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Kurzfassung

Fahrer, die der Fahrsituation nicht genügend Aufmerksamkeit widmen, stellen eine Gefahr für die
Verkehrssicherheit dar. Dies liegt daran, dass in diesem Fall das Fahrvermögen der Betroffenen deut-
lich verringert ist, was in Folge zu einem erhöhten Unfallrisiko führt. Deshalb versprechen Systeme,
die die Fahreraufmerksamkeit automatisch beurteilen und entsprechend warnen oder eingreifen kön-
nen, eine große Verbesserung der Verkehrssicherheit. Hierbei ist aber eine genaue und echtzeitfähige
Beurteilung der Fahreraufmerksamkeit bezüglich des damit verbundenen Unfallrisikos erforderlich.

Diese Dissertation führt eine neue Methode zur Beurteilung von Fahreraufmerksamkeit im situa-
tiven Kontext ein. Es wird vorgeschlagen angemessenes Blickverhalten durch Blickstrategien in einem
entscheidungstheoretischen Formalismus festzulegen. In diesem Ansatz werden Modelle der Fahrsit-
uation sowie der Wahrnehmung und der Fahrzeugführung des Fahrers verwendet. Bisherige Arbeiten
beurteilen Fahreraufmerksamkeit zumeist alleine anhand Fahr- und Blickverhaltens. Ein deutlicher
Nachteil ist dabei, dass somit das Zusammenspiel aus Fahrerverhalten, Fahrsituation und Unfallrisiko
vernachlässigt wird. Das ist umso gravierender, da bekannt ist, dass erfahrene Fahrer an die Fahrsitu-
ation abgestimmte Blickstrategien zeigen, die die Beeinträchtigung ihrer Fahrleistung abmildern kön-
nen. Ähnliche Blickstrategien enstehen auf natürliche Art und Weise aus dem gewählten entschei-
dungstheoretischen Ansatz.

In der Arbeit wird der entscheidungstheoretische Ansatz beispielhaft an der Fahraufgabe des
Spurhaltens untersucht. Hier wird auf die Modellbildung, die Echtzeitberechnung, die passende
Parametrisierung sowie auf die Evaluierung der Methode in der Anwendung in einem neuen Warn-
system eingegangen.

Zuerst wird die Aufgabe des Spurhaltens bei einer Nebenaufgabe, die um die visuelle Aufmerk-
samkeit konkurriert, modelliert. Dazu wird ein Partially Observable Markov Decision Process (POMDP)
verwendet, der ein kinematisches Model der Fahraufgabe, ein Model der sensorischen Eigenschaften
des Fahrers sowie ein Modell der Nebenaufgabe enthält. Danach wird die Berechnung von Strate-
gien in dem POMDP untersucht. Diese Strategien dienen dazu das angemessene Blickverhalten
festzulegen. Schließlich wird die Wirklichkeitstreue dieser Strategien überprüft und der erforderliche
Rechenaufwand analysiert.

Zweitens wird die Wahl einer passenden Belohnungsfunktion betrachtet. Diese ist deswegen von
Bedeutung, da sie schlussendlich das angemessene Blickverhalten festlegt. Es wird ein neues Ver-
fahren der inversen optimalen Steuerung entwickelt, das es vermag Parameter der Belohnungsfunk-
tion aus dem Verhalten erfahrener Fahrer zu schätzen. In einem Experiment im Realverkehr erhobenes
Fahrerverhalten wird benutzt um die entwickelte Methode hinsichtlich der Genauigkeit in der Verhal-
tensvorhersage zu prüfen.

Die vorliegende Arbeit untersucht drittens die Schätzung von Modellen der sensorischen Eigen-
schaften von Fahrern. Dazu wird der erste allgemeine Ansatz für dieses Inferenzproblem in sequen-
ziellen Entscheidungsproblemen vorgestellt. Darauffolgend wird eine Umsetzung des Ansatzes für
den vorherig eingeführten POMDP entwickelt. Das resultierende Verfahren wird mittels Fahrverhal-
tensdaten aus einem weiteren Fahrversuch geprüft.

Schließlich wird viertens die Entwicklung eines Warnsystems und dessen Einbindung in ein Ver-
suchsfahrzeug verfolgt. Das System zielt darauf ab den Fahrer bei der Aufrechterhaltung von genügen
Aufmerksamkeit zu unterstützen. In einem abschließenden Nutzertest wird das entwickelte System
mit einem Warnsystem nach dem aktuellen Stand der Technik verglichen, wobei sowohl die Akzeptanz
durch die Nutzer als auch die Auswirkungen auf die Fahrleistung untersucht werden.

Im Ganzen verdeutlicht diese Arbeit die Umsetzbarkeit und die Vorteile des verfolgten Ansatzes
des angemessenen Blickverhaltens für die automatische Bewertung von Fahreraufmerksamkeit. Es
wurde gezeigt, dass der benötigte Rechenaufwand eine Echtzeitanwendung zulässt und dass geeignete
Modellparameter automatisch geschätzt werden können. Schließlich wurde die Verbesserung eines
Ablenkungswarnsystems belegt. Folglich stellt die Methodologie, die in dieser Arbeit eingeführt
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wurde, einen vielversprechenden neuen Ansatz zur Bewertung von Fahreraufmerksamkeit dar, der
die Probleme des aktuellen Standes der Technik vermeidet.
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Abstract

Drivers who pay insufficient attention to the road scenery may become a road hazard. This is because
their driving performance is significantly impaired which results in increased crash risk. Therefore,
automatic systems that can assess the driver’s attention and intervene or warn accordingly promise a
great benefit for road safety. In this context, a precise and real-time assessment of driver attention with
respect to the associate crash risk is required.

The present thesis establishes a novel framework for assessment of driver’s visual attention in the
situational context. It is proposed to define appropriated glance behavior by means of a rational policy
in a decision theoretic formalism. This approach features both models of the driving situation as well as
the driver’s perception and vehicle control. In previous work the driver’s attention is mostly assessed
based on driving and glance behavior alone. A significant drawback is that the important interactions
between driver behavior, situational context and crash risk are neglected. This is especially problematic
as experienced drivers haven been shown to apply situationally adaptive glance behavior which can
to some extend mitigate impairment of driving performance. In the decision theoretic framework
proposed in this thesis, similar rational glance strategies naturally emerge.

In this work the decision theoretic model of appropriate glance behavior is investigated at the ex-
emplar driving task of lane keeping. The thesis addresses model development, real-time computation,
suitable parameterization as well as evaluation in application for a novel warning system.

First, the task of lane keeping in presence of an additional task concurring for visual attention is
modeled. This is done by means of a Partially Observable Markov Decision Process (POMDP) which
features a kinematic model of the driving task, a model of the driver’s sensor characteristics and a
model of the additional task as well as corresponding reward functions. In this POMDP approaches
for computation of rational policies are considered. These policies are used to define appropriate glance
behavior. Finally, the policies are evaluated with respect to realism and the involved computational
demands.

Second, this work considers the suitable parameterization of the reward functions of the POMDP.
This is of importance because the reward parameterization in the end determines the computed appro-
priate glance behavior. A novel Inverse Optimal Control (IOC) approach is developed for estimation
of reward parameters from the behavior of experienced drivers. The methodology is evaluated with
respect to prediction of driver behavior recorded in a driving experiment in real traffic.

Third, the estimation of models of the driver’s sensor characteristics is addressed. For this purpose,
the first general inference framework for sensor models underlying behavior in sequential decision
making problems is established. The implementation of the framework for the previously developed
POMDP model is derived. An evaluation of the proposed approach using behavioral data from a
second driving experiment is conducted.

Fourth and finally, a novel warning system to assist the driver in maintaining sufficient attention
is developed and implemented in a test vehicle. The new system is compared to a state-of-the-art
warning approach by means of an evaluation in a user study. Here, both user acceptance and effects
on driving performance are considered.

Overall, this thesis demonstrated the viability of the pursued concept of appropriate glance behav-
ior for situation-specific assessment of driver attention. It was shown that computational demands
are feasible for real-time application and that suitable model parameters can automatically be inferred.
Furthermore, the benefits for improvement of a distraction warning system were proven. Consequently,
the methodology established in this thesis is a promising new approach for assessment of driver atten-
tion that avoids the issues of the current state-of-the-art.
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1 Introduction

Consider your commute to your workplace this morning. If you went by car, this might have been like
this: After starting the engine and leaving the parking lot you take a brief glance at the radio to switch
to your favorite station “Free Radio Stuttgart”. You look back to the road to check for students who
are on their way to school in the morning. To make sure to not get fined for speeding you finally have
a short glance at the speedometer. Meanwhile you have probably switched your gaze a dozen times.

Frequent gaze switches are required because human vision is limited by various physiological con-
straints. To cope with the tasks of daily life such as driving to work, humans are required to focus
their mental and particular perceptual resources to the important aspects of the current situation or
the pursued task. This allocation of resources is generally referred to as attention [97]. Attention is of
special importance in automobile driving. This is because manual vehicle control is a task with high
demands on sensory processing and dynamic decision making. The driver has to monitor the course
of the own vehicle and the instruments as well as the behavior of the other traffic participants. Based
on his or her sensory measurements the driver then has to apply the correct steering and accelerator
as well as brake movements in fractions of seconds.

Insufficient attention to the driving task, i.e. inattention, can rapidly lead to driving errors [253]. Ac-
cording to the U.S. National Highway Traffic Safety Administration (NHTSA) 25% of police-reported
crashes are caused by inattention [183]. An analysis of the 100-Car Naturalistic Driving Study even
concludes that approximately 80% of all crashes and 65% of all near crashes involve inattentive drivers
as a contributing factor [108]. In crashes attributed to inattention typically the driver’s attention was
drawn away from the driving task by a secondary task, e.g. interacting with passengers, the vehicle’s in-
fotainment system or even a hand-held device. This phenomenon is commonly termed driver distraction
[127]. In the last decade, the awareness for the risks imposed by driver distraction has spread among
the public. As a result, several campaigns have been conducted to admonish drivers to concentrate
attention to the driving task and to avoid engagement in especially distracting secondary tasks such
as typing text messages. In some countries certain secondary tasks are prohibited by law and subject
to fining. For example in Germany a driver who uses a hand-help phone while the vehicle’s engine
is running is fined 60 euros combined with a penalty point in the central database [1]. Despite these
actions driver distraction remains an issue: A NHTSA publication recently revealed that 10% of all
police reported fatal crashes and 15% of all injury crashes in 2015 were affected by driver distraction
[63]. In this context it was noted that due to methodical issues distraction as a contributing factor
is typically under-reported by a factor of at least 2 in the considered database. A study conducted
by a major German insurance company using customer data of the years 2013 to 2016 revealed that
engagement into many common secondary tasks in driving increases crash risk [116].

Despite its impact on road safety the mechanisms of driver distraction are not yet fully understood
[127]. In this context it is common to categorize driver distraction into three types: Visual distraction
is insufficient visual attention to the road scenery and the other traffic participants. This can be the
case for example, if the driver is interacting with the vehicle’s infotainment system which requires
looking at an in-vehicle display. If the driver shows inappropriate glance behavior such as spending too
much time without looking at the road scenery he or she can for example fail to notice that the vehicle
is approaching the lane boundaries. Interacting with in-vehicle infotainment does not only require
averting gaze but may also require removing one hand from the steering wheel to press buttons. As a
consequence, the driver might not be able to conduct rapid steering movements required for evasive
maneuvers. Hence, in addition to visual distraction manual distraction is imposed. Finally, distraction
can also result from bound cognitive resources, e.g. during intense conversations, which is cognitive
distraction. During such a conversation it could happen that the driver saw the flashing braking lights
of a preceding vehicle but then fails to notice the intensity of the braking maneuver and to react
accordingly.
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1 Introduction

Visual distraction is considered the most important type of distraction to deal with. For example,
the analysis of the naturalistic driving study [108] sees visual distraction as the main culprit to crash
and near-crash events. As safe driving requires predominately acquiring and processing of visual
information [214], distinct negative effects of visual distraction on response to lead vehicle braking [48,
123] and lane keeping performance [229, 139] were established. In contrast, the influence of cognitive
distraction on crash risk is less clear: Engagement in moderately cognitive demanding secondary tasks
such as conversation with a passenger is associated with reduced crash risk compared to full attentive
driving [108]. In addition to that, [55] found decreased deviation from the lane center during cognitive
distraction while [139] established a delayed hazard response.

Engagement in secondary tasks is common in natural driving. For example, it was found that in
40% of the driving time drivers engage in a secondary task if a passenger is present [155]. In the
case the drivers were alone in the vehicle still in 25% of the driving time such tasks were present.
Many of these secondary tasks such as interacting with a navigation system have a utility for the
driver. Consequently, it is not possible to ban every potential distracting secondary task. This is the
case especially for secondary tasks that compete with the attention to the road scenery but which are
required for safe driving. For example, drivers must monitor the vehicle’s speed by means of the
speedometer and must check the mirrors when planning lane changes. In both cases the gaze must be
averted from the road scenery to the vehicle’s interior.

Drivers want and need to engage in secondary tasks during driving. These tasks bear the risk
of dangerous distraction, especially, if they require averting gaze from the road. This is because of
the negative impact on driving performance which can favor crashes. Therefore, it is desirable to
develop systems that can assist the driver in safely interacting with secondary tasks. Such systems
have the potential to greatly improve road safety. Here, an important component is an algorithm for
assessment of the driver’s visual attention to the forward road scenery. Based on this assessment
the driver could for example receive a distraction warning if insufficient attention is detected. The
present thesis contributes to the state-of-the-art in automatic driver attention assessment for real-time
distraction warning. This will be done by development of new algorithmic approaches and their
validation by means of real driving experiments. Due to its clear and strong relation to decreased
driving performance, we will focus on distraction induced by inappropriate glance behavior. That is,
we will focus foremost on visual driver distraction.

1.1 State of Research and State of the Art in Driver Distraction Mitigation

After introducing the issue of driver distraction, we will review the literature wrt. current state-of-
the art in mitigation of distraction. In this context two facets are considered: We will first address
the research on how drivers deal with secondary tasks in driving that compete for attention. Here,
especially those works are considered that focus on driver strategies of secondary task interaction and
gaze arbitration. Second, technology and systems are reviewed that aim at mitigating driver distraction
and its effects. This includes especially approaches for the automatic assessment of driver attention.
The purpose of this review is to provide a basis for identifying the current research gap which will
lead to the problem statement of this thesis.

This section will not list all the publications that are related to the models and algorithms developed
or the experiments conducted in the course of this thesis. This is because much of the previous work
that the present thesis is based on is originally unrelated to the subject of driver distraction. Instead,
throughout this work each individual chapter will have a separate short review of related publications.

1.1.1 Driver Strategies for Distraction Mitigation

In the previous section, we have explained that driving is a task that poses high demands on sensory
processing and consequently misdirected attention can have fatal consequences. However, arbitration
of attention and its coordination with actions is successfully employed by humans in many daily
activities [76]. Here, human attention arbitration, especially glance behavior, is adapted to the present
task [193]. Therefore, it is necessary to review the literature on driver strategies regarding glance
behavior and engagement into secondary tasks. If these human strategies can mitigate distraction, then
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1.1 State of Research and State of the Art in Driver Distraction Mitigation

they should be incorporated in automatic attention assessment. Furthermore, experimental studies
help to understand which aspects of driving in presence of a secondary task have the strongest impact
on driving performance which should also be considered in algorithmic approaches.

One of the pioneering works on driver strategies with respect to attention is Senders et al.s’ work
[207]. Here, the authors studied the interaction between the duration of voluntarily chosen occlusion of
the forward road scenery and the driving speed. It was shown that given fixed duration of occlusion the
drivers adapt their driving speed. That is, the longer the occlusion the lower the chosen driving speed.
Conversely, drivers adapt the maximum occlusion time given a certain driving speed in the form that
smaller occlusion times are tolerated at higher driving speed. In naturalistic driving familiarity with
the road as well as driving experience were found to result in spare capacities of visual attention that
can be used to monitor other targets than the road scenery [160, 161]. [37] investigated eye-movement
patterns in simulated driving. Here it was shown that increased difficulty of the driving situation came
with a stronger concentration of gaze on the road scenery. Furthermore, voluntarily chosen occlusion
time in a lane keeping task is closely related to the remaining time until lane departure [69, 68].
This was interpreted as dedicated strategy of attention arbitration. [84] showed that drivers’ visual
attention is distributed across the driving task and interaction with in-vehicle technology according to
the associated information bandwidth, relevance, priory as well as sampling effort. Similar results were
found in [228]. Here, driver glance behavior was adapted with respect to incentivation and uncertainty
in quantities relevant for either headway control or speed control. More recently, the voluntary chosen
occlusion distance, i.e. occlusion duration time divided by the driving speed, was studied [119]. In that
work an experiment in a high fidelity driving simulation revealed that the occlusion distance reflects
the attentional demands of different driving scenarios such as sub-urban, rural and highway driving
environments.

Besides the general strategies of attention arbitration in driving also the effects of the specific struc-
ture of a secondary task have been studied. [35] investigated strategies for typing American-style
telephone numbers during lane keeping. Here the presentation of numbers in chunks of three resulted
in task-interleaving at the boundaries of the blocks. UK-style telephone number are built of blocks
of five digits. Hence, in this case block boundaries are too distant to be useful for interleaving [89].
Instead, interleaving strategies were found to be highly sensitive to the performance objective set by
incentivation. Furthermore, the occurrence of errors and the possibility to correct in a typing task dur-
ing driving influences glance behavior [129]. Here, it was shown that detecting a typing error in the
secondary task favored gaze return to the road but was dependent on how quickly the drivers obtain
feedback on the correctness.

Several studies on drivers’ interaction with secondary tasks in naturalistic driving have found evi-
dence for drivers employing dedicate strategies to avoid distraction. For example, engagement in visu-
ally demanding secondary tasks is often accompanied by reduced driving speed [12, 180, 147, 80, 162]
or increased headway to preceding vehicles [87, 41, 162]. Therefore it was hypothesized that drivers
actually apply a “deciding to be distracted” approach [132]. To what extent drivers employ strategies
in interaction with a secondary task was investigated in several works: In [205] a driving-simulator
experiment was conducted where the participants had the possibility to schedule their engagement
in potentially distracting secondary tasks. It was shown that drivers decided when to interact with
a task and adapted both their driving and glance behavior to the demands of the driving situation.
Driver behavior in an externally-paced secondary task and a self-paced secondary task were compared
in a driving simulation in [156]. In the case of the self-pace task glance behavior and engagement in
the tasks were highly adapted to the situational demands. Similar results were obtained in an exper-
iment on a test-track [137] and in the analysis of a naturalistic driving study [239]. [247] investigated
the effects of externally-paced and self-paced secondary tasks on driving performance. The results
demonstrated that scheduling of engagement in the potentially distracting secondary tasks allowed
the drivers to prevent large decrements in driving performance. Externally-paced tasks resulted in
increased variability of the position in lane as well as increased variability in the time head-way to pre-
ceding vehicles. In contrast to the other works in the driving experiment of [81] drivers generally did
not strategically postpone engagement in distracting secondary tasks although the demands of the up-
coming track were known. Hence, it was hypothesized that drivers can sometimes fail to appropriately
assess the demands of the driving situation [82].
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1 Introduction

In summary this short survey shows that drivers employ strategies for attention arbitration, glance
behavior, and engagement in secondary tasks. In addition to that, these strategies are adapted to the
secondary task and the demands of the driving task. Furthermore, a coupling with driving behavior
was established. Most importantly, this type of driver behavior was found to be rational as it allows to
mitigate the effects of distraction and can ensure a certain level of driving performance.

1.1.2 Technology for Distraction Mitigation

Although, the strategies for attention arbitration can mitigate distraction, the facts and figures on
the contribution of driver distraction to crash risk [108, 63] indicate that drivers either often fail to
apply such strategies or that the applied strategies are not always effective. Therefore, automatic
systems that mitigate the effects of distraction or help the driver to maintain sufficient attention are
desirable. In the present section we therefore report on such systems namely advanced driver assistance
systems, automated driving systems and workload managers. Alternative approaches for automatic
driver attention assessment other than the one pursued in the present thesis are listed separately
(see Sec. 1.1.3). In this context, we wish to note that a variety of commercial systems for mitigating
distraction and its effects have been developed by both car makers and suppliers. However, we will
only review systems where a scientific publication regarding their functionality or an evaluation is
available.

Advanced Driver Assistance Systems

Based on the observation that human error plays a dominant role in the occurrence of crashes [253],
several Advanced Driver Assistance Systems (ADAS) have been proposed that aim at supporting the
user in the driving task. Instead of addressing the underlying causes of driving errors these systems
instead try to prevent these errors to lead to crashes. In this context, ADAS address both lateral and
longitudinal vehicle control.

Lane keeping assistance systems and lane departure warning systems aim at improving lateral ve-
hicle control. A camera system is employed to track the road boundaries and to estimate the vehicles
position in the lane [188]. Based on the estimated position lane keeping assistance systems apply a
steering torque to help the driver to stay inside the lane boundaries [210]. Lane departure warning
systems instead trigger a warning if an imminent crossing of the lane boundaries is anticipated [189].
These systems have generally been found to be effective [7]. Especially, the lane keeping performance
of distracted drivers can be improved by an early warning [28].

Forward collision warning systems and automatic emergency brakes can mitigate collision with
preceding vehicles. In both systems a sensor monitors the environment in direction of travel of the
vehicle. For each obstacle in the driving corridor the collision risk is assessed [96]. Forward collision
warning systems trigger a warning at an early stage if the risk is becoming critical. This is required to
ensure that sufficient time is left for driver reaction. Instead, autonomous emergency brakes trigger a
brake intervention typically at the last possible moment [130]. Similar as in case of assistance systems
for lateral vehicle control forward collision warning systems can improve driving safety [49]. [125]
demonstrated that early forward collision warnings can redirect the driver’s gaze back to the road and
thus prevent collisions.

Although ADAS can provide significant safety benefits by mitigating the effects of driving errors, a
common problem are false interventions. For example in [7] users reported the lane departure warning
system to be annoying. This was the case when drivers deliberately steered the vehicle out of the lane,
for example in case of construction works or for lane changing. Furthermore, distracted drivers need
earlier warnings to react to an impending threat [125, 28]. However, automatic threat assessment is
typically uncertain in early stages of a critical situation due to sensor noise and uncertainty wrt. the
evolution of the situation [223]. Consequently, there is a significant risk of false interventions which
would be especially annoying for a fully attentive driver. Hence, conventional ADAS could significantly
improve through additional assessment of the drivers’ attention: [179, 122] proposed ADAS systems
for lateral vehicle control that featured assessment of the drivers attention and adapted warnings and
intervention. Forward collision warning systems using threat assessment that considers both driving
situation and driver attention state were presented in [187, 237].
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Automated Driving Systems

A more radical way than mitigating the effects of driver errors is to remove the human from vehicle
control in the first place. Indeed, fully autonomous cars could significantly reduce the number of
crashes by not suffering from the driving errors humans are prone to. Although in the last years
significant progress has been made towards fully autonomous cars a lot of technical and legal issues
remain yet unsolved [24]. Automated driving systems that are currently available on the market or
that are in series development are partial or conditional automated systems (see [44] for a taxonomy
and precise definitions). In partial automation the driver has to continuously monitor the system to
detect failures and intervene accordingly. Consequently, in partial automated driving driver distraction
is similarly problematic as it is in case of manual driving as known in the literature on supervisory
control [208]. In conditional automation the user is not required to monitor the system continuously
but must be capable of resuming control if system limits are reached. Typically, take over by the
driver in a certain time span is required. In this context driver distraction maintains relevance as it has
been shown that engagement in distracting secondary tasks can significantly reduce take-over quality
[254]. Summarized we conclude that the assessment of driver distraction remains an important issue
in automated driving until finally full autonomy is obtained.

Workload Managers

“Driver distraction is the diversification of attention from the driving task to another task” [127]. Fol-
lowing this definition also the interaction with information technology build into the vehicle can be
distracting. For example, an analysis of insurance data revealed significantly increased crash risk for
interaction with several in-vehicle technologies [116]. Furthermore, it has been shown that usage of
built-in navigation systems can result in decreased driving performance due to distraction [48, 147].
However, the research on driver strategies in scheduling secondary tasks indicates that the effects of
distraction can be mitigated if engagement in such tasks is scheduled to low demand driving situations
[247].

The idea of workload managers is to realize a system for automatic scheduling and prioritizing the
information presented to the driver to avoid conflicts with the demands of the driving task. For
example certain information could be delayed in a demanding driving situation such as a complicated
lane merge. Alternatively, some demanding tasks such as destination entry in a navigation system
could be blocked. Several concepts for workload managers have been described in the literature [177,
33, 10]. Notably, also workload managers for smartphone usage during driving have been proposed
[119]. The benefits of automatic strategies for blocking engagement in secondary tasks and workload
managers have been demonstrated: [177] showed that workload management can decrease overall
objective and subjective workload. Furthermore, lane keeping and headway keeping can be improved
by blocking secondary tasks in high demand driving situations [51]. The system proposed in [10]
resulted in a higher proportion of driver gaze on the road and decreased subjective workload. In [119]
a positive effect on glance behavior of secondary task blocking and high perceived usefulness of the
workload management system were established.

Workload managers can already provide benefits for the driver if they only assess the driving situa-
tion and schedule information as well as block certain secondary tasks. However, increased effective-
ness can be obtained if also the driver’s attention state and his or her glance behavior in interaction
with the information system is considered [10, 119]. In addition to that, workload mangers require
knowledge of the secondary tasks the driver is engaging in. Interaction with the vehicle’s infotainment
system can easily be detect, however this is not the case for other secondary task such as typing on a
hand-held smart-phone or reading billboards.

1.1.3 Automatic Assessment of Driver Attention

In the previous review of the technology for distraction mitigation it was revealed that many of the
proposed systems could significantly benefit from an assessment of driver attention: The acceptance
and effectiveness of ADAS could be improved, sufficient monitoring of partial automated driving and
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take-over readiness could be ensured and the specificity of workload managers could be increased by
assessment of driver attention.

Furthermore it is also possible to provide a feedback to distracted drivers. That is, if the driver was
found not being attentive enough to ensure an acceptable level of safety he or she could be warned to
for example interrupt a present secondary task and to return his or her gaze back to the road. Such
systems have for example been proposed in [51, 104, 126].

A variety of approaches have been proposed for automatic assessment of driver attention. This sec-
tion serves to provide an overview over the techniques employed and the approaches proposed in this
context. An alternative review can also be found in [50]. Generally, the approaches for driver atten-
tion assessment proposed in the literature can be differentiated with respect to the data sources that
are used. In this context, driving behavior statistics, statistics of glance behavior and eye movement,
measures of brain activity as well as combinations thereof have been employed which we will use to
categorize the different works.

At this point, we wish to point out that although many of these works propose to assess driver atten-
tion or detect driver distraction actually surrogate classification problems are considered. Specifically,
often the presented approaches detect engagement into potentially distracting secondary tasks because
a reference for problematic driver distraction is hard to obtain. We will discuss the issues with this
approach in Sec. 1.2 and will consequently state the quantity predicted in the reviewed publications.

Unfortunately, most approaches for driver attention assessment were not evaluated on a common
data set. Instead, many works use self-collected data sets that significantly varied in the design of the
conducted driving experiment. For example, some studies used data obtained in simulated driving and
some studies employed data obtained in real traffic. Furthermore, the sensors, e.g. for eye-tracking,
employed and their measurement accuracy differed in the individual works. Consequently, obtained
prediction performances are of limited comparability between publications. For this reasons we omit
to report figures of prediction and classification accuracy in the review.

Driver Attention Assessment from Driving Behavior

Engagement into visually and cognitively demanding secondary tasks during driving can result in
characteristic decrements of driving performance [123, 55, 139] as well as compensation strategies
[41, 80]. This allows to conversely detect the corresponding periods from measures of driving behavior.

In [241] the quantities obtained by a forward collision warning systems were fed into a random forest
classifier for detecting presence of a distracting secondary task. [58] first fitted a multi-layer perceptron
to the driver’s speed, acceleration and throttle press profile. Presence of a secondary task was then
classified based on a support vector machine using the residuals of the neural network model. Driver
behavior as measured in series vehicles such as steering angle, driving speed, pedal position as well
as the distance to preceding vehicles and the lane borders have been evaluated in [199, 235]. Here
a variety of different classification techniques including neural networks, support vector machine and
fuzzy logic approaches was employed. In contrast to the other works that used classification techniques
from the machine learning domain in [78] a control theoretic driver model was used for assessment of
driver attention. That is a neuro-muscular model of steering control was fitted to behavioral data and
it was shown that the fitted model parameters were highly sensitive to engagement in secondary tasks
during driving.

The advantage of the approaches that build only on statistics of driving behavior alone is that the
sensors necessary for classification are already available in modern series cars. Consequently, no addi-
tional costly sensors are required to implement the driver attention assessment.

Driver Attention Assessment from Head and Gaze Movements

Drivers engaged into secondary tasks show characteristic driving patterns. These patterns result from
diverted attention to the driving task [253]. In the context of visual distraction this diversion of attention
can also directly be assessed. This is possible by analyzing the drivers’ head and gaze movements. For
example, an analysis of the 100 cars naturalistic driving study revealed that a total time of gaze off the
forward road scenery of 2 s in a 5 s window was associated with significantly increased relative crash
risk [108]. In the last decade several computer vision techniques for estimation of the human head
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pose [163, 237] and eye tracking as well as gaze direction [75, 79] have been developed. In addition to
that several commercial products are available. Consequently, several approaches have been proposed
that assess driver attention from measured glance behavior or head movements although in-vehicle
eye-tracking is not yet perfect [5].

In [52] a distraction warning system was proposed that assessed attention from both the proportion
of gaze off the road in the last 3 s as well as the duration of a current glance off the road. The 1.5th
power of the duration of the current off road glance was employed in [179]. In [105] a distraction
index was proposed that was incremented when the driver’s gaze was off the road and decremented
when the driver’s gaze was on the road. Furthermore, hystereses as well as different increment rates
dependent on the angular amount of gaze aversion from the forward road scenery were used. Variants
of the previously listed algorithms were investigated in [141]. The approaches for driver attention
assessment based on driver behavior were built on classification models estimated by applying machine
learning approaches to collected data. Here the models were optimized with respect to predicting
periods of engagement into distracting secondary tasks. In contrast, it is not clear how the algorithm
parameters of the previously listed approaches which use statistics of glance behavior were obtained.
An evaluation of several algorithms with respect to predicting relative crash risk was conducted in
[141]. Furthermore, [126] reported on an evaluation with respect to predicting the periods of secondary
task engagement.

As shown in [245] also cognitive distraction can manifest itself in the driver glance behavior: Under
cognitive load the drivers’ gaze is stronger concentrated to the center of the road. This phenomenon
was utilized in a glance behavior based algorithm for detecting engagement into cognitively distracting
secondary task which was described in [126]. Support vector machine and extreme learning machine
approaches were employed to detect engagement into cognitively distracting secondary tasks from
glance behavior [146]. In this context, it was shown that classification accuracy can benefit from utiliz-
ing a semi-supervised learning technique. Recently, a distraction warning system was proposed that
used the duration of the off road glance divided by the driving speed as a driver distraction index
[119] which was inspired by the driving experiment of [120] mentioned earlier.

The work of [153] indicated, that head movements alone may also allow for assessment of driver
attention. In contrast, a significantly larger on-road study conducted in [64] showed that there is
strong variation in the amount of correlation between drivers’ head movements and eye movements.
Consequently, the head pose can substitute an estimate of the drivers’ gaze direction only for a subset
of the driver population.

In contrast to driver attention assessment from driving behavior an additional sensor is required to
measure glance behavior which is a disadvantage. However, driver attention assessment from glance
behavior has the advantage of being applicable also in partial and conditional automated driving where
no driving behavior of the user is available.

Driver Attention Assessment from Brain Activity

Engaging in a secondary task during driving requires mental effort by the driver. In addition to the
mental resources needed for the driving task demands arise from the secondary task and from task
interleaving. Consequently, some researchers were successful in assessing driver attention from brain
activity. In this context, typically electroencephalography (EEG) was employed. This is an electro-
physiological approach which measures voltage dynamics in the brain by means of multiple electrodes
placed on the scalp.

[145, 144] used independent component analysis and clustering to identify frequencies band which
are sensitive to occurrence of a secondary task in simulated driving. The usage of so-called alpha-
spindle features [213] for detecting visual and cognitive distraction was studied in [217]. It was shown
that these features can discriminate all three attentive driving, engagement into cognitively and visually
distracting secondary tasks using data of simulated driving. In [218] it was shown that alpha spindle
features allow for detecting the presence of a cognitive secondary tasks in driving on a test-track
with a low average error but significant variation with respect to the individual participants. The
potential of different frequency bands and different measurement regions on the scalp for assessment of
cognitive distraction was studied in [8]. Furthermore, [248] proposed an adaptive threshold prediction
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framework to detect the begin and the end of distracting secondary tasks. In this work several features
were constructed from statistics of the different frequency bands and a feature selection approach was
employed.

Monitoring of brain activity using EEG has the advantage of more directly measuring the human
cognitive processes involved in cognitive distraction. In contrast, other approaches, e.g. using driving
or glance behavior, employ indirect measures. Furthermore, [218] demonstrates that EEG based detec-
tion of cognitively distracting secondary tasks is robust wrt. the conditions of real driving. However,
EEG measurement is highly intrusive to the drivers as it requires a special electrode cap. Consequently,
EEG-based detection of driver distraction is currently not suited for a product distraction assessment
system.

Driver Attention Assessment by Fusion of Data Sources

The previous sections showed that it is possible to detect engagement in secondary tasks during driving
by means of different data sources. While these approaches have the advantage of potentially requiring
only a single sensor for estimating the driver state, fusing the different sources has the potential to
increase both robustness and effectiveness. Consequently, such an approach has been employed in
several works.

[138, 140] used a dynamic Bayesian network for detecting engagement in a cognitively distracting
secondary task. Here, both glance and blink statistics as well as measures of driving performance
such as standard deviation of lane position in simulated driving were considered. Similar features and
support vector machine classification as well as logistic regression were employed in [142]. Notably,
different “definitions of driver distraction” were considered: The methods were evaluated for both pre-
dicting engagement in a secondary task and predicting the intervals where the drivers showed their
worst 25% of driving performance. Here, predicting the periods with presence of the secondary task
was most accurate. [157] employed adaboost to detect engagement into two different cognitive tasks
during simulated driving. For classification features of the drivers’ pupil diameter, glance behavior
and heart rate were constructed resulting in higher prediction performance compared to a support
vector machine based approach. A system for maneuver and driver specific detection of engagement
in secondary tasks was presented in [198]. Here, first the driver was identified by means of audio fea-
tures, then the current maneuver was recognized by means of a naive Bayes approach using a Gaussian
mixture model based on driving behavior measures. Finally, a second driver and maneuver specific
naive Bayes classifier was used to detect presence of a distracting secondary task. [250] proposed a
long-term-short-term neural network for detecting visual-manual interaction with the vehicle’s info-
tainment system in real driving. In that several features of the driving behavior as well as the drivers’
head movements were constructed and fused by means of the neural network. In comparison to a
support vector machine based approach improved detection performance could be established which
was attributed to the long-term-short-term neural network’s capability to account for the temporal
driving context. A data set comprising of engagement into several distracting secondary tasks during
real-traffic driving was introduced in [88]. In that work self-assessment of distraction by post- driving
questionnaires as well as rating of distraction by external assessors using video snippets of a driver
facing camera were employed. Furthermore, features of driving behavior, driver’s eye glance behavior
as well as acoustic features obtained by a micro phone array were analyzed wrt. sensitivity to the
secondary tasks. This data set was used in [136] to evaluated k-nearest-neighbor and support vector
machine classification to detect the periods of engagement in secondary tasks as well as to discrimi-
nate between the different tasks. Furthermore, linear regression and support vector regression were
employed to predict the ratings of distraction made by external raters. In addition the features ex-
tracted in previous works also statistics derived from facial action units were employed. [135] revisited
the data set. In contrast to previous work here visual and cognitive distraction were separately assessed
using video snippets of both the driver and the forward road scenery. Furthermore, additional features
for prediction were obtained from the video road scenery. Several approaches to predict ratings of dis-
traction as well as to classify into high and low perceived distraction were evaluated. The interaction
of glance behavior and steering behavior were analyzed in [251]. It was shown that auto correlation
of the individual quantities as well as correlation between the quantities can differentiate between the
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three classes attentive driving, engagement in a visually distracting secondary task and engagement
into an cognitively distracting secondary task in simulated driving. A comparison of the detectability
of engagement into cognitively distracting secondary tasks in different simulated driving scenarios
was conducted in [143]. Using support vector machine classification with automatic feature selection
similar high classification quality in highway driving and approaching a stop-controlled intersection
could be obtained. However, the identified most important features for classification varied between
the considered scenarios. Furthermore, significant differences in cognitive load measures according to
ISO/DIS 17488 and ISO 15007-2014 between the scenarios could be established.

In many of the reviewed works on driver distraction assessment by fusing diverse sensor modalities
feature selection techniques have been employed. Here, the most important features were typically
from different sources [250, 135]. This demonstrates that fusion approaches have the potential to
improve prediction accuracy. While many of the approaches relied on features obtained from eye-
tracking which would require an additional sensor, fusion techniques can be more robust wrt. low
sensor quality than approaches solely based on glance behavior. For example in [250, 135] only the
drivers’ head orientation instead of precise eye-tracking was required.

1.2 Problem Statement

In the present section, we discuss the literature on driver distraction mitigation. This allows us to
identify the gap in current research of automatic assessment of driver attention which we will use to
define the problem statement of this thesis.

Several works on algorithmic approaches to assessing attention and detecting distraction used the
driver’s engagement into potentially secondary tasks as a proxy. This is the case for methods that
use a statistical classifier that was trained to distinguish between periods of engagement and baseline
driving based on features related to driver behavior, e.g. [138, 250]. The same approach has also been
used to benchmark and to optimize decision rules on the duration and frequency of glances away from
the road [126]. Detecting whether the driver engages in a secondary task has the attractive property
that large amounts of sample data can comparably easy be obtained. This is possible by conducting
a driving study where the driver or an additional instructor manually logs the periods of these tasks.
However, this convenience comes at a cost. First, drivers want to engage into secondary tasks - that is
why they paid for an in-vehicle infotainment system. Hence, they should not generally be considered
distracted any time they conduct a secondary task. Second, whether or whether not the secondary task
poses risks for driving safety is strongly dependent on the driving situation and characteristics of the
task. For example, typing text messages on a smartphone is safe when the vehicle is in standstill and
highly risky at a significant driving speed. Furthermore, reading a map placed on the adjacent seat is
more dangerous than monitoring the speedometer, although both require averting gaze from the road.
This is because those secondary tasks differ in the amount of information that can be obtained from
the road scenery by means of peripheral vision.

Humans with driving experience are to some extend able to judge the risks to driving safety induced
by different secondary tasks. Hence, a model for assessing attention can be trained to predict a human’s
subjective assessment [136, 135]. This is realized by providing a data set of features of the driver
behavior and associated human post-hoc ratings. Such an approach improves over merely detecting
secondary tasks. This is because behavioral patterns are related to subjective risk of distraction and
therefore a fine grained differentiation is obtained. However, in the end the model rather predicts the
demands of secondary tasks than the associated risks: A driver showing shaky steering movements
and reducing the driving speed strongly indicates that he or she is engaging in a demanding secondary
task. Still, this can be of small accident risk if the driving speed is low and therefore safe driving is
not very demanding. Furthermore, subjective ratings can be ambiguous: Raters may come up with
different judgments on the demand of a specific task based on their own frequency of engagement
during driving and their personal risk attitude. For example in [135] subjective ratings had a correlation
of 0.70 - 0.77 when comparing the rating of an individual rater to the average of four other raters.

The literature review showed, several works have found pronounced driver compensation strategies
when engaging in secondary tasks. Hence, attention assessment algorithms trained to detect these
tasks or assess their demand will likely be sensitive with respect to the occurrence of compensation
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strategies. For example, a classification algorithm will predict the driver engaging in a secondary
task if the driver deliberately reduces his or her driving speed. In contrast, human factors research
concluded that reducing speed is actually a rational strategy [205]. This behavior serves to decrease
the demand of the driving task and therefor reduces crash risk. Approaches based on both previous
methodologies consider only statistical correlations between behavior patterns and the engagement
in secondary tasks. Therefore, distraction may be predicted with high confidence if the driver is
employing such a compensation strategy for distraction mitigation. Clearly this is not desirable.

Models for assessment of attention can also be obtained in a different way. This is possible by opti-
mizing the model to discriminate between crash and non-crash events based on the drivers’ behavior
given the same situational circumstances [141]. Clearly, this approach is most directly related to the
goal that shall be achieved. That is, to detect the type of behavior related to attention that has a high
risk to result in a crash. However, obtaining the required amount of crash data is extremely cumber-
some. Therefore, this approach is not feasible for developing a distraction assessment system based on
a specific sensor configuration or a specific vehicle. A similar yet more practicable idea was proposed
in [142]. Here, the periods of interaction with an secondary task in which the driving performance
metrics were below the participants’ individual 0.25 quantile were predicted. While this methodology
is feasible for product development of a attention assessment system the choice of the specific quantile
is somewhat arbitrary. In addition to that, in both approaches the influence of the situational circum-
stances on the crash risk or the risks associated with decreased driving performance are neglected.

Humans have been found to show highly adaptive behavior for attention arbitration [193]. Especially,
several experiments showed that driver’s glance behavior is rational with respect to the demands of
the driving situation [207, 69], the characteristics of a secondary task imposed on the driver [34, 129]
and preferences or incentives [89, 228]. Furthermore, similar adaptive behavior has also been found
in engagement in secondary tasks in naturalistic driving [155]. Summarizing, drivers can to some
extent assess the attention demands of the current driving situation and the desired secondary task as
well as adapt glance and driving behavior correspondingly to mitigate distraction. Consequently, any
distraction warning system that does not consider the context of the driving situation cannot provide
optimal assistance and is possibly not considered useful by the drivers.

Based on the preceding discussion of the literature we conclude:
Engagement in potentially distracting secondary tasks during driving requires glance strategies that con-
sider the characteristics and the demands of the driving situation and the secondary task. Drivers are aware
of this relation and apply corresponding adaptive behavior. This is not considered by the current state-of-
the-art in automatic attention assessment and distraction detection. Hence, current distraction warning
systems are neither optimal in terms of effectiveness nor usefulness.

We acknowledge that this research gap has also recently been recognized and discussed in [106] in
2016. That work considers the issue from the perspective of traffic psychology and human factors
research and proposes the theoretical concept of minimum required attention. In contrast, this thesis
aims at improved attention assessment algorithms that can be used in a real-time distraction warning
system. Hence in this context, new mathematical models and algorithmic methodology are required,
which are not provided by [106].

In addition to the theoretical framework of [106], heuristic approaches for situation adaptive attention
assessment have been employed in [62, 119]. In those works the time passed since the driver’s gaze
was on the road for the last time was divided by the squared driving speed [62] or the absolute
value of the driving speed [119]. The approach of [62] was neither motivated nor evaluated. The
heuristic employed in [119] was supported by empirical evidence regarding driver glance behavior
in the driving experiment of [119], but its benefits were not specifically evaluated. Both approaches
have the disadvantage that they do not establish a mathematical relation to neither decreased driving
performance nor crash risk. Consequently, it is not clear which aspects of the problem of appropriate
glance behavior in driving in presence of a visually demanding secondary task are accounted for in
the algorithms.

Based on previous discussion of the literature and the identified research gap we obtain the following
research questions that need to be addressed to improve distraction warning systems:
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1. How can a normative model of glance behavior for engagement in secondary task during driving be ob-
tained, that can be used in a real-time warning system?
In order to avoid the insufficiency of previous work the causal relations between drivers behav-
ior and the resulting risks must be considered in automatic driver attention assessment. That
is, the model must reproduce how glance patterns lead to specific vehicle control. Furthermore,
the resulting accident risk in the current driving situation must be modeled in an appropriate
measure of control performance. Finally, the influence of the secondary task on glance behavior
must be characterized. Given a model of the aforementioned causal relations, the second step
is to compute normative glance behavior. Here, the required properties of the glance behavior
are small loss of control performance while not too strongly conflicting with the driver’s inter-
est in engaging into a secondary task. Throughout the development of the model of normative
glance behavior a good compromise between realism of the computed glance behavior and the
computational demand that needs to be feasible for a real-time warning system must be found.

2. How can suitable model parameters be found?
As the normative model of glance behavior tries to address complex real world behavior, it will
likely contain several adjustable parameters. For the purpose of using the model in a distraction
warning system those parameters must be set to appropriate values. Note, that the model of
glance behavior is of normative character. Hence, the chosen parameter values must result in
behavior that is accepted by real drivers. Furthermore, the parameters of the individual compo-
nents of the model should closely match the relations present in real driving. This is a challenge
in cases where the components relate to the driver perception as corresponding neuro-biological
processes cannot be measured. Hence, new methodology to obtain the parameters with norma-
tive function and those related to the driver’s sensor characteristics are required.

3. How can a prototypical distraction warning system based on the normative glance model be developed?
Applying the fully specified normative model of glance behavior in a real vehicle poses addi-
tional challenges. First, the computation time needs to be reduced to a minimum. Second, we
need to robustly deal with noisy sensor inputs. Hence, tailored pre-processing routines must be
developed. Finally, the normative model needs to be coupled with a suitable warning system.

4. Does the proposed model improve a distraction warning system?
From the conceptional perspective a normative glance model with the mentioned properties is
a great improvement over the state-of-the-art attention assessment approaches. However, it is
also necessary to critically evaluate if the new methodology indeed improves a final distraction
warning system. This evaluation should be done in real driving to also test the robustness of
the proposed approach. In this context, the relevant measures to be evaluated are both system
effectiveness and acceptance by potential users.

1.3 Thesis Concept and Outline

This thesis addresses the identified research questions at the exemplar driving task of lane keeping.
This is an elementary driving task the driver must address during the entire driving time with very
few exceptions. Surely, lane keeping is only a single facet of driving in total and there are other more
complex tasks such as lane changes. Note, that we need to develop normative mathematical models of
glance behavior in those driving tasks. In contrast to the development of descriptive models, this is a
problem that has only scarcely been addressed in previous research. Focusing on lane keeping allows
us to investigate all the research questions in detail, which are challenging already in this driving task.
Furthermore, insights are gained that are relevant beyond the considered exemplar task and that open
up new research questions. Finally, the new methods and algorithms developed throughout this thesis
provide a basis for future research on normative glance behavior in other driving tasks.

In the following we give a summary of the individual chapters of this work.
Cpt. 2 reviews the decision theoretical frameworks of Markov decision processes and partial observ-

able Markov decision processes that form the mathematical basis of our normative model of glance
behavior. Here, we consider the definitions and fundamental properties of these frameworks as well as
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the techniques for computing optimal policies therein that are relevant for the present work. Finally, an
extensions of the decision theoretic frameworks that account for imperfect behavior, i.e. sub-optimal
policies, as e.g. required to model realistic driver steering are briefly introduced.

Cpt. 3 develops and validates the normative model of appropriate glance behavior in secondary task
interaction while driving. This is done defining appropriated glance behavior by means of optimal
and rational policies in a partially observable Markov decision process. We build this model by first
considering the task of vehicle control under the external influences of track topology and driving
speed. Thereafter, practical models of the driver’s sensor characteristics and the potentially distracting
secondary task are added. Importantly, for all three aspects, the driving task, the secondary task as well
as the driver’s sensing, individual performance measures, i.e. reward functions, are developed. Having
obtained the joint task model and the different reward functions, we address its solution with respect
to optimal and more realistic rational policies therein. Here, new solution algorithms are developed.
Finally, these techniques and the resulting normative glance behavior are validated. This is done with
respect to the realism of the glance behavior and the feasibility of the computational demands for a
warning system.

Given the joint task model and the solution techniques, we need to parameterize the reward functions
of the individual task. Here, parameters must be found that the normative glance behavior defined
by solving the partially observable Markov decision process is accepted by drivers. Furthermore,
a prediction model of the future imperfect driver steering and gaze switching behavior is required.
These must be quantified to decide on current appropriate glance behavior that suits with respect to
realistic driver behavior. Cpt. 4 presents new techniques for estimating these parameters from real
driving data using inverse optimal control. Here, we derive a new inference approach for the class of
partially observable Markov decision processes the joint task model belongs to. Thereby, the properties
can be exploited to efficiently solve the problem class. Furthermore, we introduce a driving experiment
on lane keeping in real traffic. The obtained behavioral data is used to evaluate proposed methodology
with respect to quality of prediction when using the estimated parameters.

The partially observable Markov decision process model involved in the definition of appropriate
glance behavior explicitly models the driver’s perception. This done by means of a sensor model of
the characteristics of the driver’s vision. Suitable values of the sensor model are of crucial importance
for the realism of the full model. However, estimating these models is a challenging problem. This
is because the visual sensory measurements made by the driver cannot technically be measured in
driving experiments. In Cpt. 5, we address this important issue by presenting the first mathematical
framework for inference of sensor models underlying real-world motor behavior. The approach is first
derived for general partially observable Markov decision processes in conceptual form. Thereafter,
algorithms for exact inference for the problem class of the normative model of glance behavior are
presented. Finally, a new dataset of driver behavior is introduced. Here, the drivers engaged into three
different variants of a realistic secondary task along with varying characteristics of the sensing of the
forward road scenery. The data set is used to evaluate the prediction performance under the inferred
sensor models.

Cpt. 6 considers the development and an evaluation of a distraction warning system based on the
previously obtained normative model of glance behavior. In this context, a robust estimate of the time
past since the driver averted his or her gaze from the road is required. For this purpose an estimation
approach based on a particle filter is developed. Thereafter, we describe the architecture of the warning
system and how it can be implemented in a test vehicle. Finally, the data and results of a user test
conducted on a test track are presented. This experiment served the purpose of comparing a warning
systems based on a state-of-the-art approach to distraction assessment to the system developed in this
work.

Finally, Cpt. 7 reviews the contributions and findings of this thesis. Furthermore, open problems
and possible directions for future research are discussed.

We give an schematic overview of this work in Fig. 1.1.
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Mathematical Background, Cpt. 2

Appropriate Glance Behavior in Secondary Task Interaction while DrivingAppropriate Glance Behavior in Secondary Task Interaction while DrivingAppropriate Glance Behavior in Secondary Task Interaction while Driving, Cpt. 3

Development of a Prototypical Warning SystemDevelopment of a Prototypical Warning SystemDevelopment of a Prototypical Warning System, Cpt. 6

Conclusion and Outlook, Cpt. 7

Parameter Estimation

Figure 1.1: Schematic overview and outline of the thesis

As can be seen in the figure, first the model of appropriated glance behavior is obtained in the main
part of the thesis. In the following two chapters, we derive new techniques to estimate the model
parameters. Finally, the fully specified model is used in the prototypical warning system.

1.4 Contributions

After outlining the thesis, we wish to summarize the main contributions of this work. This thesis con-
tributes to the state-of-the-art in the research on intelligent vehicles and driver assistance systems by
developing and validating novel algorithmic methodology for situation specific automatic assessment
of driver attention. To the best of the author’s knowledge, a similar comprehensive mathematical
framework for assessment of driver attention has not been available before. Considering an interdisci-
plinary subject, the following specific contributions in the fields of machine learning, optimal control,
analysis of human machine systems and intelligent vehicles were made:

• A Computationally Feasible Model of Appropriate Glance Behavior (Cpt. 3):
The first comprehensive and mathematical normative model of glance behavior for secondary
task interaction in lane keeping is developed. For this purpose, we extend a previous partially
observable Markov decision process model as well as previous solution techniques for efficient
computing rational glance policies therein. Finally, a thorough evaluation of the glance behavior
with respect to realism and computational demand with regards to the application context is
contributed.
This allows to compute situation specific appropriate glance behavior. Furthermore, the obtained
algorithms and empirical findings form a basis for developing normative models for other driving
tasks.
Parts of this work were published in:

F. Schmitt, H.-J. Bieg, D. Manstetten, M. Herman, and R. Stiefelhagen. Predicting lane keep-
ing behavior of visually distracted drivers using inverse suboptimal control. In Proceedings of the
IEEE Intelligent Vehicles Symposium (IV), 2016.

F. Schmitt, H.-J. Bieg, D. Manstetten, M. Herman, and R. Stiefelhagen. Exact maximum entropy
inverse optimal control for modeling human attention scheduling and control. In Proceedings of
the IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016.
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1 Introduction

• Inverse Optimal Control for a New Class of Partially Observable Markov Decision Processes
(Cpt. 4):
We derive maximum causal entropy inverse optimal control for the problem class the model of
normative glance behavior belongs to. Thereby, we generalize previous work with respect to the
model class. In addition to that, we provide the first comparison of the maximum causal entropy
approach and the maximum causal likelihood variant of the original framework. Finally, the
methodology is evaluated on behavioral data obtained in traffic driving, which is more realistic
than simulations used in many other works.

This contributes to the generalization and better understanding of maximum causal entropy in-
verse optimal control. In addition to that, we provide practitioners with an efficient and effective
algorithmic tool to parametrize the normative model of glance behavior model.

Parts of this work were published in:

F. Schmitt, H.-J. Bieg, D. Manstetten, M. Herman, and R. Stiefelhagen. Predicting lane keep-
ing behavior of visually distracted drivers using inverse suboptimal control. In Proceedings of the
IEEE Intelligent Vehicles Symposium (IV), 2016.

F. Schmitt, H.-J. Bieg, D. Manstetten, M. Herman, and R. Stiefelhagen. Exact maximum entropy
inverse optimal control for modeling human attention scheduling and control. In Proceedings of
the IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016.

• A Novel Approach for Inferring Sensor Models and Rewards Underlying Human Motor Be-
havior (Cpt. 5):
This work developed the first general mathematical framework for inference of sensor models
and rewards underlying real world motor behavior. In contrast to previous work, here only
the assumption of rational behavior in an arbitrary given partially observable Markov decision
process is required. A novel algorithmic approach for estimating sensor model in the problem
class of the normative glance model is obtained. In addition to that, the developed technique is
evaluated using a new data set of four hours of real traffic driving.

The obtained mathematical concept enables development of new machine learning techniques
for inference of sensor model in further specific problem classes. Hence, it can provide a helpful
computational methodology for understanding human sensori-motor behavior in cognitive sci-
ence. The algorithms derived in this work can be used to find an appropriate parametrization of
the normative model of glance behavior.

Parts of this work were published in:

F. Schmitt, H.-J. Bieg, M. Herman, and C. Rothkopf. I see what you see: Inferring sensor and pol-
icy models of human real-world motor behavior. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2017.

• Development and Evaluation of A Novel Distraction Warning System (Cpt. 6):
We develop a novel distraction warning system that takes into account the context of the current
driving situation. Furthermore, the first evaluation of adapting distraction warnings to the driv-
ing situation in comparison to static warning thresholds is conducted by means of a real driving
user test.

The evaluation demonstrates that the developed normative glance model can indeed be applied
to obtain a better a real-time distraction warning system

This work will be submitted as:

F. Schmitt, H.-J. Bieg, D. Manstetten, and R. Stiefelhagen. Distraction mitigation by computa-
tion of appropriate glance behavior and its evaluation in a user test. (manuscript in preparation)
IEEE Transaction on Intelligent Transport Systems, 2017.
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2 Mathematical Background

A variety of mathematical concepts and notations are employed throughout this thesis. We assume
familiarity with the basic concepts of probability theory and linear algebra. This chapter will address
models and frameworks of optimal and rational decision making that the algorithms derived in Cpt. 3,
Cpt. 4, Cpt. 5 will strongly build on.

Many of the aspects considered in this work will be of temporal nature, such as driver glance pat-
terns. Although certain relevant physical processes such as the kinematics of a vehicle are typically
defined in continuous time, all quantities xt will be assumed to be in discrete time by default. Therefore,
xt�1 will typically refer to the previous value of the quantity and xt+1 to the next value.

2.1 Models of Optimal Sequential Decision Making

Automobile driving is a dynamic process. Here, the driver continuously monitors the state of the
vehicle and the scenery and applies a certain control input to change or keep the current state. In
addition, drivers usually pursue a certain objective in driving e.g. safely reaching their destination in
the shortest time. Such tasks where an agent, e.g. the driver, makes sequential decision in pursuit of
an objective can be modeled as a Markov decision process.

2.1.1 Markov Decision Processes

Definition A finite horizon Markov Decision Process (MDP) [22] with decision horizon T consists of
states xt in a state space S and controls ut in a control space U available to the decision making agent. The
agent’s choice of controls is modeled by a potentially stochastic and time-varying mapping from states
to controls, a so-called policy, ppp0:T : ut ⇠ pt(.|xt). Sampled from an initial distribution x0 ⇠ p0, the states
xt evolve according to a stochastic process model PPP0:T by means of the dynamics

xt+1 ⇠ Pt(.|xt, ut) (2.1)

and the applied policy pt(ut|xt). The states reached and the controls applied by the agent are evaluated
by means of a reward function r:

r(xt, ut) : S⇥ U! R. (2.2)

The architecture of a MDP is outlined in Fig. 2.1.

reward r(xt, ut)

policy p(ut|xt) dynamics P(xt+1|xt, ut)

xtxt

ut ut

xt

ag
en

t

Figure 2.1: Illustration of the model parts of an MDP. Here, the agent chooses a control ut based on the current
state xt based on a policy pt. The agent receives a reward r(xt, ut) and the next state xt+1 is sampled
according to the dynamics P(xt+1|xt, ut).
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2 Mathematical Background

A sequence of states and controls T = (x0:T , u0:T) is called a trajectory. Given a reward function
r(xt, ut), the return R(T ) of a trajectory T is defined as

R(T ) =
T

Â
t=0

r(xt, ut). (2.3)

That is, R is the evaluation of decisions u0:T made by the agent.

Optimal Policies The objective of an MDP is to find a policy ppp?
0:T that maximizes the expected return

R over a horizon T under the dynamics and the initial distribution. Specifically, we seek the optimal
solution of the problem

ppp?
0:T = arg max

ppp0:T
E
h T

Â
t=1

r(xt, ut)
���ppp0:T ,PPP0:T , p0

i
. (2.4)

The most fundamental solution approach to this optimization problem, already introduced in the
original work [22], are the so-called Bellman-Equations

Q?
t (xt, ut) =

(
r(xt, ut) + E[Ṽt+1(xt+1)|Pt(xt+1|xt, ut)] if t < T
r(xT , uT) else

(2.5)

V?
t (xt) = max

ut
(Q?

t (xt, ut)) (2.6)

p?
t (ut|xt) = I(ut|u?

t (xt)), u?
t (xt) = arg max

ut

�
Q?

t (xt, ut)
�
. (2.7)

In this context, the function Q?
t (xt, ut) is referred to as optimal state-control-function while V?

t (xt) is
referred to as optimal value-function. Interestingly, the optimal policy ppp? of an MDP is deterministic
and independent of the initial state distribution p0. In Cpt.s 3-5, however, we will often consider
the initial distribution for computing the optimal policy. The reason is that due to the special MDP
structure in these cases not all states xt 2 S can be reached at every time step t. This will be exploited
for more efficient optimal policy computation.

While the recursion (2.7)-(2.6) can in principle be used to obtain the optimal policy ppp of any MDP,
they are often computationally infeasible. This is because computing u?

t (xt) requires to backup the
optimal state-control function values Q?

t (xt, ut) for all pairs xt, ut. Although this approach is tractable
in small discrete spaces S,U this is not the case in large or even continuous spaces S,U. Here, one needs
to resort to approximation methods. An overview over MDP, their properties and solution approaches
is provided by [181].

Nomenclature Used in Literature As problems of sequential decision making occur in several do-
mains, several research communities have developed computational solution approaches:

• In control theory and numerical optimization usually MDPs with known models of the reward
and dynamics are considered. In this context (approximative) optimal solution is referred to as
Optimal Control (OC) [25].

• MDPs with unknown dynamics are of interest in machine learning and artificial intelligence.
Given an artificial agent that chooses controls and observes the outcomes in form of rewards and
successor states, here the goal is to iteratively learn the optimal policy based on the obtained
observations. As policy optimization is based solely on the interaction data, this is termed Rein-
forcement Learning (RL) [231]. Notably, there are some RL approaches that build models and solve
optimal control problems in iteration [47, 134].

In this thesis, situationally appropriate gaze policies are obtained by first developing and estimating
MDP models followed by computing policies therein. Therefore, we will use the term optimal control
for computing optimal policies and related matters throughout this work.
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2.1 Models of Optimal Sequential Decision Making

2.1.2 Linear Quadratic Regulation

One of the few important MDPs, that can efficiently be solved by means of the Bellman-equations is
the class of Linear Quadratic Regulation (LQR) problems.

Definition Here, the state and control spaces are given as S = Rnx , U = Rnu . The dynamics PPP are
linear-affine with matrices At 2 Rnx ,nx , Bt 2 Rnx ,nu , at 2 Rnx according to

xt+1 = Atxt + Btut + at + eeex
t , eeex

t ⇠ N (0, SSSex
), (2.8)

subject to random Gaussian noise eeex
t 2 Rnx and the initial distribution is a Gaussian x ⇠ N (µµµx

0, SSSx
0).

Furthermore, the reward is a negative quadratic form

r(xt, ut) = �x>t Cxxt � u>t Cuut, (2.9)

with symmetric positive semi-definite matrix Cx, min(eig(Cx)) � 0 and symmetric positive definite
matrix Cu, min(eig(Cu)) > 0.

Optimal Policies The most important property of LQR, known at least since E. Kalman [100], is that
the optimal state-control and value functions Q?

t (xt, ut), V?
t (xt) are given by the quadratic forms

Q?
t (xt, ut) = [xt; ut]

>MQ?

t [xt; ut] + mQ?

t [xt; ut] + mQ? ,1
t + mQ? ,1

t (2.10)

V?
t (xt) = x>t MV?

t xt + mV?

t xt + mV? ,1
t + mV? ,2

t . (2.11)

Here, MQ?

t is a symmetric negative definite matrix max(eig(MQ?

t )) < 0 and MV?

t is a symmetric
negative definite matrix max(eig(MV?

t )) < 0. This can be proven by recursively evaluating the Bellman
equations. Specifically, it holds for the variables MQ?

t , mQ?

t , mQ? ,1
t , mQ? ,2

t

MQ?

t =

(
[At Bt]>MV?

t+1[At Bt]� blk(Cx, Cu) if t < T
� blk(Cx, Cu) else

(2.12)

mQ?

t =

(
2[At Bt]>MV?

t+1at + [At Bt]>mV?

t+1 if t < T
0 else

(2.13)

mQ? ,1
t =

(
a>t MV?

t+1at + 2a>t mV?

t+1 + mV? ,1
t+1 if t < T

0 else
(2.14)

mQ? ,2
t =

(
tr(MV?

t+1SSSex
) + mV? ,2

t+1 if t < T
0 else

. (2.15)

Next, we define the following variables as

MQ?

t =

"
MQ?

t 1:nx ,1:nx
MQ?

t 1:nx ,nx+1:nx+nu

MQ?

t nx+1:nu+nx ,1:nx
MQ?

t u,nx :nx+nu

#
=:

"
MQ?

t x,x MQ?

t x,u
MQ?

t u,x MQ?

t u,u

#
(2.16)

mQ?

t =

"
mQ?

t 1:nx

mQ?

t nx+1:nu+nx

#
:=

"
mQ?

t x
MQ?

t u

#
. (2.17)
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2 Mathematical Background

According to the Bellman equations (2.6) it holds V?
t (xt) = maxut(Q?

t (xt, ut)). That means for ob-
taining V?

t (xt) we need to find the maximum value of Q?
t (xt, ut) = [xt; ut]>MQ?

t [xt; ut] + mQ?

t [xt; ut] +

mQ? ,1
t + mQ? ,1

t for given a given xt. As Q?
t (xt, ut) is a negative quadratic function its maximum value

can be obtained by finding ruQ?
t (xt, u?

t ) = 0. Using the Schur complements of MQ?

t (see e.g. [175]) we
can obtain V?

t (xt) by means of the terms MV?

t , mV?

t , mV? ,1
t , mV? ,2

t given as

MV?

t = MQ?

t x,x �MQ?

t x,u[M
Q?

t u,u]
�1MQ?

t u,x (2.18)

mV?

t = mQ?

t x �MQ?

t x,u[M
Q?

t u,u]
�1mQ?

t u (2.19)

mV? ,1
t = mQ? ,1

t � 1
4
[mQ?

t u ]
>[MQ?

t u,u]
�1mQ?

t u (2.20)

mV? ,2
t = mQ? ,2

t . (2.21)

Note, that we explicitly specified the constants mQ? ,1
t , mQ? ,2

t , mV? ,1
t , mV? ,2

t which are often omitted in the
literature. In LQR these do not affect the policy, however this is not the case in its extensions which we
will consider later (see Cpt. 3).

Finally, the optimal policy ppp? is given as a linear-affine feedback controller

p?(ut|xt) = I(ut|u?
t (xt)) (2.22)

u?
t (xt) = arg max

ut

�
[xt; ut]

>MQ?

t [xt; ut] + mQ?

t [xt; ut] + mQ? ,1
t + mQ? ,2

t
�

(2.23)

= F?
t xt + f?t , F?

t := �1
2
[MQ?

t u,u]
�1MQ?

t u,x, f?t := �1
2
[MQ?

t u,u]
�1mQ?

t u . (2.24)

Altogether the optimal policy ppp? was obtained using only matrix multiplications and inversion of
[MQ?

t u,u]
�1. Therefore, LQRs can quickly be numerically solved using basic linear algebra routines. As

the algorithms derived later in this work rely on the solution of a deterministic LQR problem as a
subroutine, a pseudo-code algorithm for its solution is given by Algo. 1.

Algorithm 1 Optimal Solution of LQR LQRopt
Require: all

1: function LQRopt(Cx, Cu, (At, at, Bt)t=0:T)
2: MV?

T+1  0nx ,nx

3: mV?

T+1  01,nx

4: mV? ,1
T+1  0

5: for t = T, . . . , 0 do
6: MQ?

t  [At Bt]>MV?

t+1[At Bt]� blk(Cx, Cu)

7: mQ?

t  2[At Bt]>MV?

t+1at + [At Bt]>mV?

t+1

8: U = [MQ?

t u,u]
�1

9: mQ? ,1
t  a>t MV?

t+1at + 2a>t mV?

t+1 + mV? ,1
t+1

10: MV?

t  MQ?

t x,x �MQ?

t x,uU MQ?

t u,x

11: mV?

t  mQ?

t x �MQ?

t x,uU mQ?

t u

12: mV? ,1
t  � 1

4 [m
Q?

t u ]
>U mQ?

t u + mQ? ,1
t

13: F?
t  � 1

2 U MQ?

t u,x

14: f?t  � 1
2 U mQ?

t u
15: end for
16: return

�
MQ?

t , mQ?

t , mQ? ,1
t , MV?

t , mV?

t , mV? ,1
t , F?

t , f?t
�

t=0:T
17: end function

Application Although, most relevant dynamical processes do not follow linear-affine dynamics (2.8),
LQR is widely used to compute policies in practice [11]. In addition to computational convenience
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2.1 Models of Optimal Sequential Decision Making

this is because one is usually interested in keeping a tracking error xe
t close to zero with least control

effort possible as measured by the reward r(xe
t , ut) = �cx(xe

t )
2 � cx(ut)2. In this case, a reasonable

approximation of the nonlinear dynamics of the tracking error xe
t+1 = f (xe

t , ut) is given by its first-
order Taylor-approximation at xe

t , ut = 0,

f (xe
t , ut) ⇡ rxe

t ,ut f (xe
t , ut)|xe

t ,ut=0[xe
t ; ut] + f (0, 0).

As the optimal policy ppp? for the LQR approximation tries to keep both xe
t , ut close to zero, the qualtiy

of the linear approximation w.r.t. dynamic remains good which results in good performance of LQR
policy. A thorough explanation of this robustness property can be found in [11]. Finally, iterative
application of LQR has also proven to be an efficient approach to approximately solve nonlinear MPDs
in robotics [240, 242].

2.1.3 Partially Observable Markov Decision Processes

In previous section on MDPs, the agent had full knowledge of the states xt when deciding on controls
ut. However, this is not the case in many real-world decision making problems. For example, in manual
automobile driving it is unrealistic to assume that the driver can fully sense every state of the driving
situation at any time. Fortunately, MDPs can be extended to explicitly take into account aspects of
sensing and perception. This is possible using the class of Partially Observable Markov Decision Processes
(POMDPs) [216, 215].

Definition In a POMDP the decision making agent relies on noisy and/or incomplete sensory mea-
surements zt of the “true” states xt. These measurements lay in a measurement space Z and their
conditional distribution with respect to the state xt is given by a sensor model

zt ⇠ pz(.|xt). (2.25)

The objective in a POMDP is to find a policy ppp0:T : ut ⇠ pt(.|zzz0:t) based on the history of measurements
zzz0:t that maximizes the expected return of the applied actions and the unknown visited states. This is
formalized in the optimization problem

ppp?
0:T = arg max

ppp0:T
E
h T

Â
t=1

r(xt, ut)
���ppp0:T , pz,PPP0:T , p0

i
. (2.26)

As the states are not directly accessible, the optimal policy in POMDPs generally depends on the entire
history zzz0:t of measurements instead of only the most recent one zt. This is because considering the past
measurements, effectively improves estimating the current state and therefore leads to better controls.
Fig. 2.2 gives a schematic illustration of the previously introduced model aspects.

reward r(xt, ut)

policy p(ut|zzz0:t) dynamics P(xt+1|xt, ut)

sensor model pz(zt|xt)

xt

zt

ut ut

xt

ag
en

t

Figure 2.2: Illustration of the model parts of an POMDP. Here, the agent chooses a control ut based on the history
of sensory measurements zzz0:t based on a policy pt. The agent receives a reward r(xt, ut) and the next
state xt+1 is sampled according to the dynamics P(xt+1|xt, ut). Based on the new state xt+1 a new
sensory measurement is generated according to the sensor model pz(zt+1|xt+1).
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2 Mathematical Background

Belief-MDP A common approach to handle POMDPs is to transform them into equivalent MDPs.
This is possible using the belief bt(xt), i.e. the a-posterior distribution of the state xt given the history
of measurements and applied controls zzz0:t, uuu0:t�1 under knowledge of the dynamics PPP0:t�1 and initial
state distribution p0,

b(xt) := p(xt|zzz0:t, uuu0:t�1,PPP0:t�1, p0), pb
0 := b(x0) = p0. (2.27)

According to Bayes’s law the belief can recursively be obtained by means of the belief update

b(xt) =

R
p(zt|xt)Pt(xt|ut�1, xt�1)b(xt�1)d xt�1R

p(z0t|xt)Pt(xt|ut�1, xt�1)b(xt�1)d z0t, xt�1
(2.28)

given the current sensory measurement zt, the past belief b(xt�1) and the past applied control xt�1.
Let Z(b(xt)|b(xt�1), ut�1) denote the set of measurements zt that produce the belief b(xt) by the belief
update (2.28) given the previous belief b(xt�1) and the previous control ut�1,

Z(b(xt)|b(xt�1), ut�1) =
n

ẑt 2 Z : b(xt) =

R
p(ẑt|xt)Pt(xt|ut�1, xt�1)b(xt�1)d xt�1R

p(z0t|xt)Pt(xt|ut�1, xt�1)b(xt�1)d z0t, xt�1

o
. (2.29)

We can now define the belief dynamics PPP b by means of

P b
t (b(xt+1)|b(xt), ut) :=

Z
Z(b(xt+1)|b(xt),ut)

⇣ Z
p(zt+1|xt+1)Pt+1(xt+1|ut, xt)b(xt)d xt+1, xt

⌘
d zt+1.

(2.30)

That is the probability of a transition from belief b(xt) to belief b(xt+1) is the integral of the probability
of all observations that produce the belief b(xt+1) by means of the belief update. Furthermore, taking
the expected reward under the a-posterior of the state xt

rb(b(xt), ut) := E[r(xt, ut)|b(xt), ut] = E[r(xt, ut)|p(xt|z0:t, u0:t�1,PPP0:t�1, p0), ut]. (2.31)

yields a reward function on belief and control b(xt), ut. Finally, the belief-MDP equivalent to the
original POMDP is given by reward function rb (2.31), dynamics PPP b (2.30) and initial distribution pb

0
(2.26) [15]. The relationship between the individual parts of the belief MDP are illustrated in Fig. 2.3.

reward r(xt, ut)

policy p(ut|b(xt)) dynamics P(xt+1|xt, ut)

belief update
b(xt+1) µ

R
pz(zt+1|xt+1)Pt(xt+1|ut, xt)b(xt)d xt

sensor model pz(zt|xt)zt

b(xt)

ut
ut

ut

xt

knowledge of agent

ag
en

t

Figure 2.3: Illustration of the model parts of a belief MDP. Here, the agent chooses a control ut based on the current
belief b(xt) of the state xt based on a policy pt. The agent receives a reward r(xt, ut) and the next state
xt+1 is sampled according to the dynamics P(xt+1|xt, ut). Based on the new state xt+1 a new sensory
measurement is generated according to the sensor model pz(zt+1|xt+1). The sensory measurement zt+1
is fused with the belief b(xt) of the states as well as the knowledge of the agent regarding the dynamics
and the sensor model. This leads to the new belief b(xt+1).

Note, that the belief MPD implicitly implies that the agent has full knowledge of both the dynamics
and the sensor model. Those are required to conduct the belief update (2.28). We will later refer
to this aspect and discuss whether this is realistic in the context of drivers’ belief of vehicle/driving
situation states (Cpt. 5). Furthermore, belief MDPs can very often not exactly be solved by means of the
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2.1 Models of Optimal Sequential Decision Making

Bellman equation. This is because the belief is always a continuous variable (a probability distribution)
resulting in a MDP in continuous states. Formally, POMDPs can also proven to be of harder complexity
class than ordinary MDPs [171]. A review of POMDP models and solution techniques with respect to
application for human behavior modeling will be conducted in Cpt. 3.

2.1.4 Linear Quadratic Gaussian Problems

Similar as LQR for MDPs (see subsection 2.1.2), Linear Quadratic Gaussian Problems (LQG)s [100] form
a notable special class of POMDPs.

Definition In LQGs reward and dynamics are the same as in LQRs

xt+1 = Atxt + Btut + at + eeex
t , eeex

t ⇠ N (0, SSSex
), x ⇠ N (µµµx

0, SSSx
0) (2.32)

r(xt, ut) = �x>t Cxxt � u>t Cuut, (2.33)

while LQGs additionally feature measurements zt 2 Rnz according to a linear Gaussian sensor model

zt = Hxt + eeez
t , eeez ⇠ N (0, SSSez

) (2.34)

with measurement matrix H 2 Rnz ,nx and Gaussian measurement noise eeez
t .

Following Sec. 2.1.3 now the equivalent belief MDP of the original LQG POMDP is derived.

Belief-MDP Due to the linear-Gaussian model parts (2.32),(2.34) here the belief b(xt) is given by a
Gaussian,

b(xt) = N (µµµx
t , SSSx

t ). (2.35)

Specifically, the a-posterior mean µµµx
t and a-posterior covariance SSSx

t are obtained by means of the well-
known Kalman filter,

S̄SSx
t+1 = AtSSSx

t A>t +SSSex
(2.36)

µ̄µµx
t+1 = Atµµµ

x
t + Btut + at (2.37)

Kt+1 = S̄SSx
t+1H>(HS̄SSx

t+1H> +SSSez
)+ (2.38)

SSSx
t+1 = (Inx �Kt+1H)S̄SSx

t+1 (2.39)
µµµx

t+1 = µ̄µµx
t+1 �Kt+1(Hµ̄µµx

t+1 � zt+1). (2.40)

Note, that here the more common inverse of (HS̄SSx
t+1H> +SSSez

) is replaced with a pseudo-inverse. The
reason is that in Cpt. 3-5 the matrix SSSx

t is not necessarily invertible. In this case, the optimal Kalman
gain Kt+1 is obtained by means of the pseudo inverse. The Kalman update is summarized in Algo. 2.

Algorithm 2 Kalman Update

Require: SSSx
t , A, a, B, SSSex

1: function KalmanUpdate(SSSx
t , A, a, B, SSSex , H, SSSez , µµµx

t , z)
2: S̄SSx

t+1  ASSSx
t A> +SSSex

3: Kt+1  S̄SSx
t+1H>(HS̄SSx

t+1H> +SSSez
)+

4: SSSx
t+1  (Inx �KH)S̄SSx

t+1
5: µ̄µµx

t+1  Aµµµx
t + But + a

6: µµµx
t+1  µ̄µµx

t+1 �K(Hµ̄µµx
t+1 � zt+1)

7: return SSSx
t+1, µ̄µµx

t+1
8: end function
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2 Mathematical Background

Finally, the belief-MDP of LQG is formulated as follows: The reward function rb is given by

rb(b(xt), ut) = rb(µµµx
t , SSSx

t , ut) = E
⇥� x>t Cxxt � u>t Cuut

��N (xt|µµµx
t , SSSx

t )
⇤

(2.41)

= �[µµµx]>t Cxµµµx
t � tr(CxSSSx

t )� u>t Cuut, (2.42)

and the belief dynamics PPP b result from the Kalman filter update (2.36) according to

P b
t (b(xt+1)|b(xt), ut) = P b

t (µµµ
x
t+1, SSSx

t+1|µµµx
t , SSSx

t , ut) (2.43)
= pt(µµµ

x
t+1|µµµx

t , SSSx
t , ut) · I(SSSx

t+1|SSSx
t+1(SSS

x
t )) (2.44)

= N (µµµx
t+1|Atµµµ

x
t + Btut + at, AtSSSx

t A>t +SSSex �SSSx
t+1(SSS

x
t )) (see A.1) (2.45)

· I(SSSx
t+1|SSSx

t+1(SSS
x
t )). (2.46)

Notably, the dynamics of the a-posterior covariance SSSx
t are independent of the controls ut. This aspect

greatly facilitates computing optimal policies.

Optimal Policies As Kalman discovered already in 1960 [100], in LQGs the state-control function and
the value function of the corresponding belief-MDP are given by

Q?
t (µµµ

x
t , SSSx, ut) = [xt; ut]

>MQ?

t [xt; ut] + mQ?

t [xt; ut] + mQ? ,1
t + mQ? ,2

t (SSSx
t ) (2.47)

V?
t (µµµ

x
t , SSSx) = x>t MV?

t xt + mV?

t xt + mV? ,1
t + mV? ,2

t (SSSx
t ), (2.48)

which can be proven by evaluating the Bellman equations of the belief MDP. In this context, MQ?

t , mQ?

t ,
mQ? ,1

t , MV?

t , mV?

t , mV? ,1
t follow the same recursive relations as their LQR counterparts (2.12),(2.18),

whereas the scalar-value functions mQ? ,2
t (.), mV? ,2

t (.) are obtained according to

mQ? ,2
t (SSSx

t ) = tr(�CxSSSx
t ) + tr

⇣
MV?

t+1
�
AtSSSx

t A>t +SSSex �SSSx
t+1(SSS

x
t )
�⌘

+ mV? ,2
t

�
SSSx

t+1(SSS
x
t )
�

(2.49)

mV? ,2
t (SSSx

t ) = mQ? ,2
t (SSSx

t ). (2.50)

That is mQ? ,2
t (SSSx

t ) takes into account the cost of uncertainty by means of term tr(�CxSSSx
t ) and the

potential variation of the future a-posterior mean µµµx
t by means of term tr

⇣
MV?

t+1
�
AtSSSx

t A>t + SSSex �
SSSx

t+1(SSS
x
t )
�⌘

. As a first direct consequence, the optimal LQG policy is equivalent to the LQR policy
(2.22) applied to the a-posterior mean µµµx

t :

p?(ut|µµµx
t , SSSx

t ) = I(ut|u?
t (µµµ

x
t )), u?

t (µµµ
x
t ) = F?

t µµµx
t + f?t (2.51)

F?
t : = �1

2
[MQ?

t u,u]
�1MQ?

t u,x, f?t := �1
2
[MQ?

t u,u]
�1mQ?

t u , (2.52)

Second, in contrast to LQRs the full value function V?
t (µµµ

x
t , SSSx) and state-control function Q?

t (µµµ
x
t , SSSx, ut)

are no longer of simple analytic form. This is because the functions mQ? ,2
t (SSSx

t ), mV? ,2
t (SSSx

t ) feature nested
Kalman updates and are therefore non-linear and non-quadratic. Fortunately, due to the deterministic
nature of the dynamics of the a-posterior covariance both value function and state-control function
can exactly be evaluated. This is possible by means of a forward-pass starting in SSSx

0 and traversing
equation (2.49).

LQGs inherit the computational efficiency of and are consequently similar popular in practice [11].

2.2 Models of Rational Sequential Decision Making

In the previous section we reviewed optimal sequential decision making in MDP and POMDP. While
this provides an excellent conceptual framework for normative behavior, it is less suited for modeling
realistic human behavior. This is because human decision making deviates from optimal policies in
manifold ways what has long been discussed [212]. In simple discrete choice and gambling tasks,

22



2.2 Models of Rational Sequential Decision Making

humans have famously been shown to be biased from optimality by false beliefs and framing [98]. In
more complex real world task like driving, there is the additional problem of accurately modeling the
task in the first place. For example, in driving we do not exactly know all muscular and perceptual
constraints that are imposed on a human driver. As a consequence, the optimal policy might deviate
from the observed real world behavior simply because of inaccuracy of the MDP/POMDP model.
Finally, individuals can all act optimal under the constraints defined by the MDP/POMDP model and
still show marked differences in their policies. This is possible when they pursue different objectives.
For example, in lane keeping this could be individual trade-offs between steering effort and deviation
from the lane center.

For these reasons, modeling human behavior for predictive purpose often requires to relax opti-
mality. Here, approaches are desired that allow to model variations in behavior and deviation from
optimal behavior while preserving the key aspect of rationality. That is, controls that result in high
return are more likely to be applied by the agent than controls that result in low return.

In the following section we will review popular frameworks for modeling rational behavior in the
aforementioned sense. Here, our goal will be coverage of those frameworks that are suited for the
application context of this work or have previously been used to modeling real world behavior.

2.2.1 Boltzmann Policies

A first framework to implement the desired model of rational behavior is given by so-called Boltzmann
policies. Here, the agent applies controls ut according to the distribution

pt
t (ut|xt) =

exp( 1
t Q?(xt, ut))R

exp( 1
t Q?(xt, u0t))d u0t

, (2.53)

where t is referred to as the temperature and where Q? is the optimal state-control function. Here, the
likelihood of a control is a monotonic function of the optimal state-control function. Hence, choosing
sub-optimal controls is less likely than choosing optimal controls according to their decreased value of
the optimal state-control function. This property of the Boltzmann policy leverages an interpretation
as rational behavior. While initially popularized in the context of exploration in reinforcement learning
[231, 232, 99], the Boltzmann policy model found increasing popularity for modeling human real-world
behavior [256, 168]. A favorable property of this behavior model is that existing OC and RL techniques
can be reused to obtain the state-control function, while the temperature t allows to adjust the amount
of “spread” around the optimal policy. However, the approach comes with a conceptual weakness:
The agent using the Boltzmann policy must be considered overly optimistic with respect to his own
controls. Although, actually applying a sub-optimal policy the agent plans with a optimal policy what

r(xt, ut) r(xt+1, ut+1) . . . r(xt+1, ut+1)

pt(ut|xt) P(xt+1|xt, ut) p?(ut+1|xt+1) P(xt+2|xt+1, ut+1) . . . p?(uT |xT)

Expected return E
⇥

ÂT
t0=t r(xt0 , ut0 )

��ppp?
t:T ,PPP t:T

⇤
under better optimal policy ppp?

(2.53)

Figure 2.4: Illustration of the Boltzmann policy model. In the used stochastic policy pt(ut|xt) at times step t the
likelihood of actions is related optimal state-control function Q?

t (xt, ut). This quantity is the expected
return when following the optimal policy p?

t+1:T .

is illustrated in Fig. 2.4. Specifically, it uses the optimal state-control function Q?
t to decide on controls.

Hence, the agent does not take into account potential failures to perform optimal. As a consequence,
the controls most likely applied by the agent using the Boltzmann policy do not necessarily result in
the highest return and otherwise.

23



2 Mathematical Background

2.2.2 The Maximum Causal Entropy Policy Model

As alternative to the Boltzmann policy model the Maximum Causal Entropy (MCE) policy model has
been proposed [260, 257]. In contrast to the latter, here it is ensured that the most likely choice of
controls according to the MCE policy p̃pp also results in highest expected returns. Specifically, the
likelihood of actions is a monotonic function of the return when continuing to follow the MCE policy,

p̃t(ut|xt) µ exp
⇣

E
⇥ T

Â
t0=t

r(xt0 , ut0)
��p̃ppt:T ,PPP t:T

⇤⌘
, (2.54)

as proven in [258], Theorem 6.10. As illustrated in Fig. 2.5 in the MCE model takes account of not
performing optimal.

r(xt, ut) r(xt+1, ut+1) . . . r(xt+1, ut+1)

p̃t(ut|xt) P(xt+1|xt, ut) p̃t+1(ut+1|xt+1) P(xt+2|xt+1, ut+1) . . . p̃T(uT |xT)

Expected return E
⇥

ÂT
t0=t r(xt0 , ut0 )

��p̃ppt:T ,PPP t:T
⇤

under own MCE policy p̃pp

(2.54) (2.54) (2.54)

Figure 2.5: Illustration of the maximum causal entropy policy model. Here, the used stochastic policy p̃(ut|xt) is
related to the expected return when following policies p̃ppt+1:T of the same policy model.

Markov Decision Processes and Partially Observable Markov Decision Processes

Although, the MCE model was developed for the special purpose of inverse optimal control, we will
now review the policy model from the perspective of implementing sub-optimal yet rational behavior.
It will be revisited in Cpt. 4.

Definition The maximum causal entropy policy p̃pp of an MDP with dynamics PPP , initial distribution
p0 and reward r(xt, ut) is defined as the optimal solution of the optimization problem

p̃pp := arg max
ppp

H(ppp) + E
⇥ T

Â
t=0

r(xt, ut)
��ppp0:T ,PPP0:T , p0

⇤
. (2.55)

Here H(ppp) denotes the causal entropy of policy ppp given by

H(ppp) = �
T

Â
t=0

E
h Z

p(ut|xt) log p(ut|xt)d ut

���ppp0:t�1,PPP0:t�1, p0

i
. (2.56)

The role of the causal entropy term is to reward “broad” stochastic policies, i.e. where the probability
mass is ideally equally distributed across controls.

Interestingly, the temperature parameter t is absent in the MCE model. Instead, here the scale of the
reward function r(xt, ut) controls the spread of the control distribution. For example, multiplying the
reward with a factor h > 1 puts more weight into obtaining high reward in the optimization problem
(2.55),

p̃pp := arg max
ppp

H(ppp) + hE
⇥ T

Â
t=0

r(xt, ut)
��ppp0:T ,PPP0:T , p0

⇤
.

As a result p̃pp will be closer to the optimal policy ppp?.
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2.2 Models of Rational Sequential Decision Making

Policy Computation Using calculus of variation, [258] show that the maximizer of (2.55) can be ob-
tained by means of the recursion

Q̃t(xt, ut) =

(
r(xt, ut) + E[Ṽt+1(xt+1)|Pt(xt+1|xt, ut)] if t < T
r(xT , uT) else

(2.57)

Ṽt(xt) = log
Z

exp(Q̃t(xt, ut))d ut =: softmaxut Q̃t(xt, ut) (2.58)

p̃t(ut|xt) = exp(Q̃t(xt, ut)� Ṽt(xt)
�
. (2.59)

Due to similarity to the Bellman equations (2.5)-(2.7), the equations (2.57)-(2.59) are referred to as
soft Bellman equations. Correspondingly, Q̃t(xt, ut) is termed soft state-control function and Ṽt(xt) is
termed soft value function.

The MCE policy model is also well defined in POMDPs [258], where it can be obtained in a conve-
nient form via an equivalent belief MDP similar to the optimal policy [38].

Similar to the classic Bellman equation the soft Bellman equations are often in-feasible for large
discrete and continuous state spaces. This is because applying the soft Bellman equation requires full
backup of the soft state-control. Therefore a variety of approximation techniques have been developed
in recent years [31, 133, 85, 159].

Linear Quadratic Regulation and Linear Quadratic Gaussian Problems

Fortunately, computing MCE policies remains efficient for the special case of LQG1[38] which we will
review in this subsection. In the setting of linear affine dynamics with Gaussian noise and a linear
Gaussian sensor model (2.32), (2.34), the soft state-control function and the soft value function are
given by

Q̃t(µµµ
x
t , SSSx, ut) = [µµµx

t ; ut]
>MQ̃

t [µµµ
x
t ; ut] + mQ̃

t [µµµ
x
t ; ut] + mQ̃,1

t + mQ̃,2
t (SSSx

t ) (2.60)

Ṽt(µµµ
x
t , SSSx) = [µµµx

t ]
>MṼ

t µµµx
t + mṼ

t µµµx
t + mṼ,1

t + mṼ,2
t (SSSx

t ), (2.61)

with negative definite matrices MQ̃
t , MṼ

t . As Q̃t results from Ṽt according to the same equation as Q?
t

from V?
t (compare (2.5) and (2.57)), this yields the elements MQ̃

t mQ̃
t , mQ̃,1

t , mQ̃,2
t as

MQ̃
t =

(
[At Bt]>MṼ

t+1[At Bt]� blk(Cx, Cu) if t < T
� blk(Cx, Cu) else

(2.62)

mQ̃
t =

(
2[At Bt]>MṼ

t+1at + [At Bt]>mṼ
t+1 if t < T

0 else
(2.63)

mQ̃,1
t =

(
a>t MṼ

t+1at + 2a>t mṼ
t+1 + mṼ,1

t+1 if t < T
0 else

(2.64)

mQ̃,2
t (SSSx

t ) =

8<:tr(�CxSSSx
t ) + tr

⇣
MṼ

t+1
�
AtSSSx

t A>t +SSSex �SSSx
t+1(SSS

x
t )
�⌘

+ mṼ,2
t

�
SSSx

t+1(SSS
x
t )
�

if t < T

0 else
.

(2.65)

Ṽt is obtained from Q̃t by applying the softmax operator,

Ṽt(µµµ
x
t , SSSx) = log

⇣ Z
exp

�
[µµµx

t ; ut]
>MQ̃

t [µµµ
x
t ; ut] + mQ̃

t [µµµ
x
t ; ut] + mQ̃,1

t + mQ̃,2
t (SSSx

t )
�

d ut

⌘
. (2.66)

Following [258]2, [38] the expression (2.66) can be simplified to

1 including LQR [261]
2 Theorem 6.10
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MṼ
t = MQ̃

t x,x �MQ̃
t x,u[M

Q̃
t u,u]

�1MQ̃
t u,x (2.67)

mṼ
t = mQ̃

t x �MQ?

t x,u[M
Q̃
t u,u]

�1mQ̃
t u (2.68)

mṼ,1
t = mQ̃,1

t � 1
4
[mQ̃

t u]
>[MQ̃

t u,u]
�1mQ̃

t u +
1
2

log(det(p[MQ̃
t u,u]

�1)) (2.69)

mṼ,2
t = mQ̃,2

t (SSSx
t ). (2.70)

Finally, applying Gaussian conditioning (see e.g. [175]) yields the MCE policy p̃t as

p̃t(ut|µµµx
t ) = exp

⇣
[µµµx

t ; ut]
>MQ̃

t [µµµ
x
t ; ut] + mQ̃

t [µµµ
x
t ; ut] + mQ̃,1

t + mQ̃,2
t (SSSx

t )

� �
[µµµx

t ]
>MṼ

t µµµx
t + mṼ

t µµµx
t + mṼ,1

t + mṼ,2
t (SSSx

t )
�⌘

(2.71)

= N (ut|F̃tµµµ
x
t + f̃t, SSSu

t ) (2.72)

F̃t := �1
2
[MQ̃

t u,u]
�1MQ̃

t u,x, f̃t := �1
2
[MQ̃

t u,u]
�1mQ̃

t u, SSSu
t := �1

2
[MQ̃

t u,u]
�1. (2.73)

Comparing the recursions for the MCE policy (2.62)-(2.72) and the optimal policy (2.12)-(2.22) there
are only two main differences. First, mṼ,1

t features the additional summand 1
2 log(det(p[MQ̃

t u,u]
�1))

which corresponds to the additional causal entropy term in the MCE objective (2.55). Second, the
MCE policy is a stochastic conditional Gaussian policy in contrast to the deterministic (conditional
Dirac) optimal policy. However, both policies have the same conditional mean, i.e. F̃t = F?

t f̃t =

f?t , as MQ̃
t , mQ̃

t , MṼ
t , mṼ

t , and MQ?

t , mQ?

t , MV?

t , mV?

t , coincide. In Cpt. 3 computing MCE policies in
deterministic LQRs is required to solve a more complex POMDP. These policies can be computed by
means of Algo. 3.

Algorithm 3 MCE policy of LQR LQRMCE
Require: all

1: function LQRMCE(Cx, Cu, (At, at, Bt)t=0:T)
2: MṼ

T+1  0nx ,nx

3: mṼ
T+1  01,nx

4: mṼ,1
T+1  0

5: for t = T, . . . , 0 do
6: MQ̃

t  [At Bt]>MṼ
t+1[At Bt]� blk(Cx, Cu)

7: mQ̃
t  2[At Bt]>MṼ

t+1at + [At Bt]>mṼ
t+1

8: U = [MQ̃
t u,u]

�1

9: mQ̃,1
t  a>t MṼ

t+1at + 2a>t mṼ
t+1 + mṼ,1

t+1

10: MṼ
t  MQ̃

t x,x �MQ̃
t x,uU MQ̃

t u,x

11: mṼ
t  mQ̃

t x �MQ̃
t x,uU mQ̃

t u

12: mṼ,1
t  � 1

4 [m
Q̃
t u]
>U mQ̃

t u + mQ̃,1
t + 1

2 log(det(p[MQ̃
t u,u]

�1))

13: F̃t  � 1
2 U MQ̃

t u,x

14: f̃t  � 1
2 U mQ̃

t u

15: SSSu
t  � 1

2 [M
Q̃
t u,u]

�1

16: end for
17: return

�
MQ̃

t , mQ̃
t , mQ̃,1

t , MṼ
t , mṼ

t , mṼ,1
t , F̃t, f̃t, SSSu

t
�

t=0:T
18: end function
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2.3 Conclusion

This chapter introduced MDPs and POMDPs as frameworks for optimal decision making. Here,
POMDPs also allow to consider aspects of sensing and perception which will be relevant for mod-
eling appropriate glance behavior. In addition to this, the fundamental solution technique using the
Bellman equation was introduced and applied to the classes of linear quadratic regulation and linear
quadratic Gaussian problems. Finally, we discussed two approaches namely Boltzmann and maximum
causal entropy policies that allow to model sub-optimal yet rational behavior which is more realistic
for human real-world decision making.

27





3 Appropriate Glance Behavior in the Joint Task of Driving and
Secondary Task Interaction

To assess driver behavior with respect to the situational context, one needs to specify appropriate
behavior. That is, a normative model of behavior is required. In this chapter we first derive a joint
partially observable Markov decision processes model of the driving situation (Sec. 3.3.1), the driver’s
sensing of the driving situation (Sec. 3.3.2) and the potentially distracting secondary task (Sec. 3.3.3).
Given this POMDP appropriate glance behavior can precisely be defined by means of a tolerance on
deviation from rational policies therein (Sec. 3.4). This allows to effectively support the driver by
means of warning system. Furthermore, computing both optimal and rational policies in the joint task
POMDP is addressed leading to several algorithmic solution approaches (Sec. 3.5). Finally, (Sec. 3.6)
analyses the realism of the computed glance behavior and aspects of computational feasibility which
are both highly relevant for development of a real-time distraction warning system.

Parts of this chapters have previously been published in [203, 202].

3.1 Introduction

In the review of the state of the art in research (Sec. 1.1), we unveiled a gap between the work of differ-
ent research communities. Specifically, human factors research and cognitive science found convincing
evidence for human situationally adaptive glance behavior in driving. However, the state-of-the-art
algorithmic approaches to assessment of attention do not consider the situational context. Some kinds
of adaptation of drivers is undesirable, e.g. adapting longer glances off the road due to overtrust in an
imperfect partially automated driving system, but most of it is intuitively reasonable. This is the case,
for example in adapting shorter off-road glances at higher speeds to maintain an acceptable lane po-
sition [207]. Hence, ideally distraction assessment establishes a mathematical relation between glance
patterns and objectively defined risk and performance measures in the given driving situation. For
example, the vehicle’s increased deviation from the lane center when steered by the driver who is not
looking at the road is such an objective measure. As pointed out by Sheridan in his opinion paper
[209], the desired relation can be established taking a control/decision theoretic perspective to driver
distraction. That is, to model the glance behavior in interaction with a secondary task in driving in the
formalism of partially observable Markov decision processes introduced in the previous chapter. Given
a suitable POMDP model of the joint task of driving and secondary task engagement, we can compute
optimal or rational policies therein. These can thereafter be used to numerically define appropriate
behavior. Moreover, situationally specific appropriate glance behavior can be obtained. This is possible
by modeling the variation among driving situations by means of a parametric POMDP structure. Once
the POMDPs situation parameters are known in action, the corresponding policies can be computed
resulting in adaption to the specific circumstances.

In the context of this thesis, we will consider modeling appropriate glance behavior in the exemplary
manual driving task lane keeping in presence of a secondary task. In the course of modeling both
tasks in a POMDP, a desirable goal is to precisely address the vehicle dynamics, characteristics of
driver’s sensing and the secondary task. As a consequence, these aspects will be taken into account
in the computed appropriate glance behavior. However, in general solving POMDPs has a very high
complexity [171]. Consequently, we must exercise caution in the model development to ensure that
the POMDP permits tractable solution. As computing appropriated glance behavior is used in a real-
time distraction warning system therefore sometimes only the fundamental aspects of the tasks can be
addressed in the POMDP model. Furthermore, highly efficient solution approaches must be developed.
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3.2 Related Work

Lane keeping is the most fundamental task in driving on public streets, roads and motorways. Except
for special occasions the vehicle needs to stay in its lane to prevent collisions with static objects and
other traffic participants. Consequently, there has long been research interest in modelling this driving
task. In the last two decades more and more work has focused on development of lane tracking
and automatic lane keeping algorithms for assisted and automated driving [151]. Control theoretic
modeling of human manual control in lane keeping can be dated back at least as far as the early 60s
as pointed out in the comprehensive overviews [150, 178]. From early on, explicit elements of driver
sensing and perception have been incorporated e.g. in [113]. Recently, the optimal fit of the parameters
of these models to experimental data have been found to be sensitive to various types of distraction
[78].

Posing lane keeping as a linear quadratic Gaussian POMDP has first been proposed in [149]. The ap-
proach has been extended to incorporate neuro-muscular aspects [42] and non-linear vehicle dynamics
[103].

Baron and Kleinman were the first to extend LQG models for manual control with respect to switch-
ing of the focus of attention among a small disrete set of options [19, 20, 109]. Here, they merged
previous control theoretic models with those of human information gathering in manual control [207].
To the best of our knowledge, the approach has found a single previous application to modeling man-
ual lane keeping in the context of behavior under visual occlusion [26]. Baron and Kleinman’s original
model was further extended in [173] to incorporate secondary tasks in discrete variables, similar as
considered in this thesis.

Moreover, some authors have also considered more complex POMDP models of human real-world
behavior: Modeling reaching movements using linear quadratic optimal control with multiplicative
and additive noise was proposed in [240]. Here, a locally optimal linear filter and a globally optimal
policy was obtained using coordinate descent. [220, 191] considered a POMDP model for walkway
navigation including avoiding obstacles and collecting targets. This was computationally approached
by decomposing the task into sub-tasks and applying an arbitration heuristic. The task of catching
balls under sensor and control constraints was modeled as a nonlinear POMDP by [23]. [57] addressed
hand eye coordination in reaching. In both works an approximate solution was obtained by solving
deterministic substitute MDPs in the belief space [56, 244].

Finally, secondary task interaction and its influence on lane keeping performance have been modeled
in the human computer interaction community [34, 35, 91, 90, 121]. However, in those works only
crude models of vehicle dynamics and manual control thereof were used. Furthermore, no efficient
algorithmic approaches for computing appropriate behavior were considered.

In this thesis we employ the model approach proposed by [19] and consider the discrete binary
option xz

t that denotes whether the gaze of the driver is on the road or the gaze is off the road. This is
a feasible approach for the scenario where the driver switches gaze between the forward road scenery
and a display relevant for a secondary task. [26] applied the model of [19] for a simulation study of
lane-keeping under fixed glance behavior comprising by a interval where the driver is looking at the
road and an interval were the driver’s vision is fully occluded. In contrast we consider computing
optimal and rational policies. Furthermore, the secondary task causing aversion of gaze from the road
and the driver’s sensing characteristics are addressed in the model. [173] used a heuristic approach
to compute gaze switching policies with uncertain performance. However, this has the disadvantage
that the performance of heuristically obtained gaze switching policies can interact with the specific
model parametrization. In contrast, this work considers exact computation of optimal and rational
policies. Throughout this chapter, we use a pragmatic modeling paradigm in regards to application in
a real-time warning system.

3.3 Modeling the Joint Task of Driving and Secondary Task Interaction

We first consider development of a suitable partially observable Markov decision process model of the
joint task of driving and secondary task interaction. Importantly, our ultimate goal is to compute glance
strategies in real-time in a vehicle. Therefore, physical realism, biological plausibility and granularity
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of the secondary task model must be balanced against practical considerations. Here it is crucial that,
first, the POMDP model admits efficient solution. Second, the states of the model must be measurable
in an instrumented vehicle. In the following, we first consider the primary task of vehicle control and
derive both a kinematic model of the task as well as the objective of the task in form of a reward
function (Sec. 3.3.1). Thereafter, a practical model of the driver’s sensor characteristics is introduced
(Sec. 3.3.2). Finally, we address modeling a visually demanding secondary task with objectives given
by an additional reward function (Sec. 3.3.3) and summarize the joint task model in (Sec. 3.3.4).

3.3.1 The Primary Task of Manual Lane Keeping

As noted in the introduction, this thesis considers modeling glance behavior in the task of lane keeping
as an exemplar driving task. Here, aspects of the driving situation, i.e. the track topology and the
driving speed, the vehicle dynamics, i.e. the lateral dynamics, the driver’s control input, i.e. steering
velocity, and finally the task’s objective must be considered. The task of lane keeping will be referred
to as the primary task throughout this thesis. Correspondingly, states, control etc. related to the driving
task will also be referred to as primary task states, primary task controls etc.

Situation and Vehicle Dynamics

The first step towards modeling manual lane keeping is to consider the dynamics of the driving sit-
uation and the driven vehicle. Generally, the dynamics of an automobile are highly nonlinear and
complex due to the characteristic of tires and aerodynamics [93]. Fortunately, simplified models are
available that are realistic in almost all driving situations encountered in real traffic.

Kinematic Model One simple model of the vehicle and the situational dynamics that has been utilized
in automatic lane keeping systems [188, 189] is the kinematic model which is derived in the following.
Given a signed distance yt to the lane center line lc, the orientation with respect to lc, i.e. the angle ft

1/kt+1

1/kt

yt

yt+1

ḟt

ḟt+1

ft

ft+1

c at

c at+1

vt

vt+1

lc

Figure 3.1: Illustration of the variables of the kinematic model

between the vehicle’s longitudinal axis and the tangent to lc and the vehicle’s absolute velocity vt, the
derivative of yt, ẏt is given by

ẏt = vt sin(ft) (3.1)

The vehicles orientation in the lane ft is influenced by both the curvature of the lane kt and the angular
velocity induced by the orientation of the front wheels wrt. the longitudinal axis, the so-called effective
steering angle bt. We assume a constant transmission ratio c1 of the steering wheel, that is bt = c1at
with the steering angle at. When the vehicle is moving on a circle arc of radius 1/kt with speed vt, its
angular velocity ˆ̇jt is

ˆ̇jt = ktvt (3.2)
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3 Appropriate Glance Behavior in the Joint Task of Driving and Secondary Task Interaction

and its orientation wrt. the tangent of the arc is zero jt = 0. Hence, if the vehicle keeps a straight
course instead, i.e. at = 0, the change of orientation j̇t of the vehicle wrt. to lc is

j̇t = � ˆ̇jt = �ktvt. (3.3)

An effective steering angle bt causes a velocity vl
t = vt sin(bt) in direction of the vehicle’s lateral axis.

This results in an angular velocity ¯̇ft the so-called yaw-rate of

¯̇ft = c2vl
t = c2vt sin(bt) = c2vt sin(c1at), (3.4)

where c1 is a constant related to the distance between front and rear wheel axes. Hence, the vehicles
orientation wrt. to a straight line, i.e. kt = 0 changes according to

ḟt = ¯̇ft = c2vl
t = c2vt sin(bt) = c2vt sin(c1at). (3.5)

Altogether, the vehicle’s change of orientation with respect to the lane center line is given by

ḟt = c2vt sin(c1at)� ktvt. (3.6)

Finally, the driver changes the steering angle by means of its velocity ȧt. The introduced variables of
the kinematic model are summarized in the Tab. 3.1.

Tabular 3.1: Variables of Kinematic Vehicle Model
Symbols Definitions Units

y lateral position wrt. lane center line lc m
f orientation

angle between tangent of lane center line lc and vehicle’s longitudinal axis rad
¯̇f yaw-rate rad/s
b effective steering angle rad
a steering angle rad
v vehicle’s absolute velocity m/s
k curvature of lane 1/m
c1 steering wheel transmission ratio
c2 front wheel angle to yaw-rate constant

Linear Approximations In the overall majority of driving situations angles ft and bt are rather small,
which allows to use linear approximation for the nonlinear trigonometric functional relations (3.1)-(3.6).
For example, Fig. 3.1 shows the distribution of the speed perpendicular to the lane vt sin(ft) and the
distribution of absolute and relative approximation error on the data of driving experiment II (Cpt. 5.6).
As can be seen in the left plot, the spread of the distribution of the signed approximation error p(vtft�

Speed perp. to lane [in m/s]
�0.4 �0.2 0 0.2 0.4
0

0.5

1

Relative error speed perp. to lane
0 1 2 3 4 5⇥10�50

0.5

1

Figure 3.2: Errors induced by linear approximation of (3.1) on data of experiment II. Distribution of vt sin(ft) and
vtft � vt sin(ft) (left), distribution of the relative error |vtft�vt sin(ft)|

|vt sin(ft)| (right)

vt sin(ft)) is significantly smaller than the spread of the distribution of the speed perpendicular to the
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lane vt sin(ft). Furthermore, the right plot shows that the relative approximation error |vtft�vt sin(ft)|
|vt sin(ft)|

is low in almost all cases p( |vtft�vt sin(ft)|
|vt sin(ft)| < 2.69⇥ 10�5) � 0.9 and the mean relative approximation

error is at 1.04⇥ 10�5.
Similar results hold true for the trigonometric relation between steering angle and yaw-rate ¯̇f (3.4).

We first used least-squares fitting to obtain the constants c1, c2 using the data of experiment II. There-
after the approximation error is evaluated. The distribution of c2vt sin(c1at), the approximation error
and the relative approximation error are depicted in Fig. 3.3. Here, similar as in the previous cases

Predicted yaw rate [in rad/s]
�0.02 0 0.02

0

0.5

1

Relative error predicted yaw rate
0 1 2 3 4 5⇥10�30

0.5

1

Figure 3.3: Errors induced by linear approximation of (3.4) on data of experiment II. Distribution of c2vt sin(c1at)

and c2vt sin(c1at)� cvtat (left), distribution of the relative error |c2vt sin(c1at)�cvtat |
|c2vt sin(c1at)| (right)

the approximation error turns out to be neglectable: In most of the data the relative approximation
error is small p( |c2vt sin(c1at)�cvtat |

|c2vt sin(c1at)| < 2.76⇥ 10�4) � 0.9 and the mean relative approximation error is of
2.15⇥ 10�4.

Consequently, the following linear approximation
ẏt
ḟt

�
=


vtft

c̄1vtat � ktvt

�
. (3.7)

of the original kinematic model were employed to model the dynamics of the vehicle and its position
and orientation in lane throughout this thesis. To obtain a discrete time version of the above system of
differential equation these were integrated at 25 Hz.

Primary Task Dynamics After considering the kinematics of lane keeping, the dynamics of the pri-
mary task can be formulated. Summarized, these are given by the linear affine dynamics in primary
task states xp

t = [yt ẏt ft at]> and primary task control up
t = ȧ

xp
t = A(vt)x

p
t + B(vt)u

p
t + a(vt, kt) + eee

p
t , D t = 1/(25 Hz), eee

p
t ⇠ N (0, SSSep

) (3.8)

Importantly, the noise in the dynamics of the steering angle at has zero variance, i.e. SSSep
a,a := SSSep

4,4 = 0.
This because the control up

t is the derivative of the steering angle at and hence both quantities are
deterministically related.

In our kinematic model of lane keeping external parameters the vehicle’s velocity vvv0:T and the lane
curvature kkk0:T are present. These parameters are explicitly allowed to be time dependent. Although the
vehicle’s velocity is controlled by the driver, in this thesis it is considered also an external parameter.
This is because empirically we observed that the vehicle’s velocity is weakly controlled by the driver
once he or she has started engaging into a secondary task. Instead, the velocity appears to be reduced
by the driver in an open-loop fashion right before engagement [154]. Both the vehicle’s velocity and
the track curvature are not simply disturbances of the primary task model. Instead, both quantities
can significantly alter the kinematic model. Consequently, different parameter value require different
steering policies and different glance behavior (see Sec. 3.5). In this thesis it is assumed that the vehicles
velocity and the lane curvature already describe the variety of encountered driving situations in lane-
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keeping. Hence, if the specific policy for the parameter values is computed, situational adaptability is
obtained.

Note that the states and controls present in the kinematic model are all directly available in series
vehicles: Velocity, yaw-rate and steering angle are used to realize electronic stability control. The other
variables can be estimated by means of a lane tracking camera system as described in [188, 189] which
is also available in modern vehicles. Consequently, also the parameters of the vehicle can be estimated
online.

Task Objective

Previously, a model of the vehicle dynamics controllable by the driver by means of the steering angle
velocity was derived. In addition to that the POMDP model requires a reward that measures the
performance in the primary task. For this purpose, we employ the quadratic reward function

r(xp
t , up

t ) = q1(yt)
2 + q2(ẏt)

2 + q3(at)
2 + q4(u

p
t )

2. (3.9)

In this context, the quantities q1, q2, q3, q4 < 0 are parameters that weight lane keeping performance
against the steering effort necessary to obtain it. The rationale behind the individual terms in the
reward function is discussed in the following.

1. Term q1(yt)2 penalizes deviation from the lane center, which is an obvious objective in lane
keeping. It has been used in previous work [149, 26, 43] and is also present in the root mean squared
lane deviation

p
E[(yt)2] frequently used in human factors research in distraction [252](Cpt. 7,

Measuring the Effects of Driver Distraction).

2. Similar as in [26] the term q2(ẏt)2 is employed because it relates to the impact energy in cases
of a collision due to lane departure. Furthermore, empirically drivers tend to focus on keeping
their current position in lane if it is not to close to the lane borders instead of seeking zero
deviation from the lane center [69]. For these reasons a main metric in human factors research is
the standard deviation of the lane position

p
E[(yt)2]�E[yt]2 [252](Cpt. 7) that is more closely

related to the velocity in direction of the lane borders in driving.

3. Term q3(u
p
t )

2 contributes to modeling the driver’s steering effort. A non-zero steering angle
induces an approximately proportional counter-directed force on the driver’s arms [93]. Hence,
it can be assumed that ideally the steering angles are as small as possible.

4. Term q4(ȧt)2 serves two main purposes: Sudden changes of the steering angle are stressful for the
driver and must therefore be considered in the steering effort. Furthermore, the steering angle is
the control input modality of the driver in our model of lane keeping. Hence, a penalty imposed
on its squared derivative, i.e. the squared steering wheel velocity, enforces low frequency control
input. As suggested in [176] this approach can be used to model neuro-muscular delays present
in human operators and was also applied in [26]. Finally, the term is also used as a standard
metric in human factors research [252](Cpt. 7).

In the preceding list we introduced and motivated the individual terms for the primary task reward
function. Several reference to previous work that employed similar objectives were given. In addition
to the reward terms, computing glance policies in application requires numerically specified parameters
qqq of the reward function. In [149, 26, 43] the parameters of the individual parts of the reward function
are reported, but as we use a different combination of terms these parameters are not applicable.
Furthermore, neither of these works gives a derivation of the applied weighting coefficients. Instead,
the values seem to have been obtained by guessing. As will be shown in Sec. 3.5 the reward of lateral
vehicle control significantly influences the computed appropriate glance behavior. Therefore, instead
of guessing the parameters qqq are better empirically obtained. This issue will be addressed in Cpt. 4
where we derive new techniques for inference of these parameters from behavioral data.
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3.3 Modeling the Joint Task of Driving and Secondary Task Interaction

3.3.2 Driver’s Sensor Characteristics

As already noted in the introduction, vision is the predominant sensor modality that humans rely on
in automobile driving. However, human’s vision is subject to several limitations. Most important, its
performance shows a drastic decrease from the most central part of gaze, the fovea, to the periphery
[36, 61, 226]. This is the case for the capability of recognizing visual patterns. For example, in one
classic experiment [249] visual acuity was measured by the distance to the eye at which individual
cells of a wire grid were recognizable. These distances at different angular eccentricities from the fovea
were shown to follow a heavy-tailed function which is depicted in Fig. 3.4.
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Figure 3.4: Measured relative visual acuity dependent on angular eccentricity from the fovea. Values correspond
to the fraction of the distance at which grid cells were recognizable in relation to viewing the grid at
the fovea (eccentricity of 0 degree). Redrawn from [249].

Correspondingly, the region where the sensor capabilities are highest and sufficient for visually de-
manding activities, such as e.g. reading, spans only a few degrees.

In lane keeping, the driver’s gaze was found to be concentrated on road corners and line markings
[124]. Hence, it has been concluded that these regions contain visual key features for perception of self-
movement [71] and for anticipatory steering control [124]. With respect to the states and parameters of
the model of lane keeping, directing the fovea towards lane marking and road corners allows to sense
both the in lane and orientation in lane as well as the curvature of the lane.

Besides the high acuity vision in the fovea, humans are able to detect a reduced amount of visual
stimuli in peripheral regions [17]. As [124] correctly hypothesized, peripheral vision significantly
contributes to sensing in driving which has been experimentally shown in [230, 123].

Typical visually demanding secondary task drivers are engaging in, e.g. interaction with the vehicle’s
infotainment system, require to gaze at objects in the vehicle interior. Here, in most cases the visual
angle between the direction of the road scenery and the fovea exceeds 5 degrees. As a consequence of
the decreased visual acuity, the visual information from the road scenery obtained by the driver drops
as illustrated in Fig. 3.5.

gaze on road gaze on display

Figure 3.5: Illustration of the visual acuity in driving dependent on gaze direction. The distribution of acuity is
illustrated as blue region with opacity decreasing with the deviation from the fovea.

Consequently, the performance of lane keeping control [230] and lane keeping control [123] decreases
as a monotonic function of the angular deviation of gaze from the forward road viewing direction.

Sensor Model and Dynamics Despite the aforementioned sensorial limitations humans are very suc-
cessful in utilizing vision to perform a huge variety of tasks. The reason is that humans apply active
vision, i.e. use policies to plan when and where to gather sensorial information necessary for task
completion [61]. The required eye movements are commonly classified into fixations, smooth pursuits
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and saccades. Fixations occur when the human looks at a static object with almost no change in the
gaze angle. If the human visually tracks a moving object, continuously changing the gaze angle, this
is classified as smooth pursuit. Finally, switching gaze from one to another object is conducted by sac-
cades. These are rapid eye movement with angular velocities of several hundred degrees per second
[131]. Although, it is possible to explicitly model these movement of gaze as in [56], in this thesis a
simpler model is used. Similar as in [20] we consider the binary sensor state xz

t ,

xz
t 2 {0 := gaze on road, 1 := gaze off road}, (3.10)

that can be switched by a binary sensor control uz
t

uz
t 2 {0 := keep current sensor state, 1 := switch sensor state}, (3.11)

xz
t+1 = xz

t � uz
t (3.12)

where � denotes the logical xor operator.
The rationale behind this is to simplify computing optimal/rational glance policies as will be shown

in Sec. 3.5. Furthermore, in lane keeping eye movements consist of primarily saccades and fixations.
Fixations are well represented in the discrete states. In addition to that, ongoing saccades account for
a very small proportion of sample instances at the model frequency of 25 Hz (3.8) and hence can be
approximated by switches between the sensor states.

Given a sensor state xz
t , the sensing of the road scenery is modeled by a linear Gaussian sensor model

zt ⇠ N (H, SSSez
(xz

t )), (3.13)

where there is a static sensor matrix H and sensor noise covariance SSSez that depends on the sensor
state. Specifically, the parameterization

H(xz
t ) = diag(1, 0, 1, 1) (3.14)

SSSez
(xz

t ) = diag((sy)
2(xz

t ), 0, (sf)
2(xz

t ), 0) (3.15)

is employed in this work.

Assumptions The underlying model assumptions are explained in the following. First, it is assumed
that only states geometrically related to the road scenery can be sensed by vision, while their deriva-
tives, are obtained by temporal differentiation. Second, the steering angle is assumed to be perfectly
sensable. Surely, this is an unrealistic assumption. However, the POMDP formalism assumes that the
applied controls are known to the agent. Consequently, the driver has full knowledge of the steering
angle, as it is deterministically given by its velocity which is the driver’s control. The effects of this
model assumption will be compensated by sub-optimal choice of controls up

t .
Linear Gaussian sensor models must be considered a rather crude approximation to human sensing

and cannot directly be related to the physiology of the visual organs. Indeed, in many works on signal
detection, non-Gaussian sensor models haven been applied [110, 225, 4]. Nevertheless, in almost all
POMDP approaches to modeling human real-world reviewed in Sec. 3.2 linear Gaussian sensor models
have been used. This is because they render formulation of the belief computationally tractable and
allow to at least approximately solve the POMDPs. Furthermore, we additionally need to specify the
parameters of the sensor model. Even for this simple linear Gaussian model no realistic values are
known in the literature. In more complex sensor models we can expect this issue to be even more
pronounced. Hence, we address estimating these sensor models separately in Cpt. 5. It will be shown
that in the case of linear Gaussian model an efficient and exact inference procedure can be obtained.

Reward For the purpose of computing of appropriate glance behavior, a second reward function is
employed. Similar as in [19, 20, 109], a penalty on gaze switches

r(uz
t ) = q5uz

t , (3.16)
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with parameter q5 > 0 is imposed. Although, we forwent considering saccadic eye movements in the
sensor states their characteristics are addressed in the reward function. Saccades come with a masking
phenomenon that causes momentary reduction of sensor capabilities [131]. Hence, a small number of
gaze switches to avoid missing sensory information is desired in real-world behavior. Additionally,
pursuit of minimal muscular effort as in the case of steering inputs can be assumed to be relevant for
the driver. These aspects are both incorporated in the presented reward function.

37



3 Appropriate Glance Behavior in the Joint Task of Driving and Secondary Task Interaction

3.3.3 Secondary Task Interaction

Engagement in secondary tasks during the primary task of driving can cause distraction that ultimately
leads to a crash as discussed in Cpt. 1. However, drivers want to and do actually engage into various
secondary tasks while driving. Hence, the interaction with a potentially distracting secondary task
must explicitly be considered in the POMDP for the purpose of computing appropriate glance policies.
In this context, of course only those tasks are relevant that require to avert gaze from the road, i.e.
require xz

t = 0 for successful interaction.

MDP Model Formally, this can be modeled by an MDP in interaction states xi
t in a state space Si and

in interaction controls ui
t in a control space Ui with dynamics P i that depend non-trivially on both the

sensor state xz
t and the sensor control uz

t

P i(xi
t+1|xz

t , uz
t ; xi

t, ui
t). (3.17)

In addition to that a reward function on the secondary task states and secondary task controls

r(xi
t, ui

t) = qqq>6 j(xi
t, ui

t) (3.18)

is given.
Previous work on human dual-tasking in driving found significant influences of task characteristics

on the decision to switch the tasks. For example, “natural” sub-task boundaries such as blocks in
the representation of US telephone numbers [196, 35] or confirmatory button presses [128] favor gaze
switches. Furthermore, task objectives specified by reward functions affect interleaving strategies [90].
Using the MDP in interaction states and control it is possible to explicitly model these aspects. This is
demonstrated with two exemplar secondary task models.

Exemplar Secondary Task Consider the following secondary task in states xi
t = [nt ft mt]>, nt 2 {1, 2},

ft 2 {0, 1}, mt 2 {0, 1} and controls ui
t 2 {0, 1}: Random numbers 1 and 2 are generate and displayed

on a screen in the vehicle interior, e.g. on the infotainment display, denoted by display state nt. If the
driver averts his or her gaze from the road xz

t = 0 he or she can read the displayed number (see Fig. 3.4).
This is modeled by setting the memorization state mt = 1. The number can be typed by pressing but-
tons ui

t. The processes of reading and pressing is indicated by ft 2 {0 := not finished yet, 1 := finished}
with a finishing probability of p f . The pressed button and the displayed number are compared. If both
coincide a new number is uniformly sampled nt ⇠ U . In case of incorrect button press the old number
nt remains. The driver can also press the buttons while looking at the road xz

t = 1: If he or she has
memorized the last visible number mt = 1 he or she can type the memorized number. If the typed
number was correct the next number is generated, but the driver is not aware of its value mt = 0. That
is, effectively any button press has a chance of 0.5 to be correct. The driver cannot check whether the
button press was successful or not when his or her gaze is on the road. Hence, from the perspective of
the driver this is equivalent to nt being re-sampled after every button press.

Finally, a suitable reward function for this task is a reward for correct button presses and a penalty
for wrong button presses

r(xi
t, ui

t) = 2Int=ui
t
(xi

t, ui
t)� 1. (3.19)

The final MDP of the secondary task interaction is depicted in Fig. 3.6.
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Figure 3.6: Illustration of MDP model of secondary task interaction. Rectangles denote the components of the
interaction state xi

t. These are the displayed number nt, finish state ft and memorization state mt. Rect-
angles with rounded corners denote the interaction control ui

t and sensor controls xz
t . Arrows depict

the dynamics. Here, solid arrows indicate deterministic transitions, dashed arrows denote stochastic
transitions. Changes of states are explicitly specified, only if not obvious from the depicted successor
state.

Already, in this simple task interesting interaction policies can emerge. First, the dynamics of ft may
induce natural task boundaries. This is the case if the probability of transiting to ft = 1, p f is low
and therefore a significant amount of time steps is required until success. Second, if incorrect typing
does not result in a high penalty, drivers might choose to keep the gaze on the road to improve visual
sensing while following a uniformly random typing policy. This is the case, especially, if random
typing is faster p f (mt = 1) > p f (mt = 0) than reading and pressing the correct button.

Simple Secondary Task Model A very simple alternative to the previous model is given by the fol-
lowing MDP. The secondary task state is defined as the sensor state

xi = xz
t 2 {0 := gaze on road, 1 := gaze off road}, (3.20)

which is combined with a reward r(xi
t) = 1� xi

t. This model effectively assumes constant utility per
time step gazing off road, which is a crude yet reasonable approximation to many common secondary
tasks. Note, in this model the driver obtains immediately reward from the secondary task interaction
after averting his or her gaze from the road. This is in contrast to the more elaborate model, where some
time steps elapse until the button is pressed. Consequently, glances off the road can be significantly
shorter in the simple model and no natural task boundaries are present.
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3.3.4 Overview of the POMDP Model

In the previous sections we introduced a kinematic model and a reward of the driving task, the model
of driver’s vision and gaze switching as well as a model and a reward of the visually demanding
secondary task. Putting together the individual parts we can now formulate the POMDP model of
the joint task of driving while engaging in a visually demanding secondary task. Formally this is an
POMDP in states xt, controls ut, sensory measurements zt, reward r(xt, ut), dynamics Pt(xt+1|xt, ut)
and sensor model pz(zt|xt) given as

r(xt, ut) = q1(yt)
2 + q2(ẏt)

2 + q3(at)
2 + q4(u

p
t )

2 + q5uz
t + qqq>6 j(xi

t, ui
t) (3.21)

Pt(xt+1|xt, ut) def. by

8><>:
xp

t+1 = A(vt)x
p
t + B(vt)u

p
t + a(vt, kt) + eee

p
t

xz
t+1 = xz

t � uz
t

P i(xi
t+1|xz

t , uz
t ; xi

t, ui
t)

(3.22)

pz(zt|xt) def. by
n

zt = H(xz
t )x

p
t + eeez

t (xz
t ). (3.23)

As in the cases of LQGs, we can formulate the equivalent belief MDP of the POMDP model using the
Kalman filter (2.36). This results in the a-posterior mean µµµ

p
t and the a-posterior covariance SSSp

t of the
primary task state xp

t . Notably, in this case the belief is dependent on both the external influences vt, kt
and the sensor state xz

t . The interplay of the different components of the belief MDP and the policy is
depicted in Fig. 3.7.
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Figure 3.7: Illustration of the POMDP model of the joint task. The model is given in form of the equivalent belief
MDP. It consists of the primary task dynamics, the sensor dynamics and the secondary task dynamics
and is subject to the two external influences kt and vt.
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3.4 Appropriate Glance Behavior

In the previous section a POMDP of the joint task of driving and secondary task interaction was
presented. This model features both reward parameters qqq and external parameters driving speed v0:T
and lane curvature kkk0:T . In this context, the external parameters model the variety of possible driving
situations encountered in lane keeping. Consequently, rational and optimal policies computed for a
specific POMDP instance are adapted to the modeled driving situation. For example, the policy for
gaze switching and the resulting durations of glances are adapted to the driving speed.

In the following we will use this important property of rational and optimal policies to define sit-
uationally appropriate glance behavior. As this normative definition takes into account an explicit
model of the joint task of driving and secondary task interaction it provides a framework for sensitive
assessment of driver attention.

We define the Eyes-Off Duration (EOD) dt as the time steps passed since the driver’s gaze was on the
road for the last time

dt := min
{k: k�0, xz

t�k=1}
(k). (3.24)

Consider the joint task POMDP with reward function r, dynamics PPP0:t and sensor model pz (Sec. 3.3.4)
resulting from a specific realization of the driving speed v0:T and lane curvature kkk0:T . That is, a POMDP
model of the specific current driving situation. Let p(dppp,PPP ,pz

t ) denote the distribution of EODs result-
ing from a policy ppp0:t and the situation specific POMDP. Given these quantities, we can ask for the
probability p(dppp,PPP ,pz

t < dt) that the eyes-off duration the current EOD dt of the driver exceeds the EOD
dppp,PPP ,pz

t under a policy ppp0:t. This can also be formulated as “How likely is it that an agent applying
the policy has already returned his gaze to the road?”. In the following we introduce a mathematical
definition of appropriate glance behavior based on the probability that an agent following an optimal
policy p? or rational policy p̃ has already returned his gaze to the road.

Definition of Appropriate Glance Behavior Appropriate Glance Behavior (AGB) is the glance be-
havior, where the probability of the driver’s eyes-off duration dt exceeding the eyes-off duration
dppp? ,r,PPP ,pz

t of the specific optimal policy ppp?
0:T(r;PPP), or the dp̃pp,r,PPP ,pz

t of the specific maximum causal
entropy policy p̃pp0:T(r;PPP) of the joint task POMDP model instance r,PPP0:t, pz of the driving situa-
tion, is below a threshold tAGB

p(dppp? ,r,PPP ,pz

t < dt) < tAGB or p(dp̃pp,r,PPP ,pz

t < dt) < tAGB.

Among the possible deviations from both rational policies, we only consider excessive eyes-off du-
rations which are related to decreased primary task performance. This is because the targeted warning
system should not intervene in cases the driver’s behavior is found to be more cautious, i.e. if he or
she shows shorter EOD, than necessary. The probability threshold tAGB in our definition is a tuning
parameter which needs to be set in accordance to the urgency of the employed type of warning in
a distraction warning system. An exemplar choice of this parameter for a prototypical distraction
warning system is presented in Sec. 6.4.4.

Recently, Kircher and Ahlström proposed the framework of Minimum Required Attention (MiRA)
[106]. In this framework the driver is considered to be attentive when he or she sampled sufficient
information to meet the demands of the driving task given the current situation. This approach shows
many similarities to our mathematical definition. However, MiRA was presented purely conceptional
and no algorithmic approaches to implement this framework in a warning systems were given. In con-
trast, this is possible with our precise formal definition. Our approach considers both the primary task
and the secondary task that compete for the visual attention of the driver. Hence, under a reasonable
choice of parameters qqq we obtain a policy for returning gaze back to road that trades off decreased
performance in the primary task against increased utility from the secondary task. For the special case
of the simple secondary task model, Sec. 3.5.2 shows that the optimal gaze switching policy implicitly
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defines a threshold on loss of primary task performance. The problem of finding suitable parameters
qqq will separately be addressed in Cpt. 4

3.5 Computation of Appropriate Glance Behavior

Using the previous definition of appropriate glance behavior enables situation specific driver attention
assessment. To implement this definition, it is required to compute the specific optimal or rational
policies wrt. the current driving situation. This will be addressed in the following section. Ultimately,
the definition of appropriate glance behavior shall be used in a real-time warning system. Hence, we
will especially focus on efficiently computing policies. For this purpose, we first analyze the model and
classify its problem class. Next, the optimal value and state-control function are derived and solution
approaches are considered (Sec. 3.5.2). Thereafter, computing policies in the maximum causal entropy
policy model is addressed (Sec. 3.5.3). In contrast, to other work on POMDP models of glance behavior
this work will focus on techniques that are exact. Inexact solution approaches are reviewed in Sec. 3.5.2
and the issues of these methods wrt. defining appropriate glance behavior are discussed.

3.5.1 Classification of Problem Class

As a first step towards computing rational policies, we classify the problem class of the POMDP model
of secondary task interaction while driving which we summarized in Sec. 3.3.4. This enables compar-
ison with other POMDP models and allows to transfer solution techniques. Optimal policies in the
joint task POMDP are mathematically defined as the solution of the optimization problem

max
ppp0:T

E
h T

Â
t=0
�[xp

t ]
>Cx[x

p
t ]� [up

t ]
>Cu[u

p
t ] + r(uz

t ) + r(xi
t, ui

t)
���ppp0:T ,PPP0:T , pz, p0

i
(3.25)
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(3.26)

pz(zt|xt) def. by
n

zt = H(xz
t )x

p
t + eeez

t (xz
t ). (3.27)

To the best of our knowledge there is no specific POMDP subclass that contains the general joint task
model. However, in the case of the simple secondary task model considered in Sec. 3.3.3,

max
ppp0:T

E
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t

xz
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t � uz
t
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pz(zt|xt) def. by
n

zt = H(xz
t )x

p
t + eeez

t (xz
t ) (3.30)

the POMDP is an instance of so-called optimal measurement scheduling/optimal sensor scheduling prob-
lems [152]. In these problems the objective is to find an optimal policy for selecting sensors as to
maximize state estimation performance. Like this thesis, the seminal work of Meier and colleagues
[152] considered sensor scheduling to maximize the resulting control performance in a linear quadratic
Gaussian problem, which we will denote as Sensor scheduling Linear Quadratic Gaussian (SLQG)
problems. More recently also sensor scheduling in hidden Markov models has been considered [115].
Other authors investigated different objectives for estimation performance or additional constraints in
linear Gaussian problems [158, 92]. Notably, [19] already suggested sensor scheduling in LQGs as a
normative model for monitoring of several displays in manual control.

Unfortunately, solving SLQGs is significantly more challenging than ordinary LQGs. In the following
we will now consider obtaining optimal and rational policies in the class of the joint task POMDP. This
will be done by means of the corresponding (soft) Bellman-equations.
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3.5.2 Optimal Policies

In the POMDP model considered in this work the optimal policy can be characterized via its optimal
value function V?

t (µµµ
p
t , SSSp

t , xz
t , xi

t) and optimal state-control function Q?
t (µµµ

p
t , SSSp

t , xz
t , xi

t, up
t , uz

t , ui
t). In this

context, let SSSp
t (x

zxzxz
0:t) be the a-posterior covariance of the primary task state which is fully determined

from the history of sensor states xzxzxz
0:t = [xz

0 xz
1 . . . xz

t ] and the initial covariance SSSp
0 . Now we can refor-

mulate the value function as V?
t (µµµ

p
t , xzxzxz

0:t, xi
t) and the state-control function as Q?

t (µµµ
p
t , xzxzxz

0:t, xi
t, up

t , uz
t , ui

t).

Bellman Equations The Bellman equations are evaluated by first separating the primary task parts
from the remaining variables. This allows to employ the techniques introduced earlier in the context of
LQR (Sec. 2.1.2) and LQG (Sec. 2.1.4). Finally, V?

t (µµµ
p
t , xzxzxz

0:t, xi
t) and Q?

t (µµµ
p
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Specifically, for the terms present in the state-control function Q?
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Furthermore, the quantities MV?

t mV?

t , mV? ,1
t (xzxzxz

0:t, xi
t) (see Sec. 2.1.2 and Sec. 2.1.4) are given by
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Characterizing the Bellman Equations Analyzing the structure of value function and state-control
function, it turns out both functions factorize. The functions comprise of summands that either depend
on the primary task variables µµµp, up

t or on variables the sensor dynamics xzxzxz
0:t, uz

t and the secondary
task xi

t, ui
t. As a consequence, like in LQG, the optimal policy for the primary task control up

t is a linear
feedback controller dependent only on the a-posterior mean µµµ

p
t of the primary task state xp

t :

p?(up
t |µµµp

t ) = I(up
t |[up

t ]
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In contrast, the policy for choice of the sensor and secondary task control depends on all aspects of
the joint task. Specifically, the policy takes into account, the cost of switching r(uz

t ), the reward of the
secondary task r(xi

t, ui
t) and the expected primary task control performance under the primary state

uncertainty resulting from all possible future sequences of sensor states xzxzxz
t:T . The latter is a result of

the both terms tr(�CxSSSp
t (x

zxzxz
0:t)) and tr

⇣
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t+1
�
AtSSS

p
t (x

zxzxz
0:t)A>t +SSSex �SSSp

t+1([x
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0:t xz
t � uz

t ])
�⌘

involved
in the value function.

The part of the value function that depends on the sensor state and secondary task state (3.38) and
the corresponding part of the state-control function (3.35) cannot further be factorized. As the involved
states xzxzxz

0:t, xi
t and controls uz

t , ui
t are discrete, those functions can be represented by a multi-dimensional

array. Let uss consider the size of this array. The state xzxzxz
0:t is a sequence of t sensor states and therefore

an element of the t-fold product of the sensor state space
Nt

i=1 S
z. The sensor control uz

t is an element
of Uz, xi

t is an element of Si and ui
t is an element of Ui. As a result, mQ? ,1

t (xzxzxz
0:t, xi

t, up
t , uz

t , ui
t) corresponds

to an array with

|
⇣ tO

i=1
Sz
⌘
⇥ Uz ⇥ Si ⇥ Ui| = 2t 2 |Si| |Ui| (3.41)

elements. In the array size the factor
Nt

i=1 S
z is problematic as it grows exponentially with the time

step t or rather the length of the planning horizon T. The growth of this space is illustrated in Fig. 3.8.

xz
0 = 1

xz
1 = 0 xz

1 = 1

xzxzxz
0:t 2 Nt

i=1 S
z

t = 9

Figure 3.8: The space
Nt

i=1 S
z of sensor state sequences xzxzxz

0:t for t = 9 illustrated as an Pythagorean binary tree.

Already in case of a modest planning horizon T = 25 that corresponds to one second in the model
frequency of 25 Hz, the size of the sensor state space is 225 and above 10 millions. This would impose
large memory and computational requirements on a computer system, which would render it impos-
sible to use this approach online. Consequently, further approaches in addition to Bellman equations
are required to efficiently compute optimal policies.

Sensor Model Restriction

The computational burden of the Bellman equation can be reduced by restricting the POMDP in such a
way that only a small subset of

Nt
i=1 S

z needs to be considered. If for example the POMDP model can
be restricted such that it suffices to consider the EOD dt then the maximum array size of mQ? ,1

t would
be T 2 |Si| |Ui|. Clearly, this would tremendously facilitate computation while still appropriate glance
behavior could be specified by means of the definition in Sec. 3.4. As we will see, this desired property
can be obtained by a sensor model restriction.

Previously in this thesis, the driver’s sensing has been modeled by means of H(xz
t ) = diag(1, 0, 1, 1),

SSSez
(xz

t ) = diag((sy)2(xz
t ), 0, (sf)2(xz

t ), 0). Here, typically the sensorial noise when gazing at the road
(sy)2(0), (sf)2(0) is significantly lower than the noise when not looking at the road (sy)2(1), (sf)2(1).
Consider a sequence of sensor states where the driver’s gaze is first off the road, then he returns
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his gaze to the road followed by finally averting gaze. The reason why generally the full sequence of
sensor states xzxzxz

0:t needs to be considered in the state-control function, is that uncertainty monotonically
decreases after the driver has returned his or her gaze back to road. This relationship is depicted in
Fig. 3.9. The parameters of the sensor noise (sy)2(0), (sf)2(0) for gaze on the road were chosen that the
steady-state belief of the lane position has a 0.96 confidence interval of reasonable 0.3 m. The sensor
model parameters for the sensor state gaze off the road were set in a way that corresponds to the driver
not receiving any new information of the vehicles position and orientation in lane.
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Figure 3.9: Resulting uncertainty in the belief for a sequence xz
[0,5] s = 1, xz

[5,7] s = 0, xz
[7,11.9] s = 1,

xz
[11.9,14] s = 0 at 80 m/h . The blue line indicates the standard deviation of the belief of the lane position

yt, i.e.
q

SSSp
yt ,yt . Noise in primary task dynamics was fit to experimental data, sensor noise was set to

(sy)2(0) = 0.64, (sf)2(0) = 0.01, (sy)2(1) = •, (sf)2(1) = •.
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Figure 3.10: Resulting uncertainty in the belief using the immediate full information heuristic. Gaze switches and
parameters as in Fig. 3.9.

As can be seen, for these sensor model parameters a gaze on the road for 2 s (5 s � 7 s ) does not
suffice to decrease uncertainty to the previous level at 0 s. Consequently, the uncertainty for the same
amount of time glancing off the road reaches a higher level at 12 s than previously obtained at 5 s.
As a result, the time spent gazing at the road, the so-called viewing time, positively correlates with the
previous time of gaze aversion under optimal and rational gaze switching policies. In the evaluation
Sec. 3.6.1, we will revisit this property and investigate if this is also present in the glance behavior in
real driving.

Viewing time is independent of the duration of the previous off-road glance, if all available infor-
mation is immediately obtained when the gaze is returned to the road. This is the case, if the driver
perfectly senses the vehicle’s position in lane and its orientation SSSez

(xz
t ) = diag((sy)2(0), 0, (sf)2(0), 0),

(sf)2(0), (sy)2(0) = 0. Here, the covariance of the belief SSSp
t shrinks to zero making any previous sen-

sor states obsolete. Interestingly, the occurrence of the belief in the Bellman equations 3.35 allows for
an additional heuristic. We can simply set SSSp

t (x
zxzxz

0:t) to an arbitrary constant value if xz
t = 0 and the

Bellman equations are still well defined. Fig. 3.10 shows the dynamics of the belief when it is assumed
that the belief convariance immediately jumps the steady-state covariance ŜSSp

t once the driver’s gaze
is returned to the road. In this context, we use the same gaze switch series, driving speed and noise
parameters of Fig. 3.9. Important to mention, If applying this heuristic it is not guaranteed that there
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actually exists any sensor model that results in the same jump of the belief covariance. Consequently,
this belief MDP might not have a POMDP equivalent.

This said, we can formulate Algo. 4 to obtain the optimal policy for the joint task of lane keeping
and secondary task interaction under the sensor model restriction. This algorithm takes as input the
POMDP model as well as the initial state xz

0 with a corresponding covariance of the primary task belief
SSSp

0 and the alternate steady state covariance for gaze on road ŜSSp
0 .
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Algorithm 4 Optimal Solution of Joint Task Model under Sensor Model Restriction SRopt

1: function SRopt(Cx, Cu, r(uz
t ), r(xi

t, ui
t), (At, at, B)t=0:T , SSSex , H(xz

t ), SSSez
(xz

t ),P i, xz
0, SSSp

0 , ŜSSp
0 )

2:
�
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t , mQ?
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t , MV?

t , mV?

t , mV? ,1
t , F?

t , f?t
�

t=0:T  LQRopt(Cx, Cu, (At, at, Bt)t=0:T) . Algo. 1
3: for t = 0 : T do . Pre-compute belief for gaze on road
4: ŜSSp

t+1  KalmanUpdate(ŜSSp
t , At, at, Bt, SSSex , H(0), SSSez

(0)) . Algo. 2
5: end for
6: for t = 0 : T do . Forward pass for belief for gaze off road
7: if t = 0 then
8: SSS1  SSSp

0
9: d0  xz

0
10: else
11: SSS1  ŜSSp

t
12: d0  0
13: end if
14: for dt = d0 : T � t� 1 do . Roll-out off road belief until max. duration
15: t0  t + dt � d0 � 1
16: if t0 > 0 then
17: SSS1  KalmanUpdate(SSS1, At0 , at0 , Bt0 , SSSex , H(1), SSSez

(1))
18: end if
19: SSS2  KalmanUpdate(SSS1, At0+1, at0+1, Bt0+1)
20: SSS3  KalmanUpdate(SSS1, At0+1, at0+1, Bt0+1, SSSex , H(1), SSSez

(1))
21: if d = 0 then
22: 8xi
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t0+1) + tr(MV?

t0+2(SSS
2 �SSS3)) + r(uz

t = 1)
24: else
25: 8xi

t ,u
i
t
mQ? ,1

t0+1(dt, xi
t, 0, ui

t) � tr(CxSSS1) + tr(MV?

t0+2(SSS
2 �SSS3)) + r(uz

t = 0)

26: 8xi
t ,u

i
t
mQ? ,1

t0+1(dt, xi
t, 1, ui

t) � tr(CxSSS1) + tr(MV?

t0+2(SSS
2 � ŜSSp
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27: end if
28: end for
29: end for
30: for t = T : 0 do . Use Bellman equations to obtain remaining part
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Secondary Task Model Restriction

Let us return to the joint task model obtained from the simple secondary task model (3.28)-(3.30). As
noted before this is an instance of sensor scheduling in linear quadratic Gaussian problems. Although,
this POMDP class has already been investigated in the early 60s [152, 19], it received little attention
for several decades due to the in-feasibility of solution by means of the Bellman equations. Recently,
SLQGs returned into the focus of control theoretic research because tractable solution approaches were
discovered. Considering the Bellman equations (3.35)-(3.35) wrt. this special case, simplifications can
be made. Specifically, it holds:
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In contrast to the general joint task POMDP, here no stochastic element is present in the parts of the
Bellman equation dependent on the sensor state xz

t . Consequently, the optimal policy wrt. uz
t depends

only on the initial sensor state xz
t as well as its associated covariance SSSp

0 . That is, the policy is given by
an optimal sequence xzxzxz

0:T
? that can be obtained by solving the deterministic optimization problem

xzxzxz
0:T

? = arg max
xzxzxz

0:T(uzuzuz
0:T)

T

Â
t=0

tr
�
MV?

t SSSp
t (x
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�
+ r(uz

t ) + r(xz
t ) (3.44)

as shown by reordering of terms in [152].

Tolerance on Loss of Primary Task Performance Before we consider solution approaches, we wish
to illustrate the link between the minimum required attention (MiRA) framework [106] and optimal
policies. Specifically, we will show that our definition of appropriate glance behavior allows to formally
implement MiRA. That is, the decrease in lane keeping performance of the computed glance behavior
compared to fully attentive driving is uniformly bounded over all driving situations. For this purpose
consider the sensor state sequence xzxzxz

0:T
1 where the driver continuously gazes on the road, i.e xz

t
1 = 1.

Let us assume that the optimal primary task policy up
t
?(µµµp) is applied. If we compare the return of

the sequence xzxzxz
0:T

1 to the optimal sequence xzxzxz
0:T

? for the rewards r(xz
t ) = q5(xz

t � 1), q5 � 0 and
r(uz

t ) = q6(uz
t ), q6  0 it holds
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This results in the following bound on expected loss of primary task performance
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Consequently, the glance behavior defined by the optimal sequence of sensor states ensures sufficient
attention that the driver’s expected lane keeping performance does not fall below the expected lane
keeping performance of a fully attentive driver minus the tolerance T q5. Note, that the previous anal-
ysis of course includes the variants of the joint task POMDP were both the sensor model is restricted
and the simple reward is used. This shows that the proposed mathematical framework of appropriate
glance behavior allows to precisely implement the concept proposed in the MiRA framework.

Properties of Kalman Belief Update A direct way to solve the optimization problem (3.44) is to use
brute-force search to find xzxzxz

0:T
?. Although applied in early works [152, 19, 20, 109] this approach is

too time-consuming to be applicable in a real-time distraction warning system.
A more efficient technique was developed in [9, 246]. For this purpose, consider the belief update

according to the Kalman filter given a fixed sensor model (2.36). Intuitively, an update of a belief b1(xp
t )

“more uncertain” than a second belief b2(xp
t ) cannot a result in a belief b1(xp

t+1) “more certain” than the
belief b2(xp

t+1) resulting from updating b2(xp
t ). This is because the same amount of new information is

added. Let X ⌫ Y denote that the difference X� Y of the matrices X, Y is positive definite. In [246] it
is shown that the intuitive observation holds true for the covariances SSS1

t , SSS2
t of Gaussian beliefs in the

mathematical formalization of

8SSS1
t ⌫ 0, SSS2

t ⌫ 0, Ck ⌫ 0, l 2 [0, 1], k 2 N :

SSS1
t ⌫ SSS2

t ) KUk(SSS1
t ) ⌫ KUk(SSS2

t ) (3.51)

lKUk(SSS1
t ) + (1� l)KUk(SSS1

t ) � KUk(lSSS1
t + (1� l)SSS1

t ), (3.52)

where KUk denotes an arbitrary fix series of k-fold application of the Kalman belief updates. Here,
covariance SSS1

t is considered “more uncertain” than covariance SSS2
t if it can be written as the sum SSS1

t =
SSS2

t +SSS3
t of SSS2

t and a third covariance matrix SSS3
t . That is, if the first Gaussian belief can be obtained by

adding independent Gaussian noise to the second belief.
As a generalization of [246], that has not yet been considered in the literature, these properties of the

Kalman update can also be exploited to efficiently optimize SLQGs (3.44). To do so, first note that for
any negative definite M � 0 and any matrix X it holds

9LM : M = �LML>M and tr(M X) = � tr(L>M X LM) (3.53)

by means of basic linear algebra. Furthermore for any covariance matrix SSS the mapping L>M SSS LM can
be interpreted as a Kalman belief update wrt. a specific dynamics and sensor model. Hence, from the
basic property X ⌫ 0) tr(X) � 0 we obtain

8SSS1
t ⌫ 0, SSS2

t ⌫ 0, SSS1
t ⌫ SSS2

t , M � 0 : (3.54)

tr(M SSS1
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t LM)  � tr(L>M SSS2
t LM) = tr(M SSS2

t ). (3.55)
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In combination with the properties of the Kalman belief update presented in [246] we finally arrive at
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as a consequence of (3.51)-(3.52) and by the fact that all MV?

k+t are negative definite.
This means, that if SSS1

t ⌫ SSS2
t the future rewards t : T according to (3.44) of SSS1

t will be less or equal
than those of SSS2

t for any fixed sequence of future sensor controls uzuzuz
t:T . This is because the rewards

associated with sensor states and controls will be the same.
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are given at time step t. If it holds for a candidate sequence xzxzxz
0:t

n+1

9 ddd 2 D(n) := {dk � 0,
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then by (3.51), (3.52) and (3.56) it follows that xzxzxz
0:t

n+1 needs not to be considered in the search for
the maximizer: Any sequence xzxzxz

0:T
n+1 that contains xzxzxz

0:t
n+1 will not result in higher reward than

the best of those sequence that contain any of the other candidates xzxzxz
0:t

k<n+1. Hence, the properties
of the Kalman belief update can be exploited to prune the search tree. This is illustrated at an one-
dimensional example in Fig. 3.11.
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Figure 3.11: One dimensional example of the search tree pruning approach. Given are two sequences of sensor
states xzxzxz

0:td
1 and xzxzxz

0:td
2 until the current time step td. The changes in the sensor state are denoted

by vertical solid lines. The evolution of the covariances are denoted by solid lines and the evolution
of the accumulated rewards are denoted in dashed lines. It holds both SSSp
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1) � SSSp
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(xzxzxz
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td :T the property of the Kalman belief update

leads to R([xzxzxz
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td :T ]) > R([xzxzxz
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td :T ]). As a result all branches of sequence xzxzxz
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2 can be
pruned from the search tree.
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The constraint satisfactory problem (3.58) for deciding whether the sequence xzxzxz
0:t

k<n+1 can be ne-
glected for solution is termed algebraic redundancy check. [246] suggested to conduct the algebraic
redundancy check by standard convex programming techniques as [73, 74]. However, we developed a
new simple gradient based technique that allows for more efficient solution. For this purpose, define

SSSj := blk
�
SSSp

t (x
zxzxz

0:t
j),�R(xzxzxz

0:t
j)
�

(3.60)

Now consider the following convex optimization problem

min
⇣

lmax
� n

Â
k=1

dkSSSk �SSSn+1�⌘
+

(3.61)

s.t. ddd 2 D(n), (3.62)

where lmax(X) denotes the maximum eigenvalue of a matrix X and where (x)+ = Ix>0(x) x. If it holds
true lmax

�
Ân

k d?k SSSk � SSSn+1�  0 for the optimal solution ddd?, then obviously condition (3.58) is met.
Otherwise, any other ddd does also not fulfill condition (3.58).

To solve optimization problem (3.61), consider the gradient of the objective which is given as

rdk

⇣
lmax

� n

Â
k

dkSSSk �SSSn+1�⌘
+
|ddd=dddi =

(
v>lmax

SSSkvlmax if lmax
�

Ân
k di

kSSSk �SSSn+1� � 0
0 else

(3.63)

where vlmax is any eigenvector associated with the current maximum eigenvalue lmax
�

Ân
k di

kSSSk�SSSn+1�
normalized to unit L2-norm, i.e. 1 = kvkL2 :=

q
Ân

k=1 v2
k [32]. Furthermore, projecting onto D(n) can

efficiently be performed by the algorithm of [39]. Hence, we can try to minimize the optimization
problem 3.61 by cycling between a gradient descent update of the current iterate dddi and a projecting
the iterate on the simplex. This projected gradient technique is guaranteed to converge to a global
optimum ddd?. This is because it is an instance of convex proximal gradient descent [172]. We formulate
this procedure in Algo. 5.
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Algorithm 5 Algebraic Redundancy Check By Projected Gradient Descent AlgRed

1: function AlgRed({SSSk}k=1:n, SSSn+1)
Require: Stepsize h, tolerance #

2: ddd Sample(D(n)) . sample a random initial ddd from the simplex
3: while not converged ddd do
4: D Ân

k dkSSSk �SSSn+1

5: lmax, vlmax  GetMaxEigen(D) . standard linear algebra routine
6: if lmax < # then
7: break
8: end if
9: vlmax  vlmax /kvlmaxkL2

10: 8k=1:ndk  v>lmax
SSSkvlmax

11: ddd ddd� hd
12: ddd ProjSimplex(ddd, n)
13: end while
14: return lmax, ddd
15: end function
16:
17: function ProjSimplex(ddd, n) . Algorithm from [39]
18: d̂dd SortDescend(ddd) . sort elements in descending order
19: s 0
20: smax  0
21: flag 0
22: for i = 1 : n� 1 do
23: s s + d̂i
24: smax  (s� 1)/i
25: if smax � d̂i+1 then
26: flag 1
27: break
28: end if
29: end for
30: if flag = 1 then
31: smax  (s + d̂n � 1)/n
32: end if
33: ddd max(ddd� smax, 0)
34: return ddd
35: end function

Solving the SLQG Problem Following [246], we can now formulate an efficient solution approach for
SLQGs. The algorithm starts with an initial candidate set C that contains the initial sensor state and
its associated covariance as well as accumulated reward. At every time step, first the candidate set is
expanded by applying both possible sensor controls and the corresponding beliefs and accumulated
rewards are computed. Thereafter, the previously introduced technique is used to reject all candidates
that cannot lead to improved return. The algorithm is outline in Algo. 6.
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Algorithm 6 Optimal Solution of Joint Task Model under Secondary Task Model Restriction STRopt

1: function STRopt(Cx, Cu, r(uz
t ), r(xz

t ), (At, at, Bt)t=0:T , SSSex , H(xz
t ), SSSez

(xz
t ), xz

0, SSSp
0 )

Require: Tolerance #

2:
�
MQ?

t , mQ?

t , mQ? ,1
t , MV?

t , mV?

t , mV? ,1
t , F?

t , f?t
�

t=0:T  LQRopt(Cx, Cu, (At, at, Bt)0:T) . Algo. 1
3: C {�xzxzxz

0:0
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0, SSSp
0 (x
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0:0

1) = SSSp
0 , R(xzxzxz

0:0
1) = �r(xz

0)
�} . Initialize candidate set

4: for t = 1 : T do
5: for element ei 2 C do . Pass through candidate set according to order
6: for uz

t�1 = 0 : 1 do
7: xz

t  xz
t�1

i � uz
t�1

8: xzxzxz
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0:t�1
i xz

t ]
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. Insert into candidate set

12: end for
13: C Delete

⇣�
xzxzxz

0:t�1
i, SSSp

t (x
zxzxz

0:t�1
i), R(xzxzxz

0:t�1
i)
�
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⌘
. Delete from candidate set

14: end for
15: C SortAscendR(xzxzxz

0:t)(C)
16: for element ei 2 C, i > 1 do . Pass through candidate set according to order
17: lmax  AlgRed

⇣
{blk
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�}j<i�1, blk
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18: . Check for algebraic redundancy Algo. 5
19: if lmax < # then
20: C Delete

⇣�
xzxzxz

0:t
i, SSSp

t (x
zxzxz

0:t
i), R(xzxzxz

0:t
i)
�
,C

⌘
21: end if
22: end for
23: xzxzxz

0:t
?  arg minxzxzxz

0:t2C(R(xzxzxz
0:t)) . Pick sequence with max. cummulated reward from

candidate set
24: end for
25: mV? ,1

0 (xz
0) 0

26: for t=0:T do
27: mV? ,1

0 (xz
0) + r(xz

t
?) + r(uz

t
?)

28: end for
29: return

��
MQ?

t , mQ?

t , MV?
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�
t=0:T , xzxzxz
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30: end function
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Approximate and Heuristic Alternatives

Previously, we considered exact approaches for computing optimal policies in the joint task POMDP.
Unfortunately, solving general SLQGs exactly using STRopt can be very demanding. We demonstrate
this later in the evaluation in Sec. 3.6.2. Here, the main reason for the high computational demand is
the size of the candidate set Ct. As an alternative, it is possible to compute an approximate solution
by applying more aggressive pruning. For example, we could relax the tolerance in the algebraic
redundancy check by a parameter #

9 ddd 2 D(n) := {dk � 0,
n

Â
k=1

dk = 1} : (3.64)

blk
�
SSSp

t (x
zxzxz

0:t
n+1),�R(xzxzxz

0:t
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�
+ #I ⌫

n

Â
k

dk blk(SSSp
t (x

zxzxz
0:t

k),�R(xzxzxz
0:t

k)). (3.65)

Considering Algo. 6, note that the element with the current highest accumulated reward is always
added to the candidate set. Hence, increasing # makes the algorithm greedier and discards all candi-
dates that do not have a significantly smaller covariance than the highest accumulated reward alterna-
tive. As shown in [246] this can tremendously decrease the candidate set. Furthermore, the authors
prove that the loss in reward when using the relaxation parameter # does not exceed a certain bound
that is linear in #. However, it must be noted that this bound is not uniform and can strongly depend
on the model parameters. In regards to our application this means that using a fixed # may result in
loss of reward that depends on the external variables that parametrize the possible driving situations.
Hence, a thorough evaluation of approximation quality over the likely model variations is required,
which is considered an important issue for future research.

While relaxed tolerance can decrease computational demand by reducing the candidate set it never
the less requires conducting the relaxed redundancy checks (3.64). As we will show in the analysis
of the computational demands in Sec. 3.6.2 the redundancy checks can require significant computa-
tions. Therefore, one might wish to get rid of redundancy checks entirely. For example, one could
consider to greedily pick the candidate with the highest accumulated reward. This can be interpreted
as relaxed redundancy check using a high #. Interestingly, this greedy algorithm has a bounded loss
of performance if � log det(SSSp(xzxzxz

0:t)) is used as a reward of the covariance [92]. Furthermore, a very
similar greedy approach is used in [173] and in the works [220, 191, 192] for approximate solution of
more complex models of normative gaze switching. However, even in the case of SLQGs in general
no performance guarantees can be obtained [92]. Consequently, it needs evaluations of the heuristics
with respect to their performance in application for computation of situationally appropriate glance
behavior.

3.5.3 Maximum Causal Entropy Policies

In previous subsection, computing optimal policies for the joint task was considered. That is, we
derived approaches to compute the optimal choice of sensor controls, i.e. gaze switches, as well as the
optimal choice of the primary task controls, i.e. changes of the steering angle, and the control of the
secondary task. To realize a distraction warning system based on the definition of appropriate glance
behavior a gaze switch policy which results in eyes-off durations of high reward is desired. That is, we
seek a gaze switch policy that obtains a very good trade-off between primary task performance and
performance in the secondary task. As a consequence of the analysis of Sec. 3.5.2 this ensures bounded
loss of vehicle control performances compared to fully attentive driving.

In contrast, the viewing time is not considered in the definition of appropriate glance Sec. 3.4. Hence,
in this case a more realistic stochastic policy can also be used. Furthermore, note that the overall goal
of this thesis is an improved distraction warning system. That is, we can only hope to assist the driver
in applying a better glance strategy but can neither improve his or her vehicle control policy nor the
strategy for fulfilling the secondary task. As a consequence, the human steering and typing policies
must be taken into account. Although a good match of manual control data with optimal control
models could be obtained, in many cases the fit was not perfect and delays [149, 42] or noise [27]
needed to be introduced to increase realism. Therefore, if we compute glance behavior with respect to
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optimal steering policies there is the risk that an overly optimistic assumption on the drivers steering
performance is made. Consequently, the computed policy for gaze switches can be less suitable for
realistic drivers e.g. as it results in too long off road glances because of assuming the absence of
steering errors. Summarized, it can be desirable to take into account potential imperfect driver policies
in computing rational glance policies. Fortunately, this can be achieved using the maximum causal
entropy model of rational behavior. As stated previously, the maximum causal entropy policy p̃t(ut|xt)
fulfills

p̃t(ut|xt) µ exp
⇣

E
⇥ T

Â
t0=t

r(xt0 , ut0)
��p̃ppt:T ,PPP t:T

⇤⌘
.

Hence, the gaze switching control (uz
t )

† that results in the maximum reward under the expected future
imperfect driver behavior can be obtain by means of

(uz
t )
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t
log

�
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�
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Â
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r(xt0 , ut0)
��uz

t , p̃ppt:T ,PPP t:T
⇤⌘

. (3.66)

Consequently, the MCE policy model is suitable to obtain appropriate glance behavior for realistic
driver behavior.

Soft Bellman Equations To compute the MCE policy we consider the soft value function Ṽt(µµµ
p
t , xzxzxz

0:t, xi
t)

and the soft state-control function Q̃t(µµµ
p
t , xzxzxz

0:t, xi
t, up

t , uz
t , ui

t) analogously to the optimal policy. Here,
the primary task states and controls are separated allowing similar treatment as in the maximum causal
entropy policy in LQG (see Sec. 2.2.2). This yields the following terms
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t ; up

t ]
>MQ̃

t [µµµ
p
t ; up

t ] + mQ̃
t [µµµ

p
t ; up

t ] + mQ̃,1
t (xzxzxz

0:t, xi
t, up

t , uz
t , ui

t) (3.67)

Ṽt(µµµ
p
t , xzxzxz

0:t, xi
t) = [µµµ

p
t ]
>MṼ

t [µµµ
p
t ] + mṼ

t [µµµ
p
t ] + mṼ,1

t (xzxzxz
0:t, xi

t). (3.68)

Here, the summands involved in Q̃t(µµµ
p
t , xzxzxz

0:t, xi
t, up

t , uz
t , ui

t) are

MQ̃
t =

(
[At Bt]>MṼ

t+1[At Bt]� blk(Cx, Cu) if t < T
� blk(Cx, Cu) else

(3.69)

mQ̃
t =

(
2[At Bt]>MṼ

t+1at + [At Bt]>mṼ
t+1 if t < T

0 else
(3.70)

mQ̃,1
t (xzxzxz

0:t, xi
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t) =

8>>>>>>>>>><>>>>>>>>>>:

a>t MṼ
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+ E
h
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zxzxz
0:T)) + r(uz
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.

(3.71)
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As in previously considered POMDPs and MDPs Q̃t, Q?
t have the same structure. In contrast for the

parts of the soft value function MṼ
t , mṼ

t , mṼ,1
t (xzxzxz

0:t, xi
t) it holds

MṼ
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t x,u[M
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t u,u]

�1MQ̃
t u,x (3.72)
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Consequently, in the joint task model the MCE policy admits the same factorization as the optimal
policy and the primary task policy (see (2.71)) is obtained as

p̃t(u
p
t |µµµp

t ) = N (up
t |F̃tµµµ

p
t + f̃t, SSSup

t ) (3.75)

F̃t := �1
2
[MQ̃

t u,u]
�1MQ̃

t u,x, f̃t := �1
2
[MQ̃

t u,u]
�1mQ̃

t u, SSSup
t := �1

2
[MQ̃

t u,u]
�1. (3.76)

Furthermore, we also face the issue of intractability of the soft Bellman equations in the general case. In
the MCE policy model the exponentially growing state space of xzxzxz

0:t is even more problematic. In the
conditional distribution defined by the MCE policy p̃ any sensor control that results in finite return has
a likelihood greater than zero. As a consequence, we can expect that a greater proportion of the state
space xzxzxz

0:t will be visited when following the MCE policy. Therefore, we will revisit the techniques
that were presented for computing the optimal policy of the joint task model. Here we will investigate
whether these are applicable to obtain the MCE policies.

Sensor Model Restriction

Fortunately, assuming immediate saturation of information once gaze returns to the road results in
tractable computation of the maximum causal entropy policy. We can also replace the sequence of past
sensor states xzxzxz

0:t with the EOD dt and obtain Algo. 7 that is very similar to Algo. 4:
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3.5 Computation of Appropriate Glance Behavior

Algorithm 7 MCE Policy of Joint Task Model under Sensor Model Restriction SRMCE

1: function SRMCE(Cx, Cu, r(uz
t ), r(xi

t, ui
t), (At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez
(xz

t ),P i, xz
0, SSSp

0 , ŜSSp
0 )

2:
⇥
MQ̃

t , mQ̃
t , mQ̃,1

t , MṼ
t , mṼ

t , mṼ,1
t , F̃t, f̃t, SSSup

t
�

t=0:T  LQRMCE(Cx, Cu,
�
At, at, Bt

�
t=0:T) . Algo. 3

3: for t = 0 : T do . Pre-compute belief for gaze on road
4: ŜSSp

t+1  KalmanUpdate(ŜSSp
t , At, at, Bt, SSSex , H(0), SSSez

(0)) . Algo. 2
5: end for
6: for t = 0 : T do . Forward pass for belief for gaze off road
7: if t = 0 then
8: SSS1  SSSp

0
9: d0  xz

0
10: else
11: SSS1  ŜSSp

t
12: d0  0
13: end if
14: for dt = d0 : T � t� 1 do . Roll-out off road belief until max. duration
15: t0  t + dt � d0 � 1
16: if t0 > 0 then
17: SSS1  KalmanUpdate(SSS1, At0 , at0 , Bt0 , SSSex , H(1), SSSez

(1))
18: end if
19: SSS2  KalmanUpdate(SSS1, At0+1, at0+1, Bt0+1)
20: SSS3  KalmanUpdate(SSS1, At0+1, at0+1, Bt0+1, SSSex , H(1), SSSez

(1))
21: if dt = 0 then
22: 8xi

t ,u
i
t
mQ̃,1

t0+1(dt, xi
t, 0, ui

t) � tr(CxŜSSp
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23: 8xi
t ,u

i
t
mQ̃,1

t0+1(dt, xi
t, 1, ui

t) � tr(CxŜSSp
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27: end if
28: end for
29: end for
30: for t = T : 0 do . Use soft Bellman equations to obtain remaining part
31: 8dt2{0:T},xi,uz,ui mQ̃,1

t (dt, xi, xz, ui) + r(xi, ui)
32: for dt = 0 : min(t + 1, T) do
33: if dt = 0 then
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42: end for
43: end for
44: return
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45: end function
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3 Appropriate Glance Behavior in the Joint Task of Driving and Secondary Task Interaction

Secondary Task Model Restriction

Restricting the secondary task model to the simple model, allows to apply recent solution techniques
for sensor scheduling in linear quadratic Gaussian problems as shown in Sec. 3.5.2. Here, solution
exploited properties of the Kalman belief update to prune sub-optimal branches of the search tree at
every time step. Unfortunately, this technique is not applicable for computing the MCE policy. In a
MCE policy model also suboptimal behavior has a non-zero probability. Consequently, branches of the
search tree identified as being suboptimal cannot simply be neglected in this policy model. Still, due
to connection between the maximum likelihood policy and the optimal policy (2.54) pruning can be
used to obtain the most likely sequence of sensor states (xzxzxz

0:T)†.

3.6 Evaluation

In the first section we presented and discussed several potential models for secondary task engage-
ment during lane keeping. Thereafter, approaches for obtaining gaze switching policies were derived
exploiting factorization properties. Furthermore, all tractable algorithms for policy computation came
with further restrictions on either the sensor model or the secondary task model. As the computed
policies shall be used in a distraction warning system, it is necessary to critically review and validate
the structural properties of the policies. In addition to, that we also need to address the question
whether the developed algorithms are indeed computationally feasible for usage in an online warning
system.

3.6.1 Realism of Computed Appropriate Glance Behavior

An obvious objective for the computed appropriate glance behavior is high realism with respect to
characteristics of drivers’ behavior. Previously, we have already discussed the assumptions and ap-
proximations made in both the vehicle and the sensor model. Furthermore, we addressed how an
exemplar secondary task can be represented as a sub-MDP in the joint task model. Given these models
as well as the reward function the optimal policy (3.39) and the maximum causal entropy policy (3.75)
were obtained in special analytic forms. Here, all policies factorized into a policy for the sensor control,
i.e. gaze switch, that was independent of the primary task states. Furthermore, under restriction of the
sensor model the policy of the sensor control was only dependent on eyes-off duration dt. Note, that
these properties are independent from the specific numerical values of the reward parameters or the
parameters of the dynamics. Hence, in this subsection we will validate these two fundamental proper-
ties of the computed policies with respect to experimental data. This serves the purpose of checking
whether the aspects of the joint task important for the driver have been incorporated in the POMDP
model.

The Quadratic Primary Task Reward

In this context, let us first consider the policy factorization into two independent policies for the pri-
mary task and the secondary task plus the sensor model present in all the considered approaches 3.39,
3.75. Under this policy factorization the rational policy for the gaze switches depends on the external
influences v0:T ,kkk0:T but importantly does not depend on the current primary task state xp

t . That is,
deciding to avert gaze is independent on whether the vehicle is close to the lane borders or in the
center of the lane. This is intuitively not very plausible but note that this factorization was no result of
an approximation technique. Instead it is directly related to the combination of the quadratic reward
model and the linear-affine kinematic model of the primary task. Using a different reward function
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can result in optimal policies for gaze switches that are dependent on the primary task state xp
t . This

is demonstrated at the small toy POMDP,

xp
t+1 = 1.01 xp

t + up
t + eeep, eeep ⇠ N (0, 0.2) (3.77)

zt = xz
t xp

t (3.78)

r(xz
t , uz

t ) =

�0.1 �0.1
0.2 �0.1

�
(3.79)

r(up
t ) = �0.25 (up

t )
2 (3.80)

for either a quadratic reward r(xp
t ) = �0.2 (xp

t )
2 (3.81)

or a indicator reward r(xp
t ) = I|xp

t |<0.8(x
p
t ). (3.82)

For numerical solution the space of the primary task state and the primary task control were discretized
from [�5, 5] at a resolution of 0.1. Furthermore, the eyes-off duration was restricted to a maximum of
6 time steps. For single purpose of this toy example the infinite horizon solution wrt. a discount of
g = 0.9 was computed. We refer to [181] for the precise definition and the properties of that form of
solution. In the remaining part of this thesis we will always consider finite horizon problems. Hence,
we omitted introducing those problems.

As in previous cases, the value functions and policies wrt. the a-posterior mean of the primary task
state µµµ

p
t and EOD dt are considered. Fig. 3.12, Fig. 3.13 and Fig. 3.14 depict the solution wrt. the

quadratic reward function on the left and the solution wrt. the indicator reward function on the right.
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Figure 3.12: Value functions V?(µµµp, dt) for the discretized infinite-horizon POMDP with quadratic reward on the
primary task state xp

t (left) and with indicator reward on the primary task state xp
t (right).

As can be seen in the left part of Fig. 3.12, the quadratic reward function produces a quadratic value
function. Here, the width of the quadratic function wrt. µµµ

p
t remains static, while a constant offset

depended on dt is added. Fig. 3.14 shows that the policy for the primary task control is a linear
function of the a-posterior mean µµµ

p
t and is independent from the sensor state xz

t . Furthermore, the
policy for the sensor control uz

t is independent of the expected primary task state µµµ
p
t as depicted in

Fig. 3.13. In contrast, the width of the value function for the indicator reward wrt. µµµ
p
t depends on the

EOD dt as can be seen in the left part of Fig. 3.12. Consequently, the optimal policy wrt. to the sensor
control uz

t depends on the expected primary task state µµµ
p
t which is shown in Fig. 3.13.

Hence, if the primary task model and the sensor model is accepted, the policy factorization can
directly be attributed to a quadratic reward. Consequently, if human gaze switch policy does not show
this factorization this suggest the presence of a different reward function of the primary task states.
For example, an additional indicator term could be more appropriate.
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Figure 3.14: Primary task policy up
t
?(µµµp, dt) for the discretized infinite-horizon POMDP with quadratic reward on
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t (left) and with indicator reward on the primary task state xp

t (right).

Intuitively, one would expect the driver’s policy to be dependent on the primary task states, espe-
cially the position in lane yt. However, we are not aware of any work that empirically investigated this
hypothesis. Therefore, we used the experimental data obtained throughout this work to test this hy-
pothesis. For this purpose we analyzed the drivers’ gaze switch behavior in the data of experiment II.
Specifically, for periods where the drivers engaged in a secondary task that required to gaze off the
road, we considered the lane positions. In the intervals the drivers had their gaze on the road the
absolute value of the lane position in the middle of the interval |ytm | was compared to the absolute
value at the end of the interval |yte | when the driver averted his or her gaze.

The distribution of the absolute values of the lane positions |ytm |, |yte | for both time points as well as
the distribution of the difference of the absolute values |ytm |� |yte | are depicted in Fig. 3.15.
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Figure 3.15: Distribution of the absolute value of the lane positions |ytm |, |yte | before (time tm) and at gaze switch
(time te) (left plot) and difference of lane positions |ytm |� |yte | (right plot).

As can be seen in the plots, the distributions for both time points are very similar. This is supported
by a median difference that differed not significantly from zero ptest = 0.64 according to a signed-rank
test.

Hence, in the lane keeping scenarios considered in this thesis the policy factorization induced by the
choice of rewards and dynamics does not conflict with empirical data. Specifically, the hypothesis that
deciding to switch gaze is independent of the absolute lane position could not statistically be rejected.
However, we wish to note that in the experimental data underlying this analysis the vehicle was always
well inside the lane. This can be seen considering the fact that the lane boundaries were at �1.75, 1.75
meters, whereas the probability mass of the lane positions was inside ±1 m. Similar distributions of
the lane position were also present in the other driving experiments of this thesis. Consequently, it is
possible that driver’s gaze switching policies depend on the lane position when the vehicle is close to
the lane borders. This is an aspect that should be investigated in future work.

The Sensor Model Restriction

Among the two considered further restrictions on the joint task POMDP, restricting the sensor model
is especially important. This is because it allows efficiently and exactly compute both the optimal and
the maximum causal entropy policy. Furthermore, full flexibility for modeling the secondary task is
provided. In the approach of restricting the sensor model, the key aspect was that we could replace the
sequence of sensor states xzxzxz

0:t with the eyes-off duration dt. This is because immediately all available
information is received when the driver returns his or her gaze to the road. Consequently, the sensor
control policy for averting gaze is independent of the duration of the current glance on the road which
we will refer to as the viewing time.

In contrast to the applied policy model interactions between viewing-time, eyes-off duration and
driving behavior have been found in the literature. The influence of the viewing time in lane keeping
have previously been investigated in occlusion experiments [207, 69]. Here, special glasses where used
to fully occlude the driver’s vision. In these experiments occlusion time and viewing time as well as
driving speed were varied. Under occlusion times of 1 s to 9 s and deliberately chosen driving speed,
[207] reported that a viewing time of 0.25 s was the minimum practical time. Furthermore, a viewing
time above 0.5 s did not further increase the chosen driving speed and it was concluded that 0.5 s
suffices to obtain all available information necessary for lane keeping. [69] (Cpt. 7.3) investigated
the relation of deliberately chosen occlusion time at a fixed driving speed and a fixed viewing time.
While median occlusion and viewing time strongly correlated at 20 km/h (increase of occlusion time
from 4.5 s to 6.5 s at viewing times 0.25 s and 4.00 s) turned out to be small at speeds 60, 100 km/h.
Summarized, occlusion experiments indicate that there is a minimum viewing time and that viewing
time can depend on occlusion time especially at low speeds.

In contrast to complete occlusion of vision as in these driving experiments, in many secondary
tasks drivers can to a small extent sense the vehicle’s position and orientation in lane. This was
for example shown in [230]: In the presented driving experiment the distance driven without lane
departure negatively correlated with the amount of angular deviation of gaze from the forward road
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3 Appropriate Glance Behavior in the Joint Task of Driving and Secondary Task Interaction

scenery. Furthermore, the secondary task structure can also influence the viewing time, which has
already been discussed previously in this thesis. Hence, it is not clear if the observations made wrt.
viewing time generalize to naturalistic interaction with secondary tasks while driving. Therefore, we
analyzed the interaction of the duration of glances off the road with the succeeding viewing time. This
was done using the data of experiment II which is presented in detail later in this thesis (Sec. 5.6). The
experiment had a 3⇥ 3 design considering a secondary task displayed at three different positions and
three driving speeds 80, 90, 110 km/h.
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Figure 3.16: Joint distribution of the duration of glances off the road and succeeding glances on the road in the
conditions of experiment II. Columns correspond to the different secondary tasks. Rows correspond to
the different driving speeds. Plots shows the empirical quantile levels as obtained from a discretization
in 0.2 s steps.

The joint distribution of the duration of glances off the road and the viewing time of the successive
glances on the road is depicted in Fig. 3.16. As can be seen from the plots, in contrast to the occlusion
experiments both variables seem to be rather uncorrelated. A test on Pearson’s correlation coefficient
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3.6 Evaluation

revealed that the null hypothesis of no positive correlation of the duration of glances of the road and
the succeeding viewing time could not be rejected for any combination of experimental conditions.
The results of the correlation analysis are summarized in Tab. 3.2.

Tabular 3.2: Pearsons’s correlation coefficient rho between the duration of glances off the road and succeeding
viewing time

Driving Speeds Display Positions
H C N

80 km/h r = �0.07, ptest = 0.94 r = �0.05, ptest = 0.89 r = �0.02, ptest = 0.69
90 km/h r = �0.14, ptest = 0.99 r = �0.07, ptest = 0.97 r = �0.05, ptest = 0.93
110 km/h r = �0.17, ptest = 0.99 r = �0.09, ptest = 0.99 r = �0.10, , ptest = 0.99

In contrast to previous occlusion experiments, we were not able to find any positive correlation between
the duration of glances off the road and the succeeding viewing time. With respect to glance policies
that depend only in eyes-off duration dt data shows no conflicting evidence. As stated before, we
believe that this is most likely the case because of the influence of the specific secondary task and
because in secondary task engagement drivers can to a small extend sense the road scenery.

3.6.2 Computational Feasibility

In previous subsection we validated certain structural properties of the computed optimal and maxi-
mum causal entropy policies with respect to experimental data. Fortunately, no significant conflicting
evidence could be found. Consequently, we are free in the choice of the developed algorithms to obtain
appropriate glance behavior considering the realism of their structural properties. This is important, as
besides realism of glance policies fast computation is of high importance in their application in a real
time warning system. Therefore, the present subsection discusses aspects computational feasibility.

Computational Demand

As the first step towards assessing the computational feasibility, we analyze the total computational
demand resulting from the operations involved in SRopt (Algo. 4) and STRopt (Algo. 6). For the
purpose of comparability, the application to the joint task POMDP using the simple secondary task
model is considered. In this case, STRopt computes an optimal solution for the general case (Sec. 3.5.2),
while applying SRopt comes with a further restriction on the sensor model (Sec. 3.5.2).

Theoretical Analysis We first theoretically analyze the computational demand of SRopt and STRopt
by considering the computation flow in both algorithms. In both cases first the same deterministic LQR
problem is solved. Thereafter, the algorithms differ in the way how they compute the policy regarding
sensor states and controls.

SRopt (Algo. 4) first enumerates all possible beliefs. This is done in the following way. Starting
in dt = 0 with the steady state covariance ŜSSp

t incrementally the T � t covariances SSSp
t+k(dt+k = kD t),

where D t = 0.04 s according to the model frequency, are computed. Hence, in total T (T + 1)/2
Kalman belief updates are required. In the second part of this algorithm the final policy is obtained
using the Bellman equation. This requires finding the binary sensor control that maximizes the state-
control function for every dt, which can be done in parallel. Therefore, its computational demand is
neglect-able in comparison to the Kalman belief updates under moderate T and small loop overhead.

STRopt (Algo. 6) iteratively expands the candidates set Ct requiring 2|Ct| Kalman belief updates.
Thereafter, the algebraic redundancy check is conducted. The redundancy is done in iterative fashion
by incrementally testing new candidates with respect to the previously accepted ones. In total 2|Ct|� 1
algebraic redundancy checks are required. In this context, every iteration i of the projected gradient
Algo. 5 in the redundancy check requires an eigenvalue computation. We use iavg

t to denote the average
number required for the redundancy checks for the expansion of candidate set Ct.

For the purpose of comparison, we define the computational demand of the SRopt and STRopt as the
number of required Kalman belief updates and eigenvalue computations C(Algo. 4) and C(Algo. 6).
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This quantity is used as an estimate of the total computational demand. In this context, the assump-
tion is made that computing the Kalman belief update and computing eigenvalues are approximately
equally demanding and that these are the dominating factors in both algorithms. Considering the
number of Kalman belief updates and eigenvalue computations in both approaches we thus obtain an
estimate of the total computational demand as

C(SRopt) = T (T + 1)/2 vs. C(STRopt) =
T

Â
t=0

(2|Ct|+ (2|Ct|� 1) iavg
t ). (3.83)

As a direct consequence the increased demand when not restricting the sensor model is strongly de-
pendent on the growth of |Ct| and the average number of iterations iavg

t of the projected gradient
approach in the redundancy check. In the following both quantities will empirically be analyzed.

Empirical Analysis Although the projected gradient algorithm is known to obtain linear convergence,
there is in general no bound on the number of iterations needed to numerical convergence. Similarly,
the dynamic behavior of the candidate set Ct has not been subject to detailed research in the literature.
Therefore, we studied these variables empirically with respect to the SLQGs present in our application.

For this purpose, 50 random SLQG problems of 76 time steps (corresponding to 3 s) were sampled
from the driving situations encountered in the third secondary task of experiment II (Sec. 5.6). These
driving situations differed in their initial value and in the velocity profile v1:76 as well as the lane
curvature profile kkk0:76. In the evaluation the sensor model parameters estimated in the numerical
experiment of Cpt. 5 were used. Furthermore, we set the reward parameters qqq1:5 to those estimated
in Cpt. 5 but increased the reward parameter q6 for the simple secondary task reward Ixz=0(xz

t ) by a
factor of 40. As those reward parameters were specifically estimated for the MCE policy, the scaling
was necessary to obtain similar eyes-off durations. Finally, the tolerance of the algebraic redundancy
check was set to 10�6. The projected gradient descent used a constant step size of 1, as well as a relative
tolerance of 10�4.

We report on the average number of projected gradient iterations per time step and on the size of
the candidate set. The results of the empirical evaluation are depicted in Fig. 3.17.
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Figure 3.17: Results of the empirical evaluation of the pruning based solution of the joint task model STRopt (Algo.
6). Plot depicts the size of the candidate set Ct (left) and the average number of projected gradient
iterations per time step (right). Solid black line denotes the median and shaded area the [0.25,0.75]
confidence band over 50 randomly sampled SLQGs. The red line depicts the least squares fit of a
linear affine function to the data.

As shown in the figure, the number of elements in the candidate showed an approximate linear growth
up to a median number of elements of 500. Note that the size of the candidate set is not unrealistically
large. [246] reported a candidate sets of 113 elements for a two dimensional toy example. In that
work neither the dynamics nor the reward of the belief covariance were time-dependent. This is in

64



3.6 Evaluation

contrast to the SLQGs considered in this thesis (see (3.44) ). Time dependency is likely to increase the
size of candidate set set. This is because in this cases many different sensor sequences can result in
similar accumulated rewards which prohibits strong pruning. Comparing only the mean total number
of Kalman belief updates required in STopt and STRopt we obtain

C(SRopt) = (72⇥ 73)/2 = 2628 vs. E[C(STRopt)] � 2.91⇥ 104.

That is, STRopt required a number of Kalman belief updates that was higher than 10-times the number
of updates required in SRopt. The size of the candidate set does not only result in a larger number
of Kalman updates. Additionally, this number also strongly affects the contribution of the projected
gradient descent for the algebraic redundancy check to the computational effort. As can be seen on
the right part of Fig. 3.17 the number of required iterations grew up to a median of 2500. As every
iteration of the projected gradient descent requires an eigenvalue computation of a matrix in Rnx+1,nx+1

this part of STRopt actually dominated the overall computational demand. Under the assumption that
eigenvalue computation has a similar demand as a Kalman belief update we can add the required
numbers of iteration for checking the candidate sets Ct and obtain a total expected demand of

E[C(STRopt)] = 2.91⇥ 104 + 6.90⇥ 107. (3.84)

Summarized, empirically the number of Kalman belief updates and eigenvalue computations required
in STRopt is approximately a factor 104 of the number of Kalman belief updates that are conducted
in SRopt. Hence, not restricting the sensor model of the joint task POMDP results in a tremendous
increase in computation demand which may be in-feasible for a real-time distraction warning system.

CPU Times

To validate the analyis of computational demand a comparison of CPU times was conducted. This was
done using MATLAB implementations of SRopt, of STRopt using the Projected Gradient descent for
algebraic redundancy check STRopt + PG and of STRop using CVX [74] to solve 3.61 denote as STRopt
+ CVX. In this context, we considered CVX as alternative solver for the redundancy check to verify the
efficiency of PG for solution. Note that the solvers underlying CVX have also been used in [246].

We report CPU times from a machine with a i7-3740 QM, 2.70 GHz processor and 16.0 GB RAM. For
the purpose of this evaluation all high level parallelism was disabled. The results of the evaluation are
depicted in Fig. 3.18 and its main statistics are summarized in Tab. 3.3.

Tabular 3.3: Statistics of the CPU time for the Solution approaches for SRopt and STRopt
Methods Statistics

0.25 Quantile 0.50 Quantile 0.75 Quantile
SRopt 0.83⇥ 100 s 0.88⇥ 100 s 0.95⇥ 100 s

SRopt + PG 0.09⇥ 104 s 0.48⇥ 104 s 1.24⇥ 104 s
SRopt + CVX 0.15⇥ 104 s 0.38⇥ 104 s 0.90⇥ 104 s

A signed rank test on the median CPU times could not establish significant differences between STRopt
+ PG and STRopt + CVX ptest = 0.25. Notably, the 0.25 quantile of the CPU time using PG was
significantly smaller that the quantile using CVX. Which was verified by the test of [86] ptest < 0.01.
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Figure 3.18: Results of the evaluation of the CPU times of the algorithms for sensor control policy computation.
The distribution of CPU times is depicted by means box plots. The red line indicates the median
CPU time. The blue box denotes the [0.25, 0.75] confidence interval, while whiskers indicate 1.5⇥ the
median to quantile distance. SRopt is the approach for computing optimal sensor control policies
under restriction of the sensor model. STRopt + PG is the solution approach for SLQGs using the
projected gradient method and STRopt + CVX is the solution approach for SLQGs using CVX for the
algebraic redundancy check.

Corresponding to the previous analysis of the algorithmic demand of SRopt and STRopt marked
differences of the required CPU times have been found. Specifically, the CPU times of STRopt were
of almost the same factor of 104 higher than those of SRopt. Furthermore, comparison with CVX
showed that PG is a competitive approach for solving the redundancy check despite the large number
of required iterations. Of course, the CPU times can significantly be reduced by implementing the
algorithms in more efficient programming languages. As shown later, SRopt can further be optimized
and obtains a CPU time of 0.02s using a fixed size C implementation. However, CVX is not available
in C or C++ and importantly does not feature solver optimization for fixed sizes. For these reasons,
the evaluation was conducted using the MATLAB implementations. However, based on the analysis
of computational demand we expect the ratios of CPU times to be similar in any other programming
language. Finally, the analysis of the 0.25 quantile of the CPU times STRopt + PG and STRopt + CVX
quantile showed that a quarter of the redundancy checks can be solved in half of the time using PG.
We think that this was attributed to the simple step-size rule of 1 used in the experiment. Hence, we
expect significant speed-up using more elaborate step-size rules and acceleration techniques which e.g.
reviewed in [172].

3.6.3 Discussion

Previously, approaches for computing rational gaze switch policies have been derived which served
to implement appropriate glance behavior. This section, presented an evaluation of the methods from
the perspective of usage in a real-time distraction warning system. The results showed, the effects of
the choice of a quadratic reward of the states related to vehicle control are not in conflict with driver
behavior in real traffic. Furthermore, also restricting the sensor model does not produce unrealistic
artifacts.

With respect to computational demands, the evaluation shows tremendously increased demand and
CPU time of computing rational policies without sensor model restriction (STRopt) compared to so-
lution with sensor model restriction (SRopt). We conclude that restricting the sensor model is the
most practicable approach for computing appropriate glance behavior in a distraction warning system.
This is because it obtains sufficiently realistic glance behavior under feasible computational demands.
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Furthermore, it possesses the important advantage of allowing to compute maximum causal entropy
policies which can more accurately take into account realistic driver behavior in definition of appro-
priate glance behavior.

3.7 Conclusion

This chapter addressed the problem of specifying appropriate glance behavior in secondary task inter-
action in the driving task of lane keeping. We approached this by means of rational policies in a joint
task POMDP. Here, a kinematic model of the driving task was developed that incorporated external
parameters which represented the possible variations of the driving situation. Furthermore, explicit
models of the driver’s sensing of the driving situation and the potential distracting secondary task were
presented. Possible approaches for obtaining optimal policies, SRopt (Algo. 4) and STRopt (Algo. 6) as
well as rational policies SRMCE (Algo. 7) were discussed thereafter. Given the obtained optimal or the
maximum causal entropy policy of the joint task, glance behavior whose Eyes-Off Duration (EOD) did
not significantly exceed those produced by the rational policies was defined as appropriate. The exact
approaches for computing gaze switch policies were finally evaluated. Here, sufficient realism with
respect to driver behavior in real traffic could be verified for all approaches. However, the investigation
of the computational demands revealed that only the variants SRopt and SRMCE can be applied in a
distraction warning system. We concluded that it is most practical to restrict the sensor model of the
joint task POMDP.

As a result of the evaluation of the different variants of the joint task POMDP and the different
associated policies we can conclude: Exact and sufficiently fast policy computation is only possible
under the assumption that the driver immediately obtains all available information when returning
his or her gaze to the road. Although, we also discussed approximate techniques and heuristics, exact
computation under clear restrictions has some advantages for defining situationally appropriate glance
behavior. This is because, approximate or heuristic methods usually cannot guarantee a bounded loss
of performance in terms of reward. This bears the risk that the performance of the computed policy
may drop in specific driving situations what conflicts with the goal of situation specific assessment of
driver behavior. In contrast, for the optimal glance policy under the simple secondary task model we
can establish a uniform bound on loss of primary task performance that depends only on the reward
parameters and the time horizon.

Considering, related work on POMDP models of human glance behavior it is important to note
that although some work considered more complex models, e.g. [173, 57, 23], in neither of these
exact solution techniques could be applied. Therefore, we must expect that extending the approach of
this work to driving tasks other than lane keeping will require considering approximate and heuristic
methods. As noted in the discussion of inexact methods in this chapter here exhaustive evaluation of
performance in the different driving scenarios is necessary.

Finally, this chapter derived the joint task POMDP but left open several important parameters.
Specifically, we neither specified the parameters of the introduced reward functions nor did we present
concrete values for the quantities involved in the model of the driver’s sensor characteristics. Nev-
ertheless, these parameters are of crucial importance as they define the compute appropriate glance
behavior. In previous work the values of these parameters were hand-tuned which is not satisfying. In-
stead, we present sophisticate procedures to obtain these parameters from data of experienced drivers
in Cpt. 4 and Cpt. 5.
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Computation of appropriate glance behavior has to consider the driver’s potentially sub-optimal be-
havior. Furthermore, a suitable parametrization of the individual components of the reward function is
needed. This chapter addresses how both reward parameters and the drivers’ policy can automatically
be determined in the context of the normative model of glance behavior. We first review frameworks of
inverse optimal control that allow to estimate those quantities from behavioral data in Sec. 4.3. Here,
methods for inference under optimal policies as well as two variants for inference under the maximum
causal entropy policy model are considered. Thereafter, the corresponding algorithmic approaches for
the joint task POMDP introduced previously are derived in Sec. 4.4. Sec. 4.5 reports on a first evalua-
tion of both MCE approaches and a baseline technique using simulated data. Thereafter, we introduce
a new data set of driver behavior in Sec. 4.6. This was obtained by recording several participants
during engagement in a typing task while driving on a public motorway. Finally, Sec. 4.7 studies
the performance of the behavior models obtained using inverse optimal control methodology and two
different baselines approaches.

This chapter has previously been published in the works [203, 202].

4.1 Introduction

In the previous chapter, a mathematical definition of appropriate glance behavior was developed in
form of a normative model of glance behavior. This model features a POMDP model of the joint
task of driving and the engagement in a secondary task. Given a reward function that considers both
tasks the POMDP model can be solved for an optimal or MCE gaze switch policy. Implementing
our mathematical definition in Sec. 3.4 these policies specify appropriate glance behavior which is
ultimately used in a distraction warning system (see Sec. 6.3). Previously, the task dynamics and the
sensor model of the POMDP model as well as the reward terms have been introduced. However, the
reward parameters are yet unknown and cannot simply be adapted from the literature. This is because
our POMDP model differs from the models of other authors. In addition to that, in most previous
works the applied reward parameters were given without a motivation or derivation. Nevertheless,
those parameters are of crucial importance. They implicitly specify the normative glance behavior and
will for example in the context of a distracting warning system explored in Cpt. 6 cause the system
to either trigger a warning or suppress a warning. Hence, those parameters must carefully be set to
ensure the effectiveness and the usefulness of such a system.

In addition to the reward parameters, the implementation of the definition of appropriate glance
behavior requires a model of the driver’s policy. When using this definition in a distraction warning
system we can only hope to improve the driver’s policy for returning gaze to the road (see Sec. 6).
Consequently, we have to consider the potential sub-optimal policies for vehicle control, secondary
task interaction as well as averting gaze from the road. For example, the durations of glance off the
road that can be tolerated in the model of appropriate glance behavior strongly depend on how well
drivers can control the vehicle and how frequent steering errors occur. Furthermore, the viewing time
subsequent of gaze aversion influences appropriate glance behavior. This is because in this period
the driver can effectively correct his or her lane position which has a strong influence on the overall
driving performance. Summarized it is required to include a realistic model of the policies of real
drivers into our normative model of glance behavior. If optimal or MCE policies are employed to
model the driver’s policies these are also defined by reward parameters (see Sec. 3.5.2 and Sec. 3.5.3).
That is specifying such policy models also corresponds to finding suitable reward parameters. In
this context, especially the MCE policy promises to realistically consider driver behavior as it allows
stochastic and sub-optimal behavior. Of course, this requires to additionally estimate the spread of the
policy distribution.
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In human factors and cognitive science research, as previously reviewed in Sec. 1.1, many works
have found rational adaption of human behavior. For example, drivers deliberately chose maximum
occlusion times that follow a strong monotonic decrease with the driving speed [207, 67]. Consequently,
optimal control has been proposed as a suitable model for manual control performed by well trained
and well-motivated humans [19]. This was verified by a close match of experimental data in numerous
works [149, 26, 240, 42]. Hence, we could try to obtain suitable reward parameters by minimizing
the difference between the optimal policy and behavioral data. This approach is commonly termed
as Inverse Optimal Control (IOC). Conversely to optimal control where one aims for the optimal policy
with respect to a reward, one seeks to find a reward for which the policy underlying the data is optimal
in inverse optimal control. However, not all drivers will show optimal behavior. Indeed, this is the
reason for distraction related crashes. Nevertheless, IOC can be applicable when data is obtained from
experienced and carefully instructed drivers. Furthermore, it turns out that IOC is also possible under
the maximum causal entropy framework which allows to infer rewards from potentially sub-optimal
behavior. In addition to that IOC in the maximum causal entropy model also estimates the amount
of variation in the underlying policy. This quantity can be used to take into account the variations in
realistic driver behavior in the definition of appropriate glance behavior.

4.2 Related Work

The problem of estimating policies from behavioral data is well known in the literature. The classic
approach to this is to use regression techniques to fit a mapping from states to controls on those pairs
present in the data. This approach is referred to as behavioral cloning [16] or Direct Policy Estimation
(DPE) [200]. A variety of methods are available for this purpose as e.g. discussed in [148]. In the
context of estimating driver policies these techniques have for example been used to estimate models of
steering behavior [197, 78] and models of glance behavior [95]. However, difficulties in the application
of DPE arise for states that are not contained in the collected data. In addition, changes in the control
scenario can result in adapted behavior e.g. adapting deliberately chosen occlusion times to vehicle
speed [207, 67]. Consequently, when using DPE on a sub-set of all possible scenarios there is a risk that
the prediction accuracy of the obtained policies deteriorates in previously unseen scenarios, so-called
transfer scenarios. Otherwise, estimating policies using DPE on several distinct scenarios can wash out
the specific differences in behavior. Nevertheless, due to its frequent use in previous approaches for
modeling driver behavior DPE is a suitable baseline for evaluating the predictive performance obtained
by inverse optimal control application.

Inverse optimal control provides an alternative to DPE and is a natural way to fit the normative
model to data. IOC in linear quadratic regulation problems has already been addressed in Kalman’s
work [101]. In the last two decades, several general concepts for inverse optimal control and Inverse
Reinforcement Learning (IRL)1 in Markov Decision Processes (MPDs) have been proposed [167, 2, 185,
234, 166, 182, 258, 194] and a survey is provided in [66]. These methods are of a similar architecture
and cycle between computing a rational policy given an iterate of the reward parameters and an
update of the reward parameters. Of these general approaches [167, 2, 185, 234] address IOC/IRL
with respect to optimal policies, [166, 182, 194] address IOC/IRL with respect to the Boltzman policy
model. The maximum causal entropy policy model was first proposed in the context of IOC/IRL in
[258]. Furthermore, several IOC/IRL frameworks have also been extended to general POMDPs [40]. In
these cases, however, the computational burden required for obtaining rational policies is a great issue.
This is not the case for LQGs were computational efficient IOC is possible in case of the MCE policy
[38].

Simulated driving has been used to benchmark IOC/IRL algorithms [2]. Driver’s navigation strate-
gies have been inferred by IOC to predict turns [259] and the range map of an electric vehicle [169].
Furthermore, IOC has been applied in the context of driver assistance for risk aware choice of driving
speed [211]. Finally, IOC has also been used to obtain socially compliant or individualized trajectories
of autonomous vehicles [72, 117, 195]. However, none of these works considered estimating policies in
the context of driver’s manual sensori-motor control of the vehicle.

1 This is reward estimation using a reinforcement learning approach (see Sec. 2.1) to obtain a rational policy
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IRL/IOC for estimating policies in manual airplane control was addressed in [176]. In that work the
class of optimal control of LQGs in the infinite horizon setting was employed. Finally, [192] is, to the
best of our knowledge, the single previous work where IRL/IOC was used to estimate the rewards un-
derlying gaze switching policies. Here, walkway navigation simulated in a virtual reality environment
was considered. However, in this case only an approximate solution was obtained using the arbitration
heuristic of [220, 191] for computing policies. We have already discussed the disadvantages of using
heuristic approaches for definition of appropriate glance behavior. In estimation of rewards using
IOC the usage of approximation techniques is also problematic. When scenario-specific approximate
optimal control is used in iteration, IOC can fail to estimate reward models that are transferable.

In this chapter, we derive exact approaches to implement the IOC frameworks of [234] and [258] for
the POMDP class of the normative model of glance behavior. Here, we extend previous work on IOC
in LQGs [38]. In this context, we also discuss important issues related to the fact that human sensory
measurements are rarely available in the data of real world experiments that have not been noted in
previous work. To the best of our knowledge, we conduct the first comparison of the classic approach
to MCE IOC and the maximum causal likelihood variant, which has alternatively been used in some
work [29, 77]. This is done in both simulation and on driver data obtained in real traffic. Finally, we
evaluated the prediction performance of the MCE policy given the estimated rewards in comparison
to DPE of a generic regression baseline as well as DPE of the established models of [197] and [95].

4.3 Inverse Optimal Control

Inverse optimal control seeks to reconstruct the reward model r(xt, ut) underlying observed rational
behavior. Here, the behavioral data D is given by several trajectories D = {(ut=0:T , xt=0:T)i=1:n} pro-
duced by an unknown policy ppp0:T under known initial state p0 and process model PPP0:T .

In the following we will first review the IOC frameworks of [234, 258] before we derive IOC ap-
proaches for the POMDP class of the normative model of glance behavior in a second step.

4.3.1 Syed’s Game-Theoretic Inverse Optimal Control

For deriving IOC/IRL frameworks first consider the following: For any reward function r(xt, ut) and
its associated optimal policy ppp?

0:T the expected return of the optimal policy is greater or equal the
expected return of any other policy ppp0:T

E
h T

Â
t=0

r(xt, ut)
���ppp?
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Define the gap g(r, ppp0:T) as the difference of the expected returns of the optimal policy ppp?,r
0:T for reward

function r and the expected returns of the policy ppp0:T ,

g(r, ppp0:T) = E
h T

Â
t=0

r(xt, ut)
���ppp?,r

0:T ,PPP0:T , p0

i
�E

h T

Â
t=0

r(xt, ut)
���ppp0:T ,PPP0:T , p0

i
. (4.2)

The gap is non-negative and zero only if ppp0:T is optimal for the reward r(xt, ut). Hence, it can serve
as a suitable measure of the fit of the reward function r(xt, ut) to the policy ppp0:T . Consequently, the
rewards underlying an assumedly optimal policy can be inferred by trying to minimize the gap

min
r2R

g(r, ppp0:T) = min
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. (4.3)

In this context, the reward function is constrained to be in a set R that does not contain the zero
function. This restriction ensures that the minimization problem is not trivially solved because a zero
function will make any policy optimal.
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If only samples D of the underlying policy ppp0:T are available, we can instead try to minimize the
empirical gap

min
r

g(r,D) = min
r2R

⇣
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0:T ,PPP0:T , p0

i
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r(xt, ut)
���Di⌘, (4.4)

by replacing the unknown expected return of ppp0:T in (4.3) by the empirical expectation over the sam-
ples. Note, the transitions underlying the sample data could have been “beneficial” with respect to
the reward and resulted in an empirical return greater than the expectation. Therefore, the empirical
gap can be negative and is generally only asymptotically non-negative. It can be proven by recursion
[231, 181] that the initial value function V?,r

0 = E[V?,r
0 (x0)|p0(x0)] for reward function r is given by the

expected return of the optimal policy

V?,r
0 = E[V?,r

0 (x0)|p0(x0)] = E
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i
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Hence, the previous optimization problem (4.4) can alternatively be written as

min
r

g(r,D) = min
r2R
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Linear Parameterization of Reward Function In case of a linear parametrization of the reward func-
tion r(xt, ut) = qqq>jjj(xt, ut), qqq 2 ⇥ the optimization problem (4.3) results in
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Neglecting the constraint qqq 2 ⇥, the mini-max problem (4.9) is convex in qqq and its (sub)-gradient is
given by

rqqq g(qqq,D) = E
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by means of standard convex analysis [32, 190]. Here, the gradientrqqqV?,qqq
0 can be computed in recursive

fashion as presented in [166]. This is possible, because first it holds

rqqqV?,qqq
t (xt) = rqqq max

ut

�
Q?,qqq

t (xt, ut)
�
= rqqqQ?,qqq

t (xt, p?,qqq
t (xt)). (4.11)

Second, the gradients of the state-control function rqqqQ?,qqq
t (xt, ut) are given by

rqqqQ?,qqq
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⇤
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Consequently, evaluating (4.11) and (4.12) can be used to compute the gradient rqqqV?,qqq
0 , which is used

to form the gradient of the gap rqqq g(qqq,D).
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Assuming ⇥ is convex and admits efficient projection, we can finally solve the minimization problem
of (4.7) by cycling between computing the gradient and a projection step. As another instance of
proximal gradient descent (compare to Algo. 5) this is guaranteed to converge to the global optimal
solution qqq? of the minimization problem (4.7) [172]. Note, that this approach is largely the solution
technique proposed in [234].

Illustrative Example We illustrate the principle of minimizing the gap with a simplified version of
the joint task POMDP in Fig. 4.1.

⇥qqq1 + ⇥qqq2 = gap g(qqq,D)

ppp?,qqq
0:T D ppp?,qqq

0:T D ppp?,qqq
0:T D

squared deviation from lane center proportion of off road glances expected return
j(yt) = y2

t j(xz
t ) = 1� xz

t E
⇥

ÂT
t=0 qqq1 j(yt) + qqq2 j(xz

t )
⇤

Figure 4.1: Illustration of the principle of minimization of the gap in inverse optimal control. Assume that data
of a driver D denoted in black and an optimal policy ppp?,qqq

0:T for candidate parameters qqq denoted in gray
are given. Furthermore, assume that the reward parameters are such that long glances off the road
are optimal �1⌧ qqq1 < 0, qqq2 = 1. This leads to a high squared deviation from the lane center y2

t under
the optimal policy. Adding up the expected squared deviation from the lane center scaled by negative
factor of small magnitude with the proportion of gaze off the road, the optimal policy obtains high
expected return. In contrast, the observed driver showed a significantly smaller proportion of gaze
off the road and improved lane position. Under the candidate reward parameters this leads to small
empirical return. Consequently, a significant gap g(qqq,D) is present between the return of the optimal
policy and the empirical return obtained by the driver. This indicates that the candidate parameters qqq
are not the ones that the observed driver behavior is optimal for.

4.3.2 Maximal Causal Entropy Inverse Optimal Control

For the purpose of introducing maximum causal entropy optimal control, we first return to the gradient
of the gap rqqq g(qqq,D). If it holds true

E
h T

Â
t=0

jjj(xt, ut)
���ppp?,qqq

0:T ,PPP0:T , p0

i
�E

h T

Â
t=0

jjj(xt, ut)
���Di = 0, (4.14)

for any feasible qqq then the sufficient conditions for a minimizer of the gap are fulfilled due to the
convexity of the problem. The role of this so-called feature-matching as a sufficient condition in IOC/IRL
has first been discovered in [2]. However, this condition is not a necessary condition for a minimizer
of the gap. This is because the gap g(qqq,D) is not differentiable as it involves the non-differentiable
max(.) function. Hence, convex optimization tells that even the minimizer qqq? may not attain zero
gradient. For this reason, [2] suggested to mix optimal policies of different reward parameters qqq to
obtain feature-matching.

Formal Definition of Maximal Causal Entropy Inverse Optimal Control As a more sophisticated
alternative to mixing optimal policies, Maximum Causal Entropy Inverse Optimal Control (MCE-IOC)
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was proposed in [258]. Here, a single stochastic policy p̃pp0:T matching the empirical feature expectation
is obtained by solving the maximization problem

max
ppp0:T

H(ppp0:T) = �
T

Â
t=0

E
h Z

p(ut|xt) log p(ut|xt)d ut

���ppp0:t�1,PPP0:t�1, p0

i
(4.15)

s.t. E
h T

Â
t=0

jjj(xt, ut)
���ppp,PPP0:T , p0

i
�E

h T

Â
t=0

jjj(xt, ut)
���Di = 0. (4.16)

That is, one seeks to find the policy of maximal stochasticity, i.e. entropy, that fulfills the sufficient
condition. This is a well-defined problem except for the case that there is not a single policy that can
obtain feature matching. That is, if the optimization problem is infeasible.

In Cpt. 2 on the mathematical background of this thesis the maximum causal entropy policy was in-
troduced in a different fashion (see (2.55)). The relation to the definition (4.15) is given in the following.
The maximization problem (4.15) can be solved by considering the Lagrangian saddle point problem

min
qqq

max
ppp0:T

⇣
H(ppp0:T) + qqq>

h
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⇥ T
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h
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Â
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qqq>jjj(xt, ut)
��D⇤⌘ (4.18)

with respect to the policy ppp0:T and the Lagrangian multipliers qqq [32, 190]. Here the previous defi-
nition (2.55) is found in the inner maximization problem considering that the reward function was
parametrized according to r(xt, ut) = qqq>jjj(xt, ut).

In [257] the following key properties are proven: First, it holds true for the soft value-function Ṽqqq
0 for

t = 0 under the reward function r(xt, ut) = qqq>jjj(xt, ut)

max
ppp0:T

⇣
H(ppp0:T) + E

⇥ T

Â
t=0

qqq>jjj(xt, ut)
��ppp,PPP0:T , p0
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= Ṽqqq

0 . (4.19)

Second, in case Ṽqqq
0 is finite, it is a differentiable function of qqq and its gradient is given as

rqqqṼqqq
0 = E

h T

Â
t=0

jjj(xt, ut)
���p̃ppqqq

0:T ,PPP0:T , p0

i
, (4.20)

where p̃ppqqq
0:T is the maximum causal entropy policy obtainable by the iterations (2.58) and (2.57). Third

and finally the minimization wrt. qqq is a convex optimization problem. Hence, any local minimizer
is also global minimizer. Consequently, we can obtain suitable reward parameters for the maximum
causal entropy policy model by minimizing, what we call the soft gap g̃(qqq,D),

min
qqq

g̃(qqq,D) = min
qqq

⇣
Ṽqqq

0 �E
h T

Â
t=0

qqq>jjj(xt, ut)
���Di⌘ (4.21)
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⇤i�E
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Â
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qqq>jjj(xt, ut)
��D⇤⌘. (4.22)

The maximum causal entropy model has found broad success in application e.g in [259, 211, 169, 117,
195]. This is due to the fact that fitting its reward comes with robust performance guarantees [258].
That is, the MCE policy obtains smallest loss in case the true policy underlying the data is chosen
adversarial.
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The Maximum Causal Likelihood Variant Considering that the MCE policy is given by

p̃qqq
t = exp

�
Q̃qqq

t (xt, ut)� Ṽqqq
t (xt)

�
,

the reward parameters qqq can also be obtained by minimizing the negative log-likelihood of the demon-
stration data D = {(ut=0:T , xt=0:T)i=1:n}

qqq? = arg min
qqq

l(qqq) :=
1
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Â
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(4.23)

= arg min
qqq

1
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Â
t=0

�
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t (xi
t)� Q̃qqq

t (xi
t, ui

t)
�
. (4.24)

This variant was proposed as an alternative to the mini-max problem (4.18) in [257] and was extended
in [29, 77]. The minimization problem of (4.23) can be solved by means of the gradient rqqq l(qqq) which
is given by

rqqq l(qqq) =
1
n

n

Â
i=1

T

Â
t=0

�rqqqṼqqq
t (xi

t)�rqqqQ̃qqq
t (xi

t, ui
t)
�
. (4.25)

Similar, as in case of Syed’s approach (4.11), (4.12) we can use a recursion technique to obtain the
required gradient. First note, that it holds true

rqqqṼqqq
t (xi

t) = rqqq log
Z

exp
�
Q̃qqq

t (xi
t, ut)

�
d ut =

Z exp
�
Q̃qqq

t (xi
t, ut)

�R
exp

�
Q̃qqq

t (xi
t, u0t)

�
d u0t
rqqqQ̃qqq

t (xi
t, ut)d ut (4.26)

= E
⇥rqqqQ̃qqq

t (xi
t, ut)

��p̃qqq
t (ut|xi

t)
⇤
. (4.27)

Furthermore, the gradients rqqqQ̃qqq
t (xi

t, ui
t) fulfill the recursive relation

rqqqQ̃qqq
t (xi

t, ui
t) = rqqq

⇣
qqq>jjj(xi

t, ui
t) + E

⇥
Ṽqqq

t (xt+1)
��P(xt+1|xi

t, ui
t)
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(4.28)

= jjj(xi
t, ui

t) + E
⇥rqqqQ̃qqq
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��p̃qqq

t (ut+1|xt+1),P(xt+1|xi
t, ui

t)
⇤

(4.29)

which was first shown in [29]. Hence, we can obtain the gradient rqqq l(qqq) by recursively conducting
(4.29) and (4.27). The same approach can also be used to compute rqqqṼqqq

0 = E
⇥rqqqṼqqq

0 (x0)
��p0(x0)

⇤
which

is required to solve the mini-max problem of the original maximum causal entropy approach to IOC
(4.19).

Comparison of Maximum Causal Entropy IOC and Maximum Causal Likelihood IOC When we
compare the original MCE approach to the MCL approach, the following interpretations can be made:
MCE seeks to minimize the soft gap g̃(qqq,D) (4.21) which corresponds to finding parameters qqq that
result in feature matching (4.14). Hence, this approach focuses on matching the performance of the
policy present in the data wrt. to the individual reward features. MCL on the other hand is closer
related to direct policy estimation as it seeks to minimize the log-likelihood of the policy given the
state-control pairs in the data (4.23). In contrast to DPE the MCE policy model used in MCL results in
a significant beneficial inductive bias which improves generalization and transferability.

Although MCE and MCL may estimate different qqq on finite data sets D, notably in [257] is shown
that the same qqq is obtained in the infinite sample limit. This is because if D contains infinitely many
triples (xi

t+1, xi
t, ui

t) the term rqqq l(qqq) = 1
n Ân

i=1 ÂT
t=0

�rqqqṼqqq
t (xi

t)�rqqqQ̃qqq
t (xi

t, ui
t)
�

is equal to the feature
expectation under the policy p̃ppqqq

0:T . In practical application, however, one cannot expect that this is
the case. Therefore, it is necessary to empirically investigate the differences between MCE and MCL.
Before we do so, let us return to the POMDP model of the joint task and derive the IOC algorithms for
this problem class.
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4.4 Inverse Optimal Control in the Class of the Joint Task POMDP

Previously, we reviewed two inverse optimal control frameworks for MDPs. We introduced objective
functions that can be used to infer reward parameters from behavioral data and presented recursions
for gradient computation. Similar as in case of the Bellman equation introduced earlier (see Cpt. 2)
the gradient recursion is computational intractable in many MDPs and POMDPs. In contrast, the
class of POMDPs that are used in the normative model of glance behavior admit exact and efficient
computation. This will be shown in the present section.

Syed’s inverse optimal control framework and the maximum causal entropy framework have a very
similar architecture. In both cases the estimation is posed as an optimization problem (4.6), (4.18)
which requires to compare the (soft) value function Ṽqqq

0 , V?,qqq
0 to the empirical return of the data D. To

obtain the minimizer in both Syed’s IOC and MCE IOC gradient based techniques can be used. Here,
the gradients can be obtained by evaluating recursion (4.12), (4.11) for the optimal policy or recursion
(4.29), (4.27) for the MCE policy given the current parameter iterate qqq. Consequently, we derive IOC
approaches for the optimal and MCE policy in the POMDP class in a unified view considering its (soft)
Bellman equations.

4.4.1 Posing IOC

To obtain algorithms for IOC in the POMDP relevant for the normative model of glance behavior,
first both minimization problems (4.6), (4.18) must be posed with regards to a specific class. For
this purpose, consider the reward functions that are involved in the POMDP model. These must be
rewritten in a linear parameterization with respect to a parameter qqq := [vec(QQQ1); vec(QQQ2); q3; qqq4]. The
reward model used for the task of vehicle control introduced in Sec. 3.3.1 can more generally be written
as

r(xp
t , up

t ) = �xp
t
>Cxxp

t � up
t
>Cuup

t = vec(QQQ1)
> vec(xp

t xp
t
>) + vec(QQQ2)

> vec(up
t up

t
>). (4.30)

Here the matrices �Cx,�Cu are replaced by reward parameters QQQ1, QQQ2. Furthermore, the reward
function of the sensor control (see Sec. 3.3.2) is given by

r(uz
t ) = q3uz

t , (4.31)

and the reward function of the secondary task (see Sec. 3.3.3) is given as

r(xi
t, ui

t) = qqq>4 jjj(xi
t, ui

t). (4.32)

Next, we review the (soft) Bellman equation derived in Cpt. 3 under the linear parametrization. Under
a given initial covariance SSSp

0 (compare to Sec. 3.5.2) and the optimal policy we obtain
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mQ?,qqq ,1
t (xzxzxz

0:t, xi
t, up

t , uz
t , ui

t) =

8>>>>>>>>>><>>>>>>>>>>:

a>t MV?,qqq

t+1 at + 2a>t mV?,qqq

t+1
+ tr(QQQ1SSSp

t (x
zxzxz

0:t))

+ tr
⇣

MV?,qqq

t+1
�
AtSSS

p
t (x

zxzxz
0:t)A>t +SSSex �SSSp

t+1([x
zxzxz

0:t xz
t � uz

t ])
�⌘

+ q3uz
t + qqq>4 jjj(xi

t, ui
t)

+ E
h
mV?,qqq ,1

t+1 ([xzxzxz
0:t xz

t � uz
t ], xi

t+1)
���P i(xi

t+1|xz
t , uz

t ; xi
t, ui

t)
i

if t < T

tr(QQQ1SSSp
t (x

zxzxz
0:T)) + q3uz

T + qqq>4 jjj(xi
T , ui

T) else

,

(4.37)
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Whereas, the soft Bellman equations defining the maximum causal entropy policy are given by
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that, mṼqqq ,1
t (xzxzxz

0:t, xi
t) is given by
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mṼqqq ,1

t+1 ([x
zxzxz

0:t xz
t � uz

t ], xi
t+1)

���P i(xi
t+1|xz

t , uz
t ; xi

t, ui
t)
i⌘

. (4.43)

Consequently, qqq can be obtained in the problem class of our POMDP model by solving the optimization
problem of
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to implement Syed’s framework for inverse optimal control under the optimal policy model.
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For the maximum causal entropy approach to IOC the optimization problem
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must be solved. Finally, the MCL variant to obtain the reward parameter in the context of the maximum
causal entropy policy, is given by the minimization problem
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4.4.2 The Observed Agent and Its Observer in IOC in POMDPs

Before addressing how gradients of both objectives can be computed let us take a closer look at the
terms and variables in the objective function of the IOC approaches (4.44),(4.45) and (4.46).

Apparently, the definition of the (soft) gap involves both the “true” state xp
t as well as its expectation

µµµ
p
t under the belief b(xp

t ) of the agent. This may seem contradictory, because in previous Cpt. 3
we transformed the joint task POMDP into its belief-MDP equivalent to formulate the (soft) Bellman
equations. In this process, the unknown “true” state xp

t was substituted by the corresponding belief
b(xp

t ). Nevertheless, we wish to note that this formulation is exactly the same as in [38].

The reason for the occurrence of both xp
t and its expectation µµµ

p
t is that IOC assumes a different

context than optimal control. When computing rational policies in optimal control we are in the role
of the agent that cannot directly access the states but receives sensory measurements of it. In contrast,
in inverse optimal control we are in the role of an external observer, that observes an agent which acts
assumedly rational based on partial information of the states.

In IOC it is commonly assumed that the states and the controls applied by the agent are fully known
by the observer [167, 2, 185, 234, 166, 182, 258, 194]. Notably, [107] considered the problem of noisy
state and control data in IOC in MDPs. Similar as in the standard approaches to IOC in MDPs, in this
thesis the states and the controls of the POMDP model are available in collected behavioral data: This
was previously set as an objective for development of the POMDP model in Cpt. 3. In the framework
for IOC in POMDPs presented in [40] it was assumed that also the beliefs of the agent or at least
its sensory measurements are known by the observer. However, this is definitely not the case in our
application: When conducting driving experiments visual measurements made by the driver cannot be
recorded. Even worse, the actual sensory measurements made are likely totally different from what we
assumed in the crude sensor model used in the joint task POMDP. Consequently, the expected state µµµ

p
t

according to the belief of the driver must be considered unknown. This aspect will later be especially
relevant in the context of inferring sensor models in Cpt. 5.

Fortunately, missing sensory measurements and beliefs in the data do not prevent applying IOC. In
[38] MCE IOC in LQGs was applied for modeling mouse cursor movements subject to human delayed
sensing of the task states. In this context the issue of missing sensory measurement in application of
IOC in POMDPs has not been noted, which is to the best of our knowledge first discussed in this work.

IOC in Syed’s framework and in the maximum causal entropy framework is possible for the follow-
ing reasons: The (soft) value of the belief MDP equivalent of the joint task POMDP (first term of the
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IOC objectives (4.44) and (4.45)) is kept. In contrast, the measured empirical return under the true
states

E
h T

Â
t=0

vec(QQQ1)
> vec(xp

t xp
t
>) + vec(QQQ2)

> vec(up
t up

t
>) + q3uz

t + qqq>4 jjj(xi
t, ui

t)
���Di

is used instead of the empirical return in the belief MDP under the unknown beliefs of the observed
agent (second term of the IOC objectives (4.44) and (4.45)). This is because the reward function of the
belief MDP is rb(b(xt), ut) = E[r(xt, ut)|b(xt)]. Hence, the expected return in the belief MDP equals
the expected return under the “true” states xt

E[
T

Â
t=0

rb(b(xt), ut)|ppp0:T , pz,PPP b
0:T , pb

0] = E[
T

Â
t=0

r(xt, ut)|ppp0:T , pz,PPP0:T , p0]. (4.47)

For this reason, we use the empirical return under the true states as an unbiased estimator of the
empirical return in the belief MDP under the unknown beliefs. Informally, IOC in our POMDP can
be described as closing the gap between the return an agent with partial information estimates he can
obtain following a rational policy and the empirical return measured by the external observer.

In both (4.44) and (4.45) it is still required to evaluate the (soft) value functions for the initial state
µµµ

p
0 , xz

0, xi
0. As in the previous case also exact knowledge of µµµ

p
0 is not needed for inverse optimal con-

trol. This is because of the following reason: As a well-known property of the Kalman-Filter it holds
p(µµµp

t |xp
t ) = N (µµµ

p
t |xp

t , SSSp
t ) if the expectation is taken with respect to possible previous sensory measure-

ments z�•:t. Therefore, in the role of the external observer we can consider the conditional distribution
of p(µµµp

t |xp
t ) of the unkown µµµ

p
t given the known xp

t . We illustrate the known and unknown quantities
of the observed driver and the external observer in Fig. 4.2.

z�•:t z�•:t

unknown kown

kown unkownbelief of driver
µµµ

p
t

belief of driver
µµµ

p
t

true state xp
t true state xp

tSSSp
t SSSp

t

human driver external observer

Figure 4.2: Illustration of the known and unknown quantities of the observed driver and the external observer.
Arrow denotes the history of sensory measurements z�•:t. The slightly rotated car (solid contour)
denotes the “true” state xp

t . The car in the center of the lane denotes (dotted contour) the expected state
µµµ

p
t . In the first case, the pale vehicle denotes the estimated µµµ

p
t of the human driver of the true vehicle

state xp
t indicated by the opaque vehicle. In the second case, the pale vehicle denotes the observer’s

estimate xp
t , i.e. the true vehicle state, of the human driver’s estimate µµµ

p
t indicated by the opaque

vehicle. The uncertainty in the corresponding estimation is expressed by the same covariance SSSp
t .

Hence, if the expected state µµµ
p
0 is unknown, minimizing the (soft) gap in Syed’s approach to IOC and
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in maximum causal entropy IOC can be conducted by considering the expected (soft) gap with respect
to the distribution of µµµ

p
0 given the “true” state xp

0 and the initial covariance SSSp
0
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Obviously, the same technique is also applicable for the MCL variant (4.46). Here, the expectations are
taken with respect to the true states xp

t
j as well as the covariances SSSp

t (x
zxzxz

0:t
j) according to the sensor

state sequences xzxzxz
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j for the states xp
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j present in the data D. As a result, we arrive at
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(4.50)

Initial Belief Covariances at Inference Time Previously, we have demonstrated that inverse optimal
control is applicable even in absence of the sensory measurements of the observed agent, e.g. the
driver. This was possible using the “true” state xp

0 and the initial covariance SSSp
0 . While the true

state is a measurable quantity contained in the data D, this is not the case for the initial covariance.
In principle, SSSp

0 depends on the entire sequence of sensor states xzxzxz�•:0 of the observed agent. In
practical application to inference of the sensor model underlying gaze switching behavior in driving
a heuristic alternative can be applied. We can assume the covariance to quickly converge to a steady
state covariance ŜSSp if the driver’s gaze is on the road xz

t = 0. A similar assumption was previously
made in case of the sensor model restriction Sec. 3.5.2. Given data where the driver’s gaze is off the
road for t = 0, i.e. xz

0 = 1, we proceed as follows: We first compute the steady state covariance ŜSSp at
the last time step the gaze was on the road, i.e. tgaze aversion = maxxz

t =1, t<0(t) using the sensor noise
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covariance SSSez
(1). Thereafter, we conduct the Kalman belief updates for t = tgaze aversion : 0 using the

sensor noise covariance SSSez
(0) and finally obtain SSSp

0 .

4.4.3 Obtaining the Gradients

To obtain a gradient of the (soft) gap, it is effectively required to compute rqqqQ?,qqq
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t). Given these quantities, the gradients of the gap, the soft gap and the
MCL objective can easily be obtained.

For the purpose of computing the state-control function gradients, the recursions (4.12) and (4.29)
are employed. Fortunately, the linear parameterization allows to split the gradient rqqq into the parts
rQQQ1,QQQ2 and rqqq3,qqq4 . This enables separate treatment of the individual components.

Gradients with Respect to the Rewards of Sensor Model and Secondary Task For the latter part
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In the remaining time steps t the state-control function gradients are recursively obtained. In this
context, the recursion for the optimal policy (4.12) is given as
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while the recursion for the MCE policy (4.29) can be formulated as
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In principle, the recursions can straightly be evaluated as only discrete variables are involved. In the
light of the analysis of Sec. 3.4 in the previous chapter, it is clear that this can be infeasible due to the
exploding size of the state space of xzxzxz

0:t. Fortunately, the recursion remains tractable in the considered
scenarios of the algorithms of Cpt. 3 Algo. 4, Algo. 6 and Algo. 7: In the case where the sensor state
sequence xzxzxz

0:t can be replaced by the EOD dt the recursion can be evaluated by enumerating all states.
If the simple secondary task model is used as in Algo. 6, the optimal gaze policy is given by a single
optimal sequence xzxzxz

0:T
?. Therefore, we can directly obtain the gradient of the initial value function
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Gradients with Respect to the Rewards of the Primary Task Unfortunately, in case of rQQQ1,QQQ2 Q?,qqq
t ,

rQQQ1,QQQ2 Q̃qqq
t the dependence on the discrete states cannot be dropped. However, it is possible to split
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t . Specifically, it holds
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For addressing the remaining steps in Syed’s approach to IOC under the optimal policy we define the
quantities
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by means of the optimal policy of the primary task p?
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In the case of IOC in the maximum causal entropy policy the variables
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derived from the MCE policy of the primary task p̃t(u
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Using these definitions and some algebraic manipulations (Sec. A.2) the recursion of the MCE policy
(4.29) can be conducted by computing
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Similar as in the previous case, additional assumptions must be made to obtain a computational
tractable update. This is because in both rQQQ1,QQQ2 Q?,qqq
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using the optimal sensor state sequence xzxzxz
0:T

?.
We admit, the updates of the (soft) state-control function gradients look quite complicated. Note,

however that all the involved operations are more or less standard linear algebra operations such as
construction, reshaping, transposition and multiplication of matrices. Hence, the gradient updates can
analytically and reasonable quickly be performed if appropriate matrix libraries are used in implemen-
tation.

4.4.4 Inverse Optimal Control Algorithms

As a result of the previous derivation, four different approaches for inverse optimal control in the joint
task model can be obtained:

1. IOC according to Syed’s approach in the optimal policy model under sensor model restriction
(SRopt)

2. IOC according to the maximum causal entropy approach under sensor model restriction
(SRMCE)

3. IOC according to the maximum causal likelihood approach under sensor model restriction
(SRMCL)

4. IOC according to Syed’s approach in the optimal policy model under secondary task model
restriction
(STRopt)

Previously the set of feasible reward parameters ⇥ was introduced (4.9). This served the purpose to
avoid trivial solutions of the IOC problem. In addition to that, the joint task POMDP requires to restrict

83



4 Inferring Driver’s Policy and Reward

QQQ1 and QQQ2. This is because the part of the POMDP that relates to linear quadratic regulation requires
a reward r(xp

t , up
t ) = �xp >

t Cxxp
t � up >

t Cuup
t where both Cx is positive semidefinite and where Cu is

positive definite. Hence, QQQ1 = �Cx and QQQ2 = �Cu need to be negative semidefinite and negative
definite respectively. Thus, we can for example, think of the feasible set ⇥ defined as

⇥ = {qqq : QQQ1 � 000, QQQ2 � �#Inu , q3 � 0, qqq4 � 000, q3 + Â qqq4 = 1}. (4.69)

This is a convex set that allows for efficient projection onto [32, 172]. Consequently, we can globally
solve all IOC approaches by a generic projected gradient descent technique [172].

In the following, we present a concrete algorithmic solution approaches for (SRopt), (SRMCE),
(SRMCL) and (STRopt). Due to space constraints, we only give the simplest computational procedures.
In many cases more efficient algorithms are possible exploiting the ideas used for computing optimal
and MCE policies. We will indicate where this is the case and refer to the previously introduced
algorithms.

Algorithm 8 Generic Projected Gradient Descent IOC [SolveIOC]

1: function SolveIOC((A, a, B)0:T , SSSex , H(xz
t ), SSSez

(xz
t ),P i,D)

Require: Stepsize h, feasible set of reward parameters ⇥
2: qqq  Sample(⇥) . sample a random initial parameter from feasible set
3: while not converged qqq do
4: [v,rqqq ] Eval<name>(qqq, (At, at, Bt)0:T , SSSex , H(xz

t ), SSSez
(xz

t ),P i,D) . evaluate the different
IOC objectives SRopt Algo. 9, SRMCE Algo. 11, SRMCL Algo. 12 or STRopt Algo. 14

5: qqq  qqq � hrqqq
6: qqq  Project(qqq,⇥) . project parameters on feasible set
7: end while
8: return qqq
9: end function
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Algorithm 9 Evaluation of SRopt [EvalSRopt]

1: function EvalSRopt(qqq, (At, at, Bt)t=0:T , SSSex , H(xz
t ), SSSez

(xz
t ),P i,D)

Require: steady state covariance for gaze on road ŜSSp
0

2: (µµµ
p
0 , d0, xi

0) D

3: (SSSp
0 , ŜSSp

0 ) Initialize(D, SSSez ,lll(xz
t )) . as described in Sec. 4.4.2

4: Cx  �QQQ1, Cu  �QQQ2, r(uz
t ) qqq3(uz

t ), r(xi
t, ui

t) qqq>4 jjj(xi
t, ui

t)

5:
�
MQ?

t , mQ?

t , mQ? ,1
t , MV?

t , mV?

t , mV? ,1
t , F?

t , f?t , p?
t (uz

t , ui
t|dt, xi

t)
�

t=0:T  OptJTSR(Cx, Cu, r(uz
t ), r(xi

t, ui
t), (A, a, B)0:T , SSSex , H(xz

t ), SSSez
(xz

t ),P i, d0, SSSp
0 , ŜSSp

0 ) .
Algo. 4

6: v E
⇥
µµµ

p
0
>MV?

0 µµµ
p
0 + µµµ

p
0
>mV?

0 + mV? ,1
0 (d0, xi

0)
��N (µµµ

p
0 |xp

0 , SSSp
0 )
⇤�E

h
ÂT

t=0 vec(QQQ1)> vec(xp
t xp

t
>) + vec(QQQ2)> vec(up

t up
t
>) + q3uz

t + qqq>4 jjj(xi
t, ui

t)
���Di .

Algo. 10
7: (MMMQ?,qqq ,1

t ,MMMQ?,qqq ,2
t ,mmmQ?,qqq

t ,rqqq3,qqq4 Q?,qqq
t (dt, xi

t, uz
t , ui

t))t=0:T  QGJTSRopt((F?
t , f?t , p?

t (uz
t , ui

t|dt, xi
t, At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez
(xz

t ),P i, xz
0, SSSp

0 , ŜSSp
0 )

8: rQQQ1,QQQ2  E
h
Pblk

nx ,nu

�
MMMQ?,qqq ,1

0 vec([µµµp
0 ; up

0 ][µµµ
p
0 ; up

0 ]
>) +MMMQ?,qqq ,2

0 [µµµ
p
0 ; up

0 ] +mmmQ?,qqq

0 (xz
0, xi

0, uz
0, ui

0)
����I(up

0 |F?,qqq
0 µµµ

p
0 + f?,qqq

0 ), p?(uz
0, ui

0|d0, xi
0),N (µµµ

p
0 |xp

0 , SSSp
0 )
i

9: rQQQ1,QQQ2  � E
h

ÂT
t=0


vec(xp

t xp
t
>)

vec(up
t up

t
>)

� ���Di
10: rqqq3,qqq4  E[rqqq3,qqq4 Q?,qqq

0 (d0, xi
0, uz

0, ui
0)|p?(uz

0, ui
0|d0, xi

0)]�E
h

ÂT
t=0


uz

t
jjj(xi

t, ui
t)

� ���Di
11: rqqq  

rQQQ1,QQQ2rqqq3,qqq4

�
12: return

⇣
v,rqqq ,

�
MQ?

t , mQ?

t , mQ? ,1
t , MV?

t , mV?

t , mV? ,1
t , F?

t , f?t , p?
t (uz

t , ui
t|dt, xi

t)
�

t=0:T

⌘
13: end function
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Algorithm 10 Computation of the Gradient of the State-Control Function in SRopt [GQSRopt]

1: function GQSRopt((F?
t , f?t , p?

t (dt, xi
t), At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez
(xz

t ),P i, d0, SSSp
0 , ŜSSp

0 )

2: MMMQ?,qqq ,1
T  I(nx+nu)2

3: MMMQ?,qqq ,2
T  000

4: 8dT ,xi
T ,uz

T ,ui
T
mmmQ?,qqq

t (dT , xi
T , uz

T , ui
T) vec

�
blk(SSSp(dT), 000)

�
5: 8dT ,xi

T ,uz
T ,ui

T
rqqq3,qqq4 Q?,qqq

T (dT , xi
T , uz

T , ui
T) [uz

T ; jjj(xi
T , ui

T)]

6: for t = T � 1 : 0 do

7: FFF?
t  


Inx

F?,qqq
t+1

�
, TTT?

t  


At Bt
F?,qqq

t+1At F?,qqq
t+1Bt

�
, ttt?t  


at

F?,qqq
t+1at + f?,qqq

t+1

�
8: MMMQ?,qqq ,1

t  I(nx+nu)2
+MMMQ?,qqq ,1

t+1 TTT?
t ⌦TTT?

t

9: MMMQ?,qqq ,2
t  MMMQ?,qqq ,1

t+1 (TTT?
t ⌦ ttt?t + ttt?t ⌦TTT?

t )

10: for all dt, xi
t, uz

t , ui
t do . In analogy to Algo. 4

11: mmmQ?,qqq

t (dt, xi
t, uz

t , ui
t) vec

�
blk(SSSp(dt), 000)

�
+MMMQ?,qqq ,1

t+1 vec
�
ttt?t ttt

?
t
> +FFF?

t
�
AtSSS

p
t (dt)A>t +SSSex �SSSp

t+1(dt+1(dt, uz
t ))

�
FFF?

t
>�+MMMQ?,qqq ,2

t+1 ttt?t

12: mmmQ?,qqq

t (dt, xi
t, uz

t , ui
t) + E

⇥
mmmQ?,qqq

t+1 (dt+1, xi
t+1, uz

t+1, ui
t+1)|p?

t (uz
t+1, ui

t+1|dt+1, xi
t+1), dt+1(dt, uz

t ),P i(xi
t+1|xz

t , uz
t ; xi

t, ui
t)
⇤

13: rqqq3,qqq4 Q?,qqq
t (dt, xi

t, uz
t , ui

t) [uz
t ; jjj(xi

t, ui
t)] + E

⇥rqqq3,qqq4 Q?,qqq
t+1(dt+1, xi

t+1, uz
t+1, ui

t+1)
��p?

t (uz
t+1, ui

t+1|dt+1, xi
t+1), dt+1(dt, uz

t ),P i(xi
t+1|xz

t , uz
t ; xi

t, ui
t)
⇤

14: end for
15: end for
16: return (MMMQ?,qqq ,1

t ,MMMQ?,qqq ,2
t ,mmmQ?,qqq

t ,rqqq3,qqq4 Q?,qqq
t (dt, xi

t, uz
t , ui

t))t=0:T
17: end function
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Algorithm 11 Evaluation of SRMCE [EvalSRMCE]

1: function EvalSRMCE(qqq, (At, at, Bt)t=0:T , SSSex , H(xz
t ), SSSez

(xz
t ),P i,D)

2: (µµµ
p
0 , d0, xi

0) D

3: (SSSp
0 , ŜSSp

0 ) Initialize(D, SSSez ,lll(xz
t )) . as described in Sec. 4.4.2

4: Cx  �QQQ1, Cu  �QQQ2, r(uz
t ) qqq3(uz

t ), r(xi
t, ui

t) qqq>4 jjj(xi
t, ui

t)

5:
�
MQ̃

t , mQ̃
t , mQ̃,1

t , MṼ
t , mṼ

t , mṼ,1
t , F̃t, f̃t, SSSup

t ,qqq , p̃t(uz
t , ui

t|dt, xi)
�

t=0:T  SRMCE(Cx, Cu, r(uz
t ), r(xi

t, ui
t), (At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez
(xz

t ),P i, d0, SSSp
0 , ŜSSp

0 )
. Algo. 7

6: v E
⇥
µµµ

p
0
>MṼ

0 µµµ
p
0 + µµµ

p
0
>mṼ

0 + mṼ,1
0 (xz

0, xi
0)
��N (µµµ

p
0 |xp

0 , SSSp
0 )
⇤�E

h
ÂT

t=0 vec(QQQ1)> vec(xp
t xp

t
>) + vec(QQQ2)> vec(up

t up
t
>) + q3uz

t + qqq>4 jjj(xi
t, ui

t)
���Di .

Algo. 13
7:

�
MMMQ̃qqq ,1

t ,MMMQ̃qqq ,2
t ,mmmQ̃qqq

t ,rqqq3,qqq4 Q̃qqq
t (dt, xi

t, uz
t , ui

t)
�

t=0:T  GQSRMCE((F̃t, f̃t, p̃t(uz
t , ui

t|dt, xi
t), At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez
(xz

t ),P i, d0, SSSp
0 , ŜSSp

0 )

8: rQQQ1,QQQ2  E
h
Pblk

nx ,nu

�
MMMQ̃qqq ,1

0 vec([µµµp
0 ; up

0 ][µµµ
p
0 ; up

0 ]
>) +MMMQ̃qqq ,2

0 [µµµ
p
0 ; up

0 ] +mmmQ̃qqq

t (xz
0, xi

0, uz
0, ui

0)
����N (up

0 |F̃qqq
0µµµ

p
0 + f̃qqq

0, SSSup
0 ,qqq), p̃(uz

0, ui
0|d0, xi

0),N (µµµ
p
0 |xp

0 , SSSp
0 )
i

9: rQQQ1,QQQ2  � E
h

ÂT
t=0


vec(xp

t xp
t
>)

vec(up
t up

t
>)

� ���Di
10: rqqq3,qqq4  E[rqqq3,qqq4 Q̃qqq

0(d0, xi
0, uz

0, ui
0)|p̃(uz

0, ui
0|d0, xi

0)]�E
h

ÂT
t=0


uz

t
jjj(xi

t, ui
t)

� ���Di
11: rqqq  

rQQQ1,QQQ2rqqq3,qqq4

�
12: return

⇣
v,rqqq ,

�
MQ̃

t , mQ̃
t , mQ̃,1

t , MṼ
t , mṼ

t , mṼ,1
t , F̃t, f̃t, p̃t(uz

t , ui
t|dt, xi)

�
t=0:T

⌘
13: end function

87



4
Inferring

D
river’s

Policy
and

R
ew

ard

Algorithm 12 Evaluation of SRMCL [EvalSRMCL]

1: function EvalSRMCL(qqq, (At, at, Bt)t=0:T , SSSex , H(xz
t ), SSSez

(xz
t ),P i,D)

2: (µµµ
p
0 , d0, xi

0) D

3: (SSSp
0 , ŜSSp

0 ) Initialize(D, SSSez ,lll(xz
t )) . as described in Sec. 4.4.2

4: Cx  �QQQ1, Cu  �QQQ2, r(uz
t ) qqq3(uz

t ), r(xi
t, ui

t) qqq>4 jjj(xi
t, ui

t)

5:
�
MQ̃

t , mQ̃
t , mQ̃,1

t , MṼ
t , mṼ

t , mṼ,1
t , F̃t, f̃t, SSSup

t ,qqq , p̃t(uz
t , ui

t|dt, xi
t)
�

t=0:T  SRMCE(Cx, Cu, r(uz
t ), r(xi

t, ui
t), (At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez
(xz

t ),P i, d0, SSSp
0 , ŜSSp

0 )
. Algo. 7

6:
�
MMMQ̃qqq ,1

t ,MMMQ̃qqq ,2
t ,mmmQ̃qqq

t ,rqqq3,qqq4 Q̃qqq
t (dt, xi

t, uz
t , ui

t)
�

t=0:T  GQSRMCE((F̃t, f̃t, p̃t(uz
t , ui

t|dt, xi
t), At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez
(xz

t ),P i, d0, SSSp
0 , ŜSSp

0 ) . Algo. 13
7: v 0, rQQQ1,QQQ2  000, rqqq3,qqq4  000
8: for t = 0 : T do
9: v + E

⇥
µµµ

p
t
>MṼ

t µµµ
p
t + µµµ

p
t
>mṼ

t + mṼ,1
t (dt, xi

t)
��N (µµµ

p
t |xp

t , SSSp
t (dt)),D

⇤
10: v � E

⇥
[µµµ

p
t ; up

t ]
>MQ̃

t [µµµ
p
t ; up

t ] + [µµµ
p
t ; up

t ]
>mQ̃

t + mQ̃,1
t (dt, xi

t, uz
t , ui

t)
��N (µµµ

p
t |xp

t , SSSp
t (dt)),D

⇤
11: rQQQ1,QQQ2  + E

h
Pblk

nx ,nu

�
MMMQ̃qqq ,1

t vec([µµµp
t ; up

t ][µµµ
p
t ; up

t ]
>) +MMMQ̃qqq ,2

t [µµµ
p
t ; up

t ] +mmmQ̃qqq

t (xz
t , xi

t, uz
t , ui

t)
����N (up

t |F̃qqq
t µµµ

p
t + f̃qqq

t , SSSup
t ,qqq),

p̃(uz
t , ui

t|dt, xi
t),N (µµµ

p
t |xp

t , SSSp
t (dt)),D

i
12: rQQQ1,QQQ2  � E

h
Pblk

nx ,nu

�
MMMQ̃qqq ,1

t vec([µµµp
t ; up

t ][µµµ
p
t ; up

t ]
>) +MMMQ̃qqq ,2

t [µµµ
p
t ; up

t ] +mmmQ̃qqq

t (xz
t , xi

t, uz
t , ui

t)
����N (µµµ

p
t |xp

t , SSSp
t (dt)),D

i
13: rqqq3,qqq4  + E

⇥
E[rqqq3,qqq4 Q̃qqq

t (dt, xi
t, uz

t , ui
t)|p̃(uz

t , ui
t|dt, xi

t)]� Q̃qqq
t (dt, xi

t, uz
t , ui

t)
��D⇤

14: end for
15: rqqq  

rQQQ1,QQQ2rqqq3,qqq4

�
16: return (v,rqqq)
17: end function
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Algorithm 13 Computation of the Gradient of the State-Control Function in SRMCE [GQSRMCE]

1: function GQSRMCE((F̃t, f?t , p?
t (dt, xi

t), At, at, Bt)t=0:T , SSSex , H(xz
t ), SSSez

(xz
t ),P i, d0, SSSp

0 , ŜSSp
0 )

2: MMMQ̃qqq ,1
T  I(nx+nu)2

3: MMMQ̃qqq ,2
T  000

4: 8dT ,xi
T ,uz

T ,ui
T
mmmQ̃qqq

t (dT , xi
T , uz

T , ui
T) vec

�
blk(SSSp(dT), 000)

�
5: 8dT ,xi

T ,uz
T ,ui

T
rqqq3,qqq4 Q̃qqq

T(dT , xi
T , uz

T , ui
T) [uz

T ; jjj(xi
T , ui

T)]

6: for t = T � 1 : 0 do

7: F̃FFt  


Inx

F̃qqq
t+1

�
, T̃TTt  


At Bt

F̃qqq
t+1At F̃qqq

t+1Bt

�
, t̃ttt  


at

F̃qqq
t+1at + f̃qqq

t+1

�
8: MMMQ̃qqq ,1

t  I(nx+nu)2
+MMMQ̃qqq ,1

t+1 T̃TTt ⌦ T̃TTt

9: MMMQ̃qqq ,2
t  MMMQ̃qqq ,1

t+1 (T̃TTt ⌦ t̃ttt + t̃ttt ⌦ T̃TTt)

10: for all dt, xi
t, uz

t , ui
t do . In analogy to Algo. 7

11: mmmQ̃qqq

t (dt, xi
t, uz

t , ui
t) vec

�
blk(SSSp(dt), 000)

�
+MMMQ̃qqq ,1

t+1 vec
�
t̃tttt̃ttt > + F̃FFt

�
AtSSS

p
t (dt)A>t +SSSex �SSSp

t+1(dt+1(dt, uz
t ))

�
F̃FFt
> + blk(000, SSSup

t ,qqq)
�
+MMMQ̃qqq ,2

t+1 t̃ttt

12: mmmQ̃qqq

t (dt, xi
t, uz

t , ui
t) + E

⇥
mmmQ̃qqq

t+1(dt+1, xi
t+1, uz

t+1, ui
t+1)|p?

t (uz
t+1, ui

t+1|dt+1, xi
t+1), dt+1(dt, uz

t ),P i(xi
t+1|xz

t , uz
t ; xi

t, ui
t)
⇤

13: rqqq3,qqq4 Q̃qqq
t (dt, xi

t, uz
t , ui

t) [uz
t ; jjj(xi

t, ui
t)] + E

⇥rqqq3,qqq4 Q̃qqq
t+1(dt+1, xi

t+1, uz
t+1, ui

t+1)
��p?

t (uz
t+1, ui

t+1|dt+1, xi
t+1), dt+1(dt, uz

t ),P i(xi
t+1|xz

t , uz
t ; xi

t, ui
t)
⇤

14: end for
15: end for
16: return (MMMQ̃qqq ,1

t ,MMMQ̃qqq ,2
t ,mmmQ̃qqq

t ,rqqq3,qqq4 Q̃qqq
t (dt, xi

t, uz
t , ui

t))t=0:T
17: end function
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Algorithm 14 Evaluation of STRopt [EvalSTRopt]

1: function EvalSTRopt(qqq, (At, at, Bt)t=0:T , SSSex , H(xz
t ), SSSez

(xz
t ),P i,D)

2: (µµµ
p
0 , xz

0) D

3: SSSp
0  Initialize(D, SSSez ,lll(xz

t )) . as described in Sec. 4.4.2
4: Cx  �QQQ1, Cu  �QQQ2, r(uz

t ) qqq3(uz
t ), r(xz

t ) q4(1� xz
t )

5:
��

MQ?

t , mQ?

t , MV?

t , mV?

t , F?
t , f?t

�
t=0:T , xzxzxz

0:T
?, mV? ,1

0 (xz
0)
� STRopt(Cx, Cu, r(uz

t ), r(xz
t ), (A, a, B)0:T , SSSex , H(xz

t ), SSSez
(xz

t ), xz
0, SSSp

0 ) . Algo. 6

6: v E
⇥
µµµ

p
0
>MV?

0 µµµ
p
0 + µµµ

p
0
>mV?

0 + mV? ,1
t (xz

0))
��N (µµµ

p
0 |xp

0 , SSSp
0 )
⇤�E

h
ÂT

t=0 vec(QQQ1)> vec(xp
t xp

t
>) + vec(QQQ2)> vec(up

t up
t
>) + q3uz

t + q4(1� xz
t )
���Di

7: (MMMQ?,qqq ,1
t ,MMMQ?,qqq ,2

t ,mmmQ?,qqq

t )t=0:T  GQSTRopt((F?
t , f?t , At, at, Bt)t=0:T) . Algo. 15

8: rQQQ1,QQQ2  E
h
Pblk

nx ,nu

�
MMMQ?,qqq ,1

0 vec([µµµp
0 ; up

0 ][µµµ
p
0 ; up

0 ]
>) +MMMQ?,qqq ,2

0 [µµµ
p
0 ; up

0 ]
����I(up

t |F?,qqq
t µµµ

p
t + f?,qqq

t ),N (µµµ
p
0 |xp

0 , SSSp
0 )
i
+ Pblk

nx ,nu

�
mmmQ?,qqq

t
�

9: rQQQ1,QQQ2  + Pblk
nx ,nu

⇣
ÂT�1

t=0 vec
�

blk(SSSp(xzxzxz
0:t

?), 000)
�
+MMMQ?,qqq ,1

t+1 vec
�
FFF?

t
�
AtSSS

p
t (x

zxzxz
0:t

?)A>t +SSSex �SSSp
t+1([x

zxzxz
0:t+1

?])
�
FFF?

t
>�+ vec

�
blk(SSSp(xzxzxz

0:T
?), 000)

�⌘
10: rQQQ1,QQQ2  � E

h
ÂT

t=0[vec(xp
t xp

t
>); vec(up

t up
t
>)]

���Di
11: rqqq3,qqq4  ÂT

t=0[uz
t
?; 1� xz
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4 Inferring Driver’s Policy and Reward

4.5 Evaluation on Simulated Data

In the previous section approaches for IOC for the class of POMDPs of the normative model of glance
behavior have been proposed. Specifically, we presented methods for inverse optimal control under the
assumption of optimal behavior SRopt-IOC Algo. 9, STRopt-IOC Algo. 14 and under the assumption
that the agent applies a maximum causal entropy policy SRMCE-IOC Algo. 11, STRMCL-IOC Algo.
12.

SRopt-IOC and STRopt-IOC address different variants of the joint task POMDP, the sensor model
restriction and the secondary task model restriction. The viability of the individual policy models
and the employed restrictions (of either sensor model or secondary task model) can only assessed
by evaluation on real data. For example the accuracy in predicting the observed behavior can be
investigated.

SRMCE-IOC and SRMCL-IOC both address the POMDP under sensor model restriction. Whereas,
SRMCE-IOC estimates reward parameters by means of minimizing the soft gap (4.49) SRMCL-IOC tries
to infer these by means of minimizing the negative log-likelihood of the MCE policy (4.50). As noted
before, both approaches estimate the same reward parameters in the limit of infinite data, however
the estimation can differ on a finite dataset. Both MCE-IOC and MCL-IOC are known in the literature,
[29, 77] used MCL-IOC in their works, whereas most authors applied the original variant e.g. [259, 117].
However, to the best of our knowledge no comparison of both variants has been made so far.

4.5.1 Scenario

To obtain a better understanding of both variants we therefore conduct comparison of MCE-IOC and
MCL-IOC. To the best of our knowledge this is the first empirical investigation of the difference between
those methods. For this purpose, data simulated by a MCE policy for a fixed reward parameter qqq is
used. This is because in real behavioral data the model assumptions might not perfectly be fulfilled
what can have an influence on the results. In the course of the evaluation we also conduct a comparison
to a directly estimated policy (Direct Policy Estimation, DPE) as employed in e.g. [78, 95]. This serves
to investigate potential benefits of the IOC methods. We will consider both the evaluation on the same
driving scenario as well as the transfer to a previously unseen driving scenario.

Inverse Optimal Control Methods

The evaluation was conducted with the joint task POMDP under sensor model restriction (Sec. 3.5.3).
Correspondingly, Algo. 7 was used to compute the maximum causal entropy policies whereas SRMCE-
IOC or MCE-MCL were used for reward inference. The parameters of the vehicle model were set to
the values estimated from the test vehicle used in the driving experiment I (Sec. 4.6). In the evaluation
the reward model

r(xp
t , up

t ) = q1(yt)
2 + q2(ẏt)

2 + q3(at)
2 + q4(u

p
t )

2

based on the lane position, the lateral velocity, the steering angle and the steering angle velocity was
employed which was previously introduced in Sec. 3.3.1. Furthermore, the sensor model restriction
was implemented by assuming that the driver can fully sense all primary task states when his gaze is
on the road. Specifically, we set the steady state covariance to ŜSSp

0 = 000. For the case that the driver’s
gaze was off the road we employed the sensor noise covariance of SSSez

(xz
t = 0) = [•; 0; •; 0] which

models a driver that does not obtain any information of the forward road scenery when averting his or
her gaze. As secondary task model the simple task model xi

t = xz
t , r(xi

t) = q(1� xi
t) = q(1� xz

t ) that
was introduced in Sec. 3.3.3 was employed. The corresponding optimization problems for SRMCE-IOC
and SRMCL-IOC were solved using a standard unconstrained optimization solver. In this context, a
barrier �10�4 Â4

i=1 log(�qqqi) was added to the objectives g̃(qqq,D), l(qqq,D) (4.49), (4.50) to ensure that the
LQR sub-MDP of the joint POMDP is well defined. Finally, a relative gradient norm below a tolerance
of 10�6 was used as a termination criterion.
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4.5 Evaluation on Simulated Data

Direct Policy Estimation Baseline

Given the knowledge, that the policy resulting from both IOC approaches factorizes into
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�
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for comparison. Time-invariant parameters were employed, as first experiments showed that this did
not negatively affect performance. In every experiment LLLbase

1 , lllbase
2 , lbase

3 , lbase
4 , lbase

5 were inferred by
L1- regularized maximum likelihood estimation for generalized linear models [165]. We will denote
direct policy estimation using this model as DPE

Metrics

In this evaluation we are interested in comparing the prediction error of policies estimated by DPE,
MCE and MCL. That is, the difference in the state distribution resulting from simulation of the inferred
policies in the joint task POMDP and ground truth data needs to be quantified. For this purpose, the
Kullback-Leibler divergence

KL(p(dt)||p0(dt)) =
T

Â
dt=0

p(dt)(log[p(dt)]� log[p0(dt)]), (4.71)

was used to compare the distribution p(dt) of EOD in the ground truth data and the data obtained
from the inferred policies. This metric has also been employed in [95].

The distributions of the states related to vehicle control were also compared by means of the
Kullback-Leibler divergence. Here, first the state distribution was approximated by a Gaussian
N (µµµt, SSSt). Thereafter, the average Kullback-Leibler divergence for Gaussians

KLG(p(xp
t )||p0(xp

t )) =
1

2T

T

Â
t=0

tr[(SSS0t)�1SSS0t] + (µµµt � µµµ0t
�>

(SSS0t)�1(µµµt � µµµ0t
�

(4.72)

� dim(µµµt) + log[det(SSS0t)]� log[det(SSSt)] (4.73)

was computed which was used as metric.
Finally, the reward parameters qqq0 estimated by MCE-IOC and MCL-IOC were evaluated by the rela-

tive average deviation from the true qqq,

RD(qqq, qqq0) :=
1
n
(

n

Â
i=1

|qqq0i � qqqi|/|qqqi|). (4.74)

Protocol

In the evaluation the initial state xp
0 = [0 m; 0 m/s; 0; 0], d0 = 0 and a horizon T corresponding to 7s

were used. We considered a driving situation, denoted Same, in which data was generated to both
estimate parameters of the policy models and to evaluate the policy models. Furthermore, a different
driving situation, denoted Trans, was used in which data was generated which was not available during
inference and only used for evaluation. This had the purpose of investigating the transferability of the
estimated parameters to previously unseen situation. Both driving situations Same and Trans were
defined by specific external variables vt, kt:

1. Same: Driving speed of v0:T = 50 km/h and
a moderate curve to the left on the motorway of kkk0:T = +1.4⇥ 10�3 m�1

2. Trans: Driving speed of v0:T = 80 km/h and
a moderate curve to the right on the motorway of kkk0:T = �1.4⇥ 10�3 m�1
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4 Inferring Driver’s Policy and Reward

To obtain training data, first the MCE policies for the reward parameters
qqq = [�0.5 m�2;�8 s2m�2;�11;�200 s2; 0.07;�3.5] were computed for both scenarios Same and Trans.
Thereafter, these policies were used to perform 3000 roll-outs for both driving situations. For k =
0, 1, . . . , 10, we then selected the first 2k sequences of instance Same, applied DPE and estimated qqq
using SRMCE-IOC and SRMCL-IOC. Here, the original qqq was used as initial guess for optimization in
SRMCE-IOC and SRMCL-IOC. Finally, the policies (indirectly) inferred by DPE and the IOC methods
were used to sample 1976 new sequences for both Same and Trans. We report the difference between
the original state distribution and the distribution obtained after policy inference.

4.5.2 Results

The results of the evaluation on simulated data are summarized in the following. We report the
medians of the metrics between the sampled behavioral data after estimation of policy parameters
and all the original data of Same and Trans. Tab. 4.1 shows the error in predicting the three methods
SRMCE-IOC, SRMCL-IOC and DPE. The errors in estimating the reward parameters qqq using the IOC
methods SRMCE and SRMCL are summarized in Tab. 4.2 In both tables we indicated the best result,
i.e. the least median error per condition by underlining.

Tabular 4.1: Simulated data evaluation
Num. Train. Seq. Metrics Methods

SRMCE SRMCL DPE
Same Trans Same Trans Same Trans

20 KLG 19.89 19.87 19.39 19.54 19.90 606.7
KL 0.0901 0.2332 0.1219 0.2684 0.1645 0.4057

24 KLG 19.29 19.42 19.27 19.39 19.35 686.3
KL 0.0041 0.0057 0.0018 0.0043 0.1653 0.3495

28 KLG 19.28 19.40 19.22 19.39 19.30 718.2
KL 0.0014 0.0009 0.0008 0.0006 0.1746 0.3560

Tabular 4.2: Deviation from true reward
Methods Num. Train. Seq.

20 22 24 26 28 210

SRMCE 0.723 0.367 0.266 0.212 0.226 0.198
SRMCL 0.431 0.323 0.279 0.236 0.208 0.208

Additionally, we depict the results of the evaluation in Fig. 4.3, Fig. 4.4 and Fig. 4.5.
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Figure 4.3: KLG per number of trajectories. The medians are denoted by the line in red for SRMCE-IOC, in
magenta for SRMCL-IOC and in blue for DPE. The shaded areas indicated the [0.25, 0.75] interval for
SRMCE-IOC, SRMCL-IOC and DPE. The first plot with the continuous lines shows the results for Same
while the second plot with the shows the results for Trans.
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Figure 4.5: RD in log-scale per number of trajectories (Legend in Fig. 4.3).

The results for Same show significantly lower prediction error of the primary task states according to
KLG of the best IOC method compared to DPE on little data ptest < 0.01. The error in KLG of DPE does
not significantly differ from MCE on one trajectory and both have a higher KLG than MCL ptest < 0.01.
On a number of 24 to 128 trajectories samples DPE performed significantly worse than IOC ptest < 0.01
(larger KLG). On more training data, no significant differences in performance were present between
the individual methods. All methods approached a KLG of 19.15 which is the average KLG for sets of
1976 trajectories even under the true parameters.

In evaluation on the transfer scenario Trans all methods showed an increase in prediction error when
trained on few data. However, whereas the prediction error in KLG of DPE exploded, it only slightly
increased in the case of the IOC methods. In addition to that, the IOC methods showed a decrease of
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4 Inferring Driver’s Policy and Reward

the prediction error in terms of KLG to a lower bound of 19.5 which was attributed to the sampling
error as in the case of Same.

In terms of predicting EODs, DPE constantly preformed significantly worse than both IOC methods
in Same. The prediction of DPE did not decrease if more data were used for training, whereas the error
in predicting EODs decreased in the case of SRMCE-IOC and SRMCL-IOC. Furthermore, no significant
differences between the IOC methods could be established. In prediction in the transfer scenario Trans,
errors significantly increased for all methods if less than 10 trajectories were used for training. When
more trajectories were used for training no significant increase in prediction error in terms of KL of the
IOC methods could be established.

4.5.3 Discussion

In the discussion of MCE and MCL in Sec. 4.3.2 we referred to the theorem of [257], that shows
equivalence of MCE and MCL in case of infinite training data. The results of the present evaluation are
in line with that theorem. SRMCE-IOC and SRMCL-IOC already started to converge for a comparably
small amount of 10 trajectories. However, we note that the evaluation was based on simulated data
that was obtained under exactly the same joint task model used in the IOC methods. Hence, the data
distribution could accurately be reproduced.

For a small amount of training data, SRMCE-IOC and SRMCL-IOC differed in both the estimated
reward parameters and the resulting state distributions. This is an important result, as the differences
between MCE-IOC and MCL-IOC have not be considered in any previous work. In practical application
where usually few trajectories are available similar difference may arise and hence both approaches
should be evaluated. The significantly higher prediction error of SRMCE-IOC compared to SRMCL-
IOC when trained on few trajectories can possibly be attributed to the usage of the empirical feature
expectations. A single trajectory of 7 s contains 175 state control pairs in the model frequency of 25
Hz. Maximizing the likelihood of the policy as in the case of MCL-IOC might more efficiently use
information present than first condensing the data into the empirical expectation as in the case of
MCE-IOC.

Finally, the evaluation clearly showed the advantage of IOC over DPE especially in terms of sample
efficiency and transferability of the inferred quantities: Whereas the recomputed policy for the inferred
rewards has low prediction error in the transfer scenario, the directly estimated policy is unable to
account for the adapted behavior. This is in line with other work on MCE for policy inference that
found a similar advantage of IOC e.g. [2, 260, 118]. Admittedly, it also turned out that the policy for
sensor switches under the MCE model is substantially more complex than the used policy model in
DPE, hence a more elaborated baseline should be used in further evaluations.

4.6 A Real-Traffic Driving Experiment

We demonstrated the potential advantage of MCE approaches over DPE in the previous section. It was
shown that policies estimated by DPE show a significant increase of prediction error on previously
unseen driving scenarios. However, the evaluation was done by means of simulated data from exactly
the same POMDP model that was also used in the IOC methods. Sec. 3.6.1 showed that the MCE
policy of the joint task POMDP has similar fundamental properties as driver behavior in real traffic.
Nevertheless, it is unlikely that all model parts perfectly match the relations underlying real-world
behavior. Therefore, it is necessary to evaluate the prediction performance using data from real driving.

4.6.1 Protocol

To obtain data, we conducted a driving experiment on a segment of the German motorway A81 which
is depicted in Fig. 4.6.
The reason for this choice were speed limits of 80, 90, 100, 110 km/h in sub-segments which corre-
sponded to the experimental conditions and a low traffic volume (see Fig. 4.7).
We decided against a study in a driving simulator. This is because of possible influences on the partic-
ipants’ behavior by absence of real risk. In addition to that, it is important to evaluate the robustness
of prediction on realistic sensor input.
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Figure 4.6: Segment of German motorway A81 used for the driving experiment. The recordings were conducted
driving between exit 11 Heilbronn and 13 Mundelsheim. Obtained from [170], License CC-BY-SA 2.0

Figure 4.7: Impressions from the segment of the motorway A81 used for the driving experiment. The segment
features moderate curves and low traffic. As it can be seen on the left picture the higher driving speeds
of 100, 110 km/h were driven on the center lane.

For participants we recruited seven drivers (six male, one female) from the Robert Bosch Group.
As part of the safety concept only drivers were selected that had previously taken a special in-house
driving safety training. Using well-trained and experienced drivers to collect behavioral data is also
beneficial for inverse optimal control. Although the MCE policy model accounts for potential sub-
optimal behavior it is less suited to model highly erroneous behavior [59]. Hence, using selected
drivers supports estimating consistent rewards.

The experiment consisted of four fixed driving speed conditions {80, 90, 100, 110} km/h. Vehicle
speed was controlled by the vehicle’s Adaptive Cruise Control (ACC) to prevent drivers from adjusting
their speed as a compensatory action while being engaged in a secondary task as e.g. observed in
[12]. Furthermore, a conservative time gap was employed to ensure that the distance to preceding
vehicles did have the least possible influence on the drivers’ behavior. When the vehicle traveled at the
required speed, the measurement periods were started. Such a period was either a reference, where
the participants drove fully attentive or involved a visually distracting secondary task. At each speed
three secondary tasks and three reference periods per participant were triggered by the investigator.
The experimental conditions are summarized in Tab. 4.3.
As a secondary task we used the task of typing random numbers {1, 2} that was described earlier
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4 Inferring Driver’s Policy and Reward

Tabular 4.3: Experimental Conditions of Driving Experiment I
Secondary Task Driving Speeds

80 km/h 90 km/h 100 km/h 110 km/h
Reference 3⇥ 3⇥ 3⇥ 3⇥

With Secondary Task 3⇥ 3⇥ 3⇥ 3⇥

in Sec. 3.3.3. The random numbers were incrementally displayed in 3 rounds of 10 numbers and the
drivers were in total required to type 30 numbers. The numbers were shown on a display at the
position of the vehicle’s central information display. This required significant aversion of gaze from the
road scenery as can be seen in Fig. 4.8.

Gaze On Road Gaze Off Road

Figure 4.8: An example of averting gaze aversion to conduct the typing task. (Personal agreement of the depicted
participant was obtained.)

The input buttons were implemented by a number pad which was placed next to the gearshift. The
arrangement is depicted in Fig. 4.9.

Figure 4.9: Artificial secondary task used in the first driving experiment. Left picture shows the vehicle’s interior,
where the driver is reading the random numbers from the display and typing by means of a number
pad. The right picture shows the presentation of the random numbers.

This artificial task was chosen as it resembles the principle of a variety of real visual-manual tasks
performed while driving and possesses several advantages. First, the task state is fully measurable and
can easily be modeled, in contrast to the vehicle’s infotainment system. Second, the participants needed
only little practice to reach maximum execution performance, resulting in no significant learning effects
during the experiment.

Typically, drivers have a significant personal interest in the secondary task they are engaging into
during vehicle control. Hence, to obtain realistic behavior the participants were instructed to “perform
the secondary task as quickly and correctly as possible while not endangering driving safety”, as suggested in
[6].
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4.6.2 Recorded Data and Preprocessing

We used the MPC2 system (Robert Bosch GmbH, Stuttgart, Germany) for tracking the lane boundaries
and recorded the position of the lane yt, the angle between tangent of the lane boundary ft and the
vehicle’s longitudinal axis and the curvature kt via the vehicle’s Controller Area Network (CAN). A
SmartEye Pro (SmartEye AB, Gothenburg, Sweden) three-camera infra-red eye-tracking system with
active illumination was used to estimate the driver’s gaze direction. The cameras were positioned at
the left a-column, in front of instrument cluster and on the dashboard above the display (see Fig. 4.10).

Figure 4.10: Sensors used in experiment I: Red circles denote the cameras of the eye-tracking system. Green
rectangle highlights the camera used for tracking the lane boundaries.

Steering wheel position and velocity as well as absolute velocity measured by standard in-vehicle
sensors were also recorded via the CAN. Hence, beside the eye-tracking systems we relied solely on
signals that are already accessible in today’s series-production vehicles.

In order to ensure sufficient quality for numerical evaluation, pre-processing and filtering steps were
performed on the collected raw data.

Selection of Valid Trials We automatically excluded lane changes and their preparation phases. Being
a different driving maneuver than lane keeping it requires a different driving and gaze policy. Also
situations where the ACC controller reduced the vehicle speed by more than 10% were left out due
to possible influence on the drivers’ behavior. The final data set consisted of 136 valid segments
comprising of 53 reference and 83 secondary task periods with an average duration of ⇡ 50 s.

Sub-sampling and Filtering of Vehicle Signals As the used sensors operate on different frequencies,
e.g. the eye-tracking on 60 Hz but the lane-tracking on 25 Hz, we sub-sampled all signals to 25 Hz.
Thereafter, the Rauch-Tung-Striebel-smoother [186] was employed for filtering of the partially low res-
olution signals yt, ft, at, ȧt, kt using the kinematic vehicle model introduced in Sec. 3.3.1. The steering
angle transmission ratio c was estimated by means of least squares regression while the covariance of
the noise in the vehicle model SSSep was estimated by expectation-maximization as suggested for vehicle
models by [222].

Pre-processing of Eye-Tracking Data The eye-tracking data was pre-processed by first detecting
whether the gaze of the driver was on the road or off the road. This was done by detecting inter-
sections of the eye gaze direction vector with a rectangular region one meter in front of the driver.
This region spanned across the forward road scenery similar as in [108] (further details are reported
in Cpt. 6). The sensor states xz

t that resulted from this approach were cleansed of jitter by removing
all intervals of the same sensor state that had a duration less than 0.1 s. The sensor state of those
intervals were set to the preceding sensor state. Finally, all sensor state data was manually checked
and remaining errors were removed.
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4 Inferring Driver’s Policy and Reward

4.6.3 Behavioral Statistics

Before we present the numerical evaluation on the behavioral data, we wish to report on key statistics of
the behavior of the participants. These statistics were analyzed to validate that the driving experiment
produced realistic driver behavior suitable for evaluation of the inference procedures.

A relevant quantity is the distribution of duration of glances off the road which we will denoted
as max(dt). The rationale behind this notation is that the duration of a glance off the road is a local
maximizer of the eyes-off duration. Furthermore, we also investigated the lane keeping performance
as measured by the Root Mean Squared Error (RMSE) of the lane position (deviation from the lane
center) and the Standard Deviation (STD) of the lane position. As mentioned before, these metrics of
the lane position have previously been used to quantify the effects of distraction [252].

Before we start reporting and analyzing the participants’ behavior we wish to comment on the em-
ployed methodology. The purpose of the driving experiment was to collect data for evaluating inverse
optimal control approaches and baselines. Here, a part of the data is used to estimate the model param-
eters, e.g. the reward parameters qqq in IOC. This is done without personalization. That is, a single global
parameter vector is inferred for all participants. Against this background, the present section also ana-
lyzes the participants’ behavior on global scale without considering identities. For example, difference
between the distribution of glance durations of all participants in the experimental conditions are in-
vestigated. Consequently, statistical test conducted in this sections will assume that the distributions of
those quantities are independent across experimental conditions. Note that quantities of participants’
behavior (such as glance durations) in the different experimental conditions are positively correlated,
hence treating them as independent can only increase p-values of the tests.

As can be seen in Fig. 4.11, the secondary task used in the experiment resulted in a strong con-
centration of max(dt) around the medians which were at 1.1, 1.2, 1.0, 1.1 s at the speed conditions
80, 90, 100, 110 km/h. Furthermore, mean durations of glances off the road of 1.4, 1.4, 1.1, 1.2 s were
present.
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Figure 4.11: Distributions of the durations of glance of the road denoted as max(dt) at the different driving speeds.
Dashed red lines indicate the [0.05, 0.95] quantiles, while the solid red line indicates the median. The
mean maximum glance duration is denoted by a dashed black line.

Considering the quantiles in the speed conditions, which are depicted in Fig. 4.12, the following
observations were made. In the quantiles below 0.75 no significant differences among the driving con-
ditions were present. In contrast, the 0.75 quantiles 3 s, 2.7 s, 2.5 s, 2.1 s showed a significant decrease
(ptest < 0.01) of each of the lower speeds 80 km/h and 90 km/h compared to each of the higher
speeds of 100 km/h to 110 km/h according to the quantile test of [86]. At the 0.95 quantile a signifi-
cant monotonous decrease could be established (ptest < 0.01). With respect of the means a significant
decrease between the groups 80, 90 km/h and 100, 110 km/h could be established (ptest < 0.01). All
other differences turned out to be not significant.
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Figure 4.12: Quantiles of the durations of glances off the road max(dt) in the driving experiment I. Plot shows the
0.05, 0.50, 0.75, 0.90, 0.95 quantiles.

Regarding lane keeping performance effects of the secondary task engagement could be established:
As can be seen in Fig. 4.13, the standard deviation of the lane position showed a small but significant
increase from a median of 0.158 m during driving without a secondary task to a median of 0.165 m
during driving in presence of the secondary task according to a Wilcoxon rank sum test (ptest = 0.01).
The RMSE of the lane position was more sensitive with respect to the presence of the secondary task,
which was present in a highly significant increase from 0.239 m to 0.274 m (ptest ⌧ 0.01).
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Figure 4.13: Left plot depicts the statistics of the standard deviation of the lane position, right plot shows the
statistics of the root mean squared deviation from the lane center. Solid line indicates the median of
the statistic, whereas the dashed lines indicate the [0.05, 0.95] confidence interval.

Finally, the time required to complete the secondary task strongly concentrated around the median of
28 s which was close to the 0.05 quantile of 24 s. The distribution of the durations of the secondary
task is depicted in Fig. 4.14.
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Figure 4.14: Distribution of the time required by the participants to correctly type 30 random digits 1, 2. Dashed
red lines indicate the [0.05, 0.95] quantiles, while the solid black line indicates the median.

4.6.4 Discussion

The distribution of the duration of glances off the road is well in line with those obtained in previous
real traffic driving experiments. For example, [245] found a similar distribution with means ranging
from 0.9 s to 1.4 s depending on the difficulty of the secondary task. In contrast to that work, in our
case the percentage of glances off the road whose duration exceeded 2 s was higher then 0.25 even for
110 km/h. However, this may be explained by the fact that the participants were experienced drivers.

[245] showed that mean and median maximum glance duration are sensitive to secondary task
difficulty. Hence, we hypothesize that the influence of the chosen secondary task dominates over the
influence of the speed conditions with respect to the medians and means. A strong influence of the
speed condition only in the higher quantiles is plausible considering previous occlusion experiments
[207, 69]. Here, speed dependence was found in the median maximum occlusion time the participants
tolerated.

Finally, similar effects of secondary task on lane keeping performance have been found in other
works. Similar small effects of the presence of a secondary task on the STD were also found in the
naturalistic driving experiment of [55]. In [174] the standard deviation of the lane position was 0.1 m
for attentive driving and 0.15 m for driving in presence of a secondary task. The differences observed
in the absolute values observed in our driving experiment compared to that study may be explained by
the following fact. The data of [174] contained a high proportion of driving on rural roads. Compared
to driving on the motorway this is associated with smaller lanes and lower speeds. These aspects are
both likely to decrease the overall STD of the lane position. Interestingly, in contrast to the STD the
RMSE of the lane position was sensitive to the presence of the secondary task. However, we currently
lack a sufficient explanation of this effect.

As a result of this discussion we can conclude that the driving experiment was successful in pro-
viding realistic data of adaptive driver behavior in engagement in a secondary task. The behavioral
statistics in both the distribution of durations of glances off the road as well as the distribution of lane
positions were comparable to those obtained in other experiments. In addition to that, the drivers
significantly adapted the tail of the duration of long glances to the experimentally imposed different
driving speeds.

4.7 Evaluation on Real Traffic Data

Given the behavioral data obtained in the previously described real traffic experiment IOC methods
for policy and reward inference can realistically be evaluated. At this point, we would like to refer
back to the purpose of this estimation problem. The normative model of glance behavior developed
in the previous chapter requires to specify the reward parameters that is accepted by the drivers.
Furthermore, the driver’s likely future behavior must be considered when defining appropriate glance
behavior. Inverse optimal control is a technique to obtain all reward parameters and a realistic policy
based on behavioral data. This is done by searching for reward parameters such that the corresponding
policy reproduces the observed behavior. In case of the maximum causal entropy model we can obtain
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both the normative reward parameters and a realistic sub-optimal policy model under the assumption
that the observed drivers show at least rational behavior.

The goal of incorporating a realistic model of driver behavior in computing appropriate glance
behavior can be evaluated using the behavioral data. This is possible by investigating how well the
policies obtained by IOC predict the observed behavior. By comparison of the prediction error of the
inferred policies to the errors of established behavioral models, additionally, the assumptions made
in the development of the joint task POMDP can be assessed. It should be noted that evaluating
prediction errors does not directly relate to the acceptance of the reward parameters when used in a
warning system. This is only the case if drivers desire appropriate glance behavior that is close to
their own behavior. In the context of the behavior of autonomous cars this hypothesis has recently
been questioned [21]. Therefore, later in this thesis a user test is conducted that directly assesses the
acceptance by the driver (see Sec. 6.4). Nevertheless, it is a reasonable objective to require that the
computed gaze switching policies are consistent with respect to the driver behavior. That is, that the
policies consider the influences of the driving situation on driver behavior which has been shown
to increase system effectiveness [195]. This aspect can be evaluated by assessing the errors when
predicting behavior in a driving scenario unseen during training. If the prediction performance in
the unseen scenario is significantly worse than the performance on the seen scenario, then important
influences of the driving situation are missing in the model.

4.7.1 Scenario

For these reasons the obtained behavioral data is used to compare the prediction performance using
the IOC approaches to the prediction performance obtained by applying DPE. We consider both a
general assessment of prediction errors as well as an analysis of the errors in transfer to unseen driving
situations.

Inverse Optimal Control Methods

In this evaluation we considered the maximum causal entropy inverse optimal control for the joint
task POMDP under sensor model restriction and the simple secondary task, i.e. SRMCE-IOC and
SRMCL-IOC. Here, the parameters of the dynamics model of the driving task were set to those values
previously inferred in the preprocessing of the data (Sec. 4.6.2). The reward features on the primary
task states (3.9) were used as in the evaluation on simulated data (Sec. 4.5.1). Furthermore, we assumed
that the driver can fully sense all primary task states when his gaze is on the road, i.e. ŜSSp

0 = 000. Similar
to the evaluation on simulated data (Sec. 4.5.1) a sensor noise covariance of SSSez

(xz
t = 0) = [•; 0; •; 0]

was used. It seemed reasonable to assume that the drivers obtained no information from the road
scenery when conducting the secondary task as it required significant gaze aversion which can be seen
in Fig. 4.8.

Although previously algorithms for other policy models and other variants of the POMDP model
have been derived, those were not considered in the evaluation. This is due to the following reasons:
First, using IOC under the optimal policy in the same POMDP model, i.e. SRopt, offers no advantage
over the MCE policy model. This is because the MCE policy can closely approximate any optimal policy
using high values of the reward parameter (Sec. 2.55). Second, STRopt-IOC could not be evaluated due
to infeasible computational demand. For both, computing optimal policies and computing gradients,
tractable algorithms STRopt Algo. 6 and STRopt-IOC Algo. 14 were derived. The previous analysis
3.6.2 showed high computational complexity and computational demands of the policy computation
according to STRopt. Inverse optimal control requires to compute optimal policies at each iteration of
the gradient-based approach for minimizing the gap. In this specific evaluation, additionally several
different instances of the POMDP had to be solved at each iteration. This is because the individual
periods recorded in the experiment all differed in track topology and driving speed. Hence, applying
IOC using STRopt on the data of the driving experiment is not feasible. Finally, we considered only
the simple secondary task in the joint task POMDP.
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To prevent over-fitting of the reward parameters we regularized their absolute values. This was done
by adding terms

0.01
n

Â
i=1

���E⇥ T

Â
t=0

jjji(xt, ut)
��D⇤���|qqqi| (4.75)

to the objectives of the minimization problems involved in SRMCE-IOC (4.45) and SRMCL-IOC (4.46).
Similar as in the evaluation on the simulated data Sec. 4.5.1 a barrier function was used to ensure a
well-defined POMDP. Finally, a relative gradient norm of  10�6 was used as a termination criterion.
For convenience, we abbreviate SRMCE-IOC and SRMCL-IOC as MCE and MCL in figures and tables
throughout the evaluation.

Direct Policy Estimation Baselines

For comparison of prediction performance of the policy resulting from IOC, a generic DPE baseline
(DPE1) and a DPE baseline using established behavior models for human attention allocation and
foresighted steering (DPE2) were employed.

Generic Baseline (DPE1) As a first simple baseline the generic policy model previously introduced
in Sec. 4.5.1 was used.

Baseline Using Established Beahvioral Models (DPE2) Furthermore, the following baseline was
considered: [94, 95] presented a model for gaze-allocation in visual dual-tasking, where the probability
of a gaze switch to a task is a logistic function of the uncertainty in its states. In our case uncertainty is
only present in the vehicle states - the random number is either known to the drivers if he/she has seen
it on the display or unknown otherwise. Therefore, we applied the following variant of the original
approach

p(uz
t |xz

t = 1) =
exp(lbase

1 ) + uz
t

exp(lbase
1 ) + 1

(4.76)

p(uz
t |xz

t = 0, SSSp
t ) =

exp(lbase
2 + tr(LLLbase

3 SSSp
t )) + uz

t

exp(lbase
2 + tr(LLLbase

3 SSSp
t )) + 1

. (4.77)

with parameters lbase
1 , lbase

2 , LLLbase
3 .

The two-point-steering model of [197] was applied to model human foresighted steering, including
curve negotiation. Here, it is assumed that the driver’s steering policy builds on a visual near-angle
b2

t and a visual far-angle b2
t . Given a lane with width w the visual near-angle b1

t is defined as the
angle between a line from the vehicle center to a point on the road center typically 2 m ahead and the
vehicle’s longitudinal axis. The far-angle b2

t is defined as the angle of minimal magnitude of the angles
between the tangents from the vehicle’s center to both lane boundaries and the vehicle’s longitudinal
axis. Both angles are illustrated in Fig. 4.15. using an arc approximation of the track.

ft vt

b2
t

b1
t

1/kt

lb lc

w/2

yt

Figure 4.15: Illustration of the variables of the two-point steering model. Here, it is assumed that the track can
closely be approximated by means of an arc.
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Given collected data, the track topology of the entire recorded periods is available in form of the mea-
sured curvature kkk0:T . This can be exploited to precisely compute the near and far angles [78]. However,
we found that the track could sufficiently accurately be approximated by an arc using only the current
curvature kt. In this case both angles of the two-point steering model b1

t , b2
t can be computed in closed

form using

b1
t = � arctan

�
yt (2 m)�1�� ft (4.78)

b2
t =

(
� arccos

��
1� kt (w/2 + yt)

��1�� ft kt < 0
+ arccos

��
1 + kt (w/2� yt)

��1�� ft kt � 0
. (4.79)

We used the computed near and far angle as well as the steering angle to define the policy

pbase
t (ȧt|b1

t , b2
t , at) : ȧt = lbase

4 b1
t + lbase

5 b2
t + lbase

6 at + ebase
7 , (4.80)

with parameters lbase
4 , lbase

5 , lbase
6 and a normally-distributed random variable ebase

6 . This policy differs
from the one used in the original work [197] where a proportional-differential (PD) policy was applied.
However, this approach turned out to be problematic in the evaluation on real traffic data. The reason
is that the curvature measured by the lane tracking often oscillated around 0. This corresponds to an
“almost” straight lane which is quite usual on a motorway. However, as a result of the oscillations in kt
jumps in the far-angle b2

t were frequent. These finally led to shaky behavior of the PD controller and
loss of control.

The barrier model and the two-point model were linked by replacing yt, ft in (4.78), (4.79) with their
expectations if the sensor state xz

t was 0 i.e. when the driver’s gaze was off the road. Note, that this
approach is very similar to the model applied in [94]. We will denote the resulting policy model as
DPE2.

The parameters of the baselines were inferred by restating the models as generalized linear models
[165]. Thereafter standard methods for fitting the parameters under L1 regularization were used.

Metrics

Similar as in the evaluation in Sec. 4.5.1 the Kullback-Leibler divergence KL(p(dt)||p0(dt)) was used to
measure the difference between the distributions of EOD in the experimental data and the predicted
distribution of EOD.

In contrast, the expected squared error between the true lane position yt and predicted lane position
y0t,

SE(y; ppp0:T) = E
⇥ 1

T

T

Â
t=0

(y0t � yt)
2|ppp0:T ,PPP0:T , p0

⇤
(4.81)

was used in the present evaluation. The reason is that the Kullback-Leibler divergence for Gaussians is
not defined for single trajectories yt. As all other states of the kinematic model affect the lane position,
the squared error of the lane position is a suitable metric for evaluation of prediction performance.

Protocol

For the numerical evaluation we further subdivided all valid segments of the driving experiment into
snippets of ⇡ 5 s (overlap ⇡ 2.5 s). This was to account for a realistic prediction horizon in a real-time
system. In the evaluation a part of the data was used for (indirectly) estimating policies, whereas a
different part was used for evaluation of the prediction performance.

For DPE all training data was merged into a single set on which parameters were inferred. In case
of the IOC methods, first for every snippet in the training set the corresponding POMDP model was
generated. That is, the values of the first states in the data were used as initial distribution and the
driving speed as well as the lane curvature were considered in the POMDP model. Thereafter, the
reward parameters were inferred.
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The assessment of prediction quality on the test set was done in the following way: We first generated
the POMDP models corresponding to each snipped. Then the rewards inferred by the IOC approaches
were used to obtain the specific maximum causal entropy policies in the POMDPs. Finally, we used the
policies obtained by the DPE and IOC approaches and the POMDP models to sample 100 sequences.
Based on these sequences the prediction error was estimated. The evaluation protocol consisted of two
distinct evaluations in total:

Overall Prediction Performance We first evaluated the overall prediction performance by splitting the
data set into a training set and a test set of equal size randomly and independently of driver, velocity
and track-topology. Afterwards the roles of the data sets were swapped. To more precisely estimate
the error statistics this 2-fold cross-validation procedure was repeated 10 times.

Transfer Performance To investigate the generalization quality on unseen velocities we conducted
a second evaluation. Here we trained on a random selection of half of the data of one single speed
condition. We thereafter tested on the remaining half with the same and on all data of other velocities.
In this evaluation we performed 5 repetitions.

4.7.2 Results

The results of the evaluation of the overall prediction performance and the transfer performance are
summarized in following. In the evaluation the prediction errors followed skewed distributions which
can e.g. be seen in Fig. 4.19. Hence, we report on the median errors over the considered snippets.

We first evaluated the overall prediction performance ( introduced in Sec. 4.7.1), whose results are
depicted in Fig. 4.16 and in Fig. 4.17. As shown in Tab. 4.4 the IOC generally approaches showed a
smaller median prediction error in both the SE and the KL metric.

Tabular 4.4: Overall Prediction Performance
Metrics Methods

DPE1 DPE2 MCL MCE
Train Test Train Test Train Test Train Test

SE 0.095 0.096 0.048 0.048 0.021 0.021 0.015 0.015
KL 0.110 0.109 0.100 0.100 0.072 0.073 0.074 0.075

In none of the evaluated methods a significant difference between the prediction errors on the test and
the training set could be established (ptest > 0.01). Hence, adequate regularization has been employed.
With respect to the SE metric the following performance differences were significant (ptest < 0.01):
DPE1 had a higher median SE than DPE2, DPE2 had a higher median SE than MCL and finally MCL
had a higher median SE than MCE. In the KL metric the difference between both baselines were small
but still DPE2 had a significantly smaller prediction error than DPE1 (ptest ⇡ 0.01). Furthermore, both
IOC methods showed significantly (ptest ⌧ 0.01) lower prediction error than the baselines. However,
no significant differences between the IOC method could be established (ptest > 0.01).
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Figure 4.16: Expected squared error in prediction of the lane position. Box indicates the [0.25, 0.75] interval, while
the notch depicts the median. Whiskers indicate 1.5⇥ the median to quantile distance. Train denotes
prediction errors on the data set used for training, Test denotes prediction errors on the held out data.
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Figure 4.17: Difference of true distribution and predicted distribution of EOD measured by the Kullback-Leibler
divergence. Box indicates the [0.25, 0.75] interval, while the notch depicts the median. Whiskers
indicate 1.5⇥ the median to quantile distance. Train denotes prediction errors on the data set used for
training, Test denotes prediction errors on the held out data.

The results of the evaluation of the transfer performance (Sec. 4.7.1) are shown in Fig. 4.18 and in Fig.
4.19. Tab. 4.5 further summarizes the obtained prediction errors.

Tabular 4.5: Transfer Performance
Metrics Methods

DPE1 DPE2 MCL MCE
Same Trans Same Trans Same Trans Same Trans

SE 0.088 0.097 0.040 0.052 0.021 0.021 0.015 0.015
KL 0.098 0.118 0.112 0.118 0.073 0.073 0.075 0.075

Both IOC method show a significantly ptest < 0.01 smaller increase of the prediction error in the transfer
than both the DPE baselines. This was verified by conducting signed rank test on the differences of
the medians of both metrics SE and KL. Between both IOC methods no significant differences could
be established ptest > 0.01. In contrast, the transfer performance of the DPE baselines differed: DPE1
showed a small but significant better performance than DPE2 with respect to SE ptest ⇡ 0.01, while the
increase of prediction error DPE2 was smaller than the increase of error in DPE with respect to the KL
ptest ⇡ 0.01.
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Figure 4.18: Expected squared error in prediction of the lane position. Box indicates the [0.25, 0.75] interval, while
the notch depicts the median. Whiskers indicate 1.5⇥ the median to quantile distance. Same denotes
prediction errors on the held out data set of the same speed, Trans denotes prediction errors on unseen
speeds.
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Figure 4.19: Difference of true distribution and the predicted distribution of EOD measured by the Kullback-
Leibler divergence. Box indicates the [0.25, 0.75] interval, while the notch depicts the median.
Whiskers indicate 1.5⇥ the median to quantile distance. Same denotes prediction errors on the held
out data set of the same speed, Trans denotes prediction errors on unseen speeds.

Breaking down the prediction performance in Tab. 4.6 reveals more insights into the difference between
the considered DPE2 and SRMCE-IOC. SRMCE-IOC turned out to result in smaller prediction error
in both metrics and in all evaluation conditions except for the KL in training on 110 km/h and test
on 100 km/h. Furthermore, a Kruskal-Wallis test revealed significant (ptest < 0.01) between-condition
variations in both methods and both metrics. Consequently, the prediction performance showed large
variations in all methods and metrics which can also be seen in Fig. 4.18 and Fig. 4.19. However, in
the case of SRMCE-IOC the variation was significantly smaller than in the case of DPE2, which was
verified by a Ansari-Bradley test (ptest < 0.01).
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Tabular 4.6: Breakdown of Transfer Performance
Train Speeds Metrics Methods Test Speeds

80 km/h 90 km/h 100 km/h 110 km/h

80 km/h
SE MCE 0.0154 0.0143 0.0164 0.0154

DPE2 0.0293 0.0572 0.0725 0.0836

KL MCE 0.0851 0.0744 0.0738 0.0701
DPE2 0.1280 0.1180 0.1025 0.1216

90 km/h
SE MCE 0.0152 0.0148 0.0159 0.0163

DPE2 0.0310 0.0365 0.0477 0.0627

KL MCE 0.0833 0.0748 0.0730 0.0712
DPE2 0.1307 0.1146 0.1018 0.1200

100 km/h
SE MCE 0.0147 0.0160 0.0155 0.0161

DPE2 0.0311 0.0390 0.0450 0.0584

KL MCE 0.0838 0.0763 0.0731 0.0693
DPE2 0.1374 0.1124 0.1100 0.1173

110 km/h
SE MCE 0.0157 0.0152 0.0179 0.0177

DPE2 0.0401 0.0408 0.0479 0.0603

KL MCE 0.0825 0.0724 0.0755 0.0721
DPE2 0.1249 0.1076 0.0901 0.1102

Finally, we present some anecdotal evidence from the evaluation. Fig. 4.21 and Fig. 4.20 depict the
trajectory of the lane position yt and the distribution of the sensor state xz

t as well as the predictions of
DPE and IOC for a snippet of secondary task interaction at 90 km/h. As can be seen in the histogram
of the sensor state xz

t , the driver had his gaze off the road at approximately 89 percent of the time. This
was fairly well predicted by the MCE policy, whereas the barrier model included in DPE2 predicted a
significantly smaller proportion of gaze off road. When predicting the trajectory of the lane position
yt both DPE2 and SRMCE-IOC made significant errors at the end of the prediction horizon of 5 s.
However, in total the prediction of the MCE policy is better than that using the two-point steering
model. Notably, the latter approach falsely predicts a significant risk of lane departure.

xz
t = 1 xz

t = 0

DPE2
MCE
data

p(
xz t)

0
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1

Figure 4.20: Histogram of the distribution of sensor states xz
t for a snippet of secondary task interaction at 90

km/h. Blue bars indicate the histogram resulting from prediction under DPE2, red bars indicate the
histogram under prediction under MCE and the green bar indicates the actual distribution of sensor
states shown by the driver.
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Figure 4.21: Trajectories and trajectory distribution of the lane position yt for a snippet of secondary task inter-
action at 90 km/h. The thick black horizontal lines in the plot indicate the lane boundaries which
were at approximately ±1.75 m. The dashed horizontal lines indicate the lane position where the
first wheel of the vehicle crosses the lane boundaries. The trajectory driven by the observed driver is
denoted by a green line. The first plot shows the trajectory distribution predicted using DPE2 in blue.
The second plot shows the trajectory distribution predicted using MCE in red.

4.7.3 Discussion

Comparing the results of the evaluation on simulated data (Sec. 4.5) to the results of the evaluation
on real data (Sec. 4.7) the following observations can be made. First, the advantages of IOC over
DPE shown on simulated data are reproduced on the real data. However, in the present evaluation
prediction errors of policy obtained by DPE did not explode. We think this can largely be attributed
to the fact that the real data set is more diverse, which prevents policy overfitting in DPE. A large
amount of data (136 of 50s periods obtained in the driving experiment which resulted in more than
1360 snippets of 5s) was used for SRMCE-IOC and SRMCL-IOC. Nevertheless, when evaluating on
real traffic data apparently different rewards were estimated. This was visible in significantly different
prediction performance. In contrast, the IOC methods inferred similar reward parameters on simulated
data under perfect match of the policy and POMDP model. Hence, we hypothesize that effects of model
mismatch are present in the behavioral data. MCL-IOC tries to match the state control pairs present in
the data by the MCE policy model. In contrast, MCE-IOC tries to directly match the state distribution
of the data under both the MCE policy model and the joint task POMDP model. This can explain why
MCE resulted in significantly smaller prediction error.

Similar as in many previous work e.g. [2, 260, 211], reward inference by both IOC methods combined
with policy recomputation showed excellent transfer performance. This is in strong contrast to directly
estimated policy whose prediction error significantly increases when evaluated on unseen driving
situations. As reported in the analysis of driver behavior in Sec. 4.6.3, drivers significantly adapted
the duration of glances off the road in the driving experiment. This adaptation is taken into account
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in reward inference and is closely reproduced by the computed rational policies. DPE infers a static
policy instead.

In the evaluation the generic baseline DPE1 resulted in consistently higher prediction error than
DPE2 consisting of the barrier and the two-point steering model. This is very plausible as the model
parts of DPE2 were explicitly developed for modeling driver behavior. The better prediction perfor-
mance obtain by application of IOC can be explained by two aspects. First, in the maximum causal
entropy policy of the joint task POMDP glance behavior and vehicle control performance as well as the
external influences speed and lane curvature are all coupled. Hence, this approach results in a more
holistic approach than the baseline where gaze and steering policy are largely independent of each
other. This hypothesis is supported by the observed consistently lower prediction error of SRMCE-IOC
compared to DPE shown in Tab. 4.6. Second, taking into account behavioral adaptation also improves
overall prediction performance. This is because the specific differences in behavior can be predicted
which are washed out in DPE because a single policy model is fitted over several different driving
scenarios.

4.8 Conclusion

In the present chapter, we addressed inferring the parameters of the reward and the model of the
driver’s policy. Those quantities are required to specify appropriate glance behavior by means of
rational policies in the joint task POMDP. For this purpose we introduced inverse optimal control
in form of Syed’s game-theoretic IOC and maximum causal entropy IOC. These frameworks were
used to derive IOC algorithms for the joint task POMDP under either restriction of the sensor model
or the secondary task model as well as optimal and maximum causal entropy policy models. In a
first evaluation the original maximum causal entropy approach and the maximum causal likelihood
variant were compared. This work was the first to discover significant differences in inferred rewards
and predictive performance on small data sets. Furthermore, IOC approaches obtained consistently
better prediction performance than directly estimated policies. Thereafter, we introduced a driving
experiment conducted to obtain data of realistic and adaptive driver behavior for evaluating the IOC
methods. Using this data, an evaluation of two DPE baselines and MCE-IOC as well as MCL-IOC
was conducted. Both, overall prediction performance as well as transfer performance were considered.
Similar as in the evaluation on simulated data, both IOC methods significantly outperformed the DPE
approaches in terms of prediction quality. Notably, the IOC approaches also generalized to previously
unseen driving scenarios.

As the evaluations demonstrated, IOC under the maximum causal entropy policy model allows to
infer realistic policies of driver behavior. These are beneficial for defining appropriate glance behavior,
that takes into account the driver’s likely actions for improved effectiveness. Furthermore, we argue
that reward inference using IOC on data of experienced and well-instructed drivers is also suitable to
define normative parameters of the model of glance behavior. This is because in the evaluation the
inferred reward parameters allowed to closely reproduce driver adaption to the different speed condi-
tions under a rational policy. Hence, the resulting policies in the joint task POMDP take into account
the same aspects of the driving situation that shape driver behavior. This is likely also beneficial for
good acceptance of the normative model of glance behavior by the drivers. However, we admit that
the acceptance of this model can only thoroughly be evaluated by means of subjective judgments of
drivers. For this purpose, it is necessary to integrate the model of appropriate glance behavior into a
distraction warning system and to conduct a user test. Cpt. 6 introduces a driving experiment which
served to evaluate acceptance and effectiveness of the such a warning system.

In Sec. 4.4.2 we made a first a excursion on the difficulties of quantifying the driver’s perception.
Specifically, we introduced the issues that arise from the fact that the drivers’ sensory measurements
zt cannot be obtained when collecting behavioral data. Fortunately, the inverse optimal control ap-
proaches allowed to overcome this problem by means of integrating over the distribution of the ex-
pected primary task states µµµ

p
t of the driver. Inverse optimal control allows to only infer policy and

rewards from behavioral data and we set the sensor model assuming that the driver receives no sen-
sory measurements of the primary task states when averting gaze. This seemed to be a reasonable
approach considering the amounts gaze aversions for the required secondary task (see Fig. 4.8). How-
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4 Inferring Driver’s Policy and Reward

ever, this choice of sensor model parameters may not be appropriate for other situations e.g. other
display positions. Ideally, techniques for inference of the parameters of the sensor model are applied.
Cpt. 5 shows that this is possible by extending IOC and applying a similar technique of integrating
over the distribution of expected primary task states.
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Human motor behavior is naturally guided by sensing the environment. Therefore, an explicit model
of the driver’s sensor characteristics has been included into the normative model of glance behavior
previously introduced in Cpt. 3. According to its strong influence on the overall model, valid pa-
rameters of this model part are important. This chapter presents methodology for inference of sensor
models underlying the behavior of experienced drivers. Sec. 5.3 shows how inverse optimal control can
generally be extended to inference of the dynamics in an MDP and specifically to estimate the sensor
model in a belief-MDP in Sec. 5.4. Sec. 5.5 derives concrete inference procedures for the parameters of
the linear Gaussian sensor model of the joint task POMDP. A new driving experiment for evaluating
the estimation methods is presented in Sec. 5.6. Finally, Sec. 5.7 investigates the predictive performance
when extending inverse optimal control with respect to inference of sensor models.

The inference framework developed in this chapter was strongly motivated by Felix Schmitt’s collab-
oration with Michael Herman, Tobias Gindele, Jörg Wagner and Wolfram Burgard [77]. The contents
of the present chapter were largely previously published in [204].

5.1 Introduction

In driving, most of the relevant information is acquired by the driver using vision [214] but also other
sensory modalities contribute [164]. Due to the strong decrease of human visual acuity [249] often gaze
switching is required when the driver wants to engage in a visually demanding secondary task. In the
previous chapter, we demonstrated that the drivers’ gaze switching strategies in a specific secondary
task can already quite well be predicted using inverse optimal control. This was possible by inferring
reward parameters of the concurring tasks of vehicle control and engagement in a secondary task as
well as the cost of switching gaze. Here, we assumed that the driver does not obtain any information
from the forward road scenery when averting his or her gaze. However, this simple sensor model
might be less appropriate for other secondary tasks. In a series of driving experiments [230, 229, 123]
researchers investigated the decrements in vehicle control performance when the drivers gazed at var-
ious locations in the vehicle’s cockpit. For example, lane keeping while the driver’s gaze was on the
central information display, the mirrors or the speedometer were studied. The results showed signifi-
cant effects of the amount of gaze aversion (in angular difference to the forward road scenery) on the
driving performance. These differences were attributed to varying amount of peripheral vision which
contributes to vehicle control by the driver [17]. Consequently, the normative model of glance behav-
ior should account for the specific characteristics of peripheral vision during engagement a secondary
task.

The sensor model in the joint task POMDP can implement these differences using different pa-
rameter values. However, the linear Gaussian sensor model employed in our work is only a crude
approximation of the neuro-biological processes underlying human vision. Hence, we cannot derive
suitable parameters from the physiology of the eye. Instead, these parameters must be estimated from
experimental data of human behavior.

In estimation a significant challenge must be faced: Neither the sensory measurements made by
the driver nor the resulting beliefs are measurable. Several techniques and instruments are available
to measure human brain activity such as e.g. electroencephalography, functional magnetic resonance
imaging or magnetoencephalography. Still, human neurological information processing is not yet
sufficiently well understood to mathematically relate the measured quantities to the sensing of physical
states such as the vehicles lane position. Consequently, it is not possible to infer sensor models by
means of regression techniques. This is because only the inputs to the sensor model, i.e. the true
states, but not the outputs, i.e. sensory measurements made by the observed human subject, are
available. Note, that this is in contrast to technical sensors whose characteristics can often be estimated
by means of regression using a reference senor with significantly higher precision.
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5 Inferring Driver’s Sensor Characteristics

Despite this difficulty a variety of practical models of human sensor characteristics has been esti-
mated from behavioral data. Since the seminal works of Weber and Fechner in psycho-physics in the
19th century [60], the following approach has been pursued: Human sensor characteristics can in-
directly be estimated from the human reaction they elicit. This can for example be implemented by
decreasing the intensity of a stimulus until the human exposed to it cannot notice it anymore. Here,
the implicit assumption is that the experimental subjects acts as an optimal detector with respect to his
or her capabilities. That is, he or she reports accordingly if any difference is noticeable.

In this chapter, we generalize this established methodology and derive a formal approach for infer-
ence of sensor models from their effects on rational policies in partially observable Markov decision
processes. This is done by extending inverse optimal control, which only allows for inference of reward
parameters, towards estimating sensor model parameters. Importantly, the derived approach does not
require any data of the sensory measurements of the observed agent.

5.2 Related Work

The main tool in psycho-physics for estimating sensor models is signal detection theory [60, 233]. Here,
so-called psychometric functions are applied that relate stimulus characteristics and human sensor
characteristics to the probability of detection by a subject. Fitting such a model to data of stimuli and
measured responses allows to infer sensor models [233]. For example, the parameters of models of
human sensing of translational acceleration can be estimated [219] and an unpublished application to
driver’s sensor characteristic has been reported [164]. Fit of signal detection models generally requires
carefully controlled experiments where only a single stimulus is presented at a time and in several
repetitions. Such an approach is only possible in a laboratory. More important, detection thresholds
found in passive conditions can fail to generalize to conditions where the human is actively engaging
in a task [243]. Hence, this methodology is problematic if one seeks to characterize drivers’ vision
during engagement in a secondary task.

Solving the joint task POMDP relied heavily on its transformation into an equivalent belief MDP.
This type of MDPs unifies the decision theoretic model of MDPs with Bayesian inference on the states
based on both internal models and sensory measurements. A special class of belief MPDs has been
popularized under the term Bayesian Decision Theory (BDT) for modeling human perception in cogni-
tive science and neuro science, e.g. [111]. Here, the agent possesses prior knowledge given by internal
models of the states and its own sensors which is fused with the sensory measurements. Finally, the
agent makes a decision as to minimize a loss function of the belief of the states. Given behavioral data
and a Bayesian decision model, model parameters can be inferred by model-inversion. For example,
[114] inferred the prior belief of the observed agents. This approach has been formalized in inverse
Bayesian decision theory (IBDT) [46, 45]. However, it was noted that IBDT is well defined only under
special conditions [3]. Important for the present work, BDT often does not consider temporal dynamics
in the decision making problem. Especially, to the best-of-our-knowledge IBDT has only been applied
to problems of a single decision step. In contrast, appropriate glance behavior involves several decision
steps. For example, the decision to return gaze to the road considers how fast the likely accumulated
deviation from the lane center can be corrected under economic steering effort.

Most relevant for this thesis, a few works have considered estimating sensor models within the
POMDP class of linear quadratic Gaussian problems. This is because in this class both belief and
optimal policies are given in analytical form. Notably, [176] addressed inference of linear quadratic
Gaussian sensor models already in the 70s. Here, necessary conditions for identifiability and an es-
timation procedure were given for the special case of steady-state optimal policies in infinite horizon
LQGs. This was possible by exploiting the characterization of the optimal policy derived in [101].
More recently, [70] addressed inference of internal models of agents in general LQGs. The developed
approach requires a given model of the policy or the underlying rewards but allows for mismatch
between the dynamics and sensor characteristics and the internal models of the agent.

Similar as [176] we consider joint inference of policy and sensor model. However, we relax the
assumption of optimal behavior. Instead, our methodology assumes rational behavior according to
the maximum causal entropy framework [257]. Motivated by the approach of [77] for inference of
dynamics underlying MCE policies in MDPs a general framework estimating sensor models underlying
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MCE policies in arbitrary POMDPs is developed. Furthermore, we derive algorithmic approaches to
implement the framework in the class of the joint task POMDP. In contrast to [176, 70] who considered
LQGs with a fixed sensor model, our work also allows switching of sensor models as present in the
model of appropriate glance behavior. Furthermore, we address inference of parts of a POMDP model
in continuous states whereas in [77] only procedures for inference of MDP dynamics in small discrete
state spaces are given. Finally, the chapter reports on an evaluation of the developed approach on data
of a new driving experiment. Here, we study the benefits of inference of sensor models using our
approach and variants of [176, 70] in comparison to IOC as well as direct policy estimation. In addition
to that, it is also investigated whether using the information available in the driver’s glace behavior
improves estimation of sensor models.

5.3 Inferring Dynamics From Observed Rational Behavior

In the present section we first review Simultaneous Estimation of Rewards and Dynamics (SERD) [77]
for inference of dynamics in Markov decision processes from the behavior of a rational agent acting
therein. The ideas used in this context will later be applied to derive a framework for estimating sensor
models.

In inverse optimal control we aimed at estimating the reward parameters qqq given behavioral data
D = {(ut=0:T , xt=0:T)i=1:n} produced by an unknown policy ppp0:T under known initial state p0 and
known process model PPP0:T . The parameters qqq could be obtained minimizing the gap

min
qqq

g(qqq,D) = min
qqq2⇥

⇣
V?,qqq

0 �E
h T

Â
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���Di⌘,
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Importantly, all the optimization problems could be solved by computing the gradient of the (soft)
state-control function rqqqQ?,qqq , rqqqQ̃qqq using recursions

rqqqQ?,qqq
t (xt, ut) = jjj(xt, ut) + E

⇥rqqqQ?,qqq
t (xt+1, p?,qqq

t+1(xt+1))
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(5.1)

and

rqqqQ̃qqq
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t (xt+1, ut+1)
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t (ut+1|xt+1),P(xt+1|xt, ut)

⇤
.

[77] observed that the negative log-likelihood is not only a differential function of the reward parame-
ters qqq but also of parameters lll of the dynamics PPPlll. This is because both functions Ṽqqq,lll

t (xt), Q̃qqq,lll
t (xt, ut)

are differentiable functions of lll. Specifically, it holds for the gradients of the soft value function with
respect to the parameters of the dynamics lll:

rlllṼqqq,lll
t (xt) = rlll log
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⇤
. (5.3)
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Furthermore, the gradient of the state-control function rlllQ̃qqq,lll
t (xt, ut) is given by

rlllQ̃qqq,lll
t (xt, ut) = rlll
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The gradients of the optimal value function rlllV?,qqq,lll
t (xt) and state-control function rlllQ?,qqq,lll

t (xt, ut)
fulfill similar relations. Specifically, it holds
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and
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[77] used the previously derived conjecture on the gradients of the soft state-control function to infer
parameters lll of the MDP dynamics. This was done minimizing the negative log-likelihood of the MCE
policy with respect to the reward parameters qqq and the parameters of the dynamics model lll,
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In that work it was shown, that additional inference of the parameters lll can significantly improve
prediction performance.

As previously discussed in Cpt. 4, gradients of the (soft) state-control functions wrt. to the reward
parameters can be used for solving the minimization problems underlying Syed’s approach to IOC
as well as MCE-IOC and MCL-IOC. Similar, the recursive definition of the gradients of the (soft)
state-control function with respect to the parameters of the dynamics can be used to extend all these
approaches with respect to estimation of parts of the dynamics. This is possible by minimizing the gap
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which we will denote OPT-SERD, minimizing the soft gap
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termed MCE-SERD or minimizing the negative log-likelihood
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referred to as MCL-SERD with respect to lll. Considering the analysis of Cpt. 4, we can expect MCE-
SERD and MCL-SERD to perform similar under perfect match of model assumptions and infinite
amount of data. However, we leave a formal proof open for future research.
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5.4 Inferring Sensor Models From Rational Behavior in Belief-MDPs

Previously, we introduced the technique of SERD for inference of model parts of MDPs by extending
inverse optimal control. Here, the main idea was to take derivatives of the (soft) state-control functions.
It is now shown that a very similar approach can be used for inference of sensor models in POMDPs.

For this purpose, we first return to the reformulation of POMDPs into the equivalent belief-MDPs.
In Sec. 2.1.3 the dynamics of the belief MDP PPP b were introduced as

P b
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,

while the reward function of the belief-MDP was

rb(b(xt), ut) = E[r(xt, ut)|b(xt), ut].

Consequently, in the case of a belief-MDP the soft Bellman equations result in the specific form of
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Given the formulation of the (soft) Bellman equations, analogically to SERD in MPDs the derivatives
with respect to the sensor model parameters lll can be taken. In case of the soft value function we
obtain
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Ṽqqq,lll

t+1

⇣ R
plll(zt+1|xt+1)Pt(xt+1|ut, x0t)b(x0t)d xtR

plll(z0t+1|xt+1)Pt(xt+1|ut, x00t )b(x00t )d z0t, x00t

⌘
· plll(zt+1|xt+1)Pt(xt+1|ut, xt)b(xt)

i
d zt+1, xt+1, xt (5.19)

=
Z ⇣
rlll

h
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As can be seen the recursion with respect to the sensor model parameter in belief MDPs is quite similar
to the recursion of MCE-SERD in MPD (5.3), (5.7). The only difference is that the derivative is more
complicated in belief-MDPs. This is because of the nonlinear association of sensory measurements
with resulting beliefs which has to be taken into account by means of the factor
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Computation of the recursion (5.21) might look complicated but requires only to integrate over the
finite dimensional quantities zt+1, z0t+1, xt+1, xt, x0t, x00t . Furthermore, rlllQ̃qqq,lll

t (b(xt), ut) requires to in-
tegrate over potential sensory measurements zt+1, z0t+1 and does not rely on the unknown sensory
measurements zi

t made by the observed agent. Similar to the principle previously applied in IOC
(Sec. 4.4.2), this allows us to infer parameters lll of sensor models plll(zt|xt) by means of solving
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using the gradient
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Analogously, we can also use the optimal value function V?,qqq,lll for inference of sensor models
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using its gradient
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We refer to the inference of sensor models using previously introduced approaches as I See What You
See (ISWYS).
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While iteratively conducting equation (5.7) is computationally tractable in small discrete MDPs, the
recursion (5.21) is in general not feasible. This is because, it requires back-up of rlllQ̃qqq,lll

t (b(xt), ut) for
every possible belief, which is problematic because b(xt) is a continuous valued quantity. However, we
will show that again the class of the joint task POMDP allows to implement this approach.

5.5 Inferring Sensor Models in The Joint Task POMDP

To implement ISWYS in the joint task POMDP, we first consider the sensor model. As previously
introduced in (3.13), in this POMDP the sensory measurements are obtained according to a linear
Gaussian sensor model,

zt ⇠ N (H, SSSez ,lll(xz
t )).

In this work we assume that unknown parameters are present in the sensor noise covariance SSSez ,lll(xz
t ).

For example, in the context of application to quantifying drivers’ sensor characteristics we are inter-
ested in the variance in the noise in sensing the vehicle’s lane position (sy)2(xz

t ) and orientation in lane
(sf)2(xz

t ), SSSez
(xz

t ) = diag((sy)2(xz
t ), 0, (sf)2(xz

t ), 0).

5.5.1 Posing ISWYS in The Joint Task POMDP

Now we return to the (soft) Bellman equations. Here, we assume a linear parametrization of the reward
function and an initial covariance SSSp,lll

0 . We use superscripts to denote which objects depend on the
reward parameter qqq and which depend on the parameter of the sensor model lll. Accordingly, the
Bellman equations of the optimal policy are given by

Q?,qqq,lll
t (µµµ

p
t , xzxzxz

0:t, xi
t, up

t , uz
t , ui

t) = [µµµ
p
t ; up

t ]
>MQ?,qqq

t [µµµ
p
t ; up

t ] + mQ?,qqq

t [µµµ
p
t ; up

t ] + mQ?,qqq,lll ,1
t (xzxzxz

0:t, xi
t, uz

t , ui
t) (5.28)

V?,qqq
t (µµµ

p
t , xzxzxz

0:t, xi
t) = [µµµ

p
t ]
>MV?,qqq

t [µµµ
p
t ] + mV?,qqq

t [µµµ
p
t ] + mV?,qqq,lll ,1

t (xzxzxz
0:t, xi

t), (5.29)

MQ?,qqq

t =

(
[At Bt]>MV?,qqq

t+1 [At Bt] + blk(QQQ1, QQQ2) if t < T
blk(QQQ1, QQQ2) else

(5.30)

mQ?,qqq

t =

(
2[At Bt]>MV?,qqq

t+1 at + [At Bt]>mV?,qqq

t+1 if t < T
0 else

(5.31)

mQ?,qqq,lll ,1
t (xzxzxz

0:t, xi
t, uz

t , ui
t) =

8>>>>>>>>>><>>>>>>>>>>:

a>t MV?,qqq

t+1 at + 2a>t mV?,qqq

t+1

+ tr(QQQ1SSSp,lll
t (xzxzxz

0:t))

+ tr
⇣

MV?,qqq

t+1
�
AtSSS

p,lll
t (xzxzxz

0:t)A>t +SSSex �SSSp,lll
t+1([x

zxzxz
0:t xz

t � uz
t ])

�⌘
+ q3uz

t + qqq>4 jjj(xi
t, ui

t)

+ E
h
mV?,qqq,lll ,1

t+1 ([xzxzxz
0:t xz

t � uz
t ], xi

t+1)
���P i(xi

t+1|xz
t , uz

t ; xi
t, ui

t)
i

if t < T

tr(QQQ1SSSp,lll
t (xzxzxz

0:T)) + q3uz
T + qqq>4 jjj(xi

T , ui
T) else

,

(5.32)
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MV?,qqq
t = MQ?,qqq

t x,x �MQ?,qqq

t x,u[M
Q?,qqq

t u,u]
�1MQ?,qqq

t u,x (5.33)

mV?,qqq
t = mQ?,qqq

t x �MQ?,qqq

t x,u[M
Q?,qqq

t u,u]
�1mQ?,qqq

t u (5.34)

mV?,qqq,lll ,1
t (xzxzxz

0:t, xi
t) = �

1
4
[mQ?,qqq

t u ]>[MQ?,qqq

t u,u]
�1mQ?,qqq

t u + tr(QQQ1SSSp,lll
t (xzxzxz

0:t))

+ tr
⇣

MV?,qqq

t+1
�
AtSSS

p,lll
t (xzxzxz

0:t)A>t +SSSex�⌘
+ max

uz
t ,ui

t

⇣
q3uz

t � tr
�
MV?,qqq

t+1 SSSp,lll
t+1([x

zxzxz
0:t xz

t � uz
t ])

�
+ qqq>4 jjj(xi

t, ui
t) + E

h
mV?,qqq,lll ,1

t+1 ([xzxzxz
0:t xz

t � uz
t ], xi

t+1)
���P i(xi

t+1|xz
t , uz

t ; xi
t, ui

t)
i⌘

. (5.35)

Furthermore, the soft Bellman equations result in

Q̃qqq,lll
t (µµµ

p
t , xzxzxz

0:t, xi
t, up

t , uz
t , ui

t) = [µµµ
p
t ; up

t ]
>MQ̃qqq

t [µµµ
p
t ; up

t ] + mQ̃qqq

t [µµµ
p
t ; up

t ] + mQ̃qqq,lll ,1
t (xzxzxz

0:t, xi
t, uz

t , ui
t) (5.36)

Ṽqqq,lll
t (µµµ

p
t , xzxzxz

0:t, xi
t) = [µµµ

p
t ]
>MṼqqq

t [µµµ
p
t ] + mṼqqq

t [µµµ
p
t ] + mṼqqq,lll ,1

t (xzxzxz
0:t, xi

t), (5.37)

MQ̃qqq

t =

(
[At Bt]>MṼqqq

t+1[At Bt] + blk(QQQ1, QQQ2) if t < T
blk(QQQ1, QQQ2) else

(5.38)

mQ̃qqq

t =

(
2[At Bt]>MṼqqq

t+1at + [At Bt]>mṼqqq

t+1 if t < T
0 else

(5.39)

mQ̃qqq,lll ,1
t (xzxzxz

0:t, xi
t, uz

t , ui
t) =

8>>>>>>>>>><>>>>>>>>>>:

a>t MṼqqq

t+1at + 2a>t mṼqqq

t+1

+ tr(QQQ1SSSp,lll
t (xzxzxz

0:t))

+ tr
⇣

MṼqqq

t+1
�
AtSSS

p,lll
t (xzxzxz

0:t)A>t +SSSex �SSSp,lll
t+1([x

zxzxz
0:t xz

t � uz
t ])

�⌘
+ q3uz

t + qqq>4 jjj(xi
t, ui

t)

+ E
h
mṼqqq,lll ,1

t+1 ([xzxzxz
0:t xz

t � uz
t ], xi

t+1)
���P i(xi

t+1|xz
t , uz

t ; xi
t, ui

t)
i

if t < T

tr(QQQ1SSSp,lll
t (xzxzxz

0:T)) + q3uz
T + qqq>4 jjj(xi

T , ui
T) else

,

(5.40)

MṼqqq

t = MQ̃qqq

t x,x �MQ̃qqq

t x,u[M
Q̃qqq

t u,u]
�1MQ̃qqq

t u,x (5.41)

mṼqqq

t = mQ̃qqq

t x �MQ̃qqq

t x,u[M
Q̃qqq

t u,u]
�1mQ̃qqq

t u (5.42)

mṼqqq,lll ,1
t (xzxzxz

0:t, xi
t) = �

1
4
[mQ̃qqq

t u ]
>[MQ̃qqq

t u,u]
�1mQ̃qqq

t u +
1
2

log(det(p[MQ̃qqq

t u,u]
�1))

+ tr(QQQ1SSSp,lll
t (xzxzxz

0:t)) + tr
⇣

MṼqqq

t+1
�
AtSSS

p,lll
t (xzxzxz

0:t)A>t +SSSex�⌘
+ softmaxuz

t ,ui
t

⇣
q3uz

t � tr
�
MṼqqq

t+1SSSp,lll
t+1([x

zxzxz
0:t xz

t � uz
t ])

�
+ qqq>4 jjj(xi

t, ui
t) + E

h
mṼqqq,lll ,1

t+1 ([xzxzxz
0:t xz

t � uz
t ], xi

t+1)
���P i(xi

t+1|xz
t , uz

t ; xi
t, ui

t)
i⌘

. (5.43)

In both the optimal and the maximum causal entropy policy, here many parts of the (soft) value
and (soft) state-control function do not depend on the parameter of the sensor model lll. Specifically,
only the terms mQ?,qqq,lll ,1

t (xzxzxz
0:t, xi

t, up
t , uz

t , ui
t), mV?,qqq,lll ,1

t (xzxzxz
0:t, xi

t), mQ̃qqq,lll ,1
t (xzxzxz

0:t, xi
t, up

t , uz
t , ui

t), mṼqqq,lll ,1
t (xzxzxz

0:t, xi
t)

are related to the sensor model. In both cases also the term tr(QQQ1SSSp,lll
t (xzxzxz

0:t)) must be considered.
This is in contrast to the general formulation of ISWYS where the immediate reward rb(b(xt), ut) was
not relevant for inference of the sensor model (see the gradient (5.18)). Previously, we substituted the
reachable covariances SSSp,lll

t (xzxzxz
0:t) by the associated sensor state sequence xzxzxz

0:t in the joint task POMDP.
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Hence, we need to consider the effects of the sensor model on the covariance associated with a sequence
xzxzxz

0:t.
Analogously, to the derivations in inverse optimal control in Sec. 4.4.1, we can pose inference of

sensor model parameters lll and reward parameters qqq as joint minimization of the (soft) gap. That is,
we solve

min
qqq,lll

g(qqq, lll,D)

= min
qqq,lll

⇣
E
h
[µµµ

p
0 ]
>MV?,qqq

0 [µµµ
p
0 ] + mV?,qqq

0 [µµµ
p
0 ]
���N (µµµ

p
0 |xp

0 , SSSp,lll
0 )

i
+ mV?,qqq,lll ,1

0 (xz
0, xi

0)

�E
h T

Â
t=0

vec(QQQ1)
> vec(xp

t xp
t
>) + vec(QQQ2)

> vec(up
t up

t
>) + q3uz

t + qqq>4 jjj(xi
t, ui

t)
���Di⌘

= min
qqq,lll

⇣
[xp

0 ]
>MV?,qqq

0 [xp
0 ] + tr(MV?,qqq

0 SSSp,lll
0 ) + mV?,qqq

0 [xp
0 ] + mV?,qqq,lll ,1

0 (xz
0, xi

0)

�E
h T

Â
t=0

vec(QQQ1)
> vec(xp

t xp
t
>) + vec(QQQ2)

> vec(up
t up

t
>) + q3uz

t + qqq>4 jjj(xi
t, ui

t)
���Di⌘ (5.44)

for estimation under the optimal policy model. Alternatively, inference under the maximum causal
entropy policy model is possible considering the minimization problem

min
qqq,lll

g̃(qqq, lll,D)

= min
qqq,lll

⇣
E
h
[µµµ

p
0 ]
>MṼqqq

0 [µµµ
p
0 ] + mṼqqq

0 [µµµ
p
0 ]
���N (µµµ

p
0 |xp

0 , SSSp,lll
0 )

i
+ mṼqqq,lll ,1

0 (xz
0, xi

0)

�E
h T

Â
t=0

vec(QQQ1)
> vec(xp

t xp
t
>) + vec(QQQ2)

> vec(up
t up

t
>) + q3uz

t + qqq>4 jjj(xi
t, ui

t)
���Di⌘

= min
qqq,lll

⇣
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0 ]
>MṼqqq

0 [xp
0 ] + tr(MṼqqq

0 SSSp,lll
0 ) + mṼqqq

0 [xp
0 ] + mṼqqq,lll ,1

0 (xz
0, xi

0)

�E
h T

Â
t=0

vec(QQQ1)
> vec(xp

t xp
t
>) + vec(QQQ2)

> vec(up
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t
>) + q3uz

t + qqq>4 jjj(xi
t, ui

t)
���Di⌘. (5.45)

Finally, in case of the joint task POMDP we can also derive an inference technique for the parameters
lll by minimizing the neg. log-likelihood of the maximum entropy policy. This generalizes the maxi-
mum causal likelihood variant of inverse optimal control in the joint task POMDP. Here, we first take
expectations with respect to the true states xp

t
j as well as the covariances SSSp

t (x
zxzxz

0:t
j) according to the

sensor state sequences xzxzxz
0:t

j for the states xp
t

j, xzxzxz
0:t

j present in the data D. Consequently, we arrive at
the minimization problem of

min
qqq,lll

l(qqq, lll,D)

= min
qqq,lll

E
h T

Â
t=0

E
⇥
[µµµ

p
t ]
>MṼqqq
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t [µµµ
p
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0:t, xi

t)

� �
[µµµ

p
t ; up

t ]
>MQ̃qqq
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t ] + mQ̃qqq,lll ,1
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0:t, xi
t, up
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t , ui
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�|N (µµµ

p
t |xp

t , SSSp,lll
t (xzxzxz

0:t))
⇤���Di

= min
qqq,lll

E
h T

Â
t=0

[xp
t ]
>MṼqqq

t [xp
t ] + tr(MṼqqq

t SSSp,lll
t (xzxzxz

0:t)) + mṼqqq

t [xp
t ] + mṼqqq,lll ,1

t (xzxzxz
0:t, xi

t)

� �
[xp

t ; up
t ]
>MQ̃qqq

t [xp
t ; up

t ] + tr(MQ̃qqq

t x,xSSSp,lll
t (xzxzxz

0:t)) + mQ̃qqq

t [xp
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t ] + mQ̃qqq,lll ,1
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t, up
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����Di.

(5.46)
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5.5.2 Obtaining the Sensor Model Gradients

Following the analysis of the (soft) Bellman equations, computing the derivatives of the (soft) value
functions and (soft) state-control functions

rlllQ̃qqq,lll
t (xzxzxz

0:t, xi
t, uz

t , ui
t) = rlllmQ̃qqq,lll ,1

t (xzxzxz
0:t, xi

t, up
t , uz

t , ui
t), (5.47)

rlllṼqqq,lll
t (xzxzxz

0:t, xi
t) = rlllmṼqqq,lll ,1

t (xzxzxz
0:t, xi

t), (5.48)

rlllQ?,qqq,lll
t (xzxzxz

0:t, xi
t, uz

t , ui
t) = rlllmQ?,qqq,lll ,1

t (xzxzxz
0:t, xi

t, uz
t , ui

t), (5.49)

rlllV?,qqq
t (xzxzxz

0:t, xi
t) = rlllmV?,qqq,lll ,1

t (xzxzxz
0:t, xi

t), (5.50)

can be addressed. Here, we drop the dependence on the variables µµµ
p
t , up

t that do not affect the gradients.
In the case of the soft Bellman equations it holds:

rlllQ̃qqq,lll
t (xzxzxz

0:t, xi
t, uz

t , ui
t) = rlllmQ̃qqq,lll ,1

t (xzxzxz
0:t, xi

t, uz
t , ui

t) (5.51)

=

8>>>>>><>>>>>>:

rlll

⇣
tr(QQQ1SSSp,lll

t (xzxzxz
0:t))

+ tr
⇣

MṼqqq

t+1
�
AtSSS

p,lll
t (xzxzxz

0:t)A>t �SSSp,lll
t+1([x

zxzxz
0:t xz

t � uz
t ])

�⌘
+ E

h
mṼqqq,lll ,1
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if t < T
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t (xzxzxz

0:T)) else

,

(5.52)

=

8>>>>>>><>>>>>>>:
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,
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⇤
. (5.54)

Furthermore, the gradients of the optimal value function and optimal state-control function are given
by

rlllQ?,qqq,lll
t (xzxzxz

0:t, xi
t, uz

t , ui
t) = rlllmQ?,qqq,lll ,1

t (xzxzxz
0:t, xi

t, uz
t , ui

t) (5.55)

=
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⇣
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+ tr
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if t < T
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(5.56)

=

8>>>>>>><>>>>>>>:
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0:T) vec(QQQ1) else

,

(5.57)

rlllV?,qqq,lll
t (µµµ

p
t , xzxzxz

0:t, xi
t) = E

⇥rlllmQ?,qqq,lll ,1
t (xzxzxz

0:t, xi
t, uz

t , ui
t)
��p?,qqq,lll

t (uz
t , ui
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0:t, xi

t)
⇤
. (5.58)
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Analyzing the sensor model gradients of the soft Bellman equations and Bellman equations, it turns out
that most of the quantities involved are known. These are the matrices At, QQQ1, MṼqqq

t+1, MV?,qqq

t+1 . In addition

to these given quantities, it is required to obtain the gradients of the belief covariance rlllSSSp,lll
t (xzxzxz

0:t)
as resulting from the Kalman filter under the sensor states xz

t in sequence xzxzxz
0:t. These gradients can

recursively be computed by taking the derivatives of the Kalman belief update. For this purpose, we
consider the update of the covariance given by

S̄SSp,lll
t+1 = AtSSS

p,lll
t A>t +SSSex

Kt+1 = S̄SSp,lll
t+1H>(HS̄SSp,lll

t+1H> +SSSez ,lll)+

SSSp,lll
t+1 = (Inp

x �Kt+1H)S̄SSp,lll
t+1,

where np
x denotes the dimension of the primary task states xp. In the following, we use the notation

∂x(f(x)) = [rx(f(x))]> and nz to denote the dimension of the sensory measurements zt. Applying
matrix calculus, we can take the derivative wrt. to the parameters of the sensor model of the individual
steps:

∂lll vec(S̄SSp,lll
t+1) = (At ⌦At)∂lll vec(SSSp,lll

t ) (5.59)

Rlll
t+1 := HS̄SSp,lll

t+1H> +SSSez ,lll (5.60)

∂lll vec(Rlll
t+1) = (H⌦H)∂lll vec(S̄SSp,lll

t+1) + ∂lll vec(SSSez ,lll) (5.61)

8i∂llli vec(Rlll,+
t+1) =

⇥� (Rlll,+
t+1 ⌦Rlll,+

t+1) + (Inz �Rlll
t+1Rlll,+

t+1)⌦ (Rlll,+
t+1Rlll,+

t+1)

+ (Rlll,+
t+1Rlll,+

t+1)⌦ (Inz �Rlll,+
t+1Rlll

t+1)
⇤
∂llli R

lll
t+1 (5.62)

∂lll vec(Klll
t+1) =

�
(Rlll,+

t+1H)⌦ Inz
�
∂lll vec(S̄SSp,lll

t+1) +
�
Inz ⌦ (S̄SSp,lll

t+1H>)
�
∂lll vec(Rlll,+

t+1) (5.63)

∂lll vec(SSSp,lll
t+1) =

�
Inz ⌦ (Inx �Kt+1H)

�
∂lll vec(S̄SSp,lll

t+1)�
�
(S̄SSp,lll

t+1H>)⌦ Inz
�
∂lll vec(Klll

t+1). (5.64)

Here, the equations result from standard rules of matrix differentiation [175] and the derivative of the
pseudo-inverse that is presented in [224].

Senor Model of Initial Covariance at Inference Time Finally, we must also consider the influence of
the sensor model parameters lll on the initial covariance of the primary state belief SSSp,lll

0 . This is done
in similar fashion as in inverse optimal control Sec. 4.4.2. We first compute the gradient of the steady
state covariance rlllŜSSp,lll. If the driver’s gaze is off the road for t = 0, we compute the gradient of the
steady state covariance at the last time step the gaze was on the road. Thereafter the gradients of the
covariance tgaze aversion : 0 are obtained.

Tractable Implementation Combining the gradients wrt. the sensor model parameters lll of the (soft)
state-control function with the derivative of the Kalman filter allows to implement the approaches of
(5.24). However, backing up the gradients of the (soft) state-control functions

rlllQ̃qqq,lll
t (µµµ

p
t , xzxzxz

0:t, xi
t, up

t , uz
t , ui

t), rlllQ?,qqq,lll
t (µµµ

p
t , xzxzxz

0:t, xi
t, up

t , uz
t , ui

t)

is in general computationally infeasible similar as in case of sate-control function itself or the gradients
wrt. the reward parameters.

Using the restricted sensor model SR, direct back-up of the (soft) state-control functions is feasible
as xzxzxz

0:t can be replaced by dt. We refer to the resulting approaches for sensor model inference SR-Opt-
ISWYS and SR-MCE-ISWYS.

In the case of the optimal policy in the joint task model with restriction of the secondary task also
a computationally feasible approach can be derived. Here, the optimal sensor control policy is a
single optimal sequence xzxzxz

0:T
?. Consequently, computing rlllV?,qqq

0 (µµµ
p
0 , xz

0) requires only considering
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the sensor states of the optimal sensor state sequence. As an alternatively to the intractable recursion
(5.55), this conjecture can be used to compute rlllV?,qqq,lll

0 (µµµ
p
0 , xz

0) = rlllmV?,qqq,lll ,1
0 (xz

0) in a forward pass

rlllV?,qqq,lll
0 (xz

0) =
T�1

Â
t=0

�rlllSSSp,lll
t (xzxzxz

0:t
?) vec(QQQ1)

+rlllSSSp,lll
t (xzxzxz

0:t
?) vec(A>t MV?,qqq

t+1 At)

�rlllSSSp,lll
t+1(x

zxzxz
0:t+1

?) vec(MV?,qqq

t+1 )
�
+rlllSSSp,lll

T (xzxzxz
0:T

?) vec(QQQ1). (5.65)

We will denote this approach as STR-Opt-ISWYS.

5.5.3 Illustrative Example

Before we present prototypical algorithms for sensor model inference, we wish to explain and illustrate
the individual parts of the gradient of the optimal value function in Fig. 5.1. Here, the case of the joint
task POMDP under restriction of the secondary task model, STR-Opt-ISWYS, is considered.
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Figure 5.1: Illustrative example of the gradient computation of STR-Opt-ISWYS. Assume that the gradient
rlllV?,qqq,lll

td
(xz

td
?) for a time step td shall be computed. This requires to consider the gradient of the co-

variance of the belief of the states related to vehicle control of the current time step td, rlllSSSp,lll
td

(xzxzxz
0:td

?)

as well as the next time step td + 1, rlllSSSp,lll
td

(xzxzxz
0:td

?). These gradients are computed along the sequence

of optimal sensor states xzxzxz
0:td

?. Thereafter, the effects of the covariance SSSp,lll
td

(xzxzxz
0:td

?) on current and
future vehicle control under the optimal steering policy are considered. For example, increased uncer-
tainty in the belief results in increased deviation from the lane center. This is done by multiplying the
gradients of the covariance with the immediate reward of the primary task states QQQ1 as well as with
the matrices A>td

MV?,qqq

td+1Atd , �MV?,qqq

td+1. The latter is the part of the value function related to the quadratic
reward function of the primary task states. Finally, the accumulated gradients of the future time steps
t > td, rlllmV?,qqq,lll ,1

td+1 (xzxzxz
0:td+1

?) are added. Summarized the gradient of the optimal value function with
respect to sensor model parameters quantifies the changes in vehicle control performance as resulting
from changes in the belief of the primary task states under the current optimal sequence of sensor
states xzxzxz

0:T
?.
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5.5 Inferring Sensor Models in The Joint Task POMDP

5.5.4 ISWYS Algorithms

To infer sensor models, the gap g(qqq, lll,D) or the soft gap g̃(qqq, lll,D) must be minimized with respect
to the reward parameters qqq and the sensor model parameters lll. Similar to inverse optimal control
(Sec. 4.4.4) the reward parameters qqq := [vec(QQQ1); vec(QQQ2); q3; qqq4] are constrained to the feasible set ⇥.
Furthermore, lll is required to result in a well-defined positive semi-definite sensor noise covariance
SSSez ,lll. For example, if the entire sensor model covariance shall be inferred, i.e. lll = vec(SSSez ,lll), lll must
result in a positive semi-definite matrix. For this purpose, we introduce the set of feasible sensor model
parameters ⇤.

While the gap and the soft gap are convex functions of the reward parameter qqq, both functions
are not necessarily convex in the parameter of the sensor model lll. Consequently, projected gradient
descent can not only fail to converge to a global optimum but may not even converge to a local optimal
solution. To obtain a local optimal solution instead other techniques as, e.g. as presented in [112], must
be applied.

In the following we will outline prototypical algorithms to infer sensor models using STR-Opt-ISWYS
and using SR-Opt-ISWYS as well as using SR-MCE-ISWYS. Similar as in the case of the inverse optimal
control algorithms we only give the simplest approach. Note, especially computing the quantities
related to the belief covariance and its gradients can be computed more efficient using the techniques
introduced in the corresponding policy computation Algo. 4 and Algo. 7.

Algorithm 16 Generic ISWYS solver [SolveISWYS]

1: function SolveISWYS((A, a, B)0:T , SSSex , H(xz
t ), SSSez

(xz
t ),P i

t , xz
0,D)

Require: feasible set of reward parameters ⇥, feasible set of sensor parameters ⇤
2: qqq  Sample(⇥)
3: lll Sample(⇤)
4: while not converged qqq, lll do
5: [v,rqqq,lll] Eval<name>(qqq, lll, (At, at, Bt)0:T , SSSex , H(xz

t ),P i,D) . evaluate the different
ISWYS objectives STR-Opt-ISWYS, SR-Opt-ISWYS, SR-MCE-ISWYS, SR-MCL-ISWYS

6: (qqq, lll) PerformStep(qqq, lll, v,rqqq,lll,⇥,⇤) . e.g. using the techniques of [112]
7: end while
8: return (qqq, lll)
9: end function
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Algorithm 17 Evaluation of SR-Opt-ISWYS [EvalSR-Opt-ISWYS]

1: function EvalSR-Opt-ISWYS(qqq, lll, (At, at, Bt)t=0:T , SSSex , H(xz
t ),P i,D)

2: (µµµ
p
0 , d0, xi

0) D

3: (SSSp,lll
0 , ŜSSp,lll

0 ,rlllSSSp,lll
0 ,rlllŜSSp,lll

0 ) Initialize(D, SSSez ,lll(xz
t )) . as described in Sec. 5.5.2

4:
⇣

v,rqqq ,
�
MQ?

t , mQ?

t , mQ? ,1
t , MV?

t , mV?

t , mV? ,1
t , F?

t , f?t , p?
t (uz

t , ui
t|dt, xi

t)
�

t=0:T

⌘
 EvalSRopt(qqq, (At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez ,lll(xz
t ),P i,D)

5: 8dT ,xi
T ,uz

T ,ui
T
rlllQ?,qqq,lll

T (dT , xi
T , uz

T , ui
T) rlllSSSp,lll

T (dT) vec(QQQ1)

6: for t = T � 1 : 0 do
7: 8dt ,xi

t ,u
z
t ,ui

t
rlllQ?,qqq,lll

t (dt, xi
t, uz

t , ui
t) rlllSSSp,lll

t (dt) vec(QQQ1) +rlllSSSp,lll
t (dt) vec(A>t MV?,qqq

t+1 At)�rlllSSSp,lll
t+1(dt+1(dt, uz

t )) vec(MV?,qqq

t+1 )

8: 8dt ,xi
t ,u

z
t ,ui

t
rlllQ?,qqq,lll

t (dt, xi
t, uz

t , ui
t) + E

h
rlllQ?,qqq,lll

t+1 (dt+1, xi
t+1, uz

t+1, ui
t+1)

���p?,qqq,lll(uz
t+1, ui

t+1|dt+1, xi
t+1),P i(xi

t+1|xz
t , uz

t ; xi
t, ui

t)
i

9: end for
10: rlll  E[rlllQ?,qqq,lll

0 (d0, xi
0, uz

0, ui
0)|p?,qqq,lll(uz

0, ui
0|d0, xi

0)]
11: return (v,rqqq ,rlll)
12: end function
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Algorithm 18 Evaluation of SR-MCE-ISWYS [EvalSR-MCE-ISWYS]

1: function EvalSR-MCE-ISWYS(qqq, lll, (At, at, Bt)t=0:T , SSSex , H(xz
t ),P i,D)

2: (µµµ
p
0 , d0, xi

0) D

3: (SSSp,lll
0 , ŜSSp,lll

0 ,rlllSSSp,lll
0 ,rlllŜSSp,lll

0 ) Initialize(D, SSSez ,lll(xz
t )) . as described in Sec. 5.5.2

4:
⇣

v,rqqq ,
�
MQ̃

t , mQ̃
t , mQ̃,1

t , MṼ
t , mṼ

t , mṼ,1
t , F̃t, f̃t, p̃t(uz

t , ui
t|dt, xi)

�
t=0:T

⌘
 EvalSRMCE(qqq, (At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez ,lll(xz
t ),P i,D)

5: 8dT ,xi
T ,uz

T ,ui
T
rlllQ̃qqq,lll

T (dT , xi
T , uz

T , ui
T) rlllSSSp,lll

T (dT) vec(QQQ1)

6: for t = T � 1 : 0 do
7: 8dt ,xi

t ,u
z
t ,ui

t
rlllQ̃qqq,lll

t (dt, xi
t, uz

t , ui
t) rlllSSSp,lll

t (dt) vec(QQQ1) +rlllSSSp,lll
t (dt) vec(A>t MṼqqq

t+1At)�rlllSSSp,lll
t+1(dt+1(dt, uz

t )) vec(MṼqqq

t+1)

8: 8dt ,xi
t ,u

z
t ,ui

t
rlllQ̃qqq,lll

t (dt, xi
t, uz

t , ui
t) + E

h
rlllQ̃qqq,lll

t+1(dt+1, xi
t+1, uz

t+1, ui
t+1)

���p̃qqq,lll(uz
t+1, ui

t+1|dt+1, xi
t+1),P i(xi

t+1|xz
t , uz

t ; xi
t, ui

t)
i

9: end for
10: rlll  E[rlllQ̃qqq,lll

0 (d0, xi
0, uz

0, ui
0)|p̃qqq,lll(uz

0, ui
0|d0, xi

0)]
11: return (v,rqqq ,rlll)
12: end function
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Algorithm 19 Evaluation of SR-MCL-ISWYS [EvalSR-MCL-ISWYS]

1: function EvalSR-MCL-ISWYS(qqq, lll, (At, at, Bt)t=0:T , SSSex , H(xz
t ),P i,D)

2: (µµµ
p
0 , d0, xi

0) D

3: (SSSp,lll
0 , ŜSSp,lll

0 ,rlllSSSp,lll
0 ,rlllŜSSp,lll

0 ) Initialize(D, SSSez ,lll(xz
t )) . as described in Sec. 5.5.2

4:
⇣

v,rqqq ,
�
MQ̃

t , mQ̃
t , mQ̃,1

t , MṼ
t , mṼ

t , mṼ,1
t , F̃t, f̃t, p̃t(uz

t , ui
t|dt, xi)

�
t=0:T

⌘
 EvalSRMCL(qqq, (At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez ,lll(xz
t ),P i,D)

5: 8dT ,xi
T ,uz

T ,ui
T
rlllQ̃qqq,lll

T (dT , xi
T , uz

T , ui
T) rlllSSSp,lll

T (dT) vec(QQQ1)

6: rlll  E
h
rlllSSSp,lll

T (dT) vec(MṼ
T �MQ̃

T x,x) + E
⇥rlllQ̃qqq,lll

T (dT , xi
T , uz

T , ui
T)
��p̃(uz

T , ui
T |dT , xi

T)
⇤�rlllQ̃qqq,lll

T (dT , xi
T , uz

T , ui
T)
���Di

7: for t = T : 0 do
8: 8dt ,xi

t ,u
z
t ,ui

t
rlllQ̃qqq,lll

t (dt, xi
t, uz

t , ui
t) rlllSSSp,lll

t (dt) vec(QQQ1) +rlllSSSp,lll
t (dt) vec(A>t MṼqqq

t+1At)�rlllSSSp,lll
t+1(dt+1(dt, uz

t )) vec(MṼqqq

t+1)

9: 8dt ,xi
t ,u

z
t ,ui

t
rlllQ̃qqq,lll

t (dt, xi
t, uz

t , ui
t) + E

h
rlllQ̃qqq,lll

t+1(dt+1, xi
t+1, uz

t+1, ui
t+1)

���p̃qqq,lll(uz
t+1, ui

t+1|dt+1, xi
t+1),P i(xi

t+1|xz
t , uz

t ; xi
t, ui

t)
i

10: rlll  + E
h
rlllSSSp,lll

t (dt) vec(MṼ
t �MQ̃

t x,x) + E
⇥rlllQ̃qqq,lll

t (dt, xi
t, uz

t , ui
t)
��p̃(uz

t , ui
t|dt, xi

t)
⇤�rlllQ̃qqq,lll

t (dt, xi
t, uz

t , ui
t)
���Di

11: end for
12: return (v,rqqq ,rlll)
13: end function
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Algorithm 20 Evaluation of STR-Opt-ISWYS [EvalSTR-Opt-ISWYS]

1: function EvalSTR-Opt-ISWYS(qqq, lll, (At, at, Bt)t=0:T , SSSex , H(xz
t ),P i,D)

2: (µµµ
p
0 , xzxzxz

0:0) D

3: (SSSp,lll
0 ,rlllSSSp,lll

0 ) Initialize(D, SSSez ,lll(xz
t )) . as described in Sec. 5.5.2

4: rlllSSSp,lll  rlllSSSp,lll
0

5: SSSp,lll  SSSp,lll
0

6:
⇣

v,rqqq ,
�
MQ?

t , mQ?

t , MV?

t , mV?

t , F?
t , f?t

�
t=0:T , xzxzxz

0:T
?
⌘
 EvalSTROpt(qqq, (At, at, Bt)t=0:T , SSSex , H(xz

t ), SSSez ,lll(xz
t ),P i,D)

7: rlll = 0
8: for t = 0 : T � 1 do
9: rlll  + rlllSSSp,lll vec(QQQ1) +rlllSSSp,lll vec(A>t MV?,qqq

t+1 At)

10: rlllSSSp,lll  KalmanDerivative(rlllSSSp,lll, SSSp,lll, At, SSSex , H, SSSez ,lll(xz
t
?)) . according to Sec. 5.5.2

11: rlll  � rlllSSSp,lll vec(MV?,qqq

t+1 )
12: end for
13: rlll  + rlllSSSp,lll vec(QQQ1)
14: return (v,rqqq ,rlll)
15: end function
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5 Inferring Driver’s Sensor Characteristics

5.6 A Real-Traffic Driving Experiment

Previously, we introduced algorithms to infer sensor models underlying driver behavior in the context
of the joint task POMDP. In application to real world driver behavior, here several assumptions are
made. First, we assume that the joint task POMDP, specifically the used linear Gaussian sensor model
allows to model the real relations sufficiently well. Second, we impose the assumption, that drivers act
at least rational with respect to their true sensor characteristics. Note, that this is also the prerequisite
in signal detection experiments, although in this context less complex decision making of the human
subject is required. Hence, it is necessary to evaluate the derived approaches for inference of sensor
models on real data.

[230] investigated the lane keeping performance of driver that monitored a small display placed at
different positions in the vehicle’s cockpit. The positions employed were directly above the steering
wheel, at the position of the vehicle’s speedometer and at the position of the vehicles radio. Here,
the results showed significant differences in the lane keeping performance for the driver gazing at the
individual display positions. The authors hypothesized that these differences could likely be attributed
to varying quality of sensing the vehicle’s states by means of peripheral vision. Consequently, such an
experiment can provide suitable data for evaluating the approaches for inference of sensor models.

5.6.1 Protocol

We conducted our variant of the experiment of [230] on a segment of the German motorway A81 which
is depicted in Fig. 5.2. Here we increased the length of the segment of driving experiment I (Sec. 4.6)
and collected the behavioral data between motorway exit 10 Weinsberg and 13 Mundelsheim.

Winzerhausen

Großbottwar

13 Mundelsheim

12 IlsfeldUntergruppenbach

Ilsfeld

Abstatt
Weinsberg

Heilbronn

10 Weinsberg

N

11 Heilbronn

Figure 5.2: Segment of German motorway A81 used for the driving experiment. The recordings were obtained
driving between exit 10 Weinsberg and 13 Mundelsheim. Obtained from [170], License CC-BY-SA 2.0

The participants were 17 drivers (16 male, 1 female) recruited from the Robert Bosch Group. Similar
to the previous experiment, only drivers were selected that had previously taken an in-house driving
safety training.

The experiment consisted of three fixed driving speed conditions {80, 90, 110} km/h. We used the
vehicle’s Adaptive Cruise Control (ACC) for speed control and to ensure a conservative time gap to the
next vehicle. When the vehicle traveled at the required speed, either a reference period or a secondary
task period were triggered by the investigator. At each speed three samples of baseline driving without
a secondary task and three samples of driving with each of three variants of the secondary task were
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5.6 A Real-Traffic Driving Experiment

taken. These experimental conditions are summarized in Tab. 5.1.

Tabular 5.1: Experimental Conditions of Driving Experiment II
Display Positions Driving Speeds

80 km/h 90 km/h 110 km/h
None 3⇥ 3⇥ 3⇥

H 3⇥ 3⇥ 3⇥
C 3⇥ 3⇥ 3⇥
N 3⇥ 3⇥ 3⇥

Here, we used the task of typing random numbers {1, 2} introduced in Sec. 3.3.3 and applied in the
driving experiment of Sec. 4.6. In total 30 random numbers were displayed one at a time using the
small screen depicted in Fig. 5.3.

Figure 5.3: The display used for the secondary task in the driving experiment.

Following [230] we investigated three similar display positions which are shown in Fig. 5.4. Specif-
ically, the display was first put right above the steering wheel at the vehicle’s wind screen. Second,
the display was set above the vehicle’s r.p.m. counter in the kombi-instrument. Finally and third, the
display was put to approximately the same position that was used in driving experiment I (Sec. 4.6).

H C

N

Figure 5.4: The positions of the display used in the experiment. H is a display position that requires an amount
of gaze aversion similar to a Head-Up display, C is the position of the vehicle’s r.p.m. counter and N
corresponds to the vehicle’s built in display for navigation.

Reading the displayed numbers required varying amounts of gaze aversion. This is exemplary illus-
trated at one participant in Fig. 5.5. As can be seen gazing at the display at position H corresponding
to a head-up display required only a very small amount of aversion of gaze from the road scenery. In
contrast reading the numbers at display position N was often only possible by turning the head.
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5 Inferring Driver’s Sensor Characteristics

Gaze on Road Gaze on H Gaze on C Gaze on N

Figure 5.5: Gaze aversions required to conduct the typing task presented at the different display positions. From
left to right, the pictures show the driver gazing at the road, gazing at the display at position H, gazing
at the display at position C and gazing at the display at position N. Personal agreement of the depicted
participant was obtained.

Similar as in the previous driving experiment (Sec. 4.6), the participants were instructed to “perform the
secondary task as quickly and correctly as possible while not endangering driving safety”.

5.6.2 Recorded Data and Preprocessing

The MPC2 camera system (Robert Bosch GmbH, Stuttgart, Germany) was used to obtain the position
of the lane yt, the vehicles orientation ft and the curvature kt as in the previous driving experiment.
Furthermore, the driver’s gaze was tracked by means of a SmartEye Pro system (SmartEye AB, Gothen-
burg, Sweden). We recorded steering wheel position and velocity as well as absolute velocity from the
vehicles CAN-Bus. Of the recorded data, lane changes and their preparation phases were excluded.
Furthermore, situations where the ACC controller reduced the vehicle speed by more than 10% were
discarded. The final data set consisted of 585 valid segments comprising of 141 reference and 444
secondary task periods with an average duration of 25.3 s. Finally, the same preprocessing steps as in
the first driving experiment (Sec. 4.6.2) were conducted.

5.6.3 Behavioral Statistics

We first investigate the important behavioral statistics found in the data of the driving experiment.
Here, the same methodology of analysis as in the first driving experiment (see Sec. 4.6.3) is employed.
In this context, we will report on the distribution of the durations of glances off the road max(dt) as
well as the statistics of the lane position yt.

The statistics of the duration of glances off the road are reported in Tab. 5.2.

Tabular 5.2: Statistics of Glance Behavior
Display Pos. Statistics Driving Speeds

80 km/h 90 km/h 110 km/h

H [0.05, 0.50, 0.95] Quantiles 0.28, 0.84, 3.40 s 0.32, 0.88, 4.10 s 0.30, 0.64, 2.64 s
Mean 1.37 s 1.41 s 0.98 s

C [0.05, 0.50, 0.95] Quantiles 0.40, 1.00, 3.61 s 0.36, 0.92, 3.68 s 0.33, 0.92, 2.24 s
Mean 1.36 s 1.30 s 1.03 s

N [0.05, 0.50, 0.95] Quantiles 0.56, 1.12, 2.56 s 0.56, 1.04, 2.42 s 0.48, 0.96, 2.00 s
Mean 1.32 s 1.21 s 1.05 s

With respect to the mean duration of glances off the road for all displays a significant decrease from
90 km/h to 110 km/h could be established ptest < 0.01. Furthermore, for the display position N also
the decrease from 80 km/h to 90 km/h was significant ptest < 0.01. All other differences were not
significant ptest > 0.01. Among the 0.05, 0.25, 0.5, 0.75, 0.95 quantiles only the 0.75 for 90 km/h to 110
km/h showed a significant decrease for every display position ptest < 0.01 according to the quantile
test of [86]. All other differences were not significant ptest > 0.01. The distributions of the duration of
glances off the road are depicted in Fig. 5.6.
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Figure 5.6: Distributions of glances off the road max(dt) at the different driving speeds and display positions.
Dashed red lines indicate the [0.05, 0.95] quantiles, while the solid red lines indicate the median. The
mean duration of glances off the road is denoted by a dashed black line.

Comparing the distributions of glances for the individual display over all speed conditions the follow-
ing observations, summarized in Tab. 5.3, were made:

Tabular 5.3: Quantiles of the Durations of Glances Off the Road
Display Position Quantiles

0.05 0.25 0.50 0.75 0.95
H 0.32s 0.44s 0.80s 1.28s 3.45s
C 0.36s 0.60s 0.92s 1.44s 3.03s
N 0.52s 0.80s 1.04s 1.44s 2.36s

The 0.05, 0.25, 0.50, 0.75 quantiles showed an increase from display H to C and to N. However, the
highest quantile of 0.95 showed a decrease from H to C and to N. All differences in the quantiles were
significant ptest < 0.01 expect for the difference of the durations of glances at C and N and the 0.75
quantile. With respect to mean durations of glances no significant differences could be established.
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Figure 5.7: Quantiles of the durations of glances off the road max(dt) in the driving experiment II. Plot shows the
0.05, 0.25, 0.50, 0.75, 0.90, 0.95 quantiles.

With respect to lane keeping performance the individual display positions resulted in the following
statistics: Driving without a secondary task present resulted in a median STD of lane position of 0.159
m. The median STDs for display position H was 0.160 m, for display position H was 0.166 m and for
display position H was 0.166 m. Here, differences turned out be not statistically significant ptest > 0.01
according to sum-rank test. With respect to the RMSE of the lane position a median of 0.223 m was
obtained for attentive driving, a median of 0.266 m was obtained for display position H, a median of
0.304 m was obtained for display position C and a median of 0.282 m was obtained for display position
N. A sum-rank test revealed significantly higher median RMSE for all display positions compared
to attentive driving ptest < 0.01. All other differences were not significant ptest > 0.01 although the
differences in RMSE of display position H to both display position C and display position N were close
to significance ptest = 0.08.
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Figure 5.8: Left plot depicts the statistics of the standard deviation of the lane position, right plot shows the
statistics of the root mean squared deviation from the lane center. Solid line indicates the median of
the statistic, whereas the dashed lines indicate the [0.05, 0.95] confidence interval.

5.6.4 Discussion

Comparing the behavioral statistics of experiment II (Sec. 5.6.3) to those of experiment I (Sec. 4.6.3),
glance statistics and the statistics of the lane position are largely similar. In experiment II the distribu-
tion of the durations of glances off the road and the median STD as well as the median RMSE of the
lane position for display position N almost coincided with those of the secondary task in experiment
I. As can be seen by comparing Fig. 4.9 and Fig. 5.4 the display positions in these cases were almost
the same. The RMSE of the lane position was similar sensitive to the presence of secondary task in
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experiment I and for display position N. In contrast, in the STD of the lane position only effects were
present in experiment I.

Reading the generated numbers from the display position H, C and N requires gaze aversion of
increasing angles, as can be seen in Fig. 5.5. Hence, under the assumption of rational drivers we ex-
pected decreased durations of glances at display position H to glances at display position N. However,
such a decrease could only be established for the 0.95 quantile of the durations. In addition to this, the
lower quantiles showed an increase from the display position that required least gaze aversion to the
display position that required largest gaze aversion. We conclude that drivers did not only adapt to
the experimentally manipulated amount of peripheral vision. The significantly shorter glances to the
display that required small gaze aversion indicate that the cost of switching gaze seems to be strongly
related to the required angular distance. This may be the result of increased muscular effort and longer
saccadic suppression of vision. This hypothesis is also supported by the statistics of lane keeping: Cor-
responding to the increased lower quantiles of the durations of glances off the road, slightly increased
RMSE of the lane position for display positions C and N compared to display position H were found.

Comparing the protocol of experiment II (Sec. 5.6.1) to the protocol used in [230] to investigate the
role peripheral vision in driving the differences are established: First, in our experiment participants
were free to chose their glance behavior, whereas the participants of [230] were forced to avert their
gaze from the road. Correspondingly, glances to the road were more frequent in our experiment. In
the experimental protocol used in [230] a significantly decreased proportion of the drivers were not
able to keep the vehicle in lane while gazing at display positions similar to C and N. In contrast, in our
experiment the drivers’ lane keeping performance was significantly degraded but the differences be-
tween the different display positions were less pronounced. Furthermore, in [230] the angular amount
of gaze aversion correlated with more frequent glances at the road whereas in our experiment only the
highest quantile of the duration off glances off the road showed a decrease.

We conclude the analysis of behavioral statistics establishing that the experiment succeeded in in-
ducing driver adaption to experimental manipulation of the required amount of glance aversion. No
significant variation of the lane keeping performance among the display positions was found. This
could be attributed to a decreased duration of long glances off the road for the display positions that
required stronger gaze aversion. However, we also noted that the different display position apparently
corresponded to different costs of gaze switching which was visible in the distribution of short glances
off the road. Consequently, the obtained data can be used to evaluate the developed approaches for
inference of sensor models. Nevertheless, to estimate final sensor model parameters the experimental
protocol must be improved with respect to mitigation of the effects of different costs of gaze switching.

5.7 Evaluation On Real Traffic Data

In the present section we will report on an evaluation of the developed technique for inference of
sensor models under the maximum causal entropy policy model. Similar as in the evaluation of inverse
optimal control approaches, here we investigate the prediction performance of policies. Assuming that
driver’s act rationally with respect to their sensor characteristics prediction performance can be related
to quality of estimation of the sensor model. Note, that similar premises are imposed in signal detection
experiments.

5.7.1 Scenario

To evaluate our approach for inferring sensor models from gaze switching behavior and lane keeping
performances we compared to alternative techniques. Here, we adapted the approaches [176, 70] to
the application context of this work. In the resulting methods, sensor models are inferred from their
influence on lane keeping performance alone. Furthermore, it is investigated, whether estimating sensor
models can provide any benefits over the best-guess sensor model used in the evaluation of Sec. 4.5 in
previous chapter. As driver behavior in the experiment II partially differed from that of experiment I,
also the generic directly estimated baseline policy model (Sec. 4.5.1) is revisited.
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5 Inferring Driver’s Sensor Characteristics

Methods for Inference of Sensor Models

In the following we will now describe the specific methods for estimating sensor models which we
evaluated on behavioral data obtained in driving experiment II (Sec. 5.6.3).

ISWYS in The Joint Task POMDP In this evaluation we considered our approach for inference of
policy and sensor models for the joint task POMDP under sensor model restriction and the simple
secondary task and under the maximum causal entropy policy model, i.e. SRMCE-ISWYS Algo. 18.
Unfortunately, the enormous computational demand required to obtain optimal sensor sequences for
the joint task model without the restriction of the sensor model prevented an evaluation of STROpt-
ISWYS Algo. 20.

The parameters of the model of the driving task were set to those values previously inferred in the
preprocessing of the data (Sec. 4.6.2). The reward function on the primary task states (3.9) was used as
in the previous evaluations. We further used task model xi

t = xz
t , r(xi

t) = q(1� xi
t) = q(1� xz

t ) of Sec.
3.3.3.

The sensor model parameters inferred in the evaluation were the noise variance in sensing the vehi-
cle’s position in lane (sy)2(xz

t = 1) and orientation in lane (sf)2(xz
t = 1) of the sensor noise covariance

SSSez
(xz

t = 1) = diag((sy)2(xz
t = 1), 0, (sf)2(xz

t = 1), 0). Here, separated noise covariances were used for
the different display positions. The parameters of the sensor model for gazing at the road, i.e. xz

t = 0
turned out to be not identifiable: In first tests estimating these parameters resulted in highly unstable
optimization of the soft gap (5.45). Therefore we omitted to estimate these quantities and set the sensor
noise covariance to (sy)2(0) = 0.64, (sf)2(0) = 0.01, (sy)2(1) = •, (sf)2(1) = •. For long glances at
the road this choice of parameters resulted in a steady-state belief of the lane position y with a 0.96
confidence interval of reasonable 0.3 m. Note, that the same values have been used to depict the belief
in the lane position when we introduced the joint task POMDP with restriction of the sensor model
in Sec. 3.5.2. Reward parameters qqq, including the parameter of the reward function on gaze switches,
were shared while sensor model parameters were inferred for each of the individual display positions.

To ensure well defined parameters qqq, lll the following constraints were imposed: The parameters of
the quadratic function of the primary task states and controls were required to be smaller than �10�4

whereas the variance of the sensor noise on the lane position and the orientation were required to be
greater than 10�6. The final optimization problem comprising of (5.45) plus the additional imposed
constraint was solved using an interior point method for non-linear, non-convex optimization.

Phatak et. Al.s’ Method Adapted to Joint Task POMDP [176] proposed an approach for inference
of sensor models and rewards in infinite time-invariant LQGs under the optimal policy model. Here,
a policy was directly estimated under the constraints introduced in [101] that guarantee optimality of
the estimated policy for some reward and some sensor model.

The joint task POMDP model is time variant and the sensor model varies according to the driver’s
glance behavior (Sec. 3.3.2). Hence, the original approach of [176] is not applicable. Furthermore, a
rational maximum causal entropy policy allows for more flexibility than a optimal policy. Still, the
idea of fitting a rational primary task policy p̃qqq,lll(up

t |µµµp
t ) to the observed controls given the distribu-

tion N (µµµ
p
t |xp

t , SSSp,lll
t (xzxzxz

0:t)) of the unknown driver’s belief on the primary task states in the data D can
be applied. Specifically, we can infer the reward parameter of the primary task QQQ1, QQQ2, and the sen-
sor model parameters lll by minimizing the expected negative log-likelihood of the maximum causal
entropy primary task policy:

min
QQQ1,QQQ2,lll

E
h T

Â
t=0

E
⇥

log
�
p̃qqq

t (u
p
t |µµµp
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⇤���Di = (5.66)
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This optimization problem is a simplified variant of the SR-MCL-ISWYS. In SR-MCL-ISWYS the like-
lihood of the policy for all controls including the sensor control and secondary task controls is maxi-
mized (Sec. 5.46) whereas our version of Phatak et al.s’ only maximizes the likelihood of the primary
task policy. Consequently, Algo. 19 can be adapted for solution. To finally also obtain a policy for
the sensor control uz

t and the secondary task control ui
t this approach was followed by SR-MCL in the

evaluation. Here, the sensor model was fixed to the previously estimated sensor model parameters lll
while all reward parameters were re-estimated.

For numerical optimization we used the same additional constraints and the same optimizer as in
ISWYS.

Golub et. Al.s’ Method Adapted to Joint Task POMDP Inference of internal models in LQGs given
a linear Gaussian, e.g. maximum causal entropy policy for the primary task, was addressed in [70]. In
that work an Expectation-Maximization (EM) approach was proposed which iterates between inference
of the agent’s belief unknown to the observer and inference of the agent’s internal models. Here, both
internal models of the sensor and the dynamics were addressed.

In our application the internal dynamics model is assumed to equal the true dynamics model and
we only seek to estimate the sensor model. Consequently, Golub et. al.s’ method corresponds to
estimating sensor model parameters lll by minimizing the expected negative log-likelihood of a fixed
primary task policy pt(u

p
t |µµµp

t ):

min
lll

E
h T

Â
t=0

E
⇥

log
�
pt(u

p
t |µµµp

t )
���N (µµµ

p
t |xp

t , SSSp,lll
t (xzxzxz

0:t))
⇤���Di. (5.68)

Similar as in case of Phatak et al.’s approach, the minimization problem can be solved by adapting
Algo. 19. Note, that the original EM-approach used in [70] is just another technique for solving the
same optimization problem. In the evaluation, we used the maximum causal entropy primary task
policy p̃qqq

t (u
p
t |µµµp

t ) for random parameters sampled from the range observed in the previous evaluation
of inverse optimal control (Sec. 4.7).

Estimation was completed by fixing the previously inferred sensor model parameters lll followed by
inverse optimal control according using SR-MCL. Here, the same additional constraints and the same
optimizer as in ISWYS were employed.

Inverse Optimal Control

In addition to previous methods for inference of sensor models and policies, we also considered inverse
optimal control. Here, we employed the maximum causal entropy approach under the same model
assumptions as in ISWYS, i.e. SR-MCE Algo. 11. Furthermore, the simple secondary task model was
used.

To evaluate the advantage of inference of sensor models, a “best guess” sensor model was applied
in inverse optimal control: We set the sensor noise covariance for gaze on the road to (sy)2(0) =
0.64, (sf)2(0) = 0.01, (sy)2(1) = •, (sf)2(1) = • as in ISWYS and used a sensor noise covariance of
(sy)2(1) = •, (sf)2(1) = •, (sy)2(1) = •, (sf)2(1) = • for the driver gazing at the display. Note,
that this sensor model differs from the one of the previous evaluation (4.7) where we assumed that the
driver can perfectly sense the primary task states. In a pre-test, we empirically found slightly decreased
prediction error using sensory noise for sensor state gaze at the road.

For numerical solution of the corresponding optimization problem (Sec. 4.4.4) the same additional
constraints and the same optimizer as in ISWYS were employed.

Baseline

Finally, we also evaluated a baseline policy model obtained by direct policy estimation. For this pur-
pose, the policy model

pbase(up
t , uz

t |µµµp
t , dt) µ N (up

t |LLLbase
1 µµµ

p
t +lllbase

2 , SSSbase) exp
�
uz

t (l
base
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4 xz
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5 (1� xz
t )
�
), (5.69)
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was used. Inference of LLLbase
1 , lllbase

2 , lbase
3 , lbase

4 , lbase
5 was conducted by L1-regularized maximum like-

lihood estimation for generalized linear models [165]. We term the baseline model as DPE1 in the
evaluation.

5.7.2 Metrics

Following the evaluation in Sec. 4.7 the Kullback-Leibler divergence KL(p(dt)||p0(dt)) was used to
measure the difference between the distributions of eyes-off durations (EOD) in the experimental data
p(dt) and the predicted distribution of EOD p0(dt).

Furthermore, the expected squared error between the true lane position yi
t and predicted lane posi-

tion yt,

SE(yi
0:T ; p(y0:T)) = E

⇥ 1
T

T

Â
t=0

(yt � yi
t)

2|ppp0:T ,PPP0:T , p0
⇤

(5.70)

was used in the present evaluation. As an alternative to the expected squared error in prediction of the
lane position, we additionally considered the likelihood of the primary state trajectory present in the
data

NLL(xp
0:T

i; p(xp
0:T)) := � 1

T

T

Â
t=0

log p(xp
t

i|ppp, pz,PPP , p0), xp
t

i 2 D. (5.71)

In this context, a Gaussian approximation of the predictive primary state distribution was employed.

5.7.3 Protocol

For the numerical evaluation all valid segments of the driving experiment were split into snippets of
5 s length. One half of the data set was used to infer the latent parameters (training set) and the other
half was used for evaluation (test set). The split was conducted randomly and independently of driver,
speed or display position.

To estimate the parameters of DPE1 all training data was merged into a single set. In case of inverse
optimal control and the methods for sensor model inference, first for every snippet in the training set
the corresponding POMDP model was generated as previously described in Sec. 4.7.1. Here, in both
types of approaches the sensor model for the sensor state gaze on road was fixed. In case of IOC
also the sensor model for the sensor state gaze at display was fixed, whereas its noise covariance was
estimated in the case of the other methods.

The evaluation on the test set was done in the following way: We first generated the POMDP models
corresponding to each snippet. In case of the approaches that estimated sensor models, the sen-
sor model corresponding to the position of the display in the snippet was used. For evaluation of
inverse optimal control the “best guess” sensor model (sy)2(0) = 0.64, (sf)2(0) = 0.01, (sy)2(1) =
•, (sf)2(1) = •, (sy)2(1) = •, (sf)2(1) = •, (sy)2(1) = •, (sf)2(1) = • was employed. Thereafter,
the maximum causal entropy policies given the inferred rewards were computed. Finally, the obtained
policies were used to sample 100 state/control sequences in the POMDP associated with the snippet
of the experimental data. Metrics were estimated based on the 100 samples.

5.7.4 Results

As a very first result, we would like to mention once again that joint inference of a sensor model for
the sensor state xz

t = 1, i.e. eyes on the road, and the driver’s policy turned out to be impossible.
For all applicable implementations found in Mathworks MATLAB optimization toolbox [238], the opti-
mization problems of ISWYS and our variant of Phatak et al.’s approach were found to be unbounded.
This was the case also when restricting the training set to a specific speed and/or to a specific display
position. Interestingly, this was not the case for the used variant of Golub et. al.’s approach. However,
in this case no significantly improved performance could be established when inferring both sensor
noise covariances.
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We summarize the results of the evaluation in Tab. 5.4. Similar as in previous evaluation, the distri-
bution of prediction errors was found to be strongly skew shaped. Hence, we report on the medians
of the individual metrics.

Tabular 5.4: Prediction Performance
Metrics Methods

DPE1 MCE Golub Phatak ISWYS
Train Test Train Test Train Test Train Test Train Test

SE 0.081 0.080 0.020 0.020 0.020 0.021 0.020 0.020 0.020 0.020
NLL �5.99 �6.03 �8.59 �8.62 �8.51 �8.61 �8.68 �8.55 �8.56 �8.67
KL 0.60 0.59 0.55 0.56 0.28 0.28 0.27 0.27 0.25 0.25
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Figure 5.9: Expected squared error in prediction of the lane position. Box indicates the [0.25, 0.75] interval, while
the notch depicts the median. Whiskers indicate 1.5⇥ the median to quantile distance. Plot depicts the
prediction errors on withheld data.
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Figure 5.10: Likelihood of the sequences of primary task states under the predictive distribution. Box indicates
the [0.25, 0.75] interval, while the notch depicts the median. Whiskers indicate 1.5⇥ the median to
quantile distance. Plot depicts the prediction errors on withheld data.
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Figure 5.11: Difference of true distribution and predicted distribution of EOD measured by the Kullback-Leibler
divergence. Box indicates the [0.25, 0.75] interval, while the notch depicts the median. Whiskers
indicate 1.5⇥ the median to quantile distance. Plot depicts the prediction errors on withheld data.
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In the numerical experiment, the following observations were made: With respect to predicting the
primary task states all other approaches outperformed DPE1 in both the metrics SE and NLL according
to pairwise signed-rank tests ptest < 0.01. However, no significant differences between the approaches
for inference of sensor model and inverse optimal control using the best guess sensor model could be
established ptest > 0.01.

Considering prediction of glance behavior, the baseline model had significantly higher prediction
error than the other approaches ptest < 0.01 as measured by the KL. However, the difference between
the baseline and MCE was rather small. In contrast to the other metrics here inverse optimal control
and the approaches for inference of sensor models showed significant variation in prediction error:
First, using the best guess sensor model resulted in significantly higher prediction error compared
to inference of individual sensor models ptest < 0.01. Second, while our variants of Phatak et al.’s
and Golubs et al.’s approaches showed no significant difference, prediction error was slightly but
significantly smaller for estimation of sensor models using ISWYS ptest < 0.01.

The approaches for inference of sensor models were used to estimate the variance of the sensor noise
with respect to the vehicle’s position in lane s2(yt) and the vehicle’s orientation in lane s2(ft). The
parameters obtained in the 5 different splits are shown in Fig. 5.12. In this context, differences in the
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Figure 5.12: Inferred sensor noise parameters in experiment II. Upper plots depict the variance of the noise in sens-
ing the vehicle’s position in lane. Lower plots depict the variance in sensing the vehicle’s orientation
in lane.

values for the individual display positions H, C, N were not significant in neither method according to
signed-rank test at a niveau of ptest = 0.01. However, in the case of ISWYS a strong tendency towards
increasing s2(yt) could be established (H to C ptest = 0.03, C to N ptest = 0.03) and also a tendency (H
to C ptest = 0.06, C to N ptest = 0.03) could be found in our variant of Golub et al.’s approach.

Finally, we wish to provide some anecdotal evidence from the evaluation. In Fig. 5.13 and Fig. 5.14
sample sequences obtained from the reward parameters estimated by IOC and obtained from the
reward and sensor model parameters inferred by ISWYS are shown. Here, we depict the “true” lane
position of the vehicle in the lane as well as the driver’s belief of the lane position at driving speed 80
km/h for display position H.
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Figure 5.13: A sample sequence resulting from inference of reward under the best guess sensor model using
IOC. Thick line (���) denotes the “true” lane position yt, dotted line (· · ·· · ·· · ·) the expected lane position
E[yt|b(xp)] under the driver’s belief b(xp), shaded area the 96% confidence interval of the belief
b(xp). Triangles r indicate gaze switches uz

t = 1 from the road to display H, triangles D indicate gaze
switches uz

t = 1 from the display H to the road.
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Figure 5.14: A sample sequence resulting from inference of reward and sensor model parameters using ISWYS.
Thick line (���) denotes the “true” lane position yt, dotted line (· · ·· · ·· · ·) the expected lane position
E[yt|b(xp)] under the driver’s belief b(xp), shaded area the 96% confidence interval of the belief
b(xp). Triangles r indicate gaze switches uz

t = 1 from the road to display at H, triangles D indicate
gaze switches uz

t = 1 from the display at H to the road.

As can be seen in Fig. 5.13 the best guess sensor model typically resulted in shorter glances off the
road than those found in the data for display position H. In contrast, inference of the underlying sensor
model lead to more realistic longer glances off the road. Notably, despite the high noise variance s2(yt)
of 108 inferred by ISWYS the confidence interval of the driver’s belief has a relatively small maximum
width of 0.5 m.

5.8 Discussion

In the numerical evaluation we faced issues with unbounded optimization problems when trying to
infer the reward parameters and the sensor model parameters for both sensor states “gaze on the
road” and “gaze off the road”. In this context we employed the maximum causal entropy policy model
which results in a stochastic sub-optimal policy. Therefore, our empirical observations are in line with
the theoretical analysis of over-parametrization of models of sensori-motor behavior in [176, 3]. [176]
showed that the noise in sensing and the noise in execution of controls can generally not be separated
if both the belief and the policy are time-invariant. Specifically, if no data of the sensory measurements
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obtained by the human agent is available, deviation from the optimal linear-affine policy up
t = p?

t (x
p)

in LQGs can be explained by a stochastic policy p1
t (u

p
t |xp) : up

t = p?
t (x

p) + eee1 (for example the MCE
policy model), the optimal policy acting on noisy estimates of the state p2

t (u
p
t |xp) = p?

t (u
p
t |µµµp) =

p?
t (u

p
t |xp + eee2) or a combination of both.

In the present application the linear-affine policy for the steering angle velocity is time-variant and
dependent on the external variables vt, kt which vary among the snippets of behavioral data used in
estimation. However, we used a time-invariant belief with covariance ŜSSp,lll

0 for the sensor state “gaze
on the road” in the applied estimation variant SRMCE-ISWYS (see evaluation scenario Sec. 5.7.1 and
algorithm definition Algo. 18). Consequently, for this sensor state sensory and policy noise is probably
not separable. In our variant of Golub et al.s’ approach this issue is avoided, as the policy and sensor
model are not estimated simultaneously. However, this came at the cost of higher KL compared to
ISWYS in the numerical evaluation.

If the driver averts his or her gaze uncertainty in the belief b(xp
t ) monotonously increases which can

be seen in Fig. 5.14. Therefore, the contribution of perceptual uncertainty to sub-optimal choice of
controls changes over time. Likely, this variation allowed to separate the contribution of the sensorial
noise from the contribution of noise in the execution of actions. This could be the reason why joint
estimation of a sensor model for the sensor state “gaze off the road” and a stochastic policy was
possible in the evaluation.

The results of the numerical show a clear benefit of inferring sensor models for the quality of pre-
dicting glance behavior. As shown in Fig. 5.12 different sensor model parameters for the individual
display positions were estimated. Hence, improved prediction of glance behavior compared to IOC
with a fixed sensor model is due to the fact that more precise individual sensor models for the differ-
ent display positions were inferred. Furthermore, it turned out that using the additional information
contained in the driver’s gaze switching behavior as in SRMCE-ISWYS can further reduce prediction
error.

Human sensorial capabilities in peripheral vision strongly decrease with increasing eccentricity [36,
61, 226]. In the experiment the characteristics of peripheral vision were experimentally manipulated
by requiring the driver to gaze at displays at different positions. The positions were chosen that the
forward road scenery had increasing eccentricity with respect to the driver’s fovea when his or her
gaze was on the display. Considering the statistics of drivers’ behavior in the driving experiment
Sec. 5.6.3, the individual display position did not result in significant variation in the lane position.
Furthermore, the effects on glance behavior were ambiguous: The duration of short glances increased
with the amount of gaze aversion, whereas the duration of long glances decreased with the amount
of gaze aversion. All considered inference approaches estimate sensor models from their effects on
behavior. Consequently, the absence of a significant correlation between sensor noise magnitude in the
inferred sensor models and the amount of gaze aversion may be due to the weak effects of the amount
of gaze aversion on driver behavior in the conducted driving experiment.

The methods for inference of sensor models improved prediction of glance behavior. However,
predicting lane position was not improved compared to maximum causal entropy inverse optimal
control using the best guess sensor model. In the driving experiment II presence of the secondary task
came with significantly increased deviation from the lane center (Sec. 5.6.3). However, no significant
differences between the individual display positions could be established. Hence a single sensor model
may already obtain small prediction error in all different display positions.

The sensor noise covariance inferred by ISWYS had values of order 108 even for the experimental
condition where the driver gazed at the display H right above the steering wheel. These values appear
to be very large. Unfortunately, to the best of our knowledge there is currently no published work that
could be used for comparison. As shown in Fig. 5.14 these sensor models did result in rather small
perceptual uncertainty. Comparably large sensorial noise but small uncertainty in the resulting belief
indicates that assuming full knowledge of the kinematic model of the driving situation by the driver
might not be valid. In the present work this assumption roots in using the belief MDP (see Sec. 2.1.3) to
model driver vehicle control and gaze switching policy. Instead drivers may utilize simple approximate
internal models of the dynamics as hypothesized in other contexts of sensori-motor behavior [18, 70].
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5.9 Conclusion

This chapter presented a general framework for estimating sensor models underlying rational behavior
in partially observable decision processes. Our approach was motivated by the idea of quantifying the
characteristics of human sensing from the reactions they elicit from psycho-physics. The framework
proposed in this chapter was developed by extending inverse optimal control. A concrete implemen-
tation of the framework was derived for the class of POMDPs of the previously introduced normative
model of glance behavior in driving in presence of a secondary task. Here, computational tractable
exact solution approaches SROpt-ISWYS, SRMCE-ISWYS, SRMCL-ISWYS and STROpt-ISWYS could
be obtained. For the purpose of evaluation, a new driving experiment on lane keeping in presence
of a secondary task was introduced. In this study, we experimentally manipulated the amount of
gaze aversion from the road scenery required for secondary task engagement. Here, effects of this
manipulation on the drivers’ lane keeping performance and glance behavior could be established. The
obtained behavioral data was used to compare to inverse optimal control with a best guess senor model
and directly estimated baseline models. The errors in prediction of the recorded behavior showed sig-
nificant benefits of inference of sensor models using the new methodology. However, problems of
over-parametrization were present in the application of our framework and improvement over IOC
could not be established with respect to every considered metric.

The methodology developed in this chapter allows to obtain the parameters of characterizing the
driver’s sensing of vehicle states. These are of crucial importance for computing appropriate glance
behavior by means the normative model introduced in previous Cpt.3. Furthermore, inferring the
individual parameters of driver’s sensor characteristics of common secondary tasks could result in a
more sensitive distraction warning system.

The effects of manipulating the drivers’ sensor characteristics were rather small in the conducted
driving experiment. Hence, in future work subjects should more strongly be motivated towards long
glances off the road. This could be done by applying the forced peripheral driving paradigm [230, 229]
on a closed test track. Here, we would expect strong effects of the amount of gaze aversion on the
driver’s behavior, especially on the lane keeping performance. Obtaining the optimal gaze switch poli-
cies in the joint task POMDP without restricting the sensor model has problematic computational de-
mand. As a consequence, we were not able to evaluate the implementation of our framework for infer-
ence of sensor models STROpt-ISWYS in this variant of the joint task POMDP. In future work therefore
more efficient solution techniques should be developed. Additionally, criteria for a-priory detection
of over-parametrization as [3] are relevant. This would allow to find an appropriate parametrization
and a good experimental design for data collection. Finally, another important research direction is
investigating and quantifying the drivers’ internal models of the driving situation and to validate the
inferred sensor parameters with respect to psycho-physiological findings.
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6 Distraction Mitigation by Computation of Appropriate Glance
Behavior and Its Evaluation

Current state-of-the-art visual distraction warning systems assess attention based on statistics of the
glance behavior alone. Typically, these systems warn if the time passed since the driver had his or
her gaze on the road for the last time exceeds a certain predefined threshold. However, drivers show
highly adaptive and rational glance behavior. Hence, the state-of-the-art systems are neither optimal
in terms of improving driving performance nor in terms of user acceptance.

This chapter develops and evaluates a warning system based on the previously established model of
situational appropriate glance behavior. We first present the architecture and the implementation of the
warning system including preprocessing of sensor signals, policy computation and warning generation
in Sec. 6.3. Sec. 6.4 introduces a comparative evaluation of both the developed warning system and
an implementation of a state-of-the-art warning system in a user test. Importantly, both systems used
the same presentation of warning and only differed in the triggering mechanism. Finally, we analyze
both objective measures of driving performance as subjective ratings of the warning systems by the
participants in Sec. 6.5.

This chapter will be published in [201].

6.1 Introduction

Previously, a normative model of Appropriate Glance Behavior (ABG) in driving was developed in
Cpt. 3. This model builds on rational gaze-switch policy that takes into account the current driving
situation, the secondary task the driver is engaging in and the corresponding characteristics of the
driver’s sensing of the forward road scenery. In real traffic experienced drivers show adaptive glance
behavior. For example, drivers reduce the duration of long glances off the road with increasing driving
speed, which is long known in human factors research [207, 69] and was also visible in our driving
experiments introduced in Sec. 4.6 and Sec. 5.6. Using the techniques for estimating model parameters
established in Cpt. 4 and Cpt. 5, the normative model could accurately predict this adaptive behav-
ior. Hence, we hypothesize that a system that warns drivers if they deviate from the glance strategies
underlying the model of appropriate glance behavior is well received. In addition to that, also im-
provement of driving performance can be expected as an established physical model of the driving
task and an empirical model of the driver’s sensing and manual control characteristics is taken into
account in normative model of glance behavior.

In several previous works distraction warning systems have been proposed. Here, typically warnings
are triggered based on the driver’s behavior alone. In the simplest approach, the driver is warned if the
time passed since his or her gaze was on the forward road scenery exceeds a certain threshold. From
theoretical perspective such an approach is definitely inferior to a warning system based on computing
situationally appropriate glance behavior as it neglects the influence of the driving situation. However,
it is not clear if the theoretical benefits of AGB are also present in practical application: First, driver
may find the warnings produced by AGB harder to understand compared to a simpler system which
can result in additional distraction [13]. This can be the case for example if some model assumptions
made in the normative model of glance behavior are invalid. Here, system behavior can be perceived
as inconsistent by the users. Second, drivers have different preferences with respect to the sensitivity
of the warning system which can result in significant variation in the individual judgments. Finally,
in real driving the performance of the warning system is affected by sensor errors, for example loss of
eye-tracking. For these reasons it is necessary to comparatively evaluate both an implementation of a
state-of-the-art warning system and the AGB system in a realistic setting.

In this chapter we investigate the benefits of employing AGB to adapt warnings to the driving speed.
This done by comparing against a classical Eyes-On-Road detection (EOR) warning system, similar to
[108]. In this approach a warning is triggered if the time passed since the driver had his or her gaze
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on the road for the last time exceeds a fixed predefined threshold. For both considered warning
systems a similar architecture was used that finally triggered the same audio-visual warning interface.
Importantly, both warning systems were calibrated on data of a preliminary driving experiment to
ensure equal overall sensitivity of EOR and AGB. The evaluation was conducted in form of a user test.
In this study subjective ratings of the number of warnings, timing of warnings and usefulness of the
warning systems as well as objective measures of driving performance were collect and analyzed.

6.2 Related Work

As reviewed in the introduction a variety of approaches for assessment of attention have been proposed
which do not take into account the current driving situation [52, 105, 58, 250, 126, 135]. Of these the
methods presented in [108, 52, 105, 126] are solely based on the driver’s glance behavior. In the
simplest case [108], first a rectangular Region Of Interest (ROI) is defined. The ROI is chosen to
cover the forward road scenery. Based on whether the driver’s gaze intersects the ROI the gaze is
classified into the classes “gaze on road” or “gaze off road”. Finally, the proportion of the class eyes-
off-road is used for distraction assessments [108]. The other works mainly differ in the shape of the
ROI and the statistics computed from the in-ROI classification. Although, more complex approaches
allowed to more precisely detect engagement in visually demanding secondary tasks [126], they did
not show significant advantages for predicting crash risk compared to the Eyes-Off Duration (EOD)
[141]. [62] assessed glance behavior combined with driving speed. Here, a distraction warning index
was obtained by dividing EOD by the squared driving speed. EOD divided by the absolute value of
the driving speed was used for driver attention assessment in [119]. Furthermore, similar as in the
workload manager of [52] secondary tasks were blocked in manually coded locations of high driving
demands such as intersections.

A driver distraction warning system was evaluated in a driving simulator in [52]. Here, the warning
system significantly altered the drivers’ glance behavior but no significant improvement of driving
performance could be established. The approach of [105] was used in an extended field study [5], where
drivers used the warning system for an average mileage of several thousand kilometers. However, in
that study no significant effects but a tendency towards decreased durations of glances off the road was
observed. [126] evaluated a driver distraction warning system considering several different secondary
tasks in driving simulation. Here, lane keeping performance was significantly improved for one task
and significantly worsened for a single other task. Considering all tasks no significant improvement
could be established. Furthermore, the distraction warning systems resulted in a higher concentration
of the drivers’ gaze off the road while no significant effects on glance duration were present. In the
evaluation of their distraction warning system [119] could not establish a reduction of the duration of
glances off the road but subjective ratings of usefulness were high. In that work no objective measures
of driving performance were analyzed.

As an alternative to a standalone distraction warning system, an estimated driver’s attention state
has been used as an additional feature in the situation analysis of classic ADAS systems. [179] imple-
mented a lane-keeping support system were interventions by means of steering torque are triggered
earlier when the driver was classified as being distracted. Furthermore, [187, 236] proposed systems
that adapt forward collision warnings with respect to the driver’s attention state. A combined approach
for detecting driver distraction and corresponding decision-making in lane keeping assistance as well
headway keeping assistance was given in [122]. This was implemented as a hidden-mode (correspond-
ing to the driver’s distraction state) POMDP. Notably, in all these works the adapted driving assistance
systems were neither evaluated wrt. effectiveness nor acceptance by the users. In contrast, [28] showed
that early lane keeping assistance for driver engaging into a visually demanding secondary task re-
duces lane deviation while being similar well accepted as the standard late lane keeping assistance.
However, in that work the early warning mode was triggered manually.

Similar as in [105, 5], in this work a standalone distraction warning system is considered. However,
our system assesses driver attention from both the glance behavior and the situational context. In
contrast to [62, 119], our approach is based on rational policies under an established physical model
of the driving task and empirical models of driver’s perception and manual control characteristics.
As shown in Sec. 3.5.2, this leverages a uniform bound on the loss of vehicle control performance
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under the computed glance behavior. In addition to that, we also present a thorough evaluation of the
potential benefits of the new warning system in a real driving user test.

6.3 Warning System Design

In this section we present the architectures of the distraction warning system based on a threshold
on the eyes-off duration termed Eyes-On-Road (EOR) and by computing appropriate glance behavior
(AGB). Here, we restrict the distraction warning system to the driving task of lane keeping similar as
in the previous chapters of this thesis.

The warning systems received as an input the estimates of the driver’s gaze and head orientation
from an eye-tracking system and vehicle states obtained from the CAN-BUS. First, the eye-tracking
data was pre-processed returning a classification into “gaze on road” and “gaze off road” as well as an
estimate of the duration of the current class. These quantities were then used by the driver attention
assessment. Whereas EOR only processed the signals derived from eye-tracking. AGB identified the
parameters of a kinematic model of the driving task and generated the POMDP by predicting the
future speed profile. Thereafter the maximum causal entropy policy was computed which defined a
situation specific threshold on the EOD. Finally, both systems returned warning triggers. The overall
architecture including the individual sampling times Dt is shown in Fig. 6.1.

Eye-Tracking
Preprocessing

Warning Interface

CAN
Preprocessing

POMDP
Generation

Policy
Computation

Eye-Tracking

CAN-BUS

Eyes-On-Road

Appropriate Glance Behavior

Dt = 0.04 s

Dt = 0.02 s

Figure 6.1: Overview of the warning systems. Eye-Tracking preprocessing and EOR run with a sample time of
Dt = 0.02 s, whereas the CAN preprocessing and AGB run with a sample time of Dt = 0.04 s.

In the following we will describe the individual components of the warning system. In this context,
the index t0 with apostrophe denotes the current time step in application of the warning system. The
index t without apostrophe denotes time steps of the POMDP model, ranging from (t = 0) ⌘ t0 to
(t = T) ⌘ t0 + T.

6.3.1 Test Vehicle

The warning system was implemented in a BMW 520d Touring F11 (Bayerische Motoren Werke Ak-
tiengesellschaft, München). For this purpose we integrated the MPC2 system (Robert Bosch GmbH,
Stuttgart, Germany) for lane tracking (see Fig. 6.2). Similar as in previous driving experiments a
SmartEye Pro (SmartEye AB, Gothenburg, Sweden) infra-red eye-tracking system with active illumina-
tion was used to estimate the driver’s gaze direction and head orientation. To obtain a larger operation
range a four-camera system was employed in the user test. Here, the individual cameras were posi-
tioned at the left A-column, in front of instrument cluster, to the right of the central information display
and at the right a-column as can been seen in the right picture of Fig. 6.2. Two computers in the back
of the vehicle were used for the eye-tracking software (SmartEye AB, Gothenburg, Sweden) and the
CANape software (Vector Informatics, Stuttgart, Germany) for measuring CAN-Data, synchronizing
data streams as well as interfacing to the implemented algorithms.

Algorithms were first implemented as SIMULINK models (The MathWorks Inc., Natick, United
States). Thereafter, we used automatic code generation to obtain highly optimized C code which was
compiled for CANape target.
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BWM 520d Touring F11

MPC2 Lane-Tracking Camera

Vehicle’s Cockpit

SmartEye Pro Eye-Tracking System

Figure 6.2: Test vehicle in user test. Left picture shows the vehicle and the MPC2 camera, right picture shows the
individual cameras of the eye-tracking system in the vehicle’s cockpit.

6.3.2 Processing of Eye-Tracking Data

This section describes the processing of the eye-tracking data for distraction warning. Here, first
classification of the driver’s gaze is considered. Thereafter, the estimation duration of the classified
state is explained.

Eye-Tracking Data

The employed eye-tracking system returns an estimate of the driver’s eye position. In addition to that it
supplies an estimate of the gaze direction by means of its heading which is the angular deviation from
a “null” direction along the horizontal axis and its pitch which is the angular deviation from “null” in
the vertical axis is supplied. The manufacturer reports that the system uses both the so-called dark and
white pupil effect (which are infra-red analogs of the well-known red light effect in photography using
a flash) for eye detection and gaze estimation. We refer to the survey article of [75] for more details on
the state-of-the-art in eye-tracking. In addition to quantities related to the driver’s gaze the system also
estimates the driver’s head pose using facial landmarks. Most importantly for this work an estimate of
the driver’s nose-pointing direction is given in form of heading and pitch. In the present work details
on head-pose estimation are omitted but can be found for example in the survey article of [237].

Eyes-On-Road Classification

The first processing step with respect to the eye-tracking data was to classify it into the sensor states
xz

t0 of the joint task POMDP. We followed the approach of [108] and employed a rectangular region of
interest for classifying the driver’s gaze. The region was placed roughly above the vehicles steering
similar as depicted in Fig. 6.3. The region’s vertical and horizontal extend was optimized with respect
to classification precision using approximately 3 hours of manually annotated gaze data of drivers
engaging into a visually demanding secondary task at the central information display. The final region
with center cg,x, cg,y and width wg,x, wg,y had an extend of approximately 0.3 m in the vertical and
horizontal axis.

ROI

Figure 6.3: Illustration of a typical rectangular region of interest (ROI) as used in this work.

Remote eye-tracking in real driving is a challenging task. Several authors reported imprecise gaze-
estimation or even entire loss of tracking when using eye-tracking systems in real driving, for example
[5]. As a consequence, classifying gaze into sensor states xz

t using an ROI approach is typically subject
to significant noisy. Fig. 6.7 (2) shows an example of the eye-tracking data and the noisy classification.
In that case decreased quality of eye-tracking is probably attributed to intensive sun-light irradiation as
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can be seen in Fig. 6.7 (1). To increase robustness of classification, we optimized a second rectangular
ROI with parameters ch,x, ch,y, wh,x, wh,y for the nose-pointing direction. Thereafter, we fused the
intersection point of the driver’s gaze pg,x

t0 , pg,y
t0 with its rectangular ROI as well as the intersection

point of the nose-pointing direction ph,x
t0 , ph,y

t0 . This was done using the logistic regression model

p(xz
t0 = 1|pg,x

t0 , pg,y
t0 , ph,x

t0 , ph,y
t0 ) = exp

�
lclass

1 + lclass
2 max(|pg,x

t0 � cg,x|� wg,x, |pg,y
t0 � cg,y|� wg,y)

lclass
3 max(|ph,x

t0 � ch,x|� wh,x, |ph,y
t0 � ch,y|� wh,y)

�
. (6.1)

Anecdotical evidence of the classification using the logistic regression model is presented in Fig. 6.7 (2).

Estimation of Eyes-Off Duration

Given the classification of the driver’s gaze next the time passed since the driver’s gaze was on the
road for the last time, i.e. the eyes-off duration (EOD) dt0 , was estimated.

This seems simple, but note that a single wrong classification of the gaze has a massive impact on the
estimated EOD. For example, can a single wrong classification into gaze on road falsely strongly reduce
the estimated EOD. [6] proposed approaches for preprocessing of eye-tracking data based on outlier
detection and removal as well as total-variation based smoothing and interpolation. However, these
were developed for offline processing and turned out to be ineffective in an online setting. Instead we
employed a chain-structured conditional random field to estimate EOD: We first defined the variable
dt0 2 Z to be the time steps passed since the last gaze switch using its sign to indicate whether the gaze
is on the road or off the road

dt0 =

8<: +min{k : k�0,uz
t0�k=1}(k) if xz

t0 = 1

�min{k : k�0,uz
t0�k=1}(k) if xz

t0 = 0
. (6.2)

The employed random field model specifies the probability of an element dt0+1 given dt0 and
pg,x

t0+1, pg,y
t0+1, ph,x

t0+1, ph,y
t0+1 as

p(dt0+1|dt0 , pg,x
t0+1, pg,y

t0+1, ph,x
t0+1, ph,y

t0+1) = exp
�
y(dt0 , pg,x

t0+1, pg,y
t0+1, ph,x

t0+1, ph,y
t0+1) + y(dt0+1, dt)

�
. (6.3)

In this context the factor y(dt0 , pg,x
t0 , pg,y

t0 , ph,x
t0 , ph,y

t0 ) was defined by means of the classification model
(6.1)

exp
�
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t0 ) else
(6.4)

and the factor y(dt0+1, dt) was given by
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The rationale behind the chosen transition factor was to use a complex model for short glances as to
distinguish between natural glance behavior and failure of eye-tracking. For long glances the model
was made less informative. The model parameters llldyn were inferred from the same set of manually
annotated data which was used to optimize the gaze classification.

For inference of the distribution of p(dt0 |pppg,x
0:t , pppg,y

0:t , ppph,x
0:t , ppph,y

0:t ) we employed a particle filter [14]. Given
a particle dt0�1 and pg,x

t , pg,y
t , ph,x

t , ph,y
t the a-posterior distribution of dt0 is given in analytic form
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if dt0�1 < 0, dt0 = dt0�1 � 1 or dt0 = +1 :
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(6.7)

Hence, empirically we observed that already 20 particles {dddi=1:20
t0 } suffice to maintain a good approxi-

mation of the distribution of dt0 . Fig. 6.7 (3) shows an example of the 20 particle estimates of dt0 .

6.3.3 Processing of CAN-BUS Data

Next, it is explained how the relevant quantities measured in the vehicle’s CAN-BUS were filtered and
processed. These steps are required to generate the POMDP model of the driving situation.

CAN-BUS Data

To compute the policy for definition of appropriate glance behavior, we first generated the joint task
POMDP model corresponding to the current driving situation. The kinematic model of the primary
task of driving is given by the model

xp
t = A(vt)x

p
t + B(vt)u

p
t + a(vt, kt) + eee

p
t , eee

p
t ⇠ N (0, SSSep

)

and an initial state xp
0 = [y0⌘t0 ẏ0⌘t0 f0⌘t0 a0⌘t0 ]

>. Furthermore, the matrices A(vt), B(vt), a(vt, kt) de-
pend on the vehicles steering wheel to yaw-rate constant c̄1 (see Sec. 3.3.1) which needs to be identified.

We obtained the data related to the lane-tracking from a CAN-BUS connected to the MPC2 camera,
while the vehicle’s driving speed, longitudinal acceleration, yaw-rate, steering angle and steering wheel
velocity were obtained from the vehicle’s electronic stability program computer via a central CAN-BUS.

Filtering and Prediction

A first processing step estimated the constant c̄1 by online gradient descent minimization of the error
in predicting the yaw-rate

min
c̄1
kc̄1vt0at0 � ¯̇ft0 k2. (6.8)

Furthermore, a Kalman-filter using the same parameterization as employed in the preprocessing of the
data of driving experiment I in Sec. 4.6.2 was used to filter the data from the lane-tracking. Finally, a
second Kalman filter was used to filter the vehicle’s driving speed and longitudinal acceleration.
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Generating the POMDP model of the primary task does not only require current driving speed and
road curvature but also its future values along the horizon T. The lane-tracking camera estimates the
road curvature from the visible lane boundaries ahead of the vehicle, hence the current curvature kt0
was used as an estimate of the entire horizon kkk0:T = kt0 . The future speed profile was predicted based
on the filtered longitudinal acceleration. Specifically, we used the prediction model

vt = max(vt0 + t/25 s v̇t0 , 0) (6.9)

where 1/25 s is the inter-sample time and where it was assumed that once the vehicle stands it remains
at zero driving speed.
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t0 < d̄t0 ) was higher than a threshold tAGB a warning
was triggered.
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6.3.4 Eyes-On-Road Implementation

We implemented the eyes-on-road algorithm in the following way: To trigger a warning, it was first
required that at least half of the particles {dddi=1:20

t0 } indicated that the driver’s gaze was off the road

20

Â
i=1

Id<0(d
i
t0) � 10. (6.10)

Second, the eyes-off duration dt0 was estimated by the average eyes-off duration d̄t0 over the particles
indicating gaze off the road,

d̄t0 =
20

Â
i=1

Id<0(d
i
t0) |di

t0 |. (6.11)

If additionally the estimated EOD scaled by the inter-sample time Dtd̄t0 exceeded a predefined thresh-
old tEOR of seconds, a warning was triggered. The estimated EOD is depicted as a blue line in
Fig. 6.7 (5). Furthermore the entire implementation is illustrated in Fig. 6.4.

6.3.5 Appropriate Glance Behavior Implementation

The implementation of warning based on computing appropriate glance behavior was done in the
following way: First, the joint task POMDP model was generated. Thereafter the covariance of the
Gaussian belief of the primary task states of the driver was estimated. This was based on the particle
estimates of the off-road duration as well as the POMDP model. Given both the current belief of the
driver and the POMDP model the maximum causal entropy policy was computed. A warning was
finally triggered if both the particles indicated the driver’s gaze being off the road and if under the
maximum causal entropy policy a return of gaze to the road was sufficient likely. The implementation
is outlined in Fig. 6.5.

POMDP Generation

Given the estimate of the steering angle to yaw-rate constant c̄1 and the predicted speed profile vvv0:T
as well as the curvature profile kkk0:T the joint task POMDP model was generated. We combined the
kinematic model of the driving task with the simple secondary task model (Sec. 3.3.3) and the sensor
model restriction (Sec. 3.5.2). That is the following POMDP was generated:

r(xt, ut) = q1(yt)
2 + q2(ẏt)

2 + q3(at)
2 + q4(u

p
t )

2 + q5uz
t + q6(1� xz

t ) (6.12)
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pz(zt|xt) def. by

(
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t + eeez
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t (xz
t ) ⇠ N (000, diag((sz

y )
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t ), 0, (sz
f)

2(xz
t ), 0))

.

(6.14)

In this context we employed a planning horizon T of 50 steps which corresponds to look-a-head time
of 2 s.

Belief Generation

An important part of the joint task POMDP is the driver’s initial belief of the primary task states
b(xp

0 ) = N (µµµ
p
0 , SSSp

0 ). Specifically, the covariance SSSp
0 of the initial belief is required to compute the MCE

policy for gaze switching.
In the applied variant of the joint task POMDP P , pz this covariance matrix was fully determined by

the EOD d0⌘t0 , i.e. SSSp
0 (dt0). The EOD was estimated by means of the particles {dddi=1:20

t0 } in our warning
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system architecture. From these particles we obtained an estimate of the covariance of the belief of the
primary task states in the following way: We maintained the individual covariances SSSp

t (d
i
t0) associated

with every particle di
t0 . An estimate of the covariance of the driver’s belief SSSp

0(dt0) was obtained by
taking the expectation over all covariances SSSp

t (d
i
t0) associated with particles di

t0 that indicated that the
driver’s gaze was off the road:

SSSp
0(dt0) =

20

Â
i=1

Id<0(d
i
t0)SSSp

t (d
i
t0). (6.15)

This specific estimator was used in the present work as it showed improved robustness compared to
the covariance SSSp

t (d̄t0) resulting from the estimated eyes-off duration.

Gaze Switch Policy Computation

The generated POMDPs (6.12)-(6.14) are instances of the joint task POMDP under sensor model restric-
tion. As such the maximum causal entropy policy p̃pp0:T of the POMDPs can be obtained by Algo. 7. For
the purpose of computing appropriate glance behavior, we further optimized the procedure by hard
coding the simple secondary task model.

The probability p(dp̃pp,r,PPP ,pz

t0 < d̄t0) of shorter EOD under the MCE policy p̃pp than the current estimated
EOD was obtained in the following way. If the driver’s gaze was on the road, we set p(dp̃pp,r,PPP ,pz

t0 <
d̄t0) = 0. Else if the driver’s gaze was off the road the probability of a return of gaze back to the road
p(dp̃pp,r,PPP ,pz

t0 < d̄t0) was computed by

p(dp̃pp,r,PPP ,pz

t0 < d̄t0) = 1�
t0

’
t00=t0�d̄t0+1

p̃t00(uz
t00 = 0|t00 � d̄t0). (6.16)

That is possible because the return of gaze back to the road is the complementary event of the event
that always sensor control uz

t00 = 1 “keep current sensor state” has been chosen under the maximum
causal entropy gaze switch policy.

6.3.6 Warning Interface

In the previous sections we described the algorithms for preprocessing of sensor data and the ap-
proaches for distraction assessment. If either EOR or AGB triggered a warning the warning interface
was activated. Here, a warning icon was presented at the same display used for the visually demand-
ing secondary tasks which is depicted in Fig. 6.6.

Figure 6.6: Visually demanding secondary task and the visual component of the distraction warning. The sec-
ondary task required reading random numbers 1 and 2 shown in green in the right lower quarter of
the display. The visual component of the warning consisted of a red warning icon shown in the right
upper corner of the display.

The warning icon was combined with a short high frequency warning tone which was output via the
vehicles built-in loudspeakers. Warnings were output as long as the interface received a trigger from
the driver attention assessment algorithms. That is, if the driver did not return his or her gaze to the
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road further warnings were produced. We wish to note that other works [104, 5] used more complex
warning concepts. Specifically, warnings were presented longer and escalated if the driver did not
return gaze to road. We decided on the single short warning tone because it facilitates recognizing the
warning timing by the user. This was important for the user test (described later in Sec. 6.4) because
we were interested in the subjective assessment of the warning timing by the participants.

6.3.7 Example of Warning System

Combining the preprocessing, the driver attention assessment algorithms and the warning interface
results in the final warning systems. In Fig. 6.7 we present a short snippet from the user test which
illustrates the different components of the system and their important outputs:

Fig. 6.7 shows a snippet of 2.5 s length in which a participant averted her gaze from the road, received
a distraction warning and returned gaze back to the road. The first row (1), shows the driver’s glance
behavior. The time steps corresponding to the presented pictures are indicated as non-filled rectangles
in all other plots. (2) plots the gaze angles measured by the eye-tracking system. Here, dashed lines
are used to indicate the gaze heading and gaze pitch. The blue dashed line indicates gaze intersection
with the optimized rectangular ROI as described in Sec. 6.3.2 and e.g. applied in [108]. The red dashed
line denotes the probability of gaze on the road using the logistic regression model as employed in the
present work (see (6.1)). The particle estimates of the (signed) time passed since the last gaze switch
as described in Sec. 6.3.2 are shown in (3). (4) depicts the vehicle’s interior featuring the warning icon.
Here frames were captured at approximately the same time as the frames of the driver’s face. The
warning icon appears on the third picture on the display mounted to the right of the steering wheel.
Finally, the warning indices used in EOR and AGB are shown in (5). The blue line indicates the EOD
used to trigger warnings in EOR. The Red lines indicate the probability of return of gaze to the road
scenery in AGB. Here the solid red line shows the actual warning index of the present snippet in the
driving experiment whereas the dashed red lines depict warning index of AGB simulated for different
driving speeds. The warning trigger is depicted as a black line. In the present snipped the warning
trigger was controlled by AGB.
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Figure 6.7: Example of the warning system (written consent of the participant was obtained).
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6.4 User Study

In the last section we introduced two distraction warning systems that we integrated into a test vehicle.
Both warning systems shared a common architecture comprising of sensor data preprocessing, driver
attention assessment and a warning interface. In this context, both the preprocessing algorithms as well
as the warning generation were exactly the same for both systems whereas the main differences were
the usage of the EOR and AGB for assessment of driver attention. While EOR produces warnings if the
driver’s eyes-off duration exceeds a fixed threshold, warnings produced by AGB are dependent on the
driving situation as modeled in the joint task POMDP. Furthermore, the driver attention assessment
based on EOR is comparably simple, while AGB requires to compute rational policies for non-trivial
POMDP models.

Given these differences, we conducted a user test to compare and evaluate both warning systems.
Here, the following research questions were addressed:

R1 Can computing appropriate glance behavior be applied as a real-time distraction warning sys-
tem?

R2 How are the warning systems accepted by users exposed to the warnings?

R3 What are the effects of the distraction warning systems on driving performances?

R4 What are the effects of the distraction warning systems on drivers’ glance behavior?

In the present user test we exemplary investigated these research questions with respect to adaption of
warnings to driving speed in AGB.

We wish to note, that such an adaption is in principle also possible using heuristics as e.g. employed
in [62]. However, in our model of normative glance behavior adaptivity naturally results from the kine-
matic model of the primary driving task. Intuitively this is because of the following reason: Compared
to low driving speed, at higher driving speed the same orientation in lane, e.g. an offset Df from zero
due to a steering error, results in increased deviation from the lane center if not noticed by a driver who
averted his or her gaze. Correspondingly, at higher driving speeds a decreased duration of glances off
the road is permitted in AGB. In addition to that, in AGB also adaptation to other aspects of the joint
task of secondary task engagement while driving is possible. For example, can the warning system be
adapted to the driver’s specific sensor characteristics in an individual driving task as discussed in Cpt.
5. Due to the issues involved in estimation of sensor models we omitted an evaluation of this property
of the model of appropriate glance behavior.

In the following we will now introduce the driving experiment that was conducted to investigate the
aforementioned research questions.

6.4.1 Participants

For the user test we recruited 18 (4 female, 14 male) participants from the Robert Bosch GmbH at
Renningen. The age of the participants ranged from 25 to 43 years (mean µ = 31.5, standard deviation
s = 5.1). As the eye-tracking system did not reliably work with glasses only drivers participated
that either wore contact lenses or did not need visual aids at all. All participants possessed a driving
license valid in Germany. Furthermore, kilometers driven by the participants in the last year showed
significant variation ranging from 1000 to 36000 km. In addition to that, the drivers had a similar
attitude towards engagement in secondary tasks as assessed by a questionnaire regarding the frequency
of engagement in several common secondary tasks.
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Figure 6.8: Participants squinting due to strong sun irradiation (written consent was obtained).

Of these 18 participants, 3 participants’ data could not be analyzed as strong sun irradiation and par-
ticipants’ squinting led to insufficient eye-tracking quality. Fig. 6.8 depicts two examples of squinting
participants. In addition to that, the data of one participant was corrupted due to a saving error.

6.4.2 Test Track

The user test was conducted on a closed test track of the Robert Bosch GmbH at Renningen. The track
is depicted in Fig. 6.9. Here, recordings were taken on a marked lane in the northern part of the test
track which had a length of approximately 700 meters.

700 m

turn

turn

Figure 6.9: Aerial photography of the test track used for the user test. Recordings were taken driving in one of the
northern marked lanes of a length of approximately 700 m.

Lane keeping on a test track comes with significantly lower risk compared to lane keeping on a motor-
way as in previous experiments. Consequently, lane departure on a test track may be more frequent.
To motivate the participants to stay in lane we deployed orange cones next to the lane and instructed
the driver not to run over the cones. Here, cones on the left and on the right were offset to ensure that
they do not provide additional guidance cues in peripheral vision. The installation is shown in Fig.
6.10.

Figure 6.10: Illustration of the installation of cones on the test track.

158



6.4 User Study

6.4.3 Protocol

Participants first filled out a questionnaire regarding demographic aspects, driving style and attitude
towards secondary tasks while driving. Thereafter, the purpose of the user test was explained. In
this context, participants only knew that two different approaches for attention assessment would be
evaluated but no details regarding their functionality were revealed.

Before the recordings of user test were started, the participants practiced the secondary task both in
stand-still and at 40 km/h. The entire user test consisted of three blocks: First participants drove and
engaged into a secondary task without a warning system active, thereafter they were treated with both
warning systems block-wise and in randomized order (warning system condition). Two recordings of
every warning system condition were taken at the driving speeds of 20 km/h, 40 km/h and 60 km/h
(speed condition). In each trial, participants started from stand-still and first accelerated to the desired
driving speed. Once the driving speed was stably reached both the secondary task and, dependent on
the experimental condition, the warning system was activated by the instructor. The secondary task
was automatically deactivated after 30 s. At the end of the lane participants turned the vehicle and
rated the warning system if any was active.

In the user test we used the same secondary task as in the previous driving experiments (Sec. 4.6
and Sec. 5.6). We refer to Sec. 4.6 and Sec. 3.3.3 for a detailed description. To motivate the participants
to engage into the secondary task, they were shown their score defined as the number of correct button
presses minus the number of incorrect button presses. Furthermore, a fabricated high-score of 70 was
displayed.

The drivers were asked to rate the warning system experienced in the last period of secondary task
engagement with respect to three categories:

1. Number of the received warnings (presented in German as “Wie angemessen war die Anzahl
der Warnungen?”) on a Likert-type-scale of 5 items few (“zu wenige”), a little few (“etwas zu
wenige”), ideal (“genau angemessen”), a little many (“etwas zu viele”), many (“zu viele”)

2. Timing of the received warnings (presented in German as “Wie rechtzeitig waren die Warnun-
gen?”) on a Likert-type-scale of 5 items soon (“zu früh”), a little soon (“etwas zu früh”), ideal
(“genau rechtzeitig”), late (“etwas zu spät”), very late (“zu spät”)

3. Usefulness of received warnings (presented in German as “Wie hilfreich war das Warnsystem
zum sicheren Fahren?”) on a Likert-type-scale of 5 items useless (“nicht hilfreich”), quite useless
(“wenig hilfreich”), sort of useful (“etwas hilfreich”), useful (“hilfreich”), very useful (“sehr hilfre-
ich”)

The participants made their ratings by additional numeric buttons 1� 5 on the same number pad that
was also used for the secondary task. Fig. 6.11 depicts the number pad used for rating and the legend
presented in close vicinity.

Ratings
Anzahl

1 2 3 4 5
zu wenige etwas zu wenige genau angemessen etwas zu viele zu viele

Rechtzeitigkeit
1 2 3 4 5

zu früh etwas zu früh genau rechtzeitig etwas zu spät zu spät

Hilfe
1 2 3 4 5

nicht hilfreich kaum hilfreich etwas hilfreich hilfreich sehr hilfreich

Wie angemessen war die Anzahl der Warnungen?

Wie rechtzeitig waren die Warnungen?

Wie hilfreich war das Warnsystem zum sicheren Fahren?

number pad

legend of ratings

Figure 6.11: Illustration of the ratings conducted by the participants of the user test. Ratings were made using the
red numeric buttons 1-5 on a number pad. A legend explained how numbers related to the ratings.
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Participants were instructed to specifically rate the last period of secondary task engagement under
the experienced “artificial” scenario on the test track.

6.4.4 Calibration of Warning Systems

In the user test we sought to evaluate the different algorithms EOR and AGB for distraction assessment.
We wish to remind, that EOR uses a fixed threshold on the eyes-off duration while AGB results in a
threshold on the eyes-off duration adapted to the driving speed. Consequently, we were specifically
interested in investigating the effects of this adaptation on drivers’ behavior and how it is received by
the user. Therefore, we needed to ensure that both warning systems show a similar total sensitivity.
That is, we did not want to compare systems of which one generally warns at a shorter eyes-off duration
than the other one.

For these reasons a preliminary driving experiment was conducted to obtain calibration data. Here,
we recruited 16 different participants with similar age, driving style and attitude towards secondary
task as those of the user test. The behavioral data of driving without a warning system was first used
to infer reward parameters and sensor model parameters of the POMDP model underlying AGB by
means of SRMCE-ISWYS Algo. 18 (see Cpt. 5). Thereafter, we simulated both warning systems for
a variety of thresholds tEOR, tAGB. The resulting average times between warnings are shown in Fig.
6.12.
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Figure 6.12: Comparison of the average times between warnings for data used for calibration and for data from
the user test. Data from the calibration is depicted by dashed red lines, data from driving without
warning system in the user test is indicated by dashed blue lines. Left plot shows the average time
between warnings for EOR for different thresholds tEOR for the eyes-off duration d̄t. Right plot shows
the average time between warnings for AGB for the different threshold tAGB on the probability of
return of gaze to the road p(dp̃pp,r,PPP ,pz

t < d̄t) under the maximum causal entropy policy. The threshold
for EOR tEOR was set to 2 s and the threshold of AGB tAGB was set to 0.96 which resulted in the same
avg. time between warnings of 7.1 s.

We decided on a threshold on the eye-off duration of 2 s. This was because several algorithms for
attention assessment proposed in the literature build on this threshold value [105, 236]. In addition to
that, this threshold was approximately the largest value were there occurred at least one warning in
75% of all trials. The threshold for the probability of a return of gaze back to the road scenery was
set 0.96 as to result in the same average time between warnings of 7.1 s as EOR. The effective warning
thresholds on the eyes-off duration of EOR and AGB are contrasted in Tab. 6.1.
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Tabular 6.1: Effective Warning Threshold on Eyes-Off Duration of Warning Systems in User Test
Driving Speed Effective Warning Threshold

EOR AGB
20 km/h

t = 2.0 s
t = 3.0 s

40 km/h t = 2.0 s
60 km/h t = 1.3 s

Using calibration data of several participants the average times between warnings obtained on the
calibration data generalized to the user test. Here, very similar results were observed when simulating
the warning system on data of driving without a warning system as can be seen in in Fig. 6.12. We
wish to note that indeed a larger number of participants was required for proper calibration due to
large inter-individual differences in glance behavior.

6.4.5 Experimental Design and Measures

Previously, we introduced the population of participants, the protocol and the parameterization of
the warning systems. In this section we will describe the experimental design and the measures
obtained from the behavioral data. The design and the measures will later be used to formulate
testable hypotheses in Sec. 6.4.6.

Experimental Design

The experiment had a 3 (warning system) ⇥ 3 (driving speed) repeated measures design. Warning
system had three levels: No warning system active, warning system based on the eyes-off-road algo-
rithm active and warning system based on computation of appropriate glance behavior active. The no
warning system level investigated driving and glance behavior of the drivers without warning system,
while the other levels assessed the effects of both variants of the warning system. The factor driving
speed had the three levels of 20, 40, 60 km/h. The warning system factor was presented in blocks with
the no warning system condition being the first and a random order of the variants of the warning
system. The factor driving speed was fully randomized. We repeated every combination of factors and
participant.

Measures

The goal of the experiment was to first demonstrate the feasibility of computing appropriate glance
behavior online. Second, the experiments served to study the effects of the warning systems on driver’s
behavior as well as how they are received by the drivers. Specifically, we were interested in the follow-
ing measures:

• The time required to compute the glance policy underlying appropriate glance behavior:
This was done using the utilities of the CANape software to profile the dynamic link library
(DLL) compiled from C code, which was generated from the original SIMULINK model in the
first place.

• User ratings of the number of warnings, timing of warnings and usefulness of warnings:
Ratings of the number and the timing of warnings were treated as metric data. This was done
using the numeric values rNumber,Timing from 1 for very few warnings and very soon warnings to 5
for very many warnings and very late warnings which the participants had typed (see Sec. 6.4.3).
As a first step values of the repetitions were averaged. Here, we analyzed the data with respect
to mean statistics. Strictly, the obtained ratings are ordinal data, i.e. the ratings only indicate
order preferences. However, for Likert-type scales, as ours, a pragmatic approach is often used
in human factors research. This is also justified by several experimental studies [184, 206] (see
also [30], Messtheoretische Probleme bei Rating-Skalen). In our case metric treatment is supported
by the following aspects: First, the ratings are subjective judgments of the well-defined metric
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quantities number and timing of warnings. Furthermore, ratings were conducted using buttons
numbered 1 to 5 which supports metric interpretation by the raters (see Fig. 6.11). In addition
to the absolute values we also considered the deviation from the ideal rating of the number of
the warnings and the timing of warnings |rNumber,Timing � 3|. Similarly, the ratings of usefulness
were numerically coded and analyzed with respect to means using the corresponding standard
parametric procedures.

• Lane keeping performance measured by the Standard Deviation (STD) of the position in lane
and by the Root Mean Squared Error (RMSE) of the lane position (in terms of deviation from
the lane center):
Similar as in the case of the analysis of the data from the driving experiments these metrics
were chosen as they are standard measures in distraction research [252] (Cpt. 7, Measuring the
Effects of Driver Distraction). In this context, measures were computed using the entire period
of secondary task engagement and were analyzed with respect to means using the standard
parametric procedures.

• Steering performance as measured by the root mean squared error of both the steering angle
and the steering angle velocity (in terms of deviation from zero):
As noted before (Sec. 3.3.1) also both measures of the steering behavior are standards in human
factor research and have been analyzed in several other works [252]. Compared to measures
of the position in lane, measures based on the steering angle are more sensitive with respect
to participant’s behavior. Measures were computed using the entire period of secondary task
engagement.

• Glance behavior as measured by the mean, the median, the 0.75-quantile and the 0.95-quantile
of the duration of glances off the road:
As noted in [245, 55] effects on glance behavior are often not visible in “central” statistics such as
mean and median of the glance durations. Instead, differences are more pronounced in higher
quantiles. This was also observed in previous driving experiments of this thesis in Sec. 4.6.3 and
in Sec. 5.6.3. We computed these statistics using the entire period of secondary task engagement.
Similar as in the cases of the other measures we analyzed these statistics with respect to means
using the standard parametric procedures.

With respect to all of the measures, repetitions of an experimental condition (see Sec. 6.4.5) by a
participant were averaged and the mean value was used in analysis.

6.4.6 Hypotheses

Based on the protocol, the experimental design and measures we arrive at several testable hypotheses
to investigate the research questions stated in Sec. 6.4:

H1 The implementation of the computation of appropriate glance behavior obtains step times smaller
than the sample time of 0.04 s (hypothesis wrt. research question R1; in the evaluation of the MATLAB
implementation already step times of 1 s were observed [Sec. 3.6.2] which are expected to significantly
decrease in the compiled C code).

H2 The speed adaptive warnings produced by AGB receive better ratings then those produced by
EOR using a fixed threshold (hypothesis wrt. research question R2; drivers show adaptive glance
behavior [207, 205], hence it is expected that a warning system that is capable of similar adaption is
better received).

H2.1 Mean marginal deviation (expectation wrt. to driving speeds) from “ideal” of the ratings of
the number of warnings is smaller for AGB than for EOR.

H2.2 Mean marginal deviation from “ideal” of the ratings of the timing of warnings is smaller for
AGB than for EOR.

H2.3 Mean marginal usefulness of warnings is higher for AGB than for EOR.
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H3 The ratings of the warnings produced by EOR vary stronger with respect to driving speed than
those produced by AGB (hypothesis wrt. research question R2; drivers show adaptive glance behavior
[207, 205], hence it is expected that ratings of the warning system EOR based on a static threshold will
strongly vary with respect to the driving speed).

H3.1 Ratings of the number of warnings produced EOR vary stronger with respect to driving
speed than those produced by AGB.

H3.2 Ratings of the timing of warnings produced EOR vary stronger with respect to driving speed
than those produced by AGB.

H3.3 Ratings of the number of warnings produced EOR vary stronger with respect to driving
speed than those produced by AGB.

H4 Both warning systems improve driving performance compared to driving without a warning
system (hypothesis wrt. research question R3; lane keeping performances is reduced by secondary task
engagement which is expected to be partially mitigated by the warning systems by helping drivers to
improve glance strategies).

H4.1 Mean marginal STD lane position under both warning systems is decreased compared to
driving without a warning system.

H4.2 Mean marginal RMSE lane position under both warning systems is decreased compared to
driving without a warning system.

H4.3 Mean marginal RMSE steering angle under both warning systems is decreased compared to
driving without a warning system.

H4.4 Mean marginal RMSE steering angle velocity under both warning systems is decreased com-
pared to driving without a warning system.

H5 Warnings based on AGB result in improved lane keeping performance compared to the warnings
produced by EOR (hypothesis wrt. research question R3; the warnings under AGB relate to a rational
glance strategy taking into account vehicle physics, hence improved effectiveness is expected).

H5.1 Mean marginal STD of the lane position under AGB is decreased compared to EOR.

H5.2 Mean marginal RMSE lane position under AGB is decreased compared to EOR.

H5.3 Mean marginal RMSE steering angle under AGB is decreased compared to EOR.

H5.4 Mean marginal RMSE steering angle velocity under AGB is decreased compared to EOR.

H6 Both warning systems result in decreased off-road glance durations compared to driving without
a warning system (hypothesis wrt. research question R4; drivers are expected to reduce the duration of
glances of the road to avoid receiving warnings [53, 5]).

H6.1 Mean marginal mean duration of glances off the road under driving with active warning
system is decreased compared to driving without warning system.

H6.2 Mean marginal median duration of glances off the road under driving with active warning
system is decreased compared to driving without warning system.

H6.3 Mean marginal 0.75-quantile of duration of glances off the road under driving with active
warning system is decreased compared to driving without warning system.

H6.4 Mean marginal 0.95-quantile of duration of glances off the road under driving with active
warning system is decreased compared to driving without warning system.
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6.5 Results

In the following section we present the results of the user test. Here, data was analyzed by means
of two-way repeated ANOVAs using the Greenhouse-Geisser approximation where sphericity was
violated. Post-hoc tests were conducted by means of the Tukey-test in case of homoscedasticity or the
Dunnett-T3-method in case of heteroscedasticity. Furthermore, in the presentation of the results the
symbol µ is used to denote the mean statistic, s denotes the standard deviation and sµ denotes the
standard error (standard deviation of the estimate of the mean). We will first report on the CPU-times
required for executing the main components of the warning systems, then the subjective ratings made
by the participants are considered followed by the quantities of lane keeping performance. Finally,
glance behavior is considered.

6.5.1 CPU-Times

We start presenting the results by first considering those that address the research question R1. That
is, we report on the CPU-times of the main algorithmic components of the warning systems. The
statistics of the times required for full execution of the preprocessing of the eye-tracking data and the
EOR algorithm as well as the times required for computing appropriate glance behavior are shown as
box-plots in Fig. 6.13.
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Figure 6.13: CPU-times of the main algorithmic components of the warning system. Left box depicts the distribu-
tion of CPU-times of the preprocessing of eye-tracking data and executing the EOR approach. Right
box shows the CPU-times of the preprocessing of CAN data and the computations required for real-
izing AGB (with policy computation being the computational bottleneck). Red line in box indicates
the median CPU-time, while the blue box depicts the interval from the 0.25 to the 0.75 quantile.

In the periods where the drivers engaged into the secondary task the median CPU-time of the pre-
processing of eye-tracking data and executing EOR was at 1.11 ⇥ 10�4 s. The 0.25 quantile was at
9.30⇥ 10�5 s and the 0.75 quantile was at 7.74⇥ 10�4 s. In all periods of secondary task engagement
there was a single excess of the sample time of 0.02 s (see Fig. 6.1 for the sample times of the compo-
nents of the warning system). Executing AGB had a median CPU-time of 1.36⇥ 10�3. Furthermore,
the 0.25 quantile of the CPU-time was at 8.16⇥ 10�4 and the 0.75 quantile of the CPU-time was at
1.68⇥ 10�2. Two excesses of the sample time of 0.04 s were present in the periods of secondary task
engagement.

All excesses of sample time occurred when the gaze of the participant was off the road, however,
the small number does not allow to draw any conclusion with respect to influencing factors. As a
summary of the analysis of CPU-times we can conclude:

Hypothesis H1 is confirmed: The implementation of computing appropriate glance behavior obtains step times
smaller than the sample time of 0.04 s.
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6.5.2 Ratings

Second, we report on the ratings of number of warnings, timing of warnings and usefulness of the
warning systems made by the participants in the user test. These aspects are related to the research
question R2.

For descriptive purpose, the ratings for the individual categories are depicted as histograms in
Fig. 6.14.
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Figure 6.14: Histogram of ratings given by participants in the user test. Blue bars depict the ratings of the warning
system based on ⌅ EOR and red bars depict the ratings of the warning system based on ⌅ AGB. (1)
shows the ratings of the amount warnings, (2) shows the ratings of the timing of the warnings and (3)
depicts the usefulness of the warning system for safe driving.

Generally, the distribution of ratings made for AGB was uni-modal and centered around the central
item (“ideal”, “sort of useful”). In contrast, the ratings of the timing of the warnings produced by
EOR showed a strong bi-modal distribution. Most often participants rated the timing of warning as
either “a little soon” or “a little late”. Furthermore, the distribution of the ratings of usefulness of
warnings of EOR was stronger concentrated on lower usefulness while the distribution of warnings of
AGB concentrated on higher usefulness.
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In the further steps of the analysis ratings were treated as metric variables according to their numeric
coding (Sec. 6.4.5). We first analyzed the ratings by means of a two-way repeated measures ANOVA
whose results are summarized in Tab. 6.2.

Tabular 6.2: Repeated Measures ANOVA of Ratings
Dependent Variable Factor

System Speed System ⇥ Speed

Rating Number F(1, 13) = 0.34 F(2, 26) = 9.96 F(2, 26) = 6.17
ptest = 0.57 ptest < 0.01 ptest < 0.01

Deviation from “Ideal” Number F(1, 13) = 5.51 F(2, 26) = 0.57 F(2, 26) = 1.17
ptest = 0.03 ptest = 0.57 ptest = 0.33

Rating Timing F(1, 13) = 2.13 F(2, 26) = 8.22 F(2, 26) = 5.30
ptest = 0.17 ptest < 0.01 ptest = 0.01

Deviation from “Ideal” Timing F(1, 13) = 4.84 F(2, 26) = 0.01 F(2, 26) = 1.16
ptest = 0.05 ptest = 0.99 ptest = 0.33

Rating Usefulness F(1, 13) = 4.38, F(2, 26) = 1.57 F(2, 26) = 2.23
ptest = 0.06 ptest = 0.23 ptest = 0.13

Considering the deviation of the ratings of the number of warnings and the timing of warnings from
“ideal” the following results were obtained: In both cases there was only a significant main effect of the
warning system. Specifically, the warnings produced by AGB received a smaller marginal (integration
over driving speeds) mean deviation from the ideal rating as shown in Tab. 6.3.

Tabular 6.3: Marginal Means of the Ratings
Warn. Sys. Rating Category

Dev. from “Ideal” Number Dev. from “Ideal” Timing Usefulness of Warning Systems
EOR µ = 0.88, sµ = 0.09 µ = 0.90, sµ = 0.08 µ = 2.87, sµ = 0.15
AGB µ = 0.61, sµ = 0.10 µ = 0.69, sµ = 0.09 µ = 3.12, sµ = 0.16

Consequently, we can conclude that the number and the timing of warnings produced by AGB is better
received by the drivers.

Hypotheses H2.1 and H2.2 are confirmed: Warnings produced by AGB receive significantly better ratings of
timing of warnings and number of warnings than those produced by EOR

In contrast, in the ratings of usefulness there was a strong tendency towards a significant main ef-
fect of the warning system. From Tab. 6.3 it can be seen that AGB received a higher marginal mean
rating of usefulness than EOR. However the p-value of ptest = 0.06 of the main effect slightly exceeded
the significance level of ptest = 0.05.

Hypothesis H2.3 is not confirmed: Warnings produced by AGB receive no significantly better ratings of useful-
ness of warnings that those produced by EOR

The relevant statistics for hypothesis H2 are depicted in summarized form in Fig. 6.15.
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Figure 6.15: Marginal mean ratings for the warning systems. First plot shows the deviation from “ideal” of the
ratings of the number of warnings, second plot depicts the deviation from “ideal” of the ratings of
the timing of warnings and the third plot shows the ratings of the usefulness of the warning systems.
Solid lines indicate the marginal means and dashed lines the 0.95 confidence intervals of the means
of the different ratings.

To obtain a better understanding of the differences in the ratings of the different warning systems also
the absolute ratings of the number of warnings and timing of warnings were analyzed. As can be seen
in Tab. 6.2, with respect to these absolute ratings no significant main effect of the warnings system but
a significant main effect of the driving speed factor as well as a significant interaction was present.

We analyze the interaction effect graphically: Fig. 6.16 shows the ratings of the number of warnings
for the warnings produced by both warning systems at the different driving speeds.
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Figure 6.16: Interaction between warning system and driving speed wrt. rating of number of warnings. Left plot
shows the ratings of EOR for the individual driving speeds. Right plot shows the ratings of AGB
for the individual driving speeds. The ratings (average over both runs) made by the participants are
indicated by ⇥ and + and are randomly jittered by a factor 0.1 to improve visibility.

As can be seen in both the left and the right plot of Fig. 6.16 the number of warnings was rated “ideal”
at the driving speed of 40 km/h. The number of warnings resulting from EOR show a very clear trend
from “a little few warnings” to “a little many warnings” from driving speed 20 km/h to 60 km/h. In
contrast, the number of warnings resulting from AGB was almost constantly rated as “ideal”. These
results from graphical analysis could also formally be established by comparing mean ratings of the
warning systems at the different driving speeds as shown in Tab. 6.4 and Tab. 6.5.
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Tabular 6.4: Differences of Rating Number wrt. Driving Speed for EOR
Driving Speed Difference in Rating Timing wrt. Speed for EOR

to 20 km/h to 40 km/h
40 km/h µ = �0.61, sµ = 0.22, ptest = 0.04
60 km/h µ = �1.14, sµ = 0.25, ptest < 0.01 µ = �0.53, sµ = 0.24, ptest = 0.11

Tabular 6.5: Differences of Rating Number wrt. Driving Speed for AGB
Driving Speed Difference in Rating Number wrt. Speed for AGB

to 20 km/h to 40 km/h
40 km/h µ = �0.25, sµ = 0.17, ptest = 0.34
60 km/h µ = �0.17, sµ = 0.17, ptest = 0.56 µ = +0.07, sµ = 0.15, ptest = 0.88

Here, the ratings of the number of warnings of EOR significantly differed with respect to the driving
speeds whereas no significant differences were present in the ratings of AGB.

Hypothesis H3.1 is confirmed: The ratings of the number of warnings of warning system EOR vary stronger
with respect to driving speed than the ratings of the warning system AGB.

The ratings of the timing of the warnings are analyzed in similar graphical fashion. Fig. 6.17 shows
the ratings made by the participants for both warning systems at the different driving speeds.
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Figure 6.17: Interaction between warning system and driving speed wrt. rating of number, the timing of warnings.
Left plot shows the ratings of EOR for the individual driving speeds. Right plot shows the ratings of
AGB for the individual driving speeds. The ratings (average over both runs) made by the participants
are indicated by ⇥ and + and are randomly jittered by a factor of 0.1 to improve visibility.

Considering the ratings for EOR in the left plot of Fig. 6.17 a clear trend from “a little early warnings”
at 20 km/h to “a little late warnings” at 60 km/h can be seen. Analogously to the case of the ratings
of the number of warnings the ratings of the timing of warnings of AGB shown in the right plot do
not exhibit such a trend. Instead, ratings are constantly centered around “ideal timing”. These obser-
vations are also supported by a statistical analysis of the mean ratings at the different driving speeds
whose results are summarized in Tab. 6.6 and Tab. 6.7.
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Tabular 6.6: Differences of Rating Timing wrt. Driving Speed for EOR
Driving Speed Difference in Rating Timing wrt. Speed for EOR

to 20 km/h to 40 km/h
40 km/h µ = 0.64, sµ = 0.17, ptest < 0.01
60 km/h µ = 1.04, sµ = 0.23, ptest < 0.01 µ = 0.39, sµ = 0.21, ptest = 0.21

Tabular 6.7: Differences of Rating Timing wrt. Driving Speed for AGB
Driving Speed Difference in Rating Timing wrt. Speed for AGB

to 20 km/h to 40 km/h
40 km/h µ = 0.00, sµ = 0.18, ptest = 1.00
60 km/h µ = 0.14, sµ = 0.21, ptest = 0.78 µ = 0.14, sµ = 0.21, ptest = 0.77

The analysis of the marginal means revealed significant differences between the ratings of the timing
of warnings of EOR at the different driving speeds. With respect to the warnings resulting from AGB
instead no significant differences between the driving speeds could be established.

Hypothesis H3.2 is confirmed: The ratings of the timing of warnings of warning system EOR vary stronger
with respect to driving speed than the ratings of the warning system AGB.

Considering the ratings of usefulness of the warnings, no significant influence of the driving speed
nor a significant warning system driving speed interaction could be established. That is, the ratings of
usefulness of the warnings systems were largely constant over driving speeds.

Hypothesis H3.3 is not confirmed: The ratings of usefulness of warning system EOR does not show signif-
icantly higher variation with respect to driving speed than the ratings of usefulness of the warning system
AGB.
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6.5.3 Position in Lane

Third, the position in lane in the periods of secondary task engagement is considered. As in previous
driving experiments, we analyzed both the STD of the lane position as well as the RMSE of the lane
position which are related to research question R3.

We first depict the distributions of the STD under the different warning system conditions and
driving speed conditions in Fig. 6.18
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Figure 6.18: Histograms of STD of the lane position for the individual driving speeds and the warning systems.
Plots show the distribution of the STD of the lane position for driving speeds 20, 40, 60 km/h from
left to right. Dashed black lines indicate the distribution for driving without warning system, dashed
blue lines indicate the distribution for driving with EOR, dashed red lines indicate the distribution
for driving with AGB.

As can be seen in the plots, the distributions of the STD of the lane position are largely similar. In all
experimental conditions the STD has a dominant mode at approximately 0.1 m as well as a short left
tail towards 0 m and a moderate tail to 0.25 m. In addition to the optical impression also the statistics
of the distribution of the STD are similar. This is can be seen in Tab. 6.8 which reports the means and
standard deviations of the STD of the lane position.

Tabular 6.8: Statistics of STD Lane Position
Warn. Sys. STD Lane Position

20 km/h 40 km/h 60 km/h
none µ = 0.12, s = 0.06 µ = 0.11, s = 0.05 µ = 0.10, s = 0.04
EOR µ = 0.11, s = 0.04 µ = 0.13, s = 0.04 µ = 0.11, s = 0.04
AGB µ = 0.11, s = 0.05 µ = 0.12, s = 0.06 µ = 0.10, s = 0.04

In addition to the STD Fig. 6.19 shows the distribution of the RMSE of the lane position in the different
experimental conditions.
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Figure 6.19: Histograms of the RMSE of the lane position for the individual driving speeds and the warning
systems. Plots show the distributions of the RMSE of the lane position for driving speeds 20, 40, 60
km/h from left to right. Dashed black lines indicate the distribution for driving without warning
system, dashed blue lines indicate the distribution for driving with EOR, dashed red lines indicate
the distribution for driving with AGB.

Similar as in the case of the distribution of the STD of the lane position also the distribution of the
RMSE of the lane position are largely similar. The distribution of the RMSE shows a longer tail to
the right (high deviation from the lane center) than the STD. Furthermore, the individual distributions
show a mode at approximately 0.1 m. The mean and standard deviation of the RMSE of the lane
position are presented in Tab. 6.9.

Tabular 6.9: Statistics of RMSE Lane Position
Warn. Sys. RMSE Lane Position

20 km/h 40 km/h 60 km/h
none µ = 0.19, s = 0.09 µ = 0.16, s = 0.07 µ = 0.15, s = 0.06
EOR µ = 0.16, s = 0.07 µ = 0.17, s = 0.07 µ = 0.15, s = 0.07
AGB µ = 0.18, s = 0.06 µ = 0.18, s = 0.08 µ = 0.15, s = 0.08

Similar to the STD, also the statistics of the distribution of the RMSE of the lane position show little
differences between the experimental conditions.

We statistically analyzed the influence of the factors warnings system and driving speed on both
metrics of the position in lane by means of a two-way repeated measures ANOVA. The results of this
procedure are summarized in Tab. 6.10.

Tabular 6.10: Repeated Measures ANOVA of Lane Position
Dependent Variable Factor

System Speed System ⇥ Speed

STD Lane Position F(2, 26) = 0.05 F(2, 26) = 1.53 F(4, 52) = 1.92
ptest = 0.95 ptest = 0.24 ptest = 0.14

RMSE Lane Position F(2, 26) = 0.60 F(2, 26) = 2.27 F(4, 52) = 1.53
ptest = 0.55 ptest = 0.12 ptest = 0.20

The small differences between the distributions of both metrics of the lane position is formally estab-
lished by the ANOVA: There were no significant main effect of neither the factor warning system nor
the factor driving speed. Furthermore, also no significant interaction effects were present. The position
in lane under secondary task interaction was not influenced by driving speed and was also not affected
by the treatment with the distraction warning system.

Hypotheses H4.1, H4.2, H5.1 and H5.2 are not confirmed: Neither mean STD of the lane position nor mean
RMSE of the lane position are significantly affected by the treatment with the distraction warning system.
Furthermore, no significant differences between the treatment with the different warning systems are present.
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6.5.4 Steering Behavior

Fourth, we report on the RMSE of the steering angle and the RMSE of the steering angle velocity.
As the applied steering effort also contributes to lane keeping performance, this analysis addresses
research question R3.

We first illustrate the distribution of the RMSE of the steering angle in Fig. 6.20.
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Figure 6.20: Histograms of the RMSE of the steering angle for the individual driving speeds and the warning
systems. Plots show the distribution of the RMSE of the steering angle for driving speeds 20, 40, 60
km/h from left to right. Dashed black lines indicate the distribution for driving without warning
system, dashed blue lines indicate the distribution for driving with EOR, dashed red lines indicate
the distribution for driving with AGB.

The plots of Fig. 6.20 show that the distribution of the RMSE of the steering angle was shifted to-
wards increased steering angles under increased driving speed. In contrast, the distributions under
the different conditions of the warning system were similar.

Different observations were made wrt. distributions of the RMSE of the steering angle velocity which
are depicted in Fig. 6.21.
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Figure 6.21: Histograms of the RMSE of the steering angle velocity for the individual driving speeds and the
warning systems. Plots show the distribution of the RMS of the steering angle velocity for driving
speeds 20, 40, 60 km/h from left to right. Dashed black lines indicate the distribution for driving
without warning system, dashed blue lines indicate the distribution for driving with EOR, dashed
red lines indicate the distribution for driving with AGB.

As can be seen in the plots the distribution of the RMSE of steering angle velocity is only weakly
affected by the driving speed. In contrast, especially at driving speeds 20 km/h and 40 km/h more
probability mass is at lower RMSE of the steering angle velocity for active warning systems EOR and
AGB.

A two-way repeated measures ANOVA was conducted to statistically analyze the RMSE of the
steering angle and the RMSE of the steering angle velocity. The results of the ANOVA are summarized
in Tab. 6.11.
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Tabular 6.11: Repeated Measures ANOVA of Steering Angle and Steering Angle Velocity
Dependent Variable Factor

System Speed System ⇥ Speed

RMSE Steering Angle F(2, 26) = 0.62 F(2, 26) = 37.13 F(4, 52) = 0.61
ptest = 0.54 ptest < 0.01 ptest = 0.66

RMSE Steering Angle Velocity F(2, 26) = 10.00 F(2, 26) = 1.20 F(4, 52) = 2.18
ptest < 0.01 ptest = 0.32 ptest = 0.08

The ANOVA revealed a significant main effect of driving speed on the RMSE of the steering angle.
There was no significant main effect of the warning system factor and no significant interaction. Con-
sequently, treatment with the warning system had no effect on the steering angle as measured by the
RMSE. Similar, also no difference between both warning systems was present.

Hypotheses H4.3, H5.3 are not confirmed: The distraction warning systems show no significantly reduced
RMSE of the steering angle. In addition to that AGB does not significantly reduce RMSE of the steering angle
compared to EOR.

To further investigate the effect of driving speed on the RMSE of the steering angle post-hoc tests
were conducted. The results of the comparison of marginal (integration over warnings system factor)
mean RMSE of the steering angle are shown in Tab. 6.12.

Tabular 6.12: Marginal Means of RMSE Steering Angle wrt. Driving Speed
Driving Speed RMSE Steering Angle Diff. to 20 km/h Diff. to 40 km/h

20 km/h µ = 3.50, sµ = 0.08
40 km/h µ = 3.81, sµ = 0.07 ptest = 0.02
60 km/h µ = 4.42, sµ = 0.08 ptest < 0.01 ptest < 0.01

The post-hoc test showed that the RMSE of the steering angle monotonously increases with driving
speed.

In contrast to the steering angle a significant main effect of the warning system was present in the
RMSE of the steering angle velocity. Tab. 6.13 shows the results of a post-hoc analysis of the marginal
mean (integrated over driving speed) RMSE of the steering angle velocity.

Tabular 6.13: Marginal Means of RMSE Steering Angle Velocity
Warn. Sys. RMSE Steering Angle Velocity Diff. to none Diff. to EOR

none µ = 6.18, sµ = 0.48
EOR µ = 4.97, sµ = 0.28 ptest = 0.01
AGB µ = 5.20, sµ = 0.40 ptest < 0.01 ptest = 0.66

Comparison of the marginal means shows that the RMSE of the steering angle velocity is significantly
reduced under treatment with either of the warning systems. However, there are no significant differ-
ences between both warning systems.

Hypothesis H5.4 is not confirmed: AGB does not result in significantly reduced RMSE of the steering angle
velocity compared to EOR.

A typical issue that can arise in within-subject designs as ours are training effects. In the present
driving experiment none of the participants was familiar with the employed test vehicle. Furthermore
driving without a warning system was always first in the protocol (see Sec. 6.4.3). Hence, the main
effect of the warning system could possibly also be attributed to driving experience with the vehi-
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cle. Therefore, an additional post-hoc mixed-effects regression analysis with repeated measures was
conducted. For this purpose, the model

yRMSE ȧ = µ1 + lxtrial + µ2(xsys) + µ3(xspd) + µ4(xsys, xspd) + e1(xpar) + xtriale2(xpar) + e3, (6.17)

where yRMSE ȧ denotes the RMSE of the steering angle velocity, xtrial the number of the trial, xsys

the warning system condition, xspd the speed condition and xpar denotes an individual partici-
pant was used. Terms µ1, lxtrial, µ2(xsys), µ3(xspd), µ4(xsys, xspd) are fixed effects and terms e1(xpar),
xtriale2(xpar), e3 are independent random effects. We report the results of F-tests on the fixed effects in
Tab. 6.14.

Tabular 6.14: Regression Model of RMSE Steering Angle Velocity
Dependent Variable Fixed Effects

Number of Trial System Speed System ⇥ Speed

RMSE Steering Angle F(1, 242) = 1.17 F(2, 242) = 3.85 F(2, 242) = 2.17 F(4, 242) = 2.42
ptest = 0.28 ptest = 0.02 ptest = 0.11 ptest = 0.06

The F-tests revealed that significant effects can only be attributed to the factor warning system in the
employed regression model. The effect of the number of the trial was not significant. Fig. 6.22 depicts
the prediction of RMSE of the steering angle velocity using the maximum likelihood parameters of the
regression model.
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Figure 6.22: Regression analysis of potential training effects on the RMSE of the steering angle velocity. Plot depicts
the RMSE of the steering angle velocity for the number of the trial. Individual trials in driving without
warning system are depicted by black ⇥, trials with EOR are denoted by red ⇥ and trials with AGB
are indicated by blue ⇥. Solid lines show the mean prediction over participants of the regression
model for EOR first in red and for AGB first in blue.

From the regression analysis we conclude that the main effect of the warning system on the RMSE of
the steering angle velocity is unlikely the result of a training effect.

Hypothesis H4.4 is confirmed: The distraction warning systems result in significantly reduced RMSE of the
steering angle velocity compared driving without a warning system.
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6.5.5 Glance Behavior

Finally, the driver’s glance behavior is analyzed. Specifically, we investigate the effects of driving
speed and warning system on the mean duration, the median duration as well as the 0.75 and the 0.95
quantile of the duration of glances off the road. This analysis is related to research question R4 of the
user test.

As a first aspect of the analysis of glance behavior, Fig. 6.23 shows the distribution of the durations
of glances off the road.
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Figure 6.23: Distributions of the durations of glances off the road max(dt) at the different driving speeds and for
different warning systems. Dashed red lines indicate the [0.05, 0.95] quantiles, while the solid red lines
indicate the median. The mean maximum glance duration is denoted by a dashed black line.

As can be seen from the plots, the distribution of glance durations was visibly influenced by the driv-
ing speed. In all warning system conditions, the duration of long glances (right tail of the distribution)
decreased. In contrast “central” statistics such as median and mean varied only slightly and are ap-
proximately at 1.5� 1.7 s.

In the following we list the mean and standard deviations of the mean duration in Tab. 6.15, the
median duration in Tab. 6.16, the 0.75 quantile in Tab. 6.17 as well as the 0.95 quantile of the duration
of glance off the road in Tab. 6.18.

Tabular 6.15: Statistics of the Mean of the Duration of Glances Off the Road
Warn. Sys. Mean Dur. Glances Off the Road

20 km/h 40 km/h 60 km/h
none µ = 2.21, s = 1.41 µ = 1.57, s = 0.96 µ = 1.23, s = 0.60
EOR µ = 1.77, s = 0.68 µ = 1.52, s = 0.47 µ = 1.29, s = 0.41
AGB µ = 2.07, s = 1.03 µ = 1.72, s = 0.67 µ = 1.37, s = 0.49
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Tabular 6.16: Statistics of the Median of the Duration of Glances Off the Road
Warn. Sys. Median Dur. Glances Off the Road

20 km/h 40 km/h 60 km/h
none µ = 2.09, s = 1.41 µ = 1.54, s = 1.05 µ = 1.19, s = 0.61
EOR µ = 1.62, s = 0.70 µ = 1.43, s = 0.51 µ = 1.25, s = 0.49
AGB µ = 1.99, s = 1.05 µ = 1.64, s = 0.67 µ = 1.30, s = 0.50

Tabular 6.17: Statistics of the 0.75 Quantile of the Duration of Glances Off the Road
Warn. Sys. 0.75 Quant. Dur. Glances Off the Road

20 km/h 40 km/h 60 km/h
none µ = 3.03, s = 2.12 µ = 1.91, s = 1.19 µ = 1.54, s = 0.83
EOR µ = 2.26, s = 0.74 µ = 1.93, s = 0.58 µ = 1.62, s = 0.51
AGB µ = 2.54, s = 1.27 µ = 2.15, s = 0.82 µ = 1.67, s = 0.58

Tabular 6.18: Statistics of the 0.95 Quantile of the Duration of Glances Off the Road
Warn. Sys. 0.95 Quant. Dur. Glances Off the Road

20 km/h 40 km/h 60 km/h
none µ = 4.03, s = 2.41 µ = 2.73, s = 1.48 µ = 2.06, s = 1.08
EOR µ = 3.36, s = 1.48 µ = 2.77, s = 1.04 µ = 2.13, s = 0.61
AGB µ = 3.45, s = 1.64 µ = 2.95, s = 1.20 µ = 2.35, s = 1.04

To statistically analyze the effects of the individual metrics of glance behavior a two-way repeated
measures ANOVA was conducted. We report the results of the ANOVA in Tab. 6.19.

Tabular 6.19: Repeated Measures ANOVA of Glance Behavior
Dependent Variable Factor

System Speed System ⇥ Speed

Mean Dur. Glances Off the Road F(2, 26) = 0.44 F(2, 26) = 22.98 F(4, 52) = 1.92
ptest = 0.65 ptest < 0.01 ptest = 0.09

Median Dur. Glances Off the Road F(2, 26) = 0.93 F(2, 26) = 16.98 F(4, 52) = 2.30
ptest = 0.41 ptest < 0.01 ptest = 0.07

0.75 Quant. Dur. Glances Off the Road F(2, 26) = 0.35 F(2, 26) = 25.72 F(4, 52) = 3.15
ptest = 0.71 ptest < 0.01 ptest = 0.02

0.95 Quant. Dur. Glances Off the Road F(2, 26) = 0.67 F(2, 26) = 25.51 F(4, 52) = 2.25
ptest = 0.52 ptest < 0.01 ptest = 0.07

The ANOVA revealed no significant main effect of the warning system in neither of the considered
metrics. In contrast, there was a significant main effect of the driving speed on every metric of the
glance behavior. Furthermore, interaction effects between warning system and driving speed were
present of which the effect was significant for the 0.75 quantile of the glance durations.

176



6.5 Results

The effects of driving speed on glance behavior is investigated in detail by means of post-hoc com-
parison of the marginal (integration over warning systems) means of the different metrics. We present
the results of the comparisons in Tab. 6.20 - 6.23.

Tabular 6.20: Marginal Means of Mean Duration of Glances Off the Road
Driving Speed Mean Dur. Glances Off the Road Diff. to 20 km/h Diff. to 40 km/h

20 km/h µ = 1.98, sµ = 0.22
40 km/h µ = 1.57, sµ = 0.13 ptest < 0.01
60 km/h µ = 1.29, sµ = 0.11 ptest < 0.01 ptest < 0.01

Tabular 6.21: Marginal Means of Median Duration of Glances Off the Road
Driving Speed Median Dur. Glances Off the Road Diff. to 20 km/h Diff. to 40 km/h

20 km/h µ = 1.85, sµ = 0.22
40 km/h µ = 1.49, sµ = 0.12 ptest = 0.02
60 km/h µ = 1.25, sµ = 0.12 ptest < 0.01 ptest < 0.01

Tabular 6.22: Marginal Means of 0.75 Quantile of Duration of Glances Off the Road
Driving Speed 0.75 Quant. Dur. Glances Off the Road Diff. to 20 km/h Diff. to 40 km/h

20 km/h µ = 2.58, sµ = 0.31
40 km/h µ = 2.03, sµ = 0.19 ptest < 0.01
60 km/h µ = 1.61, sµ = 0.15 ptest < 0.01 ptest < 0.01

Tabular 6.23: Marginal Means of 0.95 Quantile of the Duration of Glances Off the Road
Driving Speed 0.95 Quant. Dur. Glances Off the Road Diff. to 20 km/h Diff. to 40 km/h

20 km/h µ = 3.73, sµ = 0.44
40 km/h µ = 2.85, sµ = 0.30 ptest < 0.01
60 km/h µ = 2.21, sµ = 0.22 ptest < 0.01 ptest < 0.01

The interaction effect present in the 0.75 quantile of the glance duration is graphically analyzed. For
this purpose, the means and standard errors for the individual warnings system conditions and driving
speeds are show in Fig. 6.24.
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Figure 6.24: Interaction between the warning system and driving speed wrt. the 0.75 quantile of the off-road
glance duration. Left plot corresponds to driving without warning system, middle plot corresponds
to driving under EOR and right plot corresponds to driving under AGB. Solid lines indicate the mean
and dashed lines show the 0.95 confidence interval of the mean.
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The plots of the 0.75 quantile of the glance durations in the different driving conditions show a
weaker influence of the driving speed factor in the conditions of active warning systems (see Fig. 6.24).
However, differences between driving speeds were still significant for EOR and AGB as verified by post-
hoc test on the means. Similar observations were made for the other metrics of the glance duration. As
the p-value of the interaction effects of those metrics exceeded the significance-level of 0.05 a detailed
analysis is omitted in this work.

Summarized, the analysis of glance behavior revealed that the warning systems did not significantly
affect the glance behavior in total but rather resulted in decreased effect of the driving speed.

Hypotheses H5.1-4 are not confirmed: The distraction warning systems do not result in significantly reduced
durations of glances off the road.

6.6 Discussion

Previously, a user study of the developed warning systems was introduced. In this context, a driving
experiment was conducted to provide a proof of concept of the approaches and to investigate the ac-
ceptance by the user as well as the effects of the warning systems on driver behavior. In the experiment
the warning systems were evaluated at different driving speeds. Following the presentation of the re-
sults of the user test, this section will discuss the findings in pursuit of the research questions stated in
Sec. 6.4.

6.6.1 Feasibility of Appropriate Glance Behavior for Distraction Warning

Research question R1 asked whether the concept of appropriate glance behavior as defined in Sec. 3.4
and implemented in Sec. 6.3.5 was applicable for real-time distraction warning. This question was
mainly motivated by the computational demands of computing policies in the joint task POMDP and
the question of the robustness with respect to noisy sensor data.

The CPU-times demonstrate that our implementation of appropriate glance behavior is sufficiently
fast to be run at a sample time of 0.04 s. In addition to that, pre-processing of eye-tracking can
reliably run at a sample time of 0.02 s. Comparing the CPU-times of the compiled C code of the
policy computation (see Sec. 6.5.1) with those obtained by the MATLAB implementation used in the
evaluation of Sec. 3.6.2, a speed-up of a factor of more than 25 could be observed. This shows that
appropriate glance behavior can be computed sufficiently fast in the scenario of lane keeping. The
present warning system is the to-the-best of our knowledge only system for distraction warning based
on online solution of POMDPs. Therefore, no comparison to other approaches is possible. We wish
to note that other works that addressed exact solution of similar POMDP models considered offline
optimization of sensor states [246]. Clearly, this is not feasible in the present application were the
adaption to the specific POMDP instance modeling the current driving situation is desired. We refer
to the analysis of the computational demands of policy computation prior in this work in Sec. 3.6.2 for
a discussion of the aspects that enable online solution.

In the user test three participants needed to be excluded because of insufficient eye-tracking quality
(see Sec. 6.4.1). Note that this was rather an issue of the eye tracking than of the employed pre-
processing. If eye-tracking is lost for a long period (as in case of squinting shown in Fig. 6.8) and
drivers show no significant head movements when averting gaze (which is the case for a considerable
amount of drivers [64]) the developed algorithms cannot estimate the eyes-off duration. Considering
the subjective ratings of usefulness made by the participants, the distraction warnings based on AGB
were well received. Hence the warning system based on AGB demonstrated sufficient robustness with
respect to the quality of eye-tracking in real driving of the remaining participants.

The employed sample times were not derived from specific functional requirements. Instead sample
times followed largely those of the eye-tracking system and the lane-tracking system. This choice of
sample times appeared to be sufficiently small to ensure effectiveness of the warning system which
can be seen at the positive user ratings (see Sec. 6.5.5). We even think that the sample time of AGB can
possibly be increased up to 0.1 s without significant loss of functionality.
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6.6.2 Acceptance Of Distraction Warning Systems

Experienced drivers show glance behavior that is adapted to the driving situation, e.g. the driving
speed [207, 205]. Furthermore, it was demonstrated that planning and decision making in assistance
system, e.g. collaborative robots, can profit from explicit model of human behavior [54]. Against this
background, research question R2 and its related hypotheses H2.1-H2.4 address potential differences in
the acceptance of the “baseline” distraction warning system using EOR and the warning system using
AGB which features explicit models of the driving situation as well as the driver’s vehicle control.

The subjective ratings of number of warnings, timing of warnings and usefulness of warnings clearly
demonstrate that warnings adapted to the driving speed produced by AGB are better received by the
users. Due to appropriately calibrating the warning systems (see Sec. 6.4.4) average ratings of the
number of warnings and timing of warnings were similar for both warning systems. That is, in average
both variants of the warning system had the same sensitivity. Consequently, increased deviation of
ratings from “ideal” of EOR compared to AGB was attributed to stronger variation of ratings across
the driving speeds. The fixed warning threshold of 2.0 s used in EOR was judged too sensitive (too
many and too early warnings) at 20 km/h and too liberal (too few and too late warnings) at 60 km/h
by the users which can be seen in Fig. 6.16 and Fig. 6.17. This was not the case for the effective warning
thresholds on eyes-off duration adapted to the driving speed which resulted from AGB (see Tab. 6.1).

In contrast to the ratings of number of warnings and timing of warnings the ratings of usefulness of
AGB were not significantly better than those of EOR. As the increase of ratings of usefulness of AGB
compared to EOR was close to significance (ptest = 0.06) this was most likely attributed to the small
number of participants considered in the analysis. We expect significant effects using an increased
number of participants.

Similar to the present study, subjective ratings were used in [126, 119] to assess distraction mitigation
systems. However, the results of these works are not directly comparable to the present user test. This
is because we aimed at a comparison of both variants of distraction warning systems while the other
experiments investigate the overall acceptance of this type of warning system. Furthermore, both
protocol and employed scales employed in previous work were quite different from those employed in
this thesis.

6.6.3 Effects on Driving Performance

Driver distraction can result in problematically decreased driving performance. Hence, the main pur-
pose of distraction warning systems is to mitigate these decrements by beneficially altering the drivers’
gaze switching behavior. Research question R3 and the associated hypotheses H4.1-4 ask if the imple-
mented warning systems can improve driving performance compared to driving without treatment.
Hypotheses H5.1-4 additionally ask if the warning system AGB which is adapted to the driving situa-
tion shows additional benefits compared to the warning system based on EOR.

The analysis of the data of the user test revealed that the distraction warning systems do not sig-
nificantly improve driving performance in terms of the position in lane and the steering effort (see
Sec. 6.5.3 and Sec. 6.5.4). Both implemented warning systems do not directly influence the drivers’
vehicle control but aim at reducing long glances off the road which finally can improve vehicle con-
trol performance. However, in the user test durations of glances off the road were not significantly
reduced (see Sec. 6.5.5). Consequently, no improved lane keeping performance can be expected. The
same observation was previously made in the evaluation in [126]. Here, lane keeping performance as
measured by the STD was also not improved and no effects of the warning system on glance dura-
tions could be established. Similar results on driving performance were also obtained in the simulator
studies [51, 52]. In those experiments headway keeping and steering performance did not benefit from
advisory feedback to return gaze to road. The authors hypothesized that this was possible due to
the comparatively moderate difficulty of the driving task. This is also a possible explanation for this
user test as the driving task was not very demanding (see Sec. 6.4.3) which was also noted by some
participants.

In contrast to the other metrics employed to asses lane keeping behavior, RMSE of the steering angle
velocity was significantly reduced by treatment with the distraction warning system (see Tab. 6.13).
This may be explainable by a calming effect on the drivers resulting them to perform less abrupt
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steering movements. In [51, 52] the dynamics of steering behavior were not affected by feedback but
as a different metric (steering entropy) was employed, results are not fully comparable.

As shown in [51] automatically locking secondary tasks in demanding driving situation significantly
improves driving performances. In contrast to a distraction warning system this approach significantly
reduced the duration of glances off the road (see the discussion in Sec. 6.6.3) which might in turn
resulted in significant improvements of driving performance.

In [28] a lane keeping assistance system was adapted to the driver’s attention state. This was im-
plemented by intervening earlier when the driver engaged in a secondary task. Here, improved lane
position could be obtained under similar user acceptance. In contrast to our study, in that work the
maximum deviation from the lane center was used as a metric which is not a standard in driver distrac-
tion research. The glance policy computed in AGB aims at reducing the expected squared deviation
from the lane center (see Sec. 3.3.1). This specific choice of objective results in a gaze switch policy
which is independent of the current lane position (see Sec. 3.6.1). Consequently, comparison with [28]
suggests that AGB may be more effective in improving driving performance using a different objective
which results in a gaze switch policy adapted to the current lane position.

6.6.4 Effects on Glance Behavior

Distraction warning systems aim at reducing the duration of long glances off the road [52, 5, 126].
Hence research question R4 and related hypotheses H6.1-4 addressed potential effects of treatment
with both variants of the warning system on glance behavior.

The analysis of the duration of glances off the road of the participants shows no significant effects
of the treatment with the warning system (see Sec. 6.5.5). Instead drivers seem to largely maintain
the glance strategies shown in secondary task engagement without warning system. However, the
warning systems, especially EOR, tend to decrease variation of glance durations over driving speeds
(see Fig. 6.24) which was significant considering the 0.75 quantile of glance behavior. This indicates
that the static threshold on eyes-off duration employed in EOR reduces the drivers’ adaption of glance
behavior to driving speed which is problematic. Typically distraction warning systems escalate if the
driver does not return his or her gaze to the road [52, 5]. To facilitate the subjective assessment of
warning timing this user test employed only a single warning stage (see Sec. 6.3.6). Hence, lack of
effects of the distraction warning systems on glance behavior could be explained by the drivers not
feeling sufficiently urged to return gaze.

[52, 119] found positive effects on glance behavior of distraction warning systems. However, in both
works only the proportion of time the drivers looked at the road was significantly reduced. In contrast,
similar as in our work and in the study of [126] durations of off-road glances were not significantly
reduced. In this context, it was hypothesized that adapting glance behavior might require longer
treatment with the warning system. In the extended field evaluation of [5], no significant effects of dis-
traction warning on glance behavior could be established but a trend towards reduced off-road glance
durations and fewer triggered warnings was observed. We wish to note that the timing of warnings
was rated significantly better in the present experiments for AGB. That is drivers generally welcomed
warnings similarly adapted to the driving situation as their own glance strategies. Consequently, lack
of effects on glance behavior observed in previous works [52, 5, 126] may also be explained by the fact
that the employed attention assessment neglected the context of the driving situation. [119] employed
a warning index adapted to the vehicles driving speed to implement a distraction warning systems.
However in that work the benefits were possibly weakened by the reported issues with insufficient
eye-tracking quality.

As mentioned earlier in Sec. 6.6.3, blocking engagement in the secondary task in driving situations
of high demand decreased the duration of off-road glances in [52]. In [119] a similar blocking approach
was used in a part of the user test. This blocking feature showed a similar effect of shortening glances
off the road. In contrast to a distraction warning system blocking secondary task engagement removes
the reason for the driver to avert gaze from the road. Hence, it must be expected that this cause most of
the driver return and keep their gaze on the road. Consequently, the proportion as well as the duration
of off-road glance is reduced.
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6.7 Conclusion

The present chapter developed and evaluated a distraction warning systems based on computing ap-
propriate glance behavior previously defined in Sec. 3.4. Online pre-processing of eye-tracking and
CAN-data as well as online policy computation in the joint task POMDP was implemented in a test
vehicle to trigger a visual-auditiv warning. The resulting warning system was evaluated in compar-
ison with a state-of-the-art distraction warning system by means of a user test on a test track. Here,
sufficient speed of computation as well as robustness wrt. sensor noises were demonstrated. The user
test revealed that the developed warning system was significantly better received by the participants
than the state-of-the art system. Detailed analysis showed that this was due to the fact that the state-
of-the-art system neglected the specific driving situation which was incorporated in the other system.
However, both evaluated warning systems failed to significantly alter the drivers’ glance behavior and
consequently no significantly improved lane keeping performance except for less abrupt steering was
found.

The evaluation gives an encouraging proof of concept of our framework of appropriate glance behav-
ior. That is, it shows that the joint task of driving and secondary task engagement can be modeled that
robust and real-time computation of gaze-switch policies is possible. Furthermore the study demon-
strates that these policies also result in improved distraction warning. However, the discussion of
the results revealed several aspects that need further investigation: It needs to be investigated if the
lack of effects of the warning systems on glance behavior can be mitigated by a more elaborated, e.g.
escalating, warning design or increased difficulty of the joint task.

In second step it can be necessary to increase the complexity of the representation of the task of lane
keeping, e.g. with respect to non-quadratic task objectives, used in the normative model of appropriate
glance behavior. The CPU-time required for policy computation in the joint task POMDP was well
below 0.04 s. Hence, in increased sample time it could be possible to locally solve more complex
POMDP models by iterative approximation with the joint task model analogously to [56, 244].

The present user study was conducted on a test track to realize the experimental design. While this
is sufficient for a first proof of concept ultimately the distraction warning system must be evaluated in
the ecological context as done in [5]. However, to do so all typical driving situations must be modeled
in an extended joint task POMDP.
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7 Conclusion and Outlook

Engagement into a visually demanding secondary task during manual driving requires situationally
adapted glance behavior. Research has shown that experienced drivers are capable of applying such
strategies. In contrast, the state-of-the-art algorithmic approaches assess driver attention without the
situational context. The scope of this thesis has been to establish new and alternative techniques for
assessment of driver attention from both glance behavior and the characteristics of the driving situation.
These can help to improve driver distraction warning systems with respect to both effectiveness and
user acceptance.

The present chapter summarizes the main contribution of this thesis. Furthermore, we discuss both
the potential and the limitations of the pursued methodology which are used to derive directions for
future research.

7.1 Conclusion

This work has addressed the development and evaluation of a normative model of glance behavior
for interaction with a visually demanding secondary task while driving. This served the purpose of
enabling assessment of driver attention in the context of the current driving situation. To this end, a
decision theoretic model of the joint task of engagement in a secondary task in lane keeping has been
developed. Approaches for computing optimal and rational policies that defined the normative model
have been derived. In addition to that, we have developed new techniques for estimating important
model parameters. Finally, the normative model of glance behavior was integrated into a distraction
warning system in a test vehicle and evaluated with respect to effectiveness and user acceptance. In
the following we will summarize the main results obtained throughout this course.

Appropriate Glance Behavior in the Joint Task of Driving and Secondary Task Interaction We
considered the problem of developing a normative model of glance behavior feasible for application
in a real-time distraction warning system in Cpt. 3. In this context a Partially Observable Markov
Decision Process model (POMDP) of the joint task comprising of a linear-affine kinematic model of the
lane keeping task, a linear-Gaussian model of the driver’s sensory characteristics and models of the
visual demanding secondary task were developed (Sec. 3.3). Using this POMDP model allowed the first
mathematical definition of situationally appropriate glance behavior in the considered driving scenario
(Sec. 3.4). In contrast to the Kircher’s and Ahlström’s recently proposed concept of minimum required
attention, which shares many ideas, our approach can directly algorithmically be realized in a real-time
warning system. Furthermore, we derived new exact algorithms to obtain optimal and rational policies
in the POMDP which are required in the definition of appropriate glance behavior (Sec. 3.5). Finally,
two variants, SRopt (Algo. 4) and STRopt (Algo. 6), of the joint task POMDP were evaluated with
respect to model realism and computational feasibility of policy computation (Sec. 3.6). The results
showed that the assumptions underlying the considered POMDP models did not result in policies that
conflict with empirical data. However, the computational demands required for policy computation
turned out to be feasible for online-application only for SRopt. In this context, the computational
complexity of the solution approaches was analyzed which allowed to identify the main computational
bottlenecks which must be addressed in future research.

Inferring Drivers’ Policy and Reward Cpt. 4 addressed the problem of finding a realistic model of the
driver’s vehicle control and secondary task interaction policy. Furthermore, we considered estimating
a suitable parameterization of the objective, i.e. the reward function, of the joint task POMDP from
behavioral data of experienced drivers. These quantities are required to obtain a valid definition of
appropriate glance behavior. For this purpose, new exact inverse optimal control techniques were
derived for the class of POMDPs the joint task model belongs to (Sec. 4.4). We first demonstrated the
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potential of the inverse optimal control approach as well as the differences between different variants
thereof using simulated data (Sec 4.5). Thereafter, a real-traffic driving experiment of lane keeping
in presence of a visually demanding secondary task was introduced (Sec 4.6). This provided data
of adaptive driver behavior suitable for evaluation. Using the experimental data we validated both
the model assumptions as well as the techniques for inference of reward parameters by comparing
prediction errors with those obtained by the established two-point steering model [197] and the barrier
model [95]. The results showed that the developed methodology improves prediction of driver behavior
especially in driving situations unseen at estimation time (Sec 4.7).

Inferring Drivers’ Sensor Characteristics A driver’s glance behavior is deeply rooted in the character-
istics of the driver’s sensing of the road scenery. Obtaining models of the sensor characteristics under-
lying human real-world motor behavior is very challenging. We proposed the first general framework
for inference of sensor model parameter in sequential decision making and evaluated its implementa-
tion for the joint task POMDP in Cpt. 5. First, inverse optimal control in POMDPs was extended to the
framework of I See What You See (ISWYS) which allows to estimate both reward and sensor model
parameters (Sec. 5.4). Thereafter, we derived an exact implementation of ISWYS for the POMDP class
of the joint task model. A second driving experiment on lane keeping while engaging in a secondary
task was presented (Sec. 5.6). In this study, drivers’ vision of the forward road scenery was experi-
mentally manipulated by imposing gaze aversion to a display mounted at different locations in the
vehicle interior. In the evaluation on the obtained data, sensor model inference using ISWYS resulted
in improved prediction of glance behavior compared to inverse optimal control (Sec. 5.7). However,
no benefits for predicting states related to vehicle control could be established. In addition to that, the
inferred sensor noise parameters were large but lead to a comparably small uncertainty in the driver’s
estimate of the states related to vehicle control. This indicated that drivers use a simpler representation
of the driving situation than assumed in the joint task model.

Distraction Mitigation by Computation of Appropriate Glance Behavior and Its Evaluation The goal
of our efforts in modeling and algorithm development was improvement of distraction warning sys-
tems. In pursuit of this objective a distraction warning system based on computing appropriate glance
behavior was developed (Sec. 6.3). The benefits of warnings adapted to the driving situation provided
by the new system were evaluated in a user study on a test track (Sec. 6.4). Computing appropriate
glance behavior was compared to a state-of-the art approach for attention assessment in terms of user
acceptance and improvement of lane keeping performance. The results of the user test showed that the
number and timing of warnings of computing appropriate glance behavior were significantly better
received by the users (Sec. 6.5). This could directly be attributed to adapting warnings to the driving
situation. In contrast, neither of the evaluated warning systems had a significant impact on the drivers’
glance behavior. As a consequence, the distraction warning system did also not improve lane keeping
performance except for less abrupt steering. It was hypothesized that this effect was due to the design
of the warnings, which were probably presented not urgently enough.

7.2 Potential and Limitations of the Research Methodology

The present thesis focused on driver attention assessment in the driving task of lane keeping. The
problem of determining whether the driver pays sufficient attention to the driving task in every pos-
sible driving situation is a very challenging issue. The reason is that this task requires to consider
difficult decision making problems incorporating the driver’s uncertainty of the states of the driving
situation as well as aspects of gaze switching. This is indicated by the moderately complex POMDP
model of lane keeping employed in the present work (see Sec. 3.3.4).

Our work on obtaining a realistic yet computationally feasible model of appropriate glance behavior
shows which trade-off decisions must be made to obtain an approach that can be implemented in
a distraction warning system (Cpt. 3). The results and insights obtained in this course can guide
the development of techniques for driver attention assessment in other driving situations such as e.g.
headway-keeping. Furthermore, we have shown that the important model parameters required to
realize the normative model of glance behavior can successfully be inferred by techniques based on
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inverse optimal control (Cpt. 4 and Cpt. 5). In this context, new inference procedures were contributed
to the state-of-the-art in the machine learning research. These approaches may also be applied to
parameterize models of glance behavior in other driving situations. Finally, the evaluation of the
warning system gave a first and clear demonstration of the weaknesses of the current state-of-the
art in driver’s attention assessment in the limited scenario of lane keeping (Cpt. 6). This shows that
previously proposed approaches are insufficient and that a promising direction for advancement of
distraction warning systems is given by the methodology established in this thesis.

Despite the results and insights gained by the present work, it has several limitations. Most important
the developed models and technique address only the scenario of lane keeping. Considering this
particular driving task came with several aspects that facilitated development of a normative model
of glance behavior. Importantly, the problem of lane keeping could realistically and naturally be
modeled by linear-affine Gaussian dynamics combined by a quadratic objective function (Sec. 3.3.1).
This model structure greatly facilitated computing rational and optimal policies by allowing convenient
policy factorization (Sec. 3.5.2 and Sec. 3.5.3). Similar factorization properties could also be exploited
for efficient inference of reward and sensor model parameters (Sec. 4.4 and Sec. 5.5). However, the
same structure is not appropriate for modeling other driving tasks. For example the driving task of
headway-keeping requires a nonlinear non-quadratic objective function. This is because evaluation
of the distance to a preceding vehicle requires a monotonic function that assigns high costs to small
distances and low costs to high distances. Hence, additional techniques are required to obtain rational
and optimal glance policies in other driving tasks.

Even though we were able to compute gaze switch policies sufficiently quickly for application in a
warning system, this came with additional model assumptions that are not entirely realistic (Sec. 3.5.2).
Specifically, we assumed instantaneous saturation of information once the driver returned gaze to
the road. In this thesis also algorithms for policy computation (Sec. 3.5.2) and parameter inference
(Sec. 4.4.3 and Sec. 5.5.2) without this particular assumption were developed. However, this thesis
could not obtain sufficiently efficient computational procedures. Consequently, the approaches turned
out to be too computationally demanding for both online-application and evaluation on large amount
of driving data obtained in the real-traffic experiments (Sec. 3.6.2).

The present work made the assumption that drivers are capable of optimal Bayesian inference of
the states of the driving situation when averting gaze. That is, drivers possess perfect models of the
vehicle and situation dynamics. Although the employed kinematic model of the task of lane keeping
is comparably simple it turned out that drivers likely employ less accurate internal models (Sec. 5.7.4).
In more complex driving situations it must be expected that the deviation between the true situation
dynamics and the internal models is even more pronounced.

Finally, we investigated only a comparably simple secondary task in our driving experiments (Sec. 4.6
and Sec. 5.6). Furthermore, this task was only included in the joint task model in a minimal version
(Sec. 4.7.1) although the proposed joint task model allows for more detailed representations. From
previous research it is known that the characteristics of a secondary task, such as the costs of task
interruption have a strong impact on interaction and glance behavior. The potential of the joint task
model with respect to such aspects has not yet been evaluated.

7.3 Outlook

In the present work the problem of determining appropriate glance behavior in the driving scenario
of lane keeping was addressed. Following a summary of the main results the previous section has
highlighted the potential and the limitations of the pursued methodology. Based on the findings, the
most important directions for future research are identified.

Clearly, future research should address the extension of the developed approaches to further driving
tasks. Besides lane keeping, headway-keeping is the most fundamental driving task. Previous research
has shown that head-way keeping is significantly impaired in presence of a visually demanding sec-
ondary task e.g. [48, 123]. Hence, the driving task of headway-keeping should be investigated next.
In this driving task a challenge arises from the task objective that cannot be modeled by a quadratic
function as explained earlier. Furthermore, in this scenario appropriate gaze switch and vehicle control
policies also strongly depend on the knowledge/belief about the preceding vehicles future behavior,
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e.g. the likelihood of abrupt stopping. Detection accuracy of such intentions based on sensor char-
acteristics has been studied in [221] which may provide a basis for modeling this type of “situational
awareness” in a partially observable Markov decision process. However, obtaining an optimal or ra-
tional gaze switch policy in a realistic model of headway keeping in presence of a visually demanding
secondary task will in the end also require new solution techniques.

In the present work the first technique for inference of sensor models underlying dynamic behavior
was developed. This allowed to study driver perception in gaze switching for lane keeping. It was
revealed that the drivers’ internal model probably deviate from the true dynamics of the task. In real-
traffic driving various source of disturbances are present, hence the observations made in the driving
experiment should further be studied in the laboratory. Human and primate internal representations
have been previously studied using mathematical model of decision making [18, 70]. However the
methodology developed in this thesis is the first can potentially be used to study internal models
underlying gaze switching behavior where these are assumed to be of particular importance [255].
Hence, the proposed estimation approach may help to gain a better understanding in the internal
representations that guide human daily actions beyond manual vehicle control.

Visual driver distraction has the most distinct effects on driving performance. However, also cog-
nitive distraction can negatively affect vehicle control, for example by resulting in delayed hazard
response [139]. The present work has focused exclusively on drivers’ visual attention but cognitive
distraction is also related to glance behavior and visual perception. For example, it has been shown
that cognitive distraction comes with concentration of glances to the forward road scenery [245] and
impaired processing of visual information [227, 83]. These observations may be explained by effects of
cognitive distraction on internal models used in driver’s visual perception. For example, an impaired
internal model of the driving task would require more frequent and longer glances at the forward road
scenery. Studying mathematical internal models of drivers as suggested in the previous paragraph
could possibly also contribute to understanding cognitive distraction.

Finally, the role of the driver is slowly changing through the advent of automatic driving functional-
ity. Due to safety reasons current series and pre-series partial automated systems for example the Tesla
Autopilot (Tesla Inc, Palo Alto, California) require the driver to continuously monitor the system’s
functionality and to intervene in case of failure. That is, the driver is no longer required to control the
vehicle but must still maintain sufficient attention to detect and correct system errors. Consequently,
the issue of appropriate glance behavior remains relevant in the context of partially automated driv-
ing. Similar as in case of manual driving, appropriate monitoring behavior depends on the driving
situation. Specifically, glance behavior must consider the situation specific likelihood of system failure.
For example, the quality of detecting lane boundaries and failure of lane tracking will depend on lane
visibility and lane curvature. A normative model of appropriate glance behavior for monitoring of a
partially automated driving system could possibly obtained in the following way: The task of failure
detection could be modeled by the approach proposed in [65]. Given a detected failure, the driver has
to override the partial automated system and take over control. Such takeover scenarios in automated
driving have been analyzed using control theoretic techniques in [102]. Combining the model of failure
detection and control mode change could finally result in a holistic model for appropriate monitoring
behavior that considers the aspects of both system failure and takeover.
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A Appendix

A.1 Proof of Kalman Belief Update

In the the section 2.1.4, we derived the belief-MDP of linear quadratic Gaussian Problems. Here, it was
claimed that
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what proves the claim.
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A Appendix

A.2 Proof of Reward Gradient Recursion of Joint Task Model

In Sec. 4.4.3, it was stated that the gradients of the optimal state-control function and the soft state-
control wrt. to the parameters of the primary task features are given by
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it still needs to be shown for the remaining time steps. The derivation will exemplary be conducted
for the maximum causal entropy model. The optimal policy model can be treated analogously.

For the remaining time steps the relation of the soft state-control function gradient
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Consequently, the gradient of the soft state-control function wrt. the parameters of the reward of
primary task result in

rQQQ1,QQQ2 Q̃qqq
t (µµµ

p
t , xzxzxz

0:t, xi
t, up

t , uz
t , ui

t)

= rQQQ1,QQQ2

⇣
[µµµ

p
t ; up

t ]
> blk(QQQ1, QQQ2)[µµµ

p
t ; up

t ] + tr(QQQ1SSSp
t (x

zxzxz
0:t)) + q3uz

t + qqq>4 jjj(xi
t, ui

t)
⌘

+ E
h
rQQQ1,QQQ2 Q̃qqq

t+1(µµµ
p
t+1, xzxzxz

0:t+1, xi
t+1, up

t+1, uz
t+1, ui

t+1)���p̃qqq
t+1(u

p
t+1, uz

t+1, ui
t+1|µµµp

t+1, xzxzxz
0:t+1, xi

t+1),P(µµµ
p
t+1, xzxzxz

0:t+1, xi
t+1|µµµp

t , xzxzxz
0:t, xi

t, up
t , uz

t , ui
t)
⇤

(A.10)

= Pblk
nx ,nu

⇣
I(nx+nu)2

vec([µµµp
t ; up

t ][µµµ
p
t ; up

t ]
>) + 000[µµµp

t ; up
t ] + vec

�
blk(SSSp(xzxzxz

0:t), 000)
�⌘

+ E
h
Pblk

nx ,nu

�
MMMQ̃qqq ,1

t+1 vec([µµµp
t+1; up

t+1][µµµ
p
t+1; up

t+1]
>) +MMMQ̃qqq ,2

t+1 [µµµ
p
t+1; up

t+1]

+mmmQ̃qqq

t+1(x
zxzxz

0:t+1, xi
t+1, uz

t+1, ui
t+1)

�
���p̃qqq

t+1(u
p
t+1, uz

t+1, ui
t+1|µµµp

t+1, xzxzxz
0:t+1, xi

t+1),P(µµµ
p
t+1, xzxzxz

0:t+1, xi
t+1|µµµp

t , xzxzxz
0:t, xi

t, up
t , uz

t , ui
t)
⇤

(A.11)

Next we define the following quantity

SSSt+1 = AtSSS
p
t (x

zxzxz
0:t)A>t +SSSex �SSSp

t+1([x
zxzxz

0:t xz
t � uz

t ])

This allows to express the distribution of µµµ
p
t+1, up

t+1 given µµµ
p
t , xzxzxz

0:t, xi
t, up

t , uz
t , ui

t as"
µµµ

p
t+1

up
t+1

#
= N

⇣ 
Atµµµ

p
t + Btu

p
t + at

F̃qqq
t+1(Atµµµ

p
t + Btu

p
t + at) + f̃qqq

t+1

�
,

"
SSSt+1 SSSt+1F̃qqq

t+1
>

F̃qqq
t+1SSSt+1 F̃qqq

t+1SSSt+1F̃qqq
t+1
> +SSSup

t ,qqq

# ⌘
. (A.12)

The definitions

F̃FFt :=


Inx

F̃qqq
t+1

�
, T̃TTt :=


At Bt

F̃qqq
t+1At F̃qqq

t+1Bt

�
, t̃ttt :=


at

F̃qqq
t+1at + f̃qqq

t+1

�
,

can be used to write (A.12) in the simpler form of"
µµµ

p
t+1

up
t+1

#
= N

⇣
T̃TTt


µµµ

p
t

up
t

�
+ t̃ttt, T̃TTtSSSt+1T̃TTt

> + blk(000, SSSup
t ,qqq)

⌘
. (A.13)

Employing the previous relation (A.13) allows to evaluate the expectation in (A.11). Finally, manipula-
tions from matrix algebra (see e.g. [175]) and reordering result in the desired equation
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