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Abstract

Sensing the environmental signals, the canonical Gα-cAMP/PKA pathway modulates myce-

lial growth and development, and negatively regulates some secondary metabolism in fila-

mentous fungi, e.g. aflatoxin in Aspergillus nidulans. Here we report the characterization of

this signaling pathway in Chaetomium globosum, a widely spread fungus known for synthe-

sizing abundant secondary metabolites, e.g. chaetoglobosin A (ChA). RNAi-mediated

knockdown of a putative Gα-encoding gene gna-1, led to plural changes in phenotype, e.g.

albino mycelium, significant restriction on perithecium development and decreased produc-

tion of ChA. RNA-seq profiling and qRT-PCR verified significantly fall in expression of corre-

sponding genes, e.g. pks-1 and CgcheA. These defects could be restored by simultaneous

knock-down of the pkaR gene encoding a regulatory subunit of cAMP-dependent protein

kinase A (PKA), suggesting that pkaR had a negative effect on the above mentioned traits.

Confirmatively, the intracellular level of cAMP in wild-type strain was about 3.4-fold to that in

gna-1 silenced mutant pG14, and addition of a cAMP analog, 8-Br-cAMP, restored the

same defects, e.g., the expression of CgcheA. Furthermore, the intracellular cAMP in gna-1

and pkaR double silenced mutant was approaching the normal level. The following activity

inhibition experiment proved that the expression of CgcheA was indeed regulated by PKA.

Down-regulation of LaeA/VeA/SptJ expression in gna-1 mutant was also observed, implying

that Gα signaling may crosstalk to other regulatory pathways. Taken together, this study

proposes that the heterotrimeric Gα protein-cAMP/PKA signaling pathway positively medi-

ates the sexual development, melanin biosynthesis, and secondary metabolism in C.

globosum.
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Introduction

Chaetomium fungi are commonly found in the environment with more than 350 species

described in this genus [1]. Relying on robust enzyme activities, this group of fungi are able to

thrive on a broad range of substrates, e.g. lignocellulose, and are widely distributed in soils,

marine environments, animal dung, hair, textiles, plant seeds and some other substrates rich

in cellulose [2, 3]. Some species of the genus Chaetomium are reported to be able to cause plant

diseases and human infections and can also be plant endophytes [4]. Recently the genus Chae-
tomium has received attention for its capacity to produce a myriad of secondary metabolites

that supposedly favor thriving in varied ecological niche [5]. More than 200 small secondary

metabolite compounds have been reported from Chaetomium spp., among which chaetoglo-

bosins are well known for their robust cytotoxic bioactivity and potential pharmaceutical sig-

nificance [1, 6].

Chaetoglobosins are grouped into the cytochalasin family of natural products and are actu-

ally polyketide derivatives found in fungi [7]. They have unique biochemical property of bind-

ing eukaryotic actin proteins, disturbing the normal actin network in the cell. Thus, they

display strong cytotoxicity against tumor cell lines [8, 9], phytotoxicity on numerous plants

[10], immunomodulatory activities [11], and antifungal [12] and nematicidal activities [13].

This broad range of cytotoxicity has significance for drug development. To date, more than

eighty chaetoglobosins have been reported from different genera of filamentous fungi [9, 10,

12], including species of the genus Chaetomium. Structurally, chaetoglobosins share a macro-

cyclic polyketide core associated with an isoindolone moiety. In Penicillium expansum, the

core structure is synthesized by a hybrid megasynthetase, i.e. a polyketide-nonribosomal pep-

tide synthase (PKS-NRPS) named CheA, and a stand-alone enoyl reductase named CheB [14].

The genes are located within a single gene cluster. The macrocyclization step is finished via the

Diels-Alder reaction. Nonetheless, we previously observed in C. globosum NK102 that a poly-

ketide synthase gene, pks-1, was required for both colonial pigmentation and biosynthesis of

chaetoglobosin A (ChA) via an unknown mechanism [15].

The capability of an organism to respond to external stimuli using signal transduction is crit-

ical for concerting metabolism and development [16]. In eukaryotic organisms, the canonical

heterotrimeric G proteins, composed of α, β, and γ subunits, are a major player in regulating a

variety of cellular processes through a signaling cascade to intracellular effectors, such as adenyl-

ate cyclase, phospholipases, and ion channels. In filamentous fungi, sensing a depletion of car-

bon source or amino acids by a G-protein coupled receptor (GPCR) will activate the coupled

Gα subunit of the G protein complex that in turn transfers the signal to adenylyl cyclase, to reg-

ulate the in vivo cyclic adenosine monophosphate (cAMP) levels. Intracellular cAMP binds to

the regulatory subunits of cAMP-dependent protein kinase A (PKA), and then phosphorylates

various protein targets in the pathways of fungal growth, development and the biosynthesis of

some secondary metabolites [17–21]. For instance, the pathway negatively regulates the synthe-

sis of aflatoxin in Aspergillus nidulans. However, the role of G protein-cAMP/PKA signaling

pathway in the biosynthesis of ChA has not been defined in C. globosum.

As part of our ongoing effort on the regulation of secondary metabolism in C. globosum, we

started with the definition of the role of G protein-cAMP/PKA pathway in the biosynthesis of

ChA. The fungal strain C. globosum NK102 was formerly isolated as a high-yield ChA pro-

ducer which could use cellulose as a sole carbon source [15, 22, 23]. In our laboratory, ChA

had exhibited strong nematicidal activity against Meloidogyne incognita (the lethal concentra-

tion 50 (LC50) is 77.0 μg/mL) [13] and a severe inhibitory activity against the plant pathogenic

oomycete Pythium ultimum (unpublished data). To gain insight into the regulation mecha-

nism of ChA biosynthesis in C. globosum, we knocked down the gene gna-1 (CHGG_03321),
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putatively encoding a group I Gα protein, and the gene pkaR (CHGG_00688), encoding the

regulatory subunit of the cAMP-dependent PKA. Using this established RNA interference

(RNAi) strategy [15, 24], we demonstrated that the canonical G protein-cAMP/PKA pathway

plays a pivotal role in the production of ChA in C. globosum NK102. The effects of gna-1 and

pkaR are presented below.

Materials and methods

Fungal strains and growth conditions

The wild-type strain C. globosum NK102, isolated and stock by our laboratory was used as the

host strain for RNAi experiments [15]. NK102 was grown on potato dextrose agar (PDA) at

28˚C. For making the protoplasts of NK102, potato dextrose broth (PDB) was inoculated with

106 spores and incubated for 3 days in a rotary shaker at 28˚C and 180 rpm. For DNA or RNA

isolation, 5-mm agar plaques containing the fungal hypha inoculated in PDB were incubated

for 5 days in a rotary shaker at 28˚C and 180 rpm. For RNA-seq analysis, 5-mm agar plaques

with hypha of the wild-type or transformants were inoculated in MCC medium (per liter: 10 g

microcrystalline cellulose, 1.4 g (NH4)2SO4, 2.0 g KH2PO4, 0.3 g urea, 0.3 g MgSO4�7H2O, 0.3

g CaCl2, 1.0 g peptone, and trace elements, i.e., 5 mg FeSO4�7H2O, 1.56 mg MnSO4�H2O, 1.67

mg ZnCl2, 2.0 mg CoCl2) [2] and incubated for 9 days, shaking at 28˚C, 180 rpm. For high-

performance liquid chromatography (HPLC) analysis, strains were cultured in 200 ml PDB for

8 days with shaking at 28˚C, 180 rpm. For cAMP assays for wild-type and mutant pG14 and

pGP6, strains were cultured in 200 ml MCC for 72 hours with shaking at 28˚C, 180 rpm.

Plasmid construction for RNA interference

An RNAi cassette was constructed based on the pSilent-1 vector, a kind gift from Dr. Jinzhu

Song (Harbin Institute of Technology, China), which has been used in a variety of fungi [25].

Plasmids for RNA interference were constructed as described previously [15]. Briefly, the gna-
1 knock-down plasmid was produced by inserting a 284-bp fragment located at the 50 end of

gna-1 into the Xho I-Hind III restriction enzyme sites of pSilent-1, and a reverse sequence into

the Bgl II-Kpn I restriction enzyme sites of pSilent-1. Both inserted fragments were amplified

from NK102 genomic DNA using primers GNA1(s)/GNA1(as). The resulting recombinant

was designated pGNA-1 (Fig 1). The same strategy was used to create plasmid pGNA-PKAR

for simultaneous knock-down of the expression of gna-1 and pkaR. The 210-bp fragment of

pkaR and the 320-bp fragment of gna-1were amplified using primers PKAR(s)/PKAR(as) and

GNA1(s)/GNA-PKAR(as), respectively. The gna-1-pkaR fusion fragment was obtained by

overlap PCR using the primers GNA1(s)/PKAR (as) (Fig 1). All primers are detailed in S1

Appendix.

Fungal transformation and transformants screening

Protoplast preparation and transformation were performed as previously described [15].

Briefly, fresh mycelia were collected by centrifugation, washed three times with sterile distilled

water, and rinsed with 0.7 M NaCl. The cells were incubated with 20–30 ml of 0.7 M NaCl con-

taining 10 mg/ml snailase and 2 mg/ml cellulase (Solarbio, Beijing, China) at 35˚C for 2 h. The

released protoplasts were filtered and subsequently centrifuged at 2000 g for 10 min at 4˚C.

The collected protoplasts were washed with STC (1.2 M sorbitol, 10 mM CaCl2 and 10 mM

Tris-HCl, pH 7.5) and adjusted to a concentration of 107−108 protoplasts per milliliter. A 100-

μl suspension of C. globosum protoplasts was gently mixed with 20–30 μl (0.4–1.0 μg/μl) circu-

lar plasmid DNA. The mixture was kept on ice for 20 min before addition of 60% PEG3350
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(60% polyethylene glycol 3350, 50 mM CaCl2 and 10 mM Tris-HCl, pH 7.5) and completion

of the usual transformation and plating protocols [26]. After incubation for 12–16 h at 28˚C,

plates (each containing 10 ml regeneration medium) were overlaid with 10 ml of 1% agar con-

taining hygromycin B at 200 µg/ml and incubated at 28˚C. Transformants appeared 3–7 days

after plating.

Transformants were selected on PDA plates containing 100 μg/ml hygromycin B. For screen-

ing of the correct transformants, the hygromycin B-resistant cassette, consisting of the hygromy-

cin B phosphotransferase gene hph, was amplified by a diagnostic PCR using primers hyg(s)/hyg

(as) (S1 Appendix). For further confirmation, genomic DNA was extracted and subjected to

Southern blot analysis as previously described [15]. A 284-bp gna-1 fragment and the linearized

pSilent-1 vector digested by Xho I were separately labeled as probes. Experiments involving

DNA labeling, hybridization and detection were carried out according to the instructions of the

DIG High Prime DNA Labeling and Detection Starter Kit II (Roche China, Shanghai, China).

RNA isolation and quantitative real-time (qRT)-PCR

Total RNA was extracted from the lyophilized and ground mycelium using a TRIzol kit (Invitro-

gen, CA, USA), and was then treated with RNase-free DNase (Takara Inc, Dalian, China) to

remove possible contaminant DNA. The first-strand cDNA was generated by reverse transcrip-

tion in a 20 μl reaction using Moloney Murine Leukemia Virus (M-MLV) RTase cDNA synthesis

kit (Takara Inc.). Quantitative real-time PCR was performed by Mastercycler PCR (Eppendorf,

Hamburg, Germany). Each reaction of 20 μl PCR was performed with SYBR Green I PCR master

mix (Roche China, Shanghai, China). Reactions were set up in three replicates per sample. Con-

trols without addition of the templates were included for each primer set. PCR cycling parameters

were: pre-incubation at 94˚C for 10 min, followed by 40 cycles of denaturation at 94˚C for 15 s,

annealing at 59˚C for 30 s and extension at 72˚C for 32 s. The qRT-PCR data were analyzed using

the 2-44Ct relative quantification method [27] in the instrument’s software. The housekeeping

Fig 1. Construction of RNA interference cassettes. RNA interference cassettes were constructed based on the

pSilent-1 plasmid [25]. The inserted fragments were obtained by PCR following restriction enzyme digestion. Primers

are indicated in black boxes. IS, inserted fragment; IT, intron 2 of cutinase (CUT) gene fromMagnaporthe oryzae;
PtrpC, promotor of trpC from A. nidulans; TtrpC, trpC terminator of A. nidulans; Hygr, hygromycin resistance; Ampr,
ampicillin resistance. Restriction enzyme sites are also indicated.

https://doi.org/10.1371/journal.pone.0195553.g001
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gene encoding actin served as reference. The amplification efficiencies of the target and reference

genes were compared at different template concentrations. The gene-specific pairs of primers

used in the amplifications were: qGNA1(s)/qGNA1(as) for gna-1, qPKA(s)/qPKA(as) for pkaR,

and qActin(s)/qActin(as) for the actin gene (S1 Appendix).

Detection of chaetoglobosin A by HPLC

Each sample of liquid culture was extracted with an equal volume of chloroform: methanol

(10:1, v/v). The organic phase was then transferred to a vacuum evaporator and concentrated

under reduced pressure at 55˚C until pellet formation. The residue was dissolved in 2 ml meth-

anol, suspended and centrifuged at 12000 rpm for 10 min. The supernatant was filtered th-

rough a 0.45-μm Millipore filter and subjected to HPLC analysis on an Agilent 1100 HPLC

system (Agilent Technologies, CA, USA) with a Kromasil C18 ODS column (4.6×250 mm,

AKZO Nobel, Gland, Switzerland). The UV detection wavelength was set at 227 nm, and the

sample flow rate was set at 1 ml/min. Standard ChA (Sigma, St. Louis, USA) served as control.

For quantification of ChA, a standard curve was created with known concentrations of the

standard sample.

cAMP competitive enzyme immunoassay

To observe the effect of decreased activity of PKA on the cAMP, the in vivo concentration of

cAMP from the wild-type, mutant pG14 and pGP6 were extracted and quantified as following:

fresh mycelia were collected and frozen in liquid nitrogen. To extract cAMP, the frozen mycelia

were grounded to a fine powder, weighed, suspended and lysed directly in 0.1M HCl (1:10, w/v)

for 20 min. Details of intracellular cAMP extraction was followed as previously described[28].

The supernatant was recovered after centrifugation at 6000 ×g for 10 min. The cAMP concentra-

tion of the supernatant was measured by using the Direct cAMP enzyme immunoassay (EIA) kit

CA-200 (Sigma-Aldrich, USA) according to the protocol supplied by the manufacturer.

Effects of 8-Br-cAMP and H-89 on chaetoglobosin A biosynthesis

To observe the effect of the in vivo concentration of cAMP on the biosynthesis of ChA, PKA

activator 8-Br-cAMP (8-bromoadenosine-3’, 5’-cyclic monophosphate) (Sigma–Aldrich) was

supplemented in 200 ml PDB medium at concentrations of 0, 1, 2, 5 and 10 mM. The effect of

PKA inhibitor H-89 (N-[2-(p- Bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide�2HCl

hydrate) (Sigma–Aldrich) was also studied in the same method but at much lower concentra-

tions (0, 1, 2, 5, 10 μM). Production of ChA biosynthesis was monitored on the relative expres-

sion of the gene CHGG_01239 (CgcheA) by qRT-PCR. The yield of ChA from the wild-type was

quantified by HPLC.

RNA-seq, data mining and gene ontology analysis

RNA-seq profiling was carried out by a commercial provider to monitor the consequences of

the knock-down mutants of G protein. Illumina HiSeq™ sequencing of total mRNA from the

wild-type or the transformant pG14 was conducted by BGI (Shenzhen, China; http://en.

genomics.cn/navigation/index.action). The genome sequence of C. globosum NK102 was used

as the reference for the analysis (unpublished data). P-values were used to evaluate expression

differences at a statistically significant level [29]. A false discovery rate (FDR)-corrected P value

<0.001 and an absolute log2Ratio value�1 were used to identify the differentially expressed

genes (DEGs) and differentially expression tags (DETs).
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Results

RNAi-mediated knockdown of gna-1 and pkaR in C. globosum NK102

To investigate whether the secondary metabolite ChA of C. globosum was under the control of

the G protein-cAMP/PKA signaling pathway, genes gna-1 and pkaR, two key components in

this pathway, were knocked down by RNAi. A single-copy homolog of gna-1 (homolog of

CHGG_03321 of C. globosum CBS 148.51), was found in the genome of C. globosum NK102.

The 1265-bp gene gna-1was cloned from C. globosum NK102, subjected to sequencing and

submitted to the GenBank database under accession number KC351752. A homolog of the

gene pkaR (equivalent of CHGG_00688 of C. globosum CBS 148.51) was also defined as a single

copy in the genome of C. globosum NK102 (GenBank accession no. KY990712). To obtain the

knock-down mutant of gene gna-1, we transformed the protoplasts of C. globosum NK102

with the RNAi cassette pGNA-1 that contained two inverted 284-bp complementary fragments

of the 50 end of gna-1 (Fig 1). Thirty purified hygromycin B-resistant transformants were

obtained by PCR screening (See Experimental Procedures). Those transformants that under-

went a genome integration event would produce a PCR fragment of the desired size, and were

designated as pGs. Similarly, the transformants for knock-down of both gna-1 and pkaR were

generated using the RNAi vector pGNA-PKAR. Twenty-six hygromycin-resistant transfor-

mants were selected by PCR screening and designated as pGPs.

Southern blotting was performed as a further verification of the transformants (S2 Appen-

dix). Genomic DNA of randomly picked transformants, pG3, pG14, pG17, pG18, pG21, and

pG23 was prepared and digested by Xba I. There were two Xba I sites located in the interfer-

ence cassette (2.7 kb) carried on pSilent-1, but not in the sequence of gna-1 (S2 Appendix),

thus an intact gna-1 band and a 2.7 kb RNAi cassette insertion band should be detected in the

mutants when probed with a 284-bp gna-1 fragment (highlighted in green). All transformants

were proved to be positive, ascertaining that the native copy of gna-1 remained intact in the

transformants. Similarly, Southern blotting of seven randomly selected transformants pGP1,

pGP2, pGP3, pGP4, pGP5, pGP6 and pGP7, detected a 3.3-kb band that carried the entire gna-
1/pkaR interference cassettes (S2 Appendix) in all the transformants. Among the transfor-

mants, pGP6 and pGP7 were confirmed to have a desired single integration of the vector. In

previous work, we generated a control mutant Ct by transforming pSilent-1 alone in C. globo-
sum NK102, and found that the vector itself had no discernible effect on the phenotype of the

fungus [15].

To determine the copy number of the interference cassettes inserted in the pG transfor-

mants, genomic DNA was digested by Xho I, which has a single recognition site located in

pGNA-1. Thus, two bands were expected for a single insertion event when the labeled pSilent-

1 alone served as probe. As shown in Figure C in S2 Appendix, two bands were seen in the

lanes of transformants pG14, suggesting a single copy of the interference cassette was inserted

into the genome of these transformants, whereas more than two bands appeared in the lanes

of pG3, pG17, and pG18, indicating multiple copies of interference cassettes had inserted in

these transformants. No hybridization signal was detected in the lane of the wild-type strain.

Decreased transcription of gna-1 and pkaR in the knock-down mutants

Expression of gna-1was examined by qRT-PCR in transformants, pG14, pG17, and pG18,

with single, two or multiple copies of interference cassettes inserted. As shown in Fig 2A, in all

tested transformants gna-1mRNA was detected at significantly lower levels than in the wild-

type strain. It should be noted that the lowest level of gna-1mRNA (only 7.7% of the mRNA of

the wild-type) was detected in pG14 with a single insertion of the interference cassette. This

Gα signaling positively regulates chaetoglobosin A biosynthesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0195553 April 13, 2018 6 / 18

https://doi.org/10.1371/journal.pone.0195553


qRT-PCR result clearly suggests that RNAi against the mRNA of gna-1 happened in these

transformants, although it is difficult to find a co-relationship between the copy number of the

RNAi cassette and the interference outcome (Fig 2A).

Expression of gna-1 and pkaR in double-silenced transformants (pGP) was also assessed

with qRT-PCR. Both gna-1 and pkaR transcripts were significantly decreased in transformants

pGP1, pGP6 and pGP7 (Fig 2B). The mRNA level of gna-1 in pGP1, pGP6 and pGP7 dropped

to a proportion of 16.0%, 10.3% and 12.7%, respectively, of that in the wild-type strain (Fig 2A).

Expression of pkaR was also examined and a similar decrease was observed in the mutants. The

mRNA level of pkaR in pGP1, pGP6 and pGP7 dropped to a proportion of 29.8%, 12.7% and

22.0%, respectively, of that in the wild-type strain (Fig 2B). Thus, gna-1 and pkaR were simulta-

neously knocked down in pGP1, pGP6 and pGP7.

Knockdown of gna-1 has significant effects on perithecium formation,

melanin and ChA biosynthesis

We found that the silenced transformants of gna-1 displayed a distinct colony morphology

from that of the wild-type (Fig 3A, upper panels). All of the pG transformants formed compar-

atively light pigmented colonies, an indication of less pigmentation of the mycelia and perithe-

cia (fruiting body), particularly in pG14, which had the lowest level of gna-1mRNA (Fig 3A).

Microscopic examination revealed that formation of perithecia in pG14 was almost abolished

(Fig 3B). The transcript level of polyketide synthase gene, pks-1, which was previously proven

to be essential for the biosynthesis of 1, 8-dihydroxynaphthalene (DHN) melanin in C.

Fig 2. Gene expression of gna-1 and pkaR in RNAi mutants. (A) Transcript levels of the gna-1were detected by qRT-PCR in the wild-type, pG and pGP transformants

using the primers qGNA(s) and qGNA(as). (B) Transcript levels of pkaR were measured by qRT-PCR in the wild-type and pGP transformants using the primers qPKAR

(s) and qPKAR(as). Transcripts of gna-1 and pkaR were normalized against actin amplified with primers qActin(s) and qActin (as) (S1 Appendix). There is significantly

difference between the mutant and wild-type as indicated by an asterisk (p-value<0.05 with T-test analysis) or by two asterisks (p-value<0.01 with T-test analysis).

Experiments were performed in triplicate.

https://doi.org/10.1371/journal.pone.0195553.g002
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globosum NK102 [15], dramatically decreased in the mutant strains pG14 and pG17, to only

approximately 37% in pG17 and 10.2% in pG14 (Fig 4). Hence, gna-1 is critical for the devel-

opment of fruiting bodies and melanin biosynthesis in C. globosum NK102.

To investigate whether the G-protein signaling pathway was involved in the production of

ChA, a HPLC analysis was performed to quantify the concentration of ChA in each strain (S3

Appendix). In 8-day-old fermentation broths, yields of ChA were significantly lower in the

gna-1 silenced mutants compared to the wild-type strain (Fig 5A and Table 1). For instance, in

pG14, the yield of ChA was only 4.17±1.70 mg/L, compared to 53.71± 4.34 mg/L in the wild-

type (Table 1). This demonstrated that gna-1 is critical for the biosynthesis of ChA.

Defects in perithecia, melanin and ChA of pG mutants can be reversed by

simultaneous knock-down of gna-1 and pkaR
To investigate whether ChA biosynthesis was controlled by the downstream effector kinase

PKA in the pathway, mutants of simultaneous knock-down of both pkaR (the regulatory sub-

unit of the PKA kinase complex) and gna-1were made by the same RNAi strategy, to obtain

the desired double knock-down transformants, e.g. pGP6 and pGP7 (Figure B in S2 Appen-

dix). The qRT-PCR analysis confirmed a significant drop of both gna-1 and pkaRmRNA in

pGP1, pGP6 and pGP7 (Fig 2). Interestingly, these mutants showed recovered phenotype to

some extent if compared to the initial deficient phenotype of the gna-1mutants. For instance,

the selected pGP transformants produced melanin on the plates to form dark colonies (Fig

3A), and the formation of perithecia was also observed under the microscope (Fig 3B, right

panel). Secondly, the diminished level of pks-1mRNA was restored to approximately wild-

type level in pGP transformants, with 86.8% and 90.5%, 95.1% (versus the wild-type) for

Fig 3. Knock-down of gna-1 leads to deficiency in melanin, perithecia, and ChA production in C. globosum. (A)

Colony morphology of silenced mutants of gna-1, or gna-1/pkaR double knock-down. All mutants were inoculated in

PDA medium supplemented with 100 mg/L hygromycin B and incubated at 28˚C for 9 days. (B) Light microscopy

involving mycelium and perithecia formation in C. globosum NK102 (WT) and RNAi mutant pG14 and pGP6. Scale

bar represents 20 μm.

https://doi.org/10.1371/journal.pone.0195553.g003
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pGP1, pGP6 and pGP7, respectively (Fig 4). Biosynthesis of ChA in pGP transformants such

as pGP1, pGP6 and pGP14, was also restored to the yield of the wild-type strain (Fig 5A, S3

Appendix and Table 1). The phenotype showed by the double knock-down mutants suggests

that pkaR is the downstream effector of Gna-1 towards the biosynthesis of the melanin pig-

ment and ChA. Namely, Gna-1 inhibits PkaR function, which negatively regulates sexual

development, melanin production and ChA biosynthesis.

The second messenger cAMP has an effect on CgcheA transcription and is

positively regulated by Gα protein and negatively regulated by PKAR

One of the targets of the heterotrimeric G protein is the enzyme adenylyl cyclase that converts

ATP to cAMP as a second messenger in filamentous fungi as in other eukaryotic organisms. We

wondered whether diminished expression of the Gα subunit in gna-1mutants could affect syn-

thesis of cAMP in vivo, which led to the defective phenotype of the mutant. To test this theory, we

used EIA to determine cAMP concentrations in gna-1 silenced mutant pG14 and wild-type strain

mycelium extracts. As shown in Fig 5B, the extracts from pG14 exhibited a mean cAMP level of

0.57±0.11 pmol/mg mycelium, disclosing a striking 3.4-fold reduction (P<0.001) compared to

the wild-type (1.94±0.13 pmol/mg). Furthermore, when 2 mM 8-Br-cAMP, an analog of cAMP

that has a similar function to cAMP, was supplemented in the culture, the production of ChA

from pG14 was clearly stimulated (Table 1). We further determined whether this was due to acti-

vation of expression of the gene CgcheA in the mutant pG14, with the wild-type C. globosum as a

control. In the quantification by qRT-PCR, a pair of primers qCHGG_01239(s)/ qCHGG_01239

(as) were used (S1 Appendix). We found that 8-Br-cAMP restored expression of CgcheA in pG14,

and could reach the wild-type level when the concentration of the chemical was above approxim-

ately 4 mM in the medium (Fig 5C). The CgcheAmRNA level continued to increase with the

accretion of 8-Br-cAMP concentration to 10 mM (the highest amount tested in this study). Inter-

estingly, a dual effect of 8-Br-cAMP was observed on the expression of CgcheA in the wild-type

Fig 4. Gene expression of pks-1 in RNAi mutants. Transcript levels of the pks-1were detected by qRT-PCR in the

wild-type, pG and pGP transformants using the primers qPKS(s) and qPKS(as). There is significantly difference

between the mutant and wild-type as indicated by two asterisks (p-value<0.01 with T-test analysis), ns: no significant

difference. Experiments were performed in triplicate.

https://doi.org/10.1371/journal.pone.0195553.g004
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Fig 5. Diminished biosynthesis of ChA. (A) HPLC analysis on the production of ChA in the wild-type and the RNAi mutants. Arrow indicates the peak of ChA. (B) The

cAMP assay for the silenced mutants. Relative expression of gene CgcheA from the wild-type (WT) and the transformant pG14 in the presence of 8-Br-cAMP(C) and H-89

(D) at indicated concentrations.

https://doi.org/10.1371/journal.pone.0195553.g005

Table 1. Yields of chaetoglobosin A in different strains.

Strain Retention time (min) Biomass (mycelia dry weight) (g/200ml) ChA content (mg/L)

WT 11.812 2.25±0.31 53.71±4.34

WT+8-Br-cAMP 11.806 2.02±0.26 69.45±8.07

pG14 11.828 1.75±0.24 4.17±1.70

pG17 11.793 1.86±0.21 7.56±2.32

pGP1 11.812 2.38±0.32 56.80±10.04

pGP6 11.855 2.29±0.44 57.37±6.75

pGP7 11.841 2.06±0.23 55.68±7.36

8-Br-cAMP, 2 mM used. The data was mean ± standard deviation of three repeats.

https://doi.org/10.1371/journal.pone.0195553.t001
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strain; when the concentration was below ~2 mM, 8-Br-cAMP stimulated transcription of

CgcheA, but when it was above 2 mM, expression of CgcheA decreased (Fig 5C). These findings,

therefore, demonstrated that the cAMP is positively regulated by Gα protein and has an impor-

tant role on CgcheA transcription.

To determine whether the recovered phenotype appeared in gna-1 and pkaR double silenced

mutant was caused by a changed level of intracellular cAMP, the concentration of cAMP in

pGP6 was measured as mentioned above. As expected, the mean cAMP level of pGP6 is 1.69

±0.23 pmol/mg mycelium, although still below the normal level, disclosing a striking 2.98-fold

increase compared to pG14 (Fig 5B). A PKA activity inhibitor H-89 [30] was also employed to

assess the effects of PKA on ChA biosynthesis. As shown in Fig 5D, the mRNA level of CgcheA
gene in pG14 was about one fourth of the wild-type stain. As the concentration of H-89 supple-

mented increasing, the gene expression reducing both in the wild-type and in the pG14. How-

ever, the decrease rate was much lower in pG14. When 10 μM (the highest amount tested in

this study) H-89 was supplemented in the culture, the gap between the wild-type and pG14

reached the smallest. Thus, it is demonstrated that PKA negatively regulate cAMP level and has

an important role on CgcheA transcription.

Genome-wide profiling of gene expression in gna-1 knock-down mutant

pG14 by RNA-seq profiling

To assess a global profile of genes regulated by gna-1, an RNA-Seq profiling analysis was per-

formed to identify the differentially expressed genes associated with the biosynthesis of ChA in

the gna-1mutant pG14. Total RNA was extracted from mycelium grown in MCC media for 9

days for the Illumina HiSeq™ sequencing as described in Materials and Methods. The resulting

sequences were aligned to the reference genome of C. globosum NK102 (unpublished data)

and the information was used to analyze the DEGs between the wild-type strain and pG14.

DEGs were selected based on the FDR<0.001 and |log2Ratio|�1. In a total of 3326 differen-

tially expressed genes, 688 genes were up-regulated, while 2638 genes were down-regulated in

pG14 (data in S4 Appendix).

At least eight genes that were located in the gene cluster of CgcheAwere down-regulated in

pG14 (Table 2). Most of these genes were previously reported to be involved in ChA biosynthesis,

including CHGG_01239 (CgcheA), CHGG_00542 (pks-1) and CHGG_01690 (CglaeA). The gene

with the highest coefficient of variation (log2 ratio = -4.1) was CHGG_01239 (CgcheA), encoding

an iterative PKS-NRPS presumably for synthesis of the skeleton structure of ChA, and displaying

only 6% expression in pG14 compared to the wild-type. We further employed a qRT-PCR verifi-

cation on the RNA-Seq result for seven characterized genes and the data was highly consistent

with the DEG data (Fig 6A and Table 2). Transcription levels of all seven genes dropped dramati-

cally in pG14 (approximately 3- to 20-fold), yet recovered to nearly the wild-type level in pGP6, in

particular, LaeA, which is a global transcription regulator (Fig 6B). These RNA-seq and qRT-PCR

results clearly demonstrate that the critical role of Gα in the biosynthesis of ChA. Furthermore the

results indicate an interaction between the G protein pathway and the LaeA/VeA/VeB complex,

and the histone acetyltransferase CgSptJ.

Discussion

In the pharmaceutical arena, ChA has drawn attention as an anticancer and antimicrobial

agent. To understand the control of the biosynthesis of ChA, we tried to block, via an estab-

lished RNAi approach, the G protein-cAMP/PKA signal transduction pathway in C. globosum
NK102, a high producer of ChA (~ 300 mg/kg in solid culture, unpublished data). Knock-down

of the expression of gna-1which encodes an alpha-subunit homolog of the heterotrimeric G
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protein resulted in dramatic phenotypic changes in this fungus. The mycelia pigmentation of

the mutant strains was almost halted, and as a result the colonies appeared light colored (Fig

3A, upper row of plates). Molecular evidence by qRT-PCR on the mRNA of pks-1, which was

responsible for melanin biosynthesis [15], confirmed that expression of pks-1 dropped sharply

in the two tested mutants pG14 and pG17 (Fig 4). Secondly, we demonstrated that Gα function

was critical for sexual stage development in this fungus as the formation of perithecia, the sexual

fruiting body, was severely impaired in the knock-down mutant strain pG14 (Fig 3B). This

observation is in a concomitance with previous findings that the G protein-mediated signal

pathway is critical for sexual development in other filamentous fungi [17–21, 31]. More signifi-

cantly, we found that biosynthesis of ChA in pG14 substantially decreased to a level approxi-

mately of one-tenth of that produced by the wild-type C. globosum NK102 (Fig 5A and Table 1).

Consistent with this observation, expression of genes involved in ChA biosynthesis, e.g., the

Table 2. Expression variation of genes putatively related to ChA biosynthesis detected by RNA-seq profiling.

Gene symbol Deduced function (homolog) Log2 ratio (pG14/WT) FDR Up- or down-regulation (pG14/WT)

CHGG_01237 C6 zinc finger protein -1.9 5.26E-12 Down

CHGG_01239 CgCheA, PKS−NRPS hybrid -4.1 0 Down

CHGG_01240 CgCheB,

enoyl reductase

-2.5 7.19E-33 Down

CHGG_01241 hypothetical protein -2.4 3.22E-41 Down

CHGG_01242–1 P450 -2.9 2.39E-62 Down

CHGG_01242–2 FAD-dependent oxidoreductase -2.9 2.39E-62 Down

CHGG_01243 P450 (gliF) -2.5 1.26E-44 Down

CHGG_01244 hypothetical protein -2.5 8.75E-18 Down

CHGG_00542 Pks-1(alb1) -2.8 0.066018 Down

CHGG_01690 CgLaeA -1.7 0.000133 Down

CHGG_10370 CgVeA -0.5 2.25E-13 Down

CHGG_09972 CgSptJ, histone acetyltransferase -1.1 0.00173 Down

https://doi.org/10.1371/journal.pone.0195553.t002

Fig 6. Quantification of the gene candidates likely involved in ChA biosynthesis by qRT-PCR. (A) Relative

expression levels by qRT-PCR analysis of six key genes, chosen from the RNA-seq profiling and found in the

chaetoglobosin biosynthetic gene cluster, in the transformants compared with the wild-type (WT) strain. The six genes

are C6 zinc finger protein (CHGG_01237), transposase (CHGG_01238), PKS−NRPS hybrid gene cluster, CgcheA
(CHGG_01239), P450 oxygenase (CHGG_012421), FAD-dependent oxidoreductase (CHGG_012422) and P450

oxygenase (CHGG_01243). All transcripts were normalized against actin cDNA amplified with primers qActin(s) and

qActin(as) (S1 Appendix). (B) Decreased expression levels of CglaeA in pG14 and restoration in pGP6. There is

significantly difference between the mutant and wild-type as indicated by two asterisks (p-value<0.001 with T-test

analysis), ns: no significant difference. Experiments were performed in triplicate.

https://doi.org/10.1371/journal.pone.0195553.g006
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hybrid PKS−NRPS-encoding gene CgcheA (CHGG_01239), were dramatically down regulated

in pG14 and pG17 by qRT-PCR or RNA-seq analysis (Fig 6A and Table 2). These data ascertain

a positive role of Gα and the pathway in the sexual development and ChA biosynthesis in C.

globosum. Furthermore, we demonstrated that the downstream effector of G protein was the

cAMP/PKA signaling pathway regulating the biosynthesis of melanin and ChA, and sexual

development. This was achieved by generating double knock-down mutants for both genes

gna-1 and pkaR, the latter encodes the regulatory subunit of cAMP-dependent PKA, i.e., we

silenced simultaneously both genes gna-1 and pkaR to obtain a set of mutant strains named

pGPs. Double knock-down of the genes restored the defective phenotype of the gna-1mutants

to about the wild-type phenotype (Figs 3A and 5A and S3 Appendix). For instance, pGP1-7 pro-

duced melanin (Fig 3A, bottom row of plates) and expression of pks-1 in three tested strains

(pGP1, pGP6 and pGP7) was restored to the level of the wild-type strain (Fig 4). Biosynthesis of

ChA (Fig 5A, S3 Appendix, and Table 1) and the expression of related genes in the same gene

cluster as CgcheA (Fig 6) were also restored to the wild-type level. These data suggest that Gna1

inhibits PkaR, which itself had a negative effect on the phenotypes observed in this study, in-

cluding sexual development, and melanin and ChA biosynthesis. We then showed that knock-

down of gna-1 caused a deficiency in in vivo cAMP formation. The intracellular cAMP level in

pG14 is significantly decreased compared to the wild-type strain (Fig 5B). When the cAMP ana-

log, 8-Br-cAMP, was added to the media, expression of the key gene CgcheA that was responsi-

ble for ChA biosynthesis, was recovered in the mutant pG14 (Fig 5C). When the concentration

of 8-Br-cAMP was over 2 mM, expression of CgcheA almost returned to the wild-type level.

Interestingly, in the wild-type strain, CgcheA expression as well as ChA production were moder-

ately affected by the supplement of 8-Br-cAMP (Fig 5C); when the concentration was over 2

mM, the chemical had an inhibitory effect on CgcheA expression. When gna-1 and pkaR simul-

taneously silence, the intracellular concentration of cAMP was increased to 1.69±0.23 pmol/mg

mycelium, approaching the normal level (1.94±0.13 pmol/mg). It is demonstrated that PKA is a

downstream effector of Gna1. Further inhibitor supplementing experiment confirmed that the

CgcheA expression was regulated by activity of PKA (Fig 5D). Thus, the heterotrimeric G pro-

tein/cAMP/PKA signaling pathway regulates ChA biosynthesis, pigmentation and sexual devel-

opment in C. globosum.

The heterotrimeric G protein-activated cAMP/PKA signaling transduction pathways with

regard to secondary metabolism regulation have been well studied in a number of model fungi.

However, the pathway may function differently in different fungi. Aspergillus nidulans FadA

(the α-subunit of the G protein) negatively regulates both asexual reproduction and sterigmato-

cystin/aflatoxin biosynthesis. Deletion of fadA resulted in activation of sterigmatocystin/afla-

toxin biosynthesis [31, 32]. A repression effect of G protein α-subunit on secondary metabolism

has also been reported in Fusarium graminearum [33]. Deletion of Ga resulted in increased

deoxynivalenol and zearalenone production in this fungus. A similar example is observed with

F. fujikuroi Ffg1 and Ffg3 (both stimulators of the cAMP cyclase), which also show a negative

regulation on fusarubin biosynthesis [19]. On the other hand, positive effects of the pathway on

secondary metabolism are found in some other fungi. For instance, constitutive activation of

PGA1 in Penicillium chrysogenum caused an increase in the production of penicillin, chryso-

genin and roquefortine [34]. One of our previous works demonstrated that the counterpart of

Gα in the taxol-producing fungus Pestalotiopsis microspore resulted in a sharp decrease in pesta-

lotiollide B production while introduction of extra copies of pgα1 led to enhanced production of

pestalotiollide B [21]. In this paper, we demonstrated that group I Gα protein encoded by gna-1
has a positive effect on melanin and ChA biosynthesis in C. globosum.

In filamentous fungi, the regulatory networks of secondary metabolism are complex. Other

pathways are also critically involved. For example, a conserved global regulatory unit, the velvet
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complex, composed of mainly LaeA, VeA and VelB, is reported to be involved in development

and secondary metabolism in numerous fungi, including Aspergillus spp., Trichoderma reesei,
Penicillium chrysogenum and F. verticillioides [35–39]. The roles of VeA and LaeA on second-

ary metabolism in C. globosum was confirmed by studies of Watanabe and Zou teams [24, 40].

Deletion of either CglaeA or CgVeA led to a significant absence of many secondary metabolites

including ChA [24], whereas overexpression of CglaeA upregulated expression of the chaeto-

globosin gene cluster and resulted in the isolation of a new cytochalasin, chaetoglobosin Z

[40], demonstrating positive regulatory activity of CglaeA and CgVeA on ChA biosynthesis in

C. globosum. It is worth noting that in this study, expression of CglaeAwas down regulated

(approximately 68.1%) in gna-1 silent mutants and restored to wild-type level when pkaR was

silenced simultaneously (Fig 6B), suggesting that CglaeA is somehow affected by heterotri-

meric G protein activated cAMP/PKA signaling pathway. Consistent with qRT-PCR data,

transcription levels of CglaeA and CgVeA are all reduced in pG14 (log2 ratio = -1.7 for CglaeA,

log2 ratio = -0.5 for CgVeA) compared to the wild-type strain (Table 2). In addition, a previous

study suggests that biosynthesis of ChA was also affected by a histone acetyltransferase CgSptJ;

ChA production was sharply down regulated to undetectable levels when CgSptJwas deleted

[24]. In this work, expression of CgSptJwas significantly down regulated in the Gα protein

silenced mutant pG14 as verified by both RNA-seq analysis (log2 ratio = -1.1) (Table 2) and

qRT-PCR (Fig 6A). With our findings, we hypothesize that CglaeA, CgVeA and CgSptJ proba-

bly work as downstream effectors that dictate expression of the ChA biosynthesis gene cluster

by interacting with G protein/cAMP/PKA signaling (Fig 7).

Fig 7. Suggested schematic on the regulatory network responsible for ChA and melanin biosynthesis of C.

globosum.

https://doi.org/10.1371/journal.pone.0195553.g007
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In summary, our study, for the first time, provides information on the effects of the G protein-

cAMP/PKA pathway on ChA biosynthesis and sexual development in C. globosum. As there are

approximately 40 gene clusters that are likely involved in the biosynthesis of secondary metabo-

lites in the genome of C. globosum CBS148.51 [39], unraveling signal transduction in this fungus

will help with understanding the regulatory networks, further with facilitating the metabolic engi-

neering to improve the yield of ChA and with hunting other novel secondary metabolites.
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