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Abstract 

Stem cells possess unique properties, like the ability to self-renew and the potential to 

differentiate into various cell types of the whole organism, making them highly valuable 

for multiple research fields, such as tissue engineering, pharmaceutical research, 

transplantation and regenerative medicine. However, long-term in vitro maintenance of 

the cell stemness remains challenging and the underlying mechanisms are still not fully 

understood. In vivo stemness and the regulation of the stem cell development is 

influenced by multiple cues such as the interaction with neighboring cells, the 

surrounding extracellular matrix and soluble factors, demonstrating the complexity of 

the stem cell microenvironment. Based on these findings, current research is focused on 

the development of artificial systems and substrates that mimic this in vivo complexity 

in order to maintain the undifferentiated state of stem cells in vitro. Furthermore, 

high-throughput screening of stem cells is crucial to gain more insights into the 

underlying mechanisms as well as to identify compounds and factors maintaining 

stemness. However, limited availability and expandability of stem cells restricts the use 

of microtiter plates (96- and 384- well plates) for high-throughput screening of stem 

cells emitting the urge for miniaturized platforms. 

Therefore, the objective of this PhD work was to employ and establish artificial 

substrates that enable culture and maintenance of stem cells using their biochemical, 

structural and mechanical properties. These artificial substrates and culture systems 

should simplify culture and further enable high-throughput screenings of stem cells, 

while maintaining their undifferentiated and pluripotent state. In this work I used a 

transgenic mouse embryonic stem cell line, stably expressing GFP fused to the 

pluripotency gene Oct 4 (mESC Oct4-eGFP), allowing direct read-out of the 

differentiation state of these cells using fluorescence microscopy or flow cytometry. 

In the first part, a nanofibrous material, namely bacterial cellulose derived from 

Komagataeibacter xylinus, was applied for the culture of mouse embryonic stem cells 

proving its potential in maintaining stemness under short-term as well as long-term 

culture conditions (17 days) while reducing the culture requirements and significantly 

facilitating conventional culture of mouse embryonic stem cells. This positive effect on 

maintenance of stemness could be attributed to the structural properties of the bacterial 

cellulose such as its high surface roughness and porosity. 
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In the second part of the thesis, the highly chemically defined porous 

poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) was 

exploited to generate a miniaturized platform enabling culture and screening of mouse 

embryonic stem cells in defined nano- and microliter droplets (80 nL – 25 µL), whilst 

maintaining their undifferentiated state for up to 72 h. This phenomenon was based on 

the dual-functionality of the polymer´s micro-nanorough surface 

topography: maintaining the undifferentiated state of the mouse embryonic stem cells as 

shown in a previous work (Jaggy et al., 2015). The microroughness and porosity 

enabled the generation of hydrophilic and superhydrophobic areas exhibiting 

completely opposite wettabilities, which, in turn, permit spontaneous, pipetting-free 

formation of an array of microdroplets via the effect of discontinuous dewetting.  

In the third part of the project, a miniaturized platform, Droplet Microarray, was 

employed to develop a novel method for the facile single-step formation of high-density 

arrays of stem cell-based embryoid bodies. Since embryoid bodies are 

three-dimensional stem cell aggregates that recapitulate the early embryonic 

development, this approach can be used for high-throughput screening of cells in 3D 

microenvironments. I used this methodology to perform a high-throughput screening of 

774 FDA-approved drugs to identify compounds affecting embryonic development or 

embryotoxicity.  

To conclude, the ability of two artificial substrates, bacterial cellulose and 

poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA), to 

maintain the undifferentiated state of mouse embryonic stem cells based on their surface 

topography and to facilitate conventional culture methods was demonstrated. Further, 

the potential of the Droplet Microarray for high-throughput screenings of stem cells 

under conditions of prolonged inhibition of stem cells’ spontaneous differentiation was 

demonstrated. These materials can both be useful for applications in the field of stem 

cell research, pharmacological testing and tissue engineering. 
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Zusammenfassung 

Stammzellen weisen einzigartige Eigenschaften, wie die Fähigkeit zur Selbsterneuerung 

und das Potenzial sich in eine Vielzahl von Zelltypen zu differenzieren, auf. Aufgrund 

dieser Fähigkeiten sind sie in Forschungsgebieten wie “Tissue Engineering”, 

pharmazeutischer Forschung, Transplantations- und regenerativer Medizin von großer 

Bedeutung. Jedoch ist die Langzeit-Erhaltung dieser Fähigkeiten (stemness) 

anspruchsvoll und die zugrundeliegenden Mechanismen sind noch nicht vollständig 

bekannt. In vivo werden Stammzellen in einem komplexen System aus vielen 

unterschiedlichen Faktoren, wie Interaktion mit benachbarten Zellen, extrazellulärer 

Matrix und löslichen Faktoren, beeinflusst. Ein Fokus der aktuellen Forschung liegt 

daher in der Entwicklung von Systemen und Substraten, welche diese Komplexität 

imitieren und somit den undifferenzierten Zustand der Stammzellen in vitro erhalten. 

Zusätzlich werden innerhalb der Forschung Hochdurchsatz-Screenings durchgeführt, 

um einen tiefergehenden Einblick der Differenzierung zugrundeliegenden Mechanismen 

zu erhalten sowie Wirkstoffe zu identifizieren, die die Stammzellentwicklung 

regulieren. Dabei limitieren die begrenzte Verfügbarkeit und Vermehrbarkeit der 

Stammzellen die Möglichkeit konventionelle Mikrotiterplatten (96- und 

384-well Platten) für Hochdurchsatz-Screenings von Stammzellen zu verwenden, 

wodurch die Notwendigkeit miniaturisierter Plattformen erkennbar wird. 

Die Zielsetzung dieser Promotion war somit die Etablierung und Anwendung 

artifizieller Substrate für die Kultivierung von Stammzellen, welche die 

Stammzellidentität durch ihre biochemischen, strukturellen und mechanischen 

Eigenschaften erhalten, die Kultivierung von Stammzellen vereinfachen und zudem 

Hochdurchsatz-Screenings an Stammzellen ermöglichen. Die hier verwendete Zelllinie 

ist eine embryonale Stammzelllinie aus der Maus, welche GFP, das an das 

Pluripotenzgen Oct 4 gekoppelt ist, stabil exprimiert und somit eine direkte Auswertung 

der Differenzierung der mausembryonalen Stammzellen mittels 

Fluoreszenzmikroskopie ermöglicht. 

Im ersten Teil dieser Arbeit wurde ein nanofibrilläres Material, eine aus 

Komagataeibacter xylinus gewonnene bakterielle Zellulose, für die Kultivierung von 

mausembryonalen Stammzellen verwendet. Es konnte gezeigt werden, dass dieses 

Material das Potenzial aufweist, die Stammzellidentität unter Kurzzeit- und 
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Langzeit-Kultivierung (17 Tage) zu erhalten aufweist und die Stammzellkultivierung 

somit durch Reduzierung der Anforderungen signifikant vereinfacht. Dieser positive 

Effekt konnte dabei auf die strukturellen Eigenschaften, wie Oberflächenrauheit und 

Dicke der bakteriellen Zellulose zurückgeführt werden. 

Im zweiten Teil wurde das chemisch hoch definierte, 

poröse poly(2-hydroxyethyl methacrylat-co-ethylen dimethacrylat) (HEMA-EDMA) 

verwendet, welches das Potenzial hat eine miniaturisierte Plattform zu generieren, die 

die Kultivierung und das Screening von Stammzellen in definierten Nano- und 

Mikrotropfen (80 nL -25 µL) bei zeitgleichem Erhalt des undifferenzierten Zustandes 

der Stammzellen bis zu 72 h ermöglicht. Dies basiert auf der doppelten Funktionalität 

der mikro-nanorauen Oberflächenstruktur des Polymers: Nämlich erstens auf dem 

Erhalt des undifferenzierten Zustandes der embryonalen Stammzellen, wie in 

Jaggy et al. bereits gezeigt (Jaggy et al., 2015), und zweitens auf der Möglichkeit 

hydrophile und superhydrophobe Flächen zu generieren. Diese Flächen weisen 

Unterschiede in der Benetzbarkeit auf und durch den Effekt eines diskontinuierlichen 

Entnetzungsprozesses („discontinuous dewetting“) wird innerhalb eines Schrittes ein 

aus mehreren Mikrotropfen bestehenden Array gebildet. 

Im dritten Teil des Projektes wurde diese miniaturisierte Plattform, das 

Droplet Microarray, zur einfachen Herstellung eines dichten Arrays verwendet, das aus 

multiplen Embryoid Bodies besteht, die in den einzelnen Mikrotropfen getrennt 

voneinander vorliegen. Da Embryoid Bodies als dreidimensionale Stammzellaggregate 

die frühe Embryonalentwicklung rekapitulieren, ermöglichte die Nutzung dieser neuen 

Methode das Durchführen eines Hochdurchsatz-Screenings von 774 von der FDA 

zugelassenen Wirkstoffen und somit die Identifizierung von Wirkstoffen mit 

Auswirkungen auf die Embryonalentwicklung oder mit embryotoxischen Effekten. 

Zusammenfassend konnte die Fähigkeit zweier artifizieller Substrate, nämlich 

bakterielle Zellulose und poly(2-hydroxyethyl methacrylat-co-ethylen dimethacrylat) 

(HEMA-EDMA), gezeigt werden den undifferenzierten Zustandes von 

mausembryonalen Stammzellen durch die Substrat-Oberflächenstruktur zu erhalten, 

sowie konventionelle Methoden der Stammzellkultivierung zu vereinfachen. Des 

Weiteren konnte das Potenzial des Droplet Microarray, Hochdurchsatz-Screenings an 

Stammzellen bei zeitgleicher Langzeitinhibierung deren Differenzierung durchzuführen, 

gezeigt werden. Abschließend kann gesagt werden, dass eine Anwendung beider hier 
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gezeigten Substrate in den Bereichen Stammzellforschung, pharmazeutischer Forschung 

und „Tissue Engineering“ von großem Nutzen sein kann.   
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1 Introduction 

1.2 Stem cells and their potential for research 

Over the last decades stem cells have gained high importance in biological research as 

they possess unique properties distinguishing them from other cell types. These 

properties, termed stemness, are the ability of self-renewal through repeated division 

and the potential to differentiate into various cell subtypes of the organism, thereby 

generating multiple tissues (Figure 1) (Kobel & Lutolf, 2010; Laustriat et al., 2010; 

Seki & Fukuda, 2015). The differentiation potential in turn can range depending on the 

stem cell type, from multipotent stem cells (e.g. adult stem cells) with the ability to 

differentiate only into a subset of cells, to pluripotent stem cells 

(e.g. embryonic stem cells) with the potential to differentiate into all cells of the 

organism.  

Stem cells can, as indicated above, be categorized into embryonic-, adult- and induced 

pluripotent stem cells, differing in their origin as well as in their capacity of 

self-renewal and differentiation (Figure 1) (Abdelalim & Turksen, 2016; Chagastelles & 

Nardi, 2011). Thereby adult stem cells can, depending on the type, be derived from 

various organs of the adult body (e.g. hematopoietic stem cells from the bone marrow) 

and exhibit a reduced ability in differentiation, generating only cell derivatives specific 

for their tissue of origin (Kondo et al., 2003). Induced pluripotent stem cells (iPSCs) on 

the contrary are obtained from somatic cells by inducing four transcription factors 

(Oct 4, Sox2 (sex determing region Y-box 2), KLF4 (Krüppel-like factor 4), C-Myc) 

related to pluripotency and with this reprogramming the cells into an embryonic 

stem cell-like state (Seki & Fukuda, 2015; Takahashi & Yamanaka, 2006). The ability 

to induce pluripotency in somatic cells (e.g. fibroblasts), that was firstly achieved by 

Takahashi and Yamanaka in 2006 (Takahashi & Yamanaka, 2006), possesses the 

potential to revolutionize regenerative and personalized medicine by enabling and 

broaden therapeutic applications based on patient derived induced pluripotent stem 

cells. Based on this multiple advances have been made towards patient specific drug 

screening and in vitro disease models for degenerative diseases such as Parkinson’s and 

Alzheimer’s disease (Avior et al., 2016; Gieseck et al., 2015; Xiao et al., 2016). 

The first derived and in vitro cultured embryonic stem cells (ESCs) were from mouse 

origin and were isolated in 1981 by Evans and Kaufman (Evans & Kaufman, 1981). In 
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contrast the human ESCs (hESCs) were firstly derived in 1998 by Thomson et al. 

(Thomson et al., 1998). Embryonic stem cells (ESCs) are, independent of their origin, 

derived from the inner cell mass of the early embryo in the blastocyst stage, which will 

be formed between embryonic day 3 and 4 (E3.0 - E4.0) in the mouse embryo or 

embryonic day 5 and 6 in the human embryo (Niakan et al., 2012). As mentioned before 

ESCs have the ability of prolonged self-renewal and the potential to differentiate into all 

cells of the organism (pluripotency) (Evans & Kaufman, 1981; Martin, 1981; Thomson 

et al., 1998). Due to these two properties, stem cells are attracting growing interest in 

functional tissue engineering, regenerative and transplantation medicine as well as in 

personalized medicine with promise for patient specific and therapeutic applications 

(Harink et al., 2013; Kitambi & Chandrasekar, 2011; Nirmalanandhan & Sittampalam, 

2009). However, stem cell research still faces several limitations that will have to be 

overcome before stem cells can be used to their full potential for therapeutic 

applications. As for example the underlying mechanisms for maintaining stemness and 

controlling differentiation of stem cells in vitro remain largely unknown. In order to 

enable culture of stem cells and maintenance of stemness, several environmental 

conditions must be carefully controlled and hence, a lot of effort is done in developing 

systems that mimic the environmental in vivo conditions to the best possible extent 

(Balikov et al., 2017; Patel et al., 2016; Titmarsh et al., 2013). However, yet it remains 

elusive and challenging due to the great complexity of the cellular in vivo 

microenvironment and multitude of requirements important to maintaining stemness. 
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Figure 1. Schematic representation of stem cell types, their origin and unique properties. Modified 

from (Lutolf et al., 2009). 

1.2 Embryonic stem cells and their niche 

In vivo stem cells reside in a tightly controlled, tissue specific microenvironment that 

consists out of biochemical, mechanical and physical cues surrounding and influencing 

stem cell development. Besides intrinsic signals such as presence of regulatory proteins 

for cell division and gene expression, those extrinsic cues are needed to regulate stem 

cell fate and differentiation (Watt & Hogan, 2000). Especially during early embryonic 

development stem cells are interacting highly with the surrounding microenvironment. 

In case of ESCs the stem cell niche in the embryo is arranged as follows. The ESCs 

form the inner cell mass of the blastocyst, which is partially in contact with fluid in the 

adjacent, internal cavity called blastocoel (Figure 1) (Lanza, 2009). Both inner cell mass 

and blastocoel are in turn surrounded by the trophectoderm, which will form the 

extraembryonic tissue such as the placenta (Lodish et al.). Hence the ESCs are 
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influenced by neighboring cells, soluble factors and structural component of the 

extracellular matrix (ECM) (Figure 2) during embryonic development. Thereby the 

ESCs can, depending on their location within the inner cell mass, be in direct interaction 

with either trophectoderm cells and ESCs or ESCs alone.  

  

Figure 2. Schematic representation of the embryonic stem cell niche. ESCs are highly influenced 

through various environmental stimuli in the stem cell niche: 1) cell-cell interaction over 

E-Cadherin-β-Catenin binding with neighboring ESC or trophectoderm cells 2) cell-matrix interaction 

over integrin binding with ECM protein (e.g. collagen IV, laminin, fibronectin) 3) interaction with soluble 

factors (e.g. growth factors, cytokines, chemokines) 4) sensing of biophysical factors (e.g. stiffness, shear 

forces, structural and spatial arrangement). 

 

These cell-cell interactions are mainly mediated over E-Cadherin-β-Catenin binding. In 

previous studies E-Cadherin proved to have, besides function in cell-cell binding, a 

stabilizing effect on functional LIFR (leukemia inhibitory factor receptor) by forming 

with it a ternary complex at the stem cell membrane which in turn, through binding of 

the extracellular ligand LIF (leukemia inhibitory factor) (Figure 3), results in improved 

maintenance of stemness and self-renewal (Pieters & van Roy, 2014). In general 
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binding of the cytokine LIF to the heteromeric receptor, that is composed of the low 

affinity LIFR and the subunit gp130, leads to JAK (Janus kinase) mediated activation of 

the STAT3 pathway by phosphorylation of its tyrosine residue, further leading to the 

activation of transcription factors (e.g. KLF4, Nanog) involved in stemness (Figure 3). 

Due to this LIF is considered to be a substantial soluble factor present in the mouse 

embryonic stem cell niche. However there are multiple other soluble factors, differing in 

their effect on stemness depending on the stem cell type and its residual niche. As for 

example human embryonic stem cells are not affected by LIF but are dependent on the 

presence of fibroblast growth factor (FGF) in their microenvironment (Theunissen et 

al., 2014).  

 

Figure 3. Interaction between E-Cadherin-β-Catenin mediated cell-cell interaction and LIF 

mediated signaling in ESCs.  Modified from (Pieters & van Roy, 2014).  

Another important cue, beside cell-cell interaction and influence over soluble factors, is 

the interaction with insoluble factors of the ECM, which is a fibrillary network 
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consisting out of proteins such as collagen, fibronectin and laminin interlaced with 

proteoglycans. Furthermore the stem cell can sense other signals, like the topography or 

stiffness of the ECM over this cell-surface interaction. Main mediator of this surface 

sensing is the heterodimeric transmembrane receptor integrin that can be composed of 

18 α-chains and 8 β-chains (Sun et al., 2012). This high diversity of integrin in turn 

leads to an increased recognition and cellular response to variances in the ECM. The 

stem cell binds over integrin to the ECM, which leads to formation of integrin clusters, 

so called focal adhesions. Intracellularly specific adaptor proteins such as talin, vinculin 

and α-actinin will bind to the cytoplasmatic tail of integrin subsequently converting the 

mechanical cues from the ECM into biophysical signals. This conversion, also known 

as mechanotransduction, occurs through changes in the cytoskeleton and activation of 

signaling cascades and transcription factors influencing cell fate and differentiation (Das 

et al., 2014).  

The in vivo microenvironment of embryonic stem cells is highly complex and though a 

lot of progress is done in developing systems mimicking the stem cell niche, 

maintenance of the undifferentiated state of stem cells in vitro still remains challenging 

and the underlying mechanisms are not fully understood. Certain environmental 

conditions that must be carefully controlled are required to enable stem cells to be 

cultured and stemness to be maintained in vitro. In case of mouse embryonic stem cells 

(mESCs), these requirements are appropriate culture medium supplemented with LIF, 

and passaging the cells regularly (every 2
nd

 day) to prevent the induction of spontaneous 

differentiation through overgrowth (Efe & Ding, 2011; van der Sanden et al., 2010). 

Another likewise important requirement to maintain mESC stemness is the stimulation 

of cell attachment to the surface, generally ensured via gelatin coating and mitotically 

inactivated mouse embryonic fibroblasts (MEFs). MEFs are furthermore known to 

secrete soluble factors into the culture medium and thereby contributing to the 

maintenance of stemness (Llames et al., 2015). However, the use of MEFs for mESC 

cultures has several drawbacks, such as the need for purification steps and removal of 

the MEFs for experiments that require a pure population of stem cells. Moreover, the 

methods used for mitotic inactivation of MEFs are mainly based on mitomycin C 

treatment or gamma irradiation, both of which can have cytotoxic effects on stem cells 

due to residual mitomycin C and apoptosis of MEF cells. These limitations reveal the 

need for MEF-free culture systems to be developed suitable for the investigation, 

screening, and expansion of stem cells (Chen et al., 2013; Higuchi et al., 2014; Rodin et 
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al., 2014). All in all, the above-mentioned requirements demonstrate how laborious, 

costly, and time-consuming mESC cultures are, and despite precise control of the 

aforementioned prerequisites, inhibiting spontaneous differentiation of various stem 

cells including mESCs in vitro remains very difficult (Kobel & Lutolf, 2010; van der 

Sanden et al., 2010).  

1.3 Artificial substrates for regulation of stem cell differentiation  

A lot of progress is being made in the development of artificial systems with better 

resemblance of the highly complex in vivo microenvironment, to enable improved 

maintenance of stemness and regulation of differentiation in vitro. Thereby research 

focus is the adjustment of individual niche factors at a time, in order to result in a better 

understanding of the underlying mechanism of differentiation.  

1.3.1 Immobilization of proteins 

Main approach in the design of such artificial substrates is the cell-surface interaction, 

known to be an important contributing factor in the stem cell niche, influencing 

self-renewal and differentiation (see Introduction 1.2). The first strategies to generate 

such highly defined chemical substrates enabling improved maintenance of stem cells 

under MEF-free conditions, were achieved through coating of conventional tissue 

culture plates (polystyrene plates) with ECM components. One example is the use of 

Matrigel, a gelatinous mixture composed of various ECM proteins such as collagen IV, 

laminin and fibronectin, enabling improved stem cell attachment by mimicking the 

niche ECM (Joddar & Ito, 2013). Not only in mixture but also individual ECM proteins 

such as gelatin or fibronectin have been used for stem cell culture in order to maintain 

stemness. Most commonly the individual ECM proteins are thereby spotted in a 

patterned fashion using contact or non-contact printing techniques (Ceriotti et al., 2009; 

Ghaemi et al., 2013). These spotting techniques further enable, by printing and 

immobilizing different ECM proteins, the investigation of variable protein combinations 

and their effect on cell adhesion and proliferation. Flaim et al. used this approach in 

their study in order to investigate the various ECM protein combinations on their 

potential to direct ESC differentiation toward the early hepatic fate as well as their 

influence on the maintenance of the in vivo function of hepatocytes (Flaim et al., 2005). 

Furthermore the immobilization of cell adhesion molecules like E-Cadherin or signaling 

molecules are being employed (Nagaoka et al., 2006) to promote stemness. Alberti et al. 
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exploited this potential to immobilize signaling molecules to deposit the molecules LIF 

(leukemia inhibitory factors) and stem cell factor (SCF) by covalently binding the 

molecules to a maleic anhydride copolymer (POMA-PEG7) surface (Alberti et al., 

2008), allowing maintenance of mESCs pluripotency for up to 2 weeks without further 

external addition of LIF.   

1.3.2 Nanofibrous structures: bacterial cellulose 

Besides direct attachment to the provided attachment sites of the surrounding substrate, 

stem cells can sense and be influenced through mechanical cues such as surface 

topography, porosity and the fibrillary structure (Moraes et al., 2010; Zhou et al., 

2015a; Zonca et al., 2013). One approach is the use of nanofibrous structures, which 

can be synthesized through electrospinning technology or naturally derived (Bhardwaj 

& Kundu, 2010; Jin et al., 2017; Murphy et al., 2014). By using the electrospinning 

technology it is possible to generate fine fibers from polymer solutions with diameters 

in the nano- and micrometer range. The electrospinning setup consists thereby of three 

major components: a high voltage supply, a spinneret and a grounded collecting plate. 

During the electrospinning process an electric charge of certain polarity is induced on 

the polymeric solution, which is subsequently accelerated in a charged jet towards the 

collector plate of opposite polarity, forming fibers (Figure 4A).  

Cellulose is a natural nanofibrous structure originating from various plants, fungi, algae 

or aerobic bacteria. Especially bacterial cellulose (BC) is gaining high importance in 

stem cell research due to its biocompatibility. BC is most commonly synthesized under 

static culture conditions, generating a cellulose film at the liquid-air interface, as 

bacteria, in particular the aerobic bacterial strain Komagataeibacter xylinus (KX), will 

intrinsically produce glucose chains that will get extruded and subsequently aggregate 

into nano- and microfibers further forming a web shaped network (Figure 4B) (Esa et 

al., 2014; Shah et al., 2013; Sulaeva et al., 2015; Ullah et al., 2016). With increasing 

cultivation time, the thickness of the film will continuously increase, until the bacteria 

will get trapped underneath the cellulose film and become less active due to high 

oxygen deficit (Shah et al., 2013).   
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Figure 4. Graphical schematic of cellulose production.  (A) Schematic representation of synthetical 

cellulose production using the electrospinning technique. Modified from (Bhardwaj & Kundu, 2010). (B) 

Schematic overview of structural organization of naturally derived bacterial cellulose (BC). Modified 

from (Sulaeva et al., 2015)    

Besides the mentioned biocompatibility BC possesses further advantages like its purity, 

due to lack of potential sources of toxicity like hemicellulose, lignin and pectin, other 

than in plant-derived cellulose (Sulaeva et al., 2015; Ullah et al., 2016). In addition BC 

exhibits high crystallinity, mechanical strength, high water holding capacity, 

permeability towards liquid and gases based on its porosity, broad chemical modifying 

ability, biodegradability and the ability of 3D molding during synthesis (Esa et al., 

2014; Jang et al., 2017; Shah et al., 2013; Sulaeva et al., 2015). Furthermore the BC is 

highly adjustable in its structural and mechanical properties. The BC membrane 

thickness for example can be modulated by the cultivation time, and its porosity, 

roughness, and mechanical properties through its drying method (Shah et al., 2013). In 

addition BC possesses the ability to generate controllably complex 3D structures, 

enabling the production of realistic tissue or scaffold material through combination with 

3D printing techniques, microfluidics and electrospinning techniques (Ardila et al., 

2016; Pattinson & Hart, 2017; Sultana & Zainal, 2016; Yu et al., 2016). Due to these 

numerous advantages BC finds wide application in tissue engineering, as skin substitute 

and as wound dressing material, exhibiting higher complement activation than 

conventional graft materials (Jin et al., 2017; Mertaniemi et al., 2016). In stem cell 

research BC has so far been applied as composite material, as for example by 

combining BC with hydroxyapatite, a natural occurring mineral containing calcium, in 
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order to mimic bone tissue and direct differentiation of stem cells seeded on these BC 

composite into the osteogenic lineage (Favi et al., 2016; Huang et al., 2017; Ran et al., 

2017). Furthermore studies showed morphological similarities between BC and the 

extracellular matrix protein collagen, indicating a comparable support in cell growth or 

even possible maintenance of the undifferentiated state of stem cells (Geisel et al., 

2016). Hence a positive effect on maintenance of stemness can be caused by the 

distinctive surface topography and fibrillary structure as well as through the mechanical 

strength of the BC.  

1.3.3 Polymeric materials 

Further artificial substrates influencing stem cell differentiation through their surface 

topography and stiffness are generated by application of polymeric materials. Hydrogels 

are such polymeric networks that can easily be produced and additionally modified in 

its stiffness and viscosity, enabling investigation of those parameters on stem cell 

differentiation. Hydrogels are mainly generated of poly(acrylamide) (PAAm) and 

poly(ethylene glycol) (PEG) (Murphy et al., 2014; Viswanathan et al., 2014), however 

further functionalization with ECM proteins is generally needed in order to promote 

cell-substrate interaction. As for example Gobaa et al. generated an array comprised of 

hydrogel microwells with varying substrate stiffness and shear moduli, but equal 

geometrical and biochemical properties. The stiffness of hydrogels was controlled by 

using three different PEG precursor concentrations leading to different levels of gel 

crosslinking. In addition, the hydrogels were functionalized with various combinations 

of different ECM proteins. This enabled the investigation of the effect of surface 

stiffness in combination with variable ECM proteins on mesenchymal stem cell (MSC) 

and neural stem cell (NSC) differentiation and enabled the characterization and 

identification of the optimal combinations suitable for stem cell culture and 

maintenance of stemness (Gobaa et al., 2011). Other polymeric materials currently 

applied for stem cell culture further allow modulation of surface roughness, chemistry 

and wettability as for example varying combinations of acrylate monomers (Mei et al., 

2010). Thereby modulation of the surface topography can be achieved, in a highly 

reproducible and spatially controlled manner, through the use of lithographic techniques 

such as nanoimprinting, microcontact printing (µCP), electron-beam lithography or 

photolithography (Coyle et al., 2016; Higuchi et al., 2014; Nam et al., 2011; 

Viswanathan et al., 2014). Thereby these techniques enable generation of 
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nanostructures such as nanopits or nanopillars on the surface of the substrates. As for 

example, Hu et al. used electron-beam lithography creating a substrate of multiple 

nanogrates and nanopillars that vary in their dimensions and distances between the 

individual structures, resulting in differential T-cell activation and proliferation based 

on the surface topography (Hu et al., 2016). Also modulation of the surface roughness 

and topography can be done through varying the chemical composition of the used 

polymer mixture. In previous work a highly chemically defined 

poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) 

substrate was generated by free radical photopolymerization exhibiting varying surface 

topographies (Jaggy et al., 2015). By using varying ratios of the porogens, 1-decanol 

and cyclohexanol, precise control of the surface roughness was possible achieving 

substrates with smooth (Surface roughness (Sa) 2 ± 0.4 nm), nanorough 

(Sa 68 ± 30 nm) and micro-nanorough (Sa 919 ± 22 nm) surface topographies (Figure 

5). These substrates were applied for stem cell culture and the effect of the respective 

surface topographies on mESC differentiation and stemness was investigated, showing 

significantly improved maintenance of mESC stemness on the micro-nanorough 

surface.  
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Figure 5. HEMA-EDMA substrate exhibiting varying surface topographies. (A) SEM images 

showing an overview of micro-nanorough, nanorough and smooth surface structure of the highly 

chemically defined HEMA-EDMA substrate. Scale bar 5 µm. (B) Surface roughness of the respective 

topographies imaged through optical profilometry. Scale bar: 20 µm for micro-nanorough and nanorough; 

100 µm for smooth surface. Figure modified from (Jaggy et al., 2015).  

All the above mentioned approaches generating artificial substrates mimicking the in 

vivo microenvironment, enable culture of stem cells under highly defined and 

reproducible conditions whilst maintaining stemness and regulating differentiation. 
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1.3.4 Development of miniaturized platforms for stem cell applications 

Further complicating stem cell research, next to the difficult maintenance of stemness in 

vitro, is the limited availability and restricted expandability of certain stem cells types, 

making the use of conventional culture and microtiter plates (96- and 384- well plates) 

almost impossible. Hence a lot of progress has so far been made in the fields of 

nanotechnology and engineering in developing methods to generate miniaturized 

platforms for stem cell applications such as screenings. This is addressed by both, 

improving commonly used methods and designing various novel approaches (Berthuy 

et al., 2016). The new developed platforms are mainly based on the previously 

mentioned artificial substrates (see Introduction 1.3) to benefit on their potential in 

maintaining stemness due to a close resemblance of the in vivo microenvironment. An 

example of such a miniaturized platform based on the use of a fibrous material showing 

to have an effect on stem cell differentiation through mimicking structural composition 

of the natural stem cell niche was presented in the work of Deiss et al. They developed a 

patterned paper array through impregnation with Teflon, generating repelling barriers in 

the paper, and allowing precise deposition of cells and peptides in array format for 

screening applications (Deiss et al., 2014).  

As mentioned before, techniques widely applied for fabrication of microarray include 

contact or non-contact printing, and lithographic techniques (Kang et al., 2010; Nam et 

al., 2011). For instance, by using standard soft lithography, Zhang et al. developed a 

microarray, named SMARchip, for screening of stem cells containing 512 round wells 

with a diameter of 500 µm separated by superhydrophobic borders (Zhang et al., 2016). 

A further approach of a miniaturized microarray created based on the property of 

extreme water repellency was developed by Feng et al. using photolithography to 

generate a patterned polymer microarray (Droplet Microarray) consisting of hydrophilic 

spots of different shapes and sizes ranging from 3000 to 1000 µm, separated by 

superhydrophobic borders, enabling spontaneous formation of multiple confined 

micro-reservoirs for culturing and screening of cells (Feng et al., 2014; Popova et al., 

2015; Popova et al., 2016). Along with possibility of dramatic miniaturization of 

screenings, these techniques allow for generation of arrays of spots with different 

chemical and physical properties. This is, as shown above, important for controlling 

microenvironment of stem cells during in vitro handling, enabling culture of stem cells 
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in xeno-free conditions and further expanding the applicability of stem cells for 

screening applications.  

1.3.5 High-throughput screening of stem cells in 2D 

Research focuses on characterizing the mechanisms underlying stem cell differentiation, 

as well as on identifying various compounds able to maintain stemness and inhibit 

spontaneous differentiation of stem cells using high-throughput screenings (HTS) 

(Gupta et al., 2009; Williams et al., 2008). HTS are most commonly performed using 

microtiter plates, as they enable parallel and simultaneous testing of multiple factors in 

formats ranging from 96 over 384 to 1536 experiments per plate (Ankam et al., 2013). 

The use of microtiter plates for HTS, however, has several drawbacks and limitations. 

Performing large screens using microtiter plates (96-1536 well plates) is time 

consuming and laborious (Macarron et al., 2011). First of all, it requires multiple 

pipetting steps and the use of expensive pipetting robotics. Second, it entails high 

consumption of expensive reagents and valuable cells resulting in high costs of 

experiments. Due to that reasons HTS of stem cells is not affordable for many 

laboratories. In addition to the financial aspect, the main limitation of using 

microtiter plates for screening stem cells is the limited availability and restricted 

expandability of these cells. This makes it difficult or sometimes impossible to perform 

large screens on some types of stem cells using conventional microtiter plates. It is 

especially critical in case of primary patient derived stem cells that are not just scarce in 

their amount, but also limited in time they could be cultured outside of the organism, 

due to rapid changes in their properties and responses during in vitro culturing (Lee-

Thedieck & Spatz, 2014). To address these problems and be able to perform HTS 

without robotics and with minimal reagent and cell consumption, further miniaturization 

of screening compartments is required. Hence, the development of new miniaturized 

platforms for HTS of stem cells, requiring minute amount of cells and allowing for 

fabrication of customized scaffolds with defined chemical and physical properties, is in 

focus in the field of stem cell research. These miniaturized platforms for HTS, enabling 

cell numbers and the amount of compounds per experiment to be reduced, can make 

stem cell screening possible and cost-effective (Du et al., 2016; Fernandes et al., 2009; 

Jackman et al., 1998). Thereby several screening approaches, such as screening for 

small molecules, proteins or biopolymers, are applied in order to elucidate the 

mechanisms underlying stem cell differentiation and to accelerate progress in compound 
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and drug discovery (Fernandes et al., 2009). For example multiple HTS are being 

performed in order to identify compounds and small molecules that affect expansion of 

stem cells, self-renewal, maintenance of stemness or that enable directed differentiation 

of stem cells into a specific subtype of specialized cells (Gupta et al., 2010). In the work 

of Williams et al. for instance, a screen of multiple small molecules was performed 

using murine skeletal muscle cells (C2C12) with the potential to differentiate in order to 

identify small molecules with effect on neuronal differentiation (Williams et al., 2008). 

Furthermore multiple HTS on soluble factors are being conducted since, in vivo, stem 

cells are strongly influenced by soluble factors in their behavior and developmental fate. 

Chung et al. investigated the influence of the soluble factors: epidermal growth factor 

(EGF), fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF) in 

a concentration-gradient-dependent manner on proliferation and differentiation of neural 

stem cells (NSCs) (Chung et al., 2005).  

A controlled environment is known to be a crucial factor in stem cell culture and 

expansion, as stem cells sense and react to various environmental conditions that can 

directly affect stemness, self-renewal and differentiation (Mei, 2012). The interaction of 

stem cells with environmental cues and conditions are versatile and include cell-surface 

and cell-cell interactions. Hence, to be able to regulate stem cell properties various 

materials are being investigated for their ability to influence the properties of stem cells 

and to create well-controlled substrates with defined chemical and physical properties 

for short and long term culture of stem cells (Ghaemi et al., 2013). For this purpose 

miniaturized platforms are also widely used as they allow, in contrast to microtiter 

plates, simultaneous screening of large number of substrates and their combinations 

using minute amounts of cells. For instance, Mei et al. conducted a screening of 

496 various combinations of different minor and major monomers by spotting acrylate 

monomer mixtures on glass substrate and culturing human embryonic stem cell (hESC) 

on it with the objective to identify suitable polymers supporting long-term culture and 

expansion of hESC (Mei et al., 2010). In another study performed by Luo et al. 

self-assembled monolayers of alkanethiols, an easy adjustable substrate, was used for 

controlling the differentiation of human mesenchymal stem cells (hMSC). In this study 

384 different combinations of alkanethiols were spotted on gold substrate to form an 

array of self-assembled monolayers for subsequent screenings with hMSCs (Luo & 

Yousaf, 2011).  
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Modulating the surface properties, such as topography, porosity, stiffness and geometry, 

can contribute to a better understanding of the effective factors and the underlying 

mechanisms of differentiation (Moraes et al., 2010; Zhou et al., 2015a; Zonca et al., 

2013). Several studies addressed and investigated the effect of surface topography on 

stem cell differentiation and expansion (Ankam et al., 2013; Berthuy et al., 2016; 

Simon & Lin-Gibson, 2011). Ankam et al. showed the fabrication of a multi 

architectural chip (MARC) containing various patterned topographies exhibiting 

different geometries and sizes in nano- to micrometer range in combination with various 

heights of PDMS layer (Ankam et al., 2013). They used MARC to investigate the 

influence of surfaces with different properties on neural differentiation of hESCs and 

were able to find a combination of topographical features and biochemical cues that 

reduced the time of neuronal differentiation to 7 days compared to 20 days in 

conventional methods (Ankam et al., 2013). Such miniaturized combinatorial 

screenings of surface properties in array format are used by an increasing number of 

research groups to advance and accelerate research progress by increasing effectiveness 

of screenings and reducing time and costs of experiments (Berthuy et al., 2016; Simon 

& Lin-Gibson, 2011). In addition to array format, combinatorial screenings can be 

realized by using gradients like it was shown in the study of Clements et al. (Clements 

et al., 2012). In this work, a platform with orthogonal gradients of porous silicon and 

cyclic RGD peptide was fabricated. Using this platform the authors investigated 

behavioral changes and attachment of MSCs upon the variable gradients and observed 

significant correlation between attachment of MSCs and density of silicon and cyclic 

RGD peptide on the surface with stronger correlation with peptide concentration.  

Another widely used combination of environmental cues in stem cell screening is a joint 

investigation of influence of the stiffness of the surface and proteins such as ECM 

proteins on properties of stem cells (Gobaa et al., 2015). In the work of Gobaa et al., the 

authors generated an array with dimensions of a standard microscope glass slide, 

comprised of hydrogel microwells of 450 µm size with varying substrate stiffness and 

shear moduli, but equal geometrical and biochemical properties. The stiffness of 

hydrogels was controlled by using three different PEG precursor concentrations leading 

to different levels of gel crosslinking. In addition, hydrogels were functionalized with 

67 combinations of 11 different proteins, such as, for example, ECM protein 

fibronectin. By performing HTS of MSCs and neural stem cells (NSC) using this 

platform, the authors demonstrated the effect of surface stiffness in combination with 
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different proteins on stem cell differentiation, and were able to identify optimal 

combinations that supported self-renewal of stem cells (Gobaa et al., 2011).    

As mentioned before ECM proteins represent an important part of the stem cell niche; 

therefore, they are widely used in screenings searching for environmental cues 

promoting stem cell renewal, stemness or differentiation (Chien et al., 2011). Beachley 

et al. developed a miniaturized 2D tissue model array consisting of 40 ECM 

microparticles, isolated and generated from 11 different porcine tissues, and spotted 

onto a glass substrate (Vince Z Beachley et al., 2015). Proteomic analysis revealed that 

the fabricated ECM microparticles resembled to a high degree the ECM constitution 

from the respective tissue they were derived from. They used this tissue model array to 

conduct HTS of human adipose derived stem cells (hADCs) and investigate 

differentiation upon various tissue specific ECM combinations. For a better 

resemblance of the in vivo situation, the authors modified the 2D tissue model into a 3D 

system by inverting the array containing hASCs and ECM microparticles during 

culturing period and utilizing the method of “hanging drop” promoting formation of 

stem cell - tissue ECM spheroids. A similar effect of tissue specific ECM on hASCs 

differentiation was demonstrated in both 3D and 2D models. Several other studies also 

focused on developing 3D model systems for HTS of stem cells to enable better 

representation of natural microenvironment allowing for investigation on influence of 

niche components on stem cell fate in more in vivo-like conditions (Tarunina et al., 

2016; Zhang et al., 2016).   

1.3.6 High-throughput screening of stem cells in 3D 

Various approaches are used to generate miniaturized 3D high-throughput platforms 

resembling a more physiological and natural environment and enabling further 

applications in compound screens, regenerative medicine, biomaterial and tissue 

engineering (Gaharwar et al., 2016; Tong et al., 2015). As for example the fabrication 

of scaffolds for 3D screening systems is based on using polymers, fibrous material, 

bioprinting techniques or hydrogels (Fernandes et al., 2009; Floren & Tan, 2015; Neto 

et al., 2014). 3D systems based on hydrogels cover investigation of the effect of 

compounds, small molecules, ECM proteins (Dumont et al., 2014) as well as chemical 

and mechanical properties of the hydrogels on stem cell expansion (Raic et al., 2014) 

and differentiation (Duffy et al., 2016; Moraes et al., 2010).  Floren et al. developed a 

miniaturized 3D high-throughput platform based on the formation of fibrous hydrogel 
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that exhibits tunable properties such as elasticity, stiffness and geometry (Floren & Tan, 

2015; Neto et al., 2014). In addition, different combinations of ECM proteins were 

spotted in hydrogel array allowing the authors to create a screening platform for 

investigation of MSCs attachment, spreading and differentiation upon different 

combinations of ECM protein and substrate stiffness (Floren & Tan, 2015; Neto et al., 

2014).  

The development and investigation of further approaches, scaffolds and materials for 

culturing and screening of stem cell in 3D environment led to the discovery and 

application of fibrous materials that were shown to have an effect on stem cell 

differentiation, probably through mimicking structural composition of the natural stem 

cell niche (Wang & Kisaalita, 2010).  

Furthermore mimicking stem cell niche and microenvironment can be achieved through 

simulating cell-cell interactions by co-culturing different interdependent cell types 

(Tumarkin et al., 2011). This approach was utilized in the work of Gracz et al., where 

the authors developed a microraft array (MRA), a miniaturized platform for the 

investigation of the interaction between intestinal stem cells (ISC) and Paneth cells that 

reside in a natural niche of ISC cells (Gracz et al., 2015). Using MRA, the authors were 

able to show the direct effect of Paneth cells on formation of organoids derived from 

ISCs in a more in vivo like system. 

1.3.6.1 Embryoid bodies for high-throughput screening 

The use of embryoid bodies (EB) for screening applications is such a widely used 

example of a 3D culturing and screening model. EBs are 3D cell aggregates formed by 

pluripotent stem cells like ESCs. It has been shown that EBs recapitulate in many 

aspects early mammalian embryogenesis by differentiating into cells representing the 

three germ layers, and therefore, they represent a highly physiologically relevant model 

compatible with HTS applications (Vrij et al., 2016; Warkus et al., 2016). The primary 

three germ layers in the embryo are formed during the process of gastrulation, which 

approximately takes place from embryonic day 6.5 (E6.5) in the mouse embryo (Figure 

6). Thereby the epiblast cells form a transient structure, known as primitive streak, and 

undergo transition giving rise to endo and mesoderm (Keller, 2005). Cells of the 

epiblast that do not pass through the primitive streak will give rise to the ectoderm. In 

case of EBs the first indication for differentiation was shown to be the formation of a 
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layer of primitive endoderm on the outer surface of the EB (Bratt-Leal et al., 2009). 

However, the formation of a primitive streak like structure as well as the exact 

mechanism underlying and regulating the early induction of the germ layers within EBs 

are to date poorly understood. Within the three different germ layers, mesoderm derived 

cells develop into cells of the hematopoietic and vascular system, cardiac tissue and 

skeletal muscle cells. The endoderm lineage in particular gives rise to hepatocytes and 

pancreatic β-cells, whereas the ectoderm lineage gives rise to cell of the central nervous 

system as well as epithelial cells (Keller, 2005).  

 

Figure 6. Schematic representation comparing the early stages of development in the embryo and 

embryoid bodies.  Modified from (Keller, 2005). 

Main methods applied for the EB formation are culture in “hanging drops” as well as in 

low adherence plates (Buesen et al., 2004; Buesen et al., 2009; Desbordes et al., 2008). 

There ESCs are pipetted on the inner side of petri dish lid as “hanging drops” or into the 

particular wells of a low adherence plate, respectively (Corradi et al., 2015; Warkus et 

al., 2016). Both methods are thereby based on the culture of ESCs in suspension, 

allowing the formation of cell aggregates and spontaneous differentiation into EBs. In 

order to perform HTS using these methods the ESCs are, in a first step suspended in the 

respective compounds that are supposed to be tested during screening. Subsequently the 

individual ESC-compound solutions are pipetted either in the particular wells of the low 

adherence plate or in case of the “hanging drop” method in the lid of a petri dish that is 
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immediately turned afterwards to allow culture of the ESCs in “hanging drops” forming 

EBs (Corradi et al., 2015; Warkus et al., 2016). Hence, multiple pipetting steps are 

needed to perform HTS of compounds using these methods and in order to ensure 

parallel and simultaneous testing of multiple compounds the use of pipetting robotics is 

essential. Other technologies used for the formation of EBs, including culture of stem 

cells in bacterial grade dishes or spinner bioreactors, face disadvantages such as low 

homogeneity of formed EBs and reduced applicability for screenings due to high 

amounts of reagents needed (Kurosawa, 2007). Therefore the development of new 

technologies that enable HTS of EBs in low volumes and without the need for pipetting 

robotics as well as high size homogeneity of single EBs formed is important. For 

example, Vrij et al. fabricated a miniaturized platform enabling formation of EBs on a 

thermoformed Cyclic Oleofin copolymer (COP) film with low cell adhesion properties. 

Using this platform, the authors performed a screening of kinase inhibitors investigating 

its influence on differentiation of EB derived from mouse embryonic stem cells (Vrij et 

al., 2016). Further approaches for creation of 3D HTS platforms mimicking in vivo 

environment are being realized through generation of organoids and tissue models 

(Horváth et al., 2015; Jeon et al., 2015) that allow for screening in a more natural and 

physiological system (Arai et al., 2016; Nierode et al., 2016). Additionally applying 

EBs in drug screening can help to identify compounds showing toxicity, increasing drug 

safety and reducing the use of premature in vivo testing during early stages of drug 

discovery.   
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1.4 Objective 

Stem cells have gained more and more importance in fields like drug discovery, tissue 

generation and transplantation medicine, due to their potential of differentiating into 

vast subsets of cells and their ability of self-renewal. However long-term maintenance 

of these properties in vitro remains challenging and limited availability as well as 

restricted expandability of some stem cell types further complicate culture and 

screenings of stem cells using conventional tissue and microtiter plates (96- and 

384-well plate). This emits the urge for miniaturized platforms allowing culture and 

screening of stem cells in order to identify compounds and factors promoting stem cell 

properties in vitro, further helping to elucidate the underlying mechanisms of 

differentiation. Thereby the use of artificial substrates with highly defined and 

reproducible biochemical properties proved to be beneficial.  

Hence, the objective of this PhD work was to employ artificial substrates enabling the 

culture and maintenance of stem cells through their surface topography and roughness, 

simplifying stem cell culture and in case of the Droplet Microarray enabling 

high-throughput screening of stem cells. Therefore a transgenic mouse embryonic stem 

cell line, stably expressing eGFP fused to the pluripotency gene Oct 4 

(mESC Oct4-eGFP) was used and with this allowing direct read-out of the 

differentiation state of the mESC Oct4-eGFP using fluorescence microscopy.  

Two different artificial substrates were investigated for stem cell culture and their 

promoting effect on stemness; bacterial cellulose and a highly chemically defined 

porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) 

respectively.  

The bacterial cellulose that was used in the first part exhibits multiple properties such as 

high purity and biocompatibility demonstrating its applicability as artificial substrate for 

cell culture. Furthermore it is highly adjustable in its structural and mechanical 

properties, enabling precise modulation of its porosity, roughness and thickness. In 

addition the demonstrated morphological similarities between the bacterial cellulose and 

the in vivo occurring extracellular matrix protein collagen (Geisel et al., 2016) indicate a 

comparable support in cell growth and a potential stemness promoting effect of the 

bacterial cellulose. Hence, the bacterial cellulose was employed in this work as it shows 

promising applicability for stem cell culture as defined, nanofibrous substrate that 
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allows precise modulation and regulation of its morphological and structural properties 

and based on this exhibits the potential for culture of stem cells in a precisely controlled 

microenvironment with ability for improved maintenance of stemness.  

The highly chemically defined HEMA-EDMA substrate that was employed in the 

second and third part of this PhD project can be adjusted in its chemical composition 

further resulting in different surface topographies of variable roughness and porosity. 

Thereby the HEMA-EDMA’s micro-nano surface topography was demonstrated to 

inhibit mESC differentiation, thus promoting the long-term maintenance of stemness 

under MEF-free conditions (Jaggy et al., 2015). Furthermore the surface roughness is 

crucial to create the hydrophilic and superhydrophobic areas exhibiting various degrees 

of wettability, that enable spontaneous, pipetting-free formation of a miniaturized array 

of microdroplets via the effect of discontinuous dewetting. Therefore the aim in the 

second part of the project was to combine this dual-functionality of the HEMA-EDMA 

surface roughness to generate a miniaturized array of multiple droplets on a 

superhydrophobic-hydrophilic micropattern (Droplet Microarray) that enables 

high-throughput screening of stem cells and at the same time promotes the maintenance 

of stemness and inhibition of differentiation through its surface roughness without the 

need of MEFs. Thereby the Droplet Microarray allows for screening and identification 

of compounds and factors promoting stem cell properties in vitro in a chemically 

defined and controllable system.  

Moreover, the objective in the third part of this work, was to employ the 

Droplet Microarray as a miniaturized platform for the facile formation of multiple, 

homogeneous embryoid bodies (EBs). Thereby as EBs closely resemble the in vivo 

situation by recapitulating the early embryonic development, using the 

Droplet Microarray as EB array enables screening and investigation in a more cellular 

complex system with closer resemblance to the in vivo microenvironment, resulting in 

biomedical more relevant results.     
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2 Material and Methods 

2.1 Materials 

2.1.1 Chemicals 

 

Table 1. List of all chemicals  

Name Company 

1-decanol Sigma-Aldrich (Munich, Germany) 

1H, 1H, 2H, 2H perfluorodecanethiol Sigma-Aldrich (Munich, Germany) 

2,2-dimetoxy-2-phenylacetophenone 

(DMPAP) Sigma-Aldrich (Munich, Germany) 

2-hydroxyethyl methacrylate (HEMA) Sigma-Aldrich (Munich, Germany) 

2-mercaptoethanol Alfa Aesar (Massachusetts, USA) 

3-(trimethoxysilyl)propyl methacrylate AppliChem GmbH (Darmstadt, Germany) 

4-(dimethylamino)pyridine (DMAP) Merck KGaA (Darmstadt, Germany) 

4-pentynoic acid Sigma-Aldrich (Munich, Germany) 

bovine gelatin Sigma-Aldrich (Munich, Germany) 

cyclohexanol Sigma-Aldrich (Munich, Germany) 

dichloromethane (DCM) Merck KGaA (Darmstadt, Germany) 

dimethyl sulfoxide (DMSO) Carl Roth (Karlsruhe, Germany) 

ethylene dimethacrylate (EDMA) Sigma-Aldrich (Munich, Germany) 

mitomycin C Santa Cruz Biotechnology Inc. (Dallas, USA) 

N,N'-diisopropylcarbodiimide (DIC) Manchester Organics (Runcorn, UK) 

porcine gelatin Sigma-Aldrich (Munich, Germany) 

ScreenWell FDA approved drug library 

V2 Enzo Life Sciences Inc. (New York, USA) 

trichloro (1H, 1H, 2H, 2H-

perfluorooctyl)silane Sigma-Aldrich (Munich, Germany) 
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2.1.2 Media, buffer, solution 

 

Table 2. List of used media, buffer and solutions  

Name Company 

DMEM 
Gibco Life Technologies GmbH (Darmstadt 

Germany) 

100x Non-essential amino acids 

(NEAA) 

Gibco Life Technologies GmbH (Darmstadt 

Germany) 

Accutase Invitrogen (California, USA) 

PanSera ES  

(bovine Serum for stem cells) 
PAN-Biotech GmbH (Aidenbach, Germany) 

PBS 
Thermo Fisher Scientific (Massachusetts, 

USA) 

Penicillin/Streptomycin (Pen/Strep) 
Gibco Life Technologies GmbH (Darmstadt 

Germany) 

Trypsin-EDTA, 0.25% 
Thermo Fisher Scientific (Massachusetts, 

USA) 

α-MEM 
Gibco Life Technologies GmbH (Darmstadt 

Germany) 

 

2.1.3 Kits and primer 

 

Table 3. List of used Kits and primer 

Name Company 

InnuPrep Mini RNA Kit AnalytikJena (Jena,Germany) 

M-MLV RT Rnase (H-) point mutation Promega (Wisconsin, USA) 

Primer  

Metabion international AG (Planegg, 

Germany) 
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2.1.4 Antibodies and cell stains 

 

Table 4. List of all cell stains and antibodies  

Name Company 

DAPI 
Molecular Probes, Thermo Fisher Scientific 

Inc. (Massachusetts,USA) 

donkey anti goat Cy3 Jackson Immunoresearch (West Grove, USA) 

goat anti Brachyury  R&D Systems (Minneapolis, USA) 

goat anti FoxA2 (HNF 3β) R&D Systems (Minneapolis, USA) 

goat anti rabbit Cy3 Jackson Immunoresearch (West Grove, USA) 

Hoechst 33342 
Molecular Probes, Thermo Fisher Scientific 

Inc. (Massachusetts,USA) 

Propidium iodide (PI) Invitrogen (California, USA) 

rabbit anti β-III-Tubulin (TuJ1) Sigma-Aldrich (Munich, Germany) 

 

2.1.5 Cell lines  

 

Table 5. List of the used cell lines and respective media 

Name Description Source Media 

HEK293-LIF HEK293 cells stably 

transfected with a 

leukemia inhibitory 

factor (LIF) expression 

plasmid 

Prof. Dr. Martin Bastmeyer, 

KIT 

α-MEM  

+ 10% PanSera 

ES  

+ 1% Pen/Strep 

MEFs mouse embryonic 

fibroblasts 

Prof. Dr. Martin Bastmeyer, 

KIT 

DMEM  

+ 15% PanSera 

ES  

+ 1% Pen/Strep  

+ 1xNEAA  

+ 0.1 mM 2-

mercaptoethanol 

mESC Oct4-

eGFP 

mouse embryonic stem 

cells expressing eGFP 

stably fused to Oct4 

Prof. Dr. Martin Bastmeyer, 

KIT 
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2.1.6 Equipment 

Table 6. List of used equipment 

Name Company 

Guava easyCyte Flow Cytometer Merck Millipore (Darmstadt, Germany) 

Nanodrop 2000 
Thermo Fisher Scientific (Massachusetts, 

USA) 

OAI Model 30 UV lamp OAI Instruments (San José,USA) 

StepOnePlus Real-Time PCR System 
Thermo Fisher Scientific (Massachusetts, 

USA) 

CO2 Incubator  

CB 160 Binder GmbH (Tuttlingen, Germany) 

Heraeus BB15 CO2 Incubator 
Thermo Fisher Scientific (Massachusetts, 

USA) 

Clean bench  

BH-EN safety cabinet Gelaire Pty Ltd. (Sydney, Australia) 

ENVAIR ECO Air 
ENVAIR Deutschland GmbH 

(Emmendingen, Germany) 

Centrifuge  

Heraeus Labofuge 400R Centrifuge 
Thermo Fisher Scientific (Massachusetts, 

USA) 

MiniSpin Plus Eppendorf AG (Hamburg, Germany) 

Microscopes  

Keyence BZ9000 Keyence (Osaka, Japan) 

Leica SPE confocal microscope 
Leica Microsystems CMS GmbH  

(Mannheim, Germany) 

Olympus IX81 Olympus Corporation (Tokyo, Japan) 

Non-contact printer  

I-DOT One Dispendix GmbH (Stuttgart, Germany) 

sciFLEXARRAYER S11 Scienion AG (Berlin, Germany) 
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2.1.7 Consumables 

 

Table 7. List of consumables 

Name Company 

96 well PCR plate 
Steinbrenner Laborsysteme (Wiesenbach, 

Germany) 

CELLSTAR® Cell culture dishes 
Greiner Bio-One International GmbH 

(Kremsmünster, Österreich) 

CELLSTAR® Cell culture flasks 
Greiner Bio-One International GmbH 

(Kremsmünster, Österreich) 

CELLSTAR® Cell culture plates 
Greiner Bio-One International GmbH 

(Kremsmünster, Österreich) 

Cover slips Carl Roth (Karlsruhe, Germany) 

Filter paper Grade 1 Whatman
TM

 GE Healthcare (Chicago, USA) 

Nexterion® Glass B  SCHOTT Nexterion AG (Jena, Germany) 

PCR tubes Corning Inc. (Corning, USA) 

qPCR sealing foil 
Steinbrenner Laborsysteme (Wiesenbach, 

Germany) 

Rotilabo®-syringe filter,  

sterile 0.22 µm 

Carl Roth (Karlsruhe, Germany) 

 

2.2 Cell culture 

All cell culture and cell experiments were conducted, if not stated differently, under 

37°C and 5% CO2 atmosphere. The used media and media supplementation for the 

respective cell lines are listed in Table 5. 

2.2.1 Production of leukemia inhibitory factor (LIF) 

For the production of the cytokine leukemia inhibitory factor (LIF) HEK293 cells, 

stably transfected with a LIF expression plasmid, were cultured in a concentration of 

1 x 10
6
 cells/mL in α-MEM Medium. Following 48 h cultivation the supernatant was 

collected, centrifuged at 1200 rpm for 3 min, filtered using 0.22 µm sterile syringe 

filters and stored at -20°C for further use. 
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2.2.2 Culture and inactivation of mouse embryonic fibroblasts (MEFs) 

Mouse embryonic fibroblasts (MEFs) were cultured on 75 cm
2
 culture flasks that were 

previously coated with 0.1 wt% porcine gelatin in PBS for 30 min at RT followed by 

washing steps with PBS. In order to prevent uncontrolled growth of MEFs during 

subsequent co-culture with mESCs, the MEFs (80% confluency) were mitotically 

inactivated. Therefore the MEFs were incubated for 3 h at 37°C in presence of 

mitomycin C in PBS in a final concentration of 10 µg/mL, followed by thorough 

washing to remove any residual mitomycin C. The MEFs were transferred to 

0.1 wt% porcine gelatin coated, 25 cm
2
 culture flasks and kept for up to 1-3 days at 

37°C, 5% CO2 before co-cultured with mESCs. 

2.2.3 Conventional routine culture of mouse embryonic stem cells 

(mESCs) 

The transgenic mESC Oct4-eGFP line, stably expressing eGFP fused to Oct4 were 

cultured in 5 mL stem cell medium with 30 µL/mL LIF, on 0.1 wt% porcine gelatin in 

PBS precoated, 25cm
2
 culture flasks containing mitotically inactivated MEFs. The cells 

were passaged every second day conducting the following steps: washing the mESC 

with PBS, detaching the cells from the culture flask by adding 0.25% Trypsin/EDTA for 

3 min, resuspending them in fresh medium, centrifuging at 1200 rpm for 3 min and 

transferring mESCs in 1:3 ratio to a fresh gelatin coated culture flaks containing 

inactivated MEFs and stem cell medium with LIF supplementation. Only mESCs with a 

passage number below 20 were used in the cell experiments. 

2.2.4 Preplating of mESCs 

Before conducting the experiments the cell suspension had to be preplated in order to 

separate MEFs from mESC Oct4-eGFP. Therefore the cell suspension from the routine 

culture was transferred onto a non-coated petri dish in 5 mL stem cell medium with 

30 µL/ml LIF and incubated for 30 min at 37°C and 5% CO2. Due to slower cell 

adherence of mESCs than MEFs on non-coated surfaces, mESCs were collected in the 

supernatant while MEFs remained attached to the petri dish. Isolated mESCs were 

transferred onto a new 1 wt% gelatin-coated flask for use within the next 24 h or 

immediately employed in the respective cell concentration in the experiment. In order to 

adjust the cell concentration, the mESCs were counted using a Neubauer Chamber or 

Countess II Automated Cell counter and diluted appropriately. 



  2 Material and Methods 

29 

 

2.3 Fabrication of stem cell culture substrates 

2.3.1 Production of bacterial cellulose 

Bacterial cellulose (provided by Dr. Anna Roig, Barcelona, Spain) is produced by 

bacterial strain Komagataeibacter xylinus (KX). KX is cultured under static culture 

conditions in bacterial culture medium (20 g/L glucose, 5 g/L peptone, 5 g/L yeast 

extract, 1.15 g/L citric acid monohydrate and 6.8 g/L Na2HPO4•12H2O) for 5 days, 

generating a thin layer of bacterial cellulose (BC) at the liquid-air interface. BC was 

harvested, and cleaned in ethanol with subsequent transfer to DI water and boiled for 

40 min. Following the cleaning and sterilization the BC was dried using different drying 

procedures to gain BC samples exhibiting different characteristics. The following 

samples were prepared and labelled in relation to their drying methods. BC-W: Never 

dried bacterial cellulose was stored after sterilization in DI water. BC-RT: Bacterial 

cellulose films were placed into chromatography paper between two glass slides and 

were dried at room temperature for 4 days. BC-FD: The bacterial cellulose films were 

plunge-freezed in chromatography paper with liquid nitrogen for 5 min following 

freeze-drying using LYOQUEST-85 freeze drier (Telstar) at -80 º C, below 0.005 mbar 

for 12 h. 

2.3.2 Seeding and culture of mESCs on bacterial cellulose 

mESC Oct4-eGFP were seeded at the required concentration in a volume of 500 µL 

stem cell medium on the bacterial cellulose film in a 60 mm petri dish and allowed to 

settle for 90 sec. In order to reduce the displacement of cell suspension in wet bacterial 

cellulose samples (BC-W and BC-RT wet) during the seeding procedure excess water 

was aspirated from the wet BC samples before seeding.  Following, 4.5 mL of stem cell 

culture medium and 30 µL/mL of LIF were added covering the bacterial cellulose film 

completely. The medium was changed every second day by transferring the bacterial 

cellulose film with mESC to a fresh 60 mm petri dish containing 5 mL culture medium 

and 30 µL/mL LIF.   
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2.3.3 Production of superhydrophobic-hydrophilic micropatterned 

substrates 

The Nexterion
®

 glass B slides were activated by immersion in 1M NaOH for 1h, 

followed by washing with DI water, immersion in 1M HCl for 30 min, followed by 

washing with DI water and drying. Glass slides were fluorinated by overnight 

incubation in 50 mbar with 30 µL trichloro (1H, 1H, 2H, 2H-perfluorooctyl)silane. 

Non-fluorinated, activated glass slides were modified with 

20% v/v 3-(trimethoxysilyl)propyl methacrylate ethanol solution for 30 min. To prepare 

the nanoporous polymer surface, a mixture of 24 wt% 2-hydroxyethyl methacrylate 

(HEMA), 16 wt% ethylene dimethacrylate (EDMA), 12 wt% 1-decanol, 

48 wt%  cyclohexanol and 0.4 wt% 2,2-dimethoxy-2-phenylacetophenone (DMPAP) 

was placed on a fluorinated glass slide and covered it with a modified glass slide. To 

obtain a polymer surface of consistent thickness, 3.62 µm monodispersed silica beads 

were used. Polymerization took place under UV irradiation with 260 nm wavelength at 

7 mW/cm
2
 for 15 min. The glass slides were separated and the polymer layer on the 

modified glass slide was washed. A further increase in surface roughness was achieved 

by taping the polymer with adhesive tape. To modify the surface with alkyne, the slides 

were immersed in 45 mL cooled Dichloromethane (DCM), 111.6 mg 4-Pentynoic Acid, 

56 mg of the catalyst DMAP and 180 µL N,N’-Diisopropylcarbodiimide (DIC) for 4 h 

while stirring. A 5% v/v 1H,1H,2H,2H-Perfluorodecanethiol acetone solution was 

applied on the polymer surface, covered with a photomask, and irradiated with 260 nm 

wavelength UV light 7mW/cm
2
 for 1 min to generate a superhydrophobic pattern. To 

generate the superhydrophilic spots, the polymer surface was wetted with 

10% v/v 2-mercaptoethanol in 1:1 water:ethanol solution, covered with a quartz slide 

and irradiated with 260 nm wavelength UV light 7mW/cm
2
. Thereby this pattern of 

hydrophilic spots separated by superhydrophobic borders enables through application of 

an aqueous solution the formation of an array consisting of multiple separated 

microdroplets, subsequently named Droplet Microarray (DMA). The dimension 

hydrophilic spot (square spots) : superhydrophobic borders of the used pattern were 

3 mm : 1 mm (DMA 3 mm); 1 mm : 0.5 mm (DMA 1 mm), respectively.  
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2.3.4 Seeding and culture of mESCs on superhydrophobic-hydrophilic 

micropatterned substrates 

Prior to seeding of mESC Oct4-eGFP on the DMA, the array was sterilized using 

ethanol and dried under the cell culture bench. The DMA was coated using 

2.2 wt% bovine gelatin in water at 37°C, 5% CO2 for 1h, followed by a 45 min drying 

step. For the seeding procedure, the mESC Oct4-eGFP were applied at the required 

concentrations in a volume of 1.5 mL stem cell medium on the pattern of a pretreated 

DMA that was placed in a 100 mm petri dish and allowed to settle for 60 sec before 

removing any excess medium by slightly tilting the DMA. During this step only a 

fraction of cells of the initial cell concentration is trapped in the individual spots of the 

DMA 3 mm and 1 mm leading to different volumes per individual cells compared to the 

conventional culture. To prevent further evaporation during incubation in the cell 

incubator, a PBS wetted humidifying pad was placed in the lid of the petri dish.  

 

2.4 Flow cytometry of mESCs 

The mESC were seeded on the DMA as mentioned above and cultured for the 

respective time points (2 h, 24 h, 48 h and 72 h). Cells were detached from the DMA 

with Accutase, counted using a Neubauer Chamber and diluted to a cell concentration of 

500-1000 cells/µL. The flow cytometric analysis was performed using Guava easyCyte 

Flow Cytometer and the corresponding software InCyte. Normalization of the 

individual samples was done to mESCs cultured under conventional conditions. For the 

analysis of the controls cells were cultured for 2 h, 24 h, 48 h and 72 h under 

conventional culture conditions, detached and preplated prior to measurement. 

 

2.5 qPCR of mESCs 

Cells were seeded and cultured on the DMA and under a set of different culture 

conditions for 2 h, 24 h, 48 h and 72 h. Following the detachment of the cells using 

trypsin, RNA was isolated using InnuPrep Mini RNA Kit. The samples’ RNA 

concentrations were obtained using Nanodrop 2000. Samples were adjusted to 

150 ng-1 µg RNA. cDNA was synthesized as follows: 1 µL random primer 

(200 ng/ µL) was added to each individual RNA sample and incubated for 5 min at 
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70°C. For 1
st
 strand synthesis 4 µL 5x buffer, 2 µL dNTP (10 mM), 0.2 µL M-MLV RT 

Rnase ((H-) point mutation) and a respective volume of H2O (final volume 22 µL per 

sample). As control to ensure the amplification process, samples were also processed 

without adding M-MLV RT Rnase. Samples were incubated for 10 min at 25°C, 60 min 

at 42°C, 10 min at 70°C and kept at 4°C for further processing (long term storage 

at -20°C). To confirm amplification and check for contamination with genomic DNA, a 

control PCR was conducted with 4 µL 5x buffer, 2 µL dNTP (2 mM), 1 µL each 

forward and reverse primer (GAPDH), 0.1 µL Go Taq G2 DNA Polymerase, 4 µL 

cDNA and respective volume H2O (final volume 20 µL) (2 min 95°C, cycle 25-30 

[30 sec 95°C, 30 sec 68°C, 1 min 72°C], 5 min 72°C, ∞ 4°C) followed by a  1% agarose 

gel run (130V 500mA 30-60 min). The qPCR with 10 µL 2x SYBR green, 1 µL each 

forward and reverse primer, 4 µL cDNA and respective volume H2O (final volume 

20 µL) was performed using StepOnePlus Real-Time PCR System. Gene-specific 

primers are listed in Table A 1. The housekeeping gene GAPDH served as the reference 

gene.  

 

2.6 Viability staining 

The mESCs were seeded as mentioned above and cultured on the respective samples 

(bacterial cellulose; DMA) with Hoechst 33342 in 1:10000 dilution (1 µg/mL), to 

visualize the nucleus, and with propidium iodide (PI) at a concentration of 100 nM to 

distinguish dead from viable cells. A second experiment revealed no significant 

difference in viability between mESC cultured with and without stains. Images were 

taken at the respective time points (2 h, 24 h, 48 h and 72 h) and cells counted to 

estimate viability and stemness. 

 

2.7 Embryoid body formation 

The DMA 1 mm was sterilized in ethanol, dried under the clean bench and coated with 

2.2 wt% bovine gelatin in water at 37°C and 5% CO2 for 1h, following drying for 

30 min. For seeding the mESC cell suspension was applied on the micropattern at the 

required concentration in a volume of 1.5 mL, remaining on the micropattern for 30 sec 

before removing excess medium by tilting the DMA slide. Immediately after the DMA 

slide was inverted and placed on an especially designed and 3D printed table, enabling 
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culture of mESC Oct4-eGFP on the DMA in hanging droplets. The table was placed in 

a PBS filled petri dish and in order to prevent evaporation a PBS wetted humidifying 

pad was placed in the lid of the petri dish. As control mESC Oct4-eGFP were cultured 

under conventional conditions as mentioned above. The embryoid bodies (EBs) formed 

after 48 h incubation on the DMA in hanging droplets. 

2.7.1 Immunofluorescence staining 

EBs were formed as mentioned above, collected from the DMA and transferred to a 

fibronectin (10µg/mL) coated coverslip. The EBs were allowed to outgrow on the 

coverslips for 12 days (with regular medium changes), leading to spontaneous 

differentiation into all 3 germ layers (endo-, meso-, ectoderm). Following outgrowth an 

immunofluorescence staining for markers of endo-, meso- and ectoderm 

(FoxA2, Brachyury, β-III-Tubulin) was performed, by fixing the EBs with 

3.7% paraformaldehyde in PBS for 15 min and permeabilising with 0.1% Triton-X 100 

in PBS for 15 min. The respective EBs were incubated with the following primary 

antibodies each in 1:500 dilution in 1% BSA/PBS for 1 h: goat anti-FoxA2 (HNF 3β); 

goat anti-Brachyury; rabbit anti-β-III-Tubulin (TuJ1). Following the samples were 

washed and incubated with the respective, conjugated secondary antibodies, each in a 

1:200 dilution in 1% BSA/PBS for 1 h in darkness: donkey anti-goat Cy3 and goat 

anti-rabbit Cy3. DAPI was added to all samples along with the secondary antibody in a 

dilution of 1:10000. 

2.7.2 High-throughput screening 

DMA slides (1 mm side length of spots) were prepared as mentioned above, sterilized in 

ethanol and dried under the clean bench. All 774 compounds from the ScreenWell
®

 

FDA approved drug library V2 (10 mM stock) were used for the primary screen in a 

dilution of 10 µM in 1% DMSO in DI water and printed in triplicates using the non-

contact, liquid dispenser sciFLEXARRAYER S11. As vesicle control 1% DMSO in DI 

water was used. Empty spots (non-printed) on the compound slide served as internal 

control and completely empty DMA slide (no compounds printed on complete slide) as 

experimental control. The listed DMA slides were coated twice with 2.2 wt% bovine 

gelatin in water using the non-contact dispenser I-DOT One. The mESC Oct4-eGFP 

were seeded on the DMA as described above in a cell concentration of 

0.2 x 10
6
 cells/mL but by reducing the seeding time, before tilting the DMA to remove 
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excess medium, down to 30 sec. The cells were kept for 72 h in hanging droplets at 

37°C and 5% CO2 in order to form EBs. The primary HTS was conducted in a single 

repetition and with triplicates for each compound. The dose-response curve screen for 

the selected hit compounds was conducted with 5 different concentrations, ranging from 

100 µM - 0.01 µM, each in quadruplicates. 

 

2.8 Image acquisition and analysis 

All images were taken using the microscope Keyence BZ9000 or Leica SPE confocal 

microscope. For the HTS the automated screening microscope Olympus IX81 was used. 

Exposure times were identical in all experiments and at the different channels and 

conditions. The size of the mESC colonies is considered as the indication of the growth 

rate; this was acquired using ImageJ (https://imagej.nih.gov/ij/). mESCs’ stemness was 

assessed from the intrinsic Oct4-eGFP signal and evaluated as follows: the percentage 

of pluripotent mESC was obtained by counting GFP-positive (GFP+; complete 

fluorescence), GFP-negative (GFP-; no fluorescence) and mixed colonies (colony 

showing fluorescent and no fluorescent regions). For quantification purposes, the mean 

fluorescence signal intensity was obtained using ImageJ. In case of EBs and the HTS 

following analysis were made in collaboration with Markus Reischl 

(Institute for Applied Computer Sciences (IAI) KIT; Karlsruhe Germany): the mean 

fluorescence intensity, the roundness and size of the EBs as well as the area fraction of 

PI stained cells was measured using ImageJ. The algorithm applied for the automated 

identification and image processing was conducted using MATLAB R2015b. To find 

EBs, the Hoechst-channel was segmented the following way: 1) well-border were cut to 

avoid artifacts, 2) the 95
th

 percentile of pixel-brightness was used to binarize the image, 

3) noise was removed through opening (r=2), 4) holes were deleted by closing (r=2) and 

hole-filling, and 5) further opening (r=10) delivered only big objects contained in the 

image. All objects containing more than the preset threshold of 1200 pixels were kept 

for evaluation and characterized by the following features: area (µm2), solidity index, 

eccentricity index and roundness (mean of solidity and eccentricity). Within each found 

object the mean GFP value, the area percentage of PI and the median GFP in the whole 

image were additionally calculated. Objects were thereby considered valid, if the 

eccentricity feature was greater than 0 and the object was located centrally to avoid 

border artifacts. The fitted dose-response curves of the respective data were assessed 



  2 Material and Methods 

35 

using the nonlinear curve fitting function in OriginPro (OriginLab Corporation) with the 

iteration algorithm Levenberg Marquardt (Jones, 2015).  

 

2.9 Statistical analysis 

All quantitative data was normalized to the respective control and presented as 

mean ± SD. For each experimental set at least 3 independent experiments were 

conducted and used for statistical analysis. All data was analyzed using two tailed 

student’s t-test using OriginPro (OriginLab Corporation) and p-values ˂ 0.05 were 

considered statistically significant 
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3 Results and Discussion 

Embryonic stem cells (ESC) possess unique properties like the ability of self-renewal 

and the potential to differentiate into multiple cells of the organism, making them of 

high importance in tissue engineering, regenerative and transplantation medicine. 

In vivo these properties are influenced by a complex system of multiple cues, such as 

cell-cell interaction, cell-matrix interaction and soluble factors. In order to maintain the 

unique properties of stem cells, named stemness, various systems and materials are 

being developed that mimic this complexity. However the maintenance of stemness, 

despite precise regulation of these various cues, still remains difficult, further emitting 

the urge for new systems and materials that maintain the stem cells’ undifferentiated 

state and enable investigation of embryonic stem cell development further elucidating 

the underlying mechanisms of differentiation.   

In this work a transgenic mouse embryonic stem cell (mESC) line stably expressing 

eGFP (enhanced green fluorescent protein) fused to the pluripotency gene 

Oct4 (octamer-binding transcription factor 4) was used (Kirchhof et al., 2000). Hence, 

this cell line enables direct read-out of the expression of Oct4 through the GFP level and 

characterization of mESCs’ stemness. Conventional culture of mESCs includes multiple 

requirements in order to maintain their stemness. These requirements are 1) precoating 

of the culture flask using gelatin in order to provide attachment sites, 2) use of 

mitotically inactivated MEFs, known to increase cell attachment and secrete soluble 

factors maintaining stemness 3) medium supplementation with LIF inhibiting 

differentiation and 4) regular cell passaging (every 48 h) to prevent overgrowth, known 

to induce differentiation (Heo et al., 2005). This demonstrates how laborious, 

time-consuming and costly mESCs culture is and despite precise control of the 

mentioned conditions maintenance of the undifferentiated state still remains 

challenging. Moreover the use of MEFs further carries the risk of contamination and the 

need for purification steps to isolates the mESC from the co-culture.  In order to 

overcome these problems a lot of progress is being made in developing new MEF-free 

systems, facilitating mESC culture and promoting stemness. Many of the newly 

developed systems are thereby based on highly defined and controllable artificial 

materials, such as fibrous or polymeric materials, mimicking the embryonic stem cell 

niche and with this preventing spontaneous differentiation of mESCs.  
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3.1 Bacterial cellulose promotes long-term stemness of mESC 

An example of a fibrous material that is widely used as substrate for cells in research is 

cellulose. Cellulose can be derived from various plants, fungi, and aerobic bacteria. 

Bacterial derived cellulose exhibits high purity, due to its lack of hemicellulose, lignin 

and pectin, further increasing its biocompatibility and applicability in clinical research. 

Bacterial cellulose (BC) in addition finds wide application in stem cells research, as for 

example as composite material directing differentiation into the osteogenic lineage (Favi 

et al., 2016; Huang et al., 2017; Ran et al., 2017). Furthermore BC was shown to have 

morphological similarities to the ECM protein collagen (Geisel et al., 2016) 

demonstrating its potential in partially mimicking in vivo microenvironment. A potential 

effect of BC on maintenance of mESC stemness due to its purity and morphological 

structure (fibrillarity, porosity and roughness) is hypothesized. In this work this 

potential of the bacterial cellulose for mESC culture was exploited reducing the need for 

precoated culture flasks as well as the need for MEFs, hence facilitating culture while 

maintaining the undifferentiated state of mESCs.  

3.1.1 Fabrication of bacterial cellulose films 

The bacterial cellulose (BC) was produced by culturing the bacterial strain 

Komagataeibacter xylinus in static culture, resulting in the formation of a cellulose 

layer at the liquid-air interface. The films were cleaned and dried following different 

drying procedures prior use, leading to different structural properties and mechanical 

characteristics, which were extensively studied in a previous work (Zeng et al., 2014). 

The subsequent experiments presented here, if not stated differently, were conducted on 

room temperature dried and rewetted bacterial cellulose films (RT-BC wet).  

In order to investigate the influence of the BC membrane on the maintenance of stem 

cells’ stemness in a MEF-free culture system, a transgenic mouse embryonic stem cell 

line (mESC Oct4-eGFP) was used. The conventionally used in vitro systems for 

culturing mESC Oct4-eGFP (Figure 7A and B) require gelatin coating of the culture 

surface to provide attachment sites, as well as the use of mitotically inactivated MEFs, 

known to further enhance cell attachment and secrete soluble factors maintaining 

stemness. Furthermore, the cytokine LIF that is known to inhibit differentiation has to 

be added (Heo et al., 2005). This procedure is laborious, time consuming and costly 

and, even with precise regulation of these requirements, maintenance of stemness 
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remains difficult. Importantly, using the BC membrane as culture material allowed us 

the direct cultivation of mESC Oct4-eGFP on the cellulose films without the need of 

gelatin precoating or the use of inactivated MEFs, significantly reducing costs and 

facilitating mESC culture (Figure 7A and B), whilst maintaining mESC stemness.  

Artificial materials with unknown properties can influence cell viability and result in 

increased cytotoxicity. Hence, in order to assess the biocompatibility of the respective 

artificial material investigating the cell viability is highly important. The viability of the 

mESC Oct4-eGFP upon culture under the described conventional conditions and on the 

BC-RT wet films (Figure 7C) was measured by staining with propidium iodide (PI) to 

assess number of dead cells and Hoechst 33342 to assess total cell number. For better 

comparability between conventional culture and culture on BC, the obtained values of 

dead (PI positive, Hoechst 33342 positive) and viable cells (PI negative, Hoechst 

positive) were normalized to the total cell count of the respective samples. Upon culture 

on the BC-RT wet the percentage of dead cells measured at 2 h cultivation time was 

higher than upon conventional culture (Figure 7C). This could possibly be the effect of 

an increased stress level of the cells during the initial cultivation time due to the unusual 

surface properties of the BC and lack of previous cell conditioning to the surface. The 

percentages of live and dead cells over the time course of 24 h increased by 16% for the 

conventional culture conditions (2 h: 4%; 24 h: 20%), whereas using BC only leads to 

an increase by 6% (2 h: 22%; 24 h: 28%), further indicating the reduced viability to be 

based on an initially increased stress level. The growth rate from 2 h to 48 h was 

assessed by measuring the size of the mESC Oct4-eGFP colonies (Figure A 1A), 

showing an increased growth of mESCs colony size on BC in comparison to the 

conventional culture. Hence, despite an initial stress inducing cell death, maintenance of 

viable cells and increased proliferation over 24 h culture was achieved on BC films 

together with a strong reduction of culture requirements in comparison to the 

conventional mESC Oct4-eGFP culture. In addition the cultivation of mESCs on the 

free-standing BC membrane allowed facile cell transfer to a culture dish containing 

fresh medium further simplifying routine cell culture by reducing the number of steps 

needed during medium exchange in standard culture.  
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Figure 7. mESC Oct4-eGFP culture under conventional conditions and on bacterial cellulose. 

(A) Schematic representation demonstrating artificial culture systems (schematics in grey boxes) 

mimicking high complexity of the in vivo microenvironment of stem cells (left schematic, blue box) in 

order to enable maintenance of stemness. Conventional culture methods require gelatin coating, addition 

of inactivated MEFs and LIF to promote stemness (upper schematic, upper grey box). Culturing of mESC 

on bacterial cellulose possessing adjustable and variable structural properties (roughness, topography, 

porosity) (bottom schematic, bottom grey box) inhibits mESC´s differentiation and at the same time 

results in significant reduction of requirements compared to conventional culture (B) 3D reconstruction of 

confocal images showing conventional culture conditions (upper image) with inactivated MEFs (blue) 

and mESC Oct4-eGFP (green) as well as mESC Oct4-eGFP (green) cultured on BC-RT wet (red). 

(C) Viability of mESC Oct4-eGFP upon culture under conventional condition (left graph) and culture on 

BC-RT wet (right graph). Assessment of dead cells via PI staining. N=3. Statistical significance: t-test, 

* indicates p-value ≤0.05.  
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3.1.2 Assessment of mESC Oct4-eGFP stemness upon culture on 

bacterial cellulose 

Previous studies showed close resemblance in the structural properties of BC films to 

the ECM protein collagen, indicating a possible influence on maintenance of stemness 

through the BC microstructure (Geisel et al., 2016). Next, it was investigated how the 

microstructural properties of the BC films can influence stemness upon culture on the 

BC. For that, the roundness of mESC colonies was measured, known to be a 

morphological indicator of stemness, with reduced roundness indicating differentiation 

(Figure A 1B) (Rosowski et al., 2015).  The results demonstrate a decrease in roundness 

of mESC upon culture under conventional conditions, whereas culture on BC results in 

the maintenance of the roundness over the time course of 48 h. Furthermore, the 

expression of GFP was used as an indication for stemness due to its stable fusion to 

Oct4. To quantify the GFP expression the mean fluorescence intensity was measured as 

well as counted the number of completely undifferentiated colonies (GFP+), mixed 

colonies (GFP+ and GFP-) and fully differentiated colonies (GFP-) (Figure 8A and B). 

Figure 8A shows an increase of the mean fluorescence intensity of mESC Oct4-eGFP 

cultured on BC from 1 at 2 h to 1.5 at 24 h whereas under conventional culture 

conditions the mean fluorescence intensity decreases from 0.7 at 2 h to 0.6 at 24 h. This 

demonstrates a better maintenance of stemness and reduction of spontaneous 

differentiation most likely due to the specific surface properties of the cellulose films. 

The count of GFP+, mixed and GFP- colonies supports this observation, showing a 

reduction of GFP+ colonies by only ~8% upon culture on the BC and in contrast under 

conventional culture conditions by ~20% during 72 h cultivation time. These results 

indicate a reduction of spontaneous differentiation upon short time culture through the 

BC.  

The long-term maintenance of the undifferentiated state of mESCs still remains 

challenging without precise regulation of the culture requirements using standard in 

vitro system. Thus, the effect of the BC films on differentiation and maintenance of 

stemness of mESC Oct4-eGFP under long-term culture conditions (17 days) was 

investigated. The mESC Oct4-eGFP were cultured under conventional culture 

conditions and on BC, both in 5 mL medium supplemented with LIF, without further 

passaging for 17 days. To ensure sufficient supply of nutrients during the time course of 

the experiment, medium was changed daily and LIF added freshly each time. The 
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number of colonies per mm
2
 in both samples was counted and a strong increase in 

mixed and GFP- colonies was observed when mESC Oct4-eGFP were cultured under 

conventional conditions and a decrease in GFP+ colonies from 99% at day 0 to 8% at 

day 17. In contrast to that, culture on the BC significantly delayed spontaneous 

differentiation of mESC even under long-term culture, with a reduction in 

GFP+ colonies from 99% at day 0 to only 48% at day 17 (Figure 8C).  

In order to prove the observed effect of BC on maintenance of stemness and the 

potential of the mESC Oct4-eGFP to differentiate into cell derivatives of all three germ 

layers, immunofluorescence staining for markers of the germ layers: endo-, meso- and 

ectoderm (Figure 8D and A 1) was performed. For this, mESC Oct4-eGFP were 

cultured under conventional conditions and on the BC film for 6 days before being 

detached and pipetted on the inner side of the lid of a petri dish. The petri dish lid was 

immediately inverted, in order to allow culture of mESCs in “hanging drops” and, 

hence, formation of mESC aggregates called embryoid bodies (EBs) that recapitulate 

the early embryonic development by differentiating into derivatives of all germ layers. 

After 48 h culture in “hanging drops”, the EBs were collected and transferred to 

fibronectin coated cover slips for further 12 day culture resulting in attachment, 

outgrowth and differentiation of the EBs into cell derivatives of the respective germ 

layers. Following the outgrowth and differentiation of the EBs, immunofluorescence 

staining was performed for FoxA2, Brachyury, β-III-Tubulin that are markers for endo-, 

meso- and ectoderm, respectively. Representative images of immunofluorescence 

staining for the respective markers of each germ layer are shown in Figure 8D, proving 

the maintenance of the stemness of the respective mESCs after being cultured for 6 days 

on the BC. 
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Figure 8. Assessment of stemness of mESC Oct4-eGFP upon culture on BC-RT wet in comparison 

to conventional culture conditions. (A) Measurement of mean fluorescence intensity of mESC 

Oct4-eGFP under conventional culture conditions and under culture on BC-RT wet. Statistical 

significance: t-test, * indicates p-value ≤0.05. (B) Percentage of GFP+ , mixed and GFP – colonies per 

mm
2
 at 2 h, 48 h and 72 h under conventional culture and on BC-RT wet. Right side: representative 

images of GFP+, mixed and GFP- colonies. (C) Percentage of GFP+, mixed and GFP- colonies under 

long term culture conditions (for 17 days). N=3, n > 50. (D) Immunofluorescence staining showing 

potential of mESC Oct4-eGFP to differentiate into 3 germ layers (endo-, meso-, and ectoderm) after being 

cultured on BC-RT wet. Cells were cultured on BC-RT wet for 6 days, detached and cultured for 48 h 

using “hanging drop” method to form embryoid bodies (EBs). EBs were transferred to fibronectin coated 

cover slips and cultured for 12 days. Subsequently immunofluorescence staining of endo-, meso- and 

ectoderm markers (FoxA2, Brachyury and β-III-Tubulin respectively) and cell nucleus (DAPI) was 

performed. Scale bar 100 µm.  
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Next, the underlying mechanism resulting in better maintenance and inhibition of 

differentiation upon culture on BC was investigated. In comparison to plant derived 

cellulose, BC exhibits higher purity and, does not contain lignin and hemicellulose. It is 

assumed that this difference could be responsible for the observed influence on 

stemness maintenance. To investigate this hypothesis mESC Oct4-eGFP cultured under 

conventional conditions, on BC RT-wet and on commercially available, plant-derived 

cellulose (filter paper FP, 180 µm thickness, surface roughness (Sa) 4.93 µm) were 

compared. Differences in the mean fluorescence intensity of mESC Oct4-eGFP colonies 

were observable between mESC grown on BC RT-wet and on FP. The BC RT-wet and 

the purchased FP differ not just in their origin and purity but also in their 

microstructural properties, as demonstrated by the measurements of thickness and 

surface roughness (Figure 9B). In particular BC is known as a form of nanocellulose 

since their cellulose fibrils present fiber diameter in the nanoscale (20 – 50 nm) in 

contrast to the micron scale diameter (20 – 50 µm) for the plant cellulose. Based on this 

the observed differences between FP and BC RT-wet can further arise from differences 

in thickness and topographical structure than solely from the origin of the cellulose.  

As previous studies showed, mESC differentiation and stemness can be controlled over 

surface structure, roughness and porosity depending on enhanced cell attachment and 

actin cytoskeleton reorganization further suggesting an additional contribution of the 

physical properties on stemness (Das et al., 2014; Murphy et al., 2014; Zhou et al., 

2015b). To investigate the influence of the microstructural properties of the cellulose on 

stem cell differentiation various BC films were used that were dried using different 

drying procedures, which in turn changed the BC film thickness, porosity and surface 

roughness. Wet never dried BC (BC-W), freeze dried BC (BC-FD) and room 

temperature dried BC (BC-RT) were employed, whereas the latter was either used 

rewetted (BC-RT wet) or in dry state (BC-RT dry). The thickness and surface roughness 

of the films was measured using confocal microscopy and optical profilometry. Figure 

9B clearly shows the effect the specific drying routes (BC-W, BC-FD, BC-RT dry) and 

rewetting (BC-RT wet) has on the thickness, ranging from 200 µm to 16 µm (Zeng et 

al., 2014), and the surface roughness (Sa), ranging from 7.65 µm to 0.59 µm. First the 

cell attachment to the different cellulose derivatives after 24 h was examined. Therefore, 

mESC Oct4-eGFP were seeded in the same cell concentration on the various BC films, 

imaged using fluorescence microscopy and evaluated by counting the number of 

attached cells and normalizing these values to the initial cell concentration. The best cell 
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attachment was achieved with 32% on room temperature dried BC independent of 

rewetting (Figure 9C; BC-RT wet and BC-RT dry; both 32%) and the lowest cell 

attachment with 7% was achieved on the freeze dried BC (BC-FD), indicating surface 

roughness to be an important factor in cell attachment as thickness of BC-RT wet is 

only slightly differing from thickness of BC-FD.  

Next the different cellulose derivatives were checked for their ability in promoting and 

maintaining stemness, by measuring the mean fluorescence intensity of mESC 

Oct4-eGFP cultured on the respective cellulose samples for 48 h. In order to maintain 

equal and sufficient nutrient supply between the respective BC films, 5 mL medium 

with LIF was added to all samples after seeding. The highest mean fluorescence 

intensity was measured on BC-RT wet, whereas its completely dry state (BC-RT dry) 

showed a reduced intensity. A possible cause for these differences could be due to 

variances in the absorption capacity of liquids by the rewetted and dry BC films, with 

higher capacity in case of the dry BC film. This in turn can result in a faster rate of 

absorption of the cell suspension and with this to possible higher forces acting on the 

mESC Oct4-eGFP during absorption by the BC film, inducing differentiation. The 

reduced mean fluorescence intensity measured in case of the also dry BC-FD sample is 

comparable to the values measured for BC-RT dry and strongly supports the hypothesis 

of higher absorption capacity of cell suspension by dry BC films and with it higher 

forces acting on the cells inducing differentiation. Differences in the surface roughness 

of the BC films can also influence the observed differences in maintenance of stemness 

(BC-RT wet: 1.29 µm; BC-FD: 7.66 µm).  

Further, the ability of the BC to act as storage for nutrients and soluble factors such as 

the ECM protein collagen (Geisel et al., 2016) was tested. This was done by 

preincubating the BC-RT wet films with culture medium obtained from 24 h mESC 

culture (BC-RT wet: Medium) or with LIF alone (BC-RT wet: LIF) for 5 min prior cell 

seeding (Figure A 2A). Surprisingly, both preconditioned samples (BC-RT wet: 

Medium; BC-RT wet: LIF) showed lower mean fluorescence intensity than the 

non-preconditioned sample (BC-RT wet) suggesting increased absorption of 

metabolites or soluble factors that induce differentiation. Furthermore differences in cell 

attachment based on biochemical modification of the BC surface due to the 

preconditioning, resulting in differentiation could be possible. This enhanced cell 

attachment in turn can lead to changes in the cytoskeleton of mESC, which is known to 
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be an important regulator of cell differentiation through activation of subsequent 

signaling pathways and transcription factors (Das et al., 2014; Murphy et al., 2014; 

Zhou et al., 2015b). 

 

 

Figure 9. Assessment of stemness of mESC Oct4-eGFP upon culture on various cellulose samples.  

(A) Mean fluorescence intensity of mESC Oct4-eGFP cultured on BC-RT wet in comparison to culture 

on filter paper: Whatman® qualitative filter paper Grade 1. Cultivation time was 2 h – 48 h. (B) Cell 

attachment at 24 h of culture on differently bacterial cellulose samples that were dried using various 

methods. BC-W: never dried bacterial cellulose. BC-RT: room temperature dried bacterial cellulose. 

Deployed for experiments in dry state (BC-RT dry) and wetted state (BC-RT wet; wetted with di-water). 

BC-FD: freeze dried bacterial cellulose. (C) Mean fluorescence intensity of mESC Oct4-eGFP upon 

culture on differently dried bacterial cellulose samples. Cultivation time was 2 h – 48 h. N=3. Statistical 

significance: t-test, * indicates p-value ≤0.05. 

The previous results demonstrate the strongest effect on mESC Oct4-eGFP stemness 

resulting from culture on BC-RT wet films, indicating influence through surface 

properties and absorption capacity of the cell suspension through the material. In order 

to show the influence of the surface properties on stemness the surface structure was 

masked by applying a gelatin coating on the BC-RT wet film prior cell seeding (Figure 
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A 2B). The gelatin masking resulted in a significant reduction of the mean fluorescence 

intensity in comparison to uncoated BC-RT wet, supporting the previous results 

regarding the influence of the surface topography (Figure 9A and B). 

Previous studies showed an effect of different surface structures, such as a porous 

fibrillary structure, on cell attachment through infiltration into porous material and 

degradation of the surrounding matrix by the cells, resulting in regulation of 

differentiation (Kang et al., 2017; Shariati et al., 2016). By imaging using a confocal 

microscope, however, no infiltration of mESC into the BC-RT wet films was observable 

as expected by the reduced porosity of the surface layer of the films dried at room 

temperature. In order to further investigate such an infiltration and degradation of the 

cellulose by the mESC Oct4-eGFP, the thickness of the cellulose films were measured 

before (BC-RT wet: mESC) and after (BC-RT wet: mESC +Trypsin) mESC cell 

detachment (Figure A 2C). As controls, an empty BC film incubated under the same 

conditions (BC-RT wet: control; no cells; 5 mL + LIF; 48 h) showing a thickness of 

~31 µm was used. After detachment of the mESC Oct4-eGFP using trypsin partial 

dissolution of the BC film was observed, indicated by a reduced thickness to 22 µm 

(Figure A 2C; BC-RT wet mESC +Trypsin). Dissolving of the BC structure through 

enzymatic cleavage can be excluded, since treatment of BC-RT wet with trypsin alone 

showed no significant reduction in thickness (Figure A 2C; BC-RT wet +Trypsin). It is 

assumed that the observed partial dissolution of the BC film results from cell attachment 

by a partial ingrowth of mESC Oct4-eGFP into the cellulose membrane and when 

detaching the cells, the cellulose structure gets loosened up, leading to partial 

detachment of cellulose fibers and with this reduction in thickness. However, in order to 

precisely identify the underlying mechanism of enhanced cell attachment and 

maintenance of stemness further investigations are necessary (Kumar et al., 2015). 

The results demonstrate the potential of BC membrane as porous material to promote 

stemness of mESCs over short-term and long-term culture conditions. These observed 

effects on maintenance of stemness can be attributed to result from enhanced cell 

attachment of mESCs to the BC based on the surface topography and structural 

properties of the BC films (surface roughness, thickness, absorbing capacity).  
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3.2 Droplet Microarray based on patterned superhydrophobic surfaces 

prevents stem cell differentiation and enables high-throughput stem 

cell screening
1
 

In the next part of the project an artificial substrate was employed that is, other than the 

naturally derived bacterial cellulose demonstrated in the previous part, highly 

controllable in its chemical composition and surface topography enabling culture and 

maintenance of undifferentiated stem cells. Therefore a highly defined nanoporous 

HEMA-EDMA polymer was used, exhibiting a dual-functionality through its surface 

roughness, namely the ability to maintain the undifferentiated state of mESC (Jaggy et 

al., 2015) and to generate through modification a miniaturized platform of multiple 

microdroplets based on a superhydrophobic-hydrophilic micropattern 

(Droplet Microarray). 

3.2.1 Fabrication of Droplet Microarray (DMA) and formation of stem 

cell arrays 

To generate the Droplet Microarray (DMA), glass slides (7.5 cm x 2.5 cm) were coated 

with a 3.6 µm-thick, nanoporous HEMA-EDMA polymer layer. The surface roughness 

(Sa) for the nanoporous HEMA-EDMA polymer used in this work was 68 ± 30 nm with 

a 50% porosity and pores of 80 - 250 nm in diameter based on SEM (Feng et al., 2014; 

Jaggy et al., 2015). Modification of the surface via the thiol-yne click reaction (Feng et 

al., 2014) resulted in surface areas with hydrophilic (static water contact angle (WCA 

~8°)) and superhydrophobic (advancing WCA ~161°, receding WCA ~148°, static 

WCA ~153° and sliding angle ~7.5°) properties (Figure 10). Patterns of hydrophilic 

square spots with sides 3 and 1 mm long and separated by superhydrophobic borders 

1 and 0.5 mm wide were created (Feng et al., 2014; Popova et al., 2016; Ueda et al., 

2012).  

  

                                                                        
1
 Tronser, T., Popova, A. A., Jaggy, M., Bastmeyer, M. & Levkin, P. A. (2017). Droplet Microarray 

Based on Patterned Superhydrophobic Surfaces Prevents Stem Cell Differentiation and Enables High-

Throughput Stem Cell Screening. Adv Healthc Mater. 
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Due to the extreme difference in dewettability of the wettable hydrophilic spots and 

water repellent superhydrophobic barriers, multiple, separated microdroplets 

(1 mm: 588 spots/slide; 3 mm: 108 spots/slide) form spontaneously upon contact with 

aqueous solutions (Figure 10) through the effect of discontinuous dewetting. Such 

spontaneous pipetting-free formation of droplets was used to create an array of 

separated droplets containing mESC (Figure 10). 

 

 

 

Figure 10. Schematic representation illustrating the multifunctionality of the superhydrophobic-

hydrophilic nanoporous polymer.  Surface roughness and modification enable generation of 

superhydrophobic (WCA ~160°) and hydrophilic (WCA ~5°) areas. Due to the extreme difference in 

water repellency of superhydrophobic borders and hydrophilic spots, droplets of controllable volumes 

(80 nL - 25 µL) are spontaneously formed when a droplet of cell suspension is rolled on the surface. 

Thereby the average initial cell number per spot is for 1 mm spots (1 mm
2 

spot area, 80 nL) 

~20 cells/mm
2
 (~0.001 mm

2
 average colony size at 48 h) and for 3 mm spot (9 mm

2
 spot area, 25 µL) 

~16 cells/mm
2
 (~0.003 mm

2 
average colony size at 48 h) On the other hand, the porous polymer’s surface 

roughness (68 ± 30 nm) also promotes the maintenance of stemness of mouse embryonic stem cells 

(mESC). A transgenic stem cell line with GFP stably fused to Oct4 was used in this study (mESC 

Oct4-eGFP). 
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3.2.2 Viability and growth of mESC on the DMA 

In order to evaluate the ability of the DMA to maintain pluripotency and self-renewal of 

mESCs cultured inside droplets the transgenic mouse embryonic stem cell line 

(mESC Oct4-eGFP), stably expressing eGFP fused to the pluripotency gene Oct4 

(Kirchhof et al., 2000) was chosen. This cell line enables immediate read-out and 

characterization of stemness by measuring the mean fluorescence intensity correlating 

with expression levels of the Oct4-eGFP reporter gene as well as by counting cells and 

cell colonies. Conventional culture conditions for mESCs included culturing in flasks 

precoated with gelatin in the presence of mitotically inactivated MEFs in culturing 

medium supplemented with LIF. Under these conditions, the spontaneous 

differentiation of mESC was inhibited for about 2 days before the cells had to be 

passaged. The absence of only one of the aforementioned requirements, such as MEFs, 

can trigger the spontaneous differentiation of mESCs (Heo et al., 2005).   

Volume of the droplets formed on DMA slides can be varied between 80 nL and 25 µL, 

which is significantly smaller than in conventional Petri dishes and might influence cell 

viability. The viability of mESC Oct4-eGFP on the DMA was analyzed and compared 

that to that of mESCs cultured under conventional conditions (Figure 11A-D). 

mESC Oct4-eGFP were stained with propidium iodide (PI) and Hoechst 33342 to 

quantify the percentage of dead (PI-positive and Hoechst-positive) and viable 

(PI-negative and Hoechst-positive) cells. The greatest viability was observed when 

mESCs were cultured in 5 mL medium on the patterned, nanoporous polymer surfaces 

(Figure 11B; 25 nL/cell), and on the DMA with 3 mm spot size and 25 µL volume per 

droplet (Figure 11C; 160 nL/cell). In comparison with conventional culture conditions 

(5 mL volume; 25 nL/cell; Figure 11A), the mESCs cultured on the DMA with spots 

measuring 1 mm (80 nL volume; Figure 11D) exhibited decreased viability after 48 h of 

culturing. Whereas regular medium exchange in 1 mm droplets on the DMA resulted in 

a lower percentage of dead cells and improved viability after 48 h of culturing (Figure A 

3A). These results demonstrate that the reduced cell viability in 1 mm (80 nL volume; 

4 nL/cell) droplets (Figure 11D) resulted from a limited amount of nutrients appropriate 

for extended culture periods (≥ 48 h) in smaller volumes.  

Next the mESC cell growth was examined at 2 h, 24 h, 48 h and 72 h under the 

aforementioned conditions without cell passaging to assess the effect of surface 

roughness and volume size of the droplets on proliferation and cell growth (Figure 11 
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and Figure A 3B). The mESC colony size was measured and used as an indicator for 

colony growth, since the assessment of cell growth and proliferation by counting 

individual cells in colonies of particular sizes proved to be difficult. A higher growth 

rate was observed when the mESCs were cultured on the fully immersed, patterned, 

nanoporous polymer surface or on the DMA (1 mm spot size, 80 nL volume, average 

initial cell number of 20 per mm
2
; 3 mm spot size, 25 µL volume, average initial cell 

number of 16 per mm
2
) (Figure 11B-D) than mESCs grown under conventional culture 

conditions involving MEFs and large medium volume (Figure 11A). The results 

demonstrate increased growth and comparable viability of mESCs cultured on the 

immersed, nanoporous polymer in 5 mL volume and even on the DMA with 3 mm and 

1 mm spot size and smaller volumes (80 nL - 25 µL), when compared with the 

conventional culture method. The positive effect on mESCs´ viability, resulting from 

the polymer surface roughness (Figure 11A-B), enables culture of mESC in droplets 

with volumes of 80 nL - 25 µL (1 mm – 3 mm spot size). Though longer culture periods 

(≥ 48 h) in small volumes such as 80 nL further require regular medium change to 

sustain a sufficient supply of nutrients that maintains mESC viability comparable to that 

of conventional culture (Figure 11A and Figure A 3 A). Furthermore the surface 

roughness of the polymer in combination with the culture volume enhances proliferation 

and growth of mESCs (Figure 11A-D).  
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Figure 11. Viability and growth rate of mESC Oct4-eGFP over time under different conditions.  

(A) mESC grown under conventional culture conditions (+MEFs, +gelatin, +LIF; 5 mL total volume). 

(B) mESC grown on the nanoporous polymer surface (-MEFs, +gelatin, +LIF; 5 mL total volume). 

mESCs grown on DMA in individual droplets with (C) 3 mm spot size (-MEFs, +gelatin, +LIF; 25 µL 

total volume) and (D) 1 mm spot size  (-MEFs, +gelatin, +LIF; ~80 nL volume). To test viability, mESCs 

were stained with propidium iodide (PI; dead cells) and Hoechst 33342 (cell nucleus), and the percentage 

of dead (PI+, Hoechst+) and viable (PI-, Hoechst+) cells was assessed. The growth rate was quantified by 

measuring colony size. N=3; n >150 
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3.2.3 Quantifying mESC stemness on the Droplet Microarray via the 

Oct4-eGFP reporter gene 

The maintenance of stemness and mESC differentiation depend on several factors such 

as a precisely regulated microenvironment and controlled medium composition. To 

assess the importance of creating the ideal microenvironment for the individual factors 

used in conventional culture, the influence of each individual factor, namely gelatin 

coating, MEFs, and LIF supplementation on stemness of mESC cultured in polystyrene, 

cell culture Petri dishes was analyzed. For this purpose one of these factors was 

removed at a time and compared the mean fluorescence intensity to control conditions 

with all the factors present (Figure A 4A). The results revealed a significant decrease by 

three times in the Oct4-eGFP mean fluorescence intensity in the absence of medium 

supplementation with LIF, indicating that LIF can be considered the main factor 

influencing the maintenance of mESC stemness. Furthermore, the results demonstrate 

that coating the Petri dish surface with gelatin is an important factor for maintaining 

stemness, resulting in a 2.5-fold decrease of the Oct4-eGFP mean fluorescence 

intensity. In contrast, it was noted that coating the DMA surface with gelatin yielded no 

visible effect on the mESC´s fluorescence intensity (Figure A 4B). To ensure the 

DMA’s comparability to the conventional culture, all following experiments were 

conducted by supplementing the medium with LIF and coating the DMA with gelatin. 

Next the effect of the nanoporous polymer, in relation to different culturing volumes 

ranging from 80 nL to 5 mL, on the maintenance of stemness and differentiation of 

mESCs was investigated by comparing the mean fluorescence intensity and percentage 

distribution of GFP+, mixed and GFP- colonies (Figure 12A and Table 8). mESCs were 

cultured under conventional conditions in 5 mL culturing volume, on the immersed 

nanoporous polymer (5 mL culturing volume) and in droplets on the DMA with 

hydrophilic spots of various sizes (1 mm - 3 mm) and volumes (80 nL-25 µL) (Table 8). 

Culturing mESCs on the DMA with spots measuring 1 mm revealed a significant 

inhibition of spontaneous differentiation for up to 72 h and better maintenance of 

Oct4-eGFP expression compared to the conventional culture (Figure 12A). A further 

increase in the mean fluorescence intensity was apparent in conjunction with increasing 

spot size and volume, as evident for DMA with spots measuring 3 mm with 25 µL 

volume (Figure 12A) as well as for the completely immersed, nanoporous polymer with 
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5 mL culturing volume. In contrast no difference was observed in the GFP signal mean 

fluorescence intensity of mESCs cultured on the DMA with smaller spots measuring 

500 µm and 350 µm (Figure A 4C) when compared to that of mESCs in conventional 

culture conditions. These findings demonstrate the positive influence of the culturing 

volume on the maintenance of stemness, with volumes higher than 80 nL leading to an 

increased Oct4 level as indicated by the Oct4-eGFP reporter gene. The mean 

fluorescence intensity of mESCs cultured on nanoporous polymer in 5 mL volume was 

four-fold higher than that of mESCs in conventional culture of 5 mL volume, indicating 

a positive effect of the nanoporous polymer itself on the Oct4 level and on maintaining 

mESC stemness regardless of the volume (Figure 12A). The tendency in maintaining 

stemness under different culturing conditions as estimated by mean fluorescence 

intensity concurs closely with that assessed by comparing the percentage distribution of 

GFP+, mixed and GFP- colonies per mm
2
 (Figure 12A, right side) with 21%, 73%, 43% 

and 37% of GFP+ colonies remaining after 72 h under conventional culture conditions 

(5 mL), on the nanoporous polymer (5 mL), and on the DMA with spot sizes of 3 mm 

(25 µL) and 1 mm (80 nL). However, a slight decrease in percentage of GFP+ and 

mixed colonies over time (2 h - 72 h) can be observed within the individual, tested 

conditions. A total decrease from 2 h to 72 h of ~35%, ~5%, ~10%, ~25% under 

conventional culture conditions (5 mL), on the nanoporous polymer (5 mL), and on the 

DMA with 3 mm (25 µL) and 1 mm (80 nL) spot size can be observed. As the 

experiment, shown in Figure 12A, was conducted without any medium change and 

passaging of the cells throughout the incubation time of 72 h, an increasing lack of 

nutrients and LIF over time can be assumed, possibly resulting in a decreased viability 

and an increased induction of spontaneous differentiation over time.  
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Table 8. Direct comparison between conventional culture conditions, nanoporous polymer and the 

DMA showing feasible miniaturization of mESC culture using the DMA while promoting stemness. 

 Conventional 
culture 

Nanoporous 
polymer 

DMA on nanoporous polymer 

 

 

 

 

3 mm 

 

1 mm 

 

Culture area 55 cm
2
 55 cm

2
 9 mm

2
 1 mm

2
 

Volume 5 x 10
6
 nL 5 x 10

6
 nL 25 x 10

3
 nL 80 nL 

Initial cell number per 
mm

2
  

36 36 16 20 

Volume per cell  25 nL/cell 25 nL/cell 160 nL/cell 4 nL/cell 

Density of 
experiments per  cm

2
 

1 1 9 49 

MEFs (mouse 
embryonic fibroblast) 

Yes - - - 

Number of 
Oct4-eGFP positive 
colonies / mm

2
  

(at 72 h ) 

4 (21%) 5 (73%) 3 (43%) 2 (37%) 

Number of 
Oct4-eGFP negative 
colonies/ mm

2 
  

(at 72 h) 

12 (63%) 1 (15%) 2 (30%) 3 (44%) 

 

To confirm the observed positive effect of nanoporous polymer and different culturing 

volumes on prolonging the maintenance of mESC stemness using different read-outs, 

the mESC stemness was quantified via flow cytometry (Figure 12B) and qPCR (Figure 

A 5). For the flow cytometric analysis, the mESC Oct4-eGFP were cultured under 

different conditions for up to 72 h before being detached and stained with propidium 

iodide to distinguish between viable (PI-) and dead cells (PI+). A threshold was set 

before measuring in order to assess the number of true GFP+ cells without including 



  3 Results and Discussion 

55 

false positive signals generated by debris, for example. The results in Figure 12B 

illustrate the number of PI- and GFP+ cells exceeding the preset threshold and 

normalized to the control sample. The flow cytometric results correlate well with the 

results obtained using microscopic read-out, and indicate the inhibition of spontaneous 

differentiation of mESCs when cultured on the nanoporous polymer (5 mL volume) and 

in the individual droplets (3 mm 25 µL; 1 mm 80 nL) on the DMA (Figure 12B). The 

assessment of mESC stemness via direct quantification of the Oct4 expression level 

using qPCR (Figure A 5) also exhibited the nanoporous polymer’s positive effect, 

resulting from the surface roughness, on maintaining stemness in relation to the culture 

volume and was in good agreement with results obtained using microscopic read-out.  

Taken together, these results further demonstrate the dual-functionality of the polymers 

surface roughness that enables the generation of an array with multiple droplets of 

various sizes and volumes (DMA 3 mm and 1 mm) allowing culture of mESC, while at 

the same time maintaining stemness and inhibiting spontaneous differentiation for up to 

72 h cultivation time.  
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Figure 12 Quantifying mESC Oct4-eGFP stemness.  (A) Measurement of Oct4-eGFP mean 

fluorescence intensity obtained via image analysis and number of GFP+, mixed, and GFP- colonies per 

mm
2
. Representative images of colonies defined as GFP+, mixed and GFP-. N=3; n >100 (B) Flow 

cytometric analysis showing count of GFP positive cells with fluorescence intensities exceeding preset 

threshold. ◊ decreased viability of mESCs. Dot plot showing results of DMA 1 mm spot size and 48 h 

cultivation time. Gated population depicting GFP+ and live (PI-) cell count. N=3; n= 5000 counted cells; 

statistical significance: t-test, *indicates p-value ≤0.05.  

In order to show that the mESCs, cultured under conventional conditions and on the 

DMA for 72 h, retain their ability to differentiate into cells of the three germ layers 

endo-, meso-, and ectoderm (pluripotency), embryoid bodies (EBs, agglomerates of 

stem cells) were formed. For this the “hanging drop” method was used. Therefore, 

mESC cultured under conventional conditions (5 mL) and on the DMA 3 mm spots 

(25 µL) were detached and cultured in absence of LIF in “hanging drops”. This resulted 

in the formation of EBs and in a disordered differentiation into cells of the three germ 

layers. The EBs were stained for particular markers of endo-, meso-, and ectoderm 

(FoxA2, Brachyury, β-III-Tubulin). Representative images of the immunofluorescence 

staining for markers of all three germ layers are presented in Figure 13 showing 
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differentiation into cells from endo-, meso-, and ectoderm upon conventional culture 

and culture on the DMA, proving the pluripotential of the respective mESC. 

Next the enhancing effect of the polymers surface on the maintenance of stemness for 

cultivation periods longer than 72 h (up to 20 days), which remains, without precise 

regulation of culture conditions and regular passaging (every 2
nd

 day), challenging using 

standard in vitro culture was examined.  

 

Figure 13 Immunofluorescence staining showing potential of mESC Oct4-eGFP to differentiate into 

three germ layers  (endoderm, mesoderm, ectoderm). mESC Oct4-eGFP were grown under 

(A) conventional culture conditions (5 mL volume) and (B) on the DMA with 3 mm spot size (25 µL 

volume) for 72 h. Cells were detached and cultured for 48 h using the “hanging drop” method to generate 

embryoid bodies (EBs). EBs of respective samples were transferred to Fibronectin coated cover slips and 

cultured for 12 days. Subsequently immunofluorescence staining of endo-, meso-, and ectoderm markers 

(FoxA2, Brachyury, β-III-Tubulin) and DAPI (cell nucleus) on the respective cover slips was performed. 

Maintaining stemness in vitro is challenging and requires precise and closely regulated 

environmental and culturing conditions. As shown in Figure 12A, it was possible to 

reduce spontaneous differentiation by 19% – 48% upon culture of mESC on the DMA 

(1 mm or 3 mm) and the nanoporous polymer without passaging for up to 72 h. To 

investigate the effect of the nanoporous polymer on maintaining stemness for long-term 

culture, mESC were cultured under conventional culture conditions 
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(+MEF, +gelatin coating, +LIF), in absence of MEFs (-MEFs, +gelatin coating, +LIF) 

and on the nanoporous polymer surface (-MEFs, +gelatin coating, +LIF), all in final 

volume of 5 mL and without passaging the cells (Figure A 6). The culture medium was 

changed every 2
nd

 day to maintain sufficient nutrient supply and to sustain the 

mESCs’ viability. After 3 days of cultivation, mESCs grown under conventional culture 

conditions and in the absence of MEFs exhibited increased differentiation, as indicated 

by the elevated numbers of GFP- of ~14% and mixed colonies of ~9% (Figure A 6; 

Conventional culture and Ctrl -MEFs). After 20 days of culture, mESC grown on the 

nanoporous polymer surface displayed a ~25% decrease in the percentage of GFP+ 

colonies compared to a ~96% decrease in the conventional culture revealing delayed 

spontaneous mESC differentiation compared to the conventional culture conditions 

(Figure A 6; Nanoporous polymer). As the initial cell density and LIF concentration 

were kept the same and as the culture medium in the long-term culture samples (Figure 

A 6) was changed regularly to maintain adequate nutrient supply, the inhibiting effect 

on maintenance of stemness and mESC differentiation must be an impact from the 

polymer’s surface roughness. 

It was recently shown, that the HEMA-EDMA surface roughness of 68 ± 30 nm and 

higher (nano- and micro-nanorough) resulted in a reduced integrin clustering and 

formation of actin-rich protrusions-like extensions (Jaggy et al., 2015). Based on this 

and recent findings describing the influence and importance of cell surface interaction 

(cell anchorage; integrin signaling) on stem cell development and differentiation it was 

hypothesized, that a reduced integrin signaling in combination with actin-rich protrusion 

are involved in the maintenance of stemness and could also be the underlying 

mechanism resulting in the differences in stem cell differentiation observed on the 

nanoporous DMA (roughness 68 ± 30 nm) (Brafman et al., 2013; Hayashi et al., 2007; 

Jaggy et al., 2015).   

In this part of the project the potential of the DMA based on the nanoporous 

HEMA-EDMA polymer to maintain mESC stemness in micro to nanodroplets (25 µL to 

80 nL volume) due to the polymer surface roughness was shown. The prolonged 

maintenance as well as the culture in multiple, defined and separated microdroplets on 

the DMA, demonstrates its potential application as miniaturized platform enabling 

high-throughput screening of undifferentiated mESCs.  
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3.3 Droplet Microarray: miniaturized platform for rapid formation 

and high-throughput screening of embryoid bodies  

In the previous part the potential applicability of the DMA for 

high-throughput screening (HTS) of mESC while promoting their undifferentiated state 

was demonstrated. The presented methodology allows HTS of mESC in 2D culture. 

However the development and the performance of HTS on 3D model system, due to 

their high resemblance of the in vivo-like state, is gaining more and more importance in 

drug discovery, pharmaceutical and clinical research. HTS on 3D model systems, hence, 

leads to more precise and clinically relevant results. Stem cell research is thereby 

focusing on the generation and use of organoids (3D cell aggregates showing features of 

the represented organ) and embryoid bodies (EB, formed in suspension culture of stem 

cells). EBs are embryonic stem cell aggregates that exhibit similarities to the embryo 

and recapitulate the early embryonic development differentiating into cell derivatives of 

all three germ layers (endo-, meso-, and ectoderm). Therefore the use of EBs in HTS 

can help to identify compounds with developmental toxicity, resulting in an increased 

drug safety and possibly reduced use of in vivo testing at early stages of drug discovery. 

Main methods applied for the generation of EBs in drug screening are currently the use 

of low adherence plates or “hanging drop” method, both requiring multiple pipetting 

steps and further emitting the need for pipetting robotics to conduct HTS.  

In the next part the DMA was applied in order to generate an array of multiple 

microdroplets in a facile, one-step seeding method containing homogeneous EBs. 

Thereby the individual EBs in the confined microdroplets can be cultured and treated 

separately, enabling miniaturized screening in low volumes of compound effect on 

embryonic development and embryotoxicity in a high-throughput manner. 
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3.3.1 Use of the DMA for generation of an embryoid body (EB) array 

The DMA was produced as follows:  briefly, a microscopic glass slide 

(7.5 cm x 2.5 cm) was coated with a 3.6 µm-thin nanoporous 

poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) layer 

(Tronser et al., 2017). Surface modification of the polymer layer, performed using the 

photo-induced thiol-yne click chemistry, resulted in formation of hydrophilic spots 

(static water contact angle <10°), separated by superhydrophobic borders (advancing, 

static and receding water contact angles ~161°, ~153° and ~148°, respectively) (Feng et 

al., 2014). The extreme difference in the wettability of the hydrophilic spots and the 

superhydrophobic borders enables the effect of discontinuous dewetting and formation 

of high-density arrays of microdroplets by simple immersing the superhydrophobic-

hydrophilic array into a cell suspension or by rolling a bigger droplet over the array 

(Feng et al., 2014; Popova et al., 2015; Popova et al., 2016; Popova et al., 2017; 

Tronser et al., 2017; Ueda et al., 2012; Ueda et al., 2016). In this work the “standing 

droplet” method was used, which is based on placing a droplet of cell suspension onto 

the superhydrophobic-hydrophilic array for 30 seconds, followed by tilting the slide to 

remove excess medium and to form a Droplet Microarray containing mESCs (Figure 

14A). In this part of the project spots of 1 mm side length separated by 0.5 mm 

superhydrophobic borders were used, generating a microarray consisting of 

588 microreservoirs, (Figure 14B) enabling culture and screening of stem cells in 

individual, separated nanoliter droplets (average droplet volume 80 nL) (Popova et al., 

2015; Popova et al., 2016; Tronser et al., 2017; Ueda et al., 2012).  

For the generation of an embryoid body array, a transgenic mouse embryonic stem cell 

line, stably expressing eGFP fused to the pluripotency gene Oct4 was chosen 

(mESC Oct4-eGFP). This cell line enables direct microscopical read-out of stemness 

through the Oct4-eGFP construct, which makes it convenient for high-throughput 

screening applications (Kirchhof et al., 2000). Thus, mESC Oct4-eGFP were seeded 

onto a DMA slide in a single-step, creating a microdroplet array containing cells. The 

DMA was immediately turned over, allowing culture of mESC in hanging 

microdroplets for 72 h (Figure 14A), whereas the first formed 3D mESC aggregates 

were already observed after 48 h cultivation (Figure 14C). This is in close concordance 

with conventional methods used to form EBs, such as the “hanging drop” method 

during which dense ESC aggregates are formed after 48 -72 h (Buesen et al., 2004).  
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Embryoid bodies recapitulate the early embryonic development and have the potential 

to differentiate into cell derivatives of all three germ layers. In order to proof that the 

observed mESC aggregates are in fact embryoid bodies and have the potential to 

differentiate into the respective cell derivatives, immunofluorescence staining for 

specific markers of the three germ layers was performed. Therefore, mESC Oct4-eGFP 

were cultured on the inverted DMA in hanging droplets for 48 h in order to form 

potential EBs. These potential EBs were then collected and cultured for further 12 days 

on fibronectin coated cover slips, enabling outgrowth and differentiation into cells of 

the three germ layers. The markers used for immunofluorescence staining were FoxA2, 

Brachyury and β-III-tubulin for endo-, meso-, and ectoderm, respectively and the 

presence of the respective markers in the tested samples (Figure 14D) was shown, 

proving the mESC aggregates that formed on the DMA to be EBs with the potential to 

differentiate into all three germ layers. 
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Figure 14. Droplet Microarray as platform for embryoid body formation.  (A) Schematic 

representation of the experimental set-up for the formation of microarrays of single embryoid bodies (EB) 

and confocal microscopy-based 3D reconstruction of a single EB. Scale bar 100 µm (B) Representative 

image of DMA with 588 microdroplets. (C) Fluorescence microscopy image showing single EBs formed 

on DMA (1 mm side length of spots) in individual microdroplets after 48 h incubation. Left: overlay of 

green channel and brightfield; right: green channel (Oct4-eGFP). Scale bar 500 µm. (D) Proof of potential 

of the EBs formed on the DMA to differentiate into cell derivatives of all germ layers. After 48 h EBs 

formed on the inverted DMA, were collected and transferred to fibronectin coated coverslips. Following, 

EBs were cultured on coverslips for 12 days with regular medium changes, allowing outgrowth of EBs 

and spontaneous differentiation into all 3 germ layers (endo-, meso-, and ectoderm). To proof 

differentiation into all 3 germ layers immunofluorescence staining for markers of endo-, meso-, and 

ectoderm (FoxA2, Brachyury, β-III-Tubulin) was performed on respective samples. Immunofluorescence 

images showing differentiated cells expressing marker of respective germ layer (red channel), cell 

nucleus (DAPI staining, blue channel) and undifferentiated cells (Oct4-eGFP, green channel). Scale bar 

100 µm. N=3, n > 150  
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In HTS it is important to achieve high homogeneity of the EB sizes in order to sustain 

high comparability and reproducibility of the obtained results. One of the problems of 

EB formation in higher-throughput is the difficulty to keep their size and roundness 

equal. Thus, the formed EBs were analyzed and characterized for their homogeneity, 

size and roundness. For the quantification, the DMA was turned over again, the EBs 

were imaged using an inverted fluorescence microscope and the respective parameters 

were measured using ImageJ. A strong correlation between initial cell density and size 

of the EBs (area and diameter) (Figure 15A) was observed. The initial cell concentration 

of 0.16 x 10
6
 cells/mL, which is approximately ~13 mESC per spot, resulted in 

formation of EBs with an average diameter of 34 ± 4.5 µm (Figure 15A). In contrast an 

increase of the initial cell number by only 3 cells per spot, from ~13 to ~16 cells 

(from 0.16 x 10
6
 cells/mL to 0.2 x 10

6
 cells/mL, respectively), resulted in an increase of 

the average diameter by ~15 µm (from 34 ± 4.5 µm to 49 ± 0.02 µm). A further increase 

in the EB size was observed with increase of the initial cell density to 

0.3 x 10
6
 cells/mL. On the contrary, the initial cell density showed only slight effect on 

the roundness of the EBs. The roundness thereby is defined by how close the EB 

morphology approaches that of a mathematically perfect circle (roundness of 1). The 

EBs showed a roundness of 0.83 ± 0.1, 0.84 ± 0.02 and 0.74 ± 0.06 in case of 

0.16 x 10
6
 cells/mL, 0.2 x 10

6
 cells/mL and 0.3 x 10

6
 cells/mL, respectively. Good 

homogeneity in size (49 ± 0.02 µm) and roundness (0.84 ± 0.02), demonstrated by low 

variances between individual EBs, was achieved in case of 0.2 x 10
6
 cells/mL initial cell 

seeding concentration (Figure 15A) and thus employed for all following experiments.  

Using the described method homogeneous distribution of formed EBs on the DMA was 

achieved, with an average of 63% of single EBs formed per spot, 11% of two EBs, 4% 

with more than two EBs and 21% of empty spots (Figure 15B). The high percentage of 

droplets containing single EBs enables drug screening and developmental investigation 

of individual EBs and is in close concordance with the percentage of formed EBs using 

conventional methods, like the “hanging drop” method (Kurosawa et al., 2003).  

Further the viability of the EBs upon culture in hanging droplets for up to 72 h was 

assessed, by measuring the area fraction of viable and dead cells in regard to the total 

EB area. mESCs Oct4-eGFP were seeded and cultured for 72 h in presence of 

propidium iodide (PI), to estimate the number of dead cells (PI positive, 

Hoechst positive), and in presence of Hoechst 33342, to assess the number of viable 
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cells (PI negative, Hoechst positive). The culture in hanging droplets on the DMA 

showed 90-95% viability of EBs during the first 48 h and 85% after 72 h of culture 

(Figure 15C).  

 

Figure 15. Characterization of formed EBs.  (A) Table with average area, diameter and roundness of 

EBs in regard of the initial cell seeding concentration. N=3, n > 200. Representative fluorescence images 

of EBs with different initial cell seeding concentrations after 72 h incubation. DAPI staining of cell 

nucleus. Scale bar 100 µm. (B) Distribution of EBs on DMA. Percentage of droplets with 1 EB, 2 EBs, > 

2 EBs and empty spots. Initial cell seeding concentration used was 0.2 x 10
6
 cells/mL. (C) Estimation of 

viability by measuring area fraction of dead and viable cells of respective EBs. Propidium iodide (PI; 100 

nM) and Hoechst 33342 (1:100000) were used to stain dead cells (PI positive, Hoechst positive) and 

viable cells (PI negative, Hoechst positive). Images were taken at 24 h, 48 h and 72 h. N=3, n >100.  

 

3.3.2 Establishment of the DMA as platform for high-throughput 

screening 

The results demonstrate the feasibility of using the DMA for facile, one-step formation 

of arrays of multiple, homogeneous EBs while maintaining good viability within 72 h 

cultivation time. To evaluate the DMA as a HTS platform for EBs, preliminary 

investigations had to be conducted, such as the investigation for possible 

cross-contamination between compounds that were previously printed onto the 

individual spots of the DMA. This cross-contamination can occur during the seeding 
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process due to the use of the “standing droplet” method, during which all individual 

spots are covered by a big droplet of cell suspension for 30 sec. In order to prevent the 

compounds from dissolving during this 30 sec seeding procedure, the hydrophilic spots 

containing the respective preprinted compounds were coated with 2.2 wt% gelatin in 

water using a non-contact printer. Figure 16 shows the results of the 

cross-contamination pretest using doxorubicin in a concentration of 10 µM that was 

printed in a checker board pattern on the DMA, followed by coating with 

2.2 wt% gelatin in water. In a first step, seeding was mimicked by applying a standing 

droplet of PBS covering all spots of the DMA. The brightness of each spot in line was 

measured before and after applying PBS (Figure 16A) and the results demonstrate a 

reduction of cross-contamination between the spots containing doxorubicin 

(red fluorescence; Line 1) and the neighboring, individual empty spots (no fluorescence; 

Line 2) to the greatest possible extent. Further, mESCs Oct4-eGFP were seeded on a 

DMA slide with doxorubicin preprinted, cultured for 24 h and followed by 

quantification of the drug´s effect on viability and stemness in 2D culture. The 

percentage of dead cells was higher in spots containing doxorubicin (Slide 1: compound 

slide) than on the empty control slide (Slide 2: empty slide, Figure 16B) indicating its 

cytotoxic effect. Furthermore a strong decrease in the percentage of GFP+ cells can be 

observed on the doxorubicin spots (Slide 1) compared to the control slide (Slide 2), 

rather due to the cytotoxic effect of doxorubicin resulting in a general decrease of the 

total cell number than due to an induction of differentiation (Figure 16C). The 

percentage of viable cells as well as the percentage of GFP+ cells in the empty spots on 

the compound slide (Slide 1), that are in close proximity to the doxorubicin spots, show 

a slight decrease compared to the compound-free control slide (Slide 2), indicating a 

minimal cross-contamination during the seeding procedure in case of water soluble 

compounds such as doxorubicin. However the observed differences between the empty 

spots and the doxorubicin containing spots (Slide 1: compound slide) demonstrate an 

acceptable reduction of cross-contamination to the greatest possible extent through the 

gelatin coating using this experimental set-up. Various options to further decrease or 

completely prevent cross-contamination, as for example the decrease of the seeding 

time from 30 sec down to 10 sec as well as employing a non-contact cell printer for 

direct seeding of the cells into the respective droplets, are possible and will be 

investigated in future.  
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Figure 16. Pretest for cross-contamination between individual spots on DMA slide during seeding.  

(A) Fluorescence image of DMA slide with printed doxorubicin (red fluorescence; 10 µM) and empty 

spots (no fluorescence) in checker board format before (upper image) and after (bottom image) applying 

PBS in “standing droplet” covering all spots. Brightness measurement of doxorubicin spots (line 1) and 

empty spots (line 2). (B) 2D culture of mESC Oct4-eGFP on slides preprinted with doxorubicin. 

Percentage of dead (PI positive; hollow bars) and viable cells (PI negative; grey bars) on spots containing 

doxorubicin (10 µM) and empty spots after 24 h incubation. Slide 1: compound slide with doxorubicin 

(10 µM) printed in checker board format on the DMA. As control serves slide 2: empty slide without 

compound (compound-free slide). (C) Percentage of GFP+ mESC Oct4-eGFP on doxorubicin and empty 

spots on the compound slide after 24 h incubation. Slide 1: compound slide with doxorubicin (10 µM) 

printed in checker board format on the DMA. As control serves slide 2: empty slide without compound 

(compound-free slide). N=3,  n > 100; statistical significance: t-test, *indicates p-value ≤0.05.   
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3.3.3 High-throughput screening of FDA approved compound library  

The previous results demonstrate the feasibility of using the DMA platform preprinted 

with a library of compounds for HTS of EBs. This new methodology shows promising 

potential in facilitating and advancing drug screening using stem cells. Currently drug 

screenings are mainly done using 2D stem cell culture systems, in which major 

differences in stem cell behavior can be observed due to dissimilarities to the in vivo 

microenvironment of stem cells (Gaharwar et al., 2016; Walker et al., 2009). Hence, 

huge efforts are made to establish 3D stem cell culture systems that resemble a more 

natural microenvironment and enable replacement of conventional 2D screening 

systems. In case of embryonic stem cells such a 3D, in vitro system is the use of EBs. 

Thereby conventional methods, such as low adherence microtiter plates and the 

“hanging drop” method, used for screening of EBs have several limitations. First of all 

high amount of valuable stem cells and costly reagents are needed. This and the limited 

availability, and restricted expandability of stem cells make it impossible to perform 

HTS of EBs using the conventional methods. Furthermore these methods require 

several pipetting steps in order to perform screenings of EBs, emitting the urge for 

pipetting robotics. The DMA, however, allows a reduction of cells and reagents by 

1000 fold (from microliter to nanoliter range) enabling HTS of EBs in miniaturized and 

defined volumes. In addition using the preprinted DMA allows fast formation and 

screening of multiple EBs in a single pipetting step, facilitating HTS and restricting the 

need for pipetting robotics. In order to exploit these benefits given by the use of the 

DMA as miniaturized screening platform, a HTS of 774 FDA-approved compounds 

using EBs to identify compounds with effect on embryonic development was 

performed. Therefore FDA-approved compounds were preprinted on the DMA in the 

respective hydrophilic spots and coated with 2.2 wt% gelatin in water, using a 

non-contact printer. For better comprehensibility the preprinted DMA will subsequently 

be referred as library-DMAs. Following preprinting, mESC Oct4-eGFP were seeded on 

the library-DMA and immediately inverted to allow cultivation in hanging droplets and 

formation of EBs in presence of the respective compounds for 72 h. Thereby a uniform 

dissolving rate within the various compounds is assumed, although differences due to 

variable solubility of the compounds, can be possible. Pretests using the compounds 

13-cis-retinoic acid and 5-fluorouracil, each preprinted on the DMA in a concentration 

of 10 µM, showed a decrease in mean fluorescence intensity of the EBs compared to the 
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internal control (empty spots), indicating differentiation induced by the respective 

compounds present (Figure 17B). Further in case of 13-cis-retinoic acid a decrease of 

the EB size can be observed compared to the control, as shown in a previous study 

(Nierode et al., 2016). The observed effects of the compounds on the EB development 

within the first 72 h demonstrate the applicability of the library-DMA for screening of 

EBs. Next a primary screen with 774 compounds of the FDA-approved drug library 

printed on the DMA was conducted, with each compound in 10 µM concentration and 

in triplicates, resulting in a screen of 2700 samples in total using only 9 single-pipetting 

steps. In contrast to that, common EB drug screening methods, like the use of low 

adherence plates, would require a 300 fold higher number of pipetting steps in order to 

perform a screen of 2700 samples in one run, further emitting the urge for pipetting 

robotics. After 72 h incubation time of mESC Oct4-eGFP cultured on the respective 

library-DMA in hanging droplets, the EB size, EB roundness, toxicity of the compounds 

and effect on differentiation were assessed (Table A 2). Further compounds that 

repeatedly inhibited EB formation were considered negative hits, whereas compounds 

that led to EB formation in all triplicates were considered positive hits (Figure 17C). 

Out of the 774 tested compounds, 84 compounds repeatedly showed inhibition of EB 

formation (negative hits) and 50 compounds (10 compounds increasing EB size; 

22 compounds reducing EB size; 7 compounds showing toxicity) led to EB formation in 

all replicates (positive hits). The observed variances in positive and negative EB 

formation between the replicates of the remaining 640 compounds could be due to 

marginal differences in EB size between the replicates, with sizes above and below the 

preset size threshold, thereby causing the observed variances, as samples below the 

threshold would be excluded by the detection algorithm and hence, considered as 

negative hit. Further reasons for the observed variances between the replicates could be 

differences in initial cell number based on the “standing droplet” seeding method and 

possible differences in diffusion rate of the compounds through the gelatin coating. 

Especially the latter could be overcome by employing a non-contact cell printer for cell 

seeding, which could result in a more precise regulation of initial cell number per spot 

and furthermore, through direct printing of the cells into the compound containing 

spots, enable cross-contamination-free screening without the need for further gelatin 

coating.  
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Figure 17. Screening of 774 FD-approved compounds with EBs. Schematic showing workflow of 

high-throughput screen of compounds using EBs on DMA. Compounds are preprinted into individual 

hydrophilic spots using a non-contact, liquid dispenser, followed by gelatin coating to reduce leakage of 

the compounds during the seeding procedure. mESC Oct4-eGFP were seeded with 0.2 x 10
6
 cells/mL on 

the DMA in presence of Hoechst 33342 (1:100000) and PI (100 nM). The DMA was immediately 

inverted allowing culture of mESC Oct4-eGFP in hanging droplets and formation of EBs in presence of 

respective compounds for 72 h. (B) Investigation of possible cross-contamination due to seeding 

procedure on preprinted compound DMA slide. Compounds used for cross-contamination test: 

13-cis-retinoic acid (RA; 10 µM); 5-fluorouracil (5-FU, 10 µM). Internal controls are spots without 

compounds (empty spots) in close proximity to spots with preprinted compounds. Results are normalized 

to experimental control slide (external control): DMA slide with no compounds printed. Measurement of 

mean fluorescence intensity of the EBs on the respective spots (RA: RA printed spots, 5-FU: 5-FU 

printed spots, internal ctrl: empty control spots next to compound spots, external ctrl: compound-free 

DMA slide) and EB diameter. N=3; n >100. (C) Representative images of Hoechst stain of neighboring 

spots during the HTS of 774 FDA-approved compounds. Replicates in spots A1 and B1 are showing 

mESC Oct4-eGFP cultured in presence of 10 µM metyrapone, resulting in no EB formation (negative 

hit). Replicates in spots A2 and B2 show mESC Oct4-eGFP cultured in presence of 10µM mexiletine 

HCl, resulting in EB formation with effect on EB diameter (positive hit). Scale bar 100 µm; statistical 

significance: t-test, *indicates p-value ≤0.05. 
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3.3.4 Validation of primary high-throughput screen: 

dose-response-curve   

12 compounds, out of the 134 hits, were selected that showed significant effect on at 

least one of the measured parameters and used those further in a secondary screen 

(dose-response-curve screen) in order to confirm the observed effects (Figure 18A). The 

secondary screen showed reproducible dose dependent effects of the respective 

compounds, in close concordance with the previous observations of the primary screen 

(Figure A 7- Figure A 10). Compounds inhibiting EB formation during the primary 

screen (busulfan, digoxin, mycophenolate mofetil) also showed dose-dependent effects 

on EB formation in the secondary screen, with formation of normally sized EBs 

(~70 µm) at lowest concentration (0.1µM), increasing reduction in EB size with mediate 

concentrations (1-10 µM) and no EB formation with highest concentration (30 µM), 

respectively (Figure 18A and Figure A 7). In case of busulfan previous studies observed 

similar effects, proving strong embryotoxicity of this compound through induction of 

DNA damage by alkylation (Table 9) (Mehta et al., 2008; Murdter et al., 2001; Wobus 

& Loser, 2011). Strong dose dependent effects in EB size were observed for 

propafenone HCl and mycophenolate mofetil. With increase of the dose from 1 µM to 

30 µM, propafenone HCl and mycophenolate mofetil showed an increase in EB size by 

~20% and a decrease in EB size by ~60%, respectively (Figure 18B). Treatment with 

propafenone HCl resulted besides in increased EB size also in a slight increase in 

toxicity with high doses. This correlates qualitatively with previous studies, in which 

propafenone HCl has been declared as moderate embryotoxic compound (Table 9) 

(Paquette et al., 2008). Regarding the other parameters that were measured, close 

correlation between EB size and stemness can be observed. Higher dose resulted in 

increased EB size and stemness for propafenone HCl, and accordingly in reduced EB 

size and stemness for mycophenolate mofetil (Figure 18B and Figure A 10) that is 

known to promote osteoblast differentiation (Table 9) (Darcy et al., 2012). These results 

indicate an effect of the respective compounds not only on proliferation but also on 

differentiation. In contrast, meclizine dihydrochloride showed only slight effect on EB 

size, roundness or viability but a significant reduction in the mean fluorescence intensity 

of EBs, indicating the main effect to be on induction of differentiation (Figure 18B). 

Other compounds strongly affecting stemness and differentiation, measured by the GFP 

intensity were mesna and digoxin (Figure A 10). Thereby a possible explanation for the 
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induced differentiation in case of digoxin can be its function as Na
+
 K

+
 ATPase 

inhibitor (Lin et al., 2017). This subsequently leads to an increased level of intracellular 

calcium, which may promote activation of contractile proteins such as actin, further 

resulting in changes of the cytoskeleton that have been shown to strongly influence stem 

cell behavior and induce differentiation in previous studies (Table 9) (Clausen, 2002; 

Das et al., 2014). Also lansoprazole showed decreased GFP intensity indicating induced 

differentiation, which correlates with previous research proving its effect on osteoblastic 

differentiation (Table 9) (Costa-Rodrigues et al., 2013; Mishima et al., 2015).  

 

Figure 18. Screening of 12 hit compounds identified during HTS: primary screen.  (A) Table 

showing 12 hit compounds chosen from primary screen for consecutive run of dose-response-curve test 

with effect observed during primary and dose-response-curve screen. Compounds were chosen on their 

effect on EB formation, EB diameter, and cytotoxicity. (B)  Fitted dose-response-curves for 4 

(propafenone HCl, mycophenolate mofetil, eptifibatide, meclizine dihydrochloride) out of 12 hit 

compounds showing effect on EB size, toxicity and differentiation. Concentrations used were 0.1 µM, 

1 µM, 10 µM and 30 µM, with each concentration in 4 replicates. Internal controls were empty spots and 

vector controls containing DMSO in respective concentration (1%). As experimental control served an 

empty DMA slide. Incubation time of mESC Oct4-eGFP in hanging droplets with compounds was 72 h. 

N=3. 
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A strong effect on toxicity was observed upon treatment with eptifibatide, resulting in 

an increase by ~20% from 1 µM to 30 µM (Figure 18B). However only slight dose 

dependent effect of eptifibatide was observed on EB size, and no dose dependent effect 

on roundness and stemness, indicating a sole cytotoxic effect of the compound. In 

regard of the toxic effect of some of the residual compounds high standard deviations 

due to strong variances between the respective replicates was shown (Figure A 9). This 

can be due to the way of imaging and the 3 dimensionality of the EBs. In order to 

ensure data assessment of all compounds in a timely manner, the imaging of EBs had to 

be reduced to single plane, which can result in imaging of planes in varying z-positions 

between the individual replicates and in turn to different percentages of viable and dead 

cells depending on the position within the EB. Another possible factor influencing the 

measurement of viable and dead cells could be, that during imaging of a 3D object the 

fluorescent signal emitted by stained cells lying underneath the current plane could also 

be detected and measured during imaging. However, the overall presented results 

demonstrate qualitative correlation of the obtained data with previous screenings 

conducted using conventional methods such as the “hanging drop” method. For 

quantitative comparison between HTS on EBs using the Droplet Microarray and 

conventional methods, further experiments have to be performed. All in all the 

presented data prove the applicability of the library-DMA for HTS of EBs, enabling 

investigation of compound dependent effects on embryonic development and 

embryotoxicity. 
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Table 9. Summary of the effect of selected FDA-approved compounds based on studies using 

embryonic stem cells (2D) or embryoid bodies (3D). 
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4 Conclusion and Outlook 

In this PhD work two artificial substrates, bacterial cellulose and a chemically defined 

porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) 

(HEMA-EDMA), were exploited for culturing mouse embryonic stem cells (mESC), 

showing the potential to promote mESC stemness over short-term and long-term culture 

conditions through their micro- and nanostructured as well as porous surface. In order to 

investigate this, a transgenic mouse embryonic stem cell line, stably expressing GFP 

fused to the pluripotency gene Oct 4 (mESC Oct4-eGFP), was used. These stem cells 

allow for the direct read-out of the differentiation state of the mESC using fluorescence 

microscopy. For both materials, the results indicated significant facilitation of mESC 

culture and, in the case of the HEMA-DMA substrate, the ability to perform 

high-throughput screening of stem cells was demonstrated.  

In the first part, the potential of the bacterial cellulose derived from 

Komagataeibacter xylinus to maintain the undifferentiated state of mESC was 

investigated. Bacterial cellulose is widely used in tissue engineering, transplantation and 

regenerative medicine as scaffold material for cell transfer or directed differentiation. In 

particular, the latter finds high importance in the field of stem cell research, as 

controlled differentiation and maintenance of stemness in vitro still remains challenging 

and precise regulation of multiple parameters is required in order to maintain their 

undifferentiated state. In case of mESC culture, these requirements include precoating 

of the culture vessel to provide sufficient cell attachment, regular cell passaging to 

prevent overgrowth that induces differentiation, medium supplementation with 

leukemia inhibitory factor known to inhibit differentiation and the use of mitotically 

inactivated mouse embryonic fibroblasts (MEFs) that provide cell attachment sites and 

secrete soluble factor promoting stemness. This demonstrates how laborious, time 

consuming and costly mESC culture is using conventional culture methods. By using 

bacterial cellulose it was possible, to culture mESC without gelatin coating and 

mitotically inactivated MEFs for up to 72 h, maintaining the mESCs’ undifferentiated 

state and significantly facilitating culture conditions in comparison to conventional 

culture. Furthermore, the application of bacterial cellulose showed improved 

maintenance of stemness with delay of spontaneous differentiation during long-term 

culture (17 days) of mESC. The observed influence can be attributed to an enhanced 

cell attachment to the substrate based on the biochemical and structural properties, 
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believing surface roughness, thickness and liquid absorbing capacity of the bacterial 

cellulose to be important contributors to the maintenance of stemness. However, further 

experiments have to be conducted to elucidate the precise underlying mechanism 

resulting in enhanced cell attachment and maintenance of stemness. The application of 

bacterial cellulose in stem cell culture significantly reduces costs and facilitates mESC 

culture compared to conventional methods. Future combination of photopatterning 

methodologies or preparation of bacterial cellulose composites could allow 

investigation of stem cells upon different geometries and composite materials, while 

maintaining the undifferentiated state of mESCs by its surface topography. Thereby, the 

application of bacterial cellulose as a flexible membrane material of high purity, 

biocompatibility and the possibility for scalable manufacturing possesses the potential 

to advance stem cell research.  

As mentioned before, culturing and maintaining stemness in vitro are still challenging 

and require precisely controlled conditions (Jeon et al., 2012; Llames et al., 2015). 

Hence, a lot of research is done in order to elucidate the underlying mechanisms of 

differentiation and screening for further factors promoting stemness. High-throughput 

screening of compounds maintaining stemness as well as investigation of the underlying 

mechanisms of differentiation are usually conducted in microtiter plates (96-, 384-, 

1536-well plates), which entail high consumption of reagents and valuable cells 

(Ankam et al., 2013; Fernandes et al., 2009). The restricted availability of stem cells 

makes high-throughput screening of stem cells using conventional microtiter plates 

challenging and creates the urge for miniaturization required to reduce the amount of 

cells needed for an experiment (Du et al., 2016; Mayr & Fuerst, 2008; Nirmalanandhan 

& Sittampalam, 2009). In the second part of this work, the highly chemically defined 

nanorough and porous HEMA-EDMA substrate was applied. This polymer exhibits a 

dual-functionality, namely the potential to inhibit mESC differentiation through its 

surface topography (Jaggy et al., 2015) and the ability to generate arrays of 

microdroplets (Droplet Microarray) via the effect of discontinuous dewetting. The latter 

is a result of the ability to create patterns of hydrophilic and superhydrophobic areas that 

exhibit extreme and opposite degrees of wettability and dewettability. It was possible to 

culture and maintain pluripotent mESCs in the absence of mitotically-inactivated MEFs 

inside of nano-to-microliter sized droplets of the Droplet Microarray, providing a 

MEF-free array system for screening and investigation of mESCs. The Droplet 

Microarray enables culture of mESC in individual droplets of 80 nL volume resulting in 
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a 20 x volume reduction compared to 1536-well plates (~ 1500 nL) and at least 

125 x reduction compared with 384-well plates, which is the most commonly used plate 

format. However, longer cultivation periods (> 72 h) in a volume of 80 nL as well as a 

further volume reduction (e.g. by us of 500 µm spots with ~ 9 ± 2 nL) can result in 

decreased viability based on increased lack of nutrient over time and a reduced volume 

per cell ratio, respectively. Investigation of mESC development, differentiation, and 

maintenance of stemness using the Droplet Microarray showed the dependence of stem 

cell behavior on droplet volume in nano- and microliter scale. An increased cell growth 

rate of mESC cultured on the platform and the inhibition of spontaneous differentiation 

of mESCs cultured on the Droplet Microarray, as indicated by the Oct4-eGFP 

expression level, was observed. The difference in the behavior of mESCs is attributed 

on the porous polymer´s nanorough surface (Jaggy et al., 2015). The results 

demonstrate that the Droplet Microarray possesses the potential for the screening of 

mESCs under conditions of prolonged inhibition of stem cells’ spontaneous 

differentiation. Hence, the Droplet Microarray can be a useful platform for applications 

in the field of stem cell research and high-throughput screening of stem cells with 

chemical libraries, identifying compounds with effect on stemness that can further 

improve stem cell culture and enable stem cell expansion. Furthermore, through the 

improved maintenance of stemness based on the polymer’s nanorough surface and the 

ability for screening and separate treatment of the mESCs in the individual droplets with 

a multitude of compounds, the Droplet Microarray can be a useful platform in 

biomedical research as well as in the field of regenerative medicine and tissue 

engineering. 

Screening systems resembling a more natural environment are gaining more and more 

importance as they enable generation of robust and biomedical more relevant results 

during the process of drug discovery (Liu et al., 2016; Manganelli et al., 2014). Main 

approaches in developing such systems are executed using various materials that enable 

a more precise modulation of the mechanical and physical properties of the 

microenvironment such as hydrogels or other polymeric materials (Giobbe et al., 2012). 

Besides the mechano-physical properties, cell-cell interaction has been shown to be 

another important factor influencing cell development and behavior. Hence, a lot of 

research is devoted to the development of 3D cell models, in which cells are in direct 

contact interacting with each other or other cell types, such as in spheroids or in 

organoids (Becavin et al., 2016; Liu et al., 2016; Nierode et al., 2016). In case of 



  4 Conclusion and Outlook 

77 

embryonic stem cells, embryoid bodies (EBs) represent such a 3D model with close 

resemblance to the in vivo state as EBs recapitulate the early embryonic development 

and are able to differentiate into multiple cell derivatives of the three germ layers, 

endo-, meso- and ectoderm (Pettinato et al., 2015). The use of EBs in drug screenings is 

of high importance because of the possibility to identify and exclude compounds 

showing developmental toxicity in an early stage of drug discovery, further increasing 

drug safety and reducing the use of in vivo testing for drug discovery. However, current 

methods used for screening of EBs, such as low adherence plate and “hanging drop” 

method, have several drawbacks, reducing their applicability in drug screening. In order 

to perform high-throughput screening of EBs conventional methods require multiple 

pipetting steps as well as high amount of expensive compounds and valuable cells 

(Kurosawa, 2007). The limited availability and restricted expandability of stem cells 

further complicates high-throughput screening of EBs using the previously mentioned 

conventional methods. In the third part of this PhD work, the Droplet Microarray 

platform was exploited for its potential in conducting high-throughput screening of cells 

in defined, nanoliter sized droplets, significantly reducing the amount of cells and 

reagents needed, and its possibility in forming multiple and homogeneous EBs through 

single step pipetting. The latter can be achieved by applying a mESC cell suspension on 

the superhydrophobic-hydrophilic micropattern of the Droplet Microarray resulting in 

immediate formation of multiple, separated microdroplets containing cells, followed by 

inverted culture of the mESCs in hanging microdroplets on the Droplet Microarray 

leading to formation of a dense array for high-throughput screening containing multiple 

single EBs (~63% of single EBs per array). This embryoid bodies array was applied in a 

high-throughput screen of 774 compounds of the FDA-approved drug library as well as 

a subsequent secondary screen (dose-response-curve screen) identifying compounds 

with effect on embryonic development (e.g. propafenone HCl, mycophenolate mofetil) 

and embryotoxicity (e.g. eptifibatide). Thereby a uniform dissolving rate of the 

respective compounds was assumed. However, variable dissolving rates that can result 

from differences in solubility of the compounds cannot fully be excluded. Furthermore 

differences in the dissolving rate can be based on variable diffusion of the compounds 

through the gelatin coating, which was primarily used to reduce cross-contamination 

during the seeding procedure. For quantitative assessment of the dissolving rate within 

the various compounds further experiments have to be conducted. The in the third part 

of the PhD work presented results demonstrate that the Droplet Microarray is a useful 
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platform facilitating and accelerating investigations of embryonic development and 

embryotoxicity using embryoid bodies, which can help to advance biomedical relevant 

drug screenings, increase drug safety and reduce the use of premature in vivo testing 

during early stages of drug discovery. 

In conclusion it can be said that despite the progress and the presented achievements in 

the field of biofunctional materials for high-throughput screening of stem cells a lot of 

challenges still have to be overcome to further facilitate and accelerate progress in drug 

discovery, tissue engineering and regenerative medicine. In future, I am planning to 

utilize the Droplet Microarray with its defined physico-chemical properties and its 

superhydrophobic-hydrophilic micropattern as miniaturized platform for 

ultra-high-throughput screening on more complex cellular systems, such as organoids. 

Thus, through the use of more complex cellular systems an even stronger resemblance 

of the in vivo microenvironment can be achieved, resulting in more biomedical relevant 

drug screenings. Further I am planning to combine the inherent miniaturization and 

possibility for high-throughput screenings of the Droplet Microarray with the use of a 

non-contact cell printer, eliminating the risk of cross-contamination and enabling 

accurate deposition of variable cell types into the hydrophilic spots with high regulation 

of cell number and cell culture volume. In addition, this allows investigation and 

high-throughput drug screening within defined, complex co-culture systems, possessing 

the potential of precise modulation and resemblance of the in vivo microenvironment. 

To summarize the combination of novel, highly chemically defined, biofunctional 

materials with the ability for miniaturized high-throughput screening are promising 

systems that can accelerate drug discovery and advance research progress in stem cell 

research, biomedicine, tissue engineering and regenerative medicine.     
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5 Appendix 

5.1 Bacterial cellulose promotes long-term stemness of mESC 

 

Figure A 1. Characterization of mESC Oct4-eGFP culture on BC-RT wet.  (A) Assessment of colony 

size as indication for growth rate of mESC Oct4-eGFP under conventional culture and culture on BC-RT 

wet. (B) Roundness of mESC Oct4-eGFP colonies under conventional culture conditions (red line) and 

cultured on BC-RT wet (grey line).  (C) Percentage of GFP+, mixed and GFP- colonies under culture on 

BC-RT wet in absence of LIF (Leukemia inhibitory factor). (D) Immunofluorescence staining showing 

potential of mESC Oct4-eGFP to differentiate into 3 germ layers (endo-, meso-, ectoderm) after being 

under conventional culture conditions. Cells were cultured for 6 days, detached and cultured for 48 h 

using “hanging drop” method to form embryoid bodies (EBs). EBs were transferred to fibronectin coated 

cover slips and cultured for 12 days. Subsequently immunofluorescence staining of endo-, meso- and 

ectoderm markers (FoxA2, Brachyury and β-III-Tubulin respectively) and cell nucleus (DAPI) was 

performed. Scale bar 100 µm. 
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Figure A 2. Assessment of conditioning BC-RT wet. (A) Preconditioning of BC-RT wet with medium 

from 24 h culture of mESC Oct4-eGFP (BC-RT wet: Medium), with LIF alone (BC-RT wet: LIF) by 

incubation of BC with respective solutions before cell seeding. Mean fluorescence intensity measurement 

of mESC Oct4-eGFP when cultured under conventional conditions, on BC-RT wet, on with medium 

preconditioned BC-RT wet (BC-RT wet: Medium) and on with LIF preconditioned BC-RT wet (BC-RT 

wet: LIF). (B) Masking of surface structure and inhibiting direct cell contact via gelatin coating (BC-RT 

wet gelatin). Measurement of mean fluorescence intensity of mESC Oct4-eGFP cultured on gelatin 

masked BC-RT and untreated BC-RT wet. (C) Assessment of cellulose degradation through culture of 

mESC Oct4-eGFP on BC-RT wet. As control served cellulose that was never used for cell culture 

(BC-RT wet: control) and for 15 min with trypsin incubated BC (BC-RT wet: Trypsin). Thickness of the 

BC was measured before mESC Oct4-eGFP (BC-RT wet: mESC) detachment and after detachment using 

trypsin (BC-RT wet: mESC +Trypsin). 
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5.2 Droplet Microarray based on patterned superhydrophobic surfaces 

prevents stem cell differentiation and enables high-throughput stem 

cell screening 

 

Figure A 3. Representative images showing viability staining and colony morphology upon different 

culture conditions. (A) Viability of mESC colonies grown in individual droplets on DMA with 1 mm 

spot size ~80 nL volume (-MEFs, +gelatin, +LIF) upon regular medium change. Medium was changed 

daily via rolling a drop of fresh medium over the array. Staining with propidium Iodide (PI) and Hoechst 

33342 to assess the percentage and to count dead (PI+, Hoechst +) and live cells (PI-, Hoechst+). N=3; n 

>150 (B) Representative images of viability staining of mESC Oct4-eGFP with PI and Hoechst 33342. 

(C) Representative images showing mESC Oct4-eGFP colonies cultured under the different conditions. 

Area and mean fluorescence intensity of respective colonies is given and was measured using ImageJ. 

Mean fluorescence intensity was normalized to time point 0.  
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Figure A 4. Quantification of mESC Oct4-eGFP stemness. Measurement of the Oct4-eGFP mean 

fluorescence intensity obtained using image analysis software (ImageJ) (A) Mean fluorescence intensity 

of mESC upon culture under conventional conditions and in absence of LIF, MEFs or gelatin coating (B) 

Mean fluorescence intensity of mESC Oct4-eGFP culture on DMA 1 mm spot size with and without 

previous gelatin coating of polymer surface. (C) Mean fluorescence intensity of mESC Oct4-eGFP 

cultured on the DMA with 1 mm , 500 µm and 350 µm spot size in comparison to conventional culture 

conditions N=3; n >100 Statistical significance: t-test, *indicate p-value ≤0.05.  
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Figure A 5. Quantification of mESC stemness obtained through analysis of relative gene expression 

of pluripotency genes Sox2 and Oct4 using qPCR.  Fold change normalized to conventional culture 

conditions. N=3  

 

Table A 1. Gene specific primers used for amplification in qPCR experiment. Purchased from 

Metabion International AG (Planegg, Germany) 

Gene 5’ Primer 3’ Primer 

GAPDH TCCCACTCTTCCACCTTCGATGC GGGTCTGGGATGGAAATTGTGAGG 

Oct4 GCAGGAGCACGAGTGGAAAGCAAC CAAGGCCTCGAAGCGACAGATG 

Sox2 CGAGATAAACATGGCAATCAAAT AACGTTTGCCTTAAACAAGACCAC 
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Figure A 6. Count of GFP+, mixed and GFP- colonies from the mESC Oct4-eGFP line long-term 

cultivated under conventional conditions, in absence of MEFs (Ctrl – MEF) and on the nanoporous 

polymer. Medium was changed every 48 h in all samples. 5 mL culture medium supplemented with LIF 

was used for all samples. Representative images (green channel and overlay with brightfield) showing 

mESC cultured on nanoporous polymer for 10 days. N=3, n > 100 
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5.3 Droplet Microarray: miniaturized platform for rapid formation 

and high-throughput screening of embryoid bodies 

 

Table A 2. High-throughput screen (HTS): primary screen.  Table showing results of 12 hit 

compounds from the primary screen with 774 FDA approved compounds. mESC Oct4-eGFP were 

cultured in hanging droplets using the DMA in presence of respective compounds for 72 h. mESC were 

stained with Hoechst 333442 (cell nucleus, for automated segmentation of embryoid bodies (EBs)) and 

propidium iodide (PI, dead cells). Evaluated and measured was the formation of EBs (yes/-), EB diameter 

(in µm), EB roundness, mean fluorescence intensity (MFI) of Oct4-eGFP of EBs as indication for 

differentiation and percentage of dead cells (PI positive) of total EB area as indication for toxicity. 
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Figure A 7. Secondary screen: fitted dose-response-curve of 12 hit compounds (EB size). mESC 

Oct4-eGFP were cultured in presence of respective compounds in concentrations from 0.1 µM to 30 µM 

in hanging droplet using the DMA for 72 h. mESC were stained with Hoechst 333442 (cell nucleus, for 

automated segmentation of embryoid bodies (EBs)) and propidium iodide (PI, dead cells). Graphs show 

measured EB diameter (µm) for respective compounds and concentration. Fitted dose-response-curve is 

depicted as red line. n=4, N=3.  
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Figure A 8. Secondary screen: dose-response-curve of 12 hit compounds (roundness). mESC 

Oct4-eGFP were culture in presence of respective compounds in concentrations from 0.1 µM to 30 µM in 

hanging droplet using the DMA for 72 h. mESC were stained with Hoechst 333442 (cell nucleus, for 

automated segmentation of embryoid bodies (EBs)) and propidium iodide (PI, dead cells). Graphs show 

measured EB roundness (0-100) for respective compounds and concentration. Fitted dose-response-curve 

is depicted as red line. n=4, N=3. 
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Figure A 9. Secondary screen: dose-response-curve of 12 hit compounds (toxicity). mESC 

Oct4-eGFP were cultured in presence of respective compounds in concentrations from 0.1 µM to 30 µM 

in hanging droplet using the DMA for 72 h. mESC were stained with Hoechst 333442 (cell nucleus, for 

automated segmentation of embryoid bodies (EBs)) and propidium iodide (PI, dead cells). Graphs show 

toxicity of respective compounds in different concentrations (area fraction of PI positive cells from total 

EB area). n=4, N=3 
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Figure A 10. Secondary screen: dose-response-curve of 12 hit compounds (stemness). mESC 

Oct4-eGFP were cultured in presence of respective compounds in concentrations from 0.1 µM to 30 µM 

in hanging droplet using the DMA for 72 h. mESC were stained with Hoechst 333442 (cell nucleus, for 

automated segmentation of embryoid bodies (EBs)) and propidium iodide (PI, dead cells). Graphs show 

mean fluorescence intensity of Oct4-eGFP signal for respective compounds and concentrations as 

indication for differentiation. Fitted dose-response-curve is depicted as red line. n=4, N=3. 
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