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Abstract12

Space-based observations of the thermodynamic cloud phase are frequently used for the13

analysis of aerosol indirect effects and other regional and temporal trends of cloud proper-14

ties; yet, they are mostly limited to the cloud top layers. This study addresses the informa-15

tion content in cloud top phase distributions of deep convective clouds during their growing16

stage. A cloud-resolving model with grid spacings of 300 m and lower is used in two differ-17

ent setups, simulating idealized and semi-idealized isolated convective clouds of different18

strengths. It is found that the cloud top phase distribution is systematically shifted to higher19

temperatures compared to the in-cloud phase distribution due to lower vertical velocities and20

a resultingly stronger Wegener-Bergeron-Findeisen process at the cloud top. Sensitivity stud-21

ies show that heterogeneous freezing can modify the cloud top glaciation temperature (where22

the ice pixel fraction reaches 50%), and ice multiplication via rime splintering is visible in an23

early ice onset at temperatures around −10◦C. However, if the analyses are repeated with a24

coarsened horizontal resolution (above 1 km, similar to many satellite datasets), a significant25

part of this signal is lost, which limits the detectability of these microphysical fingerprints in26

the observable cloud top phase distribution. In addition, variation in the cloud dynamics also27

impacts the cloud phase distribution, but cannot be quantified easily.28

1 Introduction29

At temperatures between 0 and approximately −37◦C, atmospheric hydrometeors can30

occur both in the liquid and in the ice phase. The liquid phase is metastable in this temper-31

ature range, while the more stable ice phase forms through homogeneous or heterogeneous32

ice nucleation (including collisional contact with other ice crystals) and - once the first ice is33

present - growth from the vapour phase [Lamb and Verlinde, 2011]. As this can lead to rapid34

formation of hydrometeors with significant fall velocities through the Wegener-Bergeron-35

Findeisen process [Findeisen, 1938; Storelvmo and Tan, 2015], most precipitation on Earth,36

in particular over continents, stems from clouds with mixed-phase or ice tops [Mülmenstädt37

et al., 2015]. Furthermore, the radiative effects of liquid and ice clouds differ due to changes38

in hydrometeor size distributions and scattering properties [Petty, 2004; Liou, 1981] as well39

as differences in the typical cloud altitude, thickness and lifetime. Thus, liquid, mixed-phase40

and ice clouds have distinct effects on the surface and top-of-the-atmosphere radiative bud-41

gets [Matus and L’Ecuyer, 2017; Cesana and Storelvmo, 2017]. Anthropogenic disturbances42

can impact the phase partitioning in clouds through microphysical and thermodynamic ef-43
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fects, with implications for the effective radiative forcing and equilibrium climate sensitivity44

[Lohmann, 2017; Storelvmo, 2017].45

Observations of the cloud phase distribution reveal a strong dependency on tempera-46

ture, but also on other factors, such as the cloud type. Furthermore, the results depend on the47

methods used to discriminate ice and liquid and on averaging scales. In-situ aircraft observa-48

tions within stratiform clouds showed that the local cloud phase structure is mostly uniform49

on scales of 100 m [Korolev et al., 2003; Mazin, 2006]. Already at temperatures just below50

0◦C, the frequency of purely liquid clouds derived from these observations is substantially51

lower than 1. This early ice onset is less pronounced in observations with ground-based lidar52

[Seifert et al., 2010; Kanitz et al., 2011], possibly because only ice precipitating clouds can53

be identified as mixed-phased with this method. Aircraft-based remote sensing of the verti-54

cal phase profile in convective clouds, seen from the side, has shown promising first results55

[Martins et al., 2011; Jäkel et al., 2017], but no data set large enough for statistical analysis56

is available from this method yet.57

Satellite observations with active sensors (CALIOP (Cloud-Aerosol Lidar with Orthog-58

onal Polarization) and CloudSat) [Choi et al., 2010a; Hu et al., 2010; Tan et al., 2014; Zhang59

et al., 2015; Cesana et al., 2016; Kikuchi et al., 2017] provide (in spite of a sparse coverage)60

a global picture of the cloud phase distribution, and are valuable for the evaluation of global61

climate models [Komurcu et al., 2014; Cesana et al., 2015]. CALIOP yields information on62

the vertical phase distribution within the cloud up to saturation of the lidar signal (at an op-63

tical thickness of approximately 5) [Winker et al., 2010]. Cloud phase products from passive64

sensors like MODIS (Moderate Resolution Imaging Spectroradiometer) [Naud et al., 2006;65

Choi et al., 2010b; Morrison et al., 2011], POLDER (POLarization and Directionality of the66

EarthâĂŹs Reflectances) [Weidle and Wernli, 2008], AIRS (Atmospheric Infrared Sounder)67

[Naud and Kahn, 2015] and AVHRR (Advanced Very High Resolution Radiometer) [Carro-68

Calvo et al., 2016] have a better coverage of the globe due to wider swaths and provide better69

statistics, allowing also for detailed studies of specific cloud regimes. However, the retrieved70

cloud phase refers to the cloud top only. Yuan et al. [2010] proposed a method to derive ver-71

tical profiles of the cloud phase for larger cloud systems by analysing the effective radius at72

different cloud top temperatures within the ensemble. This method was successfully applied73

to deep convective cloud clusters [Rosenfeld et al., 2011].74
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Deep convective clouds are usually mixed-phase clouds with liquid layers at the bottom75

and ice at the cloud top, which is in most cases below −37◦C. However, while deep con-76

vective clouds evolve from a relatively low cloud base and rise to higher levels (cumulus77

stage), the cloud top can still be to a large part liquid (cumulus congestus or cumulonimbus78

calvus) with only moderate ice contents, and its contours are still well defined. Only in the79

mature stage (cumulonimbus incus or cumulonimbus capillatus) a dense anvil of pure ice80

spreads at the cloud top [Houze, 1993]. Zipser [2003] argued that for tropical hot towers,81

which undergo substantial dilution by entrainment, the additional latent heat release during82

ice formation is crucial to provide enough buoyancy for an ascent to the tropical tropopause.83

It is this stage of ice formation at the cloud top during the growth phase of a deep convective84

cloud that this study focusses on. Deep convective clouds are most frequent over tropical,85

subtropical and midlatitude continents in summer as well as over the tropical oceans [Yuan86

and Li, 2010; Peng et al., 2014]. Numerical modelling has indicated that the glaciation of87

these clouds is at least to some extent sensitive to the concentration of ice nucleating parti-88

cles [Connolly et al., 2006; van den Heever et al., 2006; Ekman et al., 2007; Fan et al., 2010;89

Hiron and Flossmann, 2015; Paukert et al., 2017], but most studies have focussed on the90

variation of aerosols acting as cloud condensation nuclei [see the reviews by Tao et al., 2012;91

Fan et al., 2016], and resulting effects on warm phase microphysical processes, dynamical92

invigoration and precipitation at the ground.93

In this study, we address the question in how far the cloud top phase distribution of94

deep convective clouds (as retrieved from passive satellite sensors) differs from the in-cloud95

phase distribution and what parameters and microphysical processes it depends on. To this96

end, we use idealized and semi-idealized high-resolution simulations. Deep convective clouds97

were chosen because their cloud tops transition the entire mixed-phase cloud temperature98

range during the growing phase of the cloud.99

In section 2, the model simulations and the analysis methods are described. In sec-100

tion 3, the results are shown and discussed. In the conclusions, implications for the interpre-101

tation of cloud phase observed from space are discussed.102
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2 Methods103

2.1 Model description104

The nonhydrostatic limited-area model of the Consortium for Small-Scale Modelling105

(COSMO) [Baldauf et al., 2011], version 5.0, was used in a research configuration in this106

study. As the model is employed at grid spacings below 1 km, no convection parameteriza-107

tion nor subgrid cloud scheme are used. The two-moment microphysics scheme [Seifert and108

Beheng, 2006; Seifert et al., 2012] includes six hydrometeor categories (cloud droplets, rain,109

ice crystals, snow, graupel and hail). A saturation adjustment scheme is employed for con-110

densation and evaporation of liquid condensate down to a temperature of 233 K, while depo-111

sitional growth and sublimation of ice are parameterized as time-dependent processes. Cloud112

condensation nuclei (CCN) activation is calculated according to Segal and Khain [2006] un-113

der the assumption of a continental CCN spectrum. Primary ice formation is included with114

a combined parameterization of deposition nucleation and condensation freezing and a sepa-115

rate treatment of immersion freezing of rain drops. Deposition nucleation and condensation116

freezing is formulated as a relaxation to a temperature- and ice supersaturation-dependent ice117

nucleating particle (INP) concentration NINP [Murakami, 1990; Reisner et al., 1998]:118

NINP = N0

(
e/esat,i

MAX(esat,w/esat,i, 1.001) − 1

)4.5

· exp (−kT ·MAX(TC ,−27.15)) (1)

119

∆Ni = MAX (NINP − (Ni +Ns), 0) (2)

Here, e is the water vapor pressure, esat,i the saturation vapor pressure with respect to120

ice, esat,i the saturation vapor pressure with respect to liquid water, TC the temperature in ◦C121

and the constants are N0 = 0.01 m−3 and kT = 0.6 ◦C−1. Ni and Ns are the prognostic122

number concentrations of ice crystals and snow. ∆Ni is the change in Ni due to deposition123

and immersion ice nucleation within one model timestep. The parameterization is applied for124

all gridpoints with TC < 0◦C and e > esat,i. At water saturation, this parameterization has125

a somewhat stronger temperature dependence then typical observed ice nucleating particle126

concentrations [DeMott et al., 2010], with values around 102 m−3 at −15 ◦C (which is at the127

lower end of the observed range) and a maximum of 1.2 × 105 m−3 for TC ≤ −27.15 ◦C128

(only observed in dust-laden air masses).129

Rain drop freezing is parameterized as a time-, temperature- and volume-dependent130

process, assuming that the probability of the presence of an ice nucleating particle in the131

droplet increases proportionally to the droplet volume [Bigg, 1953]. Recent model improve-132
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ments to harmonize freezing of cloud droplets and rain drops and to treat both as aerosol-133

dependent processes [Paukert et al., 2017] are not included in this study. Homogeneous134

freezing of cloud drops is parameterized following Cotton and Field [2002] for temperatures135

below −30◦C.136

Secondary ice formation is included for the rime-splintering process proposed by Hal-137

lett and Mossop [1974].138

∆Ni = CHM∆qrimMAX
(

1,MIN
(

0,
T − 265

268 − 265

))
MAX

(
1,MIN

(
0,

270 − T

270 − 268

))
(3)

with CHM = 3.5 · 108 kg−1, the rimed condensate mass ∆qrim and temperature T in K.139

Riming is allowed between cloud droplets of a minimum mean diameter of 10 µm and ice140

crystals, snow particles (both with a minimum diameter of 150 µm), graupel and hail (both141

with a minimum diameter of 100 µm), and between rain drops (without further size restric-142

tion) and ice crystals, snow particles (again with minimum diameters of 150 µm), graupel143

and hail (without size restriction). Other potential ice multiplication processes [Field et al.,144

2017; Sullivan et al.] are not included.145

2.2 Setup of the simulated cases146

Two simulation setups for deep convective clouds are used in this study. The first one147

is a highly idealized setup with convection triggered by a warm bubble over flat terrain, fol-148

lowing Weisman and Klemp [1982] and Weisman and Rotunno [2000]. The initial thermody-149

namic profile has a low-level water vapor mixing ratio of 14 g/kg and a convective available150

potential energy (CAPE) of 2200 J/kg. For the background flow, a quarter-circle shear pro-151

file to 2 km above ground level with unidirectional shear above (up to a maximum horizontal152

wind speed of 31 m/s at 6 km above ground level, with constant wind above) was used. A153

temperature disturbance of 2 K , with a radius of 10 km, was placed in the south west corner154

of the domain (60 km distance from the domain boundaries) at an altitude of 1.4 km. The155

model resolution used for this case is 300 m, with 1000 × 800 horizontal grid cells, and 64156

vertical levels. Similar simulations with the COSMO model were presented e. g. by Zeng157

et al. [2016]; Paukert et al. [2017]; Hande and Hoose [2017].158

The second setup is semi-idealized, with realistic topography and an initial temperature159

and humidity profile (CAPE of 774 J/kg) from radiosoundings near Jülich, Germany [Hande160

et al., 2017; Hande and Hoose, 2017]. The initial wind profile is taken from Weisman and161

Klemp [1982] (unidirectional shear of 5 m/s, with a wind direction of 225◦), and the bound-162
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ary conditions are fixed. Convection is triggered by local convergence in the flow over the163

orographically structured terrain. The solar insolation is kept constant corresponding to the164

position of the sun at 12 p.m. local time. The horizontal resolution for this simulation is ap-165

proximately 110 m, with 600 × 600 horizontal grid cells, and 100 vertical levels. For this166

setup, a small ensemble of three members is generated by increasing either the near-surface167

temperature or the dew point temperature in the boundary layer by 2 K.168

2.3 Diagnostics169

In the following, cloud top conditions are compared to those within the cloud. The def-170

inition of "cloud top" employed in this study is designed to mimic the capability of passive171

satellite sensors, which receive signals only from the uppermost layers of a cloud. Different172

approaches have been followed in the literature. As an example, Weidle and Wernli [2008],173

in order to extract a dataset comparable to POLDER-1 observations, integrated the ice and174

liquid mass concentrations up to a minimum cloud water path of 10 g/m2, which is roughly175

equivalent to an optical thickness of 3 (coinciding with the threshold for reliable cloud de-176

tection by POLDER-1 [Chepfer et al., 2000]). Here, we follow the approach by Pincus et al.177

[2012]. For a MODIS satellite simulator of the cloud phase, they suggested to average the178

cloud phase, weighted by the extinction due to liquid and ice particles, levelwise from the up-179

permost cloud layer up to an optical depth of 1. Similarly, we calculate the cloud top liquid180

fraction lfCT by181

lfCT =
1

τlim

∫ τlim

0

lf(z)(βe,c + βe,i)(z)dz. (4)

Here, βe,c and βe,i are the shortwave extinction coefficients of the liquid and ice hydromete-182

ors, and lf(z) is the levelwise liquid mass fraction (lf = qc/(qc+qi)), with the mixing ratios183

of cloud droplets qc and of ice crystals qi. Large hydrometeors (rain, snow, graupel and hail)184

are not included in lf because of their relatively small contribution to the optical extinction.185

Similarly, the cloud top temperature lfCT is obtained as follows:186

TCT =
1

τlim

∫ τlim

0

T (z)(βe,c + βe,i)(z)dz. (5)

While Pincus et al. [2012] suggested a threshold optical depth τlim of 1 for the MODIS187

simulator, we use here τlim = 0.2. For this threshold optical depth, the highest Hanssen-188

Kuiper skill score was found in a comparison of the CLAAS-2 (CLoud property dAtAset189

using SEVIRI, Edition 2) cloud phase product (derived from geostationary Meteosat Spin-190
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ning Enhanced Visible and Infrared Imager (SEVIRI) measurements) and CALIOP [Benas191

et al., 2017].192

The glaciation temperature T50, i. e. the temperature at which lf = 0.5 is reached, is193

diagnosed here in the following way: In temperature intervals of 1 K, the mean lf (lf(T )) is194

calculated for all mixed-phase pixels, i. e. pixels at which ε < lf < 1 − ε (ε = 10−4). To195

exclude pixels with very low amounts of cloud condensate, only those pixels with an extinc-196

tion coefficient βe,c + βe,i larger than 0.002 m−1 within the cloud (with a layer thickness of197

100 m, this corresponds to an optical thickness of 0.2) are included. For the cloud top anal-198

ysis (lfCT ), only cloud top pixels with an optical depth larger than 0.2 are included. The199

glaciation temperature is then interpolated linearly between the neighbouring temperature200

bins encompassing lf = 0.5. If lf does not decrease monotonically with decreasing temper-201

ature, the highest temperature with lf ≥ 0.5 is chosen.202

As retrieval schemes for passive satellite sensors, e.g. Pavolonis et al. [2005], provide203

a binary distinction into liquid or ice clouds (a mixed-phase cloud type is often defined, but204

not used), we also define a binary liquid cloud top fraction blf , which is given by the number205

(N ) of liquid pixels divided by the total number of cloudy pixels. As liquid pixels, we define206

all pixels with a cloud top liquid mass fraction larger than 0.5, mimicking a perfect satellite207

retrieval.208

blf(TCT ) =
N(lfCT (TCT ) > 0.5)

N(lfCT (TCT ) > 0.5) +N(lfCT (TCT ) ≤ 0.5)
(6)

blf is thus defined as one value for each value (or bin) of cloud top temperature TCT ,209

sampling all pixels throughout the cloud evolution.210

3 Results211

3.1 Cloud cross sections212

Fig. 1 illustrates the vertical structure in the simulated clouds at a mature convective213

stage, after approximately 3 hours into the simulation. Both clouds exhibit a warm cloud214

base, a mainly liquid updraft core, a narrow region of mixed phase and a large ice anvil.215

The cloud is much smaller in the semi-idealized simulation and the anvil does not reach as216

high as in the warm bubble setup. Therefore, the outflow also still contains some pockets217

with liquid water (Fig. 1(d)). As expected from the higher CAPE, the maximum updraft218
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is larger with 30 m s−1 in the warm bubble case as in the semi-idealized case with 15 m/s.219

The extinction coefficient is highest within the main updraft in both cases (values of approx-220

imately 0.5m−1), but reaches its maximum at lower levels in the warm bubble simulation.221

In the pure ice region directly above the updraft, values are below 0.01m−1 (Fig. 1(e) and222

(f)), and in the anvil in the warm bubble case in larger distance from the updraft core, be-223

low 0.001m−1, in agreement with observational and modelling studies [e. g., Garrett et al.,224

2005; Fan et al., 2010]. Also regions of falling ice at lower levels exhibit low extinction coef-225

ficients below 0.001m−1. The uppermost layer of the cloud, wherever below 0◦C, is always226

a mixed-phase or ice layer with a low extinction coefficient. Overlayed on the plots in the227

second row of Fig. 1 is a black line indicating where an optical depth of 0.2 is reached, when228

integrating from cloud top downwards. The ice-containing layer at cloud top often has an op-229

tical depth lower than 0.2, such that an integration as in Eq. (4) leads to an averaging of this230

layer with lower layers, which have a higher liquid mass fraction.231

3.2 In-cloud and cloud top liquid mass fractions238

As a first diagnostic, the in-cloud liquid mass fraction lf is analysed. The liquid frac-239

tion, sampled at intervals of 6 minutes from all cloudy gridpoints with a minimum extinc-240

tion coefficient of 0.002m−1, is shown as scatterplot versus the pixel temperature in Fig. 2241

(a) and (c) for the warm bubble simulations and in Fig. 2 (b) and (d) for the semi-idealized242

simulations. The data points are colorcoded by the vertical velocity in Fig. 2 (a) and (b) and243

by the liquid plus ice cloud condensate mass mixing ratio in Fig. 2 (c) and (d). The relative244

frequency of occurrence of the points is shown in Fig. 2 (e) and (f). In both model setups,245

in-cloud liquid fractions smaller than 0.9 are common already at temperatures lower than246

≈ −2◦C, while they approach 0 only below −30◦C. At the lower end of the mixed-phase247

temperature range, a clear tendency of higher lf with higher vertical velocity becomes ap-248

parent, which is probably due to the suppression of the Wegener-Bergeron-Findeisen process249

in strong updrafts, where the supersaturation with respect to water is maintained. This inter-250

pretation is also supported by the trend to higher condensate mixing ratios at these pixels,251

in particular in the semi-idealized setup (Fig. 2 (d)). We assume that the condensate mass is252

generally high in regions of strong condensation/depositional growth and low in regions of253

evaporation/sublimation, although no perfect correlation with the condensation rate is ex-254

pected due to accumulation over time, advection, sedimentation and other loss processes.255

These confounding factors might contribute to the small values of condensate mass in the256
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regions of strong updraft and high lf at the low temperature end for the warm bubble case257

(Fig. 2 (c)). Low values of lf occur also at temperatures between ≈ −4 and ≈ −12◦C in258

regions with low upward vertical velocities or downdrafts. As shown later, these are caused259

by ice multiplication via rime splintering, and are presumably enhanced by the Wegener-260

Bergeron-Findeisen process.261

Next, the cloud top liquid mass fraction lfCT is plotted against the cloud top tempera-267

ture TCT (Fig. 2 (g) and (h)), both calculated as a weighted average over the topmost cloud268

layers until an optical depth of 0.2 is reached (Eq. (4)). The cloud top phase distribution is269

generally characterized by more pixels with intermediate values of lfCT . This and also the270

higher frequency of pixels along a diagonal straight line (seen in the histograms in Fig. 2271

(i) and (j)) can be explained by the averaging of cold, pure ice layers and warmer, liquid in-272

cloud layers.273

It is also apparent from Fig. 2 (g) and (h) that at cloud top, the vertical velocities are274

significantly smaller as within the cloud. Therefore, in-situ ice formation through the Wegener-275

Bergeron-Findeisen process is expected to be more efficient. Thus, at a given temperature276

lower than ≈ −20◦C, the cloud top liquid fraction is typically lower at the cloud top than277

within the cloud. An exception are values of lfCT ≤ 0.3 for TCT ≤ −35◦C, which are278

rare at in-cloud pixels (Fig. 2 (a) and (b)), but appear more often in the cloud top diagnostic279

(Fig. 2 (g) and (h)), again as a result of averaging. The shift to lower liquid fractions due to280

the more active Wegener-Bergeron-Findeisen process results also in a shift of the diagnosed281

glaciation temperature, which is also indicated in Fig. 2 for both in-cloud and cloud top pix-282

els in both simulation setups. In the warm bubble case, T50 shifts from −28.6◦C (in-cloud)283

to −26.4◦C (cloud top), while in the semi-idealized setup, the shift is even larger (−29.3◦C284

(in-cloud) versus −22.8◦C (cloud top)).285

3.3 Liquid cloud top pixel number fraction and resolution effect286

Also from data throughout the entire simulation period, the binary liquid cloud top287

pixel number fraction blf (Eq. (6)) is binned into cloud top temperature intervals of 2 K288

and shown in Fig. 3 as black lines. Comparing the temperature where blf reaches 0.5 to289

T50 derived from the cloud top liquid mass fraction (Fig. 2 (g) and (h)), T (blf = 0.5) is290

for both simulations higher than T50, by about 2◦C for the warm bubble simulation and by291

about 1◦C for the semi-idealized simulation. This is because T50 refers to mixed-phase pix-292
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els only (with the intention to define a diagnostic related to the glaciation process), and pure293

ice pixels excluded for its calculation, while T (blf = 0.5) is an integral variable also includ-294

ing those gridpoints where no liquid water is or has ever been present. It is also apparent in295

Fig. 3 that blf(T ) is not symmetric: it approaches blf = 0 much faster than blf = 1.296

When the model output is averaged to coarser grids (combining 2 × 2, 5 × 5, 8 × 8297

and 10 × 10 pixels into one mean value) before calculating cloud top values and blf , two298

effects can be observed in blf(T ): the curves shift to lower temperatures (by several ◦C),299

and they become more symmetric because with coarser resolution, they converge towards300

blf = 1 at temperatures above ≈ −15◦C. As predominantly ice pixels generally have lower301

optical depths and lower condensate masses than predominantly liquid pixels, their number302

is reduced disproportionally during the coarse graining, which involves averaging of adjacent303

pixels weighted by the condensate mass. This effect is expected to be most pronounced for304

homogeneous mixtures of ice and liquid cloud pixels. However, the shift of the curves in305

Fig. 3 is not monotonic, because these conditions (homogeneous mixtures, higher condensate306

masses in liquid cloud pixels) are not always fulfilled and because sample size is limited.307

3.4 Sensitivity studies: impact of ice multiplication, heterogeneous freezing and310

the thermodynamic profile311

Eight sensitivity experiments were run for the semi-idealized setup: switching off ice312

multiplication (i. e., disabling Eq. (3)); scaling heterogeneous ice formation by multiplying313

N0 in Eq. (1) by 0.01, 0.1, 10, 100 and 1000; and changes to the thermodynamic profile by314

increasing either the near-surface temperature or the dewpoint temperature in the bound-315

ary layer by 2 K each. The latter two modifications lead to an increase in CAPE from 774 to316

1265 and 1889 J kg−1 and lead therefore to significantly more vigorous convection.317

The results for the in-cloud liquid mass fraction (for the simulations without ice mul-318

tiplication and with N0 × 1000) are displayed in Fig. 4. Without ice multiplication, all val-319

ues of an in-cloud liquid mass fraction smaller than 0.6 at temperatures above −15◦C disap-320

pear (Fig. 4(a)). This also results in an increase in the liquid cloud top pixel number fraction321

blf to values above 0.9 in the same temperature range (Fig. 5(a)). The increase of heteroge-322

neous INP, by contrast, mostly affects the in-cloud liquid mass fraction at temperatures below323

−15◦C (Fig. 4(b)), and the glaciation temperatures (T50 and T (blf = 0.5)) shift by sev-324

eral K as a function of N0 (see again Fig. 5(a)). Interestingly, lower values of N0 only result325
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in small changes, and the simulations with N0 × 0.01 and N0 × 0.1 do not differ signif-326

icantly. This is probably due to rain drop freezing, which is parameterized independent of327

N0, becoming the dominant primary ice formation process in these simulations. In contrast,328

increases in N0 lead to a monotonic and strong shift of T (blf = 0.5).329

Fig. 5(b) illustrates the effect of coarse graining on these features. As discussed in sec-331

tion 3.3, averaging to a coarser grid results in a shift of the glaciation temperature to lower332

values and in a more symmetric behavior of blf(T ). Compared to the effect of an increase333

of INP by two orders of magnitude, the effect of the averaging is small, and the difference in334

glaciation temperature between the control simulation and the simulation with N0 × 1000 re-335

mains very similar. In contrast, the signal of the early ice onset caused by ice multiplication336

becomes weaker on a coarser resolution, to the extent that the shapes of the curves are nearly337

identical when analyzed on a 1.1 km grid.338

The changes to the thermodynamic profile, despite significantly higher CAPE and re-344

sulting higher vertical velocities inside the cloud (not shown), lead only to small changes345

in the binary liquid cloud top pixel number fraction (Fig. 5(c)). Interestingly, the cloud top346

glaciation temperature T (blf = 0.5) increases slightly in both sensitivity experiments, which347

seems to contradict the earlier finding that higher vertical velocities induce a lower glaciation348

temperature. This is because cloud top vertical velocities are small anyway (see Fig. 2(e) and349

(f)) and do not change substantially in the sensitivity experiments (not shown). So the differ-350

ence in cloud top phase between the warm bubble and semi-idealized simulations seem to be351

mainly due to differences in cloud structure and organization, not directly due to the different352

convective strength. Overall, the impact of these modifications to the thermodynamic profile353

on the cloud phase distribution are much smaller than the impact of the changes to primary354

and secondary ice formation parameterizations.355

4 Discussion and conclusions356

In our analysis of the phase distribution within and at the top of convective clouds357

based on two different setups with the COSMO model, the following features are apparent:358

• In the in-cloud phase distribution, we see a strong signature of vertical velocity. Phys-359

ically, this can be explained by the suppression of the Wegener-Bergeron-Findeisen360

process in strong enough updrafts [Korolev, 2007]. As the microphysics scheme em-361

ployed here [Seifert and Beheng, 2006] includes a saturation adjustment scheme for362
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condensation and evaporation of liquid condensate, the dependence of the Wegener-363

Bergeron-Findeisen process on updraft velocity is only represented in a simplified364

manner, namely by the suppression of evaporation if the updraft is strong enough to365

maintain supersaturation with respect to liquid water. It would be interesting to study366

this effect in a model with a prognostic treatment of supersaturation [e.g., Morrison367

and Grabowski, 2008].368

• Mainly due to this vertical velocity signal, we find a systematic bias of the cloud top369

phase distribution compared to the in-cloud phase distribution. This has implications370

for the signal received by space-based passive remote sensing instruments. The maxi-371

mum vertical velocities occur within the cloud, while the simulated cloud top regions372

are dominated by smaller vertical velocities and thus lower liquid mass fractions at a373

given temperature. The cloud top glaciation temperature is therefore systematically374

higher than an equivalent in-cloud glaciation temperature. In the available global cli-375

matological studies of the supercooled liquid fraction or the cloud glaciation temper-376

ature, this shift is not seen: While Carro-Calvo et al. [2016] report cloud top glacia-377

tion temperatures around −25 to −30◦C based on an analysis of AVHRR observa-378

tions, several studies based on CALIOP measurements (penetrating into the clouds379

at least to some extent) find supercooled liquid cloud fractions of 50% at tempera-380

tures between −15 and −25◦C [Hu et al., 2010; Choi et al., 2010a; Komurcu et al.,381

2014]. This discrepancy could be due to the fact that also CALIOP can not detect382

phase changes in convective clouds because of a saturation of the lidar signal, and the383

expected effect is smaller for optically less dense clouds. Additionally, uncertainties384

remain in both the phase retrieval and the cloud top temperature retrieval from passive385

sensors [Taylor et al., 2017].386

• Heterogeneous ice nucleation significantly influences the cloud phase distribution dur-387

ing the cumulus stage of the simulated convective clouds, and determines the derived388

glaciation temperature, even if the clouds eventually reach temperatures at which ho-389

mogeneus freezing dominates. This finding is in agreement with previous studies.390

Such an impact was also deduced from negative correlations between supercooled liq-391

uid cloud fraction and dust amount globally [Choi et al., 2010a; Tan et al., 2014] and392

for East Asia [Zhang et al., 2015]. Min and Li [2010] observed a strong enhancement393

of ice formation at warm temperatures during a Saharan dust outbreak over the east-394

ern tropical Atlantic. By analysis of a large number of deep convective cloud systems395
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over China and adjacent regions, Rosenfeld et al. [2011] found dust-influenced clouds396

to have relatively high glaciation temperatures, along with clouds under influence of397

heavy air pollution. Model studies also report earlier or more pronounced glaciation398

if ice nucleating particle concentrations are increased [van den Heever et al., 2006;399

Diehl and Mitra, 2015], but stress the complex and nonlinear feedbacks on further mi-400

crophysical processes leading to precipitation formation, latent heat release and cloud401

dynamics [van den Heever et al., 2006; Ekman et al., 2007; Paukert et al., 2017].402

• In our simulations, we see a clear impact of ice multiplication via rime splintering,403

that is visible in both the in-cloud and the cloud top phase distribution. Its fingerprint404

is the reduction of the supercooled liquid fraction at temperatures between approxi-405

mately −5 and −15◦C. As the average reduction is only in the order of 10-20%, this406

does however not impact the derived cloud glaciation temperature. In contrast, Rosen-407

feld et al. [2011]’s analysis of convective cloud systems, maritime cloud exhibited408

the highest glaciation temperatures, and the authors attributed this to secondary ice409

formation processes occurring in these clouds. It is possible that other ice multipli-410

cation processes not included here could lead to a stronger impact and affect also the411

simulated cloud glaciation temperature. In any case, it seems advisable that for the412

detection of ice multiplication processes in observations, not only the cloud glaciation413

temperature T50 is analysed, but the entire cloud phase distribution wherever possible.414

• Coarse-graining the simulation results from sub-km grid spacings to 1 to 3 km shifts415

the cloud top phase distribution to lower temperatures. In addition, the fingerprint416

of secondary ice formation in the binary cloud top pixel number fraction practically417

disappears. The reason for this effect is the lower contribution of ice cloud pixels418

compared to liquid cloud pixels to mass-weighted averages. If satellite retrievals im-419

plicitly include a similar weighting, this points to the need of very high resolution420

observations for the detection of such a signal from space. To date, only NPP/VIIRS421

(the Visible Infrared Imaging Radiometer Suite onboard the Suomi NPP (National422

Polar-orbiting Partnership) satellite) provides a cloud phase product available at sub-423

km resolution for the relevant cloud altitudes (nominally, 750 m resolution, or even424

375 m if high-resolution channels are used [Rosenfeld et al., 2014]). The resolution425

of the MODIS cloud products is 1 km, same as that of the CALIOP level 2 vertical426

feature mask in the upper troposphere [Tan et al., 2014]. Long-term, gridded datasets427

from passive sensors have even coarser resolutions, e.g. the AVHRR-based Pathfinder428
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Atmospheres-Extended (PATMOS-X) dataset (1x4 km2) [Heidinger et al., 2014], or429

SEVIRI-based CLAAS-2 (3x3 km2) [Benas et al., 2017]. Note that the influence of430

vertical resolution has not been studied because of our focus on comparability to pas-431

sive sensors measuring at visible and infrared wavelengths, but would be relevant for432

the comparison to active sensors, which provide vertically resolved phase information.433

Active radar sensors can also inform about larger, precipitating hydrometeors, which434

have been excluded from our analysis, but may exhibit a different phase partitioning435

behavior.436

• No robust conclusions can be drawn at this point regarding the relative sensitivity of437

the cloud phase distribution to cloud dynamics and to microphysics. The two model438

setups, one more idealized, and strongly convective, and the other one more realistic,439

and with a less unstable profile, yielded qualitatively similar cloud phase distributions,440

which were however shifted by several K. But when the thermodynamic profile of the441

second setup was modified to give higher CAPE values, the binary cloud top phase442

distribution changed only little. This gives hope that microphysical sensitivities could443

be detected for ensembles of clouds, which form in similar but not identical thermo-444

dynamic conditions. If the conditions are too different, the resulting variability in the445

phase distribution is expected to dominate over the effect of different microphysical446

pathways, e.g. aerosol-induced heterogeneous freezing. We have not investigated the447

sensitivity to horizontal wind shear, which is also of importance for convective cloud448

development [e. g., Fan et al., 2009].449

In summary, our simulations show that while the cloud top phase distribution of deep450

convective clouds differs systematically from the in-cloud phase distribution, it still con-451

tains valuable information on microphysical processes such as the strength of primary and452

secondary ice formation. Future studies should address larger ensembles of clouds, more453

realistic model setups and the sensitivity to the choice of microphysical parameterizations.454

Furthermore, satellite simulators could help to derive the expected signal received by dif-455

ferent sensors more exactly. The exploitation of passive satellite sensor information on cloud456

glaciation processes has to take into account the limitations due to resolution and co-variability457

of thermodynamic and aerosol conditions.458
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Figure 1. East-west cross sections through the main updraft of the simulated clouds. Left column: warm

bubble simulations at 3 h from model start, right column: semi-idealized simulations at 2 h 48 min from

model start. (a) and (b): vertical velocity, (c) and (d): liquid mass fraction lf (color shading) and a contour of

an optical depth of 0.2 (integrated from cloud top), (e) and (f): shortwave extinction coefficient. The temper-

ature axis is based on domain-average temperatures for each altitude level and is therefore not accurate within

the clouds. The color shading is only plotted for pixels with condensate mass qc + qi > 10−8 kg/kg.
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Figure 2. In-cloud and cloud top liquid fraction. Left column: warm bubble simulations, right column:

semi-idealized simulations. (a), (b), (c) and (d): pixelwise in-cloud liquid fraction; (e) and (f): normalized

2D histograms of the in-cloud liquid fraction vs temperature (N/(∆T∆lfNtot)); (g) and (h): pixelwise

cloud top liquid fraction; (i) and (j): normalized 2D histograms of the cloud top liquid fraction vs temperature

(N/(∆T∆lfCTNtot,CT )). Note the nonlinear y-axes in (e), (f), (i) and (j).
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Figure 3. Binary liquid cloud top pixel number fraction for original model grid (black lines) and different

degrees of coarse graining (colored lines). (a) warm bubble simulation, (b) semi-idealized simulation.
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Figure 4. In-cloud liquid mass fraction ((a) and (b)) for sensitivity experiments in the semi-idealized setup.330
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Figure 5. Binary liquid cloud top pixel number fractions for the sensitivity experiments for the semi-

idealized setup. (a) Control run and the sensitivity simulations with scaled ice nucleation and without ice

multiplication. (b) Comparison of results on the original model grid (110 m resolution) and diagnosed on

a 1.1 km grid. (c) Sensitivity experiments (110 m resolution) with modified input thermodynamic profiles:

increases of near-surface temperature T and dew point temperature TD.
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