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1 Introduction

In the absence of striking experimental signals which hint to physics beyond the Standard

Model it is of utmost importance to increase the precision of the theoretical predictions.

A subsequent detailed comparison to precise measurements will help to uncover deviations

and will provide hints for the construction of beyond-the-Standard-Model theories.

Quark and gluon form factors play a special role in the context of precision calculations.

On the one hand they are sufficiently simple which allows to compute them to high order

in perturbation theory. On the other hand they enter as building blocks into a variety of

physical cross sections and decay rates, most prominently into Higgs boson production and

decay, the Drell Yan production of leptons and the production of massive quarks. Form

factors also constitute an ideal playground to study the infrared properties of a quantum

field theory, in particular of QCD. As far as massless form factors are concerned the state-

of-the-art is four loops where different groups have contributed to partial results [3–8].

Massive quark form factors are known to two loops [9] including O(ǫ) [2, 10] and O(ǫ2)

terms [11, 12]. Three-loop corrections in the large-Nc limit for the vector current form

factor have been computed in ref. [2]. In this paper we extend these considerations and

compute the complete contributions (i.e. all colour factors) from the diagrams involving

a closed massless quark loop. This well-defined and gauge invariant subset contains for

the first time non-planar contributions which we study in detail. Furthermore, new planar

master integrals have to be evaluated which are not present in the large-Nc result. As a

by-product of our calculation we obtain the two-loop form factor including order ǫ2 terms.

We do not consider singlet diagrams where the external photon couples to a closed massless
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quark loop which is connected via gluons to the final-state massive quarks. Such diagrams

form again a separate gauge invariant subset which requires the computation of different

integral families. Let us mention that all-order corrections to the massive form factor in

the large-β0 limit have been considered in ref. [13].

The remainder of the paper is structured as follows: in the next section we introduce

the notation and discuss the ultraviolet and infrared divergences. One- and two-loop

results are presented in section 3. The three-loop calculation is described in section 4,

in particular the calculation of the master integrals. Section 5 contains a discussion of

the three-loop form factor. We provide both numerical results and analytic expressions

in various kinematical limits. In section 6 we summarize our results and comment on the

perspective for the full result.

2 Notation, renormalization and infrared structure

Let us define the form factors we are going to consider. Starting point is the photon-quark-

anti-quark vertex which we introduce as

V µ,ij(q1, q2) = δij ū(q1)Γ
µ(q1, q2)v(q2) , (2.1)

where i and j are (fundamental) colour indices and ū(q1) and v(q2) are the spinors of the

quark and anti-quark, respectively, with incoming momentum q1 and outgoing momentum

q2. The external quarks are on-shell, i.e., we have q21 = q22 = m2. The form factors are

defined as prefactors of the Lorentz decomposition of the vertex function Γµ(q1, q2) which

is introduced as

Γµ(q1, q2) = Qq

[

F1(q
2)γµ −

i

2m
F2(q

2)σµνqν

]

, (2.2)

with q = q1 − q2 being the outgoing momentum of the photon and σµν = i[γµ, γν ]/2.

Qq is the charge of the considered quark. For on-shell renormalized form factors we have

F1(0) = 1 and F2(0) = (g− 2)/2 where g is the gyromagnetic ratio of the quark (or lepton

in the case of QED). For later convenience we define the perturbative expansion of F1 and

F2 as

Fi =
∑

n≥0

F
(n)
i

(

αs(µ)

4π

)n

, (2.3)

with F
(0)
1 = 1 and F

(0)
2 = 0.

To obtain the renormalized form factors we use the MS scheme for the strong coupling

constant and the on-shell scheme for the heavy quark mass and wave function of the

external quarks. In all cases the counterterm contributions are simply obtained by re-

scaling the bare parameters with the corresponding renormalization constants, Zαs , Z
OS
m

and ZOS
2 . The latter is needed to three loops whereas two-loop corrections for Zαs and ZOS

m

are sufficient to obtain renormalized three-loop results for F1 and F2. Note that higher

order ǫ coefficients are needed for the on-shell renormalization constants since the one- and

two-loop form factors develop 1/ǫ and 1/ǫ2 poles, respectively.
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After renormalization of the ultraviolet divergences the form factors still contain in-

frared poles which are connected to the cusp anomalous dimension, Γcusp [14–16]. We

adapt the notation from ref. [2] and write

F = ZF f , (2.4)

where the factor Z, which is defined in the MS scheme and thus only contains poles in ǫ,

absorbs the infrared divergences and F f is finite. The coefficients of the poles of Z are

determined by the QCD beta function and Γcusp. In fact, the 1/ǫ1 pole of the αn
s term of

Z is proportional to the n-loop correction to Γcusp (see, e.g., ref. [2].1)

A dedicated calculation of Γcusp to three loops has been performed in refs. [14, 16–18].

An independent cross check of the large-Nc result has been provided in ref. [2]. In this

work we reproduce all nl terms at three-loop order by extracting Γcusp from the pole part

of the form factors.

For the practical computation of the master integrals, for the discussion of the various

kinematic limits and also for the numerical evaluation it is convenient to introduce the

dimensionless variable

q2

m2
= −

(1− x)2

x
, (2.5)

which maps the complex q2/m2 plane into the unit circle. The low-energy (q2 → 0), high-

energy (q2 → ∞) and threshold (q2 → 4m2) limits correspond to x → 1, x → 0 and

x → −1, respectively. Furthermore, as can be seen in figure 1, the interval q2 < 0 is

mapped to x ∈ (0, 1) and q2 ∈ [0, 4m2] to the upper semi-circle. For these values of x the

form factors have to be real-valued since the corresponding Feynman diagrams do not have

cuts. This is different for the region q2 > 4m2, which corresponds to x ∈ (−1, 0), where

the form factors are complex-valued.

For the threshold limit it is also convenient to introduce the velocity of the produced

quarks

β =

√

1−
4m2

s
, (2.6)

which is related to x via

x =
2β

1 + β
− 1 . (2.7)

3 One- and two-loop form factors

Let us in the following briefly outline the main steps of the two-loop calculation. Sample

Feynman diagrams contributing to F1 and F2 can be found in figure 2. After generating

the amplitudes we find it convenient to define one integral family at one and four integral

1Note that there is a typo in the second equation of eq. (12) in ref. [2]: a factor “2” is missing in front

of Γ
(1)
cusp inside the round brackets. The corrected equation reads z2,2 = Γ

(1)
cusp(β0 + 2Γ

(1)
cusp)/16.
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4 1−10 0

Figure 1. Illustration of the variable transformation between q2/m2 and x as given in eq. (2.5).

The left graph represents the q2/m2 plane and on right the complex x plane is shown. The straight

lines indicate the mapping for special values of q2/m2 and x.

Figure 2. Sample diagrams contributing to F1 and F2 at one and two loops. Solid, curly and

wavy lines represent quarks, gluons and photons, respectively.

families at two loops. We use FIRE [19] in combination with LiteRed [20, 21] for the

reduction to master integrals within each family. After minimization we arrive at two and

17 master integrals at one- and two-loop order, respectively. For convenience we show the

two one-loop and one two-loop master integrals explicitly in figure 3(a), (b) and (c). The

remaining 16 two-loop integrals are obtained from 3(d) by reducing lines or adding dots

according to

G(0, 0, 0, 1, 0, 1, 0), G(0, 0, 0, 1, 1, 1, 0), G(0, 1, 0, 1, 1, 0, 0),

G(0, 1, 0, 1, 2, 0, 0), G(0, 1, 1, 0, 0, 1, 0), G(0, 1, 1, 0, 1, 1, 0),

G(0, 1, 1, 1, 1, 0, 0), G(0, 1, 1, 1, 1, 1, 0), G(0, 1, 1, 1, 1, 2, 0),

G(1, 0, 0, 1, 0, 1, 0), G(1, 0, 0, 1, 1, 1, 0), G(1, 0, 0, 1, 1, 2, 0),

G(1, 0, 1, 1, 0, 1, 0), G(1, 0, 1, 1, 0, 2, 0), G(1, 1, 1, 1, 1, 1, 0),

G(1, 1, 1, 1, 1, 2, 0) . (3.1)

In the large-Nc limit only ten master integrals are needed at two loops.

We evaluate all one- and two-loop master integrals analytically and expand in ǫ up to

the order needed for the ǫ4 and ǫ2 terms of the one- and two-loop form factors, respectively.

Our results are expressed in terms of Goncharov polylogarithms (GPLs) [22] with letters
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(a) (b) (c)

1

23

4

56

(d)

Figure 3. The two one-loop master integrals are shown in (a) and (b). One of the 17 master

two-loop integrals is shown in (c) and the remaining 16 master integrals are obtained from (d) as

described in the text. Solid and dashed internal lines correspond to massive and massless scalar

propagators. Thin external lines are on the mass shell and thick external lines carry the (off-shell)

momentum q.

−1, 0 and +1. We compared the ultraviolet-renormalized two-loop form factors to ref. [10]

and find agreement including order ǫ1 up to the discrepancy in F1 already discussed in

section 4.4 of ref. [2], see also ref. [12] where agreement with our result is found. The order

ǫ2 terms of F1 and F2 have recently been published in ref. [12]; our results agree with theirs.

Note that the large-Nc limit of our result for F1 has already been published in ref. [11].

In this paper the ǫ2 terms have been used to derive higher-loop corrections with the help

of renormalization group techniques. Apart from that, the ǫ2 terms also enter a future

four-loop calculation of the massive form factors.

4 Three-loop form factor

In the following we concentrate on the contributions to F1 and F2 which contain at least

one closed massless quark loop. Altogether there are 42 such vertex diagrams, 41 of them

contain exactly one closed massless fermion loop and there is one diagram with two such

closed loops. Sample Feynman diagrams contribution at three-loop order to the photon

quark vertex are shown in figure 4.

Note that some of the contributing planar diagrams are already present in the large-

Nc limit [2] (see, e.g., figure 4(a)). However, other planar diagrams do not contribute to

the leading Nc term and thus the corresponding integral families have not been studied in

ref. [1]. For example, the amplitude of figure 4(b) is proportional to CF −CA/2 = 1/(2Nc).

Furthermore, there are non-planar contributions (cf. figure 4(d)); all of them are sub-leading

in the colour factor and are treated for the first time in this paper.

For the three-loop calculation we define ten integral families which are implemented

in FIRE and LiteRed. Six of them can be taken over from the large-Nc calculation [1, 2]

and four are new. Three of the new families are planar and one is non-planar, see figure 5.
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(a) (b) (c) (d) (e)

Figure 4. Sample diagrams contributing to F1 and F2 at three-loop order. Solid, curly and

wavy lines represent quarks, gluons and photons, respectively. In our calculation we only consider

contributions with at least one closed massless quark loop.
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Figure 5. New three-loop integral families needed for the fermionic contributions to the three-loop

vertex corrections. Solid and dashed lines represent massive and massless lines, respectively. Thin

external lines are on the mass shell and thick external lines carry the off-shell momentum q. For

convenience we keep our internal numeration of the integral families, which is shown below the

Feynman diagrams.

To obtain results for the form factors we proceed as follows:

• We generate the amplitude for each diagram using qgraf [23, 24] and transform the

output to FORM [25] notation using q2e and exp [26, 27]. The latter is also used to

identify for each diagram the corresponding family and to perform the mapping of

the integration momenta.

• In a next step FORM is used to evaluate the Dirac algebra. We apply the projectors

to F1 and F2, perform the traces and decompose the scalar products, which appear

in the numerator, to factors, which are present in the definition of the corresponding

integral family. At this point each integral can be represented as a function which has

the powers of the individual propagator factors as arguments. The list of integrals

serves as input for FIRE [19]. Note that we perform the calculation for general QCD

gauge parameter ξ. F1 and F2 have to be independent of ξ which serves as a welcome

check for our calculation.

• We use FIRE [19] in combination with LiteRed [20, 21] to generate integral tables

for the ten families. For the non-planar family, which is among the most compli-

cated ones, this takes of the order of a week CPU time on a computer with about

100GB RAM.
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• Afterwards we minimize the set of the master integrals with the help of tsort, which

is part of the latest FIRE version [19] (implemented in the command FindRules). It

is based on ideas presented in ref. [28], to obtain relations between primary master

integrals, and to arrive at a minimal set. Next we derive a system of differential

equations for the master integrals using LiteRed. We use FIRE to reduce integrals

appearing on the right-hand side of the equations.

• In a next step we transform the system to ǫ-form following the algorithm described

in ref. [29].

• Our final result can be expressed in terms of GPLs with letters −1, 0 and +1, which

is equivalent to Harmonic Polylogarithms (HPLs) [30]. Still we prefer to work with

results in terms of GPLs, in particular, when taking various limits, because we use

the same setup as in refs. [1, 2]. Furthermore, in the calculation of the non-fermionic

contributions to the massive form factor it will not be possible to express the result

in terms of HPLs (see also refs. [1, 2]).

• We consider the limit q2 → 0 to fix the boundary conditions. In this limit the vertex

integrals become two-point on-shell integrals which are well-studied at three-loop

order. We take the results from ref. [31].

Results for all 89 planar master integrals entering the large-Nc expressions for the

form factors have been discussed in ref. [1] and explicit results have been presented. In

an ancillary file to this paper [32] we present results for all master integrals entering our

results, which are not considered in ref. [1]. After minimizing the master integrals of the

four new families we observe that all integrals from family 1136 can be mapped either

to 1104 or 1147 or to the planar families studied in ref. [1] and we have to compute 15

new three-loop master integrals from three families to obtain the results presented in this

paper.2 They are given by

G1051(0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 0), G1051(1, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0),

G1051(1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0), G1051(1, 0, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0),

G1104(1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0), G1104(1, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0),

G1104(1, 0, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0), G1104(1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0),

G1104(1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 0, 0), G1147(0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0),

G1147(1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0), G1147(1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0),

G1147(1, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0), G1147(1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0),

G1147(1, 1, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0) , (4.1)

where the order of the indices corresponds to the line numbers introduced in figure 5 and

thus it is straightforward to construct the integrands. Note that the last three indices

represent irreducible numerators. Since they are zero for all our integrals their precise

definition is irrelevant and we refrain from specifying them. For all integrals in eq. (4.1)

we provide explicit results in [32]. We assume an integration measure eǫγEdDk/(iπ)D/2

2Note that not all master integrals which are present in a given family enter our result.
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with D = 4 − 2ǫ and scalar propagators of the form 1/(m2 − k2) or 1/(−k2). Note that

the above list only contains two non-planar integrals, G1051(1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) and

G1051(1, 0, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0). All master integrals have been cross checked numerically

with the help of the program FIESTA [33] including the constant term in ǫ.

5 Analytical and numerical results

In this section we discuss the results for the form factors F1 and F2. The analytic results

expressed in terms of GPLs are quite long and we only present them in electronic form [32].

As already mentioned above, they do not constitute physical results and in general still con-

tain poles in ǫ. Thus, we exemplify the numerical results by considering the ǫ-independent

Taylor coefficient.

We start with discussing analytic results in the low- and high-energy and the threshold

limit. The corresponding analytic expressions are also contained in an ancillary file to this

paper [32]. They are obtained by expanding the Goncharov polylogarithms of the exact

result in the relevant limits. Afterwards we demonstrate in subsection 5.4 that a simple

numerical evaluation of F1 and F2 is possible.

5.1 Form factors in the static limit

In the static limit the form factors are infrared finite and thus F1 and F2 do not contain

poles in ǫ. In the on-shell scheme F1(q
2 = 0) = 1 and F2(q

2 = 0) is related to the quark

anomalous magnetic moment which we use as a cross check. Note that we use the limit

q2 → 0 to fix the boundary conditions for the master integrals (see discussion in section 4).

However, this only requires as input scalar three-loop two-point on-shell integrals (see

ref. [31]) and thus the limit of the final analytic expression for the form factor can still

be used as cross check. In fact, our explicit calculation shows that F1(q
2 = 0) = 1 and

F2(q
2 = 0) agrees with the dedicated three-loop calculation from ref. [34].

We computed F1 and F2 up to order (1 − x)6 and refer to the ancillary file for the

complete expressions. In the following we present results for F1 and F2 up to O(φ2)

including the constant term in ǫ. To obtain a manifest expansion q2 → 0 for q2 > 0 we

use the variable x = eiφ and display terms up to order φ2. For µ2 = m2 we obtain the

following results for F1

F
(1)
1 = φ2CF

[

−
2

3ǫ
−

1

2

]

+O(ǫ) ,

F
(2)
1 = φ2

{

C2
F

[

− 12ζ(3)−
47

36
−

175π2

54
+ 8π2l2

]

+ CACF

[

11

9ǫ2
+

2π2

9 − 94
27

ǫ
+

26ζ(3)

3
+

155π2

108
−

2579

324
− 4π2l2

]

+ CFTFnl

[

−
4

9ǫ2
+

20

27ǫ
+

8π2

27
+

283

81

]

+ CFTFnh

[

3π2

2
−

1099

81

]}

+O(ǫ) ,
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F
(3)
1

∣

∣

∣

nl

= φ2

{

C2
FTFnl

[

−
8

9ǫ2
+

110
27 − 32ζ(3)

9

ǫ
+

512a4
3

+
64l42
9

+
128π2l22

9

−
1768π2l2

27
+

1100ζ(3)

9
−

448π4

135
+

9838π2

243
−

3107

162

]

+ CACFTFnl

[

176

81ǫ3
+

16π2

81 − 1552
243

ǫ2
+

112ζ(3)
27 − 160π2

243 + 1556
243

ǫ
−

256a4
3

−
32l42
9

−
64π2l22

9
+

884π2l2
27

−
1622ζ(3)

27
+

352π4

405
−

5237π2

729
+

260644

2187

]

+ CFT
2
Fn

2
l

[

−
32

81ǫ3
+

160

243ǫ2
+

32

243ǫ
−

448ζ(3)

81
−

464π2

243
−

29524

2187

]

+ CFT
2
Fnhnl

[

8π2

81ǫ
−

8π2l2
3

+
724ζ(3)

81
−

892π2

243
+

10088

243

]}

+O(ǫ) , (5.1)

where l2 = log(2) and a4 = Li4(1/2). For F2 we have

F
(1)
2 = 2CF + φ2CF

3
+O(ǫ) ,

F
(2)
2 = C2

F

[

− 8π2l2 + 12ζ(3) +
20π2

3
− 31

]

+ CACF

[

4π2l2 − 6ζ(3)− 2π2 +
317

9

]

+ CFTFnl

[

−
100

9

]

+ CFTFnh

[

476

9
−

16π2

3

]

+ φ2

{

C2
F

[

−
4

3ǫ
−

92π2l2
15

+
46ζ(3)

5
+

61π2

15
−

77

5

]

+ CACF

[

46π2l2
15

−
23ζ(3)

5
−

137π2

90
+

1699

270

]

+ CFTFnl

[

−
62

27

]

+ CFTFnh

[

622

27
−

7π2

3

]}

+O(ǫ) ,

F
(3)
2

∣

∣

∣

nl

= C2
FTFnl

[

−
512a4
3

−
64l42
9

−
128π2l22

9
+

320π2l2
3

− 192ζ(3) +
88π4

27
−

2528π2

27

+ 250

]

+ CACFTFnl

[

256a4
3

+
32l42
9

+
64π2l22

9
−

160π2l2
3

+
304ζ(3)

3
−

44π4

27

+
616π2

27
−

38576

81

]

+ CFT
2
Fn

2
l

[

5072

81
+

64π2

27

]

+ CFT
2
Fnhnl

[

64π2

27
−

1952

81

]

+ φ2

{

C2
FTFnl

[

−
5888a4
45

−
8

9ǫ2
+

16

3ǫ
−

736l42
135

−
1472π2l22

135
+

8048π2l2
135

−
664ζ(3)

5
+

1012π4

405
−

6092π2

135
+

12653

90

]

+ CACFTFnl

[

2944a4
45

+
368l42
135

+
736π2l22
135

−
4024π2l2

135
+

348ζ(3)

5
−

506π4

405
+

458π2

27
−

26626

243

]
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+ CFT
2
Fn

2
l

[

3736

243
+

32π2

81

]

+ CFT
2
Fnhnl

[

16π2l2
9

−
56ζ(3)

9
+

40π2

9

−
11824

243

]}

+O(ǫ) . (5.2)

Note that starting from the next-to-leading expansion term of order φ2 both F1 and F2 are

infrared divergent and develops poles in ǫ.

5.2 Form factors at high energies

In the limit x → 0 we compute terms up to O(x6) both for F1 and F2. To illustrate the

structure of the analytic expressions we show the first two terms of order x0 and x1 for F1

at three loops. After introducing the notation

F
(n)
i =

∑

k≥0

f
(n,k)
i,lar xk , (5.3)

we have

f
(1,0)
1,lar = CF

[

(

−
2

ǫ
− 3

)

lx −
2

ǫ
− l2x +

π2

3
− 4

]

,

f
(1,1)
1,lar = CF

[

2lx − 4

]

,

f
(2,0)
1,lar = C2

F

[

(

2

ǫ2
+

8

ǫ
−

2π2

3
+

55

2

)

l2x + lx

(

4

ǫ2
+

14− 2π2

3

ǫ
− 32ζ(3) +

85

2

)

+
2

ǫ2

+

(

2

ǫ
+

20

3

)

l3x +
8− 2π2

3

ǫ
+

7l4x
6

− 44ζ(3)−
59π4

90
+

13π2

2
+ 46− 8π2l2

]

+ CACF

[

lx

(

11

3ǫ2
+

π2

3 − 67
9

ǫ
+ 26ζ(3)−

11π2

9
−

2545

54

)

+
11

3ǫ2
+

−2ζ(3)− 49
9 + π2

3

ǫ
−

11l3x
9

+

(

π2

3
−

233

18

)

l2x

+
134ζ(3)

3
−

π4

60
−

7π2

54
−

1595

27
+ 4π2l2

]

+ CFTFnl

[

(

−
4

3ǫ2
+

20

9ǫ
+

4π2

9
+

418

27

)

lx

−
4

3ǫ2
+

20

9ǫ
+

4l3x
9

+
38l2x
9

−
16ζ(3)

3
−

14π2

27
+

424

27

]

+ CFTFnh

[

4l3x
9

+
38l2x
9

+

(

530

27
+

2π2

3

)

lx −
4π2

9
+

1532

27

]

,
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f
(2,1)
1,lar = C2

F

[

(

−
4

ǫ
+

4π2

3
− 37

)

l2x + lx

(

4

ǫ
− 48ζ(3) + 6π2 + 13

)

+
8

ǫ
−

l4x
3
−

28l3x
3

− 88ζ(3) +
32π4

45
− 5π2 − 22 + 48π2l2

]

+ CACF

[

l4x
6
+

8l3x
3

+

(

4π2

3
−

25

3

)

l2x + lx

(

−72ζ(3) +
341

9
+

22π2

3

)

− 200ζ(3) +
7π4

9
+

247π2

9
−

904

9
− 24π2l2

]

+ CFTFnl

[

−
4l2x
3

−
148lx
9

+
4π2

9
+

200

9

]

+ CFTFnh

[

−
52l2x
3

−
436lx
9

−
44π2

3
−

784

9

]

,

f
(3,0)
1,lar

∣

∣

∣

nl

= C2
FTFnl

[

8

3ǫ3
+

(

4

3ǫ2
−

82

9ǫ
−

29π2

27
−

2032

27

)

l3x +
−16

9 − 4π2

9

ǫ2

+ l2x

(

8

3ǫ3
+

8

9ǫ2
+

−962
27 − 10π2

9

ǫ
+

232ζ(3)

9
−

50π2

9
−

18817

81

)

+ lx

(

16

3ǫ3
+

−20
9 − 4π2

9

ǫ2
+

−16ζ(3)
3 − 1198

27 + 2π2

9

ǫ
+

1976ζ(3)

9
+

98π4

135
−

341π2

27

−
18812

81

)

+

(

−
4

9ǫ
−

355

27

)

l4x +
−16ζ(3)

3 − 470
27 + 4π2

3

ǫ
− l5x −

512

3
a4

+ 40ζ(5)− 8π2ζ(3) +
2752ζ(3)

9
+

3058π4

405
−

481π2

9
−

2011

81
−

64l42
9

−
128

9
π2l22 +

224

9
π2l2

]

+ CACFTFnl

[

176

27ǫ3
+

−16ζ(3)
9 − 1192

81 + 8π2

27

ǫ2
+ lx

(

176

27ǫ3
+

8π2

27 − 1336
81

ǫ2

+
112ζ(3)

9 + 836
81 − 80π2

81

ǫ
−

1448ζ(3)

9
−

22π4

135
+

5864π2

243
+

309838

729

)

+
496ζ(3)

27 + 356
81 − 80π2

81

ǫ
+

44l4x
27

+

(

1948

81
−

8π2

27

)

l3x + l2x

(

−16ζ(3) +
11752

81

+
16π2

9

)

+
256

3
a4 +

596ζ(5)

3
+

4π2ζ(3)

9
−

31120ζ(3)

81
−

1822π4

405

+
1504π2

243
+

259150

729
+

32l42
9

+
64

9
π2l22 −

112

9
π2l2

]

+ CFT
2
Fn

2
l

[

−
32

27ǫ3
+

160

81ǫ2
+ lx

(

−
32

27ǫ3
+

160

81ǫ2
+

32

81ǫ
−

64ζ(3)

27
−

304π2

81

– 11 –



J
H
E
P
0
3
(
2
0
1
8
)
1
3
6

−
39352

729

)

+
32

81ǫ
−

8l4x
27

−
304l3x
81

+

(

−
1624

81
−

16π2

27

)

l2x +
256ζ(3)

9
+

232π4

405

−
488π2

243
−

29344

729

]

+ CFT
2
Fnhnl

[

lx

(

8π2

27ǫ
−

416ζ(3)

27
− 8π2 −

7408

81

)

+
8π2

27ǫ
−

16l4x
27

−
608l3x
81

+

(

−
3248

81
−

32π2

27

)

l2x −
416ζ(3)

9
−

16π4

27
+

776π2

243
−

5072

27

]

,

f
(3,1)
1,lar

∣

∣

∣

nl

= C2
FTFnl

[

l2x

(

−
8

3ǫ2
+

92

3ǫ
+

16ζ(3)

3
−

178π2

27
+

3416

9

)

+ lx

(

8

3ǫ2
+

−32
3 − 4π2

9

ǫ
+

224ζ(3)

3
+

344π4

135
−

2918π2

27
+

790

9

)

+
16

3ǫ2
+

(

4

3ǫ
−

8π2

3
+

3436

27

)

l3x +
−40− 4π2

9

ǫ
+

4l5x
9

+
352l4x
27

+ 1024a4

−
1312ζ(5)

3
+

64π2ζ(3)

3
+

4528ζ(3)

9
−

524π4

405
+

3400π2

27
−

1676

9
+

128l42
3

+
256

3
π2l22 −

1664

3
π2l2

]

+ CACFTFnl

[

−
2l5x
9

−
116l4x
27

+

(

−
160

27
−

4π2

3

)

l3x + l2x

(

232ζ(3)

3
+

104

27

−
520π2

27

)

+ lx

(

560ζ(3)−
34664

81
−

788π2

9
+

236π4

135

)

− 512a4

−
1840ζ(5)

3
−

32π2ζ(3)

3
+

14440ζ(3)

9
+

868π4

405
−

16988π2

81
+

97384

81

−
64l42
3

−
128

3
π2l22 +

832

3
π2l2

]

+ CFT
2
Fn

2
l

[

32l3x
27

+
592l2x
27

+

(

8720

81
+

32π2

27

)

lx −
128ζ(3)

9
−

976π2

81
−

11296

81

]

+ CFT
2
Fnhnl

[

448l3x
27

+
3104l2x
27

+

(

15136

81
+

448π2

27

)

lx +
1664ζ(3)

9

+
5696π2

81
−

5408

81

]

, (5.4)

where lx = log(x). It is interesting to note that at three-loop order lx may in principle

appear up to sixth power. However, for the nl terms at most l5x terms are present. In the

case of f
(3,0)
1,lar the l6x term comes with the colour factor C3

F which is known since long [35, 36].

In refs. [37–39] it has been shown that the l6x term in the power-suppressed contribution

f
(3,1)
1,lar comes together with colour structures CF−CA/2 in the nl-independent term. Explicit

results for power-suppressed terms are given in ref. [38].
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For F2 we have f
(n,0)
2,lar = 0 (for n = 1, 2 and 3) and

f
(1,1)
2,lar = −4CF lx ,

f
(2,1)
2,lar = C2

F

[

(

8

ǫ
+ 34

)

l2x +

(

8

ǫ
− 8π2 + 62

)

lx − 32π2l2 + 8l3x + 16ζ(3) + 10π2

]

+ CACF

[

16π2l2 +
2l2x
3

−
346lx
9

+ 80ζ(3)−
122π2

9
+ 12

]

+ CFTFnl

[

8l2x
3

+
200lx
9

−
8π2

9

]

+ CFTFnh

[

8l2x
3

+
200lx
9

−
8π2

3
+

272

3

]

,

f
(3,1)
2,lar = C2

FTFnl

[

−
2048a4

3
+

(

16

3ǫ2
−

104

3ǫ
−

28π2

9
−

2936

9

)

l2x + lx

(

16

3ǫ2

+
8π2

9 − 32

ǫ
+

416ζ(3)

3
+

1588π2

27
−

4172

9

)

+

(

−
8

3ǫ
−

832

9

)

l3x +
8π2

9ǫ

−
256l42
9

−
512π2l22

9
+

2816π2l2
9

−
80l4x
9

−
3328ζ(3)

9
+

656π4

135
−

2720π2

27
+

16

3

]

+ CACFTFnl

[

1024a4
3

+
128l42
9

+
256π2l22

9
−

1408π2l2
9

+
64l3x
27

+

(

1256

27

+
40π2

9

)

l2x + lx

(

−
512ζ(3)

3
+

1168π2

27
+

44320

81

)

−
2192ζ(3)

3
−

8π4

3

+
8080π2

81
−

496

3

]

+ CFT
2
Fn

2
l

[

−
64l3x
27

−
800l2x
27

+

(

−
10144

81
−

64π2

27

)

lx

+
256ζ(3)

9
+

800π2

81

]

+ CFT
2
Fnhnl

[

−
128l3x
27

−
1600l2x
27

+

(

−
20288

81
−

128π2

27

)

lx −
256ζ(3)

9
−

3712π2

81
−

2240

27

]

. (5.5)

5.3 Form factors and threshold cross section

In the threshold limit (q2 → 4m2 or x → −1) the form factors F1 and F2 can be used

to obtain the physical cross section for e+e− → hadrons since they constitute the virtual

corrections and the real corrections are suppressed by a relative factor β3. This means that

we can predict σ(e+e− → QQ̄) including terms of order β2−n at n-loop order. Since for

the three-loop nl contribution the β0 terms computed from F1 and F2 are finite, we also

show them below.

For convenience we repeat the formula which can be used to compute the cross section

from the form factors (see also ref. [2]) which reads

σ(e+e− → QQ̄) = σ0β

[

|F1 + F2|
2 +

|(1− β2)F1 + F2|
2

2(1− β2)

]

= σ0
3β

2

[

1−
β2

3
+

αs

4π
∆(1) +

(αs

4π

)2
∆(2) +

(αs

4π

)3
∆(3) + . . .

]

, (5.6)
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where σ0 = 4πα2Q2
Q/(3s). Using the results from this paper we obtain complete expressions

for ∆(1) and ∆(2) and all nl terms for ∆(3) which are given by

∆(1) = CF

[

1

β
2π2 − 16 + β

(

4π2

3

)]

+ . . . ,

∆(2) = C2
F

[

4π4

3β2
−

1

β
32π2 −

32

3
π2 log(2β)− 16ζ(3) +

20π4

9

−
280π2

9
+ 156 + 32π2l2

]

+ CACF

[

1

β

(

62π2

9
−

44

3
π2 log(2β)

)

− 16π2 log(2β)− 104ζ(3) +
358π2

9
−

604

9
−

80

3
π2l2

]

+ CFTFnl

[

1

β

(

16

3
π2 log(2β)−

40π2

9

)

+
176

9

]

+ CFTFnh

[

704

9
−

64π2

9

]

+ . . . ,

∆(3)
∣

∣

∣

nl

= C2
FTFnl

[

1

β2

(

64

9
π4 log(2β) +

128π2ζ(3)

3
−

160π4

27

)

+
1

β

(

−
208

3
π2 log(2β)

+ 32π2ζ(3) +
662π2

9

)

+
3584a4

3
−

256

9
π2 log2(2β) +

320

27
π4 log(2β)

+
7232

27
π2 log(2β) +

640π2ζ(3)

9
+

19984ζ(3)

9
−

12952π4

405
+

8032π2

81
−

416

9

+
448l42
9

−
128

3
π2l22 − 160π2l2

]

+ CACFTFnl

[

1

β

(

−
704

9
π2 log2(2β) +

3472

27
π2 log(2β)−

112π2ζ(3)

3

−
352π4

27
−

3596π2

81

)

−
8960a4

9
−

128

3
π2 log2(2β) +

1552

9
π2 log(2β)

+
796ζ(3)

9
+

2788π4

81
−

17392π2

81
+

78880

81
−

1120l42
27

+
1216

27
π2l22

+
5480

27
π2l2

]

+ CFT
2
Fn

2
l

[

1

β

(

128

9
π2 log2(2β)−

640

27
π2 log(2β) +

64π4

27

+
800π2

81

)

−
10432

81
−

512π2

27

]

+ CFT
2
Fnhnl

(

3328π2

81
−

35648

81

)

+ . . . , (5.7)

where the ellipses refer to higher order terms in β. Note that higher order ǫ terms in the

one- and two-loop expressions are needed to obtain eq. (5.7) since there are products of

form factor in eq. (5.6), which contain poles in ǫ. At two loops the nh contribution with a

closed massive fermion loop does not develop a 1/β term since the Coulomb singularity is
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regulated by the quark mass in the closed loop. For the same reason we have that the nlnh

term at three loops starts at O(β0). Results for ∆(3) in the large-Nc limit can be found in

eq. (4.9) of ref. [2]. The terms in ∆(3), which are enhanced by inverse powers of β, agree

with refs. [40–42].3

5.4 Numerical results

In this subsection we demonstrate the numerical evaluation of our results. We set nl = 5

and consider the ǫ0 terms for F1 (analogous results can easily be obtained for F2) and show

results for x ∈ [−1, 1] and φ ∈ [0, π] (x = eiφ) which covers all q2 values on the real axis.

For x ∈ [−1, 1] we subtract the leading high-energy behaviour, which contains logarithmic

divergences (cf. eq. (5.4)) in order to have a smooth behaviour for x → 0. Thus we define

(i = 1, 2)

F̂i(q
2) = Fi(q

2)− Fi(q
2)
∣

∣

∣

q2→∞
, (5.8)

where the second term on the r.h.s. is obtained from the high-energy expansion discussed

in subsection 5.2 by omitting power suppressed terms. For negative x one should interpret

log(x) as log(x+ i0) = log(−x) + iπ.

In figure 6 the real part of the ǫ0 term of F̂1(q
2) is shown at one, two and three

loops. We show both the exact result (solid, black curve) and the expansions in the three

kinematic regions (discussed above) as dashed lines. The approximations contain terms up

to order x6 and (1− x)6 in the high- and low-energy expansion, respectively. At threshold

we include terms up to order β4. The numerical evaluation of the GPLs is performed with

the help of ginac [43, 44].

In all three cases one observes strong power-like singularities for x → −1 (q2 → 4m2).

For this reason we choose x = −0.7 as the lower end of the x-axes. One observes that

the threshold expansion (long-dashed, green curves) reproduces this behaviour and follows

the exact curve up to about x ≈ −0.2,−0.3 and −0.1 at one-, two- and three-loop or-

der, respectively. At low energies (x → 1) F̂
(n)
1 (q2) shows a smooth behaviour and the

corresponding approximation (short-dashed, blue curves) approximate the exact result up

to about x = 0.2. Finally, the region around x ≈ 0 is nicely covered by the high-energy

approximation (medium-sized dashes, red curve) which follows the exact curve from about

x = −0.4 to x = 0.2. Altogether for each x-value in [−1, 1] at least one of the expanded

results coincides with the exact curve.

Figure 7 shows the real part of the ǫ0 term of (π − φ)3F1(q
2) at one-, two- and three-

loop order as a function of φ ∈ [0, π], which corresponds to the q2/m2 range between 0

and 4. We have introduced the factor (π − φ)3 in order to suppress the singularity at

threshold (φ → π). In fact, this factor guarantees that the one- and two-loop expressions

become zero and the (π − φ)3F
(3)
1 is constant for φ = π. As in figure 6 we show the

exact result as solid line and the low-energy and threshold approximation as short- and

long-dashed curves. Good agreement is found for φ . 0.5 and φ & 2.0, respectively, which

3We thank Andreas Maier for providing the result for Π(3),v(z) in eq. (A.6) of ref. [42] and the corre-

sponding two-loop expression in terms of Casimir invariants.
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Figure 6. Panels (a), (b) and (c) show the real part of the ǫ0 term of F̂1(q
2) at one-, two- and

three-loop order, respectively. The solid (black) lines correspond to the exact result and the dashed

lines to approximations.

corresponds to q2/m2 . 0.24 and q2/m2 & 2.8. The range inbetween is not covered by our

approximations. In principle we could increase the expansion depth, which we refrain to

do in this paper.

For φ ∈ [0, π] the form factors F1 and F2 have to be real-valued. We have verified this

feature numerically which serves as a welcome check for our calculation. Note that the

individual GPLs are complex-valued and the imaginary parts only cancel in the sum.

We refrain from showing results for the imaginary part of F1 and F2, which are obtained

in a straightforward way using the expressions in the ancillary file to this paper. We observe

qualitatively similar results as in figures 6 and 7.

We want to stress that a large part of the x and φ range is covered by the approx-

imations in the kinematic regions which have a much simpler structure than the exact

expressions. Thus, if one wants to have a fast numerical evaluation it is possible to resign

to the approximations without essential loss of precision.

– 16 –



J
H
E
P
0
3
(
2
0
1
8
)
1
3
6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

φ

−15

−10

−5

0

5
(π
−φ

)3
F

(1
)

1
| ǫ0

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

φ

−100

0

100

200

300

400

(π
−φ

)3
F

(2
)

1
| ǫ0

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

φ

−15000

−10000

−5000

0

5000

10000

15000

20000

(π
−φ

)3
F

(3
)

1
| ǫ0

(c)

Figure 7. Panels (a), (b) and (c) show the real part of the ǫ0 term of (π− φ)3F1(q
2) at one-, two-

and three-loop order, respectively. The solid (black) lines correspond to the exact result and the

dashed lines to approximations.

6 Conclusions and outlook

In this paper we take the next step in computing massive form factors to three-loop order

and compute the complete light-fermion corrections to the massive photon quark form

factor. We obtain analytic expressions for F1 and F2. Our result is expressed in terms of

Goncharov polylogarithms with letters ±1 and 0. This is the first time that non-planar

diagrams have been considered to evaluate massive three-loop vertex functions.

As by-products we compute the two-loop form factors to order ǫ2 and confirm the

light-fermion part of the three-loop cusp anomalous dimension.

We expand our exact expressions in the low-energy, threshold, and high-energy limits,

and obtain results which are enhanced (for example logarithmically at high energies or by

inverse powers of the velocity at threshold) as well as power suppressed terms.

The large-Nc results for F1 and F2, which have been computed in ref. [2], are also

expressed in terms of Goncharov polylogarithms, however, an additional fourth letter,

r1 = eiπ/3, is required. To complete the evaluation of the massive three-loop corrections to
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F1 and F2 one has to consider also non-planar non-fermionic contributions. It is expected

that the corresponding analytic result leaves the class of GPLs and elliptic integrals appear.

Still, we expect that fast and flexible numerical evaluations of the form factors are possible,

e.g., with the help of the strategy presented in ref. [45], see also refs. [46, 47] for earlier works.

Acknowledgments

This work is supported by RFBR, grant 17-02-00175A, and by the Deutsche Forschungsge-

meinschaft through the project “Infrared and threshold effects in QCD”. R.L. acknowledges

support from the “Basis” foundation for theoretical physics and mathematics. V.S. thanks

Claude Duhr for permanent help in manipulations with Goncharov polylogarithms. We

thank Alexander Penin for carefully reading the manuscript and for useful comments.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop integrals

for massive form factors, JHEP 12 (2016) 144 [arXiv:1611.06523] [INSPIRE].

[2] J. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Massive three-loop form factor in

the planar limit, JHEP 01 (2017) 074 [arXiv:1611.07535] [INSPIRE].

[3] J.M. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, A planar four-loop form factor

and cusp anomalous dimension in QCD, JHEP 05 (2016) 066 [arXiv:1604.03126]

[INSPIRE].

[4] J. Henn, A.V. Smirnov, V.A. Smirnov, M. Steinhauser and R.N. Lee, Four-loop photon quark

form factor and cusp anomalous dimension in the large-Nc limit of QCD,

JHEP 03 (2017) 139 [arXiv:1612.04389] [INSPIRE].

[5] R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, The n2

f contributions to

fermionic four-loop form factors, Phys. Rev. D 96 (2017) 014008 [arXiv:1705.06862]

[INSPIRE].

[6] A. von Manteuffel and R.M. Schabinger, Quark and gluon form factors to four-loop order in

QCD: the N3

f contributions, Phys. Rev. D 95 (2017) 034030 [arXiv:1611.00795] [INSPIRE].

[7] R.H. Boels, T. Huber and G. Yang, Four-Loop Nonplanar Cusp Anomalous Dimension in

N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 119 (2017) 201601

[arXiv:1705.03444] [INSPIRE].

[8] R.H. Boels, T. Huber and G. Yang, The nonplanar cusp and collinear anomalous dimension

at four loops in N = 4 SYM theory, in 13th International Symposium on Radiative

Corrections: Application of Quantum Field Theory to Phenomenology (RADCOR 2017),

St. Gilgen, Austria, September 24–29, 2017 [arXiv:1712.07563] [INSPIRE].

[9] W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: The

Vector contributions, Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046] [INSPIRE].

[10] J. Gluza, A. Mitov, S. Moch and T. Riemann, The QCD form factor of heavy quarks at

NNLO, JHEP 07 (2009) 001 [arXiv:0905.1137] [INSPIRE].

– 18 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP12(2016)144
https://arxiv.org/abs/1611.06523
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.06523
https://doi.org/10.1007/JHEP01(2017)074
https://arxiv.org/abs/1611.07535
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.07535
https://doi.org/10.1007/JHEP05(2016)066
https://arxiv.org/abs/1604.03126
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03126
https://doi.org/10.1007/JHEP03(2017)139
https://arxiv.org/abs/1612.04389
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.04389
https://doi.org/10.1103/PhysRevD.96.014008
https://arxiv.org/abs/1705.06862
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.06862
https://doi.org/10.1103/PhysRevD.95.034030
https://arxiv.org/abs/1611.00795
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.00795
https://doi.org/10.1103/PhysRevLett.119.201601
https://arxiv.org/abs/1705.03444
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03444
https://arxiv.org/abs/1712.07563
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07563
https://doi.org/10.1016/j.nuclphysb.2004.10.059
https://arxiv.org/abs/hep-ph/0406046
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0406046
https://doi.org/10.1088/1126-6708/2009/07/001
https://arxiv.org/abs/0905.1137
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1137


J
H
E
P
0
3
(
2
0
1
8
)
1
3
6

[11] T. Ahmed, J.M. Henn and M. Steinhauser, High energy behaviour of form factors,

JHEP 06 (2017) 125 [arXiv:1704.07846] [INSPIRE].

[12] J. Ablinger et al., The Heavy Quark Form Factors at Two Loops, arXiv:1712.09889

[INSPIRE].

[13] A. Grozin, Heavy-quark form factors in the large β0 limit, Eur. Phys. J. C 77 (2017) 453

[arXiv:1704.07968] [INSPIRE].

[14] A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

[15] R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops,

Phys. Rev. D 24 (1981) 879 [INSPIRE].

[16] G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the

Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

[17] A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three Loop Cusp Anomalous

Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].

[18] A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous

dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140

[arXiv:1510.07803] [INSPIRE].

[19] A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction,

Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

[20] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685

[INSPIRE].

[21] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals,

J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

[22] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes,

Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].

[23] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279

[INSPIRE].

[24] http://cfif.ist.utl.pt/ paulo/qgraf.html.

[25] J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0,

Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].

[26] R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of Order alpha αs

to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125

[hep-ph/9712228] [INSPIRE].

[27] T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman

diagrams, in 6th International Workshop on New Computing Techniques in Physics

Research: Software Engineering, Artificial Intelligence Neural Nets, Genetic Algorithms,

Symbolic Algebra, Automatic Calculation (AIHENP 99), Heraklion, Crete, Greece, April

12–16, 1999 [hep-ph/9905298] [INSPIRE].

[28] A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration

by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].

[29] R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108

[arXiv:1411.0911] [INSPIRE].

[30] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms,

Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

– 19 –

https://doi.org/10.1007/JHEP06(2017)125
https://arxiv.org/abs/1704.07846
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.07846
https://arxiv.org/abs/1712.09889
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09889
https://doi.org/10.1140/epjc/s10052-017-5021-4
https://arxiv.org/abs/1704.07968
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.07968
https://doi.org/10.1016/0550-3213(80)90507-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B164,171%22
https://doi.org/10.1103/PhysRevD.24.879
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D24,879%22
https://doi.org/10.1016/0550-3213(87)90277-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B283,342%22
https://doi.org/10.1103/PhysRevLett.114.062006
https://arxiv.org/abs/1409.0023
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.0023
https://doi.org/10.1007/JHEP01(2016)140
https://arxiv.org/abs/1510.07803
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.07803
https://doi.org/10.1016/j.cpc.2014.11.024
https://arxiv.org/abs/1408.2372
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2372
https://arxiv.org/abs/1212.2685
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2685
https://doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1145
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://arxiv.org/abs/1105.2076
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2076
https://doi.org/10.1006/jcph.1993.1074
https://inspirehep.net/search?p=find+J+%22J.Comput.Phys.,105,279%22
http://cfif.ist.utl.pt/~paulo/qgraf.html
https://doi.org/10.1016/j.cpc.2012.12.028
https://arxiv.org/abs/1203.6543
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6543
https://doi.org/10.1016/S0370-2693(98)00220-2
https://arxiv.org/abs/hep-ph/9712228
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9712228
https://arxiv.org/abs/hep-ph/9905298
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9905298
https://doi.org/10.1016/j.cpc.2013.06.016
https://arxiv.org/abs/1302.5885
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5885
https://doi.org/10.1007/JHEP04(2015)108
https://arxiv.org/abs/1411.0911
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0911
https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9905237


J
H
E
P
0
3
(
2
0
1
8
)
1
3
6

[31] R.N. Lee and V.A. Smirnov, Analytic ǫ-expansions of Master Integrals Corresponding to

Massless Three-Loop Form Factors and Three-Loop g-2 up to Four-Loop Transcendentality

Weight, JHEP 02 (2011) 102 [arXiv:1010.1334] [INSPIRE].

[32] R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, TTP18-006-Three-loop massive

form factors: complete light-fermion corrections for the vector current,

https://www.ttp.kit.edu/preprints/2018/ttp18-006/.

[33] A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support,

Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].

[34] A.G. Grozin, P. Marquard, J.H. Piclum and M. Steinhauser, Three-Loop Chromomagnetic

Interaction in HQET, Nucl. Phys. B 789 (2008) 277 [arXiv:0707.1388] [INSPIRE].

[35] V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys.

JETP 3 (1956) 65 [INSPIRE].

[36] J. Frenkel and J.C. Taylor, Exponentiation of Leading Infrared Divergences in Massless

Yang-Mills Theories, Nucl. Phys. B 116 (1976) 185 [INSPIRE].

[37] A.A. Penin, High-Energy Limit of Quantum Electrodynamics beyond Sudakov Approximation,

Phys. Lett. B 745 (2015) 69 [Erratum ibid. B 751 (2015) 596] [Erratum ibid. B 771 (2017)

633] [arXiv:1412.0671] [INSPIRE].

[38] T. Liu, A.A. Penin and N. Zerf, Three-loop quark form factor at high energy: the leading

mass corrections, Phys. Lett. B 771 (2017) 492 [arXiv:1705.07910] [INSPIRE].

[39] T. Liu and A.A. Penin, High-Energy Limit of QCD beyond the Sudakov Approximation,

Phys. Rev. Lett. 119 (2017) 262001 [arXiv:1709.01092] [INSPIRE].

[40] A. Pineda and A. Signer, Heavy Quark Pair Production near Threshold with Potential

Non-Relativistic QCD, Nucl. Phys. B 762 (2007) 67 [hep-ph/0607239] [INSPIRE].

[41] A.H. Hoang, V. Mateu and S. Mohammad Zebarjad, Heavy Quark Vacuum Polarization

Function at O(α2

s) and O(α3

s), Nucl. Phys. B 813 (2009) 349 [arXiv:0807.4173] [INSPIRE].
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