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Abstract

Many-core processors contain a large number of cores housed on a single die and can exe-
cute multitudes of tasks in parallel. Many-cores are quintessential in several emerging high-
performance computing tasks on embedded systems. The accompanying qualitative schedules
are the key in achieving the full potential of many-cores for these tasks.

Schedulers are low-level Operating System (OS) sub-routines which develop task execution
schedules on processors at run-time. Many-core schedules are several times bigger than existing
multi-core schedules. Therefore, we require new schedulers capable of scaling up with the
increase in the size of many-cores while preserving the schedule’s quality. Many-cores also have
several new micro-architectural features and schedulers must exploit them for a more efficient
hardware-software co-design of schedules.

A scheduler may have different objectives depending upon the overlying system require-
ments. This dissertation introduces several different schedulers catering to these objectives.
Unfortunately, most of the objectives have NP-hard complexity and hence cannot be achieved
in polynomial time for a general case unless P=NP. While most of our peers have tried to at-
tain them heuristically, we attain them using different non-heuristic schedulers. The schedulers
provide strong theoretical guarantees on the schedule quality. The schedulers are also designed
to be highly scalable and are structurally better suited for further improvements in future.

We present two schedulers for maximizing the performance of many-cores. First is a dis-
tributed scheduler, while the second one is a centralized greedy scheduler. Schedulers provide
optimal many-core performance by moving allocated cores amongst tasks at run-time.

Maximization of performance is not the objective of all systems and some systems prioritize
fairness over performance. We also present a distributed scheduler for maximizing the fairness
of many-cores. Scheduler improves overall fairness by moving allocated cores amongst tasks,
and results in a fairer schedule than state-of-the-art. Furthermore, the scheduler can maximize
fairness optimally particularly in the case of fixed performance.

Performance can be increased even by just spatially rearranging the allocations without any
actual change in their sizes. We present a distributed scheduler that defragments the many-core
to improve its performance. The scheduler performs optimal defragmentation particularly in
the case when all the tasks produce only power-of-two threads outperforming state-of-the-art.

The above-proposed scheduler does not work for a many-core with Static Non-Uniform
Cache Access (S-NUCA) caches. We, therefore, introduce a new scheduler for this many-core
which exploits topology-introduced heterogeneity in the cores of many-core due to the presence
of S-NUCA caches to improve performance. The scheduler uses an exact algorithm on the
pruned search-space to quickly develop a schedule and outperforms state-of-the-art.

Many-cores operate within a strict power budget which constraints their performance. We
developed a centralized scheduler for probabilistic power budgeting with only linear-time com-
putational complexity. The scheduler performs power budgeting a magnitude faster than state-
of-the-art with near-equal performance. On similar lines, we also developed a probabilistic
power budgeting scheduler for many-cores when they execute Quality of Service (QoS) tasks.

Finally, we also develop an open-source toolchain called HotSniper for real-world represen-
tative evaluations of many-core schedulers. HotSniper integrates Hotspot thermal modeling
tool with Sniper many-core simulator. HotSniper also allows interval thermal simulations of
many-cores deployed in open systems, which were not previously possible.
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Zussammenfassung

Many-core-Prozessoren beherbergen eine Vielzahl an Prozessorkernen auf einem einzelnen Chip
und sind damit in der Lage, eine große Zahl an Anwendungen parallel auszuführen. Daher sind
Many-cores unumgänglich für High Performance Computing auf eingebetteten Systemen. Das
notwendige Scheduling ist entscheidend, um das Potential von Many-cores effizient zu nutzen.

Der Scheduler eines Betriebssystems erstellt zur Laufzeit Ablaufpläne. Diese Ablaufpläne
sind bei Many-cores um ein Vielfaches komplexer als bei Multi-cores. Many-core-Scheduler
müssen daher skalierbar bezüglich der Anzahl Prozessorkerne sein. Many-core-Architekturen
unterscheiden sich außerdem in mehreren Punkten von klassischen Multi-core-Architekturen.
Ein Scheduler muss diese Besonderheiten nutzen, um effiziente Ablaufpläne erstellen zu können.

Die Optimierungsziele eines Scheduler variieren abhängig von den Systemanforderungen.
Diese Dissertation stellt eine Reihe an Schedulern für verschiedene Optimierungsziele vor. Die
meisten Optimierungsziele sind NP-schwer und können damit im Allgemeinen nicht in poly-
nomieller Laufzeit optimal erreicht werden, außer P=NP. Die meisten bisherigen Arbeiten set-
zen daher Heuristiken ein, wohingegen wir die Optimierungsziele ohne Heuristiken verfolgen.
Für unsere Scheduler geben wir starke theoretische Schranken für die Qualität der Ablaufpläne
an. Weiter sind die Scheduler mit dem Ziel entworfen, skalierbar und leicht erweiterbar zu sein.

Wir stellen zwei Scheduler für die Maximierung der Performance von Many-cores vor, einen
verteilten Algorithmus und einen zentralisierten Greedy-Algorithmus. Diese Scheduler max-
imieren die Performance, indem Prozessorkerne zwischen Anwendungen umverteilt werden.

Maximierung der Performance ist nicht bei allen Systemen das Optimierungsziel. In eini-
gen Systemen ist Fairness wichtiger. Wir stellen dafür einen verteilten Scheduler vor, die die
Fairness maximiert, indem Prozessorkerne zwischen Anwendungen umverteilt werden. Dieser
Scheduler erreicht eine höhere Fairness als der Forschungsstand und erreicht sogar das theo-
retische Optimum an Fairness, wenn die Performance festgesetzt ist.

Die Performance kann sogar durch einfaches Umordnen von allokierten Prozessorkernen
verbessert werden, ohne dabei deren Anzahl zu ändern. Wir stellen einen verteilten Scheduler
vor, der mithilfe von Defragmentierung die Performance erhöht. Dieser Scheduler erreicht die
optimale Performance, wenn die Anzahl der Threads der Anwendungen eine Zweierpotenz ist.

Dieser Scheduler ist nicht auf Many-cores mit Static Non-Uniform Cache Access (S-NUCA)
Caches anwendbar. Für diesen Fall präsentieren wir einen neuen Scheduler, der diese topolo-
giebedingte Heterogenität der Prozessorkerne nutzt, um die Performance zu verbessern. Dieser
Scheduler verwendet einen Branch-and-Bound-Algorithmus auf einem Teil des Suchraums um
mit kurzer Rechenzeit einen Ablaufplan zu erstellen und übertrifft damit den Forschungsstand.

Die elektrische Leistung eines Many-cores ist strengen Schranken unterworfen, die die Per-
formance einschränken. Wir stellen einen zentralisierten Scheduler für probabilistische Leis-
tungsschranken mit linearer Laufzeitkomplexität vor. Dieser Scheduler ist um Größenordnun-
gen schneller als der Forschungsstand und erreicht dabei fast die selbe Performance. Wir stellen
weiter einen Scheduler für probabilistische Leistungsschranken vor, der für Anwendungen mit
Anforderungen an Quality of Service (QoS) eingesetzt werden kann.

Schließlich stellen wir unsere quelloffene Toolchain HotSniper vor, die im Laufe dieser Arbeit
entwickelt wurde. HotSniper kombiniert den Many-core-Simulator Sniper mit dem thermischen
Modellierprogramm HotSpot. Mit HotSniper können Scheduler unter echten Anwendungen und
einer intervallbasierten thermischen Simulation evaluiert werden, was bisher nicht möglich war.
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1. Introduction

Processors are the fundamental processing entities in any computing paradigm. Processors
come in wide-varieties but in this dissertation, we focus mostly on General-Purpose Processors
(GPPs) deployed in the embedded system domain. Processors deployed on embedded systems
have two main differences vis-a-vis processors deployed on other systems [14]. First, they are
powered by batteries which force them to be energy-efficient to maximize the battery life.
Energy efficiency is especially important given the fact that advances in battery technology
have not kept pace with advances in processor technology. Secondly, they have limited heat
dissipation capacities due to the small form-factor of embedded systems which force them to
be power-efficient to avoid any thermal damage. Power and energy are related by the following
equation; but an energy-efficient processor is not necessarily a power-efficient processor.

Energy = Power · Time

1.1. Evolution of Processors into Many-Cores

Embedded processors are now ubiquitous. They find use in all kind of devices such as digital
cameras, smart phones, smart watches, notebooks, tablets, virtual/augmented reality headsets
and even mobile robots. These devices expect high performance from their underlying pro-
cessors while subjecting them to grueling power and energy constraints. Surprisingly, more
efficient embedded processors become with their limited available resources, more performance
demanding tasks emerge for them to execute. Therefore, embedded processors are subjected to
Jevons’ Paradox [15] which states that usage of an entity increases instead of decreasing with
increase in efficiency of its usage.

Performance of processors has continued to increase mainly because of continued success of
Moore’s Law [16]. Gordon Moore predicted in 1965 that number of transistors in Integrated
Circuits (ICs) such as processors would continue to double approximately every two years.
Figure 1.1 shows that this law is valid even now. For example, Qualcomm Snapdragon 835
embedded processor introduced in 2016 has more than 3 billion transistors compared to Intel
4004 processor introduced in 1971 with only 2300 transistors.

Moore’s law was driven by the continued success of semi-conductor industry in reducing
the size of the transistors. Figure 1.2 shows how the technology node on which a processor is
fabricated has continued to shrink over the years. For example, Qualcomm Snapdragon 835
processor is fabricated on 10-nm technology node compared to Intel 4004 processor fabricated
on 10µm technology node. It is expected that processors fabricated on 7-nm technology node
would make an appearance around 2020. Industry is confident that even 5-nm technology node
is feasible, though sizing down of technology node is becoming more difficult with introduction
of every new technology node. This increasing difficulty is slowing down Moore’s law. Gordon
Moore, himself, had stated that no exponential law can last forever including Moore’s law.

Increase in the processor’s performance was also enabled due to the success of Dennard scal-
ing [17]. Robert Dennard in 1974 proposed that power density of an IC such as processor would
continue to remain same. Power density of a processor is given by the following relation [18].

PowerDensity = Count · Capacitance · SupplyV oltage2 · Frequency

1
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Figure 1.1.: Number of transistors in processors introduced.
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Figure 1.2.: Technology node used to fabricate processors.

Dennard scaling proposed that when a transistor is scaled down by a factor of 1/S, the
number of transistors in a given area (count) increases by a factor of S2. Capacitance and
supply voltage both reduce by a factor of 1/S. Frequency increases by a factor of S. As a
result, all factors cancel out each other keeping the value of power density constant.

Unfortunately, with the reduction in size of a transistor with introduction of every new
technology node the leakage power of a processor continued to rise due to quantum effects such
as quantum tunneling which Dennard scaling did not foresee. Soon the leakage power became
as dominant as the dynamic power of a processor and could no longer be ignored. The leakage
power of processor is given by the following equation [19].

LeakagePower = SupplyV oltage · LeakageCurrent (SupplyV oltage, Temperature)

where leakage current is itself a function of supply voltage and temperature. Processor
designers were forced to keep the supply voltage high in order to keep the leakage current
manageable. As a result, the supply voltage stopped scaling with the technology node. This
failure lead to increase in the power density by a factor of S2 with every reduction in technology
node leading to the eventual breakdown of Dennard scaling. Figure 1.3 shows how the power
density of a processor has increased over time.

Increase in power density also leads to higher temperature which results in higher leakage
current which in turn again leads to higher temperature. This feedback loop between temper-
ature and leakage current (or leakage power) is known as thermal-runaway effect and would
eventually damage the processor if not kept under check.

The processor designers mitigated the power density problem to some extent by not increas-
ing the processor frequency. This strategy still led to an increase of power density by a factor
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Figure 1.4.: Clock frequency of processors introduced.

S with scaling down of transistor by a factor of S. This eventually led to the problem of Dark
Silicon [19] wherein all the transistors within a processor cannot be simultaneously turned on.
Figure 1.4 shows how processor frequency have now stagnated around 4GHz. The frequency
at which a core operates and the corresponding minimum supply voltage required by it are
given by the following equation [20].

Frequency = k · (SupplyV oltage− ThresholdV oltage)2

SupplyV oltage

Providing a core supply voltage higher than the minimum value given by the above equation
for its frequency to be stable is both power- and energy-inefficient. Accordingly, a higher
frequency needs a higher voltage to sustain it creating a cubic relationship between frequency
and power density. Designers exploited this relationship to manage power density by decreasing
instead of increasing processor frequency with the shrinking of technology node. For example,
Qualcomm Snapdragon 835 processor runs at a peak frequency of only 2.45GHz.

Designers also introduced Dynamic Voltage and Frequency Scaling (DVFS) technology into
the processors. DVFS allows cores of a processor to run at different discrete frequencies below
their peak frequencies to reduce their power consumptions but this comes at the cost of their
performance. DVFS, therefore, provides a knob to trade-off performance with power consump-
tion. We have used DVFS widely throughout this dissertation. Nevertheless, the limitations
on frequencies enforced limitations on the single-threaded performance of uni-core processors.

Furthermore, processor designers due to the limited capabilities of their design tools were
not able to put all the transistors being made available by Moore’s law to efficient use by
building ever more sophisticated uni-cores. Notwithstanding this productivity gap, designers
with great efforts used the abundant transistors to create longer and more complicated pipelines

3
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Figure 1.5.: An abstract diagram depicting transition from uni-cores to many-cores via multi-cores.

for uni-cores. Unfortunately, limited Instruction Level Parallelism (ILP) in single-threaded
tasks inhibited any substantial performance gain from longer pipelines after a certain point.
Uni-core processors were also limited in performance by lower clock frequencies of accompanying
memories forcing them to stall in their execution.

All these limitations commonly refereed as the power-, design-, ILP- and memory-wall forced
the industry to move from uni-core processors to multi-core processors. Major turning point in
processor design was when Intel around 2006 abandoned further development in its Pentium
line of uni-cores and instead introduced Core line of multi-cores. Multi-cores were composed of
less sophisticated cores with smaller pipelines compared to uni-cores. Cores of multi-cores also
ran at lower frequencies compared to equivalent uni-cores. In a nutshell, designers sacrificed
single-threaded performance in favor of multi-threaded performance.

This move not only forced task developers to move from a single-threaded to multi-threaded
programming model but also forced system developers to develop new multi-threaded schedulers
to effectively manage the multi-cores. Schedulers are the OS sub-routines that perform resource
management for processors. A scheduler works towards an objective defined by the overlying
system where a processor is deployed under the constraints stipulated by the system’s design
and environment. This dissertation is dedicated to the study of scheduler designs.

The trend of adding more and more cores to a processor has continued over the last decade
and now we are entering the realm of many-core processors from multi-core processors [21].
Compared to multi-cores that have a dozen or so cores, many-cores house tens or even hundreds
of cores on a single-die. Beside the core count, many-cores also have a fundamentally different
micro-architecture in comparison to multi-cores.

For example, it is common for multi-cores to have a physically-unified logically-shared Last-
Level Cache (LLC) shared by all cores using a memory bus. Unfortunately, this bus-based
architecture does not scale up beyond few cores. Therefore, many-cores come with a physically-
distributed LLC which accessible to all cores via a Network-on-Chip (NoC). In many-cores, the
number of threads dominate the number of cores and hence a core in multi-core executes
multiple threads in parallel using context switching. On the other hand, in many-cores number
of cores dominate the number of threads. Therefore, there is no need to waste clock cycles in
context switching and many-cores operate with a one-thread-per-core model. Figure 1.5 shows
the transition from uni-cores to multi-cores to many-cores using an abstract block diagram.

1.2. Multi-Core Vs. Many-Core Scheduling

Many-cores are inherently imbued with an immense parallel processing potential. Many-cores
can be used to run embarrassingly parallel tasks capable of spawning hundreds of threads
which can exploit their potential. Though, these tasks, one can also run efficiently using multi-
thread [22] or multi-grid processors [23]. True use of a many-core emerges when one wants to
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Figure 1.6.: Search-space for varisized many-cores.

run tens of tasks in parallel with each task capable of scaling to a dozen or so cores but not
to all cores of the many-core unlike an embarrassingly parallel task. Many-cores are especially
useful when these limited scalability tasks have to be executed on embedded platforms [24].

Multi-core schedulers can even operate using a single-threaded brute-force algorithm because
the size of scheduling problem is small on multi-cores when compared to the size of scheduling
problem on many-cores. Figure 1.6 shows how the search-space for scheduling on many-cores
increases factorially with the increase in the size of many-core. The size of the search-space is
already unmanageably large with 32 cores. No algorithm can brute-force its way to the optimal
solution. Therefore, better alternatives need to be developed.

Many-core schedulers have no option but to find ways to scale up with increase in the
number of cores. For example, one way for a many-core scheduler to scale up is to distribute
its processing across all cores in the many-core by using a multi-threaded distributed scheduling
algorithm to develop a schedule for the many-core. Other possible ways to make schedulers
scale up are to prune the search-space they need to explore or even make them probabilistic.
This dissertation primarily focuses on the problem of how to make many-core schedulers scale
up with increase in the number of cores in many-cores but without losing schedule quality.

Researchers have often resorted to heuristics to meet the challenges of many-core scheduling.
Unfortunately, heuristic schedulers make no promise on the schedule quality and suffer from
corner cases where schedule quality is especially poor. We on the other hand in this dissertation,
create schedulers which make no compromises on the schedule quality for the sake of scalability.
Therefore, we provide a schedule quality similar to multi-core schedulers on many-cores.

Furthermore, since cores of a multi-core can execute multiple threads in parallel it makes the
search-space for a multi-core scheduler continuous. The search-space for multi-core scheduling
thereby can efficiently be traversed using methods like linear programming or convex opti-
mization. On the other hand, many-core operates with one-thread-per-core model making the
search-space for many-core schedulers discrete. Because of this, most many-core scheduling op-
timization problems have NP-hard computationally complexity and are even difficult to solve
optimally at run-time with well-established efficient tools like ILP and convex solvers.

Therefore, there is a need for studying many-core scheduling problems even with the most
basic goals like performance maximization. Beside performance maximization, we introduce
several new schedulers in this dissertation which target several diverse goals with strong sched-
ule quality guarantees. We also develop many-core schedulers that exploit the new micro-
architectural features in many-cores such as physically distributed LLC and NoC to achieve
their objectives in line with the hardware-software codesign methodology.
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1.3. Many-Core Vs. Multi-Thread Computing Paradigm

Many-core computing paradigm is not the only computing paradigm offering massive parallel
processing potential to its end users. Multi-thread computing paradigm enabled by processors
like Graphic Processing Units (GPUs) is also a well-established computing paradigm design
to support massive parallel processing. Multi-thread processors have now also forayed into
embedded systems [25]. Nevertheless, multi-thread computing paradigm differ from many-core
computing paradigm in some crucial ways making them each occupy a different niche.

Multi-thread processors were initially designed for running games for which they work with a
GPP Central Processing Unit (CPU) in tandem [26, 27]. Multi-thread processors were soon also
deployed to execute scientific computing workloads which were very similar to graphic workload
in games. Multi-thread processors by design can execute lot of threads in parallel similar to
many-cores on hundreds of similar cores. But unlike cores of many-cores, cores of multi-thread
processors have very small caches. They hide the latency of off-chip memory accesses by the
concurrently executing threads by context switching threads waiting for memory with threads
ready for execution [28]. This strategy only works when threads do not communicate with each
other and are mostly independent.

Therefore, multi-thread processors cannot replace many-cores in a scenario where there are
large number of tasks executing in parallel which are independent of each other but threads
from a given task are constantly communicating and dependent on each other. Accordingly,
schedulers designed for many-cores need to have a completely different design than schedulers
design for multi-thread processors [29]. Furthermore, many-thread processors cannot run an
OS and hence are dependent upon the accompanying CPU to develop a schedule for them.

1.4. Many-Core Vs. Multi-Grid Computing Paradigm

Multi-grid computing paradigm enabled by supercomputers also allows for massive parallel
processing. Multi-grid processors are composed of multiple processors distributed over vast
physical distances (sometimes even continents) acting as one processing entity. Trivially, they
cannot completely replace many-cores in embedded system domain though they can be used
to offload some of the computing from embedded systems using recent advances in cloud/edge
computing [30]. Multi-grid processors given their massive hardware and power consumption
are also many times more expensive to operate than many-cores.

Another major difference between multi-grid processors and many-cores is the disparity be-
tween cost of computation versus cost of communication. In multi-grid processors, the cores
are computationally very powerfully but communication between the cores is very slow spe-
cially when they are physically separated. On the other hand, in many-cores the cores are
comparatively computationally weak compared to cores in multi-grid processors but they can
communicate very fast with each other using on-chip NoC and caches. Therefore, grid pro-
cessors cannot also replace many-cores in a scenario where there are large number of tasks
executing in parallel which are independent of each other but threads from a given task are
constantly communicating and dependent on each other. Accordingly, schedulers designed for
many-cores need to have a different design than schedulers design for multi-grid processors [31].

1.5. Dissertation Contributions

This dissertation made several research contributions on the subject of many-core scheduling.
We present several different many-core schedulers with different optimization objectives which
make several advancements over the state-of-the-art.
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1.6. Dissertation Outline

We introduce two schedulers for performance maximization on many-cores. State-of-the-art
used Dynamic Programming (DP) to solve the performance maximization problem optimally.
We introduce a greedy and distributed scheduler which exploit convex substructures present
in the performance maximization problem on many-cores to also solve the problem optimally.
Therefore, both proposed schedulers produce results equivalent to the state-of-the-art. The
main contribution of proposed schedulers is their ability to optimally maximize the performance
of many-cores but with several times less scheduling overheads compared to state-of-the-art.

We introduce a distributed scheduler for fairness maximization on many-cores. The prob-
lem of fairness maximization on many-cores is NP-hard but we exploit convex substructures
present in fairness maximization problem on many-cores to solve the problem optimally for fixed
performance. Our proposed scheduler also outperforms state-of-the-art heuristic schedulers.

We introduce a distributed scheduler for defragmenting task allocations on many-core. Task
defragmentation on many-cores is an NP-hard problem but we solve the problem optimally in
the special case when all tasks are constrained to produce only power-of-two number of threads.
Our scheduler outperforms state-of-the-art heuristic schedulers under the constraint.

We introduce a scheduler for task allocation on many-cores with S-NUCA caches. Presence
of S-NUCA caches introduce a design-time heterogeneity in otherwise homogeneous cores of a
many-core. Our scheduler uses the knowledge of this design to first prune the search-space and
then perform optimal task allocations on the many-core. The scheduler outperforms state-of-
the-art heuristic scheduler oblivious to the S-NUCA design.

We introduce a probabilistic scheduler for power budgeting on many-cores. Our scheduler
drastically reduced the scheduling overheads in comparison to non-probabilistic schedulers.
The scheduler provides strong guarantees on the violation of power budget while providing
performance equivalent to state-of-the-art heuristic scheduler. We also extend the proposed
scheduler to work with QoS tasks.

Finally, we introduce a toolchain for evaluating many-core schedulers using fast yet precise
interval thermal simulations. Toolchain tightly couples together a state-of-the-art many-core
interval simulator and thermal modeling tool. The toolchain also adds support for interval
thermal simulations of many-cores deployed in open systems which were previously not possible.

1.6. Dissertation Outline

The remainder of this dissertation is outlined as followed.

• Chapter 2 presents the background required for better comprehension of this dissertation.

• Chapter 3 presents the common notations used to describe the proposed schedulers.

• Chapter 4 presents two schedulers for many-core performance maximization.

• Chapter 5 presents a distributed scheduler for many-core fairness maximization.

• Chapter 6 presents a distributed scheduler for many-core task defragmentation.

• Chapter 7 presents a scheduler for many-core with S-NUCA caches.

• Chapter 8 presents a scheduler for many-core power budgeting.

• Chapter 9 presents a scheduler for many-core power budgeting with QoS tasks.

• Chapter 10 concludes this dissertation and present some ideas for possible future works.

• Appendix A presents a toolchain designed to evaluate many-core schedulers using fast
and precise interval thermal simulations in real-world representative open systems.
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2. Background

This chapter presents the background information required for better comprehension of this
dissertation. We first present the type of systems wherein a many-core can be deployed. There-
after we introduce the different types of tasks which can be executed on many-cores and also
how these tasks interact with the many-core scheduler. We then present the timing model used
by many-core schedulers to manage task execution. We then introduce how many-cores can be
classified into different categories based on their core clusterings and compositions. We then
end this chapter with details of some famous many-core platforms and OSs.

2.1. Type of Many-Core Systems

Many-cores can be deployed in three kinds of systems [32] namely fixed, closed or open systems.
The systems differ from each other in terms of how a workload is executed on the many-cores.
Figure 2.1 shows how the three systems differ from each other using an abstract block diagram.

A fixed many-core starts execution with a predefined set of tasks (workload) and shuts down
when entire workload has been executed. Fixed many-cores find use in embedded systems like
washing machine and microwaves where workload is more or less same on every execution.
Makespan which is the time from start to end of entire workload execution is the preferred
metric to measure the performance of fixed many-cores.

A closed many-core starts with a predefined workload but tasks in the workload restart
execution as soon as they are finished. Fixed many-cores find use in embedded systems like
mobile robots which start analyzing a frame captured using their camera (eyes) with algorithms
such as sift feature extraction followed by edge detection as soon as they complete analyzing the
previous frame with same algorithms. Throughput which is measured as the number of tasks
finished per unit time is the preferred metric to measure the performance of closed many-cores.

An open many-core does not have a previously known workload, and tasks arrive in the open
many-core at a non-initial time and leave once they complete execution. Fixed many-cores find
use in embedded systems like smart phones where workload is generated on the fly based on
user interactions. Average response time which is measured as the average time between tasks
arrivals and departures is the preferred metric to measure the performance of open many-cores.

In this dissertation, we evaluate our proposed schedulers on mainly closed and open many-
cores. All schedulers should work with bare minimal modifications on all kind of systems
wherein many-cores can be deployed even if it is not explicitly specified.

2.2. Type of Many-Core Tasks

Tasks executed on many-cores can be of three different types namely rigid, moldable or mal-
leable. Figure 2.2 depicts with an abstract diagram how different task types interact with a
many-core scheduler. All types of tasks start execution with a set of initial cores allocated
to them by the scheduler. Initial cores allocated to a rigid task cannot be modified. Cores
allocated to a moldable task can be modified using thread migrations, but the total number of
cores allocated to it should always remain the same. Cores allocated to a malleable task can
be modified even in terms of number of allocated cores at any time during its execution.
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Figure 2.1.: An abstract diagram depicting different kind of many-core systems.
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Figure 2.2.: An abstract diagram depicting interaction between many-core scheduler and different types
of tasks a many-core can execute.

Scheduler Task Execution Scheduler Task Execution

Interrupt
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Figure 2.3.: An abstract diagram depicting interrupt-based timing model for a many-core scheduler.

A multi-threaded task in a many-core can be allocated multiple cores, but a core is always
allocated exclusively to only one task at any given time. The tasks follow one thread per core
execution model. We develop schedulers for all the three types of tasks in this dissertation.

2.3. Many-Core Scheduler Timing Model

Figure 2.3 depicts the interplay facilitated by a many-core OS between a many-core scheduler
and task execution it manages. OS invokes the scheduler regularly at a granularity of schedul-
ing epoch using a time-triggered interrupt to perform task scheduling. We set the value of
scheduling epoch in this dissertation at 10ms; same as default Linux schedulers [33]. The time
taken by the scheduler to come up with an appropriate schedule is the scheduling overhead
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All Cores in One Tile Multiple Cores per Tile One Core per Tile

Figure 2.4.: An abstract diagram depicting different ways cores of a many-core can be divide into tiles.

induced by it. The fundamental challenge in many-core scheduling research is to minimize the
scheduling overhead while simultaneously maximizing the schedule quality.

Another scheduler timing model is where the scheduler executes in parallel to the executing
tasks and manage them without using interrupts. This parallel scheduler timing model is not
explored in this dissertation and we focus on only interrupt-based scheduler timing model.

2.4. Many-Core Tiling Models

Cores in a many-core can be clustered into tiles at design-time. Cores within a tile share a
cache which is accessible to them using an intra-tile memory bus and hence accessing this
shared cache has the same latency for all cores. Cores within a tile also always operate at the
same frequency and hence granularity of tiling determines the granularity at which DVFS can
be performed within the many-core. All tiles are connected together using a NoC with each
tile containing one NoC router or switch.

Figure 2.4 shows with an abstract block diagram three generic ways tiling can be done in a
many-core. The first way is to place all cores of the many-core into one tile. The second way is
to place cores into varisized tiles with each tile containing different (or same) number of cores.
The third way is to place only one core in every tile.

Placing all cores within one monolithic tiles is the least complicated design but this design
is also least flexible in terms of optimization potential it offers an accompanying many-core
scheduler to exploit. This design also contains no NoC and hence does not scale up very well.
Scalability of the design can be improved by having varisized tiles. The design having only one
core per tile is most flexible in terms of optimization potential it offers to the scheduler though it
also involves substantially more design effort than the other designs. The run-time advantages
offered by this design easily justifies its design-time disadvantages. This dissertation therefore
focuses mostly on many-cores with one core per tile design.

2.5. Many-Core Composition Models

Many-cores can be divided into three types depending upon the micro-architectural composition
of its cores [34] as shown in Figure 2.5. All the cores in a homogeneous many-core are micro-
architecturally the same. Still, even cores in a homogeneous many-core may diverge in terms of
their performance potential due to many factors such as fabrication-induced process variation
or topology-induced non-uniform LLC latency.

A heterogeneous many-core is composed of cores that inherently have a different micro-
architecture. Heterogeneity in cores can be function- or performance-based. Functionally het-
erogeneous cores of a many-core have a completely different Instruction Set Architecture (ISA)
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Homogenous Many-Core Heterogenous Many-Core Adaptive Many-Core

Figure 2.5.: An abstract diagram depicting types of many-cores classified based on core composition.

from each other and hence task compiled for one type of core cannot be executed on another
type of core. For example, a heterogeneous many-core can couple together embedded CPU
cores with embedded GPU cores on the same die. On the other hand, performance heteroge-
neous cores of a many-core have the same ISA and hence a task compiled for one type of core
can be seamlessly executed on another type of core. For example, a heterogeneous many-core
can couple together high-performance high-power out-of-order cores with low-performance low-
power in-order cores on the same die [35]. A heterogeneous many-core can be simultaneously
functional and performance heterogeneous.

An adaptive many-core is a special type of many-core which contains large number of simple
base cores which can coalesce together at run-time to form bigger complex cores [36]. While
the design of homogeneous and heterogeneous many-cores are fixed after fabrication, adaptive
many-cores are capable of turning into either one even after fabrication. This imbues adaptive
many-cores with the ability to adapt to any possible kind of workload they can encounter. We
focus mostly on adaptive and homogeneous many-cores in this dissertation.

2.6. Many-Core Platforms

In this section, we introduce some state-of-the-art many-core platforms. We begin by introduc-
ing InvasIC many-core platform in whose development the author of this dissertation actively
participated. We then introduce some of the other available many-core platforms.

2.6.1. InvasIC (Funding Project)

Invasive computing (InvasIC) [21] is an on-going collaborative project mainly amongst three
German university Karlsruhe Institute of Technology, Technical University of Munich and
Friedrich-Alexander-Universität Erlangen-Nürnberg. The goal of the project is to solve the
scientific challenges involved in designing many-cores processor and develop the associated
technologies. The many-core paradigm brings in such a radical shift in processor design that
every step of the the design needs to carefully reworked to produce an efficient many-core. The
Ph.D. of author of this dissertation was funded under the Invasive computing project.

Figure 2.6 shows the conceptual block diagram for an InvasIC many-core. In an InvasIC
many-core, the cores are divided into tiles. The GPP core used in InvasIC many-core is a
SPARC-based Leon3 core [37] from Gaisler with Reduced Instruction Set Computer (RISC)
ISA. Some of the Leon3 cores are enhanced with a tightly-coupled reconfigurable fabric turning
them into an i-Core [38] that can run tasks faster using hardware-acceleration. Enhanced
performance from i-Core comes at a cost of increased area and hence it is not recommended
to turn all Leon3 cores into i-Cores. Each compute tile – a tile with Leon and/or i-Core –
also contains a local memory accessible only to the cores in the tile using a memory bus. A
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Figure 2.6.: A conceptual block diagram of an InvasIC many-core.

compute tile also comes with a hardware-implemented i-let controller called CiC. In Invasive
Computing, i-lets are similar to threads but unlike the threads i-lets cannot be preempted and
always run to completion once they start execution.

InvasICmany-core is designed to execute malleable tasks [39] which spawn hundreds of i-lets.
InvasIC tasks produce i-lets that do not communicate with each other and hence can scale up
to a large number of core. InvasIC tasks also allow their underlying allocations to be modified
anytime during their execution. InvasIC task acquire an initial set of cores to begin execution
via an invade construct. InvasIC task can release cores at run-time via a retreat construct
whereas it can acquire more cores at run-time via a reinvade construct. Cores held by an
InvasIC task is called its claim and the task can start using its claim via an infect construct.
InvasIC tasks can exchange cores among themselves with the help of an agent system [40].
These InvasIC constructs also make InvasIC tasks substantially fault-tolerant [41].

InvasICmany-core deploys a distributed library OS called OctoPos [42]. Each tile in InvasIC
many-core runs its own instance of OctoPos. The different instances of OctoPos running in
parallel communicate with each other using Remote Procedure Calls (RPCs). The agent system
together with OctoPos is called iRTSS. OctoPos supports execution of tasks written in both
C++ and X10 [43]. It can run natively on both SPARC and x86 architectures. It also supports
a so called "Guest Layer" that allows rapid functional prototyping via emulation of the entire
Invasive Computing stack on Linux.

Beside the numerous compute tiles with Leon3 and i-Core cores, InvasIC many-core contains
few other types of specialized tiles. A TCPA tile [44] is similar to an integrated GPU and can be
used for hardware-acceleration of InvasIC tasks using an array of Processing Elements (PEs). A
memory tile is a tile containing the global memory which can be accessed from any tile. Finally,
an I/O tile is a tile containing components like Ethernet through which InvasIC many-core can
communicate with external entities. Tiles are connected using a special reconfigurable NoC
called iNoC [45]. InvasIC tasks can exploit several unique features provided by iNoC such as
end-to-end connections using service level guarantees and Direct Memory Access (DMA) [46].
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Figure 2.7.: Scheduling control flow on an InvasIC many-core.

Standard directory-based cache-coherency protocols do not scale up well on many-cores [47].
Therefore, InvasIC many-core supports a novel highly scalable region-based on-demand cache-
coherency [48] where parts of the many-core can be made cache-coherent at run-time and the
remaining many-core operates using message-passing. InvasIC memory model fits very well
with the memory model of X10 programming [49]. Tasks written in X10 work on the principle
of a place which is internally cache-coherent wherein places themselves communicate using
message-passing. A X10 task written using an ActorX10 library [50] can run directly on an
InvasIC many-core or an equivalent InvasIC many-core simulator [51].

InvasIC many-core is of great use in High-Performance Computing (HPC) on embedded
systems [52]. HPC tasks, like shallow water tsunami simulation written in ActorX10 which
spawn hundreds of i-lets, have already been shown to be feasible on InvasIC many-core [53].
InvasIC many-core is also of great use for executing tens of tasks in parallel each of which
can only span to a limited number of cores such as tasks produce by a robot while performing
motion planning [54] or tasks executed in a 5G base station [55]. This scenario inspired most
of the schedulers presented in this dissertation.

Figure 2.7 shows the control flow of scheduling performed on an InvasIC many-core. The
distribution of i-lets produced by a task amongst cores in its claim is by default performed by
CiC hardware module which attempts to balance the processing load equally amongst all cores.
Though the scheduling logic in the agent system can disable CiC and take control of the i-let
distribution in software for a more desirable distribution than the basic distribution provided
by CiC. Agent system in an InvasIC many-core then act as a distributed task scheduler.

When an application starts it asks the task scheduler (agent system) for some cores to
start execution. Task scheduler then assigns some free cores to the task as its initial claim.
If no free cores are available, then the task scheduler takes away some cores from already
executing tasks based on an overall cost-benefit analysis [56] to create an initial claim. The
cost-benefit analysis is based on data collected using performance counter and sensors using a
data aggregator implemented in hardware called iDoC [5] accessible through OctoPoS. Sensors
can also be replaced with sensor emulation tools such as MatEx [57] while using simulators.

The initial claim assigned to task can expand or shrink in size through cost-benefit negoti-
ations between executing tasks at run-time facilitated by the task scheduler [40]. Dark silicon
constraints [58] force cores allocated to a task to run at less than their peak frequency to prevent
thermal violations. A thermally safe power budget of all the cores in a tile are determined based
on a core-level power budget technique called TSP [59] by another power-budgeting scheduler
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Figure 2.8.: A conceptual block diagram of an Single-Chip Cloud Computer (SCC) many-core.

called DASIM [5]. The task scheduler then tries to maximize the frequencies at which cores
can operate under DASIM assigned power budget with the help of i-let patterning [60].

2.6.2. SCC

Intel introduced SCC [61] processor around 2009 on 45-nm technology node using high K
Complementary Metal-Oxide-Semiconductor (CMOS) transistors under its TeraScale research
program. Total die area for SCC is around 567 mm2 [62]. SCC pioneered the idea of a
many-cores with an efficient hardware/software co-design. Figure 2.8 shows a conceptual block
diagram of the SCC many-core. SCC integrates 48 32-bit cores with x86 ISA on a single die.
Each core has a private 16KB L1 instruction and data cache, and a unified 256KB private L2
cache. Cores in SCC can run at multiple discrete frequency levels using DVFS.

Every two cores in SCC are grouped together to form a tile with a die area of 18 mm2.
Cores within a tile share a 16KB Message-Passing Buffer (MPB) and NoC router. Tiles are
arranged in a 6x4 grid pattern connected over a 2D-mesh NoC. Tiles communicate with each
other using message-passing. Therefore, SCC is geared towards high-performance execution of
Message-Passing Interface (MPI) tasks. NoC links have a bandwidth of 64GB/s per link with
a total bi-section bandwidth of 2TB/s. Tiles can access the main memory using four Memory
Controllers (MCs) on the periphery. Intelmade the SCC platform available to different research
institution including ours to foster the research on subject of many-cores.

SCC by default ships with a distributed Linux OS with an instance of Linux kernel running
on each tile. It also supports a bare-metal run-time environment for minimal overhead execution
of MPI tasks. Even Barrelfish OS [63] described in Section 2.7.2 has been ported onto to
SCC [64]. C, C++ and Fortan compilers are available for SCC. Authors of [65] developed an
agent-system based scheduler for task scheduling on SCC.

Though in this dissertation we focus on developing schedulers for only cache-coherent many-
cores, many of the introduced schedulers can also be easily modified to work with message-
passing based many-cores such as SCC.

2.6.3. TILE-Gx100

TILE-Gx100 [66] is a TILE-Gx series many-core developed by Tilera (now EZchip Semicon-
ductor) around 2011 on 40-nm technology node. It contains 100 64-bit RISC cores arrange in
10x10 grid on a single-die. Cores are connected together using a mesh NoC. Figure 2.9 shows
a conceptual block diagram for TILE-Gx100 many-core.

The cores in TILE-Gx100 can run at frequency between 1 to 1.5GHz using DVFS. Each
core contains 32KB L1 data and instruction cache. Each core also contains a 256KB L2 cache.
Cores are 3-issue Very Long Instruction Word (VLIW) in-order cores with a 5-stage pipeline.
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Figure 2.9.: A conceptual block diagram of a Tilera TILE-Gx100 many-core.

Cores are connected together using 5 different NoCs with each NoC serving different kind of
data. All cores have their own NoC router. The cores can be both clock- and power-gated to
save power. TILE-Gx100 also contains a large L3 cache. It also ships with several types of
hardware accelerators for tasks such as random number generation and cryptography.

TILE-Gx100 is cache-coherent and hence can run Symmetric Multi-Processing (SMP) ap-
plications. It can run one of three types of OS namely SMP Linux, zero overhead Linux or
BareMetal. Different parts of TILE-Gx100 can run different OS in parallel using a hypervisor
layer. It supports standard C, C++ and Java library out-of-the-box.

2.6.4. Epiphany-V

Epiphany-V [67] is a 1024-core many-core developed by Adapteva in 2017 on 16-nm technology
node. It has a die area of 117.44 mm2 which packs together 4.56 billion transistors. Fig-
ure 2.10 shows a conceptual block diagram for Epiphany-V. All cores are 64-bit RISC cores
with a low-power design but together they can provide impressive energy-efficient performance
of 75GFLOPS/Watt. In total, 1024 cores can provide a throughput of 4TFLOPS. Cores
are connected together with three mesh NoC. Epiphany-V was preceded by 28-nm 64-core
Epiphany-IV and 65-nm 16-core Epiphany-III before that.

Epiphany-V has a cache-less memory design similar to a scratchpad memory design. The
memory is physically distributed along the cores but the entire memory is accessible to all cores
making it a shared-memory many-core but without cache-coherency. In total, there is 64MB
of on-chip memory. It supports 64-bit memory addressing and 64-bit floating point operations.
It also ships with a custom ISA for domains like machine learning and cryptography. Multiple
Epiphany-V many-cores can be connected together to create a much bigger virtual many-core.
Creators of Epiphany-V claim that the virtual many-core can scale up to a billion cores.
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Figure 2.10.: A conceptual block diagram of an Epiphany-V many-core.

Epiphany-V supports standard C/C++. There are also several community-supported paral-
lel programming frameworks that can be used to write programs for Epiphany-V. Epiphany-V
also comes with a functional simulator to speedup up the software development.

2.7. Many-Core Operating Systems

In this section, we introduce some state-of-the-art OS designed especially for many-cores. Multi-
core OSs like Linux can be used on many-cores but only with limited success [68]. Therefore,
OS researchers have come up with some alternatives which we discuss below.

2.7.1. Corey

Corey [69] OS is designed for shared-cache based many-cores. The fundamental idea behind
Corey is that tasks executing on a many-core must control the level of sharing of data, constructs
and states with other tasks and the OS itself. This control should allow a multi-threaded task
to scale up to much more cores than possible with traditional multi-core OS even when there
is substantial inter-thread communication between the threads of the tasks. If the task does
not desire any sharing, then it is also possible for Corey to completely step aside and induce
no overhead on task execution. To transfer the sharing control to tasks, Corey arranges its
data structures in such a way that by default only one core needs to use it and also provide
interfaces with which other cores can access these structures if task explicitly wants to do so.

Corey works on Intel Xeon and AMD Opteron processors. Corey can be deployed on many-
cores as both library- and kernel-based OS. Corey is based on three core abstractions namely
Address Ranges, Kernel Cores and Shares. Address Ranges allows a task to define which
part of address space associated with cores assigned to it are private to the cores and which
part is shared with other cores and OS. Modification to private address ranges generates no
invalidation coherency traffic on the NoC. This is in contrast to traditional multi-core OS where
cores share the entire address space. A Kernel Core is a dedicated core that executes a specific
kernel code. Non-Kernel codes must trigger the appropriate kernel core when they wish to
perform a system call. This is in contrast to traditional multi-core OS where the core that
executes the kernel code is the same where the system call is made requiring substantial data
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sharing. A Share is a data structure such as lookup tables for kernel objects which allow tasks
to control the visibility of these objects to other cores at run-time.

Authors of Corey show that it results in superior performance for MapReduce and Web-
Server tasks when compared to traditional multi-core OS even on multi-cores. They claim the
performance gains would be even higher for these tasks when executing on many-cores.

2.7.2. Barrelfish

Barrelfish [70] OS is based on multikernel OS model designed for heterogeneous many-cores. It
can operate on shared-memory based many-cores but its real target is message-passing based
many-cores such as SCC describe in Section 2.6.2. It supports several different ISAs and thereby
can work on processors from multiple vendors such as Intel, AMD and ARM.

Multikernel OS model is based on three core design principles. First principle stipulates that
all communication in-between cores must be performed using explicit messages in contrast
to implicit messages exchanged with cache-coherency. Second principle stipulates that OS
structures must be delineated from the underlying hardware making the OS hardware neutral
and also better suited for handling all kinds of heterogeneity. Third and final principal stipulates
that global OS states must not be shared but replicated across all cores of the many-core.

Barrelfish has one lightweight kernel running on each core of the many-core. The entire
many-core is seen as a network of independent cores which do not share any data. Barrelfish
strives to bring ideas from distributed systems into the design of many-core OS. Even traditional
OS subroutines such as schedulers in Barrelfish are implemented as distributed system processes
that operate as one using message-passing.

Authors of Barrelfish show it to be as efficient as well-developed multi-core OS like Win-
dows and Linux on shared-memory multi-cores. They also claim it to be much superior in
performance to a multi-core OS on many-cores especially the ones based on message-passing.

2.7.3. Tesselation

Tesselation [71] is a many-core OS designed to execute real-time tasks on many-cores with QoS
guarantees. It also supports execution of best-effort and interactive tasks. Tesselation is based
on two core ideas namely Space-Time Partitioning and Two-Level Scheduling. Tesselation has
more than 22000+ lines of code and can run on commercial Intel x86 platforms as well as
custom Field-Programmable Gate Array (FPGA) platforms.

The fundamental component of Space-time Partitioning in Tesselation is a Cell. Size of
a Cell is defined by a fraction of guaranteed system resources such as cores, memory and
bandwidth. Cells hence act as varisized virtual stand-alone processors themselves. A task
executing under Tesselation is executed on several performance-isolated cells. Cells from a
task are gang-scheduled together and communicate with each other using secure communication
channels. Tesselation provides a task full control of the cells assigned to it. Task cells can also
use the secure channels to communicate with OS subroutines such as device drivers which are
themselves executing in their own cells.

Two-Level Scheduling in Tesselation uses a global scheduler and several cell-level schedulers
to perform resource management for its underlying many-core. At the first level, the global
scheduler distributes resources between the cells of different tasks based on the objectives of
the overlying system while keeping the QoS of tasks under consideration. At the second level,
a cell-level scheduler performs the resource management within the cell independent of other
cell-level schedulers executing concurrently. A task is expected to provide cell-level schedulers
to all the cells assigned to it. Authors of Tesselation claim that Two-Level Scheduling combined
with Space-time Partitioning can scale up to a very large number of cores.
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We begin by presenting common notations used in this work to model many-cores.

• T represents set of |T | tasks executing on many-core, indexed by ti.

• C denotes set of |C| cores in many-core, indexed by cj .

• F indicates set of |F | frequencies cores can operate using DVFS, indexed by fk.

• Cfkti means set of Cti cores allocated to task ti operating at frequency fk. We assume
all the cores can perform independent DVFS. Still, multiple cores allocated to any given
task always operate at the same frequency.

• Cti represents abridged notation in which all cores allocated to task ti are assumed to
be operating at the highest frequency of the many-core. Notation Cti simplifies the
explanation of schedulers that do not employ DVFS.

• ζ(Cfkti ) represents Instruction per Cycle (IPC) of task ti.

• ρ(Cfkti ) represents Instruction per Second (IPS) of task ti.

• α(Cfkti ) denotes DVFS-speedup of task ti. Ratio of IPS of task ti operating at frequency
fk to IPS of the task operating at the lowest frequency defines DVFS-speedup α(Cfkti ).

• β(Cti) means core-speedup of task ti. Ratio of IPC of task ti with |Cti | cores allocated
to IPC of the task with only one core allocated defines core-speedup β(Cti).

• γ(Cti) means core-slowdown of task ti. Ratio of IPC of task ti with the maximum cores
allocated to IPC of the task with |Cti | cores allocated defines core-slowdown γ(Cti).

• S = ∪tiC
fk
ti

denotes current state of allocations.

• ζ(S) represents aggregate IPC of all tasks in state S.

• ρ(S) represents aggregate IPS of all tasks in state S.

• α(S) represents aggregate DVFS-speedup of all tasks in state S.

• β(S) represents aggregate core-speedup of all tasks in state S.

• γ(S) represents aggregate core-slowdown of all tasks in state S.
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4. Many-Core Task Schedulers for
Performance Maximization

This chapter introduces two schedulers with the objective of maximizing the performance of
many-core.1 Schedulers maximize performance by employing core-speedup2 to accelerate tasks.
Chapter 8 explores the use of DVFS to accelerate tasks. In this chapter, we use a particular
kind of many-core called an adaptive many-core [36, 72]. Adaptive many-core can execute not
just multi-threaded but also single-threaded tasks on multiple cores. Schedulers are not limited
to adaptive many-cores but are also equally applicable to non-adaptive many-cores.

Adaptive many-core comprises of several simple base cores each with a small issue pipeline.
Multiple cores allocated to a single-threaded task form a unified virtual core with a bigger
issue pipeline which can extract more ILP. Multiple cores allocated to multi-threaded task
extract Thread Level Parallelism (TLP) by co-executing threads of the task in parallel on al-
located cores. The number of cores allocated to the single-threaded and multi-threaded task
should depend upon their exploitable ILP and TLP potential, respectively. Many-core puts
a task without any allocated core to sleep. The above formulation applies to several adap-
tive multi/many-core architectures with minimal modifications. We avoid adding constraints
imposed by any specific architecture to the many-core formulation described above to keep
schedulers proposed in this chapter to be generic.

Homogeneous non-adaptive many-cores are a special case of formulation presented above
wherein only multi-threaded tasks can be allocated multiple cores but not single-threaded
tasks. Figure 4.1 illustrates a generic adaptive many-core where varisized virtual cores are
executing single-threaded tasks with different levels of ILP, along with two threads of a multi-
threaded task executing in parallel on two different cores. There is also a sleeping task that is
awaiting cores to become available to resume its execution.

The number of possible combinations in which scheduler can distribute cores of a generic
adaptive many-core amongst tasks is analogous to the integer partition problem in number
theory [73] as shown in Figure 4.2. Therefore, search-space for developing a performance
maximizing schedule expands combinatorically with the increase in the number of cores.

4.0.1. Dynamic Scheduling Motivation

Figure 4.3a shows how processing requirements of two tasks – mcf and bizp2 – vary over time.
Furthermore, ILP/TLP exploitation potential in tasks also change during their execution re-
sulting in time-varying core-speedups on multiple cores as shown in Figure 4.3b. The scheduler
must transfer cores from task entering low-performance phase to task entering high-performance
phase to keep many-core operating at peak performance. Note that only malleable tasks3 allow
transfer of cores amongst themselves at run-time. Figure 4.4 shows how a scheduler improves
average throughput by 13.28% – measured as the sum of IPC of tasks – by performing dy-
namic reallocations in a 4-core processor running two tasks (mcf and bizp2) compared to a
static scheduler, where scheduler statically allocates two cores to each task.

1The work presented in this chapter was originally published in [3] c©2016 ACM and [4] c©2016 IEEE.
2Refer Chapter 3 for the definition of core-speedup.
3Refer Chapter 2.2 for the definition of a malleable task.
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Authors in [74] proposed a scheduler based on DP that can optimally solve the problem
of performance maximization as studied in this chapter within polynomial time. DP is an
inherently centralized computation-intensive algorithm that uses only one core of many-core
for performing scheduling-related computations. Therefore, DP which works well in multi-cores
cannot be scaled up in many-cores due to increase in the search-space.

4.0.2. Novel Contributions

As an alternative to DP, we propose two new schedulers in this chapter. First is a distributed
scheduler called Distributed Performance Many-Core Scheduler (DPMS) and second one is a
centralized greedy scheduler called Greedy Performance Many-Core Scheduler (GPMS). The
schedulers are theoretically proven to be optimal. The schedulers provide performance equiv-
alent to a scheduler based on DP but with several times less scheduling overheads. Therefore,
both proposed schedulers are better suited for performing task scheduling on many-cores at
run-time than the DP based scheduler.
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Figure 4.3.: Execution profiles of mcf and bzip2.

4.1. Distributed Scheduler

We first present a distributed scheduler called DPMS in this section. Chapter 3 describes the
common notations used to describe DPMS. We assume all tasks to be malleable in this chapter.
Let throughput measured as aggregate IPC ζ(S) be the measure of performance.

We define the utility of core cj ∈ Cti represented by symbol ucj (Cti) as the increase in IPC
core cj brings to task ti. Model presented in [75] inspires the design of utility.

ucj (Cti) = ζ(Cti)− ζ({Cti − cj}) (4.1)

4.1.1. Execution Flow

Figure 4.5 shows execution flow for DPMS. Initially, all cores are either unallocated or equally
distributed amongst tasks. At the beginning of each scheduling epoch4, series of rounds take
place to determine allocations for that epoch. In each round, all cores evaluate benefits of
joining every other task against benefits of staying with their current tasks based on their
utilities calculated using Equation (4.1). Cores then myopically take decisions to move amongst
tasks to increase their utilities. It suffices for one core allocated to given task to perform utility
calculations and take decisions on behalf of all other cores allocated to that task to reduce
overheads. Core cj will move from task ti to task ti′ if utility ucj (Cti′ ∪ {cj}) for moving
is higher than its current utility ucj (Cti) of staying. For estimating utilities, cores use IPC

4Refer Chapter 3 for the definition of scheduling epoch.
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Figure 4.4.: Dynamic scheduling can provide additional throughput over static scheduling.
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Figure 4.5.: Execution flow for DPMS.

prediction techniques for adaptive many-cores developed by authors of [76]. Core reallocation
rounds stop when no more moves are possible. DPMS then execute tasks with cores allocated
to them in the final round. Many-core halts when execution reaches a user-defined MaxEpoch.

4.1.2. Execution Characteristics

Figure 4.6 shows average core-speedup for different tasks when allocated a different number of
cores. Average core-speedup is both monotonically increasing and concave. Concavity arises
because of saturation of exploitable ILP or TLP in tasks with the increase in the number of
allocated cores. Still, the addition of every allocated core brings a non-negative increase in IPC
of the associated task. We observed similar behavior for all tasks listed in Table 4.1. Therefore,
allocations follow the basic economic law of diminishing returns. This behavior by definition
makes IPC of task non-decreasing and utility of core allocated to that task sub-modular.
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Figure 4.6.: Average core-speedup of a different tasks when allocated different number of cores.

ζ(Cti) ≥ ζ(C ′ti) if |Cti | ≥ |C ′ti | (4.2)
ζ(Cti)− ζ({Cti − cj}) ≤ ζ(C ′ti)− ζ({C ′ti − cj}) if |Cti | ≥ |C ′ti | (4.3)

Figure 4.7 shows standard boxplot for core-speedup for all of our single-threaded tasks
with two cores allocated. Many tasks exhibit high entropy over their execution. This entropy
provides substantial opportunities for performance optimization. Tasks also differ among them-
selves in absolute core-speedup they obtain. Interestingly, some of the tasks like h264ref can
sometimes obtain more than two times core-speedup when allocated only two cores. This be-
havior happens because allocating two cores to task can on some occasions opens up a secondary
bottleneck such as allocated memory resulting in super-linear core-speedup.

4.1.3. Equilibrium

Equilibrium for DPMS means that if many-core’s load does not change, then many-core will
achieve oscillation-free allocations. In equilibrium, no core has the incentive to move.

∀(cj∈Cti )∈S 6 ∃Cti′∈S s.t. ucj (Cti′ ∪ {cj}) > ucj (Cti) (4.4)

We choose to prove equilibrium using Sharkovsky theorem [77], by denying the existence of
a two-period cycle in DPMS. Let Ctx 
 Cty denote allocation of tasks tx and ty in equilibrium.
Let cx and cy represent cores that are part of allocations Ctx and Cty , respectively. Based on
Equations (4.1) and (4.4) the following equations hold.

ζ(Ctx)− ζ({Ctx − cx}) ≥ ζ(Cty ∪ {cx})− ζ(Cty) (4.5)
ζ(Cty)− ζ({Cty − cy}) ≥ ζ(Ctx ∪ {cy})− ζ(Ctx) (4.6)

Lemma 1. In equilibrium Ctx 
 Cty , if core cx does not want to move, then core set {cx, cx′} ⊆
Ctx will also not want to move.

Proof. From Equation (4.3) we know,

ζ(Ctx − {cx})− ζ(Ctx − {cx, cx′}) ≥ ζ(Cty ∪ {cx, cx′})− ζ(Cty ∪ {cx})
ζ(Ctx)− ζ(Ctx − {cx, cx′}) ≥ ζ(Cty ∪ {cx, cx′})− ζ(Cty)[∵ Eq. (4.5)]
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Figure 4.7.: Entropy in core-speedup for different tasks when allocated two cores.

Above result can be extended to any size core set containing core cx derivable from allocation
Ctx . This lemma then implies that results shown for movement of single core allocated to given
task will also extend to movement of the subset of cores allocated to that task; hence proved.

Lemma 2. Equilibrium Ctx 
 Cty will continue to hold with the addition of core cz.
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Proof. Without loss of generality, let us say utility for core cz is higher on joining allocation
Ctx than joining allocation Cty . Therefore, core cz joins allocation Ctx . By this assumption
following equation is true,

ζ(Ctx ∪ {cz})− ζ(Ctx) ≥ ζ(Cty ∪ {cz})− ζ(Cty)

By adding and subtracting core cz from allocation Ctx we get,

ζ(Ctx ∪ {cz})− ζ(Ctx ∪ {cz} − {cz}) ≥ ζ(Cty ∪ {cz})− ζ(Cty)

After joining allocation Ctx , core cz now has the same utility as core cx. Hence, we can say

ζ(Ctx ∪ {cz})− ζ(Ctx ∪ {cz} − {cx}) ≥ ζ(Cty ∪ {cx})− ζ(Cty)

Therefore, core cx would not move from allocation Ctx even after core cz joins allocation
Ctx . From Equation (4.3) we know,

ζ(Ctx ∪ {cy})− ζ(Ctx) ≥ ζ(Ctx ∪ {cz, cy})− ζ(Ctx ∪ {cz})
ζ(Cty)− ζ(Cty − {cy}) ≥ ζ(Ctx ∪ {cz, cy})− ζ(Ctx ∪ {cz})[∵ Eq. (4.6)]

Therefore, core ay ∈ Cty would also not move from its current allocation; hence proved.

Lemma 3. Equilibrium Ctx 
 Cty is reattained in no more than one move with the removal
of core cx′ ∈ Ctx .

Proof. Without loss of generality, this result would hold even if core cy′ ∈ Cty was removed
from equilibrium Ctx 
 Cty instead. From Equation (4.3) we get,

ζ(Ctx − {cx′})− ζ(Ctx − {cx′ , cx}) ≥ ζ(Ctx)− ζ(Ctx − {cx})
ζ(Ctx − {cx′})− ζ(Ctx − {cx′ , cx}) ≥ ζ(Cty ∪ {cx})− ζ(Cty)[∵ Eq. (4.5)]

Therefore, core cx would not move from allocation Ctx even after its fellow core cx′ leaves.
Now a move is possible from allocation Cty to allocation Ctx since after departure of core

cx′ utility of joining allocation Ctx has increased for cores. We assume core cy′ ∈ Cty makes
that move. From Equation (4.6) we know,

ζ(Cty)− ζ(Cty − {cy}) ≥ ζ(Ctx ∪ {cy})− ζ(Ctx)

ζ(Cty − {cy′})− ζ(Cty − {cy′ , cy}) ≥ ζ(Cty)− ζ(Cty − {cy})[∵ Eq. (4.3)]

Since, allocation Ctx is equivalent to allocation (Ctx − {cx′} ∪ {cy′}) we obtain,

ζ(Cty − {cy′})− ζ(Cty − {cy′ , cy}) ≥ ζ(Ctx − {cx′} ∪ {cy′ , cy})− ζ(Ctx − {cx′} ∪ {cy′})

Therefore, core cy would also not move from its current allocation Cty ; hence proved.

Lemma 4. Addition of allocation Ctz to equilibrium Ctx 
 Cty results in new equilibrium
Ctx 
 Cty 
 Ctz .
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Proof. Without loss of generality, let us assume only two allocations interact at a time, be-
ginning with allocations Ctx and Ctz . By Lemmas 2 and 3 when allocations Ctx and Ctz
unidirectionally exchange cores until reaching equilibrium Ctx 
 Ctz , equilibrium Ctx 
 Cty
continues to hold. Allocations Cty and Ctz then unidirectionally exchange cores until reaching
equilibrium Cty 
 Ctz , while equilibrium Ctx 
 Cty continues to hold. Thereby, allocations
reach new equilibrium Ctx 
 Cty 
 Ctz ; hence proved.

Theorem 1. DPMS will achieve oscillation-free equilibrium from any given initial state S in
O(|T |) number of rounds.

Proof. From any initial state, any allocation is in equilibrium with itself when considered in
isolation. Equilibrium can be iteratively extended using Lemma 4 to any number of allocations.
Furthermore, Lemmas 2 and 3 show that cycles of period two cannot exist in DPMS because
the exchange of cores between allocations is always unidirectional. Since period two cycle is
most straightforward to create, a corollary of Sharkovsky theorem [77] says that in a dynamic
system if period two cycle does not exist then any higher period cycle also does not exist.

Additionally, since no cycle exists a core cannot return to allocation, it has previously left.
Thus, any core can make a maximum of O(|T |) jumps (including incorrect myopic movements)
before many-core reaches equilibrium; hence proved.

Theorem 2. In equilibrium, allocations are optimal.

Proof. In equilibrium Ctx 
 Cty , let us assume throughput ζ(S) is not optimal and there
exists another permutation of allocations C ′tx and C ′ty that are instead optimal. By definition
of throughput in Chapter 3 we know,

ζ(C ′tx) + ζ(C ′ty) > ζ(Ctx) + ζ(Cty) (4.7)

We assume all cores are part of either allocation and without loss of generality due to
Lemma 1 we can say,

C ′tx = Ctx − {cx} and C ′ty = Cty ∪ {cx}

Now since we have equilibrium Ctx 
 Cty , from Equation 4.5 we get

ζ(Ctx)− ζ({Ctx − cx}) ≥ ζ(Cty ∪ {cx})− ζ(Cty) (4.8)
=⇒ ζ(Ctx)− ζ(C ′tx) ≥ ζ(C ′ty)− ζ(Cty) (4.9)

=⇒ ζ(Ctx) + ζ(Cty) ≥ ζ(C ′tx) + ζ(C ′ty)

Above equation is contradicting Equation (4.7); hence proved.

4.1.4. Dynamics Illustration

We now illustrate autonomous dynamics that occur under DPMS. Dynamics is series of best
response myopic moves made by cores converging towards equilibrium. Figure 4.8 shows simple
dynamics that can occur on a processor with four cores c1, c2, c3, and c4. Many-core starts
execution with two tasks t1 and t2 that are allocated empty allocations Ct1 and Ct2 , respectively.
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Figure 4.8.: Illustration showing the dynamics under DPMS on 4-core processor with three tasks.

Let task t1 have higher throughput than task t2. In equilibrium Ct1 
 Ct2 , allocations Ct1 and
Ct2 should be allocated three cores and one core, respectively.

Round 1 (Figure 4.8a): initially both allocations Ct1 and Ct2 are empty, and all cores are
unbounded. All cores evaluate benefits of joining either one of two allocations. All cores then
come to the same decision of joining allocation Ct1 associated with higher throughput task t1.

Round 2 (Figure 4.8b): core c1 evaluates the possibility of joining allocation Ct2 on behalf
of all cores in allocation Ct1 . Allocation Ct1 already has three other cores allocated to it now,
which core c1 did not know will also join allocation Ct1 in Round 1. Core c1 thereby concludes
that it is better off joining allocation Ct2 .

Round 3 (Figure 4.8c): many-core reaches equilibrium as none of the cores want to move
from their current allocations.

Round 4 (Figure 4.8d): task associated with allocation Ct1 enters a new phase, and its IPC
decreases. New equilibrium should have two cores allocated to both allocations Ct1 and Ct2 .
Core c1 still does not want to move from allocation Ct2 , but core c2 now decides to move to
allocation Ct2 from its current allocation Ct1 .

Round 5 (Figure 4.8e): dynamics stop as many-core reattains equilibrium.
Round 6 (Figure 4.8f): another task t3 with empty allocation Ct3 enters many-core and has

the highest throughput. New trilateral equilibrium Ct1 
 Ct2 
 Ct3 has one core allocated to
allocations Ct1 and Ct2 each, with two cores allocated to allocation Ct3 . Note that both cores
c1 and c3 move to allocation Ct3 in parallel from allocations Ct2 and Ct1 , respectively.

Round 7 (Figure 4.8g): dynamics come to a halt again in new equilibrium.

4.1.5. Complexity

Each round ofDPMS requires all the cores in C to perform |T | utility calculations as described in
Equation (4.1). In the worst-case, equilibrium can take up to O(|T |) rounds as per Theorem 1.
Therefore, in total a maximum of O(|C||T |2) calculations are required to ensure the stability
in worst-case. However, the processing overhead is distributed across all the cores resulting in
O(|T |2) worst-case processing overhead per-core.
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The studied problem can also be solved optimally using DP. DP has a centralized overhead
of O(|C||T |2), which is difficult to parallelize [78]. Every time core-speedup or IPC of any
task changes, the optimal schedule needs to be re-evaluated. In many-cores, where the number
of tasks |T | >> 1, changes are nearly continuous, making online scheduler employing DP
impractical. However, we can still utilize DP in this chapter to create theoretically optimal
oracular scheduler for comparison.

DP has space overhead of O(|C||T |), while in DPMS space overhead is O(1). Under DPMS,
O(|T |) messages need to be broadcasted every round in worst-case. Thus, in worst-case O(|T |2)
messages need to be transmitted every epoch. These messages can be transmitted with low
overhead using NoC proposed for many-core architectures. DPMS can operate with partially
correct (predicted) or incomplete information (NoC delays) to produce a near-optimal schedule,
while DP requires accurate and complete knowledge at all times to operate optimally.

4.2. Greedy Scheduler

We now present a centralized greedy scheduler called GPMS for performance maximization
in many-cores by using core-speedup to accelerate tasks. Chapter 3 describes the common
notations used to describe GPMS. GPMS has even lower overheads than DPMS scheduler
proposed in Section 4.1 while still providing equivalent performance.

The proposed greedy algorithm is composed of following sequential steps performed by
GPMS before every scheduling epoch.

1. Assume allocation Cti = ∅ ∀ti ∈ T .

2. Sort all tasks in T in ascending order by using comparator [ζ(Cti ∪{cj})− ζ(Cti)], where
core cj is unallocated. Store sorted tasks in a queue.

3. Allocate core cj to task tx in front of the queue and update corresponding IPC ζ(Ctx)
using IPC prediction models from [76].

4. Reposition task tx according to updated IPC ζ(Ctx) in the sorted queue using binary
search insertion.

5. Repeat Steps 3 and 4 to allocate all cores in C.

6. Execute tasks with greedy allocations.

4.2.1. Optimality

GPMS like all greedy algorithms is minimalistic in its approach and is quite easy to implement.
Nevertheless, its real strength comes from its ability to provide optimal results. We now proceed
to prove theoretical optimality of GPMS.

Theorem 3. Greedy allocations under GPMS are optimal.

Proof. We prove the theorem using proof by induction. Let us assume GPMS preforms alloca-
tions 〈Ct1 , Ct2 , ..., Ct|T |〉.

Base Case: Assume allocations 〈Ct1 , Ct2 , Ctx − {cj}, ..., Cty ∪ {cj}, ..., Ct|T |〉 instead to be
optimal in which GPMS should have allocated core cj to task ty instead of task tx. Now for
optimal allocations to be better than greedy allocations following equation must hold.

ζ(Cty ∪ {cj})− ζ(Cty) > ζ(Ctx)− ζ(Ctx − {cj}) (4.10)
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The above equation says that benefit (regarding increased IPC) of allocating additional core
cj to task ty must outweigh loss (regarding decreased IPC) of taking away that core cj from
task tx under optimal allocations.

DPMS does not reconsider its allocations. So, the suboptimal decision of allocating core
cj to task tx with allocation Ctx − {cj} happens when task ty had either allocation Cty or
allocation C ′ty such that |C ′ty | < |Cty |.

If suboptimal allocation happened when task ty had allocation Cty , then by greedy design
it implies the following relation.

ζ(Ctx)− ζ(Ctx − {cj}) ≥ ζ(Cty ∪ {cj})− ζ(Cy)

Above equation is in contradiction to Equation (4.10).
On the other hand, if suboptimal allocation happened when task ty had allocation C ′ty such

that |C ′ty | < |Cty | then it implies the following relation.

ζ(Ctx)− ζ(Ctx − {cj}) ≥ ζ(C ′ty ∪ {cj})− ζ(C ′ty)

But we know from concavity Equation (4.3),

ζ(C ′ty ∪ {cj})− ζ(C ′ty) ≥ ζ(Cty ∪ {cj})− ζ(Cty)

=⇒ ζ(Ctx)− ζ(Ctx − {cj}) ≥ ζ(Cty ∪ {cj})− ζ(Cty)

Above is a contradiction to Equation (4.10). Hence, we prove that base case is optimal.
Step Case: Suppose allocations 〈Ct1 , Ct2 , Ctx −{cj , cj′}, ..., Cty ∪{cj}, Ctz ∪{cj′}, ..., Ct|T |〉

instead to be optimal in which GPMS should have allocated cores cj and cj′ to tasks ty and tz
instead of task tx, respectively. Without loss of generality, the proof will also hold if both cores
from task tx were allocated to only tasks ty or tz instead. Now for above optimal allocations
to be better than greedy allocations the following equation must hold.

ζ(Cty ∪ {cj})− ζ(Cty) + ζ(Ctz ∪ {cj′})− ζ(Ctz) > ζ(Ctx)− ζ(Ctx − {cj , cj′}) (4.11)

As argued in the base case, the suboptimal decision of allocating core cj to task tx with
allocation Ctx−{cj , cj′} happened when task ty had allocation C ′ty ⊆ Cty . Therefore, by greedy
design the following relation must hold.

ζ(Ctx − {cj′})− ζ(Ctx − {cj , cj′}) ≥ ζ(C ′ty ∪ {cj})− ζ(C ′ty) (4.12)

Similarly, the suboptimal decision of allocating second core cj′ to task tx with allocation
Ctx − {cj′} happened when task tz had allocation C ′tz ⊆ Ctz . Therefore, by greedy design the
following relation must hold.

ζ(Ctx)− ζ(Ctx − {cj′}) ≥ ζ(C ′tz ∪ {cj′})− ζ(C ′tz) (4.13)

By adding Equations (4.12) and (4.13) we get,

ζ(Ctx)− ζ(Ctx − {cj , cj′}) ≥ ζ(C ′ty ∪ {cj})− ζ(C ′ty) + ζ(C ′tz ∪ {cj′})− ζ(C ′tz)

But we know from concavity Equation (4.3),
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ζ(C ′ty ∪ {cj})− ζ(C ′ty) ≥ ζ(Cty ∪ {cj})− ζ(Cty)

ζ(C ′tz ∪ {cj′})− ζ(C ′tz) ≥ ζ(Ctz ∪ {cj′}))− ζ(Ctz)

Therefore, we can say

ζ(Ctx)− ζ(Ctx − {cj , cj′}) ≥ ζ(Cty ∪ {cj})− ζ(Cty) + ζ(Ctz ∪ {cj′})− ζ(Ctz)

Above is in contradiction to Equation (4.11). Hence, we prove our step case to be optimal.
Assumption Case: We assume greedy allocations are optimal till cores in core set Cn ⊆ Ctx

are removed from task tx and distributed among remaining tasks in any combination. Following
relationship is assumed to be true.

ζ(Ctx)− ζ(Ctx − Cn) ≥ ζ(Cty ∪ Cn)− ζ(Cty) + ...+ ζ(Ct|T | ∪ Cn|T |)− ζ(Ct|T |) (4.14)

where Cn ∪ ... ∪ Cn|T | = Cn.
Induction Case: We assume in optimal allocations (n+ 1)th core cj is removed from task

tx and given to task ty. Assumption case holds for previously removed core set Cn. Optimal
allocations are then better than greedy allocations if the following equation holds.

ζ(Cty ∪Cn∪{cj})−ζ(Cty)+ ...+ζ(Ct|T |∪Cn|T |)−ζ(Ct|T |) ≥ ζ(Ctx)−ζ(Ctx−Cn−{cj}) (4.15)

Since GPMS chooses to allocate core cj to task tx with allocation Ctx − Cn − {cj} instead
of task ty with allocation Cty ∪ Cn, by greedy design the following relationship must hold.

ζ(Ctx − Cn)− ζ(Ctx − Cn − {cj}) ≥ ζ(Cty ∪ Cn ∪ {cj})− ζ(Cty ∪ Cn)

Adding Equation (4.14) to above equation we get,

ζ(Ctx)− ζ(Ctx − Cn − {cj}) ≥ ζ(Cty ∪ Cn ∪ {cj})− ζ(Cty) + ...+ ζ(Ct|T | ∪ Cn|T |)− ζ(Ct|T |)

The above equation is in contradiction to Equation (4.15), proving that induction step is
also optimal. Hence, greedy allocations under GPMS are proven optimal by induction.

4.2.2. Complexity

Under GPMS, sorting in Step 2 has processing overhead of O(|T | lg |T |). Additionally, binary
search in Step 4 has processing overhead of O(lg |T |). Since Step 4 is repeated |C| times,
total processing overhead of GPMS is O(|T | lg |T |+ |C| lg |T |) or O(max{|C|, |T |} lg |T |). This
overhead is significantly less than O(|C||T |2) processing overhead of DP and even per-core
processing overhead of DPMS of O(|T |2).

Furthermore, GPMS requires maintenance of only one queue data structure with space
overhead of O(T ). On another hand, DP has significantly higher space overhead of O(CT ).
Space overhead of GPMS is though bigger than O(1) space overhead of DPMS. Communication
overhead of GPMS is O(1) similar to DP due to its centralized nature.
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Tasks Multi-Core Simulator (Cycle-Accurate) gem5 [80] Traces (1-8 Cores)

Many-Core Simulator (Trace) with SchedulerFinal Trace (64-256 Cores)

Figure 4.9.: Experimental setup used in evaluation of DPMS and GPMS.

Table 4.1.: List of all tasks used in evaluation of DPMS and GPMS.
Type Task Name

Integer astar, bzip2, gobmk, h264ref, hmmer, mcf, omnetpp, perlbench, sjeng,
twolf, vortex

Float art, bwaves, calculix, equake, gemsfdtd, lbm, namd, povray, tonto
Vision disparity, mser, sift, svm, texture, tracking
Parallel blackscholes, cholesky, fmm, fluidanimate, lu, radix, radiosity, swaptions,

streamcluster, water-sp

4.2.3. Fairness

Optimal performance does not translate into optimal fairness. In fact, performance and fairness
are often contradictory goals [79]. In a work complementary to work presented in this chapter,
we present a distributed scheduler for fair scheduling in many-cores in Chapter 5.

4.3. Experimental Evaluations

4.3.1. Experimental Setup

We use a two-stage adaptive many-core simulator for evaluations as shown in Figure 4.9. We
use simulators because no real-world adaptive many-core platform is available at present. In
the first stage, we use cycle-accurate gem5 simulator [80] with up to eight cores with ARMv7
ISA. Each core is two-way out-of-order core with separate 64KB L1 instruction and data cache.
All cores share 2MB unified L2 cache. L1 caches are 4-way associative, while the L2 cache is
8-way associative with all caches having line size of 64 bytes.

Multi-threaded tasks can run directly on the simulator. For single-threaded tasks, we modify
gem5 simulator to model Bahurupi adaptive multi-core architecture [14] that can execute a
single-threaded task on a virtual core of at most eight cores. With the increase in every core
in simulated multi-core, cycle-accurate simulation time starts to increase exponentially, which
makes cycle-accurate many-core simulations (with hundreds of cores) timewise infeasible. To
bypass this limitation, we first collect isolated execution traces of tasks from the cycle-accurate
simulator, albeit restricted to virtual core size of at most eight. We use a second trace-driven
simulator that operates on these execution traces to model adaptive many-core with up to
256 cores. Akin to other trace-driven simulators, our simulations also cannot capture complex
behavior arising due to shared resource contentions in multi-program execution [81].

We create workloads out of 26 single-threaded, and ten multi-threaded tasks as listed in
Table 4.1. Single-threaded tasks comprise of integer, floating point and vision tasks from
SPEC [82, 83] and SD-VBS suites [84]. Multi-threaded tasks come from PARSEC [85] and
SPLASH-2 [86] suites. In total, we work with 36 tasks listed in Table 4.1. Tasks are compiled
using ARM cross-compiler provided by gcc with “O2” optimization flag enabled. Syscall Em-
ulation (SE) mode is used to execute tasks. SPEC and SD-VBS tasks execute with “ref” and
“full-hd” inputs, respectively. PARSEC and SPLASH-2 tasks execute with “sim-small” input.
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Figure 4.10.: Performance of schedulers on closed 256-core many-core under varisized workloads.

4.3.2. Comparative Baselines

Authors in [74] presented DP based centralized optimal scheduler for multi-cores called Profile,
which takes in execution profiles of all tasks as input and operates on average core-speedups.
We extend this scheduler to Oracle, which maximizes instantaneous IPC in every scheduling
epoch to get our oracular comparison. Unlike Profile though, for a fair comparison, Oracle also
employs IPC prediction from [76] instead of profiling; same as DPMS and GPMS.

Maximize
∑
tj

ζ(Ctj ), given constraint
∑
tj

|Ctj | ≤ |C|

For perspective, we also compare against threshold-based heuristic called Thresh presented
in [87]. Thresh allocates cores to task as long as task’s gain in core-speedup from allocating an
additional core is more than 40%.

4.3.3. Closed Many-Core

We begin with closed5 256-core many-core. Throughput is standard performance metric [32]
for closed many-cores. A scheduler must result in highest throughput. Figure 4.10 shows
throughput with different schedulers under varisized workloads. Experiment evaluates ten
random workloads generated with uniform distribution among all available tasks and reports
the average results. Figure 4.10 shows the performance of both DPMS and GPMS is equivalent
to Oracle. Thresh being heuristic cannot adapt to workloads and hence lags behind.

4.3.4. Open Many-Core

The schedulers are not limited to closed many-cores but can be applied to open many-cores6

as well. Response time – measured as the time difference between task’s arrival and departure
– is standard performance metric [32] for open many-cores. Experiment evaluates ten random
workloads of 1024 tasks with uniform distribution amongst all available tasks and reports the
average results. The arrival time of tasks follows a Poisson distribution. Figure 4.11 shows
response time under different schedulers with varisized workloads. Results show Oracle, DPMS,
and GPMS provide equivalent performance for all workloads.

5Refer Chapter 2.1 for definition of closed many-core.
6Refer Chapter 2.1 for definition of open many-core.
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Figure 4.11.: Performance of schedulers on open 256-core many-core under varisized workloads.
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Figure 4.12.: Rounds until convergence under DPMS on half-loaded closed 256-core many-core.
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Figure 4.13.: Change in throughput for first scheduling epoch until convergence under DPMS on half-
loaded closed 256-core many-core.

4.3.5. Convergence

DPMS organizes itself autonomously to produce better results with every successive round
of core moves until it converges to equilibrium in O(|T |) rounds (Theorem 1) from any given
state. Figure 4.12 shows the number of rounds it takes for DPMS to attain equilibrium in every
scheduling epoch for closed 256-core many-core with a 128-task workload. Convergence can
take a large number of rounds in an initial state if all cores are initially unbounded as many-
core would then require substantial reorganization to reach stability. We can avoid this initial
penalty by starting many-core with a predefined distribution such as allocating equal cores
to all tasks in closed many-core. Distribution would substantially hasten initial convergence
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Figure 4.14.: Scheduling overhead for different schedulers on varisized many-cores under half load.

without affecting underlying performance. We observed in practice that the number of rounds
needed for convergence is far less than predicted worst-case.

Figure 4.13 shows for the first scheduling epoch how throughput increases in general with ev-
ery consecutive round till it reaches the maximum value at convergence. The throughput curve
is not always smooth and increasing due to prediction errors and super-concavity smoothing.

4.3.6. Scalability

The main advantage of DPMS and GPMS over Oracle is their ability to perform scalable
scheduling. In a nutshell, DPMS reduces per-core processing overhead by disbursing processing
across all cores in many-core, but this also increases communication overhead compare to
Oracle. GPMS reduces per-core processing overhead by employing a less computationally
complex algorithm when compare to Oracle. Therefore, it is essential to get a measure of
real-world benefits that DPMS and GPMS provide over Oracle.

Since running schedulers with real workloads cycle-accurately on gem5 are time-wise infea-
sible for large size many-cores, we instead execute the logic of schedulers cycle-accurately with
representative implementations and report observed problem-solving time. We implement Or-
acle and GPMS in C as single-threaded tasks. We implement DPMS as a multi-threaded C++
task. DPMS implementation uses the pthread library to implement one core as one thread. We
subtracted thread spawning overhead from observations because it manifests from the construct
of experiment and will not originate in real-world implementation.

Figure 4.14 shows worst-case overhead observed on varisized many-cores under DPMS,
GPMS, and Oracle on a logarithmic scale. DPMS produces schedule much faster in prac-
tice than Oracle. Oracle requires 7.985ms to produce schedule for 64-core many-core, whereas
DPMS only requires 0.040ms. Therefore, DPMS leads to 200x reduction in total overhead in
comparison to Oracle on 64-core many-core. DPMS produces schedule on 64-core many-core
even faster than GPMS which takes 0.061ms to produce schedule. It is important to note that
DPMS is not faster than GPMS on many-cores with more than 128 cores.

For larger size many-cores, even use of distributed algorithms may have unsustainable over-
head, and perhaps the length of scheduling epoch itself would have to be lengthened beyond
current standard 10ms. It is also not possible for us to combine overhead results shown in Fig-
ure 4.14 with performance result shown in Figure 4.10 for more representative results because
results are obtained using different types of schedulers.
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Figure 4.15.: Normalized throughput and overhead under DPMS on half-loaded closed 256-core many-
core with varisized tiles.

4.3.7. Tiling

Due to performance penalty for maintaining cache-coherency across all spatially separated
cores, a many-core design can cluster cores into shared-cache tiles. [21]. In such tiled many-
cores, only cores within tile will be able to form virtual cores amongst each other. Figure 4.15
shows normalized throughput and overhead (against monolithic 256-core tile) under varisized
tiles on closed 256-core many-core with 128-task workload. Figure 4.15 shows that keeping all
cores in one tile (256-core tile) has no substantial performance advantage over many-core in
which cores are divided equally into two tiles (128-core tile). However, tiling can substantially
reduce scheduling overheads for DPMS. As long as tile size remains sufficiently larger than the
average size of virtual cores formed without tiling restriction, effects on throughput are insignif-
icant. Further reduction in tile size granularity can lead to significant drop in throughput.

4.4. Summary

In this chapter, we proposed a distributed scheduler called DPMS and a centralized greedy
scheduler called GPMS for many-core task scheduling with the goal of maximizing performance.
DPMS theoretically guarantees convergence to the optimal solution in given number of steps
from any state. Since DPMS disburses its processing overhead across all cores in many-core, it
can scale up with increase in the number of cores in the many-core. Similarly, GPMS is also
shown to be very scalable and proven to be optimal.

The scheduling problem studied in this chapter can also be solved optimally using DP based
centralized scheduler called Oracle. Our evaluations show that all schedulers reach equivalent
solutions, but DPMS does so with several times reduction in per-core processing overhead
compared to Oracle. Reduction in the per-core processing overhead under DPMS though
comes at a nominal increase in communication overhead in comparison to Oracle. GPMS can
provide an even more significant reduction in per-core processing overhead than DPMS and
that also without any increase in communication overhead. Therefore, DPMS and GPMS are
more suited for performing task scheduling in many-cores than Oracle as they provide superior
scalability without making any compromise on the quality of schedule. Many-cores bring a new
paradigm shift in processor design which requires a redesign of schedulers with even most basic
goals such as performance maximization. DPMS and GPMS represent a step in that direction.

Performance comes at the cost of fairness in many-cores, which is not suitable for all overlying
systems. We will study the problem of fairness maximization in many-cores in next chapter.
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5. Many-Core Task Scheduler for Fairness
Maximization

This chapter introduces a many-core task scheduler with the goal of fairness maximization.1

Achieving high performance is often the goal of many-core schedulers as discussed in Chapter 4.
However, in some systems wherein many-core is deployed fairness in core allocation among tasks
is more emphasized than performance. For example, in embedded platforms wherein specific
critical tasks should not experience substantial performance degradation to prevent system
failure or in servers wherein tasks from different users agnostically running together should not
experience any discrimination. Many-cores therefore sometimes need to ensure that all tasks
receive their fair share of cores based on their requirements, and performance gain in one task
does not happen at the expense of performance drop in another.

Linux Completely Fair Scheduler [88] is currently most widely used default fair scheduler
in multi-cores. It allocates near-equal execution time slices to tasks so that each task gets
a fair share of multi-core. Authors in [89] extend Completely Fair Scheduler to asymmetric
multi-cores. In multi-cores, the number of tasks dominates the number of cores permitting
applicability of concepts like time slicing. In many-cores on the other hand, the number of
cores outnumbers the number of tasks thereby making the notion of round-robin execution re-
dundant. Additionally, state-of-the-art fair schedulers for multi-cores proposed in research [90]
are innately centralized and will not scale up as we transition from multi-cores to many-cores.

Scalable distributed schedulers for many-cores [91] are mostly performance-oriented and
disregard fairness. Authors in [92] proposed a lightweight runtime centralized fair scheduling
heuristic based on the notion of efficiency that is scalable but results in suboptimal fair sched-
ules. We, on the other hand, propose scheduler in this chapter, which is not only scalable but
is also proven to be optimally fair under certain conditions.

Fair scheduling problem becomes further challenging as processing requirements of tasks keep
changing as they go through different phases of their execution [93]. This behavior results in
task experiencing variable core-slowdown2 during its execution. Core-slowdown is conceptually
inverse to core-speedup used in Chapter 4 but is not its mathematical inverse. Also, as described
in Chapter 4 we again rely upon adaptive many-cores in this work.

Figure 5.1 shows core-slowdown of two tasks – bzip2 and lbm – with one core allocated at
the granularity of every ten million instructions executed. To ensure optimal fairness at all
times, fair scheduler needs to redistribute cores from tasks entering low-requirement phases to
tasks entering high-requirement phases. If cores are scarce, then fair scheduler needs to ensure
that all tasks experience similar resource crunch in the form of near-equal core-slowdown.

We choose variance in core-slowdowns of all tasks as our fairness metric [94]. Variance
here quantifies dispersion in core-slowdowns being experienced by tasks. Variance is zero when
allocations are entirely fair where all tasks are experiencing precisely same core-slowdown.
Variance metric can inherently also detect task starvations. Starvation occurs when a scheduler
denies task opportunity to execute by allocating it zero core. Core-slowdown of a task with
no core allocated is infinite, making the variance in core-slowdowns infinite even if one task
starves. Any scheduler with variance minimization goal must avoid task starvation. There are

1The work presented in this chapter was originally published in [2] c©2016 EDAA.
2Refer Chapter 3 for the definition of core-slowdown.
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Figure 5.1.: Execution profiles of bzip2 and lbm tasks showing changes in their core-slowdowns with
1-core allocation compared to 8-core allocation.
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Figure 5.2.: Initial variance in six non-zero allocations of four cores between two tasks.

other fairness metrics such as ratio of maximum and minimum core-slowdown [95] or advanced
concepts of game theoretic fairness [79]. Scheduler presented here is not limited to variance as
fairness metric and can be used to target other fairness metrics if those metrics also exhibit
specific properties required for convergence and optimality.

5.0.1. Pareto-Optimal Motivation

Fairness should not cause under-utilization in many-core. Figure 5.2 illustrates initial variance
under six different starvation-free allocations of four cores between two tasks (bizp2 and lbm).
Amongst all allocations, the variance is minimum for allocation 〈2, 1〉 at 0.002, but it does not
allocate one of the available cores. This allocation is not Pareto-optimal, which in our context
means that an allocation is possible in which core-slowdown of one task can be decreased
without increase in core-slowdown of another task. Distributed fair scheduler needs to ensure
that it does not converge to such points for sake of fairness. In contrast, allocations 〈1, 3〉,
〈2, 2〉, and 〈3, 1〉 in which scheduler allocates all four cores are not equally fair because of
imbalance in core-slowdowns of two tasks in those allocations. In our example amongst all
Pareto-optimal allocations, allocation 〈3, 1〉 has the lowest variance of 0.015. Note that it is not
always possible to achieve complete fairness (i.e. zero variance) because task can be allocated
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(a) Equal Static Scheduling
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Figure 5.3.: Dynamic fair scheduling can improve fairness over a static equal distribution of cores.

to only discrete number of cores. We define Pareto-optimal allocations with minimum variance
in core-slowdowns of tasks as optimally fair allocations in many-cores.

5.0.2. Dynamic Scheduling Motivation

Figure 5.3 shows the decrease in variance on a 4-core processor that can be provided by opti-
mal (brute force) dynamic fair scheduling. Dynamic fair scheduling redistributes cores every
scheduling epoch in comparison to static scheduling that gives equal cores to all tasks. Brute
force solution is computationally too expensive to run in many-cores. We run two tasks – bzip2
and lbm – on the 4-core processor. Figures 5.3a and 5.3b show the allocations over time with
corresponding instantaneous variance under static and dynamic scheduling, respectively. Fig-
ure 5.3 shows that dynamic scheduling reduces average variance in core-slowdowns by 47.49%
when compared to static scheduling. Reduction in variance is obtained due to back and forth
transfer of core “1” amongst two tasks based on their relative instantaneous demands.

5.0.3. Novel Contributions

We present scheduler called DFMS. DFMS performs dynamic scheduling to ensure that tasks
in many-core experience near-equal core-slowdowns throughout their execution. DFMS dis-
tributes fair scheduling processing overhead across all cores and thereby can scale up with the
increase in the number of cores. The problem of variance minimization is well-studied [96] and
is known to be NP-hard [97] in scheduling for a general case. Still, we show that problem’s
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Figure 5.4.: Execution Flow for DFMS.

convex structures can be exploited to obtain optimal fair schedule in polynomial-time under
some but not all conditions. The problem still remains for the general case.

5.1. Scheduler

Chapter 3 describes common notations used to describe DFMS. We assume all tasks are mal-
leable [39] in this chapter similar to Chapter 4. γ̄(S) denotes average instantaneous core-
slowdown of all tasks in many-core state S. SoS(S) and σ2(S) represent the corresponding
sum of squares of core-slowdowns and variance in core-slowdown in state S, respectively.

γ̄(S) =
1

|T |
∑
ti

γ(Cti) (5.1)

SoS(S) =
∑
ti

γ(Cti)
2 (5.2)

σ2(S) =
1

|T |
∑
ti

(γ(Cti)− γ̄(S))2 (5.3)

Tasks under DFMS transfer cores amongst each other based on a utility function. utx→ty(Cn)
represents utility of transferring core set Cn ⊆ Ctx from task tx to task ty. Variance σ2(S)
by definition is mean of the square of the distance between core-slowdowns and mean core-
slowdown. When task tx transfers core set Cn to task ty, the value of core-slowdowns γ(Ctx)
and γ(Cty) change to γ(Ctx−Cn) and γ(Cty∪Cn), respectively. Their distances from mean core-
slowdown γ̄(S) change. However, transfer of core set Cn also changes the value of mean core-
slowdown itself from γ̄(S) to γ̄(S′), where S′ is modified state after transfer. This change results
in the change in distance from mean core-slowdown for all tasks. The scheduler temporarily
ignores the effect of transfer on other tasks by assuming γ̄(S) ≈ γ̄(S′) to make the problem
more tractable. Therefore, variance from transfer will decrease if the combined change in the
square of the distance of new core-slowdowns from mean core-slowdown is less than before.
This decrease inspires our definition of utility transfer utx→ty(Cn).

utx→ty(Cn) = γ(Ctx − Cn)2 + γ(Cty ∪ Cn)2 − γ(Ctx)2 − γ(Cty)
2 (5.4)

5.1.1. Execution Flow

Figure 5.4 depicts execution flow of DFMS graphically. Initially, all cores are distributed near-
equally amongst all tasks. Every scheduling epoch, series of core transfer rounds take place
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Figure 5.5.: Average core-slowdown in different tasks when allocated different numbers of cores.

to make allocations fairer. Rounds stop when allocations cannot be made any fairer. In every
round, all tasks communicate and exchange their instantaneous core-slowdowns. Tasks then
calculate the utility of transferring cores they hold to every other task. Transfer under DFMS
entails a sacrifice in performance by a task for the welfare of other tasks. During a round,
every task randomly picks another task with which negative utility transfers are possible and
exchanges cores with it. In the round, we restrict the task to interact with only one other task
to prevent oscillating transfers. The task is free to interact with any task including ones it had
previously interacted with in future rounds within same scheduling epoch. Rounds stop for
scheduling epoch when no more negative utility transfers are possible. Tasks then execute with
converged allocations. Rounds commence again in next scheduling epoch till scheduling ends
at user-defined scheduling epoch called “MaxEpoch”. We also need to ensure that there should
be increase in core-speedup of task to which cores are being transferred to ensure Pareto-
optimality. Instantaneous core-slowdowns of tasks can be predicted at run-time using IPC
prediction models for adaptive many-cores presented in [76] to avoid any profiling.

5.1.2. Execution Characteristics

Figure 5.5 shows average core-slowdowns in different tasks when allocated a different non-zero
number of cores. Core-slowdown in the task decreases monotonically with the increase in
number of allocated cores because each allocated core brings with it non-negative increase in
task’s IPC moving it closer to its maximum achievable IPC. Therefore, there is no harm from
keeping cores always allocated to some task.

Core-slowdown in task is also convex with the increase in the number of allocated cores
because the increase in IPC brought by each subsequently allocated core is less than previous
one until it saturates. This behavior is because of saturation of exploitable ILP and TLP in
tasks required to accelerate them. To best of our knowledge, we are the first one to exploit
these convex properties in the context of the fair scheduling problem in many-cores.

5.1.3. Optimal Fairness

We now present proofs for guarantees of optimality and convergence provided by DFMS.

Lemma 5. DFMS converges to Pareto-optimal allocation that minimizes sum of squares of
core-slowdowns SoS in O(|T|) rounds.

Proof. After transfer utx→ty(Cn), sum of squares of core-slowdowns SoS(S) changes to SoS(S′).
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5. Many-Core Task Scheduler for Fairness Maximization

SoS(S′) =
∑
ti

γ(Cti)
2 + γ(Ctx − Cn)2 + γ(Cty ∪ Cn)2 − γ(Ctx)2 − γ(Cty)

2

= SoS(S) + utx→ty(Cn) [∵ Eq. (5.2) and Eq. (5.4)]

So, the sum of squares of core-slowdowns SoS(S′) is greater than SoS(S) when the transfer
utx→ty utility is greater than zero. The sum of squares of core-slowdowns SoS(S′) is less than
SoS(S) when the transfer utx→ty utility is less than zero. Hence, only negative utility transfers
can reduce the sum of squares of core-slowdowns SoS from any given state. Sum of squares
of core-slowdowns SoS cannot be reduced further when no negative utility transfer exists,
and scheduler reaches a minimum. We now prove that this minimum reached theoretically
minimizes the sum of squares of core-slowdowns SoS.

Instantaneous core-slowdowns of tasks in practice are piecewise linear functions that are
computationally expensive to optimize [98]. Based on observations made in Figure 5.5, we
assume that core-slowdown γ(Cti) of task ti is convex-extensible to a non-negative discrete
convex function of allocation Cti . Error introduced by this convex relaxation [99] is minimal.
Since a square of non-negative convex function remains convex, square of core-slowdown γ(Cti)

2

is a convex function of allocation Cti . SoS(S) by definition is then a positive sum of convex
functions, therefore is also a discrete convex function of allocations in state S. All minima of
discrete convex function are its global minima [100].

Since allocations are discrete, there exist an only finite number of negative utility transfers.
Two tasks tx and ty that exchange core set Cn once will not exchange cores again if the
transfer of core set Cn minimizes associated utility unless disturbed by a third task. Transfer
utx→ty(Cn) utility is also a discrete convex function of the size of core set Cn that can be
minimized efficiently using simple gradient descent algorithm. We force tasks under DFMS to
always make transfers that minimize associated utility. Thus, transfers with negative utility
will exhaust in at worst O(|T |) rounds, since a task can interact with at most |T | other tasks
(excluding repeated interactions). DFMS allows transfers only between tasks, and therefore
only Pareto-optimal allocations are explored; hence proved.

Theorem 4. DFMS converges to optimally fair allocation under given performance constraint.

Proof. Beginning with Equation (5.3),

σ2(C) =
1

|T |
∑
ti

(γ(Cti)− γ̄(S))2

=
1

|T |
∑
ti

(
γ(Cti)

2 + γ̄(S)2 − 2γ(Cti)γ̄(S)
)

=
1

|T |

(∑
ti

γ(Cti)
2 +

∑
ti

γ̄(S)2 − 2
∑
ti

γ(Cti)γ̄(S)

)

=
1

|T |

(∑
ti

γ(Cti)
2 + |T |γ̄(S)2 − 2|T |γ̄(S)2

)
[∵ Eq. (5.1)]

=
1

|T |

(∑
ti

γ(Cti)
2 − |T |γ̄(S)2

)

=
1

|T |

(∑
ti

γ(Cti)
2

)
− γ̄(S)2

=
1

|T |
SoS(S)− γ̄(S)2 [∵ Eq. (5.2)] (5.5)
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We measure many-core performance as the sum of core-slowdowns. This performance metric
is different from throughput used as the performance metric in Chapter 4, but both metrics in
practice are positively correlated. We operate DFMS with the extra condition that performance∑

ti
γ(Cti) should not change while performing transfers. Based on Equation (5.1), this makes

mean core-slowdown γ̄(S) constant independent of state S since the number of tasks |T | is also
constant at any given time. Therefore, based on Equation (5.5) variance σ2(S) is minimized
when the sum of squares of core-slowdowns SoS(S) is minimal; hence proved using Lemma 5.

Sum of core-slowdowns can be maximized optimally using DPMS or GPMS introduced in
Chapter 4. Since core-slowdowns saturate after a certain number of allocated cores, they are
convex but not strictly convex. Therefore, there exist multiple allocations with the maximum
performance but not all of them are equally fair regarding variance in core-slowdowns. The-
orem 4 as special case allows the search of allocations with optimal fairness under optimal
performance in polynomial time. To best of our knowledge, we are first to present this result.

5.1.4. Heuristic Fairness

Mean core-slowdown γ̄(S) remains a function of state S without fixed performance constraint.
Negative of the square of mean core-slowdown −γ̄2(S) is then a concave function of state S.
Based on Equation (5.5), variance σ2(S) is a sum of concave function and convex function,
which is neither concave nor convex. This makes variance hard to minimize optimally even
when all tasks have perfectly convex core-slowdowns. For the general case, we change DFMS
into a heuristic distributed local search.

Transfer of core set Cn from task tx to task ty changes value of variance from σ2(S) to
σ2(S′). Let ∆γ and ∆SoS represent the difference between new core-slowdowns and old core-
slowdowns, and the difference between the square of new core-slowdowns and square of old
core-slowdowns after transfer of core set Cn, respectively.

∆γ = γ(Cti − Cn) + γ(Ctj ∪ Cn)− γ(Cti)− γ(Ctj )

∆SoS = γ(Cti − Cn)2 + γ(Ctj + Cn)2 − γ(Cti)
2 − γ(Ctj )

2

σ2(C ′) =
1

|T |
(SoS(S) + ∆SoS)− (γ̄(S) +

∆γ

|T |
)2 [Similar to Eq. (5.5)]

=
SoS(S)

|T |
+

∆SoS

|T |
− γ̄(S)2 −

∆2
γ

|T |2
− 2γ̄(S)∆γ

|T |

= σ2(C) +
∆SoS

|T |
−

∆2
γ

|T |2
− 2γ̄(S)∆γ

|T |
[∵ Eq. (5.5)]

Now variance σ2(S′) < σ2(S) if,

0 >
∆SoS

|T |
−

∆2
γ

|T |2
− 2γ̄(S)∆γ

|T |

> ∆SoS −
∆2
γ

|T |
− 2γ̄(S)∆γ

> ∆SoS − 2γ̄(S)∆γ [∵ |T | >> ∆2
γ in many-cores] (5.6)

We redefine utility as utx→ty(Cn) = ∆SoS − 2γ̄(S)∆γ for minimizing variance under no
performance constraint. Note that this version of DFMS is not optimal because it does not
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guarantee that local minima reached are also global minima. Question of finding a polynomial-
time fairness maximizing scheduler in many-cores independent of performance remains open.

5.1.5. Complexity

Under DFMS, every task does O(|T |) utility calculations in every round. Each utility calcula-
tion utx→ty(Cn) is required to find the size of core set Cn to be transferred, requiring O(|C|)
calculations. Furthermore, there can be at worst O(|T |) rounds. Hence, worst-case complexity
of total calculations is O(|T |2|C|) in a scheduling epoch.

DFMS randomly distributes calculations over |C| cores, and therefore per-core worst-case
calculations are O(|C|2). DFMS has a total communication complexity of O(|T |2) per schedul-
ing epoch as it needs to broadcast O(|T |) messages every round. DFMS has O(1) space com-
plexity since it requires no data structures.

5.2. Experimental Evaluations

5.2.1. Experimental Setup

Experimental setup used in this chapter to evaluate DFMS is same as setup used in Chapter 4.

5.2.2. Comparative Baselines

We compare DFMS against two other schedulers to prove its efficacy. EQUAL is a static fair
scheduler that distributes cores near-equally amongst all tasks. We choose to compare against
this simple approach to show that equal distribution of cores amongst tasks does not result in
fair scheduling even though it is intuitive and scalable.

We also choose to compare against a heuristic-based dynamic fair scheduler for many-cores
called PDPA [92], which works on the notion of “Execution Efficiency” defined as core-speedup
per unit core. Note that Execution Efficiency is neither convex nor concave metric on many-
cores even though core-speedup can be assumed to be concave function as shown in Figure 4.6.
PDPA has two empirically determined thresholds target_eff and high_eff. Tasks are allocated
cores in every scheduling epoch so that their execution efficiencies are between target_eff and
high_eff. We choose to compare against this approach (with default threshold values) to show
that threshold-based heuristics though scalable, can be outperformed. PDPA is modified to
enforce Pareto-optimality for a fair comparison with DFMS.

5.2.3. Optimal Fairness for Fixed Performance

Theoretically, there exist an exponential number of allocations of equal performance with dif-
ferent fairness. In practice, such allocations only exist when there exists a core transfer which
increase in core-slowdown of one task is precisely equal to decrease in core-slowdown in another
task. This case would be at best rare in the real-world with full precision.

We define symbol ∆γ̄ = ∆γ/γ̄(S) as threshold representing a change in the sum of core-
slowdowns over mean core-slowdown. Equation (5.6) can be rewritten as 0 > ∆SoS−2γ̄2(C)∆γ̄

to include threshold ∆γ̄ . As long as threshold ∆γ̄ is kept as close to zero as possible, the variance
can be minimized near-optimally using DFMS.

We run DFMS under threshold |∆γ̄ | ≤ .01, closest to zero we can get in our experiments
for any reconfiguration to happen. Bounds on threshold ∆γ̄ can be relaxed further but only
with the loss of optimality. On closed 256-core many-core with 128-task workload, this results
in 42.95% reduction in variance with only 1.09% change in mean slowdown from initial equal
core distribution. Figure 5.6 shows how the physical distribution of core-slowdowns of tasks
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Figure 5.6.: Distribution of core-slowdowns of tasks around mean core-slowdown before and after DFMS
is applied on closed 256-core many-core with 128 tasks workload with initial equal core
distribution under a performance constraint.

shifts around mean core-slowdown in many-core before and after DFMS is applied. DFMS
substantially reduces dispersion in core-slowdowns resulting in more fairness.

5.2.4. Improved Fairness for Variable Performance

DFMS operates heuristically using Equation (5.6) as the utility when performance is uncon-
strained. Figure 5.7a shows average variance on closed 256-core many-core with varisized
workloads under different schedulers (normalized to EQUAL scheduler). With a full load (256
tasks), an entirely fair allocation is to allocate one core to each task as under any other allo-
cation some task will inevitably starve pushing many-core variance to infinite. All schedulers
can discover the same optimal solution.

The number of surplus cores increases with the decrease in the number of tasks. This sur-
plus results in expansion of optimization search-space, making it more challenging to maintain
fair allocations. Figure 5.7a shows that DFMS results in better fair schedules in comparison to
EQUAL and PDPA under all loads. EQUAL performs worse since tasks have inherently differ-
ent execution patterns resulting in different core-slowdowns for the same number of allocated
cores as shown in Figure 5.5. PDPA does not work because there is no unique set of thresholds
that can result in the optimal fair schedule for all possible workloads.

Another common metric used to measure fairness is the ratio of minimum and maximum
core-slowdown amongst all tasks. Value of “1” for the ratio of minimum and maximum core-
slowdown indicates maximum fairness whereas the value of “0” indicates minimum fairness.
We observed that this metric has a high correlation to variance metric that DFMS optimizes.
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Figure 5.7.: Fairness under different schedulers on closed 256-core many-core with varisized workloads.
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Figure 5.8.: Convergence in series of rounds to optimal fair allocation from equal core distribution under
DFMS on closed 256-core many-core with 128 tasks workload.

Figure 5.7b shows average min-max fairness for different schedulers. Evaluations show that
DFMS also performs better than baselines when using min-max fairness metric. We believe
results would hold for several other fairness metrics not tested here.

5.2.5. Convergence

Figure 5.8 shows how from a state of equal distribution of cores to tasks on closed 256-core
many-core with 128 tasks workload, transfers with negative utility in series of rounds make
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5.3. Summary

Table 5.1.: Different scheduling overheads under DFMS on varisized closed many-cores while operating
at half load. Overheads of the smallest many-core act as the normalizer.

Cores Tasks Total Processing
Overhead

Per-Core Processing
Overhead

Communication
Overhead

128 64 1x 1x 1x
256 128 5.64x 2.74x 1.25x
512 1024 25.90x 6.16x 3.01x
1024 2048 103.82x 12.34x 9.06x
2048 1024 415.69x 24.41x 16.60x

many-core unilaterally converge to fairer allocation in a scheduling epoch. Initially, the scope
of variance minimization is significant, and hence a large number of transfers are made. In sub-
sequent rounds, the number of transfers decreases as DFMS approaches optimization minima.

5.2.6. Scalability

Accurate overhead numbers can only be shown in real hardware and also depends upon the
quality of implementation. Still, we present some proof-of-concept results. In our simulations,
we assume the average number of message broadcasted per scheduling epoch as a rough measure
of communication overhead. We use the average number of floating point operations per
scheduling epoch for determining schedules as a rough measure of processing overhead. Floating
point operations performed across all cores is used to measure total processing overhead. The
maximum number of floating point operations performed by a core amongst all cores is used
to measure per-core processing overhead.

Table 5.1 shows how different overheads increase as we go from 128-core many-core to
2048-core many-core, all with half loads. Observations made are in sync with the theoretical
complexity of DFMS stated in Section 5.1.5.

5.3. Summary

In this chapter, we proposed fair scheduler for many-cores called DFMS. DFMS is a lightweight
distributed dynamic scheduler that can be applied at runtime for constant partial reallocation
of cores to maintain fair allocation at all times even under continuously changing processing
requirements of tasks. DFMS is proven theoretically to converge to the optimal fair allocation
for given performance. When performance is not given, DFMS is forced to operate as a sub-
optimal local-search heuristic. DFMS distributes its processing overhead across all cores. As a
result, it can scale up as the number of cores in the many-cores increase.

The scheduler presented in this chapter, as well as schedulers presented in Chapter 4, focus
on determining the number of cores allocated to tasks to maximize fairness and performance of
many-core, respectively. Schedulers proposed till now assume all cores to be of equal importance
to tasks and ignore actual spatial location of these cores on many-core.

In practice, all cores are not equivalent to a task, and some cores such as cores close to set
of cores already allocated to the task are more valuable to the task than cores located far away.
In next chapter, we discuss how without even modifying the number of cores allocated to tasks
their execution can be accelerated just by rearranging allocations using thread migrations via
the process of defragmentation. We also move to a more real-world representative experimental
setup in the next chapter. The setup used till now is unable to model sensitivity of a task
towards spatiality of its allocated cores and hence is inadequate.
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6. Many-Core Task Defragmenter

This chapter introduces a scheduler with the goal of task defragmentation (defragmenter)
in many-cores.1 Diverging from Chapter 4 and 5, we now use tile-based non-adaptive ho-
mogeneous many-core in this chapter. Cores in this many-core are spatially placed in two-
dimensional lattice connected by mesh NoC as shown in Figure 6.1. The cores have private
L1 instruction and data caches, and private L2 cache. Core along with its caches form a tile.
Each tile connects through a router to four adjacent tiles - one in each direction. Tiles are kept
coherent using cache-directories distributed alongside LLC. Multiple MCs attached to perime-
ter cores provide access to off-chip Dynamic Random-Access Memory (DRAM). Many-core has
Dynamic Non-Uniform Cache Access (D-NUCA) caches.

Intel’s SCC [101] uses similar many-core architecture but with message-passing instead of
cache-coherency and has two cores per-tile. Though this chapter does not explore message-
passing based many-core, spatially sensitive multi-threaded execution model at OS level con-
ceptually remains same for it as cache-coherent many-core with D-NUCA caches. Therefore,
this chapter applies to both types of many-core architectures.

A multi-threaded task on many-core, in general, executes faster when the set of cores al-
located to it are contiguous (spatially connected by isolated NoC link) and compact (shape
formed by allocation has minimum perimeter). Under such allocation, communication overhead
between task’s threads spread over the allocation is minimal. Figure 6.2 shows performance
loss experienced by different multi-thread tasks on 64-core many-core when we pin their four
threads to four corner cores of many-core against when we pin the threads together at the cen-
ter of many-core. Performance loss observed in tasks strongly correlate with their characterized
inter-thread communications [85].

The relative benefits from thread co-location would, in general, increase with the increase
in the number of spawned threads for a task because of increase in inter-thread synchroniza-
tions. Furthermore, under contiguous allocation inter-thread NoC-traffic generated by one task
remains isolated and does not interfere with another task’s NoC-traffic. This isolation reduces
NoC-congestion, enhancing many-core’s multi-program performance.

Task defragmentation is vital in open many-cores. Depending upon instruction lengths (in-
put sizes) and compositions, the number of cores allocated (threads spawned), and inter-thread
communication execution time of different tasks can differ widely. Therefore, we neither know
arrival nor departure time of a task in open many-core. Over a span of time, this results in un-
allocated cores getting scattered all over many-core generating gaps (fragments) in allocations.
Formation of these gaps leads to the problem of fragmentation in many-cores.

Fragmentation makes it difficult to perform efficient contiguous compact allocation of new
incoming tasks. Defragmenter can reduce fragmentation by consolidating smaller gaps into
larger gaps. Defragmentation would lead to a more responsive open many-core. A centralized
defragmenter is sufficient for multi-cores. However, for many-cores given the massive optimiza-
tion search-space it would not scale up. Therefore, a distributed defragmenter which distributes
its overheads across all cores and allows multiple gaps to merge in parallel is required.

1The work presented in this chapter was originally published in [6] c©2017 ACM.
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Figure 6.1.: An abstract block diagram of a tiled many-core.
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Figure 6.2.: Performance loss in different multi-threaded tasks due to non-compact allocation.

6.0.1. Defragmentation Motivation

Figure 6.3 shows with simple illustration how fragmentation leads to inefficiency on 64-core
many-core. Initially, many-core is executing a total of six tasks as shown in Figure 6.3a. Tasks
t1 (blackscholes) and t6 (x264) finish, and leave the many-core changing state to Figure 6.3b.
Task t7 (bodytrack) then arrives with a requirement of sixteen cores. Figure 6.3c shows state and
corresponding execution time of task t7 if we allocate it without defragmentation. Figure 6.3d
shows the state in an alternate timeline if defragmentation is performed first by migrating
task t5 (streamcluster) in the middle of its execution before allocation of task t7 . Figure 6.3e
shows state and corresponding execution time of task t7 with allocation after defragmentation.
Experiments show that execution time of task t7 is reduced by 30ms (10.16%) in the state
depicted by Figure 6.3e in comparison to the state depicted in Figure 6.3c because of optimized
inter-thread NoC communication.

In contrast, the performance penalty of migration on task t5 for defragmentation is compar-
atively less at 14ms (3.92%). The task t5 experiences elongated execution because defragmen-
tation forces its threads to experience cache-misses on the newly allocated core. Nevertheless,
we observe that net gain in overall performance is positive.
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: Task t1 (blackscholes)
: Task t2 (dedup)
: Task t3 (swaptions)
: Task t4 (canneal)
: Task t5 (streamcluster)
: Task t6 (x264)
: Task t7 (bodytrack)
: Empty Cores

(a)
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Task t7
Arrives
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(c)

Task t7 Execution Time
(295 ms)

Task t7 Execution Time
(265 ms)

Task t5 Execution Time
(357 ms)

Task t5 Execution Time
(371 ms)

10.16% Reduction

3.92% Increase

(d)

Task t7
Arrives

(e)

Figure 6.3.: The benefit of task defragmentation in open 64-core many-core.

6.0.2. Problem Complexity

The problem of many-core defragmentation is identical to the problem of placing polyominoes.
Polyominoes are geometric shapes formed by combinations of simple unit square shapes. Fig-
ure 6.4 shows five distinct shapes that can be formed by tetromino (polyomino of size four)
alongside their Average Manhattan Distances (AMDs).

AMD of a polyomino shape is average of all rectilinear distances between unit squares
forming the shape in two-dimensional space. Rectilinear distance is the shortest distance
between two points on XY grid. A unit square is analogous to the allocation of one core on
many-core. A task’s performance with contiguous allocation negatively correlates to AMD of
polyomino shape formed by its allocation. Figure 6.4 shows the execution time of streamcluster
with allocations in different tetromino shapes.

The number of shapes that polyomino of given size can form grows super-exponentially due
to its combinatorial nature and is given by Online Encyclopedia of Integer Sequences (OEIS)
sequence A000105 [102]. Furthermore, placing a set of polyominoes on to larger underlying
polyomino without overlapping is an NP-hard problem [103]. The problem manifests while
defragmenting many-cores making the problem of many-core defragmentation also hard.

This work focuses on open many-cores wherein time for both arrival and departure of a
task is unknown. Incoming tasks can be allocated on many-core either contiguously or non-
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Figure 6.4.: Different distinct shapes of tetromino; polyomino of size four.

contiguously. Contiguous allocation stipulates that cores allocated to the task must always be
spatially connected, whereas non-contiguous allocations enforce no such restrictions.

Contiguous allocation ensures that NoC latency experienced by task threads when com-
municating is minimal as they are spatially collocated. Furthermore, it also ensures isolation
of inter-thread NoC communication traffic between tasks executing in parallel reducing NoC
congestion. Even under contiguous allocation there will be some external NoC interference
due to OS, cache-directories, and MCs on the periphery. Thus, contiguous allocation improves
system performance by optimizing NoC communication. SHiC contiguous allocation heuristic
introduced in [104] uses smart stochastic hill-climbing in an attempt to allocate incoming tasks
contiguously with minimal fragmentation.

Non-contiguous allocation, on the other hand, optimizes many-core utilization at the expense
of communication. It often occurs in open many-core that there are enough unallocated cores
available to satisfy the requirement of an incoming task, but they are not spatially connected.
Non-contiguous allocation does not wait for the required number of spatially connected cores
to become available but instead allocate them immediately to whichever cores are available
irrespective of their locations. This strategy reduces the waiting time for task but affects
its performance throughout execution due to increased communication overhead. In multi-
program workload execution, non-contiguous allocation also degrades the performance of not
just the new incoming task but also previously allocated tasks due to NoC congestion. CASqA
non-contiguous allocation heuristic introduced in [105] initially attempts to allocate incoming
task contiguously, but if there are not enough contiguous unallocated cores available, then it
uses nearby cores to allocate remaining task non-contiguously.

Both SHiC and CASqA attempt to reduce fragmentation. However, their efficacy is limited
because they to do not perform any thread migrations. Defragmenter combines multiple sets of
non-contiguous unallocated cores into a single contiguous set of unallocated cores by perform-
ing thread migrations. The incoming task is then allocated efficiently to this newly created
contiguous unallocated core set. However, thread migrations involved in defragmentation in-
troduce performance penalties on migrated threads due to cold cache misses on newly allocated
cores. Therefore, defragmenter needs to be careful not to perform too many thread migrations
or risk being detrimental instead of being beneficial to overall many-core performance.

Furthermore, many-core defragmenter should also be scalable so that it continues to operate
efficiently as the number of cores in many-core increases. Distributed defragmenter provides
the required scalability [91]. Authors in [106] presented ADAM heuristic defragmenter for a
tiled many-core. Neighboring tiles under ADAM rearrange unallocated cores to make space for
an incoming task via thread migrations. ADAM operates only on locally available information
and is bound to get stuck in local minima, which may not be optimal.

Past research tackles many-core fragmentation problem by proposing suboptimal defrag-
mentation heuristics. We, on the other hand, solve a constrained version of many-core frag-
mentation problem optimally in this work. Our evaluations show that our constraint-optimal
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6.1. Exponentially Separable Allocations

n = 0 n = 1 n = 2 n = 3 n = 4

Figure 6.5.: Different size ESA polyominoes.

approach can result in substantial performance gains on many-core enforcing constraints com-
pared to state-of-the-art heuristics.

6.0.3. Novel Contributions

In this work, we present our idea of Exponentially Separable Allocation (ESA), which defines
task allocation constraints on many-core. We show that this allocation exhibits properties that
allow optimal distributed many-core defragmentation. We also introduce a defragmenter called
Many-Core Defragmenter (McD). McD exploits ESA properties for optimal defragmentation of
many-cores. McD disburses its processing overhead across all unallocated cores in many-core
allowing it to scale up as the number of cores in many-cores continue to increase in future.

6.1. Exponentially Separable Allocations

We begin by introducing our novel idea of ESA that specifies set of allocation constraints for
many-cores. ESA puts constraints on the number of cores that can be allocated to a task,
shape of polyominoes these cores can form and physical location of those polyominoes. ESA is
akin to the projection of binary buddy system [107] in two-dimensional space [108], but with
inherent support for distributed optimization.

6.1.1. Number Constraint

ESA requires that size of allocation must be in exponentiation series with base two (or power
of two) i.e. 1, 2, 4, 8, ... 2n cores. If a task comes with a core requirement that is not a power
of two, its requirement is buffered up to next highest (ceiling) power of two. Task executes
faster with more number of allocated cores as discussed in Chapter 4. Thus, by spawning more
threads task would experience an equal or lower response time than response time it would
have experienced if buffered cores were left idle; preventing system underutilization. On the
other hand, this constraint also limits defragmentation benefits for non-scalable tasks, which
are not allowed to or are incapable of spawning additional threads on buffered cores.

6.1.2. Shape Constraint

ESA requires that allocation forms rectangular polyomino with the minimum perimeter. We
define polyominoes that follow shape constraint along with number constraint as ESA poly-
ominoes. ESA polyomino of size 2n can be obtained by symmetrically reflecting size 2n−1

ESA polyomino along one of its edges. If n is odd, reflection happens along the x-dimensional
edge. If n is even, reflection happens along the y-dimensional edge. Figure 6.5 visualizes ESA
polyominoes of different sizes. ESA also requires many-core to be an ESA polyomino.
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Figure 6.6.: Different size separations of a 16-core processor.
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Figure 6.7.: Example of allocations that are not ESA.

6.1.3. Location Constraint

ESA requires that ESA polyomino of size 2n must not get separated in nth separation of many-
core. nth separation of many-core divides many-core into non-overlapping ESA polyominoes
of size 2n, individually referred to as nth slice. Figure 6.6 shows some of the different size
separations of a 16-core processor. Note that ESA polyomino that does not get separated in
nth separation will also not get separated in (n + 1)th separation as latter produce slices that
are larger and subsume slices produced by former.

Figure 6.7 shows simple examples of allocations that are not ESA. Figure 6.7a has a task
with three cores allocated to it, which violates number constraint. Figure 6.7b has a task with
four cores (22 cores) allocated to it but polyomino these cores form violates shape constraint.
Figure 6.7c has a task allocated to four cores and polyomino these cores form has the right
shape. However, this polyomino gets split in 2nd separation violating location constraint.

6.1.4. Optimal Defragmentation

We now present proofs for properties ESA possesses. McD can exploit these properties to
perform optimal and distributed defragmentation of many-core that enforces ESA.

Lemma 6. Set of ESA polyominoes with total polyomino size ≤ 2n can be split into two sets
of ESA polyominoes with total polyomino size ≤ 2n−1.

Proof. Singleton set of ESA polyomino contains only one element which we cannot split further.
For a set of ESA polyominoes with cardinality higher than one, the proof is equivalent to proving
that we can split power of two number 2n into two sets of the smaller power of two numbers each
having a sum equal to 2n−1. Figure 6.8 shows binary tree representing all possible combinations
in which smaller power of two numbers can be combined to form larger power of two number
2n. We can reach root 2n only when constituent numbers form two separate set, each with a
total sum equal to 2n−1. We can extend proof to total sum ≤ 2n by removing same numbers
from the original set, and two derived separated sets; hence proved.
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Figure 6.8.: The split of a power of two number 2n into the smaller power of two numbers.

Lemma 7. Set of ESA polyominoes of total polyomino size ≤ 2n can be allocated without
overlapping onto many-core in shape of ESA polyomino of size 2n.

Proof. If the set of ESA polyominoes to be allocated is a singleton, then it can be allocated
on many-core, latter being ESA polyomino of greater or equal size in comparison to former. If
the set has cardinality higher than one, then based on Lemma 6 it can be separated into two
sets of polyominoes of total polyomino size ≤ 2n−1 each. In parallel, (n − 1)th separation of
many-core will divide it into two equivalent many-cores (two (n− 1)th slices) each in shape of
ESA polyominoes of size 2n−1. Each part of the separated many-core can be allocated to one of
the separated sets of ESA polyominoes. We can then allocate each part of separated many-core
to one of the separated sets of ESA polyominoes. We can repeat argument recursively till we
allocate all polyominoes without overlapping on many-core. The allocations obtained satisfy
ESA as they violate none of the constraints; hence proved.

Lemma 8. If any of nth slices obtained from nth separation of ESA enforcing many-core
contains more than one ESA polyomino allocated to it, then all allocated ESA polyominoes in
that slice are of size ≤ 2n−1.

Proof. Under location constraint imposed by ESA, ESA polyomino of size 2n cannot get sep-
arated in nth separation of ESA enforcing many-core. In other words, it would not share nth

slice it is allocated on with any other ESA polyomino. Sharing can happen only in (n + 1)th

or larger slice; hence proved.

6.2. Defragmenter

Chapter 3 describes the common notations used to describe McD. We assume all the tasks
to be moldable2 in this chapter. Let G represent set of |G| gaps in many-core, indexed by
gl. Let Cgl ⊆ C denote the set of |Cgl | unallocated cores forming gap gl in shape of an ESA

2Refer Chapter 2.2 for the definition of a moldable task.
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Stop

Figure 6.9.: Actions performed by a gap of size 2n to merge with another gap of the same size.

polyomino. We also assume that the many-core will be itself in shape of an ESA polyomino.
Let ||G|| represent the total number of unallocated cores in the many-core.

||G|| =
∑
gl

|Cgl |

Trivially ||G|| = |C| when many-core is empty. We assume First-In, First-Out (FIFO)
waiting queue in our open many-core. |Ctx | means core requirement of task tx waiting in front
of the queue. Under ESA, |Ctx | must be number that is a power of two. Based on Lemma 7,
we know if core requirement of task in front of the queue |Ctx | ≤ ||G|| then the task can always
be allocated to ESA enforcing many-core. In non-preemptive many-core like one assumed in
this chapter, if core requirement of task in front of the queue |Ctx | > ||G|| then incoming tasks
can never be allocated. The incoming tasks then need to wait in the queue for one or more of
previously allocated tasks to leave many-core. The objective of McD is to keep the number of
gaps |G| = 1 and that also always in an shape of ESA polyomino.

6.2.1. Merging Gaps

Merging of gaps happens in series of rounds. Figure 6.9 shows actions performed by a gap
(using any one of its unallocated constituent cores) in a round. At the start of every round,
gap communicates with other gaps and pairs up with one having the same size. For example,
let gaps ga and gb pair up with each other, such that |Cga | = |Cgb |. Now they want to merge to
form a gap of size |Cga |+ |Cgb | = 2|Cga | = 2|Cgb |. Let τga and τgb be two slices in ln(|Cga |) + 1
separation containing gaps ga and gb, respectively. Gap ga (or gb) holds half of slice τga (or
τgb) as unallocated cores. Based on Lemma 8, all other tasks allocated in slice τga (or τgb) are
self-contained in remaining filled half of the slice. Thus, gap ga (or gb) can swap filled half
of slice τga (or τgb) with unallocated cores in slice τgb (or τga) to merge with gap gb (or ga)
without violating ESA. Another pair of gaps gc and gd can swap in parallel as long as neither
gap gc nor gd is inside slice τga (or τgb). Otherwise, merging of gaps gc and gd is skipped in
this round. Therefore, a merging of smaller gaps is delayed in favor of merging of larger gaps
when overlapping. After all parallel swaps finish, next round begins. Rounds end when no
more pairings between gaps can occur.

Theorem 5. McD performs optimal defragmentation of many-core that enforces ESA.

Proof. Let us assume McD is suboptimal. After McD has finished defragmentation, there
does not exist gap gy such that |Cgy | ≥ |Ctx | when the total number of unallocated cores
||G|| ≥ |Ctx |, where |Ctx | is the core requirement of task tx in front of FIFO queue. Based
on Lemma 8, there can exist at most one gap of size |Ctx |/2; otherwise, McD would have
merged two of them to create a gap of size |Ctx |. Recursively there can exist only at most
one gap of size |Ctx |/4, |Ctx |/8 and so on. Therefore, the total number of unallocated cores
||G|| ≤ |Ctx |/2 + |Ctx |/4 + ... + 1 ≤ |Ctx | − 1. Based on this argument total number of
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Figure 6.10.: Execution flow for McD.

unallocated cores ||G|| < |Ctx |, which is a contradiction to our original statement total number
of unallocated cores ||G|| ≥ |Ctx |; hence proved.

It is important to note that McD only claims optimality concerning system performance in
the final state (defragmented) obtained. The problem for reaching one state (fragmented) to
another state (defragmented) in a minimum number of steps (optimal number of task migra-
tions) on many-core is similar to optimally solving the sliding-puzzle problem [109], which is
also an NP-hard problem. We do not cover the problem of defragmentation of many-cores in
the minimum number of task migration in this dissertation.

6.2.2. Execution Flow

Figure 6.10 shows execution flow of McD. Every scheduling epoch, McD can be invoked to
perform allocation of incoming tasks and defragmentation, if required. Many-core is initially
idle, and there is only one gap controlling all unallocated |C| cores. McD then checks whether
FIFO queue is not empty (|Ctx | 6= 0). If it is empty, then McD waits for the first task to arrive.
If the queue is not empty, then tasks are picked from the queue and are allocated on many-core
under ESA constraints on First-Come, First-Serve (FCFS) basis till McD can allocate no more
tasks. FCFS also ensures there is no task starvation in many-core.

Based on Lemma 7, if |Ctx | ≤ ||G|| then there is scope for more tasks to be allocated in
many-core. However, if there is no contiguous gap of size ≥ |Ctx |, fragmentation prevents
further new allocations. McD then invokes series of gap merging rounds to defragment many-
core. Process of allocation of incoming tasks is invoked again once the rounds stop. McD
iteratively repeats the process until queue empties (|Ctx | = 0) or task in front of queue is
too big to be allocated on many-core (|Ctx | ≥ ||G||). McD then executes allocated tasks for
the time defined by scheduling epoch. Tasks which are completed leave system at the end of
scheduling epoch, creating new gaps. Many-core halts when the number of completed tasks
reaches user-defined Max. Otherwise, new scheduling epoch commences on many-core.

6.2.3. Illustrative Example

Figure 6.11 illustrates defragmentation performed under McD on a 32-core processor executing
seven tasks. Incoming task t8 requires eight cores. Figure 6.11a shows eight unallocated cores
are available on the processor in the initial state, but these unallocated cores are fragmented
all over processor in the form of four gaps of size two each. Many-core invokes McD for
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Task t1 Task t2 Task t3 Task t4 Task t5 Task t6 Task t7 Task t8 Empty Core
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Task t1 and Gap gb Swap

Task t4 and Gap gd Swap

(a) Initial State

Gap ga Gap gc

(b) Round 1

Gap ga

Task t1 and t2, and Gap gc Swap

(c) Round 2

Task t8 Allocated

(d) Final State

Figure 6.11.: An illustrative example of distributed defragmentation performed under McD on a 32-core
processor with seven initial tasks.

defragmentation to allocate task t8 contiguously on the processor. Let gaps ga, gb, gc, and gd
represent four gaps on many-core in the initial state. Gap merging rounds now begin.

Round 1: gap ga pairs up with gap gb and simultaneously gaps gc and gd pair up. Gap
ga takes control of task t1 as they share slice in 2nd separation and swaps it with gap gb. In
parallel, gap gc takes control of task t4 and swaps it with gap gd. Figure 6.11b shows the
resultant state after swaps. Gaps gb and gd now no longer exist.

Round 2: remaining gaps ga and gc pair up. Gap ga takes control of tasks t1 and t2 as they
share slice in 3rd separation, and swap it with gap tc. Gap gc now no longer exist. Figure 6.11c
shows the resultant state. Rounds now stop because there are no more gaps to merge. McD
now allocates task t8 over gap ga as shown in Figure 6.11d and all tasks resume execution.

6.2.4. Complexity

On |C|-core many-core, there can be at most O(|C|) gaps to merge. This merging will take
O (ln |C|) rounds under McD. In every round, every gap performs at worst O (|C|) calculations.
Thus, in total there is O (|C|2 · ln |C|) processing overhead with per-core processing overhead
being O (|C| · ln |C|). Every round involves broadcasting at most O (|C|) messages; hence in
worst-case total communication overhead is O (|C| · ln |C|). Since McD does not require any
data structure, space overhead is O (1).
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Table 6.1.: The system configuration of simulated many-core architecture.

Cores 64 x86-64 out-of-order cores

L1 Cache split I & D, 16KB, 4-way, 64B block, 3 cycle access latency

L2 Cache private 64KB, 8-way, 64B block, 8 cycles access latency

Directory Modified Shared Invalid (MSI) coherence

Network
2-D mesh, 4 cycles per hop latency, 256 bits/cycle bandwidth,

XY routing

Memory 1GB, 80-cycle access latency, 4 MCs on 4 edges

Tasks
blackscholes, bodytrack, canneal, dedup, ferret, fluidanimate,

streamcluster, swaptions and x264

Task Model multi-program, multi-threaded

System Model one thread per-core using private LLC, FIFO task queue

6.3. Experimental Evaluations

6.3.1. Experimental Setup

We evaluate McD using Sniper interval simulator [110]. In comparison to time-wise infeasible
cycle-accurate simulator like gem5 [80], Sniper allows for multi-program simulations in reason-
able time. On the other hand, in comparison to trace-based simulators as used in Chapters 4
and 5 Sniper allows for more accurate and realistic multi-program simulations.

Figure 6.1 shows the conceptual block diagram of many-core architecture used in this work.
The architecture consists of 8x8 cores (tiles) connected using two-dimensional mesh NoC imple-
menting XY routing with a latency of 4 cycles/hop and links with a bandwidth of 256 bits/cycle.
We used 64-core many-core for evaluations as the simulation of multi-program execution in big-
ger many-cores was difficult due to simulation-time constraints even with Sniper.

Each tile consists of out-of-order Intel Gainestown core running at 1GHz implementing
x86-64 ISA with private 4-way associative 16KB L1 instruction and data caches. Many-core
distributes 8-way L2 cache (4MB) across chip with 64KB bank of private L2 residing with
each tile. Caches are kept coherent using directory-based MSI protocol and use Least Recent
Used (LRU) page replacement policy. 1GB off-chip DRAM accessed using four MCs along
four edges of many-core serves as the main memory. Hit latencies of L1 caches, home L2 bank,
and main memory are set at 3, 8, and 80 cycles, respectively. We use OS-level page allocation
instead of traditional address interleaved cache-directories for managing the L2 banks [111].

McD is equally applicable if LLC was shared by all cores, instead of being private. Con-
ceptually it makes no difference for McD if message-passing replaces cache-coherency. Though,
changes in topology such as having more than one core per tile can potentially make the prob-
lem of many-core fragmentation NP-hard again even under ESA constraints. Therefore, minor
changes to underlying system architecture may or may not break McD’s optimality and need
to be carefully studied in details individually on a case to case basis.

In software, we use multi-threaded tasks from PARSEC [85] suite with sim-small input.
We choose sim-small input because next smaller input sim-dev input was not representative
enough of real-world tasks, while next larger input sim-medium took too long to simulate. We
also found instruction count of sim-small inputs is sufficiently large enough to stress caches on
our simulated system in a meaningful way. Among thirteen available tasks in PARSEC, we
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Table 6.2.: Number of thread spawning count (master and slaves) supported by PARSEC tasks.
Tasks Threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
blackscholes - x x x x x x x x x x x x x x x
bodytrack - - x x x x x x x x x x x x x x
canneal - x x x x x x x x x x x x x x x
dedup - - - x - - x - - x - - x - - x
ferret - - - - - - x - - - x - - - x -

fluidanimate - x x - x - - - x - - - - - - -
streamcluster - x x x x x x x x x x x x x x x
swaptions - x x x x x x x x x x x x x x x

x264 x - x x - - - - - - - - - - - -

discard two tasks freqmine and vips due to unresolved PIN errors. PIN [112] is closed-source
binary instrumentation tool from Intel used inside Sniper simulator which prevents debugging
of its error. Furthermore, we discard two tasks facesim and raytrace discarded due to lack of
sim-small input. Table 6.1 summarizes configuration of simulated many-core. Table 6.2 notes
the number of different threads we can use to execute different PARSEC tasks. All tasks were
limited to produce a maximum of 16 threads.

6.3.2. Implementation Details

We integrate McD with default Pinned scheduler of Sniper. We implement McD as multi-
threaded distributed task written in C with master-slave thread model. We spawn McD’s
master thread at the start of the simulation and then put it to sleep. At the end of each
scheduling epoch (10ms of simulated system time), time-trigger interrupt wakes main McD
thread in any random unallocated core. Master thread then checks the status of many-core like
the number of unallocated cores and the number of tasks in FIFO queue and then determines if
defragmentation is required. If defragmentation is indeed required, McD then determines one
unallocated core within each gap which is responsible for gap’s merging related calculation.
For each gap, master thread spawns a slave thread on the chosen unallocated core that has the
gap’s responsibility. The master thread itself also holds responsibility for one of the gap.

Threads synchronize with each other using memory, and all coherency traffic travels via
NoC. Migration of PARSEC threads is performed by McD threads using custom extensions to
Sniper’s magic instructions. Suspension, resumption, and placement of McD threads are done
by Sniper scheduler using default native instructions. When all McD threads except master
thread have terminated, defragmentation is complete. Master thread then allocates new tasks
from FIFO queue on the many-core and then goes back to sleep. It is important to note
that all McD threads mostly operate on unallocated cores and minimal context switching with
PARSEC threads is required. McD threads operate by manipulating thread-to-core affinities
of PARSEC threads and bulk of actual thread migration and context switching heavy-lifting is
left to default Sniper scheduler to be performed internally. This implementation is designed to
work particularly with Sniper and may not be the best design for real-world many-core.

Tasks from PARSEC run in a master-slave configuration, where one master thread is invoked
first which later spawns more threads. Therefore, in one-thread per-core execution model em-
ployed for our simulated many-core minimum number of cores we allocate to a task, in general,
is two. The exception to this is bodytrack, ferret, and x264 with the minimum number of pos-
sible core allocations being three, seven and one, respectively. Figure 6.12 shows performance
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Figure 6.12.: Performance gains in multi-threaded tasks on varisized allocations.

gain in different tasks when allocated varisized ESA polyomino shape allocations with respect
to the smallest size ESA polyomino shape allocation permissible. The observed performance
gain, in general, starts to saturate with the increase in the size of the allocation. Performance
gain saturates because of saturation in exploitable TLP in tasks, increase in inter-thread com-
munication overheads and also because of the inability of some of the tasks to spawn enough
threads to utilize all of the allocated cores. Thus, in our experiments we limit the number of
cores allocated to task to level it can still draw benefits. We also set the upper limit on the
size of allocation to sixteen, which is reasonable given the size of our simulated many-core.

For each reported result, we execute multiple multi-program workloads. Each workload
comprises of twenty tasks with each task projecting random core requirement. Simulation-
time constraints prevent evaluation of larger size or number of workloads. The arrival time
of tasks in workload follows Poisson distribution. Due to peculiar nature of defragmentation
problem, many-core will not require defragmentation if core requirements of tasks are too
small in comparison to the size of many-core as most tasks then would fit inside comfortably.
Similarly, if core requirements of tasks are too large, we will also not require defragmentation
as few tasks will occupy entire many-core. Thus, we also set the lower limit and upper limit of
core allocation to task to four and sixteen cores, respectively. We empirically found limits to
be reasonable given the size of our simulated many-core.

6.3.3. Optimizations

We implement a couple of optimizations over default Sniper to improve NoC-traffic isolation
in cache-coherent many-core architecture as shown in Figure 6.13. Sniper by default uses
address interleaving for placing data on distributed L2 cache and separating accesses from
MCs to main memory. Each private L2 bank stores directory entries for a predefined range of
addresses. Hence, cache-directory responsible for cache blocks of given task can be present in
any of the banks. Additionally, banks can use all MCs for fetching data from main memory
when they encounter a miss event. This can result in tasks accessing all the banks and MCs
providing no isolation. Without isolation, there are no clear benefits from defragmentation.
Figure 6.13a shows two tasks t1 and t2 on 64-core many-core end up accessing all the banks
irrespective of their location under default Sniper.

Inspired by D-NUCA design in [111], we ensure that banks of cores on which threads of a
multi-threaded task are executing serve task’s main memory accesses. Authors in [111] utilize
interleaving at page granularity for allocating pages to distributed L2 cache. Whenever task
requests a new page, OS chooses free pages from main memory that are serviceable by requesting
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(a) No Optimization (b) Optimized Directory

:Empty Cores :Task t1 :Task t2

:Unused Router :Used Router :Unused Controller :Used Controller

(c) Optimized Directory and Controller

Figure 6.13.: Optimizations for achieving NoC-traffic isolation on cache-coherent many-core.

core’s task allocation. Due to lack of OS in Sniper simulator, we were forced to achieve the
equivalent effect by modifying address lookup function in Sniper code-base. Figure 6.13b shows
advantage of using this optimization regarding bank accesses, but we still have traffic going to
all MCs which breaks NoC isolation.

For preventing tasks from accessing all MCs, we make the entire address space accessible to
all controllers. Parallel accesses to the same address are synchronized using an off-chip priority
queue as mentioned in [113]. We also ensure that NoC-traffic on a L2 cache miss always goes
to the closest MC amongst all controllers. The benefits can be seen in Figure 6.13 (c), where
both allocated tasks achieve almost complete NoC isolation. To obtain maximum benefits from
these optimizations, amongst all the cores allocated to a task, we place the master thread of
that task on the core which is closest to any of the MCs.

In this work, we perform all simulations in the multi-program mode with full modeling of
cache-contention, NoC-contention, memory-contention, and performance penalties from task
migrations. Single simulation of twenty task workload took approximately on average ten
hours to complete on Intel Core i7 processor.

6.3.4. Performance Metric

Average response time is the standard performance metric [32] for open many-cores, which a
defragmenter must minimize. The response time of a task is the time between its arrival and
departure time. It is the sum of waiting and servicing time. Waiting time is time task spends
in the queue before allocation. Servicing time is time task needs after allocation to complete
execution. Average response time for the workload is mean of response times of all its tasks.

6.3.5. Basic Comparative Baselines

To show the effectiveness ofMcD, we choose to compare against two straightforward approaches
Contig and Non-Contig representative of the schedulers that performs contiguous and non-
contiguous allocation without defragmentation, respectively.

Contig exhaustively searches each core of many-core for contiguous compact allocation of
incoming task. It then allocates the task to the first set of contiguous cores that can satisfy
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task’s requirement. Since Contig always allocates incoming task in only best possible shape,
it always results in optimal servicing time for the task. However, since it waits passively for
contiguous cores in ideal shape to become available, it results in suboptimal waiting time.

Non-Contig, on the contrary, allocates the incoming task to any of unallocated core on
many-core with no regards to allocation contiguity. Non-Contig results in optimal waiting time
for the task as it allocates the task as soon as required number of unallocated cores are available
irrespective of their locations. However, since allocation is neither compact nor contiguous, it
results in suboptimal servicing time.

Contig and Non-Contig represent two extreme points in performance spectrum each guar-
anteeing optimality for one aspect of performance myopically, while disregarding other. In
multi-program execution, waiting and servicing time are not entirely independent. For ex-
ample, a task that holds cores longer than necessary under suboptimal servicing time ends up
adding additional delay to waiting time for all tasks in the queue. McD defragmenter introduced
in this work can optimize both aspects of performance (waiting and servicing time) together,
but only for ESA enforcing many-core. Comparison of McD against Contig and Non-Contig
results in deeper insights than comparison with previously proposed heuristic schedulers for
preventing fragmentation. Given lack of guarantees on either waiting time or servicing time in
heuristics, it is difficult to say what part of performance spectrum they represent. Heuristics
are also very sensitive to input workloads and can perform unexpectedly good or bad.

6.3.6. Heuristic Baselines

For complete coverage, we also compare against heuristic approaches designed to address frag-
mentation. We believe SHiC [104], CASqA [105], and DeFrag [114] are state-of-the-art heuris-
tics for fragmentation-aware contiguous allocations, fragmentation-aware non-contiguous allo-
cations, and defragmentation, respectively. All compared heuristics were designed originally
to operate with profiled tasks whose task-graphs (thread-spawning and inter-thread communi-
cation patterns) were assumed to be deterministic and predictable. Such task-graphs are not
readily available for real-world representative PARSEC tasks. Furthermore, it is also not trivial
to predict when a task will spawn a particular thread in multi-program execution. We nei-
ther assume nor have complete profile information of all tasks to implement heuristics strictly
in their original forms. Hence, we were required to slightly adapt heuristics to make them
work on our infrastructure. Originally all compared heuristics were evaluated on a trace-based
simulator. We reimplemented them on more real-world representative Sniper.

SHiC [104] uses a stochastic approach in an attempt to allocate incoming tasks contiguously
with minimal fragmentation. It employs smart hill-climbing for finding suitable unallocated
core candidate to perform contiguous allocation around in consideration with already allocated
tasks to improve overall contiguity. In each iteration of hill-climbing, SHiC selects a random
unallocated core and calculates “square-factor” around that core. Square-factor is the number
of unallocated cores in largest square of unallocated cores that can be made around selected
core plus number of unallocated cores in next largest incomplete square of unallocated cores.
SHiC marks selected unallocated core as a possible candidate for allocation if its square-factor
is equal to incoming task’s core requirement. Otherwise, SHiC performs a random walk from
the selected core towards one of eight adjacent cores of the selected core that has lower or higher
square-factor depending upon whether selected core has higher or lower square-factor than the
incoming task’s core requirement, respectively. The random walk terminates after N/2 steps
if it fails to find a candidate. Hill-climbing itself terminates after 2 +

√
APPS iteration, where

APPS is the number of tasks currently allocated on many-core. If hill-climbing finds multiple
candidates for allocating incoming task, one closest to edge of many-core is selected. SHiC,
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thereafter, performs compact contiguous allocation around finally selected candidate. Authors
of SHiC have shown it to be superior to several previously proposed similar heuristics.

CASqA [105] is an extension of SHiC for non-contiguous allocation. It allows the user
to adjust contiguousness of allocation using a threshold. However in this chapter, we set
the threshold to a value that allows for unbounded non-contiguousness. CASqA uses the
same stochastic hill-climbing algorithm as SHiC to find the first unallocated core candidate to
perform rest of the core allocations around. It then starts exploring squares with incrementally
increasing radius for more unallocated cores and stops when enough cores are found.

DeFrag’s [114] decision as to whether to perform defragmentation after task leaves is based
on fragmentation metric. Authors of [114] define the difference between the expected number
of unallocated cores required by incoming task and size of the largest contiguous set of unallo-
cated cores available as the fragmentation metric. To avoid excessive task migration overhead
involved in defragmentation, DeFrag invokes defragmentation only when fragmentation metric
is positive. As and when DeFrag invokes defragmentation, all the unallocated cores calculate
distance from all other unallocated cores. DeFrag selects the unallocated core with minimum
total distance as center core. DeFrag then finds a convex contiguous region of size equal to
the total number of unallocated cores around the selected central core. Unallocated cores then
travel hop by hop to the closest position in the convex contiguous region, performing thread
migrations on busy cores in their paths. Authors’ initially proposed algorithm to determine
“Minimal-Cost Migration Path” requires complete task profiles, which we neither assume nor
possess. We instead choose shortest path algorithm to find migration path of the unallocated
core to the convex contiguous region. Finally, the incoming task is allocated compactly in the
convex contiguous region provided it is large enough.

6.3.7. Performance Under Power-of-Two Constraint

We begin by evaluating performance when tasks in workloads are only allowed to project
requirement of 2n cores as stipulated under ESA number constraint. We execute workloads
with different arrival rates under various approaches on open 64-core many-core. For an open
many-core, increase in arrival rate translates to increase in its load.

Figures 6.14a, 6.14b, and 6.14c record average waiting, servicing, and response time under
different arrival rates, respectively. McD always outperforms comparative baselines in both
waiting and servicing time. Hence, McD always results in superior response time. Initially
at lower arrival rates when many-core is underloaded, allocated tasks are sparsely distributed
over many-cores, and most of the incoming tasks can be allocated efficiently without waiting by
all approaches. Importance of defragmentation increases as the load on many-core increases.
Figure 6.14 shows McD provides greater performance gains when many-core is substantially
loaded. Performance gains from McD saturate in overloaded many-core with very high arrival
rates. Improved performance under McD comes from its ability to create a compact contiguous
space for every incoming task as soon as possible resulting in minimum possible waiting time.
It also ensures all tasks are always executed efficiently with least possible communication over-
heads resulting in minimal servicing time. Figure 6.14 shows McD can result in up to 8.81%
and 19.53% additional performance in comparison to Contig and Non-Contig, respectively.

In Figure 6.15a, we explain observed performance gain under McD using insights from rele-
vant performance counter for a randomly selected workload. We normalize observations under
all approaches against observations made under McD so that all of them can be shown concisely
on the same graph. We observed that NoC packets transmitted remains nearly same under all
approaches. Still, we observed that packet delay due to NoC latency (Queue-Delay) and delay
due to NoC congestion (Contention-Delay) is several times higher for Non-Contig. These delays
significantly degrade performance under Non-Contig. The number of instructions processed by
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Figure 6.14.: Performance comparison between McD with Contig and Non-Contig under power of two
ESA number constraint.

Non-Contig is significantly higher because of additional processing by tasks actively waiting
longer for thread-synchronizations to complete. This processing also results in higher processor
utilization under Non-Contig, but this increased utilization in practice is detrimental instead
of beneficial for overall many-core performance. Reduced performance under Contig is mainly
due to lower processor utilization as it keeps tasks waiting longer in the queue. This utilization
drop results in lower congestion in NoC links, but reduced congestion still cannot compensate
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Figure 6.15.: Observed values (normalized against McD) for relevant counters for given workload when
executed under different approaches.

for performance drop due to low processor utilization. The L1 data cache-miss rate is higher
for McD than other approaches because of involved defragmentation related thread migrations.

Figure 6.15b and Figure 6.15c show selected workloads normalized power and energy con-
sumption, respectively. In comparison to baselines, McD pushes to execute more load in paral-
lel; as a result, we see all system components having higher power consumption. Still, executing
more load in parallel allows it to finish execution faster resulting in lower energy consumption
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Figure 6.16.: Performance comparison between McD with SHiC, CASqA, and DeFrag under power of
two ESA number constraint.
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Figure 6.17.: Constraint-free performance comparison between McD with Contig and Non-Contig when
tasks are capable of spawning additional threads.

for all many-core components. Overall McD results in 2.06% increase in total power consump-
tion while reducing total energy consumption by 4.85% of many-core.

Figure 6.16 shows performance comparison between McD and adapted versions of state-of-
the-art heuristics designed to tackle fragmentation. SHiC-like, CASqA-like, and DeFrag-like
symbolically represent reimplemented versions of SHiC, CASqA, and DeFrag, respectively. We
observe that McD can result in up to 12.54%, 8.35% and 24.09% improved performance in
comparison to SHiC-like, CASqA-like, and DeFrag-like, respectively. SHiC-like and CASqA-like
perform worse because of same reasons as Contig and Non-Contig; a combination of suboptimal
servicing and waiting time. Further given their stochastic nature, their performance does not
just vary with input but also based on seed used for randomization. We also found that hop
by hop thread migration approach used by DeFrag-like is expensive as it leads to substantial
displacement of existing tasks and also does not preserve their contiguity resulting in inferior
performance. On the other hand, under ESA McD is always optimal irrespective of input.

6.3.8. Constraint-Free Performance with Scalable Tasks

McD is ideally designed to perform optimally under ESA constraint which stipulates core re-
quirement of all tasks in powers of two. McD needs to buffer the number of cores allocated to
task to next higher power of two without ESA constraints. For example, if a task comes with
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Figure 6.18.: Constraint-free performance comparison between McD with Contig and Non-Contig when
tasks are not capable of spawning additional threads.

the fixed requirement of seven cores it must be allocated eight cores. Buffering can lead to the
problem of many-core underutilization due to intra-task fragmentation or internal fragmenta-
tion if tasks do not use the buffered cores. McD designed to minimize inter-task fragmentation
or external fragmentation is not able to compensate for this internal defragmentation. None of
the comparative baselines require any buffering.

To prevent system underutilization, McD allows tasks to spawn threads even on buffered
cores. This spawning is permissible because our PARSEC tasks are flexible in terms of threads
they spawn. The number of threads spawn by PARSEC task is fixed once its main thread
starts but before execution begins, the maximum number of threads it is allowed to spawn can
be passed as parameter to its main thread. Most of the tasks support many different values of
maximum thread count parameters, which McD can exploit.

Since execution time of tasks is in general monotonically nondecreasing with the number
of allocated cores, all tasks will execute faster resulting in a more responsive open many-core.
Figure 6.17 shows McD performs better than comparative baselines with scalable tasks even
when the power of two core requirement is not enforced. Note that randomized workload used
in Figure 6.14 and Figure 6.17 are different and hence numbers are not directly comparable.

6.3.9. Constraint-Free Performance with Non-Scalable Tasks

McD can be severely handicapped if tasks are not able (or not allowed) to spawn additional
threads on buffered cores. Empty buffered cores can then cause substantial system under-
utilization, and even our basic comparative baselines are capable of outperforming McD. Fig-
ure 6.18 shows limitations ofMcD wherein Non-Contig now outperformsMcD by 4.35% because
tasks are not allowed to spawn additional threads. Performance gap will widen even further
against heuristic baselines. This result brings forth drawbacks of constraint-optimal like McD
in general, where the price of maintaining optimality may be too high. Therefore, we must not
use McD with tasks which are incapable of scaling up their thread count.

6.3.10. Scalability

Simulation-time for many-core is directly proportional to the number of instructions simulated
in Sniper. To best of our knowledge, there is no simulator other than trace-based simulators
that can simulate a thousand-core many-core under heavy-load in a reasonable amount of time.
This simulation-time constraint makes it difficult to obtain overhead numbers directly from a
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Figure 6.19.: Worst-case problem-solving time taken by McD on varisized many-cores.

multi-program simulation of PARSEC tasks on a realistic simulator like Sniper to demonstrate
scalability benefits McD can potentially offer in the real-world.

On the other hand, stand-alone execution of McD algorithm for large-size input is still
time-wise feasible. Hence, we execute McD with varisized worst-case representative inputs as
distributed task over simulated many-cores with 64 cores or more in Sniper and report problem-
solving time. This execution time incorporates both communication overhead of McD threads
communicating through memory via NoC as well as their processing overheads. We believe
this is closest we can get to obtaining real-world overheads of McD on large size many-cores.
This overhead is directly comparable to the response time of PARSEC task themselves.

Figure 6.19 shows time it takes for McD to perform worse-case many-core defragmentation
for 64-core to 512-core many-core. It takes McD 1.115ms to solve worst-case defragmentation
problem on 512-core many-core. For scheduling epoch of 10ms used in this work, this results
in the worst-case overhead of 11.15% on 512-core many-core. Worst-case defragmentation
overhead on 64-core many-core stands at acceptable 1.77%.

6.4. Summary

In this chapter, we have addressed the problem of many-core defragmentation, known to be
NP-hard. To make problem tractable, we simplified it to a problem that can be solved optimally
in polynomial time by introducing the concept of ESA for many-cores. ESA puts constraints
on allocations on many-core allowing for its optimal distributed defragmentation in polynomial
time. We also introduced defragmenter called McD, which exploits ESA. McD disburses de-
fragmentation related processing overhead across all cores in many-core allowing it to scale up
as the number of cores in many-cores continues to increase.

Our experiments show that defragmentation under McD increases performance as well as
reduces the energy consumption of many-core with minimal increase in its power consumption.
SinceMcD is proven optimal, it provides maximum possible performance under ESA constraints
which cannot be surpassed by any other algorithm. Though we also observed, performance
gains from McD without ESA constraints were limited.

McD only works with many-cores with D-NUCA caches. Many-cores also come with S-
NUCA caches. There is no benefit of co-locating threads from a task on many-core with
S-NUCA caches and hence there is no benefit in defragmenting it. Still, a scheduler aware of
S-NUCA design can exploit knowledge of the design to improve performance. We introduce a
scheduler for many-cores with S-NUCA caches in next chapter.
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Caches

We present a scheduler for many-core with S-NUCA caches in this chapter.1 We use a many-
core architecture similar to the tiled many-core architecture used in Chapter 6, but with one
significant difference beside the use of S-NUCA. Cores now share banks of distributed L2 LLC
cache which were previously private. Figure 6.1 shows the abstract block diagram of many-core.

Access to banks from cores does not have uniform access latency due to physically distributed
LLC. Therefore, such a cache is called Non-Uniform Cache Access (NUCA) cache. NoC-based
many-cores primarily employ NUCA caches as bus-based physically consolidated caches used
in multi-cores do not scale up well in many-cores [115].

Many-cores can employ one of several different types of memory-to-cache address mapping
policies [116]. S-NUCA is a static policy for NUCA caches, wherein the mapping of memory
addresses to banks is interleaved over available cache lines statically at design-time; . S-NUCA
due to its inflexibility is not as efficient at run-time as OS managed flexible policies such as
D-NUCA. We explored the use of D-NUCA in Chapter 6. On another hand, we can implement
S-NUCA efficiently in the hardware independent of OS [117].

Figure 7.1 shows how S-NUCA cache accesses are distributed amongst different banks of
64-core many-core when we execute an instance of the four-threaded streamcluster on many-
core in isolation. We observe that execution results in the access of all banks of many-core
without any regard to which cores we pin the threads. This access pattern is also not fixed
for given task in multi-program execution as banks accessed by a task not just depends upon
the interaction of the task with LLC but also on interactions of other tasks with LLC. This
behavior makes profiling or predicting the pattern of S-NUCA cache accesses of the task across
all banks difficult in practice [118].

The standard approach for allocating task’s threads on many-core is to allocate them in
spatially compact square-like shapes [119]. Similar resource allocation problems in grid com-
puting [120] inspire this approach, where the focus is to minimize network hops resulting from
shape of allocations on a two-dimensional grid [121]. Chapter 6 shows how we apply this ap-
proach successfully to many-cores with D-NUCA caches. Unfortunately, this approach does
not work on many-core with S-NUCA caches, where optimizing for physical proximity within
threads from the same task can potentially have no apparent benefits.

Even though it is difficult to determine set of cores to pin task’s threads under S-NUCA
that can potentially result in the best performance for a task, the probability that core on
an average would result in higher performance is higher if the core has lower AMD associated
with it than its peers. Average of all rectilinear distances between a core and every other
core in many-core defines AMD. This behavior under S-NUCA introduces inherent design-
time performance heterogeneity in different cores of many-core based on their spatiality even
if all cores themselves are perfectly homogeneous. Scheduler oblivious to this heterogeneity
would inadvertently make poor allocations to many-core with S-NUCA caches while executing
multi-threaded multi-program workloads.

1The work presented in this chapter was originally published in [10] c©2018 EDAA.
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Figure 7.1.: Distribution of S-NUCA cache accesses for four-threaded instance of streamcluster amongst
the LLC banks of 64-core many-core.

7.0.1. Novel Contributions

We characterize performance heterogeneity in cores of many-core with S-NUCA caches while
executing multi-threaded workloads. Based on our observations made during characterization,
we introduce a scheduler called S-NUCA Many-Core Scheduler (SNMS) which exploits this
heterogeneity to extract more performance in comparison to state-of-the-art generic many-core
scheduler while executing multi-threaded multi-program workloads.

7.1. Execution Characteristics

We begin by characterizing the performance of multi-threaded tasks on many-core with S-
NUCA caches. Observations made in this section will form the foundation for the design of
our proposed scheduler in next section.

By topological design, not all cores of many-core are equidistant from each other, and
inherently some of the cores have lower AMDs than others. Figure 7.2 shows AMDs of all
cores in 64-core (8x8) many-core. Cores closer to center by design have lower AMD than cores
farther away from the center. Figure 7.3 shows performance gains for four-threaded instances
of different tasks when we pin their four threads across cores with lowest AMD of four vis-a-vis
when we pin their four threads across cores with highest AMD of seven. All tasks execute
significantly faster on cores with lower AMD compared to cores with higher AMD.

It is also crucial that all the concurrently executing threads of a multi-threaded task which
synchronize over a barrier experience near-equal performance, otherwise the slowest thread will
become a bottleneck limiting the overall performance gains [122]. We observe this behavior in
master-slave thread design of PARSEC [85] tasks which represent tasks from both embedded
and HPC domains. In PARSEC task, the master thread is invoked first which then spawns
multiple slave threads. Once all slave threads finish, only then master thread terminates itself
to complete task execution. Figure 7.4 shows speedups observed in eight-threaded instances
of streamcluster when we distribute seven of its slave threads between low-performance (high
AMD) cores and high-performance (low AMD) cores in different combinations. We observe
that there is a statistically significant jump in the performance gains for streamclusteronly
when all its slave threads execute on the high-performance cores.

The relationship between single master thread and multiple slave threads is of different na-
ture but is equally important. Master and slave threads are joined together in a sequential
relationship. Slow execution of any one of two can potentially prolong total execution time of
a task. Thread which executes slowly becomes the bottleneck limiting gains as described by

74



7.1. Execution Characteristics

C
or

e
A
M

D

4

7
C
or

e
Y

C
oo

rd
in

at
e

0

1

2

3

4

5

6

7

Core X Coordinate

0 1 2 3 4 5 6 7

7 6.25 5.75 5.5 5.5 5.75 6.25 7

6.25 5.5 5 4.75 4.75 5 5.5 6.25

5.75 5 4.5 4.25 4.25 4.5 5 5.75

5.5 4.75 4.25 4 4 4.25 4.75 5.5

5.5 4.75 4.25 4 4 4.25 4.75 5.5

5.75 5 4.5 4.25 4.25 4.5 5 5.75

6.25 5.5 5 4.75 4.75 5 5.5 6.25

7 6.25 5.75 5.5 5.5 5.75 6.25 7

Figure 7.2.: Design-time AMDs of different cores of 64-core (8x8) many-core with S-NUCA caches.
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Figure 7.3.: Performance gains in four-threaded instances of tasks when we pin their four threads across
cores with the lowest performance in comparison to when we pin their threads across cores
with the highest performance of 64-core (8x8) many-core with S-NUCA caches.

Amdahl’s law [122]. Figure 7.5 shows performance gain in different four-threaded instances of
tasks when we place only their master thread on high-performance cores and when we place
only their slave threads on high-performance cores. Performance gains are measured against
baseline performance when we place all their threads on low-performance cores. Tasks perform
differently based on the importance of master thread and slave threads in their overall perfor-
mance. Amongst seven tested tasks capable of producing four-threaded instances, blackscholes
and canneal are most sensitive to the performance of master thread. All remaining tasks are
most sensitive to the performance of slave threads.
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Figure 7.4.: Performance gains in eight-threaded instances of streamcluster when we pin their seven
slave threads in different combinations on high-performance and low-performance cores.
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Figure 7.5.: Performance gains in four-threaded instances of tasks when we pin their master thread on
low-performance core or when we pin their slave threads on low-performance cores against
baseline performance when we pin all their threads on low-performance cores.

7.1.1. Characterization Recap

Based on our observations, we conclude that performance of cores negatively correlates with
their topology induced AMDs. We also conclude that to prevent performance degrading bot-
tlenecks; it is best to pin all slave threads of a multi-threaded task to cores that have same
or near-similar AMD. Depending upon the sensitivity of master and slave threads to overall
task performance we can allocate them to cores with different AMDs. It is best to allocate
all master and slave threads to cores with near-similar AMDs if sensitivity information is not
available to prevent formation of any bottleneck.

7.2. Shortcomings of State-of-the-art

CASqA [105] is state-of-the-art generic many-core scheduler when operating with rigid tasks2

executing under one-thread per-core model [69]. CASqA attempts to allocate threads of an in-
coming rigid task in contiguous square-like shape around initial node selected using a stochastic
hill-climbing algorithm [104]. Furthermore, it prefers allocation close to edges of many-core to

2Please refer Chapter 2.2 for the definition of a rigid task.
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Figure 7.6.: Better performing allocation for eight-thread instance of streamcluster on idle 64-core many-
core with S-NUCA caches in comparison to allocation under state-of-the-art CASqA.

minimize fragmentation which can reduce the potential for future compact contiguous alloca-
tions. CASqA breaks spatial contiguity when there are not enough contiguous cores available
to perform square-like non-contiguous allocation to improve throughput by increasing system
utilization. Relaxation in contiguity can be adjusted using a user-defined parameter under
CASqA. We, however, only cover CASqA version that permits unlimited non-contiguous allo-
cations in this chapter. Furthermore, CASqA is designed to operate with tasks that come with
task-graphs. We modify CASqA to operate with master-slave tasks such as PARSEC tasks.

We now show short-comings of CASqA on many-core with S-NUCA caches using an illustra-
tive example in Figure 7.6. Figure 7.6a shows how eight-threaded instance of the streamcluster
could be possibly allocated by CASqA in square-like shape on idle 64-core many-core using
its stochastic algorithm. Figure 7.6b shows alternative thread allocation more suitable for
many-core with S-NUCA caches for eight threads of streamcluster in the same scenario. Ex-
periments show that execution time of streamcluster decreased by 14.02% under non-compact
non-contiguous allocation shown in Figure 7.6b in comparison to compact contiguous allocation
shown in Figure 7.6a. Note that result only holds for many-cores with S-NUCA caches.

Observations made in Section 7.1 can explain the performance gain in Figure 7.6. Perfor-
mance of streamcluster in both allocations is determined by its bottleneck thread. Core with
highest AMD allocated to the task, in turn, determines bottleneck thread. Highest AMD of
core allocated in allocation shown in Figure 7.6a is 7 whereas all cores allocated in allocation
shown in Figure 7.6b have the same AMD of 4.25. Hence, streamcluster executes faster with
allocation shown in Figure 7.6b than allocation shown in Figure 7.6a.

7.3. Scheduler

Chapter 3 describes common notations used to describe SNMS. We use open many-core with
FIFO queue similar to Chapter 6 in this chapter. We assume all tasks to be rigid. |Ctx | denotes
core requirement of incoming task tx in front of the queue. Since many-core operates with one-
thread per-core model, SNMS can allocate task tx only when the number of unallocated cores
in many-core is more than its core requirement |Ctx |.
A denotes set of |A| AMD classes into which we can classify the unallocated cores in |C|;

indexed by am. |am| represents the number of available unallocated cores of class am. [am]
means the numerical AMD value associated with cores of class am. We also define comparison
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operation between the classes and say am > am′ if the performance of cores in class am is
more than the performance of cores in class am′ . Since the performance of core is inversely
proportional to its AMD, it implies [am] < [am′ ].
M denotes set of subsets of AMD classes A; indexed by mn representing all possible al-

locations (mappings) using different combinations of classes in A that can all satisfy core
requirement |Ctx | of task tx.

mn ∈M ⇐⇒
( ∑
am∈mn

|am|
)
≥ |Ctx | (7.1)

Solution-set M theoretically contains all possible allocations for task tx though in practice
we do not need to enumerate them all at run-time. We still need to guarantee that we find
best amongst them. We measure the quality of allocation using two different functions. First
function P (mn) captures the performance of allocation mn. Based on observations made in
Section 7.1, the performance of allocation negatively correlates to AMD of the core with highest
AMD amongst all cores contained in allocation.

P (mn) = 1/ max
am∈mn

[am] (7.2)

Second function D(mn) captures AMD dispersion in allocation mn. Difference between
maximum and minimum AMD of cores contained in allocation defines its dispersion. Dispersion
has value zero if cores contained in allocation are all from the same class.

D(mn) = max
am∈mn

[am]− min
am′∈mn

[am′ ] (7.3)

We choose to prioritize performance over dispersion. Therefore, we give preference to task
ready for execution over a task that is yet to execute. An advance heuristic can also only
partially prioritize performance over dispersion to derive more overall many-core performance.
Performance P (mn) and dispersion D(mn) default to values −∞ and∞, respectively if alloca-
tion mn is empty. Under SNMS, allocation mn is superior to another allocation mn′ if former
has either higher performance or has lower dispersion with same performance than latter.

mn > mn′ ⇐⇒ P (mn) > P (mn′)∨(
D(mn) < D(mn′) ∧ P (mn) = P (mn′)

) (7.4)

7.3.1. Algorithm

SNMS uses a standard Branch and Bound (BnB) algorithm [123] to determine the allocation for
an incoming task on many-core. Complete BnB algorithm would have been computationally
infeasible on many-core at run-time because of large problem size and NP-hard complexity
of allocation problem under consideration [103]. Still, we can effectively deploy it in this
work because observations made in Section 7.1 substantially reduce search-space. Without our
observations, each core of many-core is potentially unique design point for BnB to evaluate.
With the help of our observations, we can classify cores based on their AMDs. For example,
we can divide 64 cores of many-core shown in Figure 7.2 into nine unique classes - AMD 4
to 7. Since all cores in each class are potentially equivalent to SNMS with respect to their
potential, worst-case search depth of BnB reduces to nine from 64. BnB depth of nine is still
computationally feasible at run-time on many-cores.

The goal of SNMS is to find the best allocation for incoming task tx with core requirement
|Ctx | given allocations of already allocated tasks. Figure 7.7 shows search-space tree of empty
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Figure 7.7.: Search-space tree for 16-core (4x4) processor with three unique AMD-based core classes.

16-core (4x4) processor with cores divided into three unique AMD-based classes – 2, 2.5 and
3. Value of node in the tree represents numeric value of AMD class SNMS considers for
containment in possible allocation for task tx. The path to the node represents allocation
(partial or complete) in which SNMS uses at least one core from class represented by the node,
and also uses at least one core from class represented by all its parent. Each node in search-
space tree shown in Figure 7.7 is accompanied by the respective value of performance and
dispersion function if the allocation is to include node and its parents but not its children.

In search-space tree shown in Figure 7.7, by design child nodes always go from lower to
higher AMD values. AMD of the parent node is always lower than all its children nodes in the
tree. As a result, performance always decreases, and dispersion always increases as we traverse
down the tree. Therefore, search for the better solution in the tree can be bounded by not
exploring node’s children if the performance of node falls below already known allocation of
higher performance (Equation 7.4). Search can also be bounded if the performance of node is
same as known allocation but has higher dispersion associated with it than known allocation.

Algorithm 1 shows pseudo-code for SNMS that uses depth first search to find the best
allocation m∗ through recursively extending partial allocation m#, which gets bounded by the
value of performance and dispersion function as soon as SNMS finds the first valid allocation.
SNMS only needs to iterate over AMD classes that have at least one unallocated core. If best
allocation m∗ has more than |Ctx | cores, then lower performing cores from class with higher
AMD in m∗ are allocated first to task tx till it has |Ctx | cores allocated.

7.4. Experimental Evaluations

7.4.1. Experimental Setup

We evaluate SNMS with nearly the same experimental setup as setup used to evaluate McD in
Section 6.3.1. Crucial difference being the use of S-NUCA caches instead of D-NUCA caches.
All cores now share L2 cache banks of LLC instead of banks being private. Sniper uses S-NUCA
by default when simulating NUCA architectures. We implemented SNMS and CASqA in C++
by forking original code of pinned scheduler shipped with Sniper.
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Algorithm 1 Proposed algorithm for SNMS.

Input: SNMS (|Ctx |,m#);
Output: m∗; . m∗ is a global variable initialized to NULL.
1: Stack S = {};
2: for am ∈ A O[am] s.t. |am| 6= 0 ∧ [am] > maxam′∈m# [am′ ] do
3: Push am into S;
4: end for
5: while S is not empty do
6: NEXT = Pop S
7: m# = m# ∪NEXT ;
8: if P (m#) > P (m∗) ∨

(
D(m#) < D(m∗) ∧ P (m#) = P (m∗)

)
then

9: if
∑

am∈m# |am| ≥ |Ctx | then . A valid best solution yet.
10: m∗ = m#;
11: else
12: SNMS (|Ctx |,m#); . Recursively search deeper for a solution.
13: end if
14: end if . Search depth bounded by no further recursive exploration.
15: m# = m# - NEXT
16: end while
17: return m∗;
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Figure 7.8.: Performance of 64-core open many-core with S-NUCA caches with multi-program workload
arriving at different arrival rates under different schedulers.

7.4.2. Performance

We execute same multi-program workloads on 64-core open many-core with S-NUCA cache
under two schedulers CASqA and SNMS to evaluate their efficacies. Workloads are repeated
with different values of arrival rate parameter to simulate different levels of many-core load.
A load induced by workload on many-core increases with increase in arrival rate. Average
response time experienced by tasks composing workload when managed by scheduler serves as
the performance metric. Lower average response time reflects higher scheduler performance.

Figure 7.8 shows performance under SNMS is superior to CASqA under all loads, and SNMS
can result in up to 9.93% increase in performance. We observe that performance gains under
SNMS over CASqA decrease with increase in many-core load. As a load of many-core increases,
low-performance cores even under SNMS must be allocated to some task in order to prevent
under-utilization of many-core and hence potential to improve overall average response time
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Figure 7.9.: Measured worst-case task scheduling overheads for SNMS on varisized many-cores.

decreases. Experiments corroborate our claim that scheduler aware of S-NUCA design can
improve the performance of many-core with S-NUCA caches.

7.4.3. Overhead

Figure 7.9 shows worst-case scheduling overheads of SNMS in real-world time for 6x6 36-core
many-core to 10x10 100-core many-core on a logarithmic scale. Average overhead in real-world
would be much smaller than reported worst-case overheads. Worst-case problem-solving time
of SNMS on 64-core (8x8) many-core is minuscule 94µs translating into the worst-case overhead
of just 0.09% at run-time for scheduling epoch of 10ms. Worst-case problem-solving time rises
sharply on 81-core (9x9) many-core to 7364.1µs translating into the unsustainable worst-case
overhead of 73.64% at run-time. Scheduling using light-weight heuristics [124] would be more
suitable for 81-core many-core than BnB algorithm used in this work.

This experiment supports our argument that SNMS is practical on 64-core many-core. We
also note that SNMS maybe not be fast enough on many-cores of larger size. Interestingly, the
overhead of SNMS on a 64-core many-core is less than overhead on a 49-core many-core. This
observation holds because the number of unique AMD classes in 8x8 many-core is nine against
10 in 7x7 many-core. As a result, search-space for SNMS on 64-core many-core is smaller than
search-space on 49-core many-core resulting in a lower overhead on the 64-core many-core.

7.5. Summary

In this work, we proposed scheduler called SNMS for task scheduling on many-core with S-
NUCA caches. We characterized performance heterogeneity introduced in cores of many-core by
executing multi-threaded workloads on them. We then presented BnB algorithm that enables
SNMS to exploit this heterogeneity for extracting up to 9.93% more multi-program performance
in comparison to the state-of-the-art generic many-core scheduler on 64-core many-core. Proof-
of-concept simulation predicts that SNMS will operate efficiently in practice on 64-core many-
core with negligible 0.09% worst-case scheduling overhead.

All schedulers presented till now have ignored power consumption of many-core. With the
failure of Dennard Scaling [17] and emergence of Dark Silicon [19], not all cores in many-core
can operate at their peak performance. DVFS technology allows cores to trade-off performance
with power consumption. Many-core must operate within a strict power budget, but there
is some flexibility in distributing the power budget amongst cores. We study the problem of
power budgeting in many-cores in next chapter.
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We present scheduler (governor) for many-core power budgeting in this chapter.1 Due to the
failure of Dennard Scaling [17] power density of many-cores has been increasing with every re-
duction in technology node. Limited power dissipation capacity of many-core, thereby, requires
adherence to strict power budget called Thermal Design Power (TDP) [125].

Many-cores processors are capable of executing scads of multi-thread tasks in parallel. Un-
fortunately, TDP restricts many-core from executing all its tasks at peak performance simulta-
neously. Continuous operation at power consumption beyond TDP may cause severe damage
to the processor. Furthermore, tasks go through various execution phases during their lifetime
that determines how well they can exploit part of TDP allocated to them [126]. Therefore, it
is necessary to ensure proper rationing of TDP amongst tasks. Governors are OS sub-routines
responsible for the judicious and safe use of TDP. DVFS is knob available to governors for
performing phase-aware power budgeting between tasks [127]. DVFS allows different cores of
many-core to operate at different frequencies and voltages. When operating at higher DVFS
level, cores execute threads of task faster provided task is in processing intensive phase but at
the cost of more power consumption. Governor will end up only wasting power if it increases
core frequencies using DVFS when a task is memory-bound.

DVFS-speedup2 is metric used for measuring performance gain obtained from DVFS. Fig-
ure 8.1 shows how DVFS-speedup of a single-threaded version of bodytrack changes as it goes
through different phases of its execution. In many-core restricted by TDP, a task should oper-
ate at higher DVFS level only when it can derive considerable DVFS-speedup as it may deprive
other tasks operating in parallel from raising their performance. Furthermore, for the sake of
fairness, all tasks must be given equal opportunity to use higher DVFS level.

Power has always been prime design constraint in processors [128]. Authors in [59] recently
proposed core-level power budget for processors, but till date, most commercial processors op-
erate with chip-level power budget TDP [125]. Use of governors for keeping processor operating
close to TDP has been well-studied for many-cores [119]. Still, continuous trend of adding more
cores to processors [21] warrants more scalable techniques for power budgeting.

Centralized bounded state-search power budgeting techniques for multi-cores [129] are too
slow when applied to many-cores. Authors of [130] proposed multiple light-weight power bud-
geting heuristics for many-cores amongst which greedy algorithm called SortedWS provided
high performance with low overhead. Orthogonally, authors in [35] proposed distributed ap-
proach for power budgeting for improved scalability. Still, all previous techniques remain
non-probabilistic inherently limiting their scalability.

To best of our knowledge, probabilistic power budgeting remains unexplored concerning
multi/many-cores. In other domains, probabilistic models for power budgeting have been
applied to solve large size problems in data centers [131] and wireless sensor networks [132].

We make an argument in this work that constant monitoring of task phases is not required
when a large number of independent tasks are running on many-core as total DVFS-speedup
α(S) for any given many-core state S is autonomously self-stabilizing. Figure 8.2 shows this
behavior where instantaneous total DVFS-speedup of 256-task (1024-thread) running using
higher DVFS level on 1024-core many-core has very low standard deviation from average.

1The work presented in this chapter was originally published in [7] c©2017 EDAA.
2Refer Chapter 3 for the definition of DVFS-speedup
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Figure 8.1.: Execution profile of single-threaded bodytrack showing variation in DVFS-speedup.
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Figure 8.2.: Total DVFS-speedup over time when 1024 threads are using higher DVFS level.

32 64 128 256 512 1024
0

100

200

300

Number of Threads

O
ve
rh
ea
d
[µ
s]

Figure 8.3.: Expected overhead for collecting and processing phase information of all tasks while running
varisized workloads using a non-probabilistic greedy algorithm SortedWS [130].

Reason being that even though locally all tasks are going through different execution phases,
there is no synchronization among their phases. While some tasks transition from low to
high speedup phase at any given time, near-equal number of tasks perform reverse transition;
resulting in stable global behavior. This behavior can be exploited by a probabilistic governor
for many-cores to provide near-equal performance in comparison to non-probabilistic governors
but with significantly lower computational and communication overheads.

8.0.1. Motivational Example

Our proof-of-concept cycle-accurate simulations predicts that even most light-weight of non-
probabilistic governors will have unacceptable overheads when deployed in many-cores. Sort-
edWS [130] is greedy non-probabilistic governor which collects phase-correlated power con-
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sumption information from all tasks at central core. The central core then sorts information
and then utilize it to take power-budgeting decisions. Figure 8.3 shows how overhead to collect
and process phase information at central core using SortedWS increases with increase in the
number of tasks running on many-core. Figure 8.3 shows for many-core with 1024 threads,
collecting and processing phase information requires 351µs. For governor operating at default
10ms scheduling granularity of current multi-core OS [33], this translates into an overhead of
3.51%. In context, default governors in contemporary multi-core OS operate with average over-
head of only around 10µs or 0.1% [133]. Governor introduced in this chapter aims to achieve
a similar level of overhead for many-cores using probabilistic approach.

8.0.2. Novel Contributions

We introduce an alternative probabilistic governor called Probabilistic Many-Core Governor
(PMG) for power budgeting under TDP on many-cores. Our alternative approach for power
budgeting has potential to reduce associated scheduling overheads significantly. Furthermore,
mathematical foundations of PMG also allow for concrete guarantees on TDP violations.

Operations of PMG is entirely different from a non-probabilistic governor. While non-
probabilistic governor uses dynamic phase information obtained online to make decisions, PMG
uses static probabilistic phase profiles collected offline to make similar decisions. Decisions made
by non-probabilistic governor regularly change as tasks go through different phases. On the
other hand, decisions made by PMG change only when task composition changes its constitution
by arrival or departure of a task. A non-probabilistic governor is well-suited when the number
of tasks is small whereas probabilistic governor works well when the number of tasks is large.
In fact, due to the law of large numbers [134] results provided by PMG become more accurate
as the number of tasks increases. Therefore, PMG is particularly well suited for the many-core
paradigm. Contrarily, we should not use PMG when the number of tasks is small.

8.0.3. Limitations

Results guaranteed by PMG are also probabilistic. While non-probabilistic governor can always
guarantee non-violation of TDP while extracting high performance, PMG only provides a
high probability that many-core will operate similarly for any given population of tasks. It
is important to note that for a sufficiently loaded many-core probability of TDP violation is
always non-zero under PMG if it employs DVFS for boosting performance substantially. Hence,
PMG is also not suitable for hard real-time or mission-critical systems.

8.1. Scheduler

We present details of PMG in this section. Chapter 3 describes common notations used to
describe PMG. Tasks are assumed to be rigid. In this chapter, we assume that cores of many-
core have only two DVFS levels namely Low and High. This assumption limits the ability
of PMG to target energy-efficient execution on many-cores wherein multiple DVFS levels are
available. We explore the use of multiple DVFS in conjunction with QoS tasks in Chapter 9.

PMG gives each task ti a strategy Sti , which represents DVFS-speedup threshold. S rep-
resents combined strategic profile of all tasks determined by PMG. Task ti chooses to operate
at a Low or High DVFS level depending upon whether instantaneous DVFS-speedup is above
or below strategy Sti , respectively. It is important to note that once strategy Sti is given to
task ti by PMG, there is no further communication between PMG and task ti. Decision to
boost performance using DVFS is taken by task ti independently and locally based on expected
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Figure 8.4.: Histogram of DVFS-speedup in single-threaded ferret along with calculation of pferret(2.5).

DVFS-speedup. Expected DVFS-speedup boost can be calculated using locally available pro-
files or DVFS performance prediction models [135].

8.1.1. Probabilistic Performance Model

Given strategy Sti for task ti, let pti(Sti) be the probability that task ti is using High DVFS
level. Probability pti(Sti) ∈ [0, 1] represents the fraction of time task ti under its execution
exhibits DVFS-speedup higher than the value of strategy Sti . Figure 8.4 shows the histogram of
DVFS-speedup corresponding to a single-threaded version of ferret and also shows a numerical
example how we can calculate pferret(2.5).

Probability pti(Sti) is a monotonically non-increasing function of strategy Sti because as we
increase strategy Sti lesser or equal fraction of task ti would use High DVFS level. We obtain
this probability data for discrete values of strategy Sti for each unique task and store it in a
lookup table. We set granularity of DVFS-speedup data discretization at 0.01.

While executing in parallel with given strategy profile S, each task ti acts as independent
Bernoulli trial which uses High DVFS level with probability pti(Sti) and uses Low DVFS level
with probability 1 − pti(Sti). Therefore, our system exhibits Poisson binomial distribution
and probability that K ≤ |T | tasks will be using High DVFS level simultaneously is given by
following Probability Mass Function (PMF) [136].

Pr(K) =
∑
A∈FK

∏
x∈A

ptx(Stx)
∏
y∈AC

(1− pty(Sty)) (8.1)

where FK is set of combinations of K tasks selected from set of T tasks. A represents one
such combination whereas AC represents the complement combination of combination A.

We choose the maximum number of tasks in scheduling epoch that can accelerate with-
out violation of TDP as metric for optimization. This metric has a positive correlation with
standard non-probabilistic performance metrics like throughput used in Chapter 4. Standard
performance metrics [32] like throughput and response time are not suitable metrics to target
directly for probabilistic governor. During execution, we want the number of tasks that boosted
themselves using DVFS in scheduling epochs under TDP to be maximum. Therefore, we want
to optimize Equation (8.1) to peak at highest value for K feasible under TDP.

8.1.2. Binomial Simplification

Even obtaining PMF distribution for any given strategy profile S using Equation (8.1) has
O(|T |!) complexity, making direct optimization computationally infeasible when the number
of tasks |T | >> 1. To make the problem tractable, we propose simplification that converts
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Poisson binomial distribution into binomial distribution, which is well-studied and much more
mathematically tractable discrete probability distribution.

By design instead of choosing unique strategy Sti and thereby resulting unique probability
pti(Sti) for every task ti, PMG instead selects single global High DVFS level probability p. PMG
then gives each task ti a strategy Sti such that pti(Sti) u p. This assignment also introduces
fairness into many-core because each task has now the equal probability of using DVFS to boost
its performance. On the other hand, when operating with QoS tasks, this simplification can
result in wastage of energy as heterogeneity in speedup behaviors then remains unexploited.
Therefore, we do not use this simplification in Chapter 9 when we work with QoS tasks.

Under above simplification, each task executing in parallel acts as independent Bernoulli trial
which uses High DVFS level with probability p and uses Low DVFS level with probability 1−p.
Our system now exhibits binomial distribution and the following PMF gives the probability
that K ≤ |T | tasks will be using High DVFS level together.

Pr(K) =

(
|T |
K

)
pK(1− p)|T |−K (8.2)

We aim to maximize Equation (8.2) concerning given K using probability p. Since natural
logarithm is a positive function, maximizing log of Equation (8.2) is same as maximizing
equation itself. By taking log of Equation (8.2) we get

log(Pr(K)) = log

(
|T |
K

)
+K log(p) + (|T | −K) log(1− p)

Derivating with respect to probability p and equating to zero we get

K

p
− (|T | −K)

1− p
= 0 =⇒ p =

K

|T |
(8.3)

Therefore, if we know target K, then we can use Equation (8.3) to find probability p which
maximizes the probability of many-core boosting K tasks using High DVFS level in given
scheduling epoch. PMG then determines strategy profile S for target probability p using the
profiles. The values of Mean (µ) and standard deviation (σ) of targeted binomial distribution
are given by following equations.

µ =

|T |∑
K=1

KPr(K) = |T |p (8.4)

σ =

√√√√ |T |∑
K=1

K2Pr(K)− µ2 =
√
|T |p(1− p) (8.5)

8.1.3. Probabilistic Power Consumption Model

The power consumption of task similar to its DVFS-speedup also varies over time. Figure 8.5a
shows how power consumption of ferret varies over time when running in Low DVFS level.
Figure 8.5b shows the corresponding distribution of ferret’s power consumption in Low DVFS
level obtained by transformation from discrete time domain to discrete frequency domain.
Non-uniform real-world distribution as shown in Figure 8.5b is computationally infeasible to
aggregate. Hence, we need to make some approximations to get total power consumption.
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Figure 8.5.: Probabilistic power consumption of ferret.

We now attempt to predict probabilistic power consumption of the many-core for a given
High DVFS level probability p. For each task ti, let WL

ti and WH
ti be its expected power

consumption in Low and High DVFS level, respectively. This power includes both the static
and dynamic power consumption of a task at those levels. Let WL and WH be the average
power consumption of all tasks in many-core at Low and High DVFS level, respectively. We
can make a quick rough estimation of their values at run-time using the following equations by
assuming power consumption of individual tasks to be additive.

WL =

∑|T |
i=1W

L
ti

|T |
WH =

∑|T |
i=1 WH

ti

|T |
(8.6)

Since the number of tasks that boost up using DVFS follows binomial distribution, the
total power consumption of many-core will also thereby exhibit a normal distribution [137].
Let W (x) represent the distribution of power consumption given by the following equation.

W (x) =
1√

2(σW )2π
e
− (x−µW )2

2(σW )2 (8.7)

where µW and σW represent the mean and standard deviation of the normal distribution.
To obtain total power consumption distribution, we reason that at for any given value of p,

Np number of tasks are expected to use High DVFS level consumingWH power each. Similarly,
we can expect N(1 − p) number of tasks to use Low DVFS level consuming WL power each.
Therefore, following relation between K and x holds.

∀K∈[0,|T |]∃x = WHK +WL(|T | −K) | Pr(K) = W (x) (8.8)
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We can derive the equations for µW as followed.

µW =

|T |∑
K=1

(
(WH −WL)K +WL|T |

)
Pr(K) [∵ Equation (8.8)]

=

|T |∑
K=1

(WH −WL)KPr(K) +

|T |∑
K=1

WL|T |Pr(K)

= (WH −WL)µ+WL|T | [∵ Equation (8.4) and
|T |∑
K=1

Pr(K) = 1] (8.9)

Using Equation(8.8), we can derive the equations for σW as followed.

σW =

√√√√ |T |∑
K=1

((WH −WL)K +WL|T |)2 Pr(K)− µW 2

=

√√√√ |T |∑
K=1

(
(WH −WL)2K2 +WL2|T |2 + 2(WH −WL)KWL|T |

)
Pr(K)− µW 2

=
√∑|T |

K=1(WH−WL)2K2Pr(K)+
∑|T |
K=1W

L2|T |2Pr(K)+
∑|T |
K=1 2(WH−WL)KWL|T |Pr(K)−µW 2

=
√

(WH−WL)2(σ+µ2)+WL2|T |2+2(WH−WL)|T |WLµ−µW 2 [∵Equations (8.4) and (8.5)]

=
√

(WH−WL)2(σ+µ2)+WL2|T |2+2(WH−WL)|T |WLµ−((WH−WL)µ+WL|T |)2 [∵Equation (8.9)]

= σ(WH −WL) (8.10)

The assumption of normality in distribution is a strong assumption but is necessary to
provide formal mathematical analysis. Fortunately, the error introduced by this assumption
becomes less severe as the number of independent tasks on the many-core increases due to the
central limit theorem [134]. Central limit theorem applied in our context states that distri-
bution of the arithmetic sum of power consumption of independent tasks approaches normal
distribution as the number of tasks approaches infinity irrespective of power consumption dis-
tribution of individual tasks. Therefore, feasibility and accuracy of PMG increases with the
size of the problem making it especially suitable for many-cores. It is important to note that if
tasks are not executing independently or tasks in workload are not diverse enough then many-
core would not exhibit any normal distribution. For many-core with interdependent tasks, the
covariance between them is not insignificant which also needs to be considered.

8.1.4. Probabilistic TDP Model

The probability of TDP violations under PMG when many-core is not severely underloaded
can be non-zero if DVFS has to be used aggressively. Therefore, it is essential to quantize risk
many-core is taking for given High DVFS level probability p and given a set of tasks T . Let
Ŵ symbolically represent TDP of many-core. The probability that many-core will stay within
TDP Ŵ is given using cumulative distribution function F (Ŵ ) of the normal distribution.

F (Ŵ ) =

∫ Ŵ

0
W (x)dx =

∫ Ŵ

0

1√
2(σW )2π

e
− (x−µW )2

2(σW )2 dx (8.11)

89



8. Probabilistic Many-Core Task Governor

Algorithm 2 Proposed probabilistic power budgeting technique named PMG.

Input: |T |, Ŵ , Q̂;
Output: S;
1: ∀i ∈ |T | read profiled (or estimate) WL

ti and WH
ti ;

2: Calculate WL and WH using Equations (8.6)
3: for K = 1 to |T | do
4: Calculate p for a given K using Equation (8.3);
5: Calculate W (x) using Equation (8.7);
6: Calculate F (Ŵ ) using Equation (8.11);
7: Calculate Q(Ŵ ) using Equation (8.12);
8: if Q(Ŵ ) ≥ Q̂ then
9: break;

10: end if
11: end for
12: Calculate p for K − 1
13: ∀i ∈ |T | set Sti such that pti(Sti) u p;
14: return S;

No closed form solution exists for calculation of F (Ŵ ). However, it can be numerically
approximated using Chebyshev fitting [138] in constant time. The probability that TDP is
violated is given by Q-function symbolically represented by Q (Ŵ ).

Q (Ŵ ) = 1− F (Ŵ ) = 1−
∫ Ŵ

0

1√
2(σW )2π

e
− (x−µW )

2(σW )2 dx (8.12)

8.1.5. Power Budgeting

Based on the mathematical foundations laid above, we now present power budgeting algorithm
used by PMG. Unlike a non-probabilistic governor, PMG cannot guarantee non-violation of
TDP. However, it provides formal guarantees on the risk of TDP violations. Let TDP threshold
Q̂ represent the fraction of TDP violating scheduling epochs, many-core designer is willing to
tolerate. Accordingly, the expected number of tasks to boost using DVFS K needs to be
determined based on the current set of tasks T . Value of K should be as high as possible.

For a given set of tasks T , K ∝ p is based on Equation (8.3). Therefore, maximizing
High DVFS level probability p is same as maximizing K. It is a common observation that all
tasks consume less or equal power while using Low DVFS level than when using High DVFS
level. Hence, for any given set of tasks T we know WH ≥ WL. Based on this knowledge and
Equation (8.9), we can state µW ∝ p.,

Being normal distribution, W (x) is unimodal with the peak around µW . Since TDP Ŵ
is immutable, increase in µW will push more cumulative distribution beyond Ŵ . Therefore,
we can conclude Q (Ŵ ) is monotonically non-decreasing with µW . Based on transitivity of
above proportionality argumentation, the risk of TDP violation Q (Ŵ ) is monotonically non-
decreasing with task boost target K.

Determination of optimum value ofK by PMG is thereby simplified to search in a discretized
domain K ∈ [0, N ] such that Q (Ŵ ) u Q̂. Algorithm 2 summarizes technique used in PMG
using simple linear search. We can also use binary search for improved efficiency as Q (Ŵ ) is
inherently sorted with the value of K. Our simple approach is sufficient to provide reasonable
performance given its carefully designed underlying mathematical formulation.
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Figure 8.6.: Experimental Setup for PMG.

8.1.6. Complexity

Since PMG under any step requires not more than one iteration over tasks, it has linear time
computational complexity of O(|T |). Use of centralized lookup tables leads to communication
complexity of O(1) for PMG. In comparison, probabilistic greedy governor SortedWS [130]
has computation complexity of O(|T | lg |T |) and communication complexity of O(|T |). Both
techniques will have O(|T |) space complexity. Furthermore, the greedy algorithm needs to be
invoked in every scheduling epoch to operate. On the other hand, PMG executes when task
arrives or leaves many-core changing task composition.

8.2. Experimental Evaluations

8.2.1. Experimental Setup

We again fallback to trace-based simulator similar to the one used in Chapter 4. Even interval-
simulator like Sniper used in Chapter 6 is too slow in simulating thousand core system required
to demonstrate the benefits of a probabilistic governor. We use a two-stage simulator for
empirical evaluation of PMG as shown in Figure 8.6. In stage one, we use gem5 [80] cycle-
accurate simulator bridged with McPat [139] power simulator. Simulation-time constraints
limit cycle-accurate simulations to maximum eight cores. Each core uses Alpha ISA and holds
16KB L1 data and instruction cache, along with 32KB private L2 cache. Cores can run at
two DVFS frequencies 1GHz and 3GHz representing Low and High DVFS level, respectively.
Unused cores are power-gated. We believe our 22-nm low-power in-order cores with small
caches are most representative cores for real-world thousand core many-cores.

We pipe cycle-accurate isolated execution traces of tasks with up to eight cores allocated
from stage one into a trace-based simulator in stage two. Stage two simulator then combines
traces for a final many-core trace with up to thousand cores assuming 2D mesh NoC between
cores. NoC has a concentration of 1 router per-core and operates at 1GHz using 256-bits
flit. NoC links have a bandwidth of 1 flit per cycle and latency of 4 cycles per hop. Stage two
simulator also implements governors operating at a granularity of 10ms. For each experiment,
we simulate around three hours of a closed system. We initiate each task with a random
instructional skew to simulate independent task execution in the closed system.

For software, we use eleven multi-threaded tasks as enumerated in Figure 8.6 from PARSEC
suite [85]. We form multi-program workloads from the random composition of these tasks with
each task randomly spawning between one to eight threads. We run tasks in Full System (FS)
mode of gem5 with sim-small input. Out of thirteen PARSEC tasks, we did not use only two
tasks facesim and raytrace due to lack of sim-small input.
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Figure 8.7.: Observed and predicted distributions for a 256-task (1024-thread) workload with boost
target of 192 tasks (p = .75) on a 1024-core many-core.

8.2.2. Comparative Baseline

We compare PMG against a scalable non-probabilistic greedy scheduler called SortedWS [130]
designed for many-cores. SortedWS allocates power budget to tasks in decreasing order of
instantaneous speedup without TDP violation with the goal of maximizing throughput. Sort-
edWS uses the aggregate of DVFS-speedups of all tasks α(S) as the measure of throughput.
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Figure 8.8.: Error in predicting mean and standard deviation for total power consumption distribution
at different probability targets for a 256-task (1024-thread) workload.
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Figure 8.9.: Throughput comparison between PMG and SortedWS [130] for different values of TDP
threshold Q̂ with TDP Ŵ set at 100W while executing a 256-task (1024-thread) workload.

8.2.3. Probabilistic Modeling Accuracy

We ran a 256-task (1024-thread) workload on 1024-core many-core with a target of 192 tasks
to boost using DVFS in given scheduling epoch. Figure 8.7a plots the predicted and observed
distribution of DVFS boosted tasks. Figure 8.7b shows corresponding predicted and observed
total system power consumption distribution. Results show that we can predict the distribution
of both DVFS-speedup and power consumption with high accuracy. Figure 8.7c plots the
predicted and observed distribution of TDP violating scheduling epochs with different targeted
TDP values. Results show that we can also predict TDP violation distribution.

Figure 8.8 notes accuracy in predicting mean and standard deviation for total power con-
sumption distribution at different probability targets for a 256-task (1024-thread) workload.
The figure shows that accuracy is higher at some probability targets than others. This obser-
vation attributes to the fact that due to discrete sampling profiles of tasks, we cannot achieve
all probability targets with equal precision for all tasks. The task with higher variations in its
observed speedups allows for a more precise setting of speedup probability and thereby pro-
vides better results when used with PMG. The average error in predicting mean and standard
deviation of total power consumption is 0.76% and 8.20%, respectively.
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Figure 8.10.: Expected overhead for power budgeting varisized workloads with PMG.

8.2.4. Performance Comparison

Figure 8.9 compares throughput for a 256-task (1024-thread) workload under PMG and Sort-
edWS [130] governor for different values of TDP threshold Q̂ with TDP Ŵ set at 100W. Average
total system speedup per scheduling epoch is selected as throughput metric. Since SortedWS
does not allow for any TDP violation, it ignores threshold Q̂ and produces only one fixed result
in Figure 8.9. On the other hand, PMG allows for an increase in throughput with an increase in
the value of threshold Q̂. When we set threshold Q̂ to its lowest value zero, there is practically
no risk of TDP violation. But even at this setting, it also has 2.85% lower performance than
SortedWS. When we set the threshold Q̂ to one, PMG completely ignores TDP, and many-core
runs all tasks using High DVFS level resulting in maximum system performance. Intermediate
values of threshold Q̂ allows for a trade-off between performance and TDP violation risk.

8.2.5. Scalability

The motivation behind using probabilistic governor is its ability to scale up with the increase in
problem size. We run PMG and SortedWS cycle-accurately on gem5 with representative input
and report its worst case problem-solving time in Figure 8.10 with workloads of different sizes.
Results show that PMG can solve the problem of allocating power budgets to 1024 tasks many-
core in only 29µs. For governor operating at default 10ms scheduling granularity of current
multi-core OS [33], this translates into an overhead of 0.29%. In context, non-probabilistic
governors in multi-core OS operate with average overhead of only around 10 us or 0.1% [133].
In comparison, SortedWS takes 351 us to perform power budgeting for same number of tasks.
Therefore, PMG provides 97.13% (or 12x) reduction in overhead compared to SortedWS.

8.3. Summary

In this work, we proposed governor called PMG based on a probabilistic technique for power
budgeting on many-cores. PMG provides superior scalability in comparison to existing non-
probabilistic power budgeting techniques while providing mathematical guarantees on the risk
of TDP violations. Proof-of-concept cycle-accurate simulations show that PMG results in
97.13% less overhead than non-probabilistic greedy governor on thousand-core many-core. This
reduction in overhead comes at 6% loss of performance.

The probabilistic governor presented in this chapter cannot operate with QoS tasks. It also
cannot handle multiple discrete DVFS levels due to its fundamental mathematical constructs.
We eliminate both these drawbacks in probabilistic governor presented in next chapter.
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9. Probabilistic Many-Core Task Governor
for QoS Tasks

We present power budgeting scheduler (governor) for many-core with QoS tasks in this chapter.1

Proposed governor builds upon the governor introduced in Chapter 8. A many-core is capable of
parallel execution of hundreds of multi-threaded tasks. Many-core is expected to execute a task
at user-defined target QoS when deployed in QoS-aware system. We choose to measure QoS of
a task with its IPS, which has a positive correlation with other equivalent QoS metrics [140].

Figure 9.1 denotes changes in IPS of a single-threaded ferret on given frequency. The figure
shows that frequency is incapable of keeping task’s QoS consistent. Many-core can abate
this problem with the help of DVFS. As previously also discussed, DVFS allows a change in
frequency of cores executing the task to deliver task variable amount of processing. Governor,
therefore, can use DVFS to keep QoS of task close to its target QoS as shown in Figure 9.2. Since
the number of DVFS frequencies is limited, not every target QoS can be precisely attained. The
power consumption of core in general increases with increase in its frequency. Therefore, task’s
power consumption shows strong positive correlation with its underlying core frequencies. This
correlation results in task consuming a variable amount of power over its lifetime as also shown
in Figure 9.2. Achieving QoS more than task’s target QoS task is not detrimental to the task
but wastes power. Governor, therefore, should avoid it.

Limited heat dissipation capacity of many-core forces it to operate under power budget called
TDP [141]. Continuous operation beyond TDP leads to a thermal emergency on many-core
wherein hardware-triggered Dynamic Thermal Management (DTM) reduces all core frequencies
to a minimum. Frequent triggering of DTM leads to significant deterioration in performance.
When executing in parallel, individual tasks executing within TDP can violate TDP in totality.
Therefore, it is mandated to carefully budget TDP between tasks while keeping their QoS
requirements under consideration. OS sub-routine called governor is tasked to manage TDP.

The problem of QoS-aware power budgeting for multi/many-cores has been studied only
from non-probabilistic perspective [119]. Note, for the problem of power-budgeting in many-
core term stochastic and probabilistic are interchangeable. Non-probabilistic controls – cen-
tralized [142] or distributed [143] – have been employed by governors for QoS-aware power
budgeting in many-cores. Non-probabilistic governor involves monitoring of tasks for their
QoS, power consumption and other similar parameters to make power budgeting decisions. A
non-probabilistic governor can operate directly on feedback from power sensors often avail-
able at core, cluster or chip level granularity depending upon hardware [142]. Feedback can
be processed to make power budgeting decisions using techniques like online learning [143] or
greedy-search [142]. Decisions dictate to each task frequency it must use.

Many works use Proportional Integrate Derivative (PID) controller as a non-probabilistic
control in their QoS-aware governors [125]. Authors in [144] and [125] employed PID controller
for power budgeting in homogeneous and heterogeneous multi-cores, respectively. Recently,
PID controller has also been applied to perform power budgeting in many-cores [141]. Gains
in PID controller of non-probabilistic governor need to be appropriately tuned for it to work
correctly. Since gains tuned for one workload may not hold for another workload, it makes
governor based on PID controller challenging to use in practice. We also found PID controller

1The work presented in this chapter was originally published in [11] c©2018 ACM.
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Figure 9.1.: Execution profile of single-threaded ferret showing variation in its QoS during execution
over a single fixed frequency.
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Figure 9.2.: Execution profile of single-threaded ferret showing need for different DVFS level to maintain
a consistent QoS; resulting in variable power consumption.

to be unstable on many-core as underlying system dynamics have too high entropy for it to
manage. The probabilistic governor, on other hand, requires no such fine tuning and does not
suffer from any instability. Probabilistic governor, on the flip side, requires no such fine-tuning.

We developed a probabilistic governor for many-cores with the goal of maximizing speedup
called PMG in Chapter 8. PMG due to its fundamental mathematical constructs cannot be
applied to QoS tasks and can operate only with two frequency levels – High and Low. This
chapter addresses both these shortcomings by introducing an extension to PMG called Q-PMG.

As the number of tasks executing on the many-core increases, non-probabilistic governor
struggles to keep up due to increased computational overhead and thereby does not scale up.
Furthermore, this constant bidirectional communication with hundreds of tasks on many-core
involves overhead, which increases with increase in the size of many-core. In this work, we also
argue that this constant communication can be replaced with far more infrequent intermittent
communications without any significant performance loss using an alternative probabilistic
control in the power-budgeting governor.

The probabilistic governor in contrast to non-probabilistic governor centrally optimizes the
distribution of many-core’s total power consumption over time by manipulating executing tasks’
target QoS. Under Q-PMG, the task decides on which core frequency to use locally based on its
current and set target QoS. Since probabilistic governor operates on distributions, it is required
to change QoS of executing tasks only when some task arrives or leaves many-core.

Decisions of probabilistic governor determining target QoS of tasks also has lower computa-
tional overhead than similar decisions of non-probabilistic governor directly determining tasks
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Figure 9.3.: Total power consumption of a many-core when executing a 1024-thread workload.

underlying core frequencies. Since tasks perform DVFS independent of the probabilistic gov-
ernor, DVFS could be performed at fine granularity to save more power without additional
governor-induced scheduling overheads.

The probabilistic governor works on the observation that power consumption of many-core
when executing hundreds of independent tasks in parallel is quite stable. Figure 9.3 shows
the instantaneous total power consumption of many-core when running 1024-thread workload
comprising of 256 independent tasks each with its own QoS and performing independent DVFS
stays very close to average total power consumption. We can attribute this observation to the
fact that even though power consumption of individual task to maintain its QoS can vary over
time; it does not correlate with power consumptions of other tasks. At any given time, some
of tasks transit from high-power consumption phase to low-power consumption phase and vice
versa without any synchronization. This lack of synchronization results in predictable total
power consumption behavior that can be optimized.

9.0.1. Novel Contributions

We propose first probabilistic DVFS-based QoS-aware power budgeting governor for many-
cores called Q-PMG. Q-PMG has computational complexity O (lnn) factor less than non-
probabilistic governor while providing equivalent performance. Therefore, Q-PMG can poten-
tially scale up much better with the increase in the number of cores in many-cores.

9.1. Scheduler

We present details of Q-PMG in this section. Chapter 3 describes common notations used to de-
scribe Q-PMG. Tasks are assumed to be rigid similar to Chapter 8. Let ρ̂ti be target IPS (QoS)
for task ti measured in Millions of Instruction per Second (MIPS). DVFS is performed by tasks
locally at the granularity of scheduling epoch.

9.1.1. Probabilistic DVFS Model

Let p(ti, fk, ρ̂ti) represent a probability that without any power budget constraints task ti is
using frequency fk when its QoS target is ρ̂ti . Mathematically probability p(ti, fk, ρ̂ti) repre-
sents the fraction of total execution time spent by task ti in frequency fk to achieve QoS ρ̂ti
and can be obtained using profiles. Figure 9.4 shows an exemplary calculation of probability
p(ti, fk, ρ̂ti). Probability is also dependent upon input.
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Figure 9.4.: Histogram of DVFS frequency used in single-threaded ferret for a given QoS (250 MIPS)
along with a sample calculation of probability for a frequency.

Task ti act as independent Bernoulli trial that uses frequency fk with probability p(ti, fk, ρ̂ti)
and uses frequencies other than frequency fk with probability 1 − p(ti, fk, ρ̂ti). Since tasks in
many-core have different probabilities of using frequency fk, total usage of frequency fk shows
Poisson binomial distribution. Let µfk and σfk be mean and standard deviation of Poisson
binomial distribution of usage of frequency fk, respectively.

µfk =

|T |∑
i=1

p(ti, fk, ρ̂ti) (9.1)

σfk =

√√√√ |T |∑
i=1

(1− p(ti, fk, ρ̂ti))p(ti, fk, ρ̂ti) (9.2)

PMF Prfk(K) gives the probability that K ≤ |T | tasks would be using frequency fk [136].

Prfk(K) =
∑
A∈FK

∏
tx∈A

p(tx, fk, ρ̂tx)
∏

ty∈AC
(1− p(ty, fk, ρ̂ty))

where FK is a set of all combinations of K tasks selected from the set of T tasks. Set AC

is a complement set of A.
The complexity of obtaining PMF Prfk(K) has a factorial complexity of O(|T |!). Hence,

it is infeasible to directly obtain PMF Prfk(K) at runtime when |T | >> 1. We handled
this complexity in Chapter 8 by forcing all the tasks to use a given frequency with the same
probability, thereby, simplifying Poisson binomial distribution into a more mathematically
tractable binomial distribution. We cannot apply the same approach to QoS tasks since all of
them cannot be forced to conform to same behavior for the sake of simplicity.

We overcome PMF complexity problem in this chapter with the help of central limit the-
orem [134], which applied here states that PMF Prfk will approximately exhibit normal dis-
tribution if many-core meets the following two conditions. The first condition is all tasks
in many-core should run independent of each other and hence their usage of frequency fk
should exhibit no correlation. Condition holds very well on many-core designs such as Inva-
sIC computing [21] described in Section 2.6.1 which support predictable execution [145] where
shared-resource contentions do not manifest. This condition is not mandatory for threads of
given task, which are inherently correlated.

The second condition is there is large number of tasks executing in parallel that use frequency
fk substantially, which holds on many-core. Therefore, Q-PMG becomes more accurate with the
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Figure 9.5.: Observed and predicted distribution for usage by tasks of frequency fk = 1.8 GHz for a
256-task (1024-thread) workload on a many-core.

increase in the size of many-core and supports the argument for moving from non-probabilistic
to probabilistic governors for power budgeting as we transit from multi-cores to many-cores.

We assume that we can approximate discrete PMF Prfk(K) by continuous Probability
Density Function (PDF) of a normal distribution with mean µfk and standard deviation σfk .

Prfk(K) =
1√

2(σfk)2π
e
−

(K−µfk
)2

2(σfk
)2 (9.3)

Figure 9.5 shows observed PMF and approximated PDF Pr1.8 GHz(K) for 256-task (1024-
thread) workload. The figure shows that approximation works well in practice.

9.1.2. Probabilistic Power Model

We now need to translate PDF Prfk(K) that represents the distribution of usage of frequency
fk to the contribution of that usage to many-core’s total power consumption. Using normal
approximation of PDF Prfk(K), we can find the probability that K ≤ |T | tasks would be using
frequency fk, but it does not tell us the composition of those K tasks.

This unknown information makes the translation of PDF Prfk(K) to power consumption
distribution difficult because different tasks can have different power consumption at the same
frequency. Furthermore, a task can also have different power consumption at given frequency
depending upon its current execution phase.

A good approximation would be to work out the expected power consumption of task at
frequency fk and assume all K tasks in PDF Prfk(K) to have same expected power consump-
tion. Due to the law of large numbers [134], the error introduced by this approximation will
reduce with increase in the number of independently executing tasks provided we observe many
scheduling epochs. This approximation fits perfectly for design of many-core governors.

Let W (ti, fk, ρ̂ti) be average power consumption of task ti at frequency fk with target QoS
set at ρ̂ti . We use probability weighted power consumption of task set T at frequency fk
to obtain expected power consumption of all tasks at that frequency. We then combine it
with Equations (9.1) and (9.2) to calculate mean µWfk and standard deviation σWfk of power
consumption distribution due use of frequency fk, respectively.

µWfk = µfk

∑|T |
ti=1W (ti, fk, ρ̂ti) p(ti, fk, ρ̂ti)∑|T |

ti=1 p(ti, fk, ρ̂ti)
(9.4)
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Figure 9.6.: Observed and predicted power consumption distribution due to frequency fk = 1.8 GHz
for a 1024-thread workload.

σWfk = σfk

∑|T |
ti=1W (ti, fk, ρ̂ti) p(ti, fk, ρ̂ti)∑|T |

ti=1 p(ti, fk, ρ̂ti)
(9.5)

PDF PrWfk (x) gives the probability that scheduling epoch will have a power consumption of
x Watts due to the usage of frequency fk.

PrWfk (x) =
1√

2(σWfk )2π
e
−

(x−µWfk
)2

2(σW
fk

)2 (9.6)

Figure 9.6 shows observed PMF and approximated PDF of power consumption distribution
at frequency PrW1.8 GHz(x) for 256-task (1024-thread) workload. The figure shows that predicted
PDF PrWfk (x) is very close to observed PMF.

We assume power consumption due to individual frequency is a linear combination of power
consumptions of the same set of independent tasks. Therefore, all power consumption distri-
butions due to use of frequencies are jointly normal with each other. This relation implies the
distribution of their sum which is many-core’s total power consumption distribution is also nor-
mally distributed. Therefore, we can obtain mean µW of total power consumption distribution
of many-core by adding means of power consumption distributions due to use of all frequencies.

µW =

|F |∑
j=1

µWfk (9.7)

If power consumption distribution at individual frequencies is assumed to be independent of
each other than the standard deviation of total power consumption distribution can be obtained
just from the standard deviation of power consumption distribution at individual frequencies.

σW =

√√√√√ |F |∑
j=1

(σWfk )2 (9.8)
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Figure 9.7.: Observed and predicted total power consumption distribution for a 1024-thread workload
with assumption that power consumption at individual frequency is independent.

PrW (x) gives the probability that in scheduling epoch many-core will have a power con-
sumption of x Watts.

PrW (x) =
1√

2(σW )2π
e
− (x−µW )2

2(σW )2 (9.9)

Figure 9.7 shows observed PMF and predicted PDF of total power consumption distribution
PrW (x) for a 256-task (1024-thread) workload. The figure shows that our predicted distribution
has an unacceptably high error due to imprecise standard deviation.

Error occurs because even though all power consumption distributions at individual fre-
quencies are jointly normal with each other, they are not independent. By design when task
switches from one frequency to another, it leads to decrease in power consumption due to the
former frequency with a simultaneous increase in power consumption due to latter frequency.
Therefore, all power consumption distributions due to use of different frequencies negatively
correlate with each other. Therefore, we can obtain standard deviation σW of total power
consumption distribution by adding variance of power distributions at individual discrete fre-
quencies adjusted with their covariance.

σW =

√√√√√ |F |∑
j=1

(σWfk )2 + 2
∑
j<j′

ρWfk,fk′
σWfk σ

W
fk′

(9.10)

where ρWfk,fk′ is a correlation coefficient between power consumption at frequencies fk and
fk′ . We can learn correlation coefficient ρWfk,fk′ by taking power samples online. This sampling
has very less overhead compared to continuous sampling done online in a non-probabilistic
governor and hence does not limit the scalability of Q-PMG.

PDF PrW (x) gives the probability that in scheduling epoch many-core will have a power
consumption of x Watts.

PrW (x) =
1√

2(σW )2π
e
− (x−µW )2

2(σW )2 (9.11)

Figure 9.8 shows observed PMF and predicted PDF of total power consumption distribution
PrW (x) for 256-task (1024-thread) workload with covariance between frequencies considered.
The figure that shows error now is minimal.
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Figure 9.8.: Observed and predicted total power consumption distribution for 1024-thread workload.
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Figure 9.9.: Observed and predicted TDP violation distribution for 1024-thread workload.

9.1.3. Probabilistic TDP Model

Let Ŵ be TDP of many-core. Q-function Q(Ŵ ) gives the probability that scheduling epoch will
violate TDP. We use Chebyshev fitting [138] to obtain the approximated value of Q-function
Q(Ŵ ) numerically at run-time.

Q(Ŵ ) = 1−
∫ Ŵ

0
PrW (x) dx (9.12)

Figure 9.9 shows observed and predicted (using Q-function Q(Ŵ )) distribution of TDP
violating scheduling epochs for 256-task (1024-thread) workload. The figure shows that our
predicted distribution of TDP violating epochs is accurate.

9.1.4. Power Budgeting Algorithm

Algorithm 3 shows probabilistic power budgeting used in Q-PMG. Q-PMG cannot give a de-
terministic guarantee that TDP violation will never happen but it can reduce the probability
of TDP violation to such a low value that it practically never occurs. Furthermore, TDP is
a soft-constraint, and thermal emergency only occurs when many-core violates TDP for pro-
longed durations. Few TDP violating epochs spread out over time are generally acceptable.
Hardware-triggered frequency throttling via DTM can act as a backup if TDP violations under
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Algorithm 3 Stochastic power budgeting used in Q-PMG.

Input: T, Ŵ , δŴ ;
Output: ∆I ;
1: ∀ti ∈ T Read Profiled Data;
2: for ∆I = 1.0 to 0.0 do
3: for j = 1 to |F | do
4: ρ̂ti = ρ̂ti ∗∆I∀ti ∈ T
5: Calculate µfk using Equation (9.1);
6: Calculate σfk using Equation (9.2);
7: Predict Prfk(K) using Equation (9.3);
8: Calculate µWfk using Equation (9.4);
9: Calculate σWfk using Equation (9.5);

10: Predict PrWfk (x) using Equation (9.6);
11: end for
12: Calculate µW using Equation (9.7);
13: Calculate σW using Equation (9.10);
14: Predict PrW (x) using Equation (9.11);
15: Predict Q(Ŵ ) using Equation (9.12);
16: ρ̂ti = ρ̂ti/∆I∀ti ∈ T
17: if Q(Ŵ ) < δŴ then
18: break;
19: end if
20: ∆I = ∆I - .01;
21: end for
22: return ∆I ;

Q-PMG pushes chip temperature dangerously high. Q-PMG also allows for a tradeoff between
TDP violation risk with performance using TDP risk threshold δŴ .

Algorithm 3 takes as input set of tasks executing on many-core T , TDP Ŵ , and thresh-
old δŴ . It then calculates the risk of TDP violation Q(Ŵ ). If the risk is higher than thresh-
old δŴ , then all tasks are forced to pay equal performance penalty by discounting their target
IPS (QoS) by a factor of ∆I due to power budgeting constraint. Higher value of discount ∆I

signifies higher efficacy of governor. Algorithm 3 is executed only when some task enters or
leaves many-core changing composition of tasks under execution on many-core. Note, DVFS is
performed locally and independently by tasks themselves without any relation to Algorithm 3.

9.1.5. Complexity

In Algorithm 3 since QoS discount factor ∆I always take a value between 1.0 and 0.0, the
computational complexity of loop in Step 2 is constant. We set the granularity at which this
loop iterates at 0.01. The worst-case computational complexity of any step in the frequency loop
at Step 3 is O(|T |), so loop’s complexity is O(|F ||T |). Since all other steps have computational
complexity less than frequency loop, the worst-case computational complexity of Q-PMG is
O(|F ||T |). Use of centrally available probabilistic profiles in Q-PMG results in worst-case
space complexity of O(|T |). Need to propagate results to tasks and make online observations
to learn covariance results in worst-case communication complexity of O(|T |). Note that both
worst-case computation and communication complexity is O(1) in scheduling epochs where no
task enters or leaves, or Q-PMG does not make any online observation.
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Figure 9.10.: Experimental Setup for Q-PMG.

9.2. Experimental Evaluations

9.2.1. Experimental Setup

Experimental setup used in the evaluation of Q-PMG is very similar to the setup used in
Chapter 8. There are some crucial differences such as availability of multiple DVFS levels as
shown in Figure 9.10 and hardware-triggered DTM.

The 22-nm planar CMOS cores have in-order pipeline with low-power design. Core’s max-
imum power consumption is around 0.0065W (or 0.25W) at lowest (or highest) frequency of
0.6GHz (or 3.6GHz). Ambient temperature is set at 40 ◦C whereas DTM is triggered when the
many-core temperature exceeds 85 ◦C. We set thermal modeling parameters such that hardware
will never trigger DTM if many-core always operates within TDP of 45W.

9.2.2. Comparative Baseline

We choose to compare Q-PMG against PGCapping governor [142] both being centralized gov-
ernors. PGCapping uses an efficient non-probabilistic Quicksearch greedy algorithm to per-
form DVFS-based QoS-aware power budgeting for multi-/many-cores. Quicksearch similar to
Q-PMG assumes the availability of per-core DVFS for power budgeting but unlike Q-PMG
provides an unassailable deterministic guarantee that many-core would never violate TDP.

Quicksearch operates by power/performance ratios. Depending upon whether current power
consumption of many-core is above or below TDP, Quicksearch calculates ratio of power de-
crease to performance loss Dpower−perf or ratio of the performance gain to power increase
Dperf−power for all cores, respectively. The frequency of core with highest power decrease
to performance loss ratio Dpower−perf (or highest performance gain to power increase ratio
Dperf−power) is decreased (or increased) if power is expected to be above (or below) TDP.
Quicksearch then recalculates Dpower−perf (or Dperf−power) for the task whose frequency it
changes. Quicksearch algorithm iteratively repeats itself till it meets power constraints.

Since we operate with multi-threaded tasks with the assumption that all cores allocated to
task operate at a same frequency, we calculate ratios Dpower−perf and Dperf−power for PGCap-
ping at task granularity rather than core granularity. Furthermore, PGCapping initially used
the product of core utilization and core frequency as a measure of performance (QoS), which
we replace with IPS in this work for fair comparison.
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Figure 9.11.: System performance ∆I comparison between Q-PMG and PGCapping for different values
of TDP risk threshold δW when executing 1024-thread workload with TDP Ŵ set at 45W.

When Quicksearch algorithm is implemented with the help of quicksort and binary search
algorithms, complexity of Quicksearch in worst-case works out to be O(|F ||T | ln |T |), which
theoretically is a factor of O (ln|T |) more than Q-PMG.

9.2.3. Stochastic vs. Non-Stochastic Performance

We simulate many-core operating in a closed system [32] to compare the efficacy of different
governors. Neither Q-PMG nor PGCapping is limited to only closed systems. Many-core
attains peak performance (100%) when all QoS tasks achieve their target QoS at all times. We
cap contribution of tasks to system performance at 100% of its desired QoS.

Figure 9.11 shows how performance measured in percentage of desired QoS sustained for a
task on average for 256-task (1024-thread) workload changes with different values of TDP risk
threshold δW . Since PGCapping does not consider δW , it results in same performance for all
values of δW whereas Q-PMG allows a tradeoff between performance and TDP risk threshold
δW . Increase in TDP risk threshold δW leads to increase in the percentage of TDP violating
epochs under Q-PMG as also shown in Figure 9.11.

Ignoring TDP beyond a certain level can lead to performance loss instead of gain as
hardware-triggered thermal throttling (DTM) on TDP violations can substantially deterio-
rate performance. We can see this effect in Figure 9.11 for higher values of TDP risk threshold
δW where DTM deteriorates many-core performance.

The figure shows that Q-PMG results in superior performance compared to PGCapping even
when TDP risk threshold δW is set to 0. PGCapping penalizes tasks asymmetrically resulting
in several tasks operating far above their target QoS. Q-PMG on the contrary, penalizes all
tasks fairly in equal proportions which also results in better performance.

9.2.4. Stochastic vs Non-Stochastic Scalability

Power-budgeting governor inherently needs to gather state information from across many-core
and send back its decision in the same manner. We use cycle-accurate simulation on gem5
to determine overhead of this bidirectional communication on varisized many-cores. State
information is collected using distributed sub-routine using master-slave thread model.

Subroutine’s master thread starts on a random core and spawns slave threads across all other
cores. Slave threads then collect per-core statistics such as its power consumption and forward it
to master thread. Master thread then processes this information for power budgeting and sends
the resultant decision back to slave threads for further propagation to appropriate stakeholders.
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Figure 9.12.: Measured worst-case overheads for Q-PMG for varisized workloads.

We are forced to change our ISA from Alpha to ARM for this experiment because for Alpha ISA
gem5 only supports multi-threading (OpenMP or pthread) in FS mode. Simulation of large-
size many-core in FS mode is not time-wise feasible as many-core takes forever even to boot.
Large-size many-core with ARM ISA, on the other hand, can be simulated in a reasonable time
in SE mode of gem5 with the help of m5thread library.

Our proof-of-concept simulation report that time overhead for bidirectional communication
between the governor and executing tasks can be as high as 62µs on 512-core many-core,
translating into an overhead of 0.62% for 10ms scheduling epoch. Note that both Q-PMG and
PGCapping need this bidirectional communication sub-routine to operate, but Q-PMG uses
it only when task arrives or leaves many-core, while PGCapping employs it in every schedul-
ing epoch. Therefore, over long-term overhead of collecting state information and disbursing
decisions is much lower in Q-PMG than PGCapping.

Figure 9.12 shows worst-case scheduling overheads of Q-PMG and PGCapping for varisized
workloads obtained using representative cycle-accurate simulations performed on gem5. Over-
heads reported in Figure 9.12 combines both processing and communication overheads. Our
proof-of-concept simulations show Q-PMG is highly scalable and has nearly 6.48x less worst-
case scheduling overhead for a 256-thread workload in comparison to PGCapping.

9.3. Summary

We introduced a QoS-aware probabilistic power budgeting governor for many-cores called Q-
PMG in this chapter. Q-PMG provides strong probabilistic guarantees on the risk of TDP
violation while allowing tradeoff of that risk with performance. Compared to a non-probabilistic
governor, Q-PMG provides equivalent performance but with computational complexity reduced
by factor O (ln n). Therefore, Q-PMG can scale up more efficiently as the number of cores and
tasks executing on the many-core increase.

This chapter presents the last many-core scheduler covered in this dissertation. We conclude
this dissertation in next chapter. Conclusion is also followed by description of a toolchain called
HotSniper in the appendix. HotSniper toolchain developed over the course of this dissertation
provides researchers with means to evaluate many-core schedulers similar to ones developed in
this dissertation on real-world representative many-core architectures.
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10. Conclusion

10.1. Dissertation Summary

In this dissertation, we focused on developing schedulers for many-cores with different opti-
mization objectives. The goal was to develop schedulers that are more scalable than multi-core
schedulers while making minimal or no compromise on the quality of schedule. We also strove
to develop non-heuristic schedulers which provide strong theoretical guarantees on the quality
of schedule and hence do not suffer from poor schedules in corner cases. We used four different
approaches to achieve our aforementioned goal in this dissertation.

The first approach was to develop distributed schedulers which can distribute their schedul-
ing overheads across multiple or all cores and thereby can scale up with the increase in the
number of cores in many-cores. The second approach was to develop centralized schedulers
that were based on fast algorithms such as a greedy algorithm. The third approach was to use
exact algorithms but at the same time find ways to prune the search-space so that they can
be applied at run-time with minimal overheads. The fourth and final approach was to develop
centralized probabilistic schedulers that work on optimizing the distributions and hence have
drastically reduce overheads compared to non-probabilistic schedulers.

In Chapters 1 and 2, we introduced the many-core computing paradigm along with the
necessary background. We elaborated upon as to how many-cores evolved from uni-cores via
multi-cores and the essential role many-cores are going to play in embedded systems. We also
studied as to why current multi-core schedulers cannot efficiently operate on many-cores. In
essence, we justified the need to develop new many-core schedulers even for the most basic
of optimization objectives. We also discussed on how many-core computing paradigm is sub-
stantially different from multi-thread and multi-grid computing paradigms though they may
all look very similar to a non-expert. We also explained three kinds of systems namely fixed,
closed and open systems wherein one can deploy a many-core. We then explained the three
different kinds of tasks namely rigid, moldable and malleable tasks which one can execute on
a many-core. We also explained several different ways to classify many-cores. Finally, we
concluded the chapters with details of InvasIC computing project in which we participated
followed by details of some commercially available many-core platforms and OS.

In Chapter 4, we introduced two new many-core schedulers with the goal of performance
maximization. One was a distributed scheduler while the other one was a centralized greedy
scheduler. Both schedulers were proven optimal. In Chapter 5, we introduced a distributed
many-core scheduler with the goal of fairness maximization. The scheduler is proven optimal in
the case of fixed performance. In Chapter 6, we introduced a distributed many-core scheduler
capable of improving the performance of the many-core by performing task defragmentation.
The scheduler can perform optimal defragmentation in case of tasks being constrained to pro-
duce only power-of-two threads. In Chapter 7, we explained as to why the scheduler introduced
in Chapter 6 cannot work with a many-core with S-NUCA caches. We then introduced an-
other scheduler that exploits S-NUCA design to reduce the search-space and thereby maximize
performance using a centralized BnB algorithm. In Chapter 8, we presented a centralized prob-
abilistic scheduler to maximize the performance of a many-core under fixed power budget. We
then extended the scheduler to maximize the performance of a many-core when operating with
tasks each of whose performance is upper-bounded by a user-defined QoS.
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10.2. Future Work

This dissertation opens venues for further research, which we hope to cover in the near future.
Each chapter assumes one of three types of tasks - rigid, moldable or malleable and one of the
three types of systems - fixed, closed and open. In total, there can be nine unique combina-
tions of tasks and systems. Schedulers presented in this dissertation can potentially be easily
extended to work with many of these combinations, but some of the combinations inherently
may require entirely new designs. In the following paragraphs, we iterate through all schedulers
presented in this dissertation and present some related unexplored research ideas.

Schedulers presented in Chapter 4 are proven optimal because they address the question
of how many cores a task should be assigned to maximize the overall performance of many-
core. Schedulers cannot solve the problem optimally if we supplement the question by asking
not just how many but also which cores a task should be assigned to maximize performance.
Unfortunately, under this formulation, the problem becomes NP-hard. Yet, it remains an open
question whether the convex substructures which were the basis of our scheduler designs still
hold under the new formulation and if they can help us to design a new optimal scheduler.

Scheduler presented in Chapter 5 is proven optimal regarding fairness maximization but
only in the case of a fixed performance. The results presented are of considerable theoretical
interest, but as we also argued in the chapter, the results are of limited use in practice. Even
though the problem of fairness maximization is NP-hard in the general case, it remains an open
question that whether the convex substructure in the problem can somehow also be used to
obtain the optimal solution in the case of unconstrained performance.

Scheduler presented in Chapter 6 can optimally defragment a many-core but only when
tasks are constrained to produce power-of-two threads. As also argued in the chapter, the cost
of maintaining optimality is too high when the many-core operates with tasks that cannot scale
or spawn threads on all allocated cores. Even though many-core defragmentation problem is
NP-hard in the general case, it remains to be seen whether a many-core can continue to be
defragmented optimally with less restrictive constraints on thread spawning than power-of-two.
A good starting point would be to modify the thread spawning constraint to Fibonacci numbers
which have some elegant spatial property, and the gap between two consecutive numbers in the
Fibonacci series is smaller than two consecutive numbers in power-of-two series.

Scheduler presented in Chapter 7 maximizes the performance of a many-core with S-NUCA
caches due to its inherent knowledge of the S-NUCA design. Though the results may look
completely different if we also take into consideration the power dissipation by active cores.
The same also holds true for the scheduler presented in Chapter 6. A task allocation which
places threads of a task closer together in a compact pattern may outperform an allocation
where threads are further apart when cores in both allocations run at the same frequency.
Nevertheless, when power dissipation of cores is considered, cores closer together would also
result in a thermal hotspot because of more significant thermal conduction between them. The
hotspot may force the cores to run at a lower frequency using DVFS resulting in lower or even
negative performance gains than what we obtained in Chapter 7. It looks like neither purely
optimizing for performance nor compactness may be optimal in practice, and we can obtain
better results by developing a scheduler that is aware of the underlying trade-off.

Probabilistic schedulers presented in Chapters 8 and 9 present an entirely new line of thought
in scheduler design for many-cores. It would be interesting to see how far this idea can extend
beyond the initial goal of power budgeting presented in this dissertation.

Finally, there are several other optimization goals for many-core schedulers which we did
not cover in this dissertation such as thermal management. We also only considered homoge-
neous (adaptive) many-cores in this dissertation. We hope to develop many-core schedulers for
heterogeneous (asymmetric) many-cores in the near future.
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A. Toolchain for Interval Thermal
Simulations of Many-Cores

We introduce a toolchain for interval thermal simulations of many-cores deployed in open
systems in this appendix. There are several types of processor simulators available to explore
many-core design. gem5 [80] is a popular cycle-accurate simulator used for precise processor
simulations. Unfortunately, simulation-time in gem5 for many-cores can often be intractably
large. For example, cycle-accurate simulation of single PARSEC [85] task can take more than
a week to complete within gem5.

Simulation-time constraints often force users to employ custom two-stage trace-based many-
core simulators as we did in Chapter 4, 5, 8, and 9. In first stage of a trace-based simulator,
all tasks are executed individually on many-core using a cycle-accurate simulator to obtain
isolated execution traces. These traces are then merged into second stage high-level simulator
to simulate simultaneous multi-program execution of traced tasks. A significant drawback of
the trace-based simulator is implicit assumption that isolated execution traces obtained in the
first stage remain valid in multi-program execution simulated in the second stage. Unfortu-
nately, due to the manifestation of shared-resource contentions during real-world multi-program
execution, this assumption no longer holds.

Sniper simulator [110], based initially on Graphite simulator [146], was developed to bridge
the gap between slow but precise cycle-accurate many-core simulation and fast but imprecise
trace-based many-core simulation. Authors of Sniper used PIN [147] binary instrumentation
tool to perform interval simulation of processors. Interval simulations work on the observation
that shared-resource contentions in processor only manifest when there are miss events such
as cache-misses [148]. This observation allows interval simulators to loosen tight execution
entanglement of co-executing threads in their simulation models where synchronization between
simulated thread executions only occurs when any one of them encounters miss event. This
relaxed synchronization which only occurs at specific discrete intervals results in several folds
decrease in simulation-time with minimal loss of accuracy. Both accuracy and simulation-time
of interval-based simulations is in between cycle-accurate and trace-based simulations.

We have used Sniper to simulate 64-core many-core for 10 seconds of system-time at full
utilization in feasible simulation-time of 10 hours in Chapter 6 and 7. Sniper is well-suited for
system research in processors especially when there is a transition from processors with a small
number of cores (multi-cores) to processors with a large number of cores (many-cores) [21].
Many-cores also contain new micro-architectural features such as NoC not present in multi-
cores. Therefore, it requires typically more time to simulate many-cores than multi-cores.

Unfortunately, we were not able to perform interval thermal simulations of many-cores in
Sniper due to lack of integration with a thermal modeling tool. As a result, Sniper simula-
tor could not be used to study thermal properties of the many-core design. With the failure
of Dennard Scaling [17] and emergence of Dark Silicon [19], thermal-aware hardware-software
codesign of many-cores has become an active subject of research especially in embedded sys-
tems where lack of active cooling solutions turns high on-chip temperatures into a debilitating
constraint on performance. Fast, accurate and real-world representative interval thermal sim-
ulations would provide means for thermally-efficient many-core design hastening the adoption
of many-cores in different embedded domains.
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We were also not able to perform interval-based simulations of many-core deployed in open
system [32] using default Sniper due to missing support for the feature in code. These short-
comings led to the development of HotSniper toolchain introduced in this chapter. HotSniper
adds support for both open systems (Section A.1) and interval-based thermal simulations (Sec-
tion A.2) to most-recent Sniper-6.1.

Work presented in [149] is closest to this work wherein authors have integrated HotSpot [150]
temperature modeling tool with Sniper many-core simulator as a plugin. HotSpot plugin de-
veloped in [149] performs thermal simulations after Sniper simulator has finished performing
processor simulations. As a result, temperatures from thermal simulations produced using
HotSpot cannot be sent back to Sniper as feedback to influence processor simulations itself.
In contrast, HotSniper toolchain performs Hotspot thermal simulations in parallel to Sniper
processor simulation. Hence, temperature feedback in current scheduling epoch from HotSpot
is available within Sniper to take thermal-aware scheduling decisions in next upcoming epoch.

We are also not aware whether authors released the plugin developed in [149] to the com-
munity under an open-source license or not. In contrast, we have already released our code for
HotSniper as an open-source project on GitHub and several external research groups have com-
menced its use. We have adequately documented code for HotSniper and designed it carefully
so that its users can integrate code for their algorithms with minimal efforts. Learning-curve
of HotSniper is also streamlined using “how-to" readme.

A.0.1. Open-Source Contribution

The source code for HotSniper is available at https://github.com/anujpathania/hotsniper, and
we released it under MIT License for unrestricted use like the original Sniper simulator.

A.1. Open System Support

We can deploy multi-/many-cores in three types of embedded systems [32]: fixed, close and
open. Sniper simulator supports fast and accurate interval simulations of many-cores deployed
in both fixed and closed systems out-of-the-box, but it does not support open systems by
default. Open systems are the most complex system to model. Therefore, open systems are
most suitable to evaluate generic scheduling algorithms.

We introduced support for open systems in Sniper by adding a new “open" scheduler. We
use “pinned" scheduler that ships by default in Sniper as the template for new open scheduler.
The user can switch to open scheduler using main Sniper configuration file. There are other
properties associated with the open scheduler that can be set using the same file.

A user can easily configure the algorithm used for scheduling, which we initially set to default
algorithm. The default algorithm is a simple illustrative algorithm which pins a thread to be
scheduled to first free core - core assigned to no other thread - it finds and thereby employs
one-thread-per-core execution model [69] throughout this dissertation. HotSniper users are
expected to substitute default algorithm with their algorithm which they wish to evaluate. The
default algorithm’s code can act as starting template for more complex implementation, where
one can pin multiple threads to a single core for context-switched execution.

Length of scheduling epoch can also be configured; whose default value is 10ms similar to
default Linux kernel [33]. Scheduling epoch is granularity at which many-core invokes logic of
scheduler for task scheduling. A user can set the value of epoch as low as 100 ns at the cost
of increased simulation-time overhead. A smaller value of epoch leads to a larger simulation-
time because of more frequent invocation of scheduler algorithm that would trigger actions like
updating various queues of the open system. The configurable queuing policy has by default
FIFO design and serves the task on FCFS basis. Distribution of arrival time of open workloads
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Figure A.1.: Execution flow (timeline) for HotSniper toolchain.

can also be configured and by default has a uniform distribution. A user can also configure
arrival rate and arrival interval for uniform distribution.

Figure A.1 shows execution flow (timeline) for HotSniper toolchain. When Sniper simulator
starts execution, it produces master thread for all tasks to be simulated. Open scheduler
immediately puts all master threads to sleep and thereby adds the task to the not ready queue
of the open system. At appropriate simulated system-time based on arrival distribution, the
task is moved to waiting queue and placed in its respective position in the queue based on
queuing policy. Scheduler revives master thread of task at the front of the waiting queue when
based on its logic deems it appropriate to start task’s execution. The revived master thread
then produces slave threads and continues its execution. When the task finishes, open scheduler
reports its response time, which is the sum of its waiting and service time. Average response
time is preferred metric for measuring the performance of workloads in open system [32].

It is important to note that Sniper simulator requires at least one thread to be under active
execution at all time. Without active thread incrementing the simulated system-time, interval
simulation within Sniper will fail to progress and go into a deadlock. The open scheduler thereby
prefetches master thread of task in front of the queue for execution to prevent simulation
from crashing (hanging) if the simulated system is expected to go idle. Prefetching forwards
simulated system-time accordingly, so that reported response time still remains correct.
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Figure A.2.: HotSniper toolchain with current temperature and power consumption feedback.

A.2. Thermal Simulations

We integrate RC-thermal network based HotSpot-6.0 temperature modeling tool into Sniper
to enable thermal simulations using feedback-driven toolchain as shown in Figure A.2. Sniper
contains integrated McPat-1.0 [139] power modeling framework which can provide power con-
sumptions of various processor components.

In Sniper, McPat is executes after Sniper simulator has completed execution and only reports
average power consumption of processor components observed during entire execution. We
slightly modified integrated McPat to dump power consumption numbers at regular intervals
while processor simulation is still ongoing. This dumping allows generation of power-trace
which shows the power consumption of various components over simulated execution time.
Most of the code required for this dumping is already implicitly present in Sniper.

Power consumption data generated after every interval is then fed into HotSpot to dump
corresponding temperature data which shows the corresponding current transient tempera-
ture of each of processor components. This dumping allows us to generate temperature-trace
corresponding to power-trace which shows the transient temperature of various processor com-
ponents over simulated execution time.

Note that users are expected to provide approximate floorplan for the processor they are
simulating to generate thermal-trace. Name of floorplan file must be provided using attribute
“floorplan" in main Sniper configuration file. It is also important to mention that there must be
block defined in floorplan for every processor component being power traced using McPat. Hot-
Sniper allows for toggling of processor components being traced usingMcPat for power/thermal
simulations using the same configuration file.

HotSniper also allows input of most recent power consumption and temperature of processor
components into the open scheduler. This power and thermal information can then be used to
make scheduling decisions for power and thermal management, respectively as also shown in
Figure A.1. Decisions will then influence future power and thermal data and thereby feedback
loop as shown in Figure A.2 is completed. By default, HotSniper generates power and thermal
data every 1ms. Data can be generated at granularity as low as 100 ns at the cost of increase
in the simulation-time overhead.

Figure A.3 shows the transient temperature of one of hottest core component – Renaming
Unit (RU) – of all four cores of our simulated processor when we execute a four-threaded
instance of blackscholes with sim-small input on the simulated processor. We use block [150]
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Figure A.3.: Transient temperature of RU of different cores of our simulated processor while executing
four-threaded instance of blackscholes with sim-small input using the HotSniper toolchain.

Figure A.4.: Steady-state temperature of our simulated processor while executing a four-threaded in-
stance of blackscholes with sim-small input using HotSniper toolchain.

thermal model of Hotspot by default in HotSniper. However, one can also use grid thermal
model [150]. Note that simulation-time with grid model is several times larger than simulation-
time with blockmodel. Transient temperature-trace produced using gridmodel can also be used
to generate steady-state temperature using Hotspot in-built tools as shown in Figure A.4.

A.3. Experimental Setup

A.3.1. Host System

We evaluate HotSniper on Intel(R) Core(TM) i5-2500K processor with 6GB of DRAM running
Ubuntu 15.10 OS. Sniper is compiled with gcc-4.8 and g++-4.8 GNU compilers and uses PIN
2.14-71313 binary instrumentation tool from Intel.

A.3.2. Simulated Processor

We use quad-core 45-nm processor with x86 Gainestown micro-architecture as the simulated
processor. Each core has 32KB private L1 instruction and data cache, alongside 512KB
private L2 cache. All cores share 8MB L3 cache. Figure A.5 shows an abstract block diagram
of processor’s floorplan used for thermal simulations. Each core is composed of Instruction
Fetch Unit (IFU), RU, Memory Management Unit (MMU), Execution Unit (EU), and Load
Store Unit (LSU) besides L2 cache.
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Figure A.5.: Example block diagram of floorplan used for thermal simulation.
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Figure A.6.: Simulation-time of four-threaded instances of various tasks with sim-small input for our
simulated processor on Sniper simulator and HotSniper toolchain.

HotSniper is not limited to simulating above architecture only. It can simulate both NoC-
based and bus-based multi-/many-core architectures up to 64 cores in a reasonable time.

A.4. Overhead

Enhanced functionality of HotSniper comes with additional computations, which adds to the
time required to complete many-core simulation. Figure A.6 shows simulation-time of Sniper
simulator and HotSniper toolchain for various four-threaded instances of different PARSEC
tasks [85] with sim-small input on simulated quad-core multi-core. For this experiment, Hot-
Sniper operates with default 10ms scheduling epoch and 1ms power/thermal data generation
interval. Sniper operates with its default parameters with McPat enabled.

Out of 13 PARSEC tasks, we use seven tasks - blackscholes, bodytrack, canneal, dedup,
streamcluster, swaptions and x264 - for evaluations. We did not use two tasks - ferret and
fluidanimate - due to lack of ability to generate four-threaded instances. We did not use two
tasks - freqmine and vips were not used due to unresolved errors in PIN binary instrumentation
tool. We did not use two tasks - facesim and raytrace due to lack of availability of sim-small
inputs. Figure A.6 shows that HotSniper leads to an acceptable increase of 20.5% in simulation-
time on average in our host system.

Simulation-time under HotSniper is inversely proportional to the granularity of scheduling
epoch. Figure A.7 shows decrease in simulation-time for four-threaded instance of blackscholes
with sim-small input with another similar instance waiting in the queue as we move from
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Figure A.7.: Simulation-time for four-threaded blackscholes using HotSniper with different granularity
of scheduling epoch.
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Figure A.8.: Simulation-time for four-threaded blackscholes using HotSniper with different granularity
of power/thermal data generation interval.

scheduling epoch granularity of 1000 ns to 10 ms. We do not generate any power or thermal
data in this experiment. Figure A.7 shows that HotSniper scales up well with the reduction in
granularity of scheduling epoch.

Simulation-time under HotSniper is also inversely proportional to the granularity of the
interval at which the power/thermal data is generated. Figure A.8 shows the decrease in the
simulation-time for four-threaded instance of blackscholes with sim-small input as we move
from interval granularity of 1000 ns to 10ms. The scheduling epoch is set at default value of
10ms for this experiment. Figure A.8 shows the simulation-time rises swiftly with reduction
in power/thermal data generation interval.

Summary

In this appendix, we have introduced toolchain called HotSniper that tightly couples together
Sniper many-core simulator, McPat power modeling framework and Hotspot temperature mod-
eling tool. HotSniper allows for interval thermal simulations of multi-/many-cores, which
was not previously possible. Interval thermal simulations are vital for efficient thermal-aware
hardware-software codesign of many-cores especially in the domain of embedded systems.

Our toolchain also supports interval-based simulation of many-cores deployed in open sys-
tems, which is not possible out-of-the-box in original Sniper simulator. Additional computations
introduced by HotSniper toolchain increase simulation-time by acceptable 20.50% on average
compared to original Sniper simulator.
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