterion identifies the
number of essential process steps affecting an individual
voter’s vote. Essential process steps are those containing cryp-
tographic algorithms. We focus on the number of applications
of cryptographic algorithms affecting an individual voter’s vote
because these are the steps that the voter must understand. An
example of an essential process step is the encryption of the
voter’s vote.

Note that as future work we will concentrate on simplicity
of cryptographic algorithms and, based on the results, extend
the proposed sub-criteria.

IV. RELATED WORK

Internet voting has been studied since the early 1980s, when
Chaum’s seminal work [7] outlined the idea of using mix-
nets to ensure secrecy of the vote. Many schemes have been
proposed which look at conducting secure elections over the
Internet, for instance Benaloh and Tuinstra [4], JCJ [21], the
JCJ extension Civitas [8], and Helios [2]. One significant
drawback of these schemes is that in order to ensure secrecy
(in some schemes, even integrity) the voter’s platform is
assumed to be trustworthy. These schemes do not satisfy
our security model, because one entity (voter’s platform) can
violate secrecy or integrity.

Securely voting over untrustworthy platforms was initially
addressed by Chaum’s SureVote scheme [6], the first code

5The authors in [10] also consider efficiency. However, we do not see a
clear relation between efficiency and understandability, and the authors do not
provide a derivation of this relation.

2

voting scheme. In such schemes, voters get a code sheet over
an out band channel (e.g. snail mail). In the code sheets,
candidates are assigned to random, unique codes, thus voters
cast codes rather than candidates. Code voting has been
extended in [16], [19], [17], [18], [20], [13], [14], [15] and
[26]. The schemes in [6], [16], and [19] assume the voter to
be honest in order to ensure secrecy. Other extensions of code
voting, [17], [18], [20] assume a trustworthy voting- and voter-
specific smart card for secrecy and integrity. All these schemes
do not satisfy our security model, because one entity (either
voter or smart card) can violate secrecy or integrity.

Finally, the code voting based schemes introduced in [13],
[14], [15], rely on one voting server for integrity. Hence, these
schemes also do not satisfy our security model. To the best
of our knowledge, the only Internet voting scheme that meets
the criteria of secrecy and integrity under our adversary model
is Pretty Good Democracy (PGD) [26]. Our scheme will be
shown to be more understandable than PGD in Section VII.

V. DESCRIPTION OF PRETTY UNDERSTANDABLE
DEMOCRACY

This section describes Pretty Understandable Democracy
(PUD). This Internet voting scheme is based on the concept
of code voting, the only concept to effectively defend against
a malicious voter’s platform6. Correspondingly, we first give
a short overview of the code voting concept.

A. Code Voting

The concept of code voting was first introduced in Chaum’s
SureVote scheme [6]. The motivation of code voting is to
enable Internet voting without the need to trust the voter’s
platform with respect to secrecy and integrity. Each eligible
voter is issued, via an out of band channel (e.g. conventional
mail), a code sheet as shown in Figure 1. Note that every voter
gets a different code sheet. In contrast to other Internet voting
schemes, in code voting the voter casts a voting code instead
of her preferred candidate. In case a voter, who possesses the
code sheet shown in Figure 1, wanted to cast a vote for Alice,
she would submit the ballot ID, namely 34255, and the voting
code next to Alice, namely 51948. The voting server would
respond with the corresponding acknowledgment code, 71468.

Ballot ID: 34255
Candidate Voting Code Acknowledgment Code

Alice 51948 71468
Bob 23766 53286
Eve 41948 35468

Fig. 1. Code sheet

As malware on the voter’s platform does not know which
candidate is represented by the voting code, an untrustworthy
voter’s platform cannot break secrecy. The acknowledgment
code proves that the voting server received the correct voting

6Note that, the assumption that a voter’s platform is trustworthy would
violate the proposed security model because one single entity - the voter’s
platform - could already violate secrecy and integrity.

code. Any modification by the voter’s platform to the voter’s
code would be detected as the acknowledgment code will not
match the one on the voter’s code sheet.

B. Code Sheets in PUD

The code sheets used in PUD consist of three parts (i.e.
three different pieces of paper), two parts containing codes
and one part containing a permuted list of candidates. Each
code sheet part is generated by a different authority. The three
code sheet parts are linked by their index to one code sheet.

An example of one part of the code sheet containing codes
is depicted in Figure 2. This part with accompanying index i is
generated by authority A, whose identity is also indicated, next
to the acknowledgment code. CodeA,i,1 . . . ,CodeA,i,n denote
n random, unique codes and AckA,i denotes a random, unique
acknowledgment code. Similarly, an authority B generates the
second part of the code sheet containing codes for index i.

i
CodeA,i,1

...
CodeA,i,n

A: AckA,i

Fig. 2. Code sheet part generated by authority A with index i

The third part of the code sheet with index i is generated
by an authority C and consists of the list of n candidates,
randomized according to a secret permutation φi. The code
sheet part containing the candidates is shown in Figure 3 and
the complete code sheet for PUD is illustrated in Figure 4.

i
φi(Candidate1)

...
φi(Candidaten)

–

Fig. 3. Code sheet part generated by authority C with index i

i i i
CodeA,i,1 CodeB,i,1 φi(Candidate1)

...
...

...
CodeA,i,n CodeB,i,n φi(Candidaten)
A: AckA,i B: AckB,i –

Fig. 4. Code sheet in PUD

For a code sheet with index i, the voting code for the
candidate in the p-th position is the concatenation of the
corresponding codes in the p-th position:

Codei,p = CodeA,i,p ‖ CodeB,i,p

Accordingly, the voting acknowledgment code of this code
sheet is the concatenation of the acknowledgment codes:

Acki = AckA,i ‖ AckB,i

3

C. Entities

Here, we outline the involved entities and their key roles.
Authorities:
• Trustees (T) are involved in the setup phase, in particular

in generating a threshold public/secret key pair (pkT , skT)
for encryption/decryption. Each Trustee possesses a share
of the secret key. Trustees are also involved in the tallying
phase.

• The Distribution Authority (DA) is involved in the setup
phase; together with the Trustees, it anonymizes, audits
and distributes code sheets. Thus, both know the election
register.

• The Registration Authority (RA)7, in the setup phase,
generates the code sheet parts containing the permuted
list of candidates. RA is also involved in the voting phase
and knows the election register.

• The Voting Authority 1 (VA1), in the setup phase, gen-
erates codes. VA1 is also involved in the voting phase.
Furthermore VA1 holds a signing key.

• The Voting Authority 2 (VA2) has a similar functionality
as VA1.

• The Bulletin Board (BB) is involved in all phases. Any
entity has read access, all authorities (except DA) have
write access. All data published on the BB are signed by
the sending authority8. BB provides different sectors for
all phases.

Voter: The Voter (V) is a citizen who is eligible to participate
in the election and cast a vote.
Voter’s Platform: The Voter’s Platform (VP) is the platform
from which the voter casts her vote.

D. Election Setup

The election setup phase consists of key generation as
well as generating, committing on, auditing, anonymizing and
distributing code sheets.

Generating Keys: The Trustees generate a threshold pub-
lic/secret key pair (pkT , skT) for encryption/decryption in a
distributed manner. All authorities (except DA) generate SSL
key pairs. In addition, RA, VA1 and VA2 generate signing keys.

Generating Code Sheets: RA generates the part of each code
sheet containing the candidates: It randomizes the canonical
order of the candidate list for each code sheet according to
a secret permutation and prints the index and the randomized
candidate list on a sheet of paper (ref. to Figure 3). RA inserts
its sheets of paper into privacy-protected sealed envelopes. The
corresponding indexes are printed on the envelopes and sent
to DA.

VA1 and VA2 independently generate random, unique codes
for each candidate and each code sheet. They also indepen-
dently generate random unique acknowledgment codes for
each code sheet. Note that the acknowledgment codes must
not match codes for candidates. VA1 and VA2 independently

7RA was referred to as authority C in the previous subsection.
8Sending authorities compute one signature over all data in one protocol

step. Note, in Figures 5 and 9 the signatures are not illustrated.

print this information on a sheet of paper (ref. to Figure 2).
VA1 and VA2 also insert their sheets of paper into privacy-
protected sealed envelopes, print the corresponding indexes
on the envelopes and send them to DA.

Note that more code sheets than eligible voters must be
generated to enable auditing of code sheets.

Committing on Code Sheets: After generating the code sheet
parts, RA, VA1 and VA2 ‘commit’ on their respective parts:
Committing is done by encrypting corresponding parts with
the Trustees’ public key pkT and publishing the encryptions
under the accompanying index in the setup phase sector of
BB, see Figure 5. Note that committing is needed in order to
detect malicious RA, VA1, and VA2 distributing invalid code
sheets.

Bulletin Board Setup Phase Sector
...
i

{φi(Candidate1)}pkT . . . φi(Candidaten)}pkT
{Code1 . . .Coden;AckV A1}pkT
{Code1 . . .Coden;AckV A2}pkT

...

Fig. 5. Content of BB at the end of the setup phase

Auditing Code Sheets: Afterwards, DA and the Trustees start
with the auditing process, shown in Figure 6: The Trustees
randomly select code sheets to be audited. The corresponding
data for each code sheet to be audited is downloaded from the
setup phase sector of BB. The downloaded data is decrypted
by a threshold set of Trustees. The decrypted data is matched
against the content of the corresponding envelopes. The au-
dited code sheets are then discarded. Note, this process can
be observed by the general public, e.g., by video-streaming
the process over the Internet.

Fig. 6. Auditing process

Anonymizing and Distributing Code Sheets: After the audit-
ing process, DA in cooperation with the Trustees anonymize
and distribute the remaining envelopes to eligible voters,
shown in Figure 7: All envelopes sharing the same index

4

are placed into neutral envelopes9. These are put into a box
and shuffled. After permuting, DA and the Trustees take the
anonymized neutral envelopes out of the box, print voters’
addresses on the envelopes and send them to the corresponding
addresses.

Fig. 7. Anonymization and distribution process

E. Voting

The voter receives an envelope and checks that it contains
the three code sheet parts, that the three code sheet parts are
in privacy-protected sealed envelopes, and that the envelopes
share the same index. The voter opens the three envelopes and
combines the three code sheet parts in an order that is publicly
known.

The vote casting process is shown in Figure 8. In order
to vote, the voter authenticates herself to the voting website,
which is hosted by RA. For authentication, for instance, an eID
card can be used. RA verifies that the voter is eligible to vote
and that she has not yet cast a vote. The voter’s communication
with RA as well as any other communication in the voting
phase are both secured by SSL. To cast a vote, the voter enters
the voting code matching the candidate of her choice on the
voting website.

RA forwards the first part of the voting code to VA1 and
the second part to VA2. First, VA1 and VA2 check whether
the received code is from a code sheet (index on BB) for
which no code has yet been cast. Then, they deduce the
index and the acknowledgment code of the code sheet (based
on the received code) and the corresponding position of the
code. Thereafter, they request and obtain the encryption of the
candidate for the index and the position from BB (ref. to Figure
5, first row after the index i). VA1 and VA2 independently
re-encrypt the received ciphertext to {φi(Candidatep)}′pkT
and {φi(Candidatep)}′′pkT . After this, they send the re-
encrypted ciphertexts to BB. BB publishes the received data

9By neutral envelopes we mean that the envelopes look the same.

and sends a confirmation to VA1 and VA2. Figure 9 illustrates
the information on BB. After having received the confirmation,
VA1 and VA2 forward the previously deduced acknowledgment
codes to RA. RA concatenates these codes into the voting
acknowledgment code, which it sends to the voter. RA changes
the voter’s status in the election register.

Fig. 8. Vote casting process

Bulletin Board Voting Phase Sector
Column 1 Column 2

...
{φi(Candidatep)}′pkT {φi(Candidatep)}′′pkT

...

Fig. 9. Content on BB during the voting phase

F. Tallying

After the voting phase, each row of BB corresponds to a
successfully cast vote (ref. to Figure 9). The tallying process
is shown in Figure 10. Before the process starts, RA sends
the total number of voters who have cast a vote to BB.
The general public can check that this number matches the
number of rows on BB. The Trustees request the re-encrypted
ciphertexts and BB sends back the data re-encrypted by VA1

and VA2, corresponding to column 1 and column 2 of BB’s
voting phase sector. The Trustees sum up the content of each
individual column homomorphically. The encrypted sums are
then decrypted by a threshold set of Trustees. The Trustees
compare the decrypted sums, and if they match, the election

5

result is declared to be the matching sum. Finally, the Trustees
publish the ZKPs for correct decryption and the election result
on BB.

Fig. 10. Tallying process

VI. SECURITY ANALYSIS

This section is dedicated to the security analysis of Pretty
Understandable Democracy (PUD). We show that PUD satis-
fies our security model. Before diving into the details of the
analysis, we start with explaining the methodology we use for
the analysis and some preliminary considerations.

A. Methodology

For our security analysis, we use resilience terms as pro-
posed and considered for Internet voting schemes in [24], [27],
[28] in order to show that no single entity can violate secrecy
or integrity under the defined assumptions. Given a criterion
C (in our case secrecy or integrity), the resilience term

(a+ b) out of (M,N); (c+ d) out of (O,P)

expresses that a entities out of the set of entities M and b
entities out of N or that c entities out of O and d entities out
of P , must collaborate in order to violate C.

If, for secrecy or integrity, the resilience term of an In-
ternet voting scheme is t = t1; . . . ; tn with ti = (ai,1 +
· · · + ai,mi

) out of (Ai,1, . . . , Ai,mi
) for all 1 ≤ i ≤ n

and
∑mi

j=1 |ai,j | ≥ 2 holds, then these criteria are satisfied
under the adversary model. Note, in order to break secrecy or
integrity each entity can use the knowledge obtained as part
of the scheme and any public knowledge. Entities can also
deviate from the original protocol specification (e.g. modify or
delete stored data). The voter is not considered throughout the
integrity resilience term derivation because of the assumption
that the adversary cannot convince voters to participate in
integrity violations.

We determine the secrecy resilience terms according to
the methodology described in [24]. We briefly explain this

methodology and give a supporting example: All entities’
knowledge (including public knowledge) is modeled in so-
called knowledge sets. The basic knowledge sets of an ad-
versary are determined to be elements of the power set of
the entities’ knowledge sets he is able to corrupt. Each basic
knowledge set of an adversary is extended, based on the
deduction system proposed in [24]. An adversary, being able
to corrupt a particular set of entities, can break secrecy if the
corresponding extended knowledge set contains the relation
between a voter and her selected candidate. The entities being
corrupt build the basis for deriving a resilience term.

For example, assume a scheme with two entities A and B.
An entity X’s knowledge set is denoted by K(X). Assume
K(A) and K(B) are defined as follows:

K(A) := {R(voter(i), token(j))}
K(B) := {R(token(j), candidate(k))}

Note that R denotes the relation between two terms, while
i, j, k are indexes of voters, tokens, and candidates. The set of
basic adversary knowledge sets (BAK) is given as follows:

BAK := {∅, {R(voter(i), token(j))},
{R(token(j), candidate(k))},
{R(voter(i), token(j)),
R(token(j), candidate(k))}}

Applying the deduction system proposed in [24] for this
simple example extends the fourth extended knowledge set
by the term R(voter(i), candidate(k)). Correspondingly, an
adversary being able to corrupt entity A and B would be
able to break secrecy. The resilience term in this case is
t = 2 out of {A,B}. Thus, under our adequate security model
such a scheme would not violate secrecy.

Due to the fact that a similar approach for analyzing
integrity is missing, an informal analysis is provided in the
remainder of this work.

B. Preliminary Considerations

In this subsection, we discuss the impact on the security
analysis of an adversary controlling the Internet and the postal
channel.

The consequence of an adversary controlling the Internet is
that all messages interchanged between entities become public
knowledge as the adversary could publish this information
(e.g. anonymously). However, in PUD, all communication
over the Internet is secured by SSL with respect to secrecy
and integrity, and the adversary is restricted with respect to
breaking standard cryptography. Therefore, the adversary does
not get any advantage which he can use to violate secrecy or
integrity.

Due to the fact that in PUD code sheets are distributed
in sealed and privacy-protected envelopes, it is assured that
envelopes cannot be opened and closed again, neither can they
be replaced without detection. Therefore, the adversary con-
trolling the postal channel between the Distribution Authority
(DA) and voters does not get any advantage which he can

6

use to violate secrecy or integrity. In summary, controlling all
channels between involved entities does not have any impact
on the security analysis.

C. Result of the Analysis

In this subsection, we deduce the resilience terms and
evaluate them according to our security model. We start with
secrecy and then address the different integrity sub-criteria.

Secrecy: We first identify the entity’s knowledge sets and
provide the result of the resilience analysis. Note that |THR|
is the number of Trustees that are needed to reconstruct their
secret key, skT . AV denotes the set of all eligible voters, while
PV denotes the set of participating voters.

The voter v(i) knows the relation between her identity and
her code sheet index index(v(i)). She also knows the relation
between her code sheet index and all voting codes related to
that index. The voter knows the relation between her identity
and her acknowledgment code. Finally, the voter knows the re-
lation between voting codes and the corresponding candidates
due to the printed code sheet.

1) R(v(i), index(v(i)))
2) R(index(v(i)), codeVAa

(index(v(i)))), ∀a ∈ {1, 2}
3) R(v(i), ack−codeV Aa

(v(i))), ∀a ∈ {1, 2}
4) R(codeVAa(index(v(i))),

cand(codeVAa(index(v(i))))), ∀a ∈ {1, 2}
The Registration Authority RA knows the relation between

candidates and encrypted10 candidates stored in the voting
phase sector of the BB. RA furthermore knows the relation
between a voter’s identity and her cast voting code. Finally,
RA knows the relation between a voter’s identity and her
acknowledgment code.

1) R(cand(codeVAa
(index(v(i)))),

encRA(cand(codeVAa
(index(v(i)))))),

∀a ∈ {1, 2},∀i ∈ {1, . . . , |PV |}
2) R(v(i), cast−codeV Aa(v(i))),

∀a ∈ {1, 2},∀i ∈ {1, . . . , |PV |}
3) R(v(i), ack−codeV Aa

(v(i))),

∀a ∈ {1, 2},∀i ∈ {1, . . . , |PV |}
The Voting Authority VA1 knows the relation between all

codes generated by VA1 for each index. VA1 also knows the
relation between all cast codes intended for itself and the
corresponding code sheet index. In addition, VA1 knows the
relation between codes and candidate encryptions on BB’s
setup phase sector. Moreover, VA1 knows the relation between
ciphertexts containing candidates and re-encryptions of these
ciphertexts posted on BB. Finally, VA1 knows the relation
between codes and acknowledgment codes generated by itself.

1) R(codeVA1
(index(v(i))), index(v(i))),

∀i ∈ {1, . . . , |PV |}
2) R(cast−codeV A1

(v(i)), index(v(i))),

∀i ∈ {1, . . . , |PV |}
3) R(codeVA1(index(v(i))),

encRA(cand(codeVA1
(index(v(i)))))),

∀i ∈ {1, . . . , |PV |}
10Ciphertexts are generated using the Trustees’ public key pkT .

4) R(encRA(cand(codeVA1
(index(v(i))))),

re−encVA1(encRA(cand(codeVA1(index(v(i))))))),
∀i ∈ {1, . . . , |PV |}

5) R(codeVA1
(index(v(i))), ack−codeV A1

(v(i))),

∀i ∈ {1, . . . , |PV |}
We do not provide the knowledge set for Voting Authority
VA2, because the knowledge is specified analogously.

Voter i’s Voter Platform VP knows the relation between
that voter’s identity and her cast voting code. Furthermore,
VP knows the relation between the voter’s identity and her
acknowledgment code.

1) R(v(i), cast−codeV Aa
(v(i))), ∀a ∈ {1, 2}

2) R(v(i), ack−codeV Aa
(v(i))), ∀a ∈ {1, 2}

The BB knows the relation between indexes, and encryp-
tions of voting codes generated for that index as well as
encryptions of candidates prepared for that index. Furthermore,
BB knows the relation between re-encryptions of candidates
generated by VA1 and VA2.

1) R(index(v(i)),
encRA(codeVAa

(index(v(i))))),
∀a ∈ {1, 2},∀i ∈ {1, . . . , |AV |}

2) R(index(v(i)),
encRA(cand(codeVAa(index(v(i)))))),
∀a ∈ {1, 2},∀i ∈ {1, . . . , |AV |}

3) R(re−encVA1
(encRA(cand(codeVA1

(index(v(i)))))),
re−encVA2

(encRA(cand(codeVA2
(index(v(i))))))),

∀a ∈ {1, 2},∀i ∈ {1, . . . , |PV |}
Each Trustee Tr knows a share of the secret key skT . The

Distribution Authority only knows voters’ identities.
Applying the deduction system for the identified knowledge

sets, the following secrecy resilience term results:

tsec = (1 + 1) out of ({V }, {VP,RA,VA1,VA2};
(1 + 1) out of ({RA}, {VA1,VA2});
(1 + 1 + |THR|) out of ({V P}, {VA1,VA2}, T);
(1 + 1 + 1) out of ({V P}, {VA1,VA2}, {RA})

Integrity: We consider encoded-as-intended, cast-as-encoded,
stored-as-cast, tallied-as-stored, eligibility, and democracy sep-
arately.

a) Encoded-as-intended (eai) Integrity: The voter must
be sure that the information printed on her code sheet with
index i matches the encrypted information for index i on BB.
Throughout the auditing process, any observer can verify that
this information matches for randomly selected code sheets.
Hence, the resilience term is:

teai = ∞

b) Cast-as-encoded (cae) Integrity: The only way for VP
to successfully manipulate voting codes provided by the voter
before they are cast, is to know another valid voting code of
this voter. The voter’s platform (VP) must collaborate with VA1

7

and VA2, in order to get this information11. Consequently, the
resilience term for cast-as-encoded integrity is:

tcae = 3 out of {VP,VA1,VA2}

c) Stored-as-cast (sac) Integrity: There are two groups
of entities identified as capable of violating stored-as-cast
integrity. The first group involves VA1 and VA2. If both
authorities agree on selecting the same encryption of a dif-
ferent candidate from BB, they can successfully violate this
sub-criterion. The second group consists of BB and RA.
BB might remove individual ciphertexts. Furthermore, if RA
correspondingly adapts the number of voters who cast a vote,
both authorities can successfully violate this sub-criterion. The
resilience term for stored-as-cast integrity is:

tsac = 2 out of {VA1,VA2};
2 out of {RA,BB}

d) Tallied-as-stored (tas) Integrity: Throughout the tally-
ing process, any observer can verify that the Trustees correctly
built the homomorphic sum over all signed, re-encrypted can-
didates from BB’s voting phase sector and correctly decrypted
the computed sum, which is the election result. Consequently,
the resilience term for tallied-as-stored integrity is:

ttas = ∞

e) Eligibility (e) Integrity: There are two groups of
entities identified as capable of violating eligibility integrity.
The first group involves RA and V. If the voter forwards her
code sheet to RA, then RA can cast one voting code from
that voter’s code sheet, thereby violating this sub-criterion.
The second group consists of RA, VA1, and VA2. Rather than
receiving code sheets from the voters, RA might receive valid
voting codes from VA1 and VA2. Thereby, this group would
succeed in violating eligibility integrity. Consequently, the
following resilience term results:

te = 2 out of {RA, V };
3 out of {RA,VA1,VA2}

f) Democracy (d) Integrity: If a malicious voter intends
to cast several votes, and RA allows the voter to cast voting
codes several times, and furthermore VA1 and VA2 publish
corresponding re-encryptions on BB, then they can violate
democracy integrity.

td = 4 out of {V,RA,VA1,VA2}

Table I summarizes the results of the security analysis on
PUD, showing that PUD satisfies our security model.

VII. UNDERSTANDABILITY ANALYSIS

In this section, we compare Pretty Understandable Democ-
racy (PUD) with Pretty Good Democracy (PGD) [26] (the
only Internet voting scheme meeting the security model from
Section II), with respect to understandability and show that

11The outlined collusion would merely result in a randomization attack.

TABLE I
SUMMARY OF THE SECURITY ANALYSIS OF PUD.

Secrecy (1 + 1) out of ({V }, {VP,RA,VA1,VA2};
(1 + 1) out of ({RA}, {VA1,VA2});
(1 + 1+ |THR|) out of ({V P}, {VA1,VA2}, T);
(1 + 1 + 1) out of ({V P}, {VA1,VA2}, {RA})

Encoded-as-
intended

∞

Cast-as-encoded 3 out of {VP,VA1,VA2}
Stored-as-cast 2 out of {VA1,VA2};

2 out of {RA, BB})
Tallied-as-stored ∞
Eligibility 2 out of {RA, V };

3 out of {RA,VA1,VA2}
Democracy 4 out of {V,RA,VA1,VA2}

PUD is more understandable. In order for the reader to
follow the discussion, we first briefly summarize PGD. In
this summary, cryptographic algorithms are highlighted with
bold font, while the number of their applications is given in
parentheses.

A. Pretty Good Democracy

Pretty Good Democracy is a code voting scheme. It consists
of election setup, voting and tallying phases which we first de-
scribe. The entities involved are Bulletin Board, Voting Server,
Trustees, Voting Authority, Registrar, Returning Officer, Voter,
Voter’s Platform, and Clerks. All proofs are posted on the
Bulletin Board. The code sheet consists of the canonical order
of candidates and corresponding voting codes, as well as one
acknowledgement code.

1) Election Setup: Before the election, the Trustees run
a distributed key generation protocol (according to [11], t2

encryptions and 2∗t2 commitments are deployed) to establish
a common public key pkT , such that each Trustee holds a
share of the respective secret key skT . The Voting Authority
generates λ·v ·(c+1) distinct voting codes and encrypts them
with pkT (each voter’s code sheet contains c+1 voting codes
which are encrypted). The factor λ serves to generate enough
voting codes to enable auditing, v is the number of voters and
c the number of candidates.

After the generation and encryption of voting codes, the
Clerks anonymize these voting codes using a verifiable re-
encryption mix-net. Each Clerk permutes the voting codes,
re-encrypts them, and proves for each individual voting code
the correct proceeding with a zero-knowledge (ZK) proof
(C∗(c+1) permutations, re-encryptions, and ZK proofs, where
C is the number of Clerks). They place the anonymized voting
codes in a table, called the P -table, which has c+1 columns
and λ · v rows. Each row of the P -table corresponds to a
valid code sheet. The code sheet’s ID corresponds to the row
number. The first c columns correspond to the candidates and
the last column to the acknowledgment code.

After the generation of the P -table, the Trustees distribu-
tively decrypt the P -table (each voter’s code sheet contains
c + 1 codes to be decrypted by the Trustees). Together with
the Registrar, they construct λ · v code sheets. Afterwards,
the Registrar audits a subset of the code sheets and prints the

8

remaining code sheets on paper. The Registrar puts the printed
code sheets in privacy-protected envelopes and sends them to
the Returning Officer, who distributes them to eligible voters.

To prepare a secrecy-maintaining tallying phase, the P -
table must be further anonymized. Hence, the Clerks run
a second verifiable re-encryption mix-net (permutation, re-
encryption, and ZK proof as above), while only permuting
voting codes within each row of the P -table. Furthermore, the
Clerks add their encrypted, individual permutation factors to
the encrypted factors of the previous Clerks (t re-encryptions
and ZK proofs). The resulting factors are appended to each
permuted code sheet, resulting in the Q-table. Both, the P -
table and the Q-table are posted on the Bulletin Board.

2) Voting: After the voter receives her individual code sheet
from the Returning Officer, she uses the code sheet to cast
her vote. The voter first authenticates herself to the Voting
Server. She then sends her code sheet’s ID together with
the voting code appearing next to her preferred candidate.
After the Voting Server receives the voter’s voting code, it
encrypts the code (1 encryption) and generates a ZK proof
of knowledge stating that it knows the corresponding plaintext
(1 ZK proof of knowledge). The encryption of the voting code
together with the zero-knowledge proof is posted within row
ID of the Q-table (on the Bulletin Board). After the encrypted
voting code has been posted, the Trustees carry out plaintext
equivalence tests between the encrypted voting code posted by
the Voting Server and the voting codes from the Q-table in row
ID. In worst-case, the plaintext equivalence test is run c times
to find a match. Throughout the plaintext equivalence test,
each Trustee commits on a blinding factor used to obfuscate
the underlying plaintexts (c∗ t commitments). Afterwards, the
Trustees deploy a distributed blinding (t blindings) and dis-
tributively decrypt (t decryptions) the blinded ciphertext. They
generate a ZK proof of the equality of discrete logarithms in
order to ensure correct decryption (t ZK proofs).

If a match is identified, the corresponding encryption is
marked in the Q-table by the Trustees. The Trustees further-
more distributively decrypt the acknowledgment code within
row ID (t decryptions), prove the correctness of the decryption
(t ZK proofs). They return this code to the Voting Server,
which forwards it to the voter. The voter checks that the
returned acknowledgment code matches the acknowledgment
code on her code sheet.

3) Tallying: After the voting phase, marked encryptions
in the Q-table must be interpreted in order to compute the
election result. Therefore, for each row in the Q-table, the
column number of the marked encryption and the encrypted
permutation factor are paired. Resulting pairs are anonymized
using a third verifiable re-encryption mix-net (t permutations,
t re-encryptions, and t ZK proofs). After the anonymization
process, the encrypted permutation factor is distributively
decrypted (t decryptions) and the correctness of decryptions is
proven by the Trustees with ZK proofs (t ZK proofs). Finally,
the marked column number can be associated to the original
column number, namely the corresponding candidate selection.
After all column numbers have been interpreted, the election

result is the sum over all candidate selections.

B. Comparing Understandability of PUD and PGD

We compare PUD and PGD using the understandability
criteria described in Section III: number of cryptographic
algorithms in use and number of essential process steps. The
results are summarized in Table II and outlined here:

TABLE II
CRYPTOGRAPHIC ALGORITHMS AND NUMBER OF ESSENTIAL STEPS

PUD PGD

Encryption 2 + c+ t2 2 + c+ t2

Distributed Key Generation t2 t2

Code Sheet Generation c+ 2 c+ 1
Voting 1

Re-Encryption 2 2∗C ∗ (c+1)+2∗ t
Code Sheet Generation C ∗ (c+ 1)
Setup C ∗ (c+ 1) + t
Voting 2
Tallying t

Decryption t t ∗ (2 ∗ c+ 3)
Code Sheet Generation t ∗ (c+ 1)
Plaintext Equivalence Test t ∗ c
Voting t
Tallying t t

Permutation c 2 ∗ C ∗ (c+ 1) + 1
Code Sheet Generation c 2 ∗ C ∗ (c+ 1)
Tallying t

ZK Proofs t 2 ∗C ∗ (c+1)+1+
t ∗ (4 + c)

Code Sheet Generation C ∗ (c+ 1)
Setup C ∗ (c+ 1) + t
Proof of Knowledge 1
Plaintext Equivalence Test t ∗ c
Voting t
Tallying t 2 ∗ t
Commitments 2 ∗ t2 2 ∗ t2 + t ∗ c
Distributed Key Generation 2 ∗ t2 2 ∗ t2
Plaintext Equivalence Test t ∗ c
Blinding t
Plaintext Equivalence Test t

Signatures 5 + t 2 ∗ C + t
Code Sheet Generation 3 2 ∗ C
Voting 2
Tallying t t

1) Number of cryptographic algorithms in use: As shown
in Table II, both schemes rely on the cryptographic al-
gorithms encryption, re-encryption, decryption, permutation,
zero-knowledge proofs, commitments, and signatures. Those
are the typically applied cryptographic algorithms if verifiabil-
ity is provided for (some of) the integrity sub-criteria, while
maintaining secrecy. In addition PGD relies on blinding.

2) Number of essential process steps: In Table II, the
number of applications of cryptographic algorithms, denoted
by essential process steps, is summarized. The total amount
of essential process steps of PUD is

9 + 2 ∗ c+ 3 ∗ t2 + 3 ∗ t,

while for PGD the total amount of essential process steps is

4 + c+ 3 ∗ t2 + 11 ∗ t+ 4 ∗ t ∗ c+ 6 ∗ C ∗ c+ 8 ∗ C.

9

Independent of the variable assignment for c, the number
of candidates, C the number of Clerks, and the number of
Trustees t, PGD has more steps than PUD. In order to satisfy
our security model, the minimal number for t and C must be
2. For these assignments the total amount of essential process
steps of PUD is 27 + 2 ∗ c and of PGD is 54 + 21 ∗ c.

The results of our analysis show that PUD is more under-
standable than PGD.

VIII. CONCLUSION

Existing Internet voting schemes are based on different se-
curity models, in particular, different adversary models. How-
ever, most of these are not adequate for high-stake elections
in established democracies. We therefore developed a security
model and justified its adequacy for use in such contexts and
environments. We proposed an Internet voting scheme, Pretty
Understandable Democracy (PUD), and showed that it meets
the proposed security model. Additionally, PUD provides some
verifiability as two integrity sub-criteria are provided without
posing restrictions on the adversary.

We have also proposed understandability criteria to evaluate
the understandability of Internet voting schemes, and applied
these criteria to evaluate the understandability of PUD in
comparison to Pretty Good Democracy (PGD). PGD is the
only other Internet voting scheme that meets the specified
security criteria under the adequate adversary model. The
evaluation according to the proposed understandability criteria
has shown that PUD is more understandable than PGD. PUD
is proposed for consideration in future Internet voting projects.

Here, we consider the most important security criteria for
Internet voting schemes. In future work, further criteria for
Internet voting schemes have to be taken into account, e.g.,
fairness and dispute-freeness.

In future work, concentrating on simplicity of cryptographic
algorithms, metaphors will be designed to aid voter under-
standing. A user study will be implemented to evaluate PUD
and the understandability criteria proposed herein, as well
as to extend these criteria if necessary. We plan to apply
the understandability criteria to evaluate other Internet voting
schemes in the future.

REFERENCES

[1] Forsa-Umfrage: Jeder zweite würde online wählen. Digitale Technolo-
gien stärken die Demokratie. Bürgerbeteiligung über das Internet fördert
Vertrauen in die Politik . http://www.microsoft.com/germany/newsroom/
pressemitteilung.mspx?id=533684., 2013. Online; accessed 26 February,
2013.

[2] B. Adida. Helios: web-based open-audit voting. In Proceedings of
the 17th conference on Security symposium, SS’08, pages 335–348,
Berkeley, CA, USA, 2008. USENIX Association.

[3] F. Bannister. A Risk Assessment Framework for Electronic Voting. In
European Conference on eGovernment, pages 43–56, 2005.

[4] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections (extended
abstract). In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, STOC ’94, pages 544–553, New York, NY, USA,
1994. ACM.

[5] R. Casati. Trust, Secrecy and Accuracy in Voting Systems: The Case
for Transparency. Mind and Society: Cognitive Studies in Economics
and Social Sciences, 9(1):19–23, 2010.

[6] D. Chaum. Sure vote: Technical overview. In Proceedings of the
Workshop on Trustworthy Elections (WOTE 01), 2001.

[7] D. L. Chaum. Untraceable Electronic Mail, Return Addresses, and
Digital Peudonyms. Communications of the ACM, 24(2):84–90, 1981.

[8] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a Secure
Voting System. In IEEE Symposium on Security and Privacy, pages
354–368, 2008.

[9] Council of Europe. Legal, Operational and Technical Standards for
E-Voting. Recommendation Rec(2004)11 adopted by the Committee
of Ministers of the Council of Europe and explanatory memorandum.
Council of europe publishing, 2004.

[10] A. Essex, J. Clark, U. Hengartner, and C. Adams. Eperio: Mitigating
technical complexity in cryptographic election verification. IACR Cryp-
tology ePrint Archive, 2012:178, 2012.

[11] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed
key generation for discrete-log based cryptosystems. Journal of Cryp-
tology, 20:51–83, 2007.

[12] S. Heiberg, P. Laud, and J. Villemson. The Application of I-voting for
Estonian Parliamentary Elections of 2011. In A. Kiyaias and H. Lipmaa,
editors, Postproceedings: 3rd international conference on e-voting and
identity, volume 7187 of Lecture Notes in Computer Science, pages 208
– 223. Springer-Verlag, 2012.

[13] J. Helbach. Code Voting mit prüfbaren Code Sheets. In GI Jahrestagung,
pages 1856–1862, 2009.

[14] J. Helbach and J. Schwenk. Secure Internet Voting with Code Sheets.
In VOTE-ID, pages 166–177, 2007.

[15] J. Helbach, J. Schwenk, and S. Schäge. Code Voting with Linkable
Group Signatures. In Electronic Voting, pages 209–208, 2008.

[16] R. Joaquim, P. Ferreira, and C. Ribeiro. EVIV: An End-to-end Verifiable
Internet Voting System. Computers & Security, 32:170–191, 2013.

[17] R. Joaquim and C. Ribeiro. CodeVoting: Protecting Against Malicious
Vote Manipulation at the Voter’s PC. In Frontiers of Electronic Voting,
2007.

[18] R. Joaquim and C. Ribeiro. CodeVoting Protection Against Automatic
Vote Manipulation in an Uncontrolled Environment. In VOTE-ID, pages
178–188, 2007.

[19] R. Joaquim, C. Ribeiro, and P. Ferreira. VeryVote: A Voter Verifiable
Code Voting System. In Proceedings of the 2nd International Conference
on E-Voting and Identity, VOTE-ID ’09, pages 106–121. Springer-
Verlag, 2009.

[20] R. Joaquim, C. Ribeiro, and P. Ferreira. Improving Remote Voting
Security with CodeVoting. In Towards Trustworthy Elections, pages
310–329, 2010.

[21] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant Electronic
Elections. In ACM Workshop on Privacy in the Electronic Society, pages
61–70, 2005.

[22] E. Maaten. Towards Remote E-Voting: Estonian case. In A. Prosser and
R. Krimmer, editors, Electronic Voting in Europe, volume 47, pages
83–100. GI, 2004.

[23] S. Neumann, J. Budurushi, and M. Volkamer. Analysis of Security and
Cryptographic Approaches to Provide Secret and Verifiable Electronic
Voting. In D. Zissis and D. Lekkas, editors, Design, Development, and
Use of Secure Electronic Voting Systems. IGI Global, 2013.

[24] S. Neumann and M. Volkamer. Formal Treatment of Distributed Trust
in Electronic Voting. In ThinkMind, editor, Seventh International
Conference on Internet Monitoring and Protection, pages 47–55. IARIA,
2012.

[25] Organization for Security and Co-operation in Europe (OSCE)/ Office
for Democratic Institutions and Human Rights (ODIHR). Norway: In-
ternet Voting Pilot Project / Local Government Election - 12 September
2011: OSCE/ODIHR Election Expert Team Report., 2012.

[26] P. Y. A. Ryan and V. Teague. Pretty Good Democracy. In B. Christian-
son, J. A. Malcolm, V. Matyas, and M. Roe, editors, Security Protocols
Workshop, pages 111–130. Springer, 2009.

[27] G. Schryen, M. Volkamer, S. Ries, and S. M. Habib. A Formal Approach
Towards Measuring Trust in Distributed Systems. In ACM Symposium
on Applied Computing, pages 1739–1745. ACM, 2011.

[28] M. Volkamer and R. Grimm. Determine the Resilience of Evaluated
Internet Voting Systems. In First International Workshop on Require-
ments Engineering for e-Voting Systems, RE-VOTE ’09, pages 47–54.
IEEE Computer Society, 2009.

[29] M. Volkamer and R. Vogt. Basic set of security requirements for
Online Voting Products. Technical Report BSI-PP-0037, 2008. Common
Criteria Protection Profile.

10

