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Introduction
Due to the non-linear �uid-solid interaction within journal bearings instability phenomena (o�en

referred to as ’oil-whirl’ and/or ’oil-whip’) can be observed at higher revolution speeds, which can

lead to unwanted oscillations of the corresponding rotor-dynamic system. To improve this behaviour,

various methods which are based on the idea of non-circular bearing geometries have been proposed

in literature. E.g. in [1] �rst approaches of a simple two-lobe bearing with an actively controlled

change in geometry are investigated in order to suppress the above mentioned instability phenomena.

In the present work a more elaborated model of a journal bearing with modi�able geometry is

developed. A�erwards, this bearing is implemented in an elastic Je�co� rotor and the associated

spectral system is derived and analysed.

1. Modelling of the Je�co� rotor in actively deformed journal bearings
1.1 Geometry of the deformed bearing
As depicted in �gure 1 the initially circular bearing

of inner radius R0 is deformed by two oscillating

vertical forces F(τ) = F̂(1− δF cos ((Ω/ω)τ)) with
given dimensionless time τ = ωt. �e bearing is

modelled as thin, circular beamwithmiddle radius

R and Young’s modulus E . �e rectangular cross-

section is characterized by its width B � R and its

height A� R. It is assumed that the deformation

is not in�uenced by the �uid pressure at all and

that inertia terms can be neglected. Using the

classical bending theory for curved beams (cf. [2]),

the radial de�ection w(ϕ, τ) from the undeformed

state can be calculated.

A normalisation on the initial bearing clearance

C = R0 − RW = (R − A/2) − RW leads to: Figure 1. deformed journal bearing
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1.2 Pressure distribution
With the de�ection from equation (1) and the depicted kinematic relations in �gure 1 the non-

dimensional pressure Π(ϕ, z) can be modelled according to the non-dimensional Reynolds equation:
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with H =
h
C
= 1+W −XB cos ϕ−YB sin ϕ, (2)

with the boundary conditions Π(z = ±1) = 0, Π(ϕ = 0) = Π(ϕ = 2π) and ∂Π/∂ϕ |ϕ=0 = ∂Π/∂ϕ |ϕ=2π .
�e normalised journal coordinates are given by rB/C = XBex+YBey . Assuming a rather short bearing

(2R0/B = γ � 1) the Galerkin approach Π = (1 − z2)g(ϕ) is used to reduce the Reynolds equation (2)

to a one-dimensional problem in ϕ ∈ [0, 2π], which is solved by using a �nite-di�erence scheme.

1.3 Bearing forces
With the semi-discrete pressure valuesΠi(z) = (1−z2)g(ϕi) for i = 1 .. N the non-dimensional bearing

forces fx and fy are calculated. A�er integrating along the axial coordinate z the circumferential

integration in ϕ is performed by means of the trapezoidal rule whereby negative pressure values are

neglected.

1.4 Equations of motion
Having derived the bearing forces, the equations of motion of the Je�co� rotor (cf. [3]) are given by:

ω2X ′′R + daωX ′R +
XR − XB

Γ
= f , ηω2X ′′B +

XB − XR

Γ
− σω fx = 0 ,

ω2Y ′′R + daωY ′R +
YR − YB
Γ

= 0 , ηω2Y ′′B +
YB − YR
Γ

− σω fy = 0 ,

(3)

with the dimensionless parameters da for damping, η for the masses allocated at the bearing

seats, ω for the revolution speed, Γ for the sha� compliance, σ for the bearing characteristic and f
for a vertically acting external load. XR and YR thereby describe the centre coordinates of the rotor

and (.)′ = d/dτ(.) represents the derivative with respect to the non-dimensional time τ.

1.5 Derivation of the spectral system
As the time-varying bearing deformation (1) enters the equations in (3) as a parameter, the system is

exposed to parametric- and self-excitation, which can lead to quasi-periodic behaviour. �erefore,

the associated spectral system is derived according to the suggested method of Schilder [4], such

that quasi-periodic trajectories can be easily described and analysed.

2. Simulation results
With the previously mentioned spectral system a fast analysis of the dynamic behaviour by means of

solution continuation algorithms is possible even for originally quasi-periodic behaviour.

�e results reveal a high potential to decrease large rotor amplitudes by selecting an appropriate

time-varying deformation function (1), i.e. it is possible to shi� the beginning of the above mentioned

instability phenomena to even higher revolution speeds.
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