
Online Analysis of Dynamic
Streaming Data

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Eileen Kühn

aus Luckenwalde

Tag der mündlichen Prüfung: 04.07.2017

Erster Gutachter: Prof. Dr. Achim Streit

Zweiter Gutachter: Prof. Dr. Günter Quast

Erklärung zur selbständigen Anfertigung der Dissertationsschrift

Hiermit erkläre ich, dass ich die Dissertationsschrift mit dem Titel

Online Analysis of Dynamic Streaming Data

selbständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt sowie die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht
und die Regeln zur Sicherung guter wissenschaftlicher Praxis am Karlsruher Institut für
Technologie (KIT) beachtet habe.

Ort, Datum Eileen Kühn

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Distanzmessung dynamischer, semistrukturierter
Daten in kontinuierlichen Datenströmen um Analysen auf diesen Datenstrukturen bereits
zur Laufzeit zu ermöglichen. Aktuelle Studien zeigen, dass die Bedeutung der effizienten
Analyse von Datenströmen semistrukturierter und unstrukturierter Daten, die beispielsweise
durch Sensoren und mobile Geräte generiert werden, in Zukunft stark zunehmen wird.
Besonders das Volumen der generierten Daten und die Anzahl paralleler Datenströme
machen es unerlässlich, diese möglichst direkt auf Basis individueller Datenströme zu
verarbeiten und auszuwerten.

Dies wird jedoch erschwert durch die Dynamik der Daten selbst: Nicht ausschließlich der
aktuelle Messwert, sondern dessen Veränderung über die Zeit definieren die Charakteristiken
der Daten. Im Speziellen ist diese Arbeit fokussiert auf das nutzerbasierte Monitoring und
die Analyse von Anwendungen im Batchsystem des GridKa Daten- und Rechenzentrums:
Diese Anwendungen werden modelliert als dynamische Bäume mit Attributen, welche die
Hierarchie von Prozessen und deren Eigenschaften abbilden. Dieser Anwendungsfall dient
exemplarisch zur Analyse von dynamischen Bäumen mit großem Volumen, dynamischen
Attributen und unterschiedlichen Strukturen.

Bei der Distanzberechnung zwischen statischen Bäumen handelt es sich um ein etabliertes
Forschungsgebiet, welches bereits seit Jahrzehnten vorangetrieben wird. Besonders die
exakte Distanzberechnung zwischen Bäumen ist weiterhin Gegenstand aktueller Forschung
und wird ständig verbessert. Die quadratische Komplexität aktueller Ansätze ermöglicht
jedoch keine effiziente Anwendung auf Datenströmen dynamischer Bäume. Forschungen im
Bereich abschätzender Distanzberechnungen mit linearer Komplexität sind zumeist durch
Anwendungsgebiete wie die Zusammenführung von XML-Dokumentenbeständen motiviert,
und nutzen Randbedingungen der zugrundeliegenden Datenstrukturen aus.

Die Annahmen der Verfahren zur abschätzenden Distanzberechnung sind optimiert für
statische Bäume. Dies betrifft im Besonderen die Behandlung von Attributen: In statischen
Bäumen werden nur Einzelwerte betrachtet, wohingegen in dynamischen Bäumen Zeitreihen
von Attributswerten zu betrachten sind. Zudem sind die Verfahren spezialisiert auf einzelne
Anwendungsfälle und funktionieren daher nur mit Datensätzen, welche spezifische Randbe-
dingungen erfüllen. Bestehende Verfahren für die Abschätzung von Distanzen zwischen
statischen Bäumen sind daher nicht direkt anwendbar für den vorliegenden Sachverhalt
dynamischer Bäume in Datenströmen.

Die vorliegende Arbeit wird deshalb von den folgenden Herausforderungen motiviert:
Die grundlegende Fragestellung ist, welche Einschränkungen für bestehende Verfahren
der Distanzberechnung statischer Bäume nötig sind, um die Anwendung der Verfahren
für dynamische Bäume zu ermöglichen. Diese Arbeit führt daher eine Formalisierung
zur Distanzberechnung für statische und dynamische Bäumen ein, welche implizit die
Randbedingungen für Datenströme sicherstellt. Die Betrachtung der Dynamik von At-
tributen einzelner Baumknoten erfordert die Darstellung komplexer Zusammenhänge. Dies
ist die Motivation für eine Erweiterung der Formalisierung zur spezifischen Betrachtung
der Verteilung von Attributswerten und deren inkrementellem Vergleich. Ferner bietet

v

die Festlegung auf ein spezifisches Kriterium zur Bewertung dynamischer Baumstrukturen
nur wenig Flexibilität. Als solches ist die Einführung einer effizienten Methode zur gle-
ichzeitigen Bestimmung mehrerer Distanzen essentiell für dynamische Bäume mit mehreren
unabhängigen strukturellen Eigenschaften. Um zudem die Anwendbarkeit und Effizienz der
Distanzmessung im Rahmen von Echtzeitanalysen zu ermöglichen, wird die Distanzmessung
einem dichte-basierten Clustering zugrunde gelegt, um eine Anwendung des Clustering,
einer Klassifikation, aber auch der Anomalieerkennung zu demonstrieren.

Die Ergebnisse dieser Arbeit basieren auf einer theoretischen Analyse der eingeführten
Formalisierung von Distanzmessungen für dynamische Bäume. Diese Analysen werden
unterlegt mit empirischen Messungen auf Basis von Monitoring-Daten von Anwendungen
aus dem Batchsystem des GridKa. Hierzu wird mit Hilfe einer Referenzimplementierung
die Skalierbarkeit der einzelnen Komponenten demonstriert und die Qualität der Ergebnisse
mit Hilfe eines Referenzdatensatzes bewertet.

Die Evaluation des vorgeschlagenen Formalismus sowie der darauf aufbauenden Echtzeit-
analysemethoden zeigen die Effizienz und Skalierbarkeit des Verfahrens. Zudem wird gezeigt,
dass die Betrachtung von Attributen und Attributs-Statistiken von besonderer Bedeutung
für die Qualität der Ergebnisse von Analysen dynamischer semistrukturierter Daten ist.
Außerdem zeigt die Kombination von Methoden zur Distanzmessung aus der Literatur und
eigener Ansätze, dass die Qualität der Ergebnisse durch eine unabhängige Kombination
mehrerer Distanzen weiter verbessert werden kann. Insbesondere wird dadurch die Analyse
sich über die Zeit ändernder Daten ermöglicht.

vi

Abstract

The main topic of this thesis is the distance measurement of dynamic, semi-structured data
in streaming environments. The goal is to enable the analysis of dynamic trees during the
lifetime of the objects they describe. Recent studies show the increasing importance of
efficient analyses of data streams defining structured and unstructured data, which are for
example generated by sensors or mobile devices. In specific, due to the volume of such data
and the number of concurrent data streams, it is essential to analyse data from individual
streams directly.

Such an analysis is complicated by the dynamic nature of data: Not only the current
state but also its change over time defines the data as a whole. As an exemplary use case,
this thesis considers a user-centric monitoring and analysis of applications deployed in the
batch system of the GridKa data and computing centre: Such applications can be modelled
as attributed dynamic trees, corresponding to the process hierarchy and their features.
This use case offers the challenge of analysing large-scale dynamic trees, frequent attribute
changes, and multiple structural characteristics.

Distance measurement of static trees is a well-established field of research. Static distance
measures have been researched for decades. Especially precise distance measures between
trees is a focus of current research and progressively refined. The quadratic time and space
complexity make the application on data streams and dynamic trees unfeasible. Research
of approximating distance measures enables linear complexity. Such approximations are
usually focused on specific use cases such as integration of XML documents, exploiting the
constraints of the underlying data structures.

Assumptions used by approximating distance measures are optimised for static trees. This
limits the description of attributes: Static trees can only express individual attribute values,
whereas dynamic trees correspond to time series of values. Additionally, approximating
approaches specialise on specific use cases. As such, they are only applicable for data
meeting specific constraints. Thus, existing approaches are not directly applicable to the
use case of dynamic, attributed trees in data streams.

As a result, this thesis addresses the following three main challenges: Fundamentally, a
set of minimal constraints required to apply existing distance measures onto dynamic trees
must be derived. To address this, this thesis introduces a formalisation for approximating
distance measures on static and dynamic trees. This formalisation implicitly guarantees
constraints for analyses of dynamic trees and streams of tree data. Furthermore, the
change of attributes of individual tree vertices requires a representation of changing values.
Changing attributes are addressed by an extension of the formalisation, representing vertex
attributes as distributions of values, which can be compared incrementally. Additionally,
using a single criterion to rate dynamic structural features offers only a little flexibility.
This motivates an efficient method to derive multiple distances concurrently. In turn, this
allows reflecting multiple independent characteristics of dynamic trees. Finally, application
of distance measures must allow deriving an appropriate classification and outlier detection
for the entities represented by trees. Classification and outlier detection are enabled by
extending a density-based clustering to handle dynamic tree distances as well as deriving

vii

an approximate but monotonic distance measure allowing for a classification at runtime.
The results presented in this thesis are founded on a theoretical analysis of features of

the introduced formalism for distance measurements of dynamic trees. This analysis is
supported by empirical studies using monitoring data collected on applications deployed in
the GridKa batch system. A reference implementation is used to demonstrate the accuracy
and scalability of the approach itself. The feasibility and quality of the approach are derived
from a comparison against manually composed reference data.

The evaluation of the formalisation and implementation show the scalability, efficiency,
and accuracy of the approach. Also, the analysis of attribute-based extensions shows the
improvement for identifying and distinguishing classes of semi-structured data. Furthermore,
the general applicability and robustness of using multiple independent distances measures
are demonstrated. Overall, the evaluation shows that the approach is scalable for stream
analyses, allows to distinguish classes by attributes and structural features, and enables an
analysis at runtime.

viii

Contents

1. Introduction 1
1.1. Main Contributions . 2

1.1.1. Requirements to identify workflows in an overlay batch system . . . 2
1.1.2. Formalisation of distance measures for streaming dynamic trees . . . 2
1.1.3. Integration of attribute data for continuous vertex distances 2
1.1.4. Combination of distinct measures in streaming environments 3
1.1.5. Classification of semi-structured data in real-time 3

1.2. Structure of this Thesis . 3

2. Background 7
2.1. Computing in High Energy Physics . 7

2.1.1. Data Flows . 7
2.1.2. WLCG and Tiers . 8
2.1.3. Computing Model . 9
2.1.4. Virtual Organisations in the WLCG 13

2.2. GridKa Data and Computing Centre . 15
2.2.1. Resources for HEP Batch Workflows 15
2.2.2. Monitoring . 16
2.2.3. Tracking of Batch Job Behaviour . 18

2.3. Complexities in High Energy Physics Batch Systems 20

3. Monitoring of High Energy Physics Batch Jobs 23
3.1. Related Work . 23

3.1.1. Taxonomy to Host-Based Monitoring 23
3.1.2. User-Centric Monitoring . 25
3.1.3. Data Collection in Production Systems 26

3.2. Methodology to User-Centric Monitoring . 28
3.2.1. Towards Modelling of Workflows . 29
3.2.2. Monitoring Workflow Features . 31
3.2.3. User-Centric Monitoring Sensor . 32
3.2.4. Data Recording at GridKa . 34

3.3. Implications for Online Analysis . 35

4. Formalisation of Distances for Dynamic Streaming Trees 39
4.1. Related Work . 39

4.1.1. Tree Edit Distance . 39
4.1.2. Approximating Tree Distances . 40
4.1.3. Summary . 45

4.2. Overview of the Approach . 45
4.3. Preliminaries . 46

4.3.1. Basic Notation . 47

ix

Contents

4.3.2. Dynamic Trees . 48
4.4. Decomposition-Based Tree Embeddings . 49

4.4.1. Vertex Identities . 49
4.4.2. Identity Profiles for Trees . 50
4.4.3. Identities and Identity Profiles in Streaming Environments 51
4.4.4. Embedding Trees by Encoding Vertex Identities 55
4.4.5. Summary . 66

4.5. Tree Distances . 67
4.5.1. Identity Profile Projection . 67
4.5.2. Static Projection Distance . 70
4.5.3. Dynamic Distance . 72
4.5.4. Incremental Tree Distances . 73

4.6. Summary . 75

5. Representation of Dynamic Tree Attributes 77
5.1. Related Work . 77

5.1.1. Attributes in Trees . 77
5.1.2. Time Series Analysis . 79

5.2. Encoding Attributes . 80
5.2.1. Naive Encoding of Attributes . 80
5.2.2. Attribute-Supporting Tree Model . 82
5.2.3. Attribute Identities . 83

5.3. Attributed Tree Distances . 86
5.3.1. Measuring Attribute Values . 86
5.3.2. Incremental Dynamic Distances . 97

5.4. Summary . 99

6. Superposition of Dynamic Tree Features 101
6.1. Related Work . 101
6.2. Encoding Identity Ensembles . 102

6.2.1. Ensemble Encoding . 102
6.2.2. Ensemble-Based projection . 103
6.2.3. Summary . 106

6.3. Ensemble-Based Tree Distances . 106
6.3.1. Distance Aggregation Function . 107
6.3.2. Auxiliary Identities . 107

6.4. Summary . 111

7. Online Analysis of Dynamic Streaming Trees 113
7.1. Related Work . 113

7.1.1. Selection of Algorithm . 114
7.2. Overview of the Approach . 115
7.3. Incremental Clustering . 116

7.3.1. DenGraph . 117
7.3.2. Clustering Dynamic Trees . 118

7.4. Incremental Classification of Dynamic Trees 121
7.4.1. Dynamic Probing with Virtual Nodes 121
7.4.2. Divergence of Distances . 122

x

Contents

7.4.3. Convergence and Anomaly Detection 123
7.4.4. Improvement of Anomaly Detection 124

7.5. Summary . 125

8. Evaluation 129
8.1. Characteristics of Distance Measures . 129

8.1.1. Conditions, Assumptions, and Techniques 130
8.1.2. Approximation Accuracy . 133
8.1.3. Scalability . 137
8.1.4. Sensitivity and Coverage . 138

8.2. Applicability to High Energy Physics Jobs 139
8.2.1. Mapping of Experiment Dashboard Data 139
8.2.2. Optimisation of Clustering . 142
8.2.3. Convergence of Classification . 146
8.2.4. Detecting Anomalies . 147

8.3. Summary . 148

9. Conclusions & Outlook 149
9.1. Future Applicability and Extensions . 150

A. Software Tools and Frameworks 153
A.1. ASSESS . 153
A.2. BPNetMon . 154
A.3. DenGraph . 156
A.4. Tree Generator . 156

B. Configuration and Evaluation Workflows 157
B.1. Batch System Monitoring . 157
B.2. Workflows . 157

C. Additional Plots 177

D. Hardware and setup 179

Bibliography 181

Glossary 197

Acronyms 201

xi

List of Figures

2.1. Overview of the event and data rates of the two-level trigger for the CMS
experiment . 8

2.2. The Worldwide LHC Computing Grid (WLCG) Tier structure [227] 9
2.3. Basic functionality of the virtual overlay batch system paradigm 11
2.4. Distribution of payloads in CMS pilots . 12
2.5. Simplified network diagram of the GridKa data and computing centre . . . 16

3.1. Classification of workflows, jobs, batch jobs, pilots, and payloads 30
3.2. Interaction between monitoring components of BPNetMon 32
3.3. Typical CMS pilot batch job . 36

4.1. Application of tree edit operations . 40
4.2. Node mapping corresponding to Figure 4.1 41
4.3. Overview of selected decomposition methods for tree distance approximation 42
4.4. Two-step procedure to approximate distance measurement for dynamic

streaming trees . 47
4.5. Components of a tree . 48
4.6. A dynamic tree with its sequence of snapshots 48
4.7. Dynamic pq-grams compared to original pq-grams 56
4.8. The diamond-building process applied by dynamic pq-grams 59
4.9. Tree Edit Distance and pq-gram distance 61
4.10. Influence of diamonds for dynamic pq-gram distance 62
4.11. Alphabet size and maximum fanout for HEP use case 66
4.12. Intersection, union, and symmetric difference for two tree collections 68
4.13. Progression of incremental dynamic tree distance 74

5.1. Mapping from process object with attributes to hierarchical data 78
5.2. Mapping of dynamic attributes to trees . 83
5.3. Comparison of a tree with and without specific attribute handling 85
5.4. Effect of local and global identity profile projection operators with regard to

underlying attribute statistics representation 88
5.5. Overview of concept of SplittedStatistics . 90
5.6. Approximated statistics for attribute values 94
5.7. Characteristics of incremental PDF statistics and MultisetStatistics for

distributions with varying overlap and sample count 95
5.8. Influence of attribute weighting and tree size to the relative deviation e for

incremental PDF statistics of calculated distance result for dynamic trees . 97

6.1. Overview of concept of identity ensembles 103
6.2. Overview of nested ensemble encoding . 105
6.3. Identity ensemble that adapts to several use cases 109
6.4. Identity ensemble to deal with micro changes 111

xiii

List of Figures

7.1. Structure of dynamic tree distance measurement framework 116
7.2. Neighbourhood of nodes in density-based clustering 118
7.3. Overview of concept of Cluster Representatives 119
7.4. Dynamic data probing with virtual nodes 122
7.5. Density-based clustering of dynamic trees to support online classification . . 127

8.1. Runtime behaviour of different identity classes for 〈T |M |T ′〉 138
8.2. Comparison of runtime for distance measures 〈T |M |T ′〉 and 〈T |{M,D}|T ′〉139
8.3. Influence on relative distance results of 〈T |M |T ′〉 for insertion and deletion

of vertices . 140
8.4. Influence on relative distance results of 〈T |{M,D}|T ′〉 for deletion of at-

tribute values of vertices . 141
8.5. Convergence of classification versus event progress 146
8.6. Distribution of detected anomalies with regard to event progress 147

C.1. Influence of attribute weighting and tree size to the relative deviation e for
MultisetStatistics of calculated distance result for dynamic trees 177

C.2. Relative deviation e of MultisetStatistics and incremental PDF statistics on
diagonal . 178

C.3. Distribution of durations of CMS payloads 178

xiv

List of Tables

2.1. Example mapping of subgroups of the CMS Virtual Organisation to local
Unix user accounts . 14

3.1. Overview of host-based monitoring approaches 27
3.2. Available process information for user-centric batch job monitoring 34
3.3. Available data flow information for user-centric batch job monitoring per

measuring interval . 35

7.1. Dynamic tree distance divergence at runtime 125

8.1. Statistics on present dataset . 131
8.2. Correlation of distance results for different identity classes and distance

functions . 135
8.2. Correlation of distance results (continued) 136
8.3. Supplemented monitoring data for payloads after matching Experiment

Dashboard data . 143
8.4. Selected campaigns from High Energy Physics for clustering 144
8.5. Total weighted F-measure for clustering based on 〈T1|{D,M}|T2〉 145
8.6. Total weighted F-measure for clustering based on 〈T1|{D,M,Λ}|T2〉 145

xv

List of Algorithms

1. Recursive infinite-length identity encoding 64

2. Incremental assignment of data to dynamic bins 91
3. Incremental merging of dynamic bins . 92
4. Attribute-based distance based on SplittedStatistics 98

5. Identification of vertices for Q and V dimension 110

6. Incremental creation of Cluster Representatives 121
7. Improvement of divergence recognition for anomaly detection 126

xvii

1. Introduction

Increasing access to and dependence on streaming data drives the growing interest in
computationally efficient and scalable analysis tools and algorithms. A major difference of
streaming data compared to static data is the dynamic characteristics. As such, incremental
algorithms and data structures are required to enable online analysis on dynamic streaming
data. In this thesis, we propose and demonstrate an incremental approach to compute
distances on dynamic trees in a streaming environment.

The context of this thesis is the monitoring of network traffic of High Energy Physics
batch jobs in the GridKa data and computing centre at Steinbuch Centre for Computing.
Each batch job is composed of a hierarchy of multiple processes: starting and finishing
processes cause the hierarchy of the batch job to grow and shrink over time. Some of
these processes are providers for network traffic, which can be modelled as a time series of
network traffic rates. Therefore, each batch job can be modelled as a dynamic tree with
network traffic statistics represented by dynamic attributes.

With this approach of modelling batch jobs as dynamic trees, the monitoring of batch
jobs at GridKa data and computing centre with its roughly 20 000 batch job slots produces
thousands of concurrent streams of dynamic tree data. Based on this use case, this thesis
aims for an online clustering and an outlier detection for batch jobs. The application of
this work is the detection and limitation of negative impacts on the whole GridKa system
itself from misbehaving batch jobs.

Both online clustering and outlier detection require an efficient similarity measure on
dynamic trees. The analysis of differences and similarities for static tree-structured data
has been an ongoing research topic for decades. Especially comparing two given trees
to determine their similarity is important in a variety of contexts, including language
processing, document similarity, or quantifying neuronal morphology. A common approach
to measuring tree similarity is to determine the minimal cost of edit operations, that is
vertex insertion, deletion, or renaming, to transform one tree into the other. This approach
is NP -complete for unordered trees and computable in polynomial time for ordered trees.
However, exact algorithms of this Tree Edit Distance measurements are not scalable to
modern problem sizes.

To enable similarity measurements for static trees at a scale of thousands to millions
of nodes, a range of approximation algorithms have been proposed in the past. The
computational complexity of these algorithms ranges down to near-linear runtime. Such
algorithms usually summarise a tree or apply tree sketching to derive a similarity measure,
i.e. use a limited amount of space while still retaining relevant properties of a tree. While
reducing complexity, most of these algorithms still assume static properties of trees. This
restricts their applicability for modern problems: By design, most of these algorithms are
not suitable for dynamic trees. As a result, they cannot be used for real-time data analysis,
that is when streaming dynamic tree data.

Based on these challenges, this thesis is dedicated to the online analysis of dynamic trees
in streaming scenarios. Moreover, the proposed methods are aimed at being scalable and
efficient to tackle thousands of concurrent streams. We propose a combination of multiple

1

1. Introduction

approaches including a composite identity profile and a similarity function for dynamic
trees as well as sets of dynamic trees. To ensure the feasibility for streaming environments,
we propose and utilise a formal framework in which similarity and distances are implicitly
suitable for incremental stream processing. Thus, for each of our proposed similarity and
distance measures, an incremental version is available to enable online processing. Results
are evaluated on monitoring data of HEP batch jobs that were recorded at GridKa. However,
the approach applies to any static or dynamic tree-structured data.

1.1. Main Contributions

This thesis necessarily covers a broad range of topics to enable online clustering and
outlier detection for dynamic trees. However, the central question is how to efficiently
measure and work with similarities and distances between attributed dynamic trees in
streaming environments. While each contribution is applicable on its own, the assessment
and demonstration of our technique require a complete monitoring, measurement, and
analysis workflow. As such, this thesis addresses the following research sub-topics:

1.1.1. Requirements to identify workflows in an overlay batch system

Collaborations using the WLCG for data analysis have widely adopted the so-called pilot
paradigm: placeholder jobs, the pilots, acquire processing resources to provide them to
analysis applications. This creates an overlay batch system, isolating jobs from classical
monitoring as a side effect.

Extracting information on jobs for sites requires an identification of jobs inside pilots.
This necessitates a model of workflows and jobs and their relation to pilots. From this,
requirements in monitoring data suitable to identify jobs can be derived.

1.1.2. Formalisation of distance measures for streaming dynamic trees

The hierarchical structure of pilots lends itself to the monitoring of pilots via their process
trees. This necessitates an analysis of dynamic tree data. Ideally, tree distances are
employed to allow comparing jobs for similarities and differences. Traditional tree distances
for static trees are not suitable for the complexity, dynamics, and detail of our collected
data.

A class of approximate tree distances based on decomposition offers appropriate complexity
and detail. However, existing approaches rely on strict assumptions not met by dynamic
trees, in which topology and features may vary over time. As such, a generalisation of
decomposition methods suitable for dynamic trees must be created. This decomposition
method must provide a basis to formulate specific distances to detect similarities and
differences in our highly complex data.

1.1.3. Integration of attribute data for continuous vertex distances

A primary distinction of jobs in High Energy Physics (HEP) is network traffic of processes,
separating data processing from simulation. With the view of jobs as dynamic trees, traffic
can be expressed as attributes on each vertex. Such attributes are more complex than just
the presence of vertices, extending the simple consideration of cardinality to continuous,

2

1.2. Structure of this Thesis

dynamic values. To the best our knowledge, there has been no dedicated research to express
such attributes in dynamic trees.

Scalability requires an integration of vertex attributes into our framework of tree de-
composition. This necessitates a simplification of values while preserving separability.
Furthermore, the projection of vertex existence to a binary range must be generalised to
attribute similarities in a continuous range.

1.1.4. Combination of distinct measures in streaming environments

As our data is collected in a real use case scenario, background noise is to be expected.
Especially with highly structured data, not all observed relations originate from the logical
features of the underlying jobs. Using complex relations to separate distinct features may
not allow the suppression of noise.

Instead of a single multivariate distance measure, individual univariate measures have
more flexibility to avoid noise. As such, an approach to combine multiple distinct measures
in parallel is desirable. However, operation in a streaming environment requires finding
constraints to preserve the required complexity of the approach.

1.1.5. Classification of semi-structured data in real-time

The practical application of our monitoring is the identification of groups of similar jobs.
Such an identification has the goal of exposing information on jobs and identifying outliers
for anomaly detection. To efficiently integrate with distributed, stream-based monitoring,
the results of measurements should be sufficient.

The availability of distance measures lends itself to using distance-based clustering.
However, clustering must be able to deal with dynamic data due to the online analysis.
As there is a high number of concurrent distance measures, exploiting the incremental
measurements to exclude clusters early is desirable.

1.2. Structure of this Thesis

The remainder of this thesis is organised as follows:
In Chapter 2 on page 7, we establish the use case providing the motivation for our

work, namely the continuous monitoring of High Energy Physics batch jobs. First, we
introduce the field of HEP and the characteristics of computing in the Worldwide LHC
Computing Grid. Second, we discuss the motivation for monitoring of HEP batch jobs,
complementing existing monitoring solutions. In the following, we introduce the GridKa
data and computing centre, one of the biggest data and computing centres in the WLCG,
where we have deployed a monitoring sensor for our research. Finally, we motivate the
derivation of batch job behaviour by monitoring HEP batch jobs and summarise the
challenges that arise in the context of monitoring in a production batch system.

Chapter 3 on page 23 is dedicated to the user-centric monitoring of jobs in a HEP batch
system. We start by evaluating existing monitoring solutions for their applicability to
requirements from HEP batch jobs. Following that, we develop a model of pilots, payloads,
jobs and workflows, defining the information required to separate jobs via monitoring. This,
in turn, is the basis for a custom monitoring tool, which defines the type and granularity of
monitoring data – namely, attributed dynamic trees in streaming environments. Finally,

3

1. Introduction

we explore the implications and constraints of this monitoring data on following analyses.
Some of the materials presented in this Chapter were first formulated in

• Eileen Kuehn et al. “Monitoring Data Streams at Process Level in Scientific Big Data
Batch Clusters.” In: BDC (2014), pp. 90–95,

• Eileen Kuehn et al. “Analyzing data flows of WLCG jobs at batch job level”. In:
Journal of Physics: Conference Series 608.1 (May 2015), p. 012017, and

• Eileen Kuehn et al. “Active Job Monitoring in Pilots”. In: Journal of Physics:
Conference Series 664.5 (Dec. 2015), p. 052019.

The analysis of dynamic tree data streams from user-centric monitoring requires an
appropriate distance measure to enable the clustering of jobs. In Chapter 4 on page 39
we, therefore, introduce available approaches to measure distances between trees. This
analysis identifies tree decomposition methods as the most appropriate field of research
to derive efficient distance measures for dynamic trees. In the following, we introduce a
decomposition-based approach that builds on the concept of vertex identities. We focus
on scalability and incremental approaches to enable processing for both static as well as
dynamic trees. We conclude the Chapter with incremental distance measures building
on tree decomposition. Some of the ideas and distance measures for dynamic trees were
published in

• Eileen Kuehn and Achim Streit. “Online Distance Measurement for Tree Data Event
Streams.” In: DASC/PiCom/DataCom/CyberSciTech (2016), pp. 681–688.

In the following two Chapters we extend the proposed framework of distance measures
for dynamic trees. In Chapter 5 on page 77, we extend the model of a dynamic tree for
attributes and discuss implications to encoding and distance calculation. Two strategies to
encode attributes for distance calculation are introduced and compared.

The second extension to the proposed framework is discussed in Chapter 6 on page 101.
We examine the abstraction of tree encoding to ensemble-based methods. Furthermore, we
illustrate the possibilities of ensembles by introducing two ensemble encoding strategies
targeting the handling of noise as well as the robustness of distance measures.

In Chapter 7 on page 113, the application of our distance framework for an online
analysis of our monitoring data is discussed. The concept of an online analysis to support
a clustering to enable an outlier detection for dynamic trees was originally published in

• Eileen Kuehn. “Clustering Evolving Batch System Jobs for Online Anomaly Detection”.
In: ICDMW ’15: Proceedings of the 2015 IEEE International Conference on Data
Mining Workshop (ICDMW). IEEE Computer Society, Nov. 2015, pp. 1534–1535.

We further detail this concept by considering incremental distance measurements of many
concurrent streams of dynamic trees for clustering and classification of data. In specific, we
highlight how our approach allows the adoption of density-based clustering while staying
suitable for online analysis. Building on this, we present a robust approximation of our
incremental dynamic tree distance that allows classifying dynamic trees as outliers after
only a fraction of events. Some of the ideas in this Chapter were first published in

• E Kuehn et al. “A scalable architecture for online anomaly detection of WLCG batch
jobs”. In: Journal of Physics: Conference Series 762.1 (Nov. 2016), p. 012002.

4

1.2. Structure of this Thesis

Finally, we evaluate both our approach itself and the means for online analysis in
Chapter 8 on page 129. First, the characteristics of our approach are analysed with
controlled conditions. We demonstrate that our approach is a suitable approximation
of tree edit distances while providing scalability suitable for stream and online analysis.
Furthermore, we show that additional features such as attributes can easily be covered.
Finally, an exemplary analysis of HEP workflows shows the applicability of our work for
realistic use cases. The premise of being able to identify jobs based on attributed dynamic
trees representing process is validated. Additionally, the benefits of our approach, namely
the effective reduction of complexity and early outlier detection, are shown.

After discussing and evaluating the proposed approach to the online analysis of dynamic
tree distances, we arrive at final conclusions. In Chapter 9 on page 149, we summarise this
thesis, confront its findings with the stated research objectives and draw lines of future
research.

5

2. Background

Computing in HEP, especially the unprecedented amount of scientific data requiring global
analysis efforts pose major challenges for providers of processing, network, and storage
resources. Some of these challenges are rather unique to the considered use case of HEP
while others are applicable to big data management and analysis in general. In the following,
an overview of relevant requirements and general conditions regarding computing in HEP
is given. Afterwards, the GridKa data and computing centre as one important resource
provider for HEP is introduced. In particular, the current state of handling challenges
posed by HEP is discussed. The Chapter concludes with a summary of challenges imposed
by highly complex systems that builds the basis for the framework of this thesis.

2.1. Computing in High Energy Physics

HEP (also known as Particle Physics) is a branch of physics investigating the smallest
particles and the fundamental forces governing their behaviour. Notably, it operates at
both the energy and intensity frontier of physics research: High energy experiments allow
for the discovery of new particles and phenomena, while high intensity experiments provide
insights even for rare processes and particles. As a result, HEP research combines both
high precision and high volume of data.

The field of HEP is largely driven by different particle collider experiments. Some
prominent facilities are the Large Hadron Collider (LHC) at CERN [54], the upcoming
SuperKEKB at the High Energy Accelerator Research Organization (KEK) [108] as well as
possible future colliders [1, 52, 95, 219]. The most prominent, recent advancement of the
field was the discovery of the Higgs boson at LHC [63, 64].

Research in HEP is based on collaborated efforts of multiple experiments and communities.
These worldwide collaboration efforts rely on unique computing resources to enable their
research: First, modern particle detectors provide data at enormous rates, producing data
volumes unprecedented in research. Second, the unique challenges of storing and processing
this data require custom computing infrastructures and software. Third, the collaborative
analysis of this data requires an equally distributed infrastructure for thousands of scientists
worldwide.

2.1.1. Data Flows

The experiments at the LHC accelerator generate enormous amounts of data. The data
rates of modern particle detectors are considerably higher than the rate at which one can
write data to mass storage. At the LHC, the rate is dictated by proton beams crossing
each other at a frequency of 40MHz. Each crossing results in a physics event recorded
by the detector, with an approximate raw data size of 1MB up to 1.5MB. For all four
major experiments the data flow is estimated to be about 25GB/s. These figures massively
exceed the maximum feasible rate for data acquisition as well as storage and require a data
reduction by a factor of 10 000. [61, 218]

7

2. Background

Level 1 Trigger High-Level Trigger

400MHz 1000kHz 10kHz

Recording
400TB/s 1000GB/s 10GB/s

Event Rate

Data Rate

Figure 2.1.: Overview of the resulting event and data rates of the two-level trigger for the
CMS experiment. The Level 1 hardware trigger reduces the event rate from the
detector of approximately 40MHz to 100 kHz. A software trigger, the so-called
High-Level Trigger produces a final acceptance rate of 1 kHz before the data is
recorded at CERN with a data rate of approximately 1GB/s.

Each of the four experiments thus applies a real-time filtering and selection of events
with the so-called triggers. Triggers inspect selective information from detector subsystems,
evaluating whether events are suitable for offline physics analysis and should be recorded.
For example the Compact Muon Solenoid (CMS) experiment uses a two-level approach: a
trigger implemented in custom-build hardware, the so-called Level 1 trigger and a software
trigger running in a dedicated processing farm, the High-Level Trigger (HLT). Figure 2.1
visualises this two-level approach and shows the data flows between the Level 1 trigger and
HLT. The Level 1 trigger uses custom electronic systems to perform event selection based
on events from raw hardware buffers of the detector and reduces the data rate by a factor
of 1000 to less than 100 kHz. The HLT runs on a computing farm. It performs partial
physics event reconstruction and achieves an output rate of 1 kHz [175]. The remaining
events are recorded to servers at CERN with a data rate of approximately 1050MB/s [53].

2.1.2. WLCG and Tiers

Analysing this volume of data requires massive amounts of computing resources. These
include processing, storage, and network resources as well as human resources for operation
and support. Providing all required resources at one site is unfeasible for a variety of reasons,
from financial to organisational. Therefore, a global collaboration, the WLCG [202], was
formed to set up and operate a geographically distributed infrastructure for simulation,
processing, and analysis of the data of the LHC experiments.

As initially proposed by the Models of Networked Analysis at Regional Centres for
LHC Experiments (MONARC) project [42], the WLCG defines a model for a hierarchical
organisation of resource providers. The model classifies the different resource providers into
so-called Tiers. Formally, three Tiers are defined in the hierarchy: a) Tier 0, b) Tier 1, and
c) Tier 2. Figure 2.2 on the next page shows the different Tiers and its underlying hierarchy.
This hierarchy specifies how data is distributed between the different sites. Consequently,
data flows were defined to strictly follow the Tier hierarchy: The data from the LHC
detectors enters the WLCG via the Tier 0. From there, the data is replicated to Tier 1
sites. In turn, Tier 1 sites provide data to Tier 2 sites as required.

As of 2017, the WLCG is composed of more than 170 computing centres in 42 coun-
tries [171]. Each of these sites provides resources, namely CPU, network, and storage, to
the LHC collaborations. Resource provisioning with this number of independent sites relies
on high-speed network infrastructure [42, 43]. Hence, the WLCG links sites in national and
international grid infrastructures. These resources are highly heterogeneous. To ensure the

8

2.1. Computing in High Energy Physics

CERN

GridKa

other

Tier 0 Tier 1 Tier 2

Figure 2.2.: Visualisation of WLCG Tier structure [227]. The Tiers are organised hierarchi-
cally, reflecting the tasks and quality measures assigned to each specific Tier.
The data from the LHC detectors, such as the CMS detector [189], is provided
by Tier 0 sites to Tier 1 sites via dedicated 100Gbit/s links. Tier 1 sites keep
parts of the data and following serve the different Tier 2 sites via national
research and education networks. The computing centres that are assigned to
a specific Tier need to fulfil the given requirements. In fact, there are more
than 170 computing centres that compose the WLCG.

interoperability and provide access to these resources, a variety of middleware technologies
and protocols is used [82, 87, 157].

The performance of network connections between sites has proven to allow for a more
flexible data access than the initial, strictly hierarchical design. Following this, data access
and processing has been adapted to utilise all available resources rather than adhering to
the strict roles of the MONARC model. In particular, all LHC collaborations have adopted
remote data access between sites when necessary [43]. Thus, the hierarchical data flows are
no longer the defining feature for Tier affiliation. Instead, Tier 1 sites are defined by their
long-term data archival and guarantees for quality of service.

2.1.3. Computing Model

Each of the LHC collaborations implements a computing model, defining the goals and
policies to use distributed computing and storage resources of the WLCG [42, 43]. Sites
provide storage and processing resources only at an abstract level: Computing elements (CEs)
encapsulate batch processing farms, offering several thousand processing cores. Storage
elements (SEs) represent file server pools with various underlying storage technologies,
providing petabytes of storage. Each collaboration uses these elements differently to
implement its computing model.

The computing models define how resources in the WLCG are aggregated, partitioned,
and utilised for data storage and processing. While policies, protocols, and technologies differ
between collaborations, the general approaches and goals are comparable. For this work,

9

2. Background

an abstract model that describes the computing models of the major LHC collaborations is
used. Since the use case is on monitoring HEP batch jobs, the abstract model focuses on
workflows involving batch processing.

High Energy Physics Workflows

Analysis efforts of HEP collaborations require the processing of large datasets, each consisting
of millions of physics events (compare Section 2.1.2 on page 8). Therefore, analysis efforts are
divided into workflows which gradually process data in the WLCG. In turn, the workflows
rely on trivial parallelisation, exploiting the statistical independence of each physics event.
Thus, workflows usually consist of several thousand jobs, each working on a separate subset
of data. Each job of a workflow is the same regarding algorithms and implementation,
differing only in its values but not in its type of input.

The WLCG allows the concurrent, massively parallel processing of many workflows at
once. Collaborations continually submit new workflows over long time frames to contribute
to their overall processing and analysis effort. This means that sites are steadily processing
many jobs of different workflows. Each job of a workflow is processed within a bounded
time frame, for example 2.66 h on average for CMS. However, this implies a considerably
larger amount of total computing time for the workflow as a whole due to parallelism in
data processing [33]. The efficient processing of workflows thus requires high throughput of
many jobs at once.

This processing model poses considerable technological and organisational challenges
for collaborations. First, thousands of jobs and workflows of differing analyses must be
coordinated and managed over a long time frame in the heterogeneous setup of the WLCG.
Second, monitoring of failure and provenance are paramount to ensure the correct execution
of all workflows and their repeatability [116]. Finally, workflows have implicit dependencies
on each other, some of which are cyclic and require iterative resolution. Thus, workflows in
HEP are highly complex tasks requiring dedicated effort.

In HEP three categories of workflows can be distinguished: a) reconstruction workflows,
b) simulation workflows, and c) user workflows. Automated, coordinated workflows re-
construct raw data from the LHC detectors to high-level physics object representations.
Similarly automated workflows perform simulations of physics events based on current
particle physics theory. The collaboration coordinates both types of workflows and makes
the results available to all members of the collaboration. These results form the input to
workflows of individual users and workgroups. These workflows are designed for individual
analyses, being neither regulated nor coordinated.

Each of these workflow types has different requirements and characteristics. Simulation
workflows mainly rely on processing power, whereas reconstruction workflows rely on input
data from storage. Both are similarly structured and produce a high volume of data, at
the scale of many TB. In contrast, user workflows are not formalised; instead they are
customised to the needs of individual analyses. Such workflows span a wide spectrum from
processing to input-dominated workflows, and process data at the scale of multiple GB to
some TB.

Virtual Overlay Batch Systems

Today, batch jobs of workflows are not directly submitted to CEs at sites. Instead, virtual
overlay batch systems are created using the pilot batch job paradigm [168, 198]. Pilot batch

10

2.1. Computing in High Energy Physics

HEP Batch System

Pilot

...

Pilot

Payload Payload ...

Collaboration

Pilot Pilot Pilot Pilot Pilot ...

Local Batch Queue

Collaboration

...Payload Payload

Remote Batch Queue

Collaboration

Pilot Pilot Pilot Pilot

Pilot

Payload Payload ...

Pilot

...

Figure 2.3.: Visualisation of the basic functionality of the virtual overlay batch system
paradigm. Pilots are submitted from different collaborations to a batch system.
When a pilot starts execution, it connects to the remote batch queue of its
collaboration. Payloads from the remote batch queue are sent to the pilot for
processing. This allows collaboration-driven scheduling of jobs.

jobs, following called pilots for short, are special placeholder batch jobs submitted by each
collaboration. Instead of performing work directly, once a pilot starts it connects to a
global batch job scheduler of the collaboration. The actual batch jobs, so-called payloads,
are pushed from the global batch job scheduler to the pilots. The payload then runs in
the scope of the pilot by utilising the resources acquired by the pilot. This principle is
visualised in Figure 2.3.

On the one hand, collaborations have adopted the pilot batch job paradigm due to
its advantages for scheduling and partitioning of resources. Using pilots, collaborations
can manage and coordinate resources at multiple sites simultaneously. Users benefit
from late-binding features, with direct submission to already acquired resources reducing
latencies. On the other hand, sites face less complexity as they do not have to enforce
collaboration-internal policies and only a few, technically skilled persons handle batch job
submission.

The downside of pilots is an additional layer of encapsulation around payloads. During its
lifetime a single pilot can run multiple payloads, potentially even concurrently. Figure 2.4 on
the following page shows the distribution of payloads within pilots for the CMS collaboration.
With a mean count of 4.82 for payloads and a long tail of the distribution, a pilot must
practically always be treated as an arbitrary superposition of payloads. This superposition
and encapsulation makes it impossible for sites to monitor single batch jobs, the actual
payloads, and subsequently pinpoint causes for errors. Furthermore, the late-binding makes
it impossible to optimise batch job scheduling by sites, such as moving simulation workflows
to worker nodes with superior processing capacity.

11

2. Background

10

1000

0 100 200 300 400

Number of Payloads

C
ou

nt

Figure 2.4.: Distribution of payloads in CMS pilots. Each pilot executes an arbitrary
number of payloads during its lifetime. Measurements show up to 435 payloads
in a single pilot. With an average payload count of 4.82, a CMS pilot can
practically always be seen as a superposition of several payloads.

Data Federations

Tentative workflows using remote data access have been shown to improve usability and
efficiency of collaborations’ computing models [12]. Following the success during the first
data taking period of the LHC, this approach was recently adopted as a general strategy.
As a result, the concept of data federations was introduced into the HEP computing
models. [43]

Data federations provide wide-area access to data via a global namespace. This allows
a job running anywhere to request data from a local service. If the data is not available
locally, the services can transparently access the data on a remote storage system hosting
it. [31, 44, 46, 92]

Transparent file access through data federations notably improves usability and efficiency
of workflows [43]. On the one hand, this mechanism offers a fallback for failed file accesses.
For example, a job may avert failure if it cannot open single files of a large dataset such as
during scheduled or unscheduled maintenance of an on-site storage system. Instead, the
fallback mechanism can transparently provide remote access to the dataset. On the other
hand, data federations enable integration of additional resource providers, such as diskless
computing centres or opportunistic resources lacking any on-site storage.

Opportunistic Resources

Within this thesis, we use the term opportunistic resources to refer to computing resources,
which are not permanently provided by WLCG sites. Instead, opportunistic resources are
dynamically acquired to handle shortages and improve overall efficiency. Bird et al. [43]
specifically point out that opportunistic resources are important for the current computing

12

2.1. Computing in High Energy Physics

models as upcoming HEP computing and storage requirements cannot be met without
external contributions.

Multiple LHC collaborations have started to adopt opportunistic processing resources,
such as public and commercial clouds [79, 197], High Performance Computing (HPC)
resources [84], or even desktop computing pools [194]. Since these resources are outside of
the WLCG infrastructure, their viability relies on transparently interacting with existing
infrastructure. Of particular importance is the transparent file access via data federations.
Lately, there is an increased use of opportunistic resources to complement existing resources
of the WLCG. Especially CPU-intensive but low I/O workflows with little demand for WLCG
resources can be outsourced to external resource providers. This utilisation of opportunistic
resources has been modelled and showcased through several cloud use cases [110, 228]. In
turn, this means, I/O-intensive workflows increasingly exploit WLCG resources.

Network as a Resource

In multi-dimensional environments especially the network is a critical resource. This is
especially true when recalling the current mesh-like data access as well as the utilisation of
storage federations within the WLCG. As the network is considered an invaluable resource in
HEP that enables cost optimisation between networking, storage, and processing [43], special
care needs to be taken for network monitoring. In the future, the network will be exploited
even more by the different collaborations. One reason is the anticipated increase in data
rate that is expected for all four major experiments. Another reason is the aforementioned
importance due to cost optimisation by exploiting storage federations. Furthermore the
envisaged utilisation of opportunistic resources is important to be considered. On the one
hand, usage of opportunistic resources for workflows requiring little I/O will impact the mix
of concurrent workflows on the single worker nodes. Thus, network congestion workflows
will gain importance. Furthermore, a fair distribution of network resources between the
different collaborations should be ensured and guaranteed by the different sites of the
WLCG. Consequently, a network monitoring on collaboration or user-level is required.
However, the network as a resource is not yet considered part of an service level agreement
(SLA).

2.1.4. Virtual Organisations in the WLCG

Given the number of resource providers in the WLCG, coordinating resource sharing for the
common purpose to analyse data produced by the LHC is not trivial. Resource providers
grant access to different resources, such as CPU, storage, and network. These resources are
subject to local policies ensuring SLAs. Resource consumers have their internal policies to
aggregate and share resources from multiple resource providers. Both resource providers
and consumers want to verify that policies are applied correctly.

To implement authentication, authorisation, and accounting locally for the number of
individual users and resources at the scale of the WLCG is not feasible. Thus, the WLCG
uses the concept of so-called Virtual Organisations (VOs) to ensure scalability and enforce
policies for shared resources.

A VO is an abstract entity that groups users, institutions, and resources in the same
administrative domain [90]. A VO may also include automated services, acting on behalf of
the VO. Based on policies given by VOs and agreements with resource providers, trust is
ensured for authorisation. Specifically, resource providers trust each VO to manage its users

13

2. Background

Table 2.1.: Example mapping of subgroups of the CMS Virtual Organisation (VO) to local
Unix user accounts. As an example for CMS, one can see that each VO can
form a complex hierarchical structure with groups and subgroups to distinguish
between user privileges. For example, the subgroup Software Grid Manager has
additional privileges that allows a user to also manage software installations on
provided resources.

Name Description Group ID User ID

cms CMS 5600 14 000–14 199
cmssgm Software Grid Manager 5600 14 000
cmsprd Production 5600 14 199

pcms CMS Pilots 5606 14 900–14 998
dcms German CMS 5601 32 100–32 298
cmsmcp Monte Carlo Production 5603 14 800–14 898

and enforce authorisation. This trust model allows services to authenticate, authorise, and
perform accounting at the granularity of VOs. Each VO treats its affiliated users uniformly.

VOs may assign specific roles to users, creating fine-grained sub-organisations. However,
these are de facto reserved for organisational purposes: For example, roles are assigned to
grant additional permissions for superusers or access to resources reserved for particular
nationalities.

Within the WLCG, the LHC collaborations are a prime example of VOs representing
their members. This membership in a VO enables users to access resources of the WLCG.
For this, authorisation and authentication credentials provided by the VO are evaluated by
the resource providers. As a result, resource providers may grant individual users access
to particular sets of resources. This effectively means a transformation of VO-specific
credentials to local ones, such as user identities in a service.

User Mapping and Pool Accounts

Many services in the WLCG rely on resource providers that implement a user management.
For example, services analysed in the scope of this thesis are regular programs running on a
Unix operating system. The execution on such an operating system requires transforming
a user identity at VO level to a single local user account.

Treating users based on VOs implies that service providers act oblivious to individual
identities. The full identity of a user, such as its name and institution, are only used to
authenticate the user. Authorisation uses VO roles to associate users to different groups; in
turn, these groups are mapped to local user accounts.

For groups representing automated services, all identities are usually mapped to a single
local user account. Groups of real users cannot map to the same user since this would grant
access to personal authentication credentials of all VO members. Instead, such groups are
mapped to an array of accounts, called pool accounts.

Pool accounts are a middle ground between abstraction and simplicity for service providers,
versus security and protection for users. Mapping to pool accounts is dynamic: The next
available account from the account pool is assigned to a new identity whereas unused

14

2.2. GridKa Data and Computing Centre

accounts are returned to the pool for further assignment. Table 2.1 on the preceding page
gives an overview of pre-defined mapping of subgroups of the CMS VO to local Unix user
accounts.

By using pool accounts, the individual identity of users is effectively protected from the
services. At any moment, each pool account represents a particular user. However, over a
period, each account may represent every possible user.

2.2. GridKa Data and Computing Centre

The GridKa data and computing centre is one of the thirteen WLCG Tier 1 computing
centres. It provides storage and archival services for HEP data as well as computing
infrastructure for large-scale reprocessing and simulation. GridKa supports all four major
CERN LHC collaborations: A Large Ion Collider Experiment (ALICE) [196], A Toroidal
LHC Apparatus (ATLAS) [62], CMS [172], and Large Hadron Collider beauty (LHCb) [220].
It also provides computing capabilities for several non-LHC HEP experiments, such as
BELLE II [50], BABAR [161], CDF [36], and Compass [65].

The GridKa is the initial motivation and provides a use case for this thesis. As such, this
Section presents an overview of the workflows and resources at GridKa. Unless otherwise
cited, information is based on statements from Andreas Petzold, Manager of the GridKa
data and computing centre (personal communication, Jan. 9, 2015), Christopher Jung,
Representative of the ALICE Collaboration at GridKa (personal communication, Jan. 26,
2016), and Manuel Giffels, Computing and Development Team Leader of the KIT CMS
group (personal communication, Feb. 27, 2017).

2.2.1. Resources for HEP Batch Workflows

As a Tier 1, GridKa provides a considerable number of resources for HEP workflows. To
support multiple VOs, many of these resources need to be compartmentalised to implement
policies and protocols specific to each individual VO. In contrast, the resources provided to
several VOs at once are operated without relying on details of the respective workflows.

To actually process the workflows, the most important shared resource for the different
VOs is the batch processing. These batch processing resources operated by GridKa appear
from the outside as a single pool of resources. Users and VOs submit their workflows to this
pool via one of several CEs. Redundant CEs are required for fault tolerance and scalability
to handle the number of workflows that are continuously submitted for processing.

As per status beginning of 2017, the GridKa operates around 850 worker nodes in its
batch cluster. Each worker node provides up to 24 job slots, the maximum number of
concurrent batch jobs per node. In total, there are roughly 20 000 job slots, processing
up to 2.5 million batch jobs each month [105]. Since the last quarter of 2016, GridKa is
in a six month transition phase switching its batch system from Univa® Grid Engine®

(UGE) [69] to HTCondor [2].
Batch jobs read input data over network, as worker nodes only provide volatile, local

storage. Connection from worker nodes to local SEs, external storage federations, and other
sources is realised by a hierarchical network infrastructure. A simplified overview of the
network schema is given in Figure 2.5 on the following page. Intra-rack connection relies
on 1Gbit/s data transfer rates. Inter-rack connection as well as connection to local SEs is
based on 10Gbit/s data transfer rates. In addition there are dedicated links to Tier 0 with
data transfer rates of up to 100Gbit/s.

15

2. Background

GridKa Data and Computing Centre

Rack

File Server

File Server

..
.

1
0

<G
B

/s

Rack

Worker Node

Worker Node

Worker Node

..
.

1
0

<G
B

/s

Rack

Worker Node

Worker Node

Worker Node

..
.

1
<G

B
/s

Rack

File Server

File Server

..
.

1
0

<G
B

/s

100<GB/s

80<GB/s

Figure 2.5.: Simplified network diagram of the GridKa data and computing centre. Worker
nodes within a rack rely on 1Gbit/s data transfer rates whereas inter rack
communication and communication to file servers allows for 10Gbit/s up to
80Gbit/s. The GridKa also provides dedicated links with up to 100Gbit/s,
for example, to Tier 0.

The storage available at GridKa has a volume of several PB spanning dozens of file
servers. The provided file servers are partitioned into separate SEs, one per VO. At the
end of 2016, the pledged storage volume was 5875PB for ATLAS, 5250PB for ALICE,
3300PB for CMS, and 2500PB for LHCb [170]. This storage is made available via multiple
storage and data access protocols to satisfy the needs of each VO: The SEs of CMS, ATLAS,
and LHCb use the dCache storage middleware [91] and provide additional Application
Programming Interfaces (APIs) using the XRootD software framework [34]. In contrast,
the ALICE SE is purely using the XRootD data access protocol. In addition to the native
protocols of dCache and XRootD, VOs also rely on other protocols, such as GridFTP [99],
an extension of the File Transfer Protocol (FTP) for data grid projects, or Storage Resource
Management (SRM) [203].

2.2.2. Monitoring

This wide range of technologies and infrastructure components makes resource monitoring a
complex task. To ensure the quality of service associated with a Tier 1, resource monitoring
at GridKa operates at different layers: First, infrastructure monitoring ensures the oper-
ability of hardware. Second, service monitoring targets the availability and consistency of
provided resources. Finally, VO monitoring validates the fitness to satisfy the requirements
of users. As a result, GridKa operates and uses a variety of tools and services for monitoring.

Local Monitoring Frameworks

A number of frameworks and tools are in use at GridKa to collect, visualise, and analyse
monitoring data. This variety reflects different use cases and scopes for monitoring. While

16

2.2. GridKa Data and Computing Centre

there is some overlap in the collected data, each tool serves a different purpose.
Infrastructure monitoring is handled by Cacti® [217] and Ganglia [160], focusing on

network and hosts, respectively. These frameworks rely on sensors that continuously collect
data of fundamental performance statistics. This includes CPU and memory usage for each
host as well as traffic and volume for network interfaces. The collected data is used to
manually monitor the state of infrastructure, and identify causes for misbehaviour.

Monitoring of services and their status is handled by Icinga [180]. In addition to passive
sensors, its data also comes from active probes which replicate interactions with services.
Icinga is an active monitoring system, which is capable of limited analysis of collected
data. This serves for automatic notifications of suspected misbehaviour. Icinga is a key
component to ensure service availability, acting as an early warning system and alerting
on-call duty for severe issues.

In addition, many services internally collect status information. This information can be
accessed manually to verify suspected issues and inefficiencies. To simplify the exploration
and correlation of such data, key features are stored in databases. For example, GridKa
collects performance characteristics of each batch job in its batch system. This data can
be dynamically analysed using Grafana [169] and Kibana [81], focusing on time series and
correlations, respectively.

Experiment Dashboard

Each VO deploys its own monitoring, separate of local site efforts. This monitoring relies
on sensors which are directly integrated into VO middleware and frameworks. As such,
VOs are capable of monitoring individual operations and can relate this to the context of
workflows. While this monitoring is more fine-grained than local site monitoring, its scope
is limited to operations fully under the control of a VO.

Many monitoring sensors have been developed and are in use by the individual VOs [30,
60, 195]. These sensors are specific to particular workflow management systems, data
management systems, or application frameworks. To combine information across VOs,
the Experiment Dashboard [14] allows to aggregate, compose, and visualise statistics
independent from underlying monitoring technologies. While all VOs publish data to
the Experiment Dashboard, the scope and volume of data varies. Depending on the VO,
monitoring data is available on transfers, processing of workflows, and infrastructure.

The CMS Task monitor provides real-time and historical status information on all started
CMS jobs. This combines information from the workflow submission system, the payloads
performing the work and the pilots representing acquired resources. However, it relies on
payloads actively reporting data – failures during payload startup and misconfiguration
prevent tracking of jobs. The ATLAS data management monitor provides a global view of
data transfers between WLCG sites. The heterogeneity of data transfer technologies for the
different VOs requires a cross-VO and cross-technology view of data transfers within the
WLCG infrastructure. The data management monitoring application provides a unified
view on results gathered from coexisting technologies[15]. Finally, the infrastructure monitor
summarises results based on so-called Service Availability Monitoring (SAM) tests.

Service Availability Monitoring

The SAM framework is a distributed, global monitoring infrastructure responsible for
monitoring the WLCG and its resources [13]. It is based on probing functionality of services

17

2. Background

and simulating individual steps of user and collaboration workflows. SAM is used both as
an early warning system and to validate the SLAs.

The monitoring framework comprises several functionality: submission of monitoring
probes, gathering of probe results, processing of monitoring data, and evaluation of results
regarding service status, availability, usability, and reliability. For example, SAM tests
of processing resources submit probes to CEs to validate the submission process. Once
deployed on worker nodes, the probes check the availability of VO-specific dependencies
and the usability of the infrastructure in general.

Results of such probing express the availability of site resources to fulfil the SLA for
specific VOs. However, SAM tests are not suitable in identifying causes for issues beyond
fundamental service unavailability. Being deployed like regular resource consumers, SAM
probes are oblivious to the underlying infrastructure.

2.2.3. Tracking of Batch Job Behaviour

By design, utilisation of batch processing resources is only partially under the control of
sites. Each batch job can freely use the fraction of resources it is allocated to on a worker
node. In addition, allocation is limited to resources that can be easily controlled for each
batch job. As a result, monitoring and tracking of batch jobs to identify misbehaviour is
critical to ensure the efficiency and availability of processing resources.

Resource Allocation for Batch Jobs

The GridKa batch system allocates both CPU cores and memory to batch jobs. During
the runtime of a batch job, the availability of these resources is guaranteed. This allocation
is enforced as a soft limit: Batch jobs can temporarily exceed their limit if resources are
unused. However, scheduling of new batch jobs treats all limits as fixed.

This allocation approach ensures that running batch jobs cannot over-utilise resources.
A running batch job cannot be starved of resources by other batch jobs. Yet, misbehaving
batch jobs can reduce throughput by underutilising resources. A batch job requesting
and thus blocking more resources than needed prevents new batch jobs from starting. In
addition, allocation is performed only with a limited resolution on both resources and
time: Batch jobs exiting immediately after starting, either through a defect or dynamic
configuration, block resources for much longer than the runtime of the batch job.

HEP batch jobs implicitly rely on a range of other resources which are not allocated by
the batch system. Instead, these resources are available to all processes on worker nodes,
and thus shared by all batch jobs. The allocation of these resources is not handled at the
scope of the batch system, but by the operating system at the scope of each worker node.

Network in particular is an unallocated but critical resource for HEP batch jobs. All
batch jobs rely on network to read input from and write output to SEs. As such, congestion
of network usage has direct results on batch job throughput and thus efficiency. Since
network is shared at multiple levels, primarily on the worker nodes and file servers, few
misbehaving batch jobs can impact a high number of regular batch jobs. While symptoms
can be detected easily, the initial cause is not visible to monitoring.

Example 2.1. Consider a group of batch jobs failing to open files locally. Thus, each
batch job in this group falls back to reading data remotely from other sites. In this case,
monitoring can detect a firewall being heavily loaded, and incoming network being at
full capacity. Each individual worker node, running only a handful of misbehaving batch

18

2.2. GridKa Data and Computing Centre

jobs, would not be identified as anomalous by monitoring. Instead, pinpointing individual,
misbehaving batch jobs requires correlating multiple sources of monitoring data. Causes
must be isolated based on exclusion and cannot be located directly.

This issue described in the Example 2.1 on the preceding page arises as the granularity
of monitoring and that of anomalies is mismatched: the former targets elements of the
infrastructure, while the latter are small elements distributed over the infrastructure. For
example, an individual batch job makes up only a part of the activity on a worker node.
Yet, multiple batch jobs may depend on the same shared resource, with each batch job
running on a different worker node.

Detection of Batch Job Misbehaviour

Before an administrator can take action against misbehaving batch jobs in the batch system,
the misbehaviour itself must be detected. This can be done by automated alarms, manual
validation of passive monitoring, or, in the worst case, by user reports. We use the term
detection point for the trigger that alerts the administrator about the misbehaviour. For
example, an automated alarm for the firewall being saturated by ingoing network traffic is
a detection point.

The granularity of available monitoring tools (see Section 2.2.2 on page 16) decouples the
detected issue from the underlying cause. For example, the detected traffic saturating the
firewall is actually a superposition of thousands of network connections. To find the root
cause of an issue, administrators need to investigate all involved components of the system.

In the case of misbehaving batch jobs, the issue is further complicated by the high
concurrency in the batch systems. Errors in workflows possibly affect all jobs of the
workflow at once; if this causes network saturation, only an excess of connections from the
entire batch farm can be detected. Since each worker node runs dozens of jobs in parallel,
local effects of misbehaving batch jobs can be obscured by regular jobs. The latter is further
complicated by pilots, which make the identification of individual payloads and their effects
impossible.

Example 2.2. Recall the Example 2.1 on the preceding page where a specific group of
batch jobs exclusively accessed data from remote sites. In this example, the behaviour is
caused by a software update of an analysis framework implementing transparent access to
files via data federations (see data federations in Section 2.1.3 on page 12). This update
corrupts the evaluation of local file availability resulting in remote file access by default.
Thus, software building upon the changed framework exclusively reads from external SEs.
Monitoring can only detect the increased traffic on the firewall. Manual investigation of
network connections can reveal an increase in communication from worker nodes to remote
servers. Only if remote servers belong to a specific VO this is sufficient to identify the
general group of jobs. Otherwise, the number of jobs per VO on each worker nodes must be
correlated to local traffic. If neither approach yields results, data from external monitoring,
such as VO dashboard statistics on file transfers, is required. If a VO is identified as the
cause of the problem, it is informed about the issue. Meanwhile, the site can only limit the
number of all batch jobs of the affected VO to protect site availability.

This thesis focuses on batch job misbehaviour with a possibly negative impact on running
batch jobs. The goal is to move from a reactive mechanism described above to detecting
misbehaviour in near real-time. Thus, the focus is to enable a detection point at runtime of

19

2. Background

batch jobs in order to minimise the impact on other batch jobs. Ideally, false alarms are
minimised to avoid the high cost of manual investigation. However, false negatives also
have to be minimised as these may result in missed activity while costs are incalculable.

Without loss of generality, we focus the analysis of batch jobs to an analysis of network
traffic. Based on the trend of the usage of opportunistic resources (compare opportunistic
computing in Section 2.1.3 on page 12), especially the analysis of network traffic utilisation
becomes more important. In addition, the network resource is a resource that is shared by
many batch jobs. Thus, a fair allocation needs to be guaranteed as batch jobs interfere each
other [39]. For memory and CPU resources this is already handled by the batch system,
but not for network.

2.3. Complexities in High Energy Physics Batch Systems

User-centric monitoring in a HEP batch system is much more challenging than in a controlled
environment or on a solitary machine. There is a multitude of concurrent applications, user
inputs vary in non-obvious ways, and applications are frequently re-written and updated
(compare Section 2.1.3 on page 9). In the following, we summarise challenges in HEP batch
systems and data centres preventing the use of established methodologies for user-centric
monitoring of batch jobs. These challenges outline the bounding conditions of the exemplary
use case in this thesis. While the discussion is based on the view of HEP batch systems
only, challenges also partially apply to other batch systems and data centres.

Heterogeneous Hardware The increasing data volume of HEP collaborations requires a
steady growth of resources pledged by WLCG sites. This results in incremental,
horizontal scaling of provided resources. As a result, new processing and storage
hardware is regularly added to the pool of already existing hardware. Reflecting the
technological progression and the purchase of the most financially efficient hardware,
extensions result in a highly heterogeneous environment. This requires tools that are
not dependent on specific hardware capabilities.

High Utilisation of Worker Nodes In batch systems focused on high throughput, a high
utilisation of processing resources is desirable. This means a high level of concurrency,
as each worker node hosts several dozen, independent batch jobs in parallel. Each
batch job in turn is expected to fully utilise its allocated resources. Worker nodes are
thus expected to work at full capacity, making excessive resource usage non-trivial to
detect. Even disentangling a small number of applications can be difficult [164].

Heterogeneous Job Mix With batch jobs having diverse resource requirements, those
demands must be mixed by distributing each batch job class equally. This optimises
resource usage by balancing requirements [42, 48]. However, this balancing complicates
monitoring as the total host utilisation is purposely decoupled for each individual
batch job. Monitoring data used to optimise the utilisation of specific resources, for
example opportunistic resources, must adequately reflect the impact of individual
batch jobs [39, 122, 127].

Ambiguous Job Definition Based on discussion in Section 2.1.3 on page 9 the apparently
trivial definition of a single user job is very complex. Due to the pilot batch job
paradigm, the jobs deployed by end users are not equivalent with the batch jobs
deployed by sites. Instead, individual payloads within a pilot running as a batch job

20

2.3. Complexities in High Energy Physics Batch Systems

are the actual jobs that must be considered for user-centric monitoring. This requires
the extraction of payloads from batch jobs as part of the monitoring.

Ambiguous User Definition While users are authenticated individually, their identity is
not propagated to batch jobs (see Section 2.1.4 on page 14). Furthermore, each
payload running inside a pilot performs authentication at runtime, independent of
the site’s batch system. The information available from processes and the site’s batch
system provides only a rough categorisation on VO-level. The real identity of a user
might be collected by evaluating the user mapping at runtime. However, this is not
a system-independent operation and is in addition prevented for reasons of privacy
and confidentiality. Thus, specific information about the shared identity and intent
of batch jobs cannot directly be derived.

Range of Input Characteristics HEP batch jobs heavily rely on trivial parallelisation by
executing the same workflow with different inputs (compare Section 2.1.3 on page 10).
While batch jobs of the same workflow are logically comparable, the differing input can
have a significant influence on performance and duration. Monitoring must therefore
allow to identify batch jobs not just by performance characteristics, but also general
features.

Unknown Optimal Behaviour To derive the underlying workflow of payloads is a non-
trivial task. In a production batch system it is not feasible to isolate a specific payload
from other processes. This would require coordination of both, sites and collaborations,
and the circumvention of scheduling policies. Due to natural interference between
batch jobs, an isolated job is likely to exhibit different behaviour. As a result, it is
practically impossible to determine the optimal behaviour of individual batch jobs
under realistic conditions. This excludes the possibility of deriving an objective
baseline for optimal behaviour of payloads.

Limited Monitoring Capabilities As the monitoring of batch jobs needs to be performed in
a production environment, a low performance overhead is crucial. The main focus of
batch system resources is on processing of batch jobs, so excess resource consumption
would interfere with both batch job throughput and measurements. Both allocated
resources such as CPU and memory, but also unallocated resources such as network
may not be consumed substantially. Overall, the deployment cost of monitoring must
be negligible compared to normal operations.

A user-centric monitoring of batch jobs should address the different aforementioned
challenges in order to be feasible for deployment in HEP batch systems. However, an
actual monitoring solution must not only provide characteristic information, but allow the
assessment of information in the scope of distributed workflows. The challenges and scope
call for a dedicated monitoring tool to enable the online analysis of payloads.

21

3. Monitoring of High Energy Physics
Batch Jobs

User-centric monitoring in batch systems offers great potential to optimise the detection
point of misbehaviour in batch systems (compare Section 2.2.3 on page 19 for a discussion
of possibilities). Especially if batch jobs are identical instances forming a single workflow,
early detection of misbehaviour allows preventive action against later batch jobs of the
workflow. Consequently, optimisation of the detection point can result in a reduction of
disruption of other batch jobs. However, user-centric monitoring is a highly complex task,
especially for systems built out of distributed components (compare Section 2.3 on page 20
for an overview of specific challenges for HEP batch systems).

The approach to user-centric monitoring and some of the results discussed in this Chapter
have originally been published in Kuehn et al. [139–141]. All key arguments and information
required for later Chapters are presented here.

3.1. Related Work

There are many approaches and tools for monitoring in batch systems and similar envi-
ronments. However, they are typically specialised for a particular layer or application. To
the best of our knowledge, existing solutions are not ideal for monitoring applications in
HEP batch systems. Most importantly, the granularity to monitor individual payloads in a
distributed system is not provided by any of the available methods.

In the following, classes of existing approaches and tools are outlined and evaluated
for their applicability. Based on this, we present an approach to user-centric monitoring,
focused on the requirements in HEP batch systems. However, the approach can also be
applied in any Unix-based system where a hierarchical view on processes is relevant.

3.1.1. Taxonomy to Host-Based Monitoring

To consistently monitor batch jobs, data must be collected at a scope encompassing the
entire batch job runtime. At the same time, this scope must be small enough to minimise
the collection of unrelated data. Since HEP batch jobs do not interact with each other,
this is trivially the pilot or payload itself. However, in our use case, both users and their
workflows are outside the control of monitoring tools. The next available scope is the batch
system running the batch job; yet, this lacks control over vital resources (as outlined in
Section 2.2.3 on page 18). Finally, the host as a whole is guaranteed to control all resources
a batch job can directly access. Thus, we focus on host-based monitoring solutions with
the goal to monitor individual payloads.

There has been extensive research on host-based monitoring approaches appropriate for
user-centric monitoring [3, 6, 127, 200, 222]. These approaches have different trade-offs
in requirements, performance impact, and granularity. To provide an overview of this

23

3. Monitoring of High Energy Physics Batch Jobs

field, a taxonomy to basic functionality is presented in the following. Table 3.1 on page 27
summarises characteristics of the available classes of host-based monitoring.

Software Instrumentation

Monitoring based on software instrumentation modifies the target application by injecting
monitoring instructions, the instrumentation code. The primary goal is to record internal
application state and behaviour, for example for program analysis, debugging, performance
optimisation, and virtualisation purposes [128, 213, 242]. As an example, instrumentation
code can be added at the entry and exit of each function call to log its name, arguments, and
return value. Thus, software instrumentation enables a fine-grained intra-process analysis
on instruction-level.

The granularity of software instrumentation comes at a high cost: Software instrumenta-
tion purposely modifies the target application, potentially slowing it down with additional
instructions or negatively affecting the cache behaviour. This can obscure monitoring data
by preventing the execution of critical code sections, or avoid serious boundary conditions.
For example, the slowdown by software instrumentation may significantly reduce data
throughput, preventing the collection of data on network saturation. Thus, disentangling
normal and anomalous behaviour can become impossible without prior knowledge.

Several VOs employ moderate software instrumentation compiled into their analysis
frameworks for monitoring [60]. However, site administrators cannot similarly recompile
user software to add site-specific instrumentation.

Static Instrumentation Static instrumentation techniques insert instrumentation code to
the target application during or after compilation but before execution. For example, the
LLVM framework can be utilised to automatically add instrumentation code at compile-
time [146]. Nowadays, static instrumentation techniques are mainly used in the fields of
performance analysis, error detection, and software quality assurance and testing [173, 225].
However, static instrumentation has some severe limitations [158]: a) Static approaches
modify the software executable and thus require an extra step before execution of the
program. b) Static instrumentation can only cover statically linked resources. The tracking
of dynamically linked code, shared libraries, or dynamically generated code is not possible.
c) Furthermore, code and data can be mixed in executables, for example in static libraries;
Static instrumentation cannot reliably distinguish data from code in such cases.

Dynamic Instrumentation Dynamic instrumentation techniques modify target applica-
tions such as compiled executable binaries or bytecode dynamically during execution. Thus,
they do not require a separate step to add instrumentation code but alter the target
application for each execution. During execution, dynamic instrumentation tools insert
themselves between the target application and the executing host machine. For example,
dynamic instrumentation tools such as Pin [158] use the ptrace [133] system call to gain
control of the target application. This way, dynamic instrumentation tools can monitor the
execution at instruction-level to inject instrumentation code as needed.

The most significant advantage of dynamic instrumentation is that any executable can be
tracked and analysed without requiring development efforts. Thus, dynamic instrumentation
supports to instrument dynamically generated or linked code as well as shared libraries.
However, the execution overhead of a target application is increased significantly when
dynamic instrumentation is performed at runtime [128, 205].

24

3.1. Related Work

Whole-System Monitoring

Whole-system monitoring approaches treat the monitored application as a black box. By
tracking the interactions of the target application with the operating system, characteristics
of the application are inferred based on the resources it uses and generates, for example,
files, sockets, processes, or peripherals. Such interactions are usually performed via system
calls such as open, read, write, socket, or ioctl. These system calls can be monitored
with tools such as strace [134].

However, this method comes at a high cost as it pauses the process before and after each
system call that is traced. Instrumenting the whole system incurs significant performance
and analysis overhead. To efficiently obtain information on the whole system, many tools
modify the OS kernel or use a specific kernel module [28, 179]. These approaches reduce
overhead at the expense of maintainability and potentially stability.

System Emulation and Virtualisation

To avoid modifying the OS for whole-system monitoring, other approaches are based on
emulation or virtualisation of the host system. By utilising dynamic software instrumentation
on the emulated host system [78], fine-grained information can be collected. This approach
is utilised in record and replay platforms to capture low-level information; the volume
and granularity of data require further analyses to be performed offline [204, 235]. Also,
emulator-based recordings result in a significant slowdown which prevents realtime analyses
and deployment in production environments. Virtualisation-based approaches, however,
show less significant overhead [135].

Hierarchical System Monitoring

The Linux operating system allows subdividing resources of a host into smaller subsets.
These control groups, or commonly cgroups [132], enable a hierarchical system monitoring.
When using cgroups, a fraction of CPU, memory, disk I/O, or network resources are isolated
and assigned to a group of processes. This enables regular monitoring of system usage for
the specific group, and low overhead compared to emulated or virtualised systems. However,
without prior knowledge, each cgroup must treat its processes as a single entity consuming
resources. Furthermore, monitoring network traffic requires the creation of multiple virtual
network interfaces [176].

Hardware Assistance

The last approach we distinguish uses hardware features to capture information about
software execution. For example, the latest Intel CPU supports the Processor Trace
feature [114]. These hardware features allow precise control flow tracing of a process
without any system modification. Furthermore, the performance perturbation to the
software is negligible. This allows portability of appropriate approaches and directly makes
them available on many platforms. However, information is gathered at a very low level,
and many CPUs do not support such features yet.

3.1.2. User-Centric Monitoring

There are several tools and suites to collect information on jobs in environments similar to
HEP batch systems. Each builds on one or a combination of the monitoring approaches

25

3. Monitoring of High Energy Physics Batch Jobs

mentioned above, but aggregates and processes data differently. As a broad classification,
tools are distinguished by their balance of information granularity, deployment scope, and
autonomy.

Application profiling and monitoring tools such as Vampir [136] give insight into per-
formance parameters of a particular application. However, their overhead is too high for
continuous monitoring. Therefore, they are commonly used to tune individually selected
applications explicitly. This is not feasible for administrators of batch systems running
thousands of batch jobs in parallel.

Approaches such as Lightweight Distributed Metric Service (LDMS) [4], Holistic Perfor-
mance System analysis (HOPSA) [162], and Google-Wide Profiling (GWP) [185] explicitly
focus on scalability for production environments while providing continuous sampling-
based performance data for applications. The focus on scalability allows a large scale
deployment in computing farms, enabling cross-correlation analysis for different hosts on
application-level. However, existing approaches are not applicable to HEP environments.

In Agelastos et al. [3] the authors utilise LDMS to enable job performance evaluation
on application-specific pre-calculated scoring methods. However, the approach is geared
towards HPC resources, exploiting the monitoring of entire worker nodes as each job fully
utilises several worker nodes. In contrast, our use case requires resolving multiple individual
jobs running concurrently at the same worker node.

The approach proposed by HOPSA enables the analysis of co-located jobs by creating an
integrated diagnostic infrastructure on application and system-level. This uses a multitude
of integrated monitoring tools and components collecting multiple types of data that may
vary in frequency, subject, and granularity. A significant overhead is required to analyse
inter-node or intra-node dependencies.

The approach of GWP also employs function-level monitoring. This enables analysis and
profiling of function-level call graphs of an application. The capability to provide profiling
data in a hierarchical layout allows users to focus on specific parts of an application, as
stressed by the authors. This mimics our need to monitor payloads as parts of a pilot.
However, this type of analyses is not automated and must be performed manually by users
in an explorative fashion. Furthermore, the sampling approach does not facilitate analysis
of temporal dependency between function-level calls that is required for our approach to
learn underlying workflows.

3.1.3. Data Collection in Production Systems

A user-centric monitoring approach for HEP batch systems needs to satisfy several boundary
conditions: First, the monitoring approach must be suitable to work on real applications.
These may be large, multi-threaded, composed of several processes and executed in parallel
with other, different applications. Second, the approach must be suitable for deployment in
a production environment, including unmodified runtime environments and no operating
system extensions. Isolated testing environments or extensive integration efforts would
limit the applicability and portability. Third, the overhead from monitoring should be kept
to a minimum. Data collection must not distort job execution to remain generalisable, and
must not notably reduce job throughput. Finally, the monitoring setup should allow for an
estimate of misbehaviour at runtime.

Each of the various monitoring approaches fulfils different requirements (see Table 3.1 on
the facing page). An adequate solution must balance individual needs; Most techniques
trade one feature against another.

26

3.1. Related Work

T
ab

le
3.

1.
:O

ve
rv

ie
w

of
ho

st
-b

as
ed

m
on

it
or

in
g

ap
pr

oa
ch

es
.

E
ac

h
cl

as
s
of

m
on

it
or

in
g

ap
pr

oa
ch

es
is

ev
al

ua
te

d
w

it
h

re
ga

rd
to

it
s
ch

ar
ac

te
ri

st
ic

s.
T

he
no

ta
ti

on
fr

om
−
−

to
+
+

gi
ve

s
a

re
la

ti
ve

m
ea

su
re

on
th

e
su

it
ab

ili
ty

re
ga

rd
in

g
th

e
gi

ve
n

ch
ar

ac
te

ri
st

ic
.

C
ha

ra
ct

er
is

ti
cs

on
in

te
gr

at
io

n
an

d
ad

m
in

is
tr
at

io
n

co
st

s
re

fle
ct

th
e

re
qu

ir
ed

sh
or

t-
an

d
lo

ng
te

rm
eff

or
t.

T
he

ov
er

he
ad

re
pr

es
en

ts
C

P
U

an
d

m
em

or
y

co
ns

um
pt

io
n

of
th

e
m

on
it

or
in

g
it

se
lf

as
w

el
la

s
sl

ow
do

w
n

of
th

e
ta

rg
et

ap
pl

ic
at

io
n.

G
ra

nu
la

ri
ty

co
m

pa
re

s
th

e
am

ou
nt

of
in

fo
rm

at
io

n
tr

ac
ke

d.
F
in

al
ly

,c
ov

er
ag

e
gi

ve
s

in
fo

rm
at

io
n

on
th

e
su

bj
ec

t
of

m
on

it
or

in
g.

C
os

t

C
la

ss
In

te
gr

at
io

n
A

dm
in

is
tr

at
io

n
P
er

fo
rm

an
ce

1
G

ra
nu

la
ri

ty
C

ov
er

ag
e

So
ft

w
ar

e
In

st
ru

m
en

ta
ti

on
St

at
ic

−
−

+
+

−
+

pr
oc

es
s

D
yn

am
ic

+
+
+

−
−

+
+

pr
oc

es
s

an
d

ch
ild

re
n

W
ho

le
-S

ys
te

m
M

on
it

or
in

g
Sy

st
em

T
oo

ls
+
+

+
+

−
−

+
pr

oc
es

s
an

d
ch

ild
re

n
K

er
ne

lM
od

ul
es

−
−
−

+
+

de
pe

nd
s

on
ap

pr
oa

ch
E

m
ul

at
io

n
/

V
ir

tu
al

is
at

io
n

+
−

−
−

/
−

+
+

pr
oc

es
s

an
d

ch
ild

re
n

H
ie

ra
rc

hi
ca

lS
ys

te
m

M
on

it
or

in
g

+
−

+
+

+
pr

oc
es

s
an

d
ch

ild
re

n
H

ar
dw

ar
e

A
ss

is
ta

nc
e

−
+

+
+

+
pr

oc
es

s
an

d
ch

ild
re

n
1

in
cl

ud
es

m
em

or
y

an
d

C
P

U
ov

er
he

ad
as

w
el

la
s

sl
ow

do
w

n
of

ap
pl

ic
at

io
ns

.

27

3. Monitoring of High Energy Physics Batch Jobs

Especially for whole-system monitoring, the runtime overhead can significantly be im-
proved at the cost of higher integration effort [28, 179]. Collecting data directly with
specific kernel modules or kernel modifications ensures little performance penalty. However,
portability and maintainability are severely limited. Interaction with the kernel limits com-
patibility to individual kernel versions. Furthermore, both development and maintenance
require an in-depth understanding of the kernel. As such, a solution with indirect kernel
interaction is preferable.

Software instrumentation offers the best granularity since it has direct access to the
application. However, static instrumentation is not feasible to apply without control over
user application. While dynamic software instrumentation can be deployed externally,
it incurs a high overhead. The slowdown of target applications is significant [128, 205],
making any recorded data unsuitable to reason about normal batch job execution. Software
instrumentation may be suitable for users and collaborations but is unsuitable for continuous
monitoring. However, the general approach of monitoring individual actions that constitute
an application is promising.

System emulation and virtualisation offer reduced overhead by uncoupling data collection
and analysis. Related work proposes to record the execution of applications and determin-
istically replay it when required [118]. This mitigates some of the overhead incurred by
instrumentation. Usually, those systems rely on an offline replay of records without further
optimisation of overhead. The delay between record and replay renders this approach
unfeasible for an online analysis of batch jobs.

Hierarchical system monitoring via cgroups induces less overhead compared to emulation
or virtualisation-based approaches. Batch systems allow deploying batch jobs with cgroups
for resource allocation and monitoring [96]. This is restricted to the granularity of batch
jobs, and cannot differentiate between payloads.

Following this analysis, we base our user-centric monitoring for batch systems on data
sources close to the kernel: Kernel data is accessed from user space using pre-existing tools
and APIs. This preserves most performance advantages of using kernel data while avoiding
the complexities of direct kernel interaction. However, we strive for hierarchical data
mimicking the call graphs available from software instrumentation. As HEP applications
consist of an extensive process hierarchy, we assume that this allows for similar analyses as
on call graphs.

3.2. Methodology to User-Centric Monitoring

For our work, user-centric monitoring must fulfil two requirements: First, it must be suitable
for long-term deployment in production environments of HEP batch systems. This is a
constraint to use monitoring in a meaningful way. Second, it must provide data suitable to
identify and reason about batch jobs of workflows. This is the motivation for introducing a
new monitoring approach in the first place.

As such, the approach can be roughly divided into two views: The implementation of
how data is collected, and the purposeful selection for which data is collected. Notably, we
exclude the analysis and interpretation of data at this point.

Based on our review of host-based monitoring methods, we use an approach that indirectly
interacts with the kernel: We rely on standard system calls, passively exposed information,
and existing stable libraries. Thus, the solution does not require any kernel modifications
or kernel modules. This ensures portability and stability for any reasonably modern

28

3.2. Methodology to User-Centric Monitoring

environment. Furthermore, the overhead of data collection is very close to the optimal.
Overall, this renders the approach feasible for continuous monitoring of batch jobs.

The utilisation of indirect kernel interfaces enables a high granularity of monitoring.
It provides per-process information such as process start and exit, resource utilisation of
CPU and memory, and external resources such as files and network sockets. Thus, the
dependencies between individual processes can be derived from different levels. For example,
data shared between processes via files is an active research topic in the field of automated
provenance detection [118, 185, 213]. For HEP in specific, network is a critical resource (see
discussion in Section 2.1.3 on page 12). Consequently, our proposed approach exemplarily
focuses on network I/O for individual processes. We explicitly exclude the consideration of
dependency graphs based on data flows at file level. Instead, we refer the interested reader
to available approaches and results [118, 185, 213].

3.2.1. Towards Modelling of Workflows

The data available from the kernel does not directly translate to jobs by users. As such, a
model of jobs is needed to relate them to kernel information. The execution of workflows
involves a stack of concepts (see Section 2.1.3 on page 10), necessitating a precise definition
of elements:

Definition 3.1 (Workflow, job, payload, and pilot). Analysis efforts of a VO are composed
of workflows. Each workflow implements a deterministic algorithm to transform data from
an input dataset. A workflow consists of many jobs, each applying the algorithm on a
distinct subset of the input dataset.

A job is an abstract description of an algorithm and target data. It is implemented as a
payload, which is an executable application and configuration defining its input.

To process workflows, a pilot runs as a batch job in a batch system to acquire resources.
Each pilot, in turn, executes one or multiple payloads.

The relationship between these concepts is denoted in Figure 3.1 on the next page.
Indirectly the different concepts create two connected, inverted hierarchies: From the view
of a batch system, each pilot is a group of processes to which each payload is a group of
child processes. From the view of analysis, each job is a child of the underlying workflow.
Based on this model, our goal is to identify payloads in a pilot process hierarchy and link
the corresponding, logical job to the workflow.

It is inherently difficult to infer the workflow without having information on its semantics.
It can be composed of several algorithms and tasks that depend on each other or even have
circular dependencies. However, we can exploit that each job is the execution of the same
algorithm, differing only in input. Thus, we assume that jobs of the same workflow behave
similarly. By statistically analysing characteristics of payloads, fundamental characteristics
of workflows can be derived.

Thus, significant characteristics of payloads need to be considered: First, the features
that are fundamentally similar for all payloads that are based on the same workflow. Thus,
knowledge about features that is characteristic for specific workflows is required to identify
similarities. Second, the granularity of at which features are observed is of vital importance.
Monitoring must provide sufficient granularity to allow differentiating payloads of different
but similar workflows. Finally, the sampling rate also needs to be considered. A high
temporal resolution enables near real-time analysis by reducing the latency between data

29

3. Monitoring of High Energy Physics Batch Jobs

Pilot

Payload Payload...

Job Job

...

Batch Job Batch Job

Batch System

Workflow
Workflow

Figure 3.1.: Overview of classification of workflows, jobs, batch jobs, pilots, and payloads.
While workflows and each individual job of the same workflow algorithmically
and organisationally describe the same tasks, the payload is the actual reali-
sation of the job. Thus, a payload represents a job in the batch system. Due
to the pilot paradigm, several payloads are encapsulated within a pilot. One
pilot does not necessarily encapsulate payloads belonging to only one workflow.
Finally, the batch job encapsulates the pilot and its payloads.

generation and collection. However, each of these characteristics must be balanced against
minimising the volume of data to keep it manageable.

Characteristic Data

The identification of workflows can be divided into two tasks: First, individual payloads
must be isolated from their pilot. Second, each payload must be identified with regards
to other payloads. This translates directly to two types of data that monitoring should
provide.

The pilots used in the WLCG directly execute each payload as a separate process. This
forms a hierarchy of groups of processes: The root is the group of processes making up the
pilot itself. Leaf processes of the pilot spawn the root processes of each payload. From
each payload root process, a separate group of processes is started, making up the actual
payload. As such, monitoring must provide information on the process hierarchy for each
batch job – that is, the identity and relation of pilot and payload processes.

The primary classification of HEP workflows is their use of input data concerning
volume and throughput (see Section 2.1.3 on page 10): Jobs with little input data are
usually classified as simulation workflows. Jobs with much input data can be classified
as reconstruction workflows. As input data is not stored locally on processing nodes, we
assume that network usage of payloads is characteristic for different workflows. Thus,
monitoring must also provide network usage at payload granularity – due to how payloads
are isolated; this means the network characteristics of processes.

In addition to identifying workflows, network characteristics also constitute viable features
of interest. On the one hand, it provides predictable monitoring of this critical resource.

30

3.2. Methodology to User-Centric Monitoring

This is especially relevant concerning opportunistic resources, which are feasible only for
workflows with little input data. On the other hand, it is an indicator that processes are
performing viable work.

Data Granularity and Sampling

Data characterising jobs can be collected at various granularity. For example, the hierarchy
of pilot and payloads can be expressed via groups of processes, individual processes, or the
state of each of these processes. Similarly, network traffic can be tracked for example in
total, per interface, subnet or address. Thus, the description of a job via monitoring can in
principle be arbitrarily complex.

Increased complexity enables a detailed view and analysis of jobs. However, it comes at
the cost of increased memory, storage, and processing resources to handle the additional
data. Also, a more fine-grained granularity is subject to noise, whereas a coarse granularity
may miss significant information.

We differentiate between two types of granularity: Data granularity describes the level
of distinct data provided by monitoring. Roughly speaking, it is the number of different
features that are tracked. Temporal granularity describes the detail of consecutive data.
For actively collected data, this can be influenced via the sampling rate. For event-based
data, the event rate is generally outside our control; only by excluding certain events can
granularity be controlled.

3.2.2. Monitoring Workflow Features

To realise a monitoring system for HEP workflows, the requirements on data types and
granularity must be aligned. Hierarchical information must be sufficient to split payloads
from their pilots. Network information must allow identifying payloads of workflows with
similar process hierarchies. Both types of information must be compatible with each other
and restricted to a manageable volume.

The border between payload and pilot processes is vague. On the contrary, each pilot
implementation uses a different sequence of processes to prepare and start a payload. On
the other hand, each payload again wraps the actual job into a layer of processes to prepare
and monitor it. This makes it important to collect the entire process hierarchy to precisely
separate the real payload.

This requirement aligns well with process data exposed by the Linux kernel. Data can be
collected in an event-driven fashion: Separate events can be defined for the start and end
of a process. This sets the process data sampling rate to the frequency of process events.
Information available on processes allows relating them to their position in the process
hierarchy.

Following this, collected network information must be suitable for association with
individual processes. However, network information is available at a very detailed granularity:
network events, the individual packets, can reach a volume of several hundred thousand
per second even on a 1Gbit/s interface. Thus, information must be translated to a higher
level of abstraction.

A sampling approach is suitable to link the high granularity network information to
process data. Individual network events can be aggregated to connections based on their
source and destination addresses. Without prior knowledge about remote addresses, one
can locally distinguish between network interfaces – in the case of GridKa, internal and

31

3. Monitoring of High Energy Physics Batch Jobs

Network Packet
Component

Network Socket
Component

proc Process
Component

Logging
Component

Packet

Connection

Process

find
connection

find
process

report
data

refresh

Figure 3.2.: Visualisation of interaction between the different components of BPNetMon.
Three main components are differentiated: the Network Component that
tracks data from network packets and connections, the Process Component
that collects events from processes within the operating system as well as the
Logging Component.

external connections can be distinguished. Besides, ingoing and outgoing data rates can be
separated without prior knowledge.

3.2.3. User-Centric Monitoring Sensor

As part of this thesis, a sensor for user-centric monitoring in HEP batch systems has been
developed. The following gives an overview of this tool, as required for later Sections
describing the analysis of collected data. An in-depth description of algorithms, data
structures, and optimisations can be found in Appendix A.2 on page 154.

Our user-centric monitoring for HEP batch jobs collects information to relate Unix
processes and network traffic. This approach is based on the general idea of the OpenSource
tool NetHogs [83]. NetHogs groups bandwidth by process instead of breaking traffic down
per protocol or subnet. However, as NetHogs is not suitable for continuous monitoring, it
cannot be deployed for long-term, large-scale monitoring. Instead, we have developed a
tool suitable for continuous, user-centric monitoring, called Batch Process Network Monitor
(BPNetMon).

Our tool can be divided into two main tasks: the monitoring, and the logging task
to provide the collected data to consumers. This facilitates a modular design for future
extensibility – in the following, we restrict the description to components used for this thesis.
There are three monitoring components: a Process Component, a Network Socket Component,
and a Network Packet Component ; the Network Socket Component in conjunction with the
Network Packet Component form the abstract Network Component. There is only a single
logging component: the Logging Component accumulates and outputs data as required
by external consumers. An overview of the general monitoring approach is presented in

32

3.2. Methodology to User-Centric Monitoring

Figure 3.2 on the facing page.

Process Component

The Process Component captures and evaluates information on forking, execution, and
termination of Unix processes. This component uses a netlink socket in user space to
subscribe to process events from the kernel [26]. This information is used to build an
internal view of the process hierarchy, in which new process events can be located quickly.
With the knowledge from the batch system about its processes, the subtrees for each batch
job in the batch system can be identified.

For each process, primary data such as the start time, process id, parent process id, id
of the user that owns the process, and process name are known, in addition to metadata
used for monitoring itself. Metadata marks the network monitoring state for each process:
A process is either ignored for network monitoring, a candidate for network monitoring
in the future or actively monitored for its network activity. This avoids tracking network
activity for processes outside of batch job process hierarchies. We propagate this metadata
to child processes, simplifying the decision for new processes by using the known state of
the parent process. Once a process has been excluded from monitoring, its entire subtree
can be excluded as well.

Network Socket Component

The Network Socket Component links process monitoring and network monitoring. It reads
the proc filesystem (procfs) filesystem to get network sockets used by each process. This
approach is based on extracting used inodes, which is in principle also applicable for files.
Each socket inode is mapped to the corresponding network connection, again reading procfs
directly. This provides the local and remote address; the mapping to processes provides
their monitoring state, that is whether the network should be monitored.

Network Packet Component

The Network Packet Component inspects a stream of network packets on all network
interfaces of the host. The component uses libpcap [215], a system-independent library
implementing network packet capturing APIs of pcap in the user space. For both UDP and
TCP network packets, the header is copied into a buffer for inspection. Each packet’s local
and remote address is used to map it to a network socket, and in turn to the corresponding
Unix process. The packet size corresponds to the traffic on this connection.

The design and implementation of the tool are based on C/C++. Each of the monitoring
components is implemented as an individual thread. The main priority is the Network
Packet Component to enable a fast processing of incoming packets.

Logging Component

Collected monitoring data is passed to the Logging Component, which performs the actual
aggregation and sampling of data. Hence, it accumulates data for a given time interval and
outputs a stream of results. The Logging Component supports configurable use cases and
certain levels of detail. This is for example used to provide a concise overview of every
batch job to the batch system.

33

3. Monitoring of High Energy Physics Batch Jobs

Table 3.2.: Available process information for user-centric batch job monitoring

Name Description

tme Timestamp of process event
pid Process ID
ppid Process ID of parent process
gpid Process ID of grouping process
uid User ID
name Name of a process
state State of the process (start / exit)
error_code error code of a process
signal signal of a process

For this thesis, we use an output stream detail matching our requirements for workflow
monitoring (see Section 3.2.2 on page 31). For each batch job managed by the batch system,
two streams provide process and network monitoring data, respectively. The process stream
provides process events, containing meta data of processes and encoding the hierarchy with
a Dewey Index [229]. The network stream provides connection samples, providing meta
data on connections held by processes in the hierarchy.

3.2.4. Data Recording at GridKa

Since July 2014 the process and network monitoring tool BPNetMon is deployed at the
GridKa data and computing centre. The configuration in use can be reviewed in full
in Appendix B.1 on page 157. The tool monitors the batch jobs running in the batch
system, implicitly monitoring the contained pilots and payloads as well. Information on
the Unix process tree of each payload and related data flows are collected. For this thesis,
the monitoring stream is captured and stored persistently. This allows us to replay the
monitoring stream for reproducible analysis. This forms the dataset used throughout the
following Chapters for demonstrating and evaluating proposed approaches.

The data contain detailed network and process information as well as the tree struc-
tures of the Unix processes for each batch job. Each batch job is translated to a single
multidimensional time series: All data is time series regarding the network traffic (traffic
rates, count of inbound and outbound packets, destination and source IP as well as ports),
Unix process information (pid, ppid, uid) as well as information about the batch job itself.
All data points across all categories have an implicitly synchronised order given by their
timestamp. Thus, each batch job is described by a stream of process events as well as a
stream of traffic events. Each process contains explicit information about its parent process,
encoding the hierarchy of processes. Each traffic event can unambiguously be attributed to
a specific process. Tables 3.2 to 3.3 on pages 34–35 give an overview of information of the
stream of process events as well as traffic events.

The stream of process information events is synchronous with the associated system
events. As the network stream aggregates multiple packets to connections, an independent
interval must be chosen. For the data used in this thesis, a separate record of accumulated
traffic information is emitted every 20 s. On the one hand, this matches sampling intervals

34

3.3. Implications for Online Analysis

Table 3.3.: Available data flow information for user-centric batch job monitoring per mea-
suring interval

Name Description

tme Timestamp of measuring interval
pid Process ID of associated process
ppid Process ID of associated parent process
gpid Process ID of associated grouping process
uid User ID of associated user
in_rate Incoming data rate in kB/s
out_rate Outgoing data rate in kB/s
in_cnt Number of incoming network packages
out_cnt Number of outgoing network packages
conn_cat Category of connection (intern / extern)
source_ip IP address of source
dest_ip IP address of destination
source_port Port of source
source_dest Port of destination

considered in the literature [3, 185]. On the other hand, storing data for reproducibility
means that we must limit the total volume to available storage. We assume eight connections
per batch system slot, two network interfaces with ingoing and outgoing traffic, and a
traffic event size of 1 kB to include connection data, process id as well as traffic. With our
chosen interval and an average runtime of 10 h per batch job (see Section 8.1.1 for detailed
statistics on our present dataset), this amounts to 60MB per batch job or 1.5GB for all
batch jobs running on a worker node at once.

A typical HEP batch job as recorded by BPNetMon is shown in Figure 3.3 on the next
page. Such a batch job is composed of processes specific to the batch system, the pilot
paradigm as well as the actual payloads, that is the jobs executed by users. A batch job
can consist of millions of different processes, many of which have a short duration. For
visualisation, all processes with a duration of less than 10 s have been excluded. Processes
with related data flows are coloured relative to their traffic. This in-detail view of data
flows allows recognising patterns in batch jobs.

To avoid manual analysis of collected batch system statistics and batch job data whenever
an incident is suspected, we target an online anomaly detection. Based on the data
collected by our tool, we presume that this is sufficient for an anomaly detection at runtime.
However, as each batch job is described by its processes and their hierarchy, each monitoring
event stream describes a dynamic tree. Thus, we require an online analysis for dynamic
semi-structured data.

3.3. Implications for Online Analysis

The continuous streams of monitoring data generated by our distributed sensors are the basis
for an online analysis of HEP batch jobs in the GridKa. However, both the methodology

35

3. Monitoring of High Energy Physics Batch Jobs

P
ilo

t
P

ro
c
e

s
s
e

s

P
a

y
lo

a
d

 P
ro

c
e

s
s
e

s

P
a

y
lo

a
d

 P
ro

c
e

s
s
e

s

B
a

tc
h

 S
y
s
te

m
 P

ro
c
e

s
s
e

s
sge_shepherd

5557002

CREAM367684261

perl

sh

glidein_startup

wget condor_startup

condor_master

condor_procd condor_startd

condor_kflops condor_starter condor_starter

condor_exec.exe

python2.6

bash bash sh

python2.6 cmsRun lcg-cp

condor_exec.exe

python2.6

bash bash

python2.6 cmsRun

Figure 3.3.: Visualisation of a typical CMS pilot batch job. The batch job consists of
processes specific to the batch system, processes from the pilot as well as
processes that belong to the actual payloads. The processes dedicated to the
payloads are of particular interest for user-centric monitoring. Furthermore to
classify the different payloads we require the monitoring of traffic information.
Processes with related network traffic are coloured depending on traffic volumes.

36

3.3. Implications for Online Analysis

and the use case itself have a number of implications and challenges for online analysis.
To the best of our knowledge, there is no existing framework or technique suitable for
our use case. Thus, we focus on the adoption and extension of related techniques to our
requirements. In the following, key aspects and challenges for online analysis of batch jobs
are discussed and summarised.

The operation in a production batch system poses several implications for an online
analysis of batch jobs (compare Section 2.3 on page 20). Most importantly, available
resources are limited. This encompasses processing, storage, and network resources, which
are dedicated to the execution of batch jobs, not their monitoring or analysis.

However, our use case dictates a high complexity of data: Monitoring at process granularity
is required to distinguish pilots from payloads and isolate jobs. The differentiation of
individual workflow types hinges on traffic patterns. Thus, an analysis must efficiently
handle streams of dynamic tree data.

We aim for an immediate reduction of data, to reduce both the data volume and
complexity of dynamic, semi-structured data. With the goal of classification and outlier
detection, this lends itself to performing stream-based distance measurements. Reducing
relations between trees to distances provides a robust basis for further data analysis [16,
182, 212]. Consequently, we strive for a distance measure for dynamic trees, on which
distance-based analysis from literature can be applied [147].

The streaming environment adds severe constraints for tree distance measurements.
Data streams imply trees of possibly infinite size; for our use case, data must at least be
assumed to be considerably larger than available memory. Therefore, space must typically
be restricted to logarithmic or at least sublinear complexity. Consequently, any approach
must work with a compressed view of required data. Still, backtracking or explicit access to
arbitrary data sections is excluded in a streaming environment. Both the data representation
and distance must be computable in a single pass over the data and with small per-record
processing time.

Furthermore, an appropriate measure that makes jobs well-separable in a metric space
needs to be derived. On the one hand, it must be compatible with the lack of some features
commonly assumed for tree distances. Most prominently is a lack of deterministic traversal
order, as trees may grow and shrink concurrently at arbitrary branches. On the other hand,
available information must be leveraged extensively. This includes time series attached to
vertices as attributes but also derived features such as the lifetime of vertices.

Finally, the underlying use case presents some additional challenges. Whenever a workflow
changes logically or technically, for example, due to an update of an underlying software,
the features of jobs are also expected to change. Later analysis stages must be able to deal
with such non-stationary data over long timespans. At short timespans, the processing
environment implies noise. This is a direct result of the concurrent process execution order
not being handled deterministically by the operating system.

These aspects mentioned above include challenges regarding resource utilisation, stream
processing, handling of noise, distance measurement for dynamic trees, and online analysis
itself. In the following, we give a summary of the challenges and requirements we strive to
address.

Resource Utilisation A key challenge is resource utilisation. As the analysis itself is located
within the WLCG site, the utilisation of processing, storage, and network resources
must be minimised to not impact production operations.

37

3. Monitoring of High Energy Physics Batch Jobs

Stream Processing Efficient stream processing requires one-pass algorithms for data han-
dling with logarithmic, polylogarithmic, or sublinear space complexity at worst. Thus,
approaches must focus on incremental analysis to reduce computational cost by
incrementally using intermediate results.

Online Analysis An online analysis of long-running HEP batch jobs must guarantee con-
tinuous intermediate results based on a distance measure for dynamic trees. Most
importantly, intermediate results may not invalidate earlier information.

Distances for Dynamic Trees Due to our choice of monitored features and granularity, an
online analysis needs to deal with dynamic trees describing the batch job, including
pilot and payloads. To enable non-proprietary data analysis, we focus on distance
measures for dynamic trees.

Noise and Micro Changes A distinct challenge of the environment itself is the presence
of noise. Several sources of noise need to be considered: noise from the operating
system as well as the non-deterministic execution of concurrent processes resulting in
an arbitrary order of events.

To not overcomplicate the analysis of these features, we assume that some simplifications
are met – while they cannot be strictly proven, they match observations of collected data.
The impact of these features on our work is low, and would mostly affect the statistical
analysis.

Notably, we explicitly exclude interferences and correlation between concurrent batch
jobs. Instead, we refer to the work of Kambadur et al. [127] that suggests techniques to
approach scalable application interference in complex environments. Building on this, we
do not consider dependency graphs to examine inter-batch job dependencies. However, it
is in principle possible to include inter-batch job dependencies in the analysis of network
connections. Furthermore, the recording and analysis of file accesses would allow studying
intra-batch job dependencies.

38

4. Formalisation of Distances for
Dynamic Streaming Trees

The background of this work necessitates the handling of streams describing dynamic trees.
The analysis of this data is based on similarity and distance measures between such trees.
In this Chapter, an overview of basic tree distance measures is given. Based on this, we
introduce a generalised, modular tree similarity measure suitable for stream processing.

The tree distance approaches presented in literature are applicable for different classes of
trees. In the following, we differentiate between static trees, dynamic trees as well as trees
in streaming environments. Most of the current methods deal with static trees only. Only
some provide a solution for trees in streaming environments or even dynamic trees.

To abstract from the underlying classes of trees, we first define a tree representation
that is suitable for any class of tree. For this, we propose a concise notation and an
underlying framework for the encoding of trees. Our approach is discussed based on linear
tree similarity measures, illustrating key features of both our approach and the use case.
These preliminaries form the foundation for later Chapters, where we present advanced
tree encoding strategies suitable to deal with attributes as well as more complex special
cases. Some parts of this Chapter have been published in Kuehn and Streit [138].

4.1. Related Work

Tree similarity or distance has been studied extensively for decades. The most important
method to measure distances between trees is the Tree Edit Distance (TED). The TED is a
natural generalisation of the edit distance from the domain of strings. Similar to the string
edit distance [7], the TED determines the distance between two trees by the minimum
number of required edit operations to convert one tree into the other [209]: the insertion,
deletion, and relabelling of vertices. An example for the TED and its underlying vertex
mapping is given in Figures 4.1 to 4.2 on pages 40–41. TED is still widely recognised as
the state-of-the-art similarity measure for tree-structured data [150]. However, its high
computational complexity limits its applicability.

4.1.1. Tree Edit Distance

Exact algorithms to compute TED are computationally expensive. The best-known method
to determine distances for ordered trees has at least O(n3) time and O(n2) space complex-
ity [49, 174, 178] for a number of n vertices of a given tree. While distances for ordered
trees can be solved in polynomial time by utilising dynamic programming [75, 209, 239],
unordered trees are NP -complete [109, 240].

However, even for ordered trees, the problem is NP -hard when the subtree move operation
is introduced [163, 199]. For an exhaustive overview of TED-based approaches and its
variants, such as largest common subtree [8], smallest common supertree [102], or tree
alignment [121], we refer the interested reader to Bille [41] and literature referenced within.

39

4. Formalisation of Distances for Dynamic Streaming Trees

f

d e

a c

b

(a) Example tree T1.

f

d e

a b

(b) Intermediate tree T ′
1.

a

c d

d

a b

(c) Example tree T2.

Figure 4.1.: Application of tree edit operations to transform tree T1 into tree T2. To trans-
form tree T1 given in Figure 4.1a into T2 given in Figure 4.1c deletion, insertion
as well as relabelling is required. Figure 4.1b visualises the intermediate step
after deletion of vertex c.

Many use cases such as change detection [57], fraud detection [231], information visuali-
sation [11], or our use case introduced in Chapter 3 on page 23 require approaches that
are scalable and feasible in almost near real-time. Especially in streaming environments,
it is not feasible to rely on polynomial time algorithms. Thus, we further concentrate on
approximate algorithms for TED.

4.1.2. Approximating Tree Distances

There are many efforts in developing approximate algorithms for TED. While TED-based
algorithms consider the original trees for distance calculation, approximate algorithms
usually rely on simplified representations of trees to reduce computational complexity for
distance calculation. Approximation methods for TED usually target different features for
representation, such as structure, content, or both structure and content combined.

In the following, we distinguish three classes of tree distance approximation methods:
summary-based, decomposition-based, and time series-based approximation. We provide
a short introduction to each of the three classes of tree distance approximation. We also
compare the three classes with regard to the constraints of a streaming environment as well
as dynamic trees.

Summary-Based Approximation

Summary-based approximation methods represent a tree by summarising selected features.
Usually, summary-based methods represent trees as vectors or matrices of numerical values
or hashes [59, 125, 149, 221, 223, 237] to optimise space and time complexity.

Cruz et al. [72] model trees based on distribution analysis of vertex frequency measures.
This compares independent statistics on the repetition of structural features in each tree.
However, the underlying vertex model does not consider the relative order of vertices, and
the statistical approach offers limited sensitivity for small differences. Thus, it is adequate
only when data is drastically different from each other.

Chowdhury et al. [59] filter significant properties of a tree based on results from information

40

4.1. Related Work

f

d e

a c

b

a

c d

d

a b

Figure 4.2.: Node mapping corresponding to Figure 4.1. All vertices that are mapped by
the dashed lines and do not share the same label, are renamed. All vertices
that are not mapped in tree T1 are deleted whereas all vertices that are not
mapped in tree T2 are inserted to T1. The Tree Edit Distance is a measure for
the minimal cost required to map the vertices of T1 to T2. In this example, the
TED is 4. That means, each operation has the same cost of 1.

retrieval, showing that the most and least frequent properties often add no semantic
meaning [159]. Thus, their approach removes the most frequent and infrequent properties
to obtain a reduced tree representation for distance approximation. However, this approach
requires offline analysis of tree statistics to construct the summary. This is not feasible for
possibly infinite streams of trees, or to derive results before the end of the stream.

Lian et al. [151] summarise a set of trees by a directed graph which consists of the set of
vertices and edges appearing in either tree. Hence, this graph encodes the structure over
the entire given set of trees and is called the s-graph. Distance calculation for two s-graphs
is based on the number of edges that are not shared by the given s-graphs. The proposed
method targets clustering of trees. Thus, the definition of s-graphs is based on summarising
sets of trees. A distance calculation for two individual trees is a special case as each s-graph
representation is the actual tree itself. Comparisons are performed by dividing trees into
sets of individual edges. Consequently, from our point of view, the proposed method can
also be classified as a decomposition-based approximation. However, the method requires
for n vertices in a given tree O(αn) space where α is a small constant factor and O(n2)
time complexity. Especially the time complexity renders this approach infeasible for our
use case.

Decomposition-Based Approximation

A tree decomposition is an alternative to edit-based distances. By utilising tree decompo-
sition, similarity or distance between two trees is calculated based on a set, multiset, or
sequence of substructures of the tree, so-called snippets1 [22, 25, 49, 70, 94, 120, 151, 214,

1Depending on the field of research different terms are used for the same concept to express the decompo-
sition into smaller pieces: common terms are shingles, snippets, tokens, or twig patterns. Within this
thesis, we adopt the term snippet for uniformity.

41

4. Formalisation of Distances for Dynamic Streaming Trees

a

cb f

d e

(a) Example tree

a

b *

b

* c

c

d f
d

* e

e

* *

f

* *

(b) Binary Branches

a a

b

a

b

a

c

a

c

a

c

d

a

c

d

a

c

e

a

c

e

a

f

(c) Path Shingles

*

a

* b

*

a

b c

*

a

c f

*

a

f *

a

b

* *

a

c

* d

a

c

d e

a

c

e *

a

f

* *

c

d

* *

c

e

* *

(d) pq-grams

Figure 4.3.: Overview of selected tree decomposition methods that are used for tree distance
approximation. Figure 4.3a visualises an example tree that is the base for
the three different decomposition methods. Figure 4.3b shows the resulting
representation based on decomposition by the concept of binary branches. Each
subtree pattern is comprised from an anchor vertex, its left-most child as well
as its right sibling. Figure 4.3c shows the approach of path shingles. For a
window size of 2 the different partial paths from a specific vertex to the root
vertex are determined. In Figure 4.3d the approach of pq-grams is visualised.
A pq-gram describes a tree pattern from p− 1 parent vertices as well as q child
vertices. The example visualises a configuration of p = 2 and q = 2.

233] to represent a tree. Intuitively, two trees are similar if their decompositions have many
snippets in common.

Proposed methods from literature usually differ in the type of snippet they consider
for decomposition. Common snippet types are sub-trees, graphs, paths, edges, individual
vertices as well as vertex contents and attributes (see Section 4.3 on page 46 for an overview
of naming conventions for trees). An overview of selected decomposition methods is given
in Figure 4.3.

Some of the methods we discuss in this Section, including binary branches, pivot structures,
or valid subtrees, have been originally proposed to be represented directly as vectors.
As those methods are algorithmically comparable to decomposition, we introduce their
underlying decomposition method individually for completeness. In contrast, the inverse is
the case for decomposition methods. Decomposition results can be embedded into a vector
space if required, for example, to realise a compact representation for implementation.

In general, approaches focusing on the decomposition of tree- or graph-shaped patterns
can retain more complex structural properties. As a result, several of these methods
efficiently approximate TED [22, 94, 233] while providing better scalability.

Decomposition to Primitives The simplest decomposition approaches use primitive ele-
ments of trees: vertices, edges and paths. While these elements retain only a minimum of
structural information, they allow for compact representations.

42

4.1. Related Work

Individual vertices are the most primitive elements of a tree, retaining no structural
information. The most fundamental hierarchical relationship for a vertex is its edge to its
parent. Consequently, a path is composed of edges; each path is a list of consecutive nodes
in a tree, based on recursive parent-child relationships. Approaches differentiate between
root to leaf paths as well as partial paths. A partial path is a path from any vertex within
a tree up to the root vertex.

While a decomposition utilising paths, edges, and/or vertices mainly represents structural
properties of a tree [73, 123, 151, 167, 211], the utilisation of vertex contents and attributes
mainly focuses on content independent from any tree structure. However, the utilisation
of a combination of both characteristics is considered for many use cases to increase the
precision of representation and thus distance approximation [10, 166, 181, 201, 234, 236].
Other approaches, such as path shingles proposed by Buttler [49] consider a window of
tokens for tree representation.

Binary Branches Yang, Kalnis, and Tung [233] propose the decomposition of a tree into
binary branches. The method relies on the concept of a left-child right-sibling binary
tree [66]. This concept describes how to transform any tree to a binary tree. This is based
on defining binary branches for every vertex: A binary branch is a snippet that consists of
an anchor vertex, its first child vertex and its right sibling. The multiset of binary branches
is utilised to calculate the distance between trees based on set intersection. Binary branches
provide a space complexity of O(n+m) and a time complexity of O(max(n,m)), where n
is the number of vertices in one tree and m the number of vertices in the other.

Especially the space complexity does not meet the requirements of a streaming model. In
addition, also the definition of binary branches itself is not feasible for dynamic streaming
trees. In many traversal orders, both children and right siblings are known only well after a
vertex, and the lack of either is only well known at the end of a stream.

Pivot Structures Tatikonda and Parthasarathy [214] introduce wedge-shaped snippets,
so-called pivot structures. Each pivot structure consists of two vertices as well as their
least common ancestor (lca) within the tree. Hence, a tree is represented by its multiset of
pivot structures, which is the basis for distance approximation. The lca is not necessarily
the parent vertex of the two vertices. Thus, the proposed approach does not rely on usual
snippets but summarises the path between the vertices and the lca by an arbitrary edge,
which is not necessarily part of a given tree.

The proposed method explicitly supports the incremental generation of the pivot rep-
resentation. However, it features time and space complexity of O(n2) as for each vertex
within a tree, the pivot structure to every other vertex is generated. This is infeasible in
streaming environments for two reasons: First, the whole tree needs to be stored to ensure
pivot structure generation. Second, the time and space complexity of the approach does
not scale to large trees.

pq-grams Augsten, Böhlen, and Gamper [21, 22] propose pq-grams to approximate the
distance between ordered labelled trees. Following this approach, a tree is represented by
all its subtrees that match a particular, predefined shape. This predefined shape consists
of an anchor vertex with p − 1 vertices on the path to the root vertex and q children.
These subtrees are stored in a multiset, which is again used for distance calculations via set
intersections.

43

4. Formalisation of Distances for Dynamic Streaming Trees

To derive distances for unordered trees, windowed pq-grams [23, 25] were introduced.
This method introduces an additional sorting of vertices on each group of siblings, which
makes it invariant to permutations of siblings.

The pq-gram approach features a time complexity of O(n log n) and space complexity of
O(n). Furthermore, the multiset of pq-grams can be maintained incrementally [20, 24].

However, both space complexity and specifics of the subtree pattern itself render pq-
grams inappropriate for streaming environments and dynamic trees. On the one hand, at
least sublinear, ideally logarithmic or poly-logarithmic space complexity is required in a
streaming setting. On the other hand, construction of pq-grams requires to include vertices
that are not well-defined in dynamic trees. For example, when a vertex is added to a tree,
its child vertices are still unknown. Consequently, pq-grams as originally proposed by the
authors are not directly applicable in streaming environments.

Valid Subtrees Garofalakis and Kumar [93, 94] propose a tree decomposition into valid sub-
trees for ordered, labelled trees in the streaming model. The approach relies on incremental
deterministic collapsing of vertices to build a compact synopsis of massive, streaming trees.
This synopsis requires only small space of O(d log2 n log∗ n) and O(log d log2 n(log∗ n)2)
time per vertex that is added in pre-order, where d denotes the depth of the tree. The
synopsis can be used for approximate distance computations with guaranteed error bounds.

Although space and time complexity render the approach feasible to approximate distances
for streaming trees, it relies on pre-order processing of vertices. By assuming pre-order
processing of vertices, the collapsing of vertices and thus the creation of compact synopsis
becomes possible. The authors only require preserving a local influence region of O(d)
vertices to attach further vertices. However, we need to consider dynamic trees that are
characterised by the fact that vertices can be added at any branch in arbitrary order.
Consequently, this approach to tree decomposition for distance approximation is not feasible
for dynamic trees in streaming environments.

Time Series-Based Approximation

Flesca et al. [88, 89] introduce a technique based on Discrete Fourier Transformation (DFT)
to compute the similarity between trees. The basic idea is to remove all contents from the
vertices of a tree, but retain the structure and the vertex’ labels. Each vertex within the tree
in pre-order (depth-first and left-to-right order) is represented as a number. This sequence
of numbers is a time series that is converted to a set of frequencies by utilising DFT. The
distance between two trees is computed by taking the difference of the magnitudes of the
corresponding frequencies of the two signals.

While this approach directly supports the processing of trees in a streaming fashion by
design, it still has some severe drawbacks. First, time complexity for the representation of
trees as a time series is O(n2) due to an application of DFT. Second, the approach removes
all content-related data. Thus, attributes that are considered important for our use case
are not supported at all. Therefore, an explicit mapping of structure, as well as content
transformation to integer values, would be required, complicating the analysis and increasing
space complexity. Furthermore, the approach relies on a constant sampling period, while we
face variable sample periods for process events as well as traffic events. Most importantly,
Fourier transformation typically operates on repeating, infinite time series. Consequently,
the stream of a dynamic tree needs to be amplified by zero-padding data to match the size

44

4.2. Overview of the Approach

of the second tree to be compared to. This severely impacts computational costs as sizes of
streams are not known in advance.

4.1.3. Summary

In general, one can say, that each of the stated approximation classes may reduce structural
or content-based information to some extent. Each of those methods calculates some
representation for the original tree with the purpose to reduce computational complexity
while retaining accurate distance values.

Summary-based approximations usually have superior space complexity compared to
the other classes of tree distance approximation. It is even possible to get constant
complexity. However, regarding utilisation in streaming environments, summary-based
methods have several disadvantages. The method itself involves the task of feature selection,
for example determining which statistics are most relevant to represent domain-specific
trees. Possibilities include statistics of structural properties such as fanout, depth, number
of leaves or content-based properties such as relative frequency of labels or attributes.
However, determining such statistics usually requires an offline learning process. Thus,
distance approximation in stream environments is either delayed, or intermediate results
have a small statistical relevance.

Decomposition-based approaches reflect interesting properties such as the incremental
creation of representation while providing appropriate space and time complexity. However,
none of the available methods is directly applicable to dynamic trees in streaming environ-
ments. Still, the general concept of utilising snippets such as trees, graphs, paths, edges, or
vertices can be considered.

Finally, the time series based approximation has some very promising properties, such as
independence from a specific traversal order of vertices. This can be regarded as one of the
key requirements of dynamic trees. However, computational complexity is not suitable for a
streaming model. Furthermore, the utilisation of Fourier transformation causes difficulties
regarding different size of streams as well as differing intervals for traffic and process events
present in our data.

4.2. Overview of the Approach

Analysing static or dynamic trees in streaming environments requires a simple, lightweight
representation to overcome the curse of dimensionality [56] and enable online analysis. Both
classes of trees can be modelled as a sequence of gradually differing fixed states. Thus,
an incremental representation of trees is desirable. In the context of tree distances, this
facilitates a similarly dynamic measure based on differences between states. As repeated
calculation of tree distances for every fixed state is inefficient, the distance measure is also
desired to work incrementally.

Reflecting this, this thesis presents a method using two distinct tasks to enable online
analyses for dynamic trees:

1. A gradual tree decomposition to represent trees via independent elements, suitable for
streaming (see Section 4.4 on page 49).

2. An incremental tree distance measure to build on this representation, converging
towards classical tree distances (see Section 4.5 on page 67).

45

4. Formalisation of Distances for Dynamic Streaming Trees

The separation into two tasks, namely a proper tree representation and a distance defined
on it, simplifies the formalisation and extension of the approach. Tree decomposition is
widely used in literature to facilitate embedding trees into simpler data structures, such
as vectors or sets [59, 100]. Basing the approach on decomposition makes it comparable
with embedding-based distance measures from literature. Separating representation and
distance allows switching to differing approaches as well easily.

Furthermore, each of the two methods allows for different optimisations. Decomposing a
tree to a simpler representation focuses on reducing dimensionality, memory, and processing
requirements while retaining significant features. In contrast, the distance function aims
at maximising the information differentiating trees. Thus, differentiating these methods
allows optimising for specific use cases.

This modular approach is not restricted to the two-step procedure of tree decomposition
and distance measurement. Further methods can be added to extend proposed functionality.
For example, the tree decomposition can be used as a basis for probabilistic sketching [5,
67, 103, 112]. This allows for continued flexibility of the overall approach beyond the use
case described in this thesis.

Graph-based exact distance measures are computation- and memory-intensive. The
well-established TED has a complexity of O(n2), making it unsuitable for stream processing.
Embedding-based methods attempt to remedy this by projecting selected features into a
low-dimensional, often Euclidian space.

Specifically for the embedding of trees, different approaches are available in literature.
Each method summarises different statistics of the trees under consideration to encode
identifying features [59]. For example, the appearances of vertex labels are analysed by
frequency, and the ten most frequent vertex labels are used for the tree embedding. Other
methods are based on tree decomposition, subsequently dividing a tree into smaller parts.

The statistical approaches are not feasible in streaming environments. An embedding
based on statistical analysis requires a repeated update or even replacement of the current
tree embedding to account for changes. Therefore, the complexity of distance calculation is
driven by the number of required changes m and the respective size of the tree n, resulting
in a complexity of O(mn).

Instead, approaches based on tree decomposition allow for an incremental update of the
embedding by focusing on the current changes that are inserted into the tree. Thus, an
incremental distance measurement can be applied to the current change only, enabling a
complexity of O(m).

Based on this discussion, we propose a two-step procedure that distinguishes between the
decomposition-based tree embedding and the actual distance measure. While this approach
is suitable for many use cases, we specifically focus on incremental processing. In specific,
we establish the approach to process dynamic trees in streaming environments.

Figure 4.4 on the facing page gives an overview of the two-step procedure enabling online
analysis of dynamic trees in streaming environments. A tree is decomposed to build an
embedding which approximates relevant features. The distance measurement between trees
is independent of the original trees and only relies on the existing tree embeddings.

4.3. Preliminaries

The work presented in this thesis is focused on labelled, ordered trees. This directly reflects
the use case of describing batch jobs by their process hierarchy. However, unlabelled or

46

4.3. Preliminaries

a

b

d e

c

a

b f

g h

a

b
c

d
e

a

b
f
g

h

Distance

Embedding Embedding

Figure 4.4.: Visualisation of the two-step procedure to approximate distance measurement
for dynamic streaming trees. The visualised approach distinguishes the de-
composition of any given tree to an approximate embedding and the distance
measurement based on the given embeddings. While the decomposition creates
an approximate embedding, the distance measurement calculates exact results.

unordered trees can be trivially converted via arbitrary labelling and ordering. The most
commonly used terms for trees are denoted in Figure 4.5 on the next page in relationship
to a specific vertex. To describe the hierarchical relations between vertices of a tree, we use
a notation commonly used in literature.

4.3.1. Basic Notation

A rooted tree T = (V,E) consists of a finite set of vertices or nodes V (T) and a finite set of
edges E(T). The size of T , meaning the number of vertices in T , |V(T)|, is denoted by |T |.

Each vertex v ∈ V(T) has zero or more child vertices. A vertex is a leaf vertex if it has
no children and an internal vertex otherwise. A vertex that has a child is called the child’s
parent vertex and we denote the parent of vertex v by v. parent. The topmost vertex that
has no parent is the root of T and is denoted by T.root.

The fanout of a vertex v ∈ V(T), denoted as v.deg, is the number of children of v. The
depth of a vertex v ∈ V(T), denoted as v.depth, is the number of edges on the path from v
to T.root. In specific, the depth of the root vertex T.root.depth is 0.

Let T(v) denote the subtree of T rooted at a vertex v ∈ V(T). All vertices w ∈
V(T(v))\{v} are descendants of v. For w ∈ V(T(v)), v is an ancestor of w. In other words,
v lies on the path from w to T.root.

Two vertices u, v ∈ V(T) are siblings if they have the same parent, that is u.parent =
v.parent. A tree T is ordered if any left-to-right order among the siblings is given. For
an ordered tree T with root v and children v1, . . . , vi, the level-order of T(v) is obtained
by visiting v and then visiting v1, . . . , vi. A list of vertices u ∈ V(T) is created by adding
all children of visited vertices in order. The vertices in u are visited in order while still
appending children to the list.

A list of vertices preceding a vertex v in level-order is obtained by v. level. The level-
order number of a vertex v ∈ V(T) is the number of vertices preceding v in the level-
order traversal of T , and is given by |v. level |. To refer to the position of w among the
children of T(w. parent), we define w.pos for convenience, that is the level-order number
of w ∈ V(T(w. parent)). The vertices to the left of w ∈ V(T) form the list of vertices
u ∈ V(T(w. parent)) such that u.pos(u) < w.pos. Furthermore, we assume total ordering:
if u is to the left of w then w is to the right of u.

We assume throughout this thesis that labels assigned to vertices, denoted by v. lbl, are

47

4. Formalisation of Distances for Dynamic Streaming Trees

... ...

Root

Parent

Vertex

Children

Left Siblings Right Siblings

Leaves

Figure 4.5.: Components of a tree in relation to a given vertex. The descendants of the
vertex are called its children. All vertices that have no children are called leaf
vertices. The direct ancestor of the vertex is its parent. The vertex without a
parent is called the root vertex. The vertices to the left und right of a given
vertex are called siblings.

1 1

2

1

2 3

1

2 3

4 5 6

1

2 3

5 6

1

2 3

6

T1 T2 T3 T6 T7 T8...

Figure 4.6.: A dynamic tree T with is sequence of snapshots T1, . . . , T8. The labelled
vertices represent the same vertex in each snapshot Ti ∈ T .

chosen from a finite alphabet Σ. Furthermore, let λ /∈ Σ denote a special blank symbol.
and define Σλ = Σ ∪ λ.

4.3.2. Dynamic Trees

Entities represented via trees are not necessarily static, requiring the trees to change their
structure. This change includes the insertion or removal of vertices or the modification of
a vertex’s attribute. We call a tree which evolves over time a dynamic tree. The terms
temporal tree or evolving tree are commonly used in literature as well. For better distinction,
we denote a tree that does not change as static tree.

Definition 4.1 (Dynamic Tree). A dynamic tree T = (T1, . . . , Tn) is a sequence of static
trees Ti = (Vi, Ei), with every Ti representing the state of T at a given moment i.

For a given dynamic tree T = (T1, . . . , Tn) such as the one in Figure 4.6 we call each single
tree in the sequence a snapshot of T and write |T | to denote the number of snapshots in
T . The difference between two snapshots can be expressed by a number of edit operations.
These edit operations transform one snapshot into the other.

48

4.4. Decomposition-Based Tree Embeddings

In this thesis, we differentiate three atomic edit operations: the insertion, removal, and
modification of objects. Without loss of generality, we limit the set of possible objects
onto which an edit operation can be applied on, to the set of vertices of a tree T , that is
V(T) ∪∅. Thus, we differentiate three atomic edit operations that only affect vertices and
their attributes:

1. the insertion of a new vertex v: ∅→ v,

2. the removal of a vertex v: v → ∅, and

3. the modification of an attribute an of a vertex v: an → ãn,

where ∅ denotes an empty vertex. However, the same operations are in principle applicable
to edges as well.

Other approaches in the context of edit distances, both for string [68, 210] and tree
edit distances [94], also include move operations. This additional operation relaxes the
underlying problem of aligning objects with each other. However, those methods still face
the challenge of dealing with nontrivial alignments. An explicit move operation is excluded
in this work but corresponds to the removal and insertion of the specific vertex.

Any two snapshots can be related to a finite number of edit operations. Throughout this
thesis, we assume the sequence of snapshots to be complete: any snapshot Ti differs from
Ti−1 and Ti+1 by exactly one edit operation. This creates a symmetry between dynamic
trees and tree streams: The sequence of snapshots of a dynamic tree corresponds to the
stream of operations building a tree.

4.4. Decomposition-Based Tree Embeddings

Incrementally processing trees in streaming environments requires us not to consider the
entire tree. This lends itself to the usage of decomposition methods: instead of operating
on the entire tree, the tree is decomposed into smaller entities of which only few must
be processed at any time. Given our use case, we decompose trees both structurally and
temporally into the currently active elements at the granularity of individual vertices.

Decomposing trees allows the use of embedding techniques: elements from the tree are
embedded into a simpler data structure. The semantics of translating a position in the tree
to the embedding are tuned to preserve relevant information of the tree structure. At the
same time, the simplicity of the data structure itself allows for more efficient operations.

In this Section, we take an abstract approach to embedding. The focus is not on any
implementation, but a formalisation suitable to select specific techniques as required by
individual use cases.

4.4.1. Vertex Identities

Tree decomposition must target the lowest common denominator of trees to make it
meaningful and comparable: atomic edit operations. This is adequate for both dynamic
and static trees, with the latter being restricted to creation of vertices. To compare two
edit operations, we compare their type and subject, namely the vertex being edited. While
the type of edit operation is trivial to compare, the vertex is not.

Comparing vertices requires knowledge about each vertex’ defining features and location
in the tree. With the goal of vertex-based decomposition, we restrict the description of the

49

4. Formalisation of Distances for Dynamic Streaming Trees

latter to a limited neighbourhood of the vertex. In general, we call the defining features
and neighbourhood, or context, of the vertex the vertex’ identity.

Definition 4.2 (Identity). The identity Id(v) of a vertex v ∈ V(T) encodes a collection of
characteristics of the vertex’ context within the tree T as well as significant attributes of v.

Example 4.3 (Identity). Suppose the sequence of relevant features are a vertex’ label
as well as the labels of its parent, and its left and right sibling. Consider a root vertex a
labelled a with children b, c, d, e, and f labelled likewise. Exemplarily for the two vertices
a and d, this results in the identities Id(a) = (a,∅,∅,∅) and Id(d) = (d, a, c, e).

Property 4.4 (Finite Number of Identities). Let the label of a vertex v ∈ V(T) be the
defining feature of its identity Id(v). Based on the assumption that labels are chosen from
a finite alphabet Σλ (compare Section 4.3.1 on page 47) and a finite number of attributes
to encode it follows that the number of distinct identities A = {Id(u) |u ∈ V(T)} with |A|
is also finite.

The practical decision of what constitutes the relevant features and context of a vertex
strongly depends on the use case. It is worth pointing out that the identity of a vertex is
not necessarily unique in a tree. Since the context is limited to a subset of the tree, multiple
vertices within the same tree can result in the same identity.

Further discussions are largely independent of the actual choice of an identity. Thus, to
represent an abstract identity, we borrow the bra-ket notation [77] used in physics. We
adopt this notation for brevity, without attempting to replicate the complete underlying
mathematical rule set. For any given vertex v, we define its identity Id as Id(v) = |v〉.
Furthermore, we define the similarity of two vertices v, w based on their identity as their
projection 〈v|w〉. Based on the concept of an identity for the vertices of a tree, we derive a
representation of an entire tree T by its collection of identities.

4.4.2. Identity Profiles for Trees

A tree T is composed of its set of edges E(T) and vertices V(T). Thus, from the given
projection of vertex identities, we can derive a representation of an entire tree T . This
representation acts as the identity profile of the tree.

Definition 4.5 (Identity Profile). The identity profile Id(T) of a tree T is a collection
({. . .}) of the tree vertex identities, i.e. Id(T) = ({Id(v) | v ∈ V(T)}).

Although the identity profile does not contain explicit information on edges of the tree,
it implicitly covers relevant information by including the vertex’ context. Depending on the
choice of context, for example, coverage of child and parent vertices, the vertex hierarchy
defined by edges is covered appropriately.

Reflecting the notation for vertices, we introduce an abstract identity profile

Id(T) = |T 〉 = |v〉v∈V(T).

This representation of identity profiles relies on the following observation.

Property 4.6. Let T be a tree with an associated identity profile |T 〉. If a new leaf vertex
u is attached to a vertex v ∈ V(T) resulting in a new tree T ′ then |T ′〉 = |T 〉+ |v〉.

50

4.4. Decomposition-Based Tree Embeddings

The Property 4.6 on the facing page states that existing identity profiles are not altered
when new leaf vertices are added to a tree. This is because a new leaf vertex can never
change existing ancestor-descendant dependency in the tree. It enables us to build identity
profiles and thus naturally support dynamic trees incrementally.

Given a dynamic tree T = (T0, T1, . . . , Tn) with V(T0) = ∅ we define the identity profile
of a sequence of vertex identities given by the sequence of n edit operations, namely

Id(T) = |T 〉 = |V(Ti) \V(Ti−1)〉Ti∈T , with i≥1.

The application of identities and identity profiles to streaming or dynamic environments
adds requirements and restrictions that need to be considered.

4.4.3. Identities and Identity Profiles in Streaming Environments

Performing a tree decomposition in streaming environments to create identities and identity
profiles raises several challenges: a) While dynamic trees naturally translate to streaming
environments, static trees explicitly need to be serialised; b) the context of a vertex accessible
to define its identity is restricted by the stream order as well as memory requirements;
c) the independence of single decomposition operations is required to provide identities in a
stream for related steps of a multi-step procedure. In the following, these requirements are
addressed in detail.

Independence of Tree Decomposition Operations

To support a multi-step procedure that enables online analysis, each step needs to provide
fast turnaround times while minimising information overhead for the next steps. Thus, we
define the input and output for each step to be a stream or minimised stream of events.
Each of these events must be independent of distant preceding and succeeding events.
Ideally, each step of the procedure relies on a single input event only. This enables compact
utilisation of memory of O(1) and guarantees single-pass algorithms. However, relaxing
this to fixed length buffer or sketch of events still provides adequate memory complexity.

In turn, this means that individual events generated during tree decomposition remain
independent from other events outside of a small window. Thus, individual identities must
be built only from the content of an event itself, and few neighbouring events. Furthermore,
stream processing allows only for look behind but not look ahead of events – future events
may be delayed arbitrarily.

Tree Event Stream Representation

Processing dynamic trees in streaming environments follows naturally from basing the
decomposition on the sequence of edit operations and their related vertices (compare
Section 4.4.2 on the preceding page). By contrast, the stream processing of static trees
is not defined unambiguously; the tree can be processed as a whole, or in slices of any
sequence of its vertices. To preserve the analogy to dynamic trees, we represent static trees
as a sequence of atomic edit operations on vertices.

To define the sequence of edit operations for static trees, we consider common tree
traversal methods. Traversal methods can be differentiated into depth-first traversal
implementing in-order, pre-order, or post-order approaches, breadth-first or level-order
traversal, and various hybrid traversal methods [145]. Tree decomposition-based approaches

51

4. Formalisation of Distances for Dynamic Streaming Trees

in literature mainly utilise pre-order traversal [17, 18, 94, 156]. While pre-order traversal is
used abundantly in literature, the support of arbitrary order is to the best of our knowledge
only considered by Flesca et al. [89]. Furthermore, underlying algorithms strictly require
the given order of a specific traversal method, as distance results are undefined otherwise.

To accompany this issue and equally handle both dynamic and static trees, we consider
any tree as an arbitrary sequence of its vertices being inserted, removed, or changed. This
implies support of any tree representable as a stream of events that arrives sequentially. As
a result, the formalisation presented here allows to abstract from classes, types as well as
most traversal methods of trees. We define the tree event stream representation on any tree
T with a specific traversal order of vertices σ:

Definition 4.7 (Tree event stream representation). The tree event stream representation
S(T) is a sequence of n tree events (e1, . . . , en) given by the traversal order σon the set of
vertices V(T), that is

S(T) = (e)v∈σ(V(T)),

where ei is a collection describing an edit operation and the vertex subject to it.

It is important to point out that σ is restricted by consistency of the tree. For example,
it is not possible to add a vertex before its parent vertex is inserted into the tree event
stream representation. This implicitly excludes orderings incompatible with specific trees,
such as post-order traversal for trees of infinite depth.

Each tree event ei provides at least the type of event, the subject vertex as well as a
reference to the subject’s parent to deduce the position in the tree. Besides this structural
information required for tree reconstruction, each tree event may contain further information
depending on each use case. For example, an attribute value of a tree event can contain
information on the timestamp when the event took place. Although each tree event is
guaranteed to be independent, the information of the event stream as a whole is sufficient
to reconstruct the original tree T from S(T).

Definition 4.8 (Tree Event). The tree event ei ∈ S(T) is a tuple that holds the following
information:

1. the type of edit operation,

2. a description that maps the event explicitly to a distinct object and position in tree
T , and

3. an arbitrary number of value attributes a.

Thus, a tree event ei is given by (type, description, a1, . . . , an).

Representing Static Trees as Insertion-Only Trees As a simplification, static trees can
be interpreted as the insertion of all vertices. Thus, the number of atomic edit operations
can be reduced to one, leaving the insertion of a vertex as the only valid edit operation.
For each vertex v ∈ V(T), a single event e is appended to the event stream.

Definition 4.9 (Simple tree event stream representation). The simple tree event stream
representation Ssimple(T) is a sequence of tree events that extends the definition of tree
event stream representation and defines the set of possible events as ei ∈ {estart}. For the
simple tree event stream representation Ssimple the following condition holds:

52

4.4. Decomposition-Based Tree Embeddings

1. estarti .node = estartj .node.parent⇒ i < j.

This definition ensures that each vertex v ∈ V(T) is present before the vertices of its
subtree u ∈ V (T (v)) \ {v} are attached to it. However, it does not guarantee that children
follow directly after their parent or their siblings. The tree may grow concurrently at
arbitrary branches.

Example 4.10. A tree T contains a number of vertices v ∈ V(T), where each vertex
includes a timestamp t. An arbitrary order based on the timestamp t can be used to
determine the event stream representation Ssimple(T). Therefore, the timestamp t is used
as the order of Ssimple(T)

Ssimple(T) = (e = v)v∈σ(V(T)), en+1.t ≥ en.t.

Representing Dynamic Trees Dynamic trees are not only created via insertion but can
also change over time. New vertices may be inserted, and existing vertices may be removed
at any time from each branch. In addition, values of attributes of existing vertices may be
changed at any time. Therefore, the tree event stream representation for dynamic trees
supports all three edit operations as events: a) the insertion of a vertex estart, b) the removal
of a vertex eend, and c) the change of an attribute value of a vertex eattrib. A pair of start
event estart(v) and end event eend(v) for a vertex v marks its lifetime.

While the order between unconnected vertex events is still arbitrary, the order σ must
fulfil additional constraints for consistency to be guaranteed. Specifically, vertices may only
be inserted after their left siblings and after their parents. While siblings can be removed
independently, all child vertices must be removed before their parent. Also, only attributes
of currently existing vertices may change.

Definition 4.11 (Dynamic Tree Event Stream Representation). The dynamic tree event
stream representation Sdynamic(T) is a sequence of events that extends the definition of
simple tree event stream representation and defines the set of possible events as ei ∈
{estart, eend, eattrib}. For the tree event stream representation Sdynamic following conditions
hold:

1. all conditions from simple tree event stream representation

2. estarti .node = eendj .node⇒ i < j

3. eendi .node = eendj .node.parent⇒ i < j

4. estarti .node = eattribj .node⇒ i < j

5. eattribi .node = eendj .node⇒ i < j

As such, the dynamic tree event stream representation forms a superset of the simple
tree event stream representation. In the following we assume each tree T to be available in
one of the available types of tree event stream representations S(T).

53

4. Formalisation of Distances for Dynamic Streaming Trees

Identity Dimensions

The choice of a vertex’ context determining its identity is limited in streaming environments.
A vertex must be identifiable as it occurs in the stream, which is notably before any children
are known. Furthermore, stream processing requires memory consumption to be limited.
Thus only a limited history of the stream can be kept, preventing extensive backtracking.

Trivially considering a vertex v ∈ V(T) isolated from the original tree T discards all
tree-relevant structural features. Hence, we choose the context of all vertices in a set of well-
defined dimensions around each vertex. Ideally, dimensions represent orthogonal features of
the tree. The identity of a vertex then only depends on vertices in these dimensions. The
choice of the type and extent of these dimensions defines the precision of the identification.

The use of semi-structured data obviously marks the hierarchy as a notable feature.
While the descendants of a vertex are not accessible in a stream, the ancestry is fully
available. We, therefore, differentiate two independent dimensions that reflect the ancestry
of a vertex:

1. The parents P(v) of a vertex v specify the vertex’ global position in the hierarchy,
and

2. the left siblings Q(v) of a vertex v address information about the local context.

Definition 4.12 (Order of parents). Let T be a tree and a vertex v ∈ V(T). The first
order parent u ∈ V(T) of v is the direct parent of v, that is u = v. parent. Generalising
this, the n’th order parent is therefore given by

p1(v) = {u |u ∈ T, u = v. parent}
pn(v) = {u |u ∈ T, u = pn−1(v).parent} (4.1)

Definition 4.13 (Order of siblings). Let T be a tree and a vertex v ∈ V(T). The first order
left sibling u of v is the direct sibling to the left with u. level = v. level−1. Generalising
this, the n’th order left sibling is therefore given by

qn(v) = {u |u ∈ T (v. parent) ∧ u. level = v. level−n}, (4.2)

where the same definition can also be used for right siblings by using n < 0.

Furthermore, the evolution over time given by the tree event stream representation as a
whole defines another dimension of a vertex’ ancestry. This adds a layer of concurrency, as
it describes the change on multiple branches. We utilise a dimension to reflect the sequence
of edit operations:

3. The events S(v) preceding a vertex v in the tree event stream reflect the concurrent
context.

Definition 4.14 (Order of stream events). Let S(T) = (e1, . . . , ek) be an event stream of
a dynamic tree T at time k, that is k = |T |. The first order stream event is the last known
event e at time k − 1. Generalising this, the n’th order stream event is, therefore, given by

sn = {e | e ∈ S(Tk), e = ek−n}. (4.3)

Notably, each of these dimensions is oriented towards the history of the tree event stream.
It is thus safe to define the context of vertices as the extents P i,Qj ,Sk in each dimension
P,Q,S. Based on this, we define the abstract identity of each single vertex v ∈ T as
|P(v),Q(v),S(v),V(v)〉.

54

4.4. Decomposition-Based Tree Embeddings

4.4.4. Embedding Trees by Encoding Vertex Identities

There are three clearly distinguishable variants of the extent of each category P, Q, and
S: An extent of 0 excludes a dimension entirely. An upper bound of n ∈ N for the extent
limits the dimension to a strictly confined neighbourhood. An unbounded extent includes
the entire ancestry in a specific dimension.

Logically, the unbounded extent is an extreme limit of bounded extents. However, the
two can be treated differently from an algorithmic point of view, and exhibit different fringe
effects on identities.

Fixed-Length Encoding of Identities

For each of the given identity dimensions we can define an identity class with bounded
length. We exemplary define an identity class on P dimension, that is

Idpn(v) = |Pp(v),Q(v) = ∅,S(v) = ∅,V(v)〉
Pp(v) = |p1(v), . . . , pp(v)〉, (4.4)

where p is the length of the path encoded in the identity.
A combined identity class uses several dimensions to build the identity of a vertex. For

example, this allows us to directly express the pq-gram approach proposed by Augsten,
Böhlen, and Gamper [21]. The authors employ a fixed-length encoding to define sub-tree
patterns for tree decomposition: For each vertex, a fixed extent in P and the children of
the vertex are considered. However, considering children as one dimension is not suitable
for streaming environments, where children may occur at an arbitrary time after their
parent. Thus, the approach of pq-grams is applicable neither to streaming environments
nor dynamic trees. In the following, we demonstrate how the classical pq-grams can be
adapted with the proposed formalisation to become suitable to streaming environments
and dynamic trees.

Dynamic pq-grams The pq-gram approaches proposed in literature are not suitable to
generate vertex identities on streams or dynamic trees. An inherent characteristic of the
approach is the encoding of children for a given anchor vertex. However, in a streaming
environment children for a given vertex are not known until each child vertex has occurred.
Furthermore, a stream does not provide ahead of time the number of children to arrive, if
any. Thus, the identity of a vertex is only well-defined after it has ended.

To enable pq-grams for dynamic trees, the context of the anchor vertex needs to be
redefined. The original approach defines p− 1 parents and q children as the context of the
anchor vertex, as shown in Figure 4.7 on the following page. Our approach for dynamic
pq-grams requires the anchor vertex to be the latest vertex of its context, which is defined
by p parent vertices and q − 1 left sibling vertices. Thus, the anchor vertex is shifted from
vertex b to vertex e.

The classical pq-gram identity is subject to fringe effects. For example, on a specific
layer, the leftmost vertex is part of only one pq-gram, whereas a center vertex is part of up
to p pq-grams. To ensure the number of appearances for each vertex is not distorted by
generated pq-grams, the authors introduce the pq-extended tree, which includes additional
dummy vertices. This can be adapted to the representation of trees for dynamic pq-grams.

Definition 4.15 (Dynamic pq-extended tree [see 21, Definition 4.1 (pq-Extended Tree)]).
Let T be a tree, and p, q ∈ N > 0. The dynamic pq-extended tree, T pq, is constructed from

55

4. Formalisation of Distances for Dynamic Streaming Trees

a

b

c d e Anchor node

Classical anchor node
p parent nodes

q − 1 sibling nodes

Figure 4.7.: Visualisation of dynamic pq-grams compared to original pq-grams. The original
pq-gram approach uses the vertex denoted as classical anchor vertex to define
pq-grams by accessing p − 1 parent vertices and q child vertices. Dynamic
pq-grams use the vertex denoted anchor vertex to specify the subtree structure
by referencing p parent vertices and q − 1 sibling nodes. Hence, dynamic
pq-grams fulfil the condition to only access objects that are already known.
That makes dynamic pq-grams feasible for streaming environments.

T by adding p ancestors to the root vertex, inserting q − 1 vertices before any vertex that
has no left siblings, inserting q − 1 vertices after any vertex that has no right siblings, and
adding q children to each leaf of T . All newly inserted vertices are dummy vertices that do
not occur in T .

The choice of the anchor vertex ensures that dimensions are well defined as soon as
an identity is needed. Adding virtual dummy vertices to the tree guarantees that each
dimension extends sufficiently to match each real vertex equally often. In this context, we
can define the dynamic pq-gram reliably.

Definition 4.16 (Dynamic pq-gram identity). Let G be a dynamic pq-gram with anchor
vertex v ∈ V(G). The dynamic pq-gram identity is defined as

Idpq(v) : = |Pp(v),Qq(v),S(v) = ∅,V(v)〉
Pp(v) = |p1(v), . . . , pp(v)〉
Qq(v) = |q1(v), . . . , qq(v)〉, (4.5)

where pp(v) denotes to the p’th order parent and qq(v) denotes the q’th order left sibling.

This makes the identity for dynamic pq-grams dependent only on a small context around
each vertex. As such, it is suitable for stream processing, requiring only a well-defined
neighbourhood around each vertex. However, it excludes any long and medium range effects.
Every information outside its immediate neighbourhood is ignored for a vertex.

Definition 4.17 (Dynamic pq-gram identity profile [see 21, Definition 4.5 (pq-Gram
Profile)]). Let T pq be the dynamic pq-extended tree of a tree T and Ssimple(T pq) the
respective tree event stream representation. The dynamic pq-gram identity profile |T 〉 of T
is defined as a multiset of all identities, that is

|T 〉 =
∑

e∈Snested(Tpq)

Idpq(e.node). (4.6)

56

4.4. Decomposition-Based Tree Embeddings

Following this definition, for each vertex that is appended to the tree, a new identity
is generated. Each of those identities is appended to the current identity profile. As the
identity profile is a collection of identities, the expansion of the identity profile can also be
done in an incremental manner.

Complexity Given Property 4.4 on page 50 the upper bound of space complexity for
finite-length encoding of identities is linear regarding the size of the tree event stream
representation of a given tree.

Proof. Let m be the size of the tree event stream representation of a given tree T , with
m = |S(T)|. For each event e ∈ S(T) an identity Id is generated. Thus, in the worst case
each identity Id is assigned to exactly one event e:

|S(T)| ≥ 〈T |T 〉.

Thus, the upper bound for space complexity for finite-length encoding strategies isO(m).

However, the linear complexity is only worst case consideration for a fanout f with f = 1,
which is not expected to be common in tree-structured data.

Theorem 4.18. Given a streaming environment with possibly infinite trees and a fanout
f > 1, space complexity for fixed length encoding is constant regarding the given identity
alphabet A, that is O(|A|).

To proof this statement, we exemplarily make the following assumptions:

Assumption 4.19. The identity class in use is Idp thus P dimension is encoded at a fixed
length p.

Assumption 4.20. The defining property of the identity is a vertex’ label only.

Assumption 4.21. The labels of vertices are uniformly distributed.

Assumption 4.22. The tree event stream representation in use is simple tree event stream
representation, thus for each vertex one event is processed.

Proof. Let f be the fanout of a tree T and A be the set of appropriate identities. The
probability p to get a specific identity a ∈ A from the tree event stream representation is
given by p = 1

|A| . Thus, the probability to not get this specific identity is |A|−1
|A| . Over the

entire fanout f , the probability pf to not include a specific identity is given by

pf (a) = 1−
(
|A| − 1

|A|

)f

. (4.7)

From this, the expectation value over all a ∈ A can be derived as

E[Fi] =
∑
a∈A

pfi(a). (4.8)

The expectation value represents the expected number Fi of unique identities, when selecting
fi identities from A. This represents the number of vertices minus the number of collisions

57

4. Formalisation of Distances for Dynamic Streaming Trees

within a given branch in the tree. Based on the number of unique identities, the compression
c can be calculated as

ci =
Fi

fi
. (4.9)

For each collision in a branch, the effective fanout for the descendants is increased due to
merging of subtrees. For example, a collision of two identities results in an increased local
fanout fi = 2f . The local fanout fi can be derived recursively as

f0 = f0

fi =
f

ci−1
=

fi−1f

Fi−1
. (4.10)

To derive the limits of the given behaviour, we evaluate border cases to show space
complexity. First, we consider the expectation value for the number of unique identities:

E[Fi] = |A|

(
1−

(
|A| − 1

|A|

)fi
){

1 if fi → 1

|A| if fi →∞
(4.11)

Notably, it follows that E[Fi] ≤ |A| and E(Fi) ≤ fi; the worst case of equality is given only
for |A| = 1 or fi = 1, respectively.

Finally, we consider the limits of the local fanout of the following branch, that is

fi =
fi−1f

Fi−1

{
1 if f → 1

∞ if f →∞.
(4.12)

Since Fi−1 is bounded, for a sufficiently deep tree we arrive at fi ∝ f i ∝ |T |. In general, by
the pigeonhole principle [107] the probability to get a collision reaches 1 whenever fi > |A|.
In practice, this means that as the depth of the tree increases, the chance of picking an
unused identity from A approaches 0. Consequently, we have a constant complexity for
space, that is O(|A|).

The space complexity of identities of fixed-length encoding strategy is constant regarding
the size of the alphabet of identities. This is due to the alphabet of identities forming an
upper bound on the number of distinct vertices. However, this means that the information
available from an identity profile of identities is bounded as well. In effect, this means the
benefit of complexity comes at the cost of sensitivity.

Diamonds in Tree Embeddings The classical pq-gram approach measures the similarity
of two trees by determining the number of overlapping pq-grams. The discriminating
feature is, therefore, the identity of each single sub-tree independent from its position in
the tree. This lack of position is a severe contrast to our assumption that the hierarchy
of vertices is a defining feature (see Section 3.2.1 on page 29). Thus, we have studied the
pq-grams with respect to the implications of their limited hierarchical information for our
specific use case.

The choice of parameters is integral to balance the expressiveness of the local vertex
context against the cost of buffering a large neighbourhood. Identifying vertices with only
a small context carries the risk of mapping distinct positions across the tree to the same
identity. While this can be advantageous to find small similarities in distinct hierarchies,

58

4.4. Decomposition-Based Tree Embeddings

a

b

c

1

3

c

1

3 4

d

(a) Example tree

Tree Layer Dynamic pq-grams

1 (∗, ∗, a)
2 (a, ∗, b), (a, b, c)
3 (b, ∗, c), (c, ∗, 1), (c, 1, d)
4 (c, ∗, 1), (1, ∗, 3), (1, 3, 4)
5 (1, ∗, 3)

(b) Generated dynamic pq-grams per tree
layer for p = 1 and q = 2

a

b

c

1

3 4

c

d

(c) Projection based
on generated dy-
namic pq-grams

Figure 4.8.: Visualisation of the diamond-building process by applying dynamic pq-grams.
The example is based on an example tree given in Figure 4.8a. Figure 4.8b lists
relevant dynamic pq-grams that are created with configuration p = 1 and q = 2.
Calculated dynamic pq-grams that contain dummy vertices are excluded from
the visualisation for simplicity. Based on those dynamic pq-grams, Figure 4.8c
visualises the appropriate projection. The vertex labelled with 1 constitutes a
diamond. The visualisation of this projection reveals, that the vertices labelled
2, 3 and 4 cannot be associated unambiguously to their affiliated parent branch.
Thus, distance functions based on this embedding calculate distorted results.

it sacrifices information required to compare extended hierarchies. Improperly mapped
identities can create tree embeddings that distort tree distances. This distortion can either
result in trees that are considered more similar than expected or more distant than expected.

The increased similarity of tree embeddings for distinct trees is a result of the tree
decomposition approach itself. If the decomposition of a tree is improperly chosen, distinct
parts of the tree result in an identical representation even though representing distinct
features of the tree. This effect hereinafter called the diamond-building characteristic,
occurs for several decomposition methods; since our use case relies on hierarchical data, this
effect cannot be neglected. In the following, we analyse this diamond-building characteristic
and deduce embedding approaches for static and dynamic trees that minimise this negative
impact.

Decomposition methods which consider a specific number of vertices, for example, a fixed
number of parent or child vertices, to describe the local context of a vertex are vulnerable
to distortions. Let us consider the dynamic pq-grams for example. Its parameters p and q
define a context around each vertex, which can be interpreted as a shape of subtrees the
tree is decomposed to. Each vertex v ∈ V(T) is identified by a collection of such subtrees,
which contain p parent vertices as well as q children vertices around v. Depending on
the parameters of the subtree shape, the logical representation of several subtrees may
form diamonds. A diamond constitutes a vertex that has more than one parents, that is
an undirected cycle. This representation, therefore, translates back to a Directed Acyclic
Graph (DAG) instead of a tree.

Figure 4.8 visualises this diamond-building effect. The example considers dynamic pq-
grams for tree decomposition with configured parameters p = 1 and q = 1. Figure 4.8b on

59

4. Formalisation of Distances for Dynamic Streaming Trees

the preceding page shows the corresponding snippets in breadth-first order. Both vertices
labelled with 3 encode the same parent vertex. When reconstructing the graph from its
logical representation, the original parent cannot be unambiguously determined. Therefore,
only a diamond structure resolves the information contained in the decomposition (compare
Figure 4.8c on the previous page).

Example 4.23. Consider the vertex labelled 4 from Figure 4.8c on the preceding page.
The vertex is a descendant of a diamond that is located in the vertex labelled 1. There
are two choices to which parent branch it might belong to; either to the branch identified
by the paths [a, b, c, 1] or [a, c, 1]. Thus, there can be different trees resulting in the same
logical representation for their given tree embeddings. This, in turn, results in a higher
similarity for trees featuring either possibility.

Definition 4.24 (Diamond). A diamond at a given path length n is defined by two vertices
u, v ∈ V(T) that share the same identities in |Pn〉 but differ in |Pn+1〉, that is

dia(v, T) = {u | Pn(v) = Pn(u) ∧ Pn+1(v) 6= Pn+1(u)}, ∀u ∈ V(T), (4.13)

where Pn(v) is the sequence of n parent vertices of vertex v.

This definition holds true for all identities that are generated using tree decomposition
methods. The above definition specifically focuses on the parent-child relationship |Pn〉
within trees. This is a special case for our current considerations regarding dynamic pq-
grams. In general, diamonds can have an effect on any identity using bounded extents of
dimensions. Without loss of generality, we concentrate on the more specific Definition 4.24
in |P〉 and showcase its consequences regarding dynamic pq-grams.

Example 4.25. Based on Figure 4.8a on the preceding page, we show the application of
dynamic pq-grams. For simplicity, the value of q is fixed to 1, excluding any sibling vertices.
Given this, the following identities are generated for the vertices u, v ∈ V(T) for p = 1, 2, 3:

P1(v) = |"1"〉, P1(u) = |"1"〉 ⇔ P1(v) = P1(u)

P2(v) = |"1", "c"〉, P2(u) = |"1", "c"〉 ⇔ P2(v) = P2(u)

P3(v) = |"1", "c", "b"〉, P3(u) = |"1", "c", "a"〉 ⇔ P3(v) 6= P3(u)

For the given tree the application of dynamic pq-grams with p = 0 or p = 1 will result in
identities creating a diamond, dia(u, T) = dia(v, T). A choice of p ≥ 3 is required to avoid
diamonds.

Overlapping Diamonds A diamond is the consequence of two distinct vertices sharing
the same identity. Extending on this, it is possible for several diamonds to overlap if
multiple distinct vertices share the same identity. Overlapping diamonds, in turn, amplify
the bias of the resulting distance approximation.

Therefore, to determine the bias that a diamond may induce for the calculated distance
value, the level of a diamond needs to be considered. We define the level of a diamond as
the number of initially distinct vertices that are merged into the diamond.

Definition 4.26 (Level of a Diamond). The level of a diamond Ldiamond(v, T) is defined
by the number of vertices |u| ∈ dia(v, T) \ {v} that share the identity of v in |Pn〉, that is

Ldiamond(v, T) = max(0, | dia(v, T)| − 1), (4.14)

where max is a function that returns the maximum of the given values.

60

4.4. Decomposition-Based Tree Embeddings

a

b

c

c

1

3 4

a

b c

c

1

3 4

a

b c

c

1

3 4

Logical Projection

pq: 0

TED: 4

Figure 4.9.: Comparison of Tree Edit Distance and pq-gram distance. The pq-gram distance
recognises both trees as equivalent. The reason for this is visualised in the
logical projection. It can be seen that a diamond is created in the vertex
labelled 1. However, minimum number of edit operations regarding Tree Edit
Distance is 4. Consequently, diamonds cause trees to be recognised as more
similar than expected.

Following this definition, a diamond with level 1 is built from two distinct vertices that
share the same identity. Each further vertex that maps to the same identity that caused
the diamond-building process increases the diamond level by one.

Impact of Diamonds The occurrence of diamonds has several implications on the
accuracy of tree representations: First, the encoding of tree sub-structures from different
positions within the tree is not distinct. This results in higher similarity for trees with
differing hierarchical features but similar tree sub-structures. Figure 4.9 visualises this
feature. Although the TED suggests a distance of 4, the resulting distance based on given
dynamic pq-gram is 0. Second, descending vertices of a diamond might unintentionally
be associated to the wrong branch. This allows for sub-structures to be mixed across
branches. This is visualised in Figure 4.8 on page 59. The vertex labelled 4 in Figure 4.8a is
unambiguously related to the path [a, c, 1]. After a projection utilising dynamic pq-grams
(see Figure 4.8c), the vertex is a descendant of the diamond in vertex labelled 1. Therefore,
the relation to its initial branch is no longer possible. Instead, the vertex is either related
to the path [a, b, c, 1] or [a, c, 1].

A diamond is the result of a collision of identities from distinct branches. The child
vertices of the diamond are the child vertices of each distinct branch. This means that
each child of a diamond can be considered a second-degree child of every parent branch.
Following this, the distortion grows linearly with both the number of vertices within subtrees
of a diamond and the number of parent branches.

For each diamond {v |Ldiamond(v, T) > 0}, ∀v ∈ V(T), the vertices of its subtree V(T(v))
cannot unambiguously be attributed to the correct parent branch. As a worst case estimate,
we can consider all vertices of the subtree, that is |V(T(v))|, as wrongly assigned to a

61

4. Formalisation of Distances for Dynamic Streaming Trees

0.00

0.25

0.50

0.75

0e+00 5e+04 1e+05

Tree Size

V
er

ti
ce

s
in

D
ia

m
on

ds
/

T
re

e
Si

ze

(a) Proportion of vertices that create diamonds

0.0

0.5

1.0

1.5

0 25 50 75

Diamond Count

R
el

at
iv

e
Id

en
ti

ty
P

ro
fil

e
D

is
to

rt
io

n

p
1
2
3
4
5

(b) Relative distortion for varying number of
diamonds

Figure 4.10.: The Figures 4.10a to 4.10b on this page show the influence of diamonds for
dynamic pq-grams for different values of p, p = 1, . . . , 5. The value of q is fixed
to 1 to specifically analyse the influence of p on the diamond creation process.
The analysis is applied to batch system jobs from GridKa. For varying sizes
of batch system jobs ten samples are randomly selected. Figure 4.10a on the
left visualises the percentage of vertices of the given batch jobs that create
diamonds for calculated tree projection. Figure 4.10b visualises the relative
distortion caused by the induced diamonds compared to the number of vertices.
The analysis shows, that the influence of diamonds decreases by increasing
the value of p.

parent branch. The number of parent branches corresponds to the number of vertices
forming a diamond, that is Ldiamond(v, T) + 1.

Therefore, the distortion of a tree embedding for a tree T caused by diamonds can be
estimated as

εdiamond(T) =
∑

v∈V(T)

|{w |w ∈ V(T(u)),∀u ∈ dia(v, T) \ {v}}|. (4.15)

This estimation provides an upper bound of the induced distortion to the tree em-
bedding caused by diamonds. It also reflects the distortion caused by nested diamonds.
A nested diamond is a diamond whose vertices V(T(u)), Ldiamond(u, T) > 0 are a sub-
set of vertices of another diamond V(T(v)), Ldiamond(v, T) of a given tree T , that is
V(T(u)) ⊂ V(T(v)), dia(u, T) ∩ dia(v, T) = ∅.

Figure 4.10 visualises the effects of diamonds in the recorded batch job data. This
analysis shows two distinct effects of diamonds concerning our data: First, given sufficiently
large trees, the number of diamonds depends only on p. A significant value of p, compared
to the height of the given tree, allows suppressing the occurrence of diamonds. Second,
the distortion caused by diamonds mostly depends on the number of diamonds. Reducing

62

4.4. Decomposition-Based Tree Embeddings

the distortion requires the suppression of diamonds. Also, large values of p also impose an
upper bound on the distortion.

As shown above, diamonds induce distortion in the tree embeddings and thus also on
the distance calculation. This distortion is linearly dependent on the actual level of the
diamond and promotes similarity between different hierarchies. Therefore, the existence of
diamonds implies an unwanted bias for distance measurement on a large scale but enables
the matching of substructures.

When considering dynamic pq-grams to measure distances between trees, diamonds can
hide veritable differences. The lack of a substructure at one position can be offset by a
similar structure at another position. Excluding this in a non-trivial way without prior
knowledge about the underlying data is impossible. Safe values for p and q can be derived
from a dedicated analysis, but this does not guarantee the absence of diamonds beyond the
analysed dataset. An analysed sample may fail to represent all relevant cases, and data
might evolve over time, especially in streaming environment. Therefore, a repeated analysis
of data is required to limit the existence of diamonds.

Still, the presence of diamonds may provide desirable advantages. Collisions due to
diamonds reduce the number of unique identities. This, in turn, reduces memory utilisation
as only few identities are stored, and a higher multiplicity does not require additional
space. For k = |{dia(v, T) | v ∈ T ∩ Ldiamond(v) > 0}| diamonds memory requirement
is at O(k) whereas a method that prevents diamonds requires memory of O(kl), with
l = max(Ldiamond(v),∀v ∈ V(T)). Thus, the memory requirement is inversely proportional
to the average level of diamonds.

While our use case specifically relies on the entire hierarchy of data, diamonds may be
desirable for partial matching. While collisions inside a tree reduce information, collisions
across two trees reveal matching substructures. This can be desirable if the relevant content
is enclosed in an irrelevant hierarchy [23, 25].

Handling To identify similarities inside trees, an estimate for the scale of similarities is
required. While this approach is limited in sensitivity, its complexity is guaranteed to be
bound. In contrast, to accommodate use cases that rely on the global topology of a tree, it
is necessary to eliminate diamonds entirely by encoding all parents of a vertex. Thus, we
need to derive an identity class that avoids diamond-building effects efficiently.

Infinite-Length Encoding of Identities

Using finite-length encoding of identities, extents of dimensions must be tuned for every
use case. Otherwise, tree decompositions can distort tree structure information, biasing
distances to be more similar. While large extents reduce this effect, they require a large
neighbourhood to be tracked for each vertex.

To remedy this, we propose a recursive encoding strategy that builds the identity of each
vertex from all of its parent vertices. Thus, an identity includes all vertices up to the root
vertex. We call this an infinite-length encoding of a specific identity dimension since it
implies an infinite extent of the corresponding dimension. However, this limit allows for
computational and algorithmical optimisation.

Root Path Encoding In analogy to fixed-length identity classes (see Section 4.4.4 on
page 55), we also propose an infinite-length encoding for any given identity dimensions.

63

4. Formalisation of Distances for Dynamic Streaming Trees

Algorithm 1 Recursive infinite-length identity encoding
Precondition:

v is a vertex which identity is determined, v ∈ V(T)
iu is the identity of u ∈ V(T), where u = v.parent

Postcondition: identity of vertex v

1: function identity(v, iu)
2: if iu 6= ∅ then
3: identity ← new identity(iu, v. lbl)
4: else
5: identity ← new identity(∅, v. lbl)
6: return identity

Again, we exemplary define an identity class on P dimension, which is a special case of
Equation (4.4) as

IdP(v) = |P∞(v),Q(v) = ∅,S(v) = ∅,V(v)〉
P∞(v) = |p1(v), . . . , pk(v)〉, k = v.depth. (4.16)

While logically equivalent to a finite-length encoding of sufficient depth, the infinite-length
encoding strategy is advantageous for calculating identities. Algorithm 1 summarises the
proceeding. To calculate the actual identity of a vertex v ∈ V(T), not all vertices on its
path to the root vertex have to be considered. By recursively encoding the identity of the
parent vertex, considering only the direct parent v.parent of each vertex v is sufficient.
Thus, the identity calculation complexity is reduced to O(1).

In P dimension two vertices v, w ∈ V(T) share the same identity whenever v. lbl = w. lbl
and v. parent = w. parent. This implies lossy compression, but with different features
compared to finite-length identity classes. Most importantly, no diamonds can occur in
an infinite-length dimension (see Section 4.4.4 on page 58). Thus, finite-length encoding
compresses trees with repetitive occurrences of vertices in the same layer of the hierarchy.
As this identity class only considers one dimension, it is insensitive for the order of vertices.
However, applying infinite-length encoding in several dimensions, especially S dimension,
allows for an unbounded number of identities, even if the underlying alphabet of labels is
limited.

Sibling Root Path Encoding In analogy to the dynamic pq-grams approach, we combine
infinite-length encoding in P with finite-length Q:

IdPqq (v) = |P∞(v),Qq(v),S(v) = ∅,V(v)〉
P∞(v) = |p1(v), . . . , pk(v)〉, k = v.depth

Qq(v) = |q1(v), . . . , qq(v)〉, (4.17)

where q is the number of left siblings of v ∈ V(T) to retain for the specified identity class.
This identity class implements a mixture of different characteristics. It imposes a finite-

length ordering of siblings; this can be seen as a well-defined context of short range as
given by q. This emphasises local information, independent from the hierarchy. In contrast,
the infinite-length ordering of parents ensures an absence of diamonds. This minimises
distortion of the hierarchy.

64

4.4. Decomposition-Based Tree Embeddings

Complexity Based on the considerations for constant space complexity for fixed-length
encoding we derive similar space complexities for infinite-length encoding. In general, the
infinite-length encoding also exhibits constant behaviour regarding the alphabet of identities
(compare Section 4.4.4 on page 57). The difference to consider for complexity is the identity
class itself, as it dictates the size of the alphabet of identities.

Given an alphabet of labels Σλ, the maximum alphabet of identities is limited to
|A| ≤ |Σλ|p+q+s, where p, q, and s are the considered lengths of each dimension P , Q, and
S respectively. However, with infinite-length encoding, this limit depends on the structure
of the tree imposing effective limits on each dimension.

Theorem 4.27. Infinite-length encoding schemes in P dimension have space complexity

of O(n
log |Σλ|
log f), meaning that it is sublinear or even constant depending on the fanout f .

Let us consider the following assumptions:

Assumption 4.28. The identity class in use is IdP, with the P dimension encoded up to
the root level.

Assumption 4.29. The tree is a complete tree with a fanout of f .

Proof. Based on the given assumptions, the root-level encoding is bounded by the depth of
the tree. For a complete balanced tree, the depth can be derived as dmax = logf (n+ 1) for
a given number of vertices n = |T |.

|Σλ|dmax = |Σλ|logf (n+1)

= (n+ 1)logf |Σλ|

= (n+ 1)
log |Σλ|
log f (4.18)

By definition, the number of unique identities can never exceed the number of vertices.
Thus, we can derive the space complexity of

O(nf̄) with f̄ = min

(
1,

log |Σλ|
log f

)
.

For all trees with f > |Σλ| space complexity is guaranteed to be sublinear, even if the depth
of the tree is unbounded. As shown in Equation (4.11), even for f < |Σλ| we can expect an
effective label alphabet E[Fi] smaller than f and thus sublinear behaviour.

In reality the frequencies of vertex labels are not uniformly distributed. For our given
use case, where labels are the names of executed processes, few selected labels appear more
frequently than others. Empirical analysis, see Figure 4.11 on the following page shows
that this further improves the expected storage requirements. While for many trees the
alphabet size is constant with an increasing number of vertices of the given trees (compare
Figure 4.11a on the next page) the maximum fanout also grows linearly with the number
of vertices in the tree (compare Figure 4.11b on the following page). Thus, we can expect
even better compression for growing trees.

65

4. Formalisation of Distances for Dynamic Streaming Trees

0

100

200

300

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

Tree Size

A
lp

ha
be

t
Si

ze

1

10

100

Count

(a) Alphabet size for different tree sizes.

0

50000

100000

150000

0e+001e+052e+053e+054e+055e+05

Tree Size

M
ax

im
um

Fa
no

ut

10

100

1000

Count

(b) Maximum fanout for different tree sizes.

Figure 4.11.: Count on number of distinct process names and maximum fanout in a real
HEP use case for different tree sizes. The analysis shows, that the underlying
alphabet is small compared to the number of vertices within a given tree.
Figure 4.11a also shows, that we deal with at least two different classes of
workflows. One class even has a constant alphabet size even for increasing
vertex counts. Analysis of the maximum fanout shows that it is proportional
to the tree size. Thus, good compression ratios can be expected for our given
use case.

4.4.5. Summary

To process trees in a streaming environment, we employ a decomposition-based approach:
Each vertex and its neighbourhood are compressed to an identity, independent of other
vertices. This approach is applicable both to static and dynamic trees.

Instead of choosing an arbitrary neighbourhood, we use well-defined dimensions centred
on each vertex. Thus, all identity classes exhibit similar features, while the extent of the
neighbourhood in each dimension can be adjusted as required. Most importantly, the
dimensions we have defined make identity classes based on them suitable for stream-based
analyses.

Using a fixed extent of dimensions incurs a tradeoff between preserving hierarchical
information and reducing algorithmic and space complexity. There is a direct correspon-
dence between the dimensional extent of identities and their space complexity. The more
dimensions and the higher the extents used to generate an identity, the higher is the
worst case space requirement, as the number of combinations of primitive labels increases
exponentially.

Thus, we allow for all dimensions to be considered infinite-length extents. This is
algorithmically advantageous, being comparable to the best case of finite-length. While
space complexity is worse, we can guarantee a worst case of O(n) even for degenerated
trees. As shown, even for large label alphabets, the average complexity is sublinear, and
constant complexity is possible even for infinite trees.

66

4.5. Tree Distances

4.5. Tree Distances

Tree distances derive the difference between two trees, creating a scale to compare different
trees with each other. As trees are complex data structures, differences can appear on
multiple levels – be it the tree hierarchy, vertex features or even abstract properties such as
symmetry. Since each of these can be expressed and weighted differently, there is no single
true tree distance. Our distance approach is based on leveraging vertex features and the
structural information encoded by identities to incrementally compare regions of trees.

To make a tree distance useful in the domain of dynamic streaming trees, it needs to
satisfy the following requirements:

• Scalability : Algorithms to measure tree distances must produce results in linear time
with small constant factors or even sublinear time. Furthermore, memory utilisation
must also take this requirement into account. These limitations on computation and
memory complexity are needed due to the unconstrained size of dynamic trees in
streaming environments. This is especially true in the context of HEP batch systems
(see Section 2.3 on page 20).

• Sensitivity : Tree distance algorithms need to be more sensitive to changes in high-
quality vertices and their properties. Changes in low-quality vertices can be considered
less important and should, therefore, have less impact on distance results. In general,
changes that imply an impact on a bigger proportion of vertices within a tree should
also have a bigger impact on results.

• Coverage: Tree distance algorithms need to support both the topology of a tree as
well as the different properties of vertices. Topological changes include introduction
of new vertices, removal of existing vertices, and changes in vertices, or their ordering.
Properties of a vertex can refer to the vertex itself, such as its lifetime, or properties
associated with the vertex.

Logically, our approach is based on a projection of one tree identity profile onto another.
The overlap of both serves as a measure of similarity, whereas the differences provide the
distance. While this guarantees only a pseudo-metric for trees, it is a metric on the identity
profiles. In fact, if identity profiles encode all relevant tree features, our approach is a
metric for trees as well.

For the purpose of comprehensiveness and completeness of the given formalisation, we
consider insertion-only trees first. At this level, our approach is akin to common distance
measures for static trees, such as TED. However, this is only for simplicity, as each vertex
is considered only once in this setup. The general approach is later applied to dynamic
trees as well.

4.5.1. Identity Profile Projection

While our approach is applicable for various types and formats of trees, introducing it at a
restricted level allows drawing parallels to established distance measures. At the scope of
static trees without attributes, our approach can be outlined as a vertex-wise matching of
identities. This is analogous for example, to the vertex-wise cost model of TED, and the
counting of individual pq-grams.

We express static trees as a stream of insertion-only events (see Section 4.4.3 on page 52).
Each event thus corresponds to exactly one vertex of the tree, producing one identity per

67

4. Formalisation of Distances for Dynamic Streaming Trees

T1 T2

T1 ∩ T2

(a) Intersection of two trees

T1 T2

T1 ∪ T2

(b) Union of two trees

T1 T2

T1 4 T2

(c) Symmetric difference of
two trees

Figure 4.12.: Visualisation of the operations intersection, union, and symmetric difference
regarding collections of identities for vertices in two trees T1 and T2. The
intersection of two trees visualised in Figure 4.12a includes all identities that
both trees T1 and T2 have in common. The union of T1 and T2 depicted
in Figure 4.12b comprises the sum of all identities. Finally, the symmetric
difference is the disjunctive union of the trees, see Figure 4.12c. That is all
identities that are in either of the collections and not in the intersection of T1

and T2.

vertex. Without loss of generality, one can assume that the identity profile of the tree could
be stored statically, such as a set, multiset, or list.

The distance of two static trees T1 and T2 is the number of vertices belonging to only
one of either trees. We can express this distance by the symmetric difference of the identity
profiles of the two trees. This is the number of identities that differ between the respective
identity profiles. Related to this, we can express the similarity between both trees as the
union of the identity profiles. This concept of symmetric difference and union is visualised
in Figure 4.12.

Recall that we have already defined the similarity of two vertices v, w based on their
identity as their projection 〈v|w〉. Similarly, the intersection of identity profiles can be
expressed as a projection of one identity profile onto the other. Thus, we extend our
previously introduced framework supporting the identity profile projection of identities by
the identity profile projection of identity profiles.

For the projection of two identities, we distinguish between a baseline identity, denoted
as recorded identity, and an observed identity. This is reflected by our notation: the
bra 〈...| holds the recorded identity, the ket |...〉 holds the observed identity. Thus, a
recorded identity of T1 is given by 〈P,Q,S,V|, and each observed identity of T2 is given
by |P2,Q2,S2,V2〉.

Throughout this work, we consider the identity of a vertex to be an unambiguous identifier.
That means two identities either match exactly, or not at all2. This feature of an identity
projection is defined as:

〈P,Q,S,V |P2,Q2,S2,V2〉 = 〈P | P2〉〈Q |Q2〉〈S | S2〉〈V | V2〉
= δP P2δQQ2δS S2δV V2 , (4.19)

2This is largely motivated by efficiency of implementation. An exact match can be looked up and calculated
at O(1) across multiple trees.

68

4.5. Tree Distances

where δij is the Kronecker delta that is defined as

δij =

{
1 if i = j

0 if i 6= j.
(4.20)

Recall that the identity profile of T1 may have arbitrary order for contained identities
(see Section 4.4.2 on page 50). Instead, order can be encoded into the identities to express
parent, sibling or stream order (see Section 4.4.3 on page 54). We extend the identity
projection to a identity profile of a tree T1 as the recorded part and an identity of a vertices
of a tree T2 as the observed part:

〈T1| P2(v),Q2(v),S2(v),V2(v)〉, ∀v ∈ V(T2) (4.21)

Each identity in the identity profile of T2 is individually compared for similarity with the
entire identity profile of T1. This piecewise comparison of identities is compatible with T2

being a dynamic tree in a streaming environment.

Example 4.30. The comparison of identities can be implemented with a hash function,
with each recorded identity stored in a hash table. Thus, when receiving an identity from
an observed tree, the hash value of this identity can be checked for collision in the hash
table of the identity profile of T1. A collision indicates that the identity is not part of the
recorded tree, and the two trees differ.

In the context of trees, there is no definitely correct aggregation of multiple, individ-
ual identities. Tree distance approaches in literature correspond to a range of possible
aggregation semantics.

Example 4.31. Consider a set to store identities of identity profiles. Each identity occurs
only once in the set. Therefore, the cardinality of identities cannot be considered in the
tree distance. In contrast, using a multiset to store identities preserves cardinality.

At this point, the comparison to common, existing implementations suggests a simple
counting of identities [23, 25, 49, 151, 233]. However, we will later on use less naive
semantics, taking into account features of the corresponding vertices as well. To reflect this,
we introduce a formal identity profile projection operator θ that expresses the semantics
between vertices with the same identity.

Definition 4.32 (Identity Profile Projection). Let |T1〉 be an identity profile of a tree T1

and |T2〉 an identity profile of a tree T2. The identity profile projection of the two given
identity profiles is defined by

〈T1|θ|T2〉,

where θ is an identity profile projection operator that is applied as a statistic to the
underlying collection of identities.

Profile Projection Operator

The use of a identity profile projection operator introduces the capability to describe
relations between individual vertices, which are themselves described via identities. This
is analogous for example, to the global optimisations of individual operations required by

69

4. Formalisation of Distances for Dynamic Streaming Trees

Tree Edit Distances [41]. However, the applicability as stream-based distance measurement
puts constraints on capabilities.

Most importantly, an identity profile projection operator is limited to the scope of a
single vertex or few vertices at once. This rules out global optimisations, or the invalidation
of earlier decisions. However, information of the identity profile can be used even in
streaming environments. As shown in Section 4.4 on page 49, the space complexity of
identities converges to a constant factor for an adequate choice of identity class. This makes
it possible to preserve information at the granularity of identities. This is analogous to
sketching, which can be used complementary.

The most basic identity profile projection operator we consider is based on set theory.
This identity profile projection operator determines the overlap of two identity profile
projections as the overlap of their sets of identities. We introduce the identity profile
projection operator 1 based on the definition of the indicator function [66]. Thus the
identity profile projection operator 1 : |v ∈ V(T ′)〉 → {0, 1} is defined as

〈T1|1|v〉 =

{
1 if 〈T1|v〉 = 1 ∧ 〈T2|v〉 = 0

0 if otherwise.

This identity profile projection operator indicates unique membership of an identity in a
given identity profile. Consequently, 〈T1|1|T2〉 determines the number of unique identities
shared between the two given trees T1 and T2.

As identities compress similar vertices, it is likely and often desirable to have multiple
vertices with the same identity. Yet, testing the presence of identities with the identity
profile projection operator 1 ignores differences in the number of similar vertices due to
compression. Thus, the identity profile projection operator may assume two trees to be
equal although their cardinality of vertices might differ. For a correspondence of tree
distance with the tree size, one needs to consider the multiplicity of identities.

Therefore, we consider the multiplicity identity profile projection operator M : U → N,
that is 〈T1|M |T2〉. This identity profile projection operator M ensures the overlap of two
given identity profiles based on their multiplicity of distinct identities. This ensures to know
about the set of vertices u′ ∈ V(T2) that are related to the same identity to determine its
multiplicity.

4.5.2. Static Projection Distance

The identity profile projection of identity profiles provides the absolute similarity of trees.
When analysing multiple trees of different sizes, a normalised measure is easier to compare
across pairs. To stay directly comparable to other methods such as TED or pq-grams,
defining a distance is advantageous. Thus, our goal is to formulate a normalised distance
from the absolute similarity.

In accordance of the identity profile projection operators based on sets and multisets, we
adapt the well-known Jaccard distance. The Jaccard distance is defined on two sets A and
B with

distJaccard(A,B) = 1− |A ∩B|
|A ∪B|

. (4.22)

As desired, the Jaccard distance is a normalised distance, ranging from 0 if A and B
are identical to 1 if the two sets share no common features. Based on this, we introduce
a normalised distance for two trees T1 and T2 based on the concept of identity profile
projections.

70

4.5. Tree Distances

Based on Jaccard distance, we apply our formalisation of identity profiles given by |T1〉
and |T2〉 for trees T1 and T2 to calculate the normalised distance as the symmetric difference
(compare Figure 4.12c on page 68):

distsimple(T1, T2) = 1− 〈T1|1|T2〉
〈T1|1|T1〉+ 〈T2|1|T2〉 − 〈T1|1|T2〉

. (4.23)

This definition follows by reformulating Jaccard distance to replace set intersections with
identity profile projections.

Proof. Let T1 and T2 be two trees and V (T1), V (T2) their respective set of vertices. Let
|T1〉 and |T2〉 be the respective identity profiles based on the simple tree event stream
representation of the given trees T1 and T2. The Jaccard distance can be expressed as

1− |V(T1) ∩V(T2)|
|V(T1) ∪V(T2)|

= 1− |V(T1) ∩V(T2)|
|V(T1)|+ |V(T2)| − |V(T1) ∩V(T2)|

Given that identity profile projections of two trees represent the overlap of identities, we
can substitute |V(T1) ∩V(T2)| by 〈T1|1|T2〉. This provides

= 1− 〈T1|1|T2〉
|V(T1)|+ |V(T2)| − 〈T1|1|T2〉〉

.

Finally, we can substitute the size of a set of vertices |V(T)| by a identity profile projection
of a tree onto itself, that is 〈T |1|T 〉. This resolve to

= 1− 〈T1|1|T2〉
〈T1|1|T1〉+ 〈T2|1|T2〉 − 〈T1|1|T2〉

.

Therefore, we define the absolute distance between trees T1 and T2 based on identity
profile projection. Notably, the same definition is applicable to sets and multisets. In fact,
it is valid for any well-defined identity profile projection operator.

Definition 4.33 (Insertion-only tree distance). Let T1 and T2 be two trees, and their
respective identity profiles 〈T1| and |T2〉. The insertion-only tree distance distsimple(T1, T2)
for the trees T1 and T2 is defined as the symmetric difference between their respective
identity profiles.

distsimple(T1, T2) = 〈T1|θ|T1〉+ 〈T2|θ|T2〉 − 2〈T1|θ|T2〉 (4.24)

Based on the insertion-only distance we can define the relative insertion-only distance.
This matches the above derivation from the Jaccard distance, but is valid for all identity
profile projection operators. A proof is omitted for brevity.

Definition 4.34 (Relative insertion-only tree distance). The relative insertion-only tree
distance between two trees T1 and T2 is derived from the insertion-only tree distance
distsimple, normalised by the union of the identity profiles of the two trees, that is

distsimple(T1, T2) = 1− 〈T1|θ|T2〉
〈T1|θ|T1〉+ 〈T2|θ|T2〉 − 〈T1|θ|T2〉

. (4.25)

This definition generically covers a multitude of approaches, simply by the correct choice
of identity class and identity profile projection operator. For example, the pq-grams distance
is achieved with the identity class for dynamic pq-grams (see Section 4.4.4 on page 55) and
the identity profile projection operator M .

71

4. Formalisation of Distances for Dynamic Streaming Trees

Complexity

Space complexity for identity profile projection distances is proportional to the complexity
of the underlying identity encoding strategy. This corresponds to a worst case of storing a
fixed amount of data per identity. For fixed-length and infinite-length encoding, a sublinear
complexity of O(nf̄), f̄ < 1 is expected and a constant complexity O(1) can be achieved
for a use case such as ours.

The given space complexity is partially limited by the underlying tree event stream
representation. In the case of Simple tree event stream representation, only start events
of vertices are available. As the tree traversal is arbitrary, vertices can potentially occur
on every branch. Thus, it is not possible to identify and exclude finished branches, where
future occurrences of vertices are impossible.

The total time complexity for tree distances depends on the size of the sequence of events
to be processed. This, in turn, is given by the tree event stream representation for two trees
T1 and T2 to be compared. All events must be converted to a collection of identities, and
the conversion of each identity requires O(1) time. Thus, the conversion of all events has a
time complexity of O(|Ssimple(T1)|+ |Ssimple(T2)|). Consequently, the time complexity for
identity profile generation is O(|Ssimple|).

Each distance must determine the symmetric difference between two identity profiles.
With identity profile projections based on hashing, we assume a time complexity of O(1) to
check the existence of each identity for both trees. Thus, checking all identities for both
trees symmetrically results in O(|Ssimple(T1)|+ |Ssimple(T2)|) operations. Thus, the time
complexity for identity profile projection is O(|Ssimple|), as for identity generation.

The distance calculation for tree event stream representation requires two steps: the
conversion of identities as well as the projection of identity profiles. Therefore, our overall
time complexity for distance calculation is O(2|Ssimple|) = O(|Ssimple|).

4.5.3. Dynamic Distance

Dynamic trees can be treated as a sequence of static trees (see Section 4.3.2 on page 48).
Each intermediate state is a complete static tree that can be compared to other dynamic or
static trees. This allows to use the same distance methods as for static trees.

Both definitions given in Equation (4.24) and (4.25) can also be applied to dynamic trees
T1 and T2. Instead of the simple tree event stream representation Ssimple we consider the
dynamic tree event stream representation Sdynamic to determine the identity profiles of the
given trees.

Definition 4.35 (Dynamic tree distance). The dynamic tree distance distdynamic is deter-
mined for the identity profiles based on dynamic tree event stream representation of two
trees T1 and T2 at state i and j respectively, that is T1,i and T2,j . The distance is given by

distdynamic(T1,i,T2,j) = 〈T1,i|M |T1,i〉+ 〈T2,j |M |T2,j〉 − 2〈T1,i|M |T2,j〉, (4.26)

with M denoting the multiplicity function.

Definition 4.36 (Relative dynamic tree distance). The relative dynamic tree distance
between two trees T1 and T2 is the result of dynamic tree distance distdynamic(T1,T2)
normalised with the union of the identity profiles of the two trees, that is

distdynamic(T1,i,T2,j) = 1− 〈T1,i|M |T2,j〉
〈T1,i|M |T1,i〉+ 〈T2,j |M |T2,j〉 − 〈T1,i|M |T2,j〉

, (4.27)

with M denoting the multiplicity function.

72

4.5. Tree Distances

Complexity

Space complexity with regard to tree event stream representation decreases for dynamic
tree distances compared to insertion-only tree distances. The explicit presence of exit events
for vertices allows to reduce the size of the identity profile applicable at any time. For each
vertex that is removed from the tree we can guarantee that no further events are assigned.
Thus, while the tree event stream representation of dynamic trees is potentially bigger, at
any specific point in time the same number of identities as for an equivalent static tree is
sufficient.

Regarding time complexity for a single distance measurement there is no difference
between insertion-only tree distances and dynamic tree distances. Both strictly depend on
the number of events given by tree event stream representation. Thus, time complexity
for dynamic tree distances for one single state is O(|Ssimple|). However, if tree distance is
calculated for each state i of a given dynamic tree T , with i = |T | the complexity for time
calculating all i distances is O(|Ssimple|2).

4.5.4. Incremental Tree Distances

Treating dynamic trees as a sequence of distinct static trees ignores the constraints of how
each stage transforms to the next. For any non-trivial tree, the change between two stages
is small compared to the size of the tree. Deriving the distance at each state separately
implies that the distance calculation for most of the tree is repeated multiple times. Thus,
the complexity for this approach is O(|T |2) (see Section 4.5.3).

An approach with this complexity does not scale well, especially true for streaming
environments with limited resources. Therefore, an incremental distance function that
reuses previous results is desirable for tree distance measurement. For this, it is sufficient
to consider the gradual change of a dynamic tree between each stage.

An incremental distance for dynamic trees considers each event for distance calculation
with respect to results from previous events. Thus, each step only checks for overlap of the
current identity that is given by the specific event. For this, it is important to distinguish
between a recorded tree 〈T1| and a currently observed tree |T2〉 (see Section 4.5.1 on
page 67). The 〈T1| is a superposition of all intermediate, static states of T1. Only |T2〉 is
a dynamic tree that changes over time as the tree event stream representation advances.

Definition 4.37 (Simple incremental dynamic tree distance). The recurrence formula for
incremental dynamic tree distance between a recorded identity profile of a recorded dynamic
tree T1 and an observed dynamic tree T2 based on any tree event stream representation is
given by

dist0 =
∑
j

αj〈T1|θj |T1〉, with
∑
j

αj = 1

disti = disti−1−
∑
j

αj(2〈T1|θj |P2,i, Q2,i, S2,i, V2,i〉 − 1), (4.28)

where θj defines an identity profile projection operator to derive the distance component at
each step, and α the weighting for these components.

A selection of distances for exemplary trees is shown in Figure 4.13 on the following
page. The distance starts with a base distance which is the size of the identity profile
of T1, that is 〈T1|1|T1〉 ≤ |Ssimple(T1)|. This initialisation ensures a smooth distance

73

4. Formalisation of Distances for Dynamic Streaming Trees

0

250

500

750

1000

0 250 500 750 1000

Event progress

A
bs

ol
ut

e
D

is
ta

nc
e

T2 = T1

T2 6= T1

T2 < T1

Figure 4.13.: Progression of incremental dynamic tree distance for the same tree T1 against
multiple variants T2. The distance always begins at the maximum number
of events in T1. Comparing T1 against the same tree T2, where T2 = T1,
means that each event matches and reduces the distance by one. Consequently
the absolute distance reaches 0 after all events are processed. Comparing T1

against a different tree T2 of same size with T2 6= T1 results in mismatches
and matches. Mismatches increase distance by one while matches decrease
distance by one, thus reaching a non-zero value in the end. For a smaller tree
T2, with T2 < T1, distance progresses normally but stops at the end of the
event stream, remaining at the correct distance given missing events.

if the observed tree T2 has fewer vertices than T1. If the observed tree is prematurely
finished, that is |Ssimple(T1)| > |Ssimple(T2)|, the distance is guaranteed to return a result
distsimple(T1,T2) > 0.

More importantly, this initialisation ensures that the distance over time replicates the
distance to T1 at each step of T2. This mimics the convergence or divergence of T2 to
T1: A tree that unfolds to a similar state to its observed counterpart decreases in distance,
as additional matching vertices are revealed, eventually approaching a distance of 0. A
tree that unfolds to a structure unlike its observed counterpart increases in distance, as
additional vertices not part of T1 are revealed.

Notably, the difference between the current distance and the ideal distance at the current
step is monotonic. Thus, we can reason about the progression of distance as a dynamic tree
unfolds: an observed tree may stay the same or deviate from ideal behaviour, but it can
never approach it after deviating from it. Thus, the progression of tree distance compared
to ideal behaviour is bounded, allowing to draw conclusions before the entire tree is known.
Due to the incremental design of distance function this analysis can be performed online,
enabling near realtime responsiveness.

74

4.6. Summary

4.6. Summary

We have evaluated various tree distance approaches based on our requirements to process
dynamic trees in a streaming environment (see Section 3.3 on page 35). Due to polynomial
complexity of exact tree distance measures based on TED, we focused instead on three
different classes to approximate tree distances: summary-based, decomposition-based,
and time series-based approaches. Many of the analysed approaches are unsuitable for
streams and dynamic trees. We identified decomposition-based approaches to be the most
suitable concept. The methodology of decomposition itself follows an incremental approach.
However, existing methods assume specific features for decomposition, such as traversal
methods, preventing them from being generalisable for both dynamic trees and streams.

Based on the need for a generic, incremental, and extensible approach, we propose a
framework for decomposition-based similarity and distance measures. Our approach focuses
on modularity by separating the tasks of tree representation by decomposition and an
appropriate distance measure. We express the decomposition as a profile of identities.
Furthermore, we model similarity as identity profile projection of identity profiles or
identities. This modular design allows future extensions and optimisations of individual
tasks.

To support different classes of use cases, trees must be appropriately represented. We
define four separate context dimensions to propose specific identity classes for tree represen-
tation. To meet the requirements of our use case, we restrict the dimensions by availability
in the streaming model. Based on these definitions, we demonstrated how to integrate
existing approaches from literature into the proposed framework to make them available
for dynamic trees and stream processing. Furthermore we showed that space complexity of
identity profiles is suitable for our targeted use case. In addition, the modularity of our
approach allows to further improve this by sketching techniques for example.

From our formalisation, we naturally derived a distance measure for trees based on the
projection of identity profiles and identities. We demonstrated this approach for static trees
by succinctly replicating the definition of the common pq-grams. A naive application of this
static distance for dynamic trees already shows complexity comparable to the complexity
of TED for purely static trees. However, we have shown that our formulation allows for a
conversion to a purely incremental calculation of distances. With this incremental distance
measure, we preserve the sublinear complexity of our approach even for dynamic trees in a
streaming environment. This generic dynamic tree distance is the basis for an extension to
attribute-based distances.

75

5. Representation of Dynamic Tree
Attributes

The formalisation of distances for dynamic streaming trees provides the framework to realise
attribute-based distances. The evaluation of attributes in the context of tree distance
measures adds further semantic meaning to the representation introduced previously. Within
the scope of this Chapter we integrate the representation of attributes into our formalism
to express semantics of attributes by their values. This compatibility with our proposed
methodology enables an efficient and scalable analysis. A good approximation of attributes
enables better discrimination of tree representation for further online analysis.

We further discuss two different strategies for representing attributes by summarising
their values. The focus is on the provisioning of a stream-capable implementation of proper
statistics. Challenges considered are different underlying types of attributes as well as
their sparsity. Thus, we discuss strategies to properly represent granularity while enabling
compression of representation as well as good time and space complexity.

5.1. Related Work

As outlined in Section 4.1 on page 39 there is a plethora of research to determine similarities
and distances between tree-structured data. However, most of the research does not
explicitly consider attributes except strings. In the following, we review the different
available approaches to represent attributes for tree distance approximation. We supplement
this review with a brief review for time series analysis as the analysis of dynamic trees
results in time series of attribute values.

5.1.1. Attributes in Trees

Available approaches to tree distance approximation can be distinguished as content-based,
structure-based, and hybrid methods utilising both content and structure. Most structure-
based approaches utilise labelled, rooted trees. Thus, they usually consider the label of
vertices to indicate siblings, children, ancestors, or the anchor vertex [49, 94, 149, 177]. These
approaches rely on equality comparison based on labels. In general, explicit attribute values
are disregarded when evaluating structural properties of semi-structured documents [73].
Content-based approaches focus on syntactic or semantic comparison of labels or text
vertices [181, 216, 223].

Some approaches specifically encode attributes of vertices and their values: For example,
Joshi et al. [123] append the name of attributes and their values in sorted order to a vertex’
label. Augsten et al. [23] map vertices and their attributes to their respective label-value pair.
However, these approaches do not consider the underlying type of attribute. Consequently,
the alphabet of labels can become very large or even infinite given continuous data types.
This approach renders most decomposition-based tree distances unfeasible as they rely on
a finite alphabet for time and space requirements.

77

5. Representation of Dynamic Tree Attributes

Process

name: string

in_rate: float

out_rate: float

...

in_rate out_rate

name

...

value value

Figure 5.1.: Visualisation of mapping a process object with several attributes to hierarchical
data [186, 236]. As an example, we consider one of the monitored processes
within a batch job (see Section 3.2.4 on page 34 for details). The value of at-
tribute name is interpreted as the label of the vertex. The key of each attribute,
for example in_rate or out_rate, is added as a child vertex. Furthermore, each
value is appended to its respective attribute vertex. Thus, for each attribute
two additional vertices are added to the final tree.

Other approaches treat attributes as a part of the tree’s vertices [167, 186, 236, 241].
Commonly, attribute vertices appear as children of their containing vertices sorted by
attribute name, and appearing before all remaining vertices [167, 241]. Consequently, each
attribute is decomposed into key and value. Both are represented as separate vertices,
with the key and value interpreted as labels of their vertices. The attribute key vertex
is the parent of the attribute value vertex. In the final tree event stream representation,
each attribute vertex chain is a child of its owning vertex. Although we can differentiate
vertices for elements and attributes the vast majority of existing approaches treat them
equivalently [178]. Figure 5.1 visualises the approach for a vertex with two additional
attributes besides its label.

This approach is consistent with the definition of TED. The interpretation of attribute
key and attribute value ensures to evaluate similarity for two trees containing attributes.
However, the underlying type of data is ignored or assumed to be uniform across the tree.
For example, Ribeiro and Härder [186] only consider data of string type. Thus, approaches
usually only differentiate the existence of attributes by applying 0 for mismatch and 1
for match of attributes. In addition, each attribute is represented by considering two
additional vertices in the final tree. Thus, a missing attribute in one tree is penalised
with an accumulated distance of 2. Existing distances for tree-structured data supporting
attributes therefore tend to favour attributes over vertices.

The encoding of attributes as vertices within the tree makes their evaluation uniform
with vertices. Several approaches from literature rely on fixed-length encoding for tree
representation [22, 25, 233]. For example, in Augsten, Böhlen, and Gamper [22] the authors
show that pq-gram distance is a good approximation to TED when p is fixed to 1. However,
the constraint p = 1 implies that each attribute value is encoded only with its attribute
key. Thus, attributes are processed independently from their owning vertex. Consequently,
only the presence of attributes on vertices is guaranteed. In contrast, attribute values are
summarised over the entire tree, without regard to hierarchy. This is a consequence of the
diamond effect for fixed-length encodings (see Section 4.4.4 on page 58).

However, to the best of our knowledge, a flexible approach for differing attribute types in
hierarchical data is missing. Several approaches propose solutions for the semantic analysis

78

5.1. Related Work

of labels and text values only, based on results from information retrieval or linguistics.
However, especially in the domain of dynamic trees, distances based on arbitrary attributes
have not been considered so far.

Current research on tree distance approximation usually considers only one value per
attribute. In the context of dynamic trees, values for attributes are subject to changes over
time. Thus, we need to deal with time series of attribute values embedded into hierarchical
data. In the following, we therefore briefly review methods for time series analysis suitable
in our field of research.

5.1.2. Time Series Analysis

Time series analysis can be distinguished into instance-based and feature-based algo-
rithms [129]. While instance-based methods are more exact, feature-based approaches gain
efficiency by summarising data.

Instance-based methods usually focus on the shape of time series. The evaluation is
based on similarity comparison of a test instance to a learning instance. In this field,
nearest neighbour classifiers with Euclidean distance or Dynamic Time Warping (DTW) are
considered the most successful and are widely used [117, 130, 224, 230]. While the Euclidean
distance is efficient regarding space and time complexity, it is not robust to time-shifted
data and noise, resulting in poor accuracy [183]. Both issues are generally handled by
using elastic distance measures such as DTW. DTW [131] uses dynamic programming to
determine the best alignment of time series yielding an optimal distance. As such, DTW is
invariant to non-linear variations in the time dimension and considered a strong solution for
time series analysis [184]. However, DTW has a time complexity of O(n2) and is, therefore,
not feasible in streaming environments.

Feature-based methods instead are generally more efficient regarding time complexity.
These methods are based on characterising or summarising structural characteristics such
as discontinuity [97] or statistical features [187, 226] of time series as a whole or in parts.
Usually, feature-based methods extract local features at absolute points in time, assuming
patterns to exist in the same time interval in different time series. This is problematic as
patterns may be shifted in time across time series [97].

In the field of information retrieval, it is common to estimate word frequency ignoring
spatial characteristics by utilising the bag-of-words principle [159]. Recently, this approach
has been adopted for time series classification. The idea is to estimate the multiplicity of
local characteristics of the time series and then use these measures as new features for a
classifier [32, 152, 153].

In Lin, Khade, and Li [152] and Lin and Li [153] the authors utilise a sliding window
approach. They adapt the symbolic representation for time series called Symbolic Aggre-
gate approXimation (SAX) [154]. SAX converts the original time series data to a lower
dimensional representation of symbolic words. These words represent patterns in the time
series. The incremental construction of this time series representation into a histogram
renders this approach feasible for streaming environments. In Baydogan, Runger, and Tuv
[32] the authors consider fixed and variable-length intervals to extract multiple features
from time series. However, this requires a pre-processing, standardising time series to zero
mean and unit standard deviation to adjust different baselines and scales.

Both approaches have shown to be superior to existing approaches in terms of clustering,
classification, and anomaly detection. Furthermore, the concept to decompose a time series
in order to perform further analysis on a representation by multisets is in line with our

79

5. Representation of Dynamic Tree Attributes

formalisation introduced in Chapter 4 on page 39. Thus, we expect such an approach to
integrate well with our own. Still, both approaches cannot be directly applied to streams.
For example, deriving the mapping to logical words for SAX requires knowledge on the
distribution of values. In addition, both methods require the buffering of values. Ideally,
we desire to minimise the required buffering of values. The main reason for this strict
limitation is that attributes are only one aspect of dynamic tree distance measurement and
therefore must not dominate space or time complexity.

5.2. Encoding Attributes

Analysis of related work revealed that most solutions to tree distance approximation
do not explicitly consider attributes. Instead, we extend our existing approach to tree
decomposition to also include time series of attributes. This has shown to be a reliable
approach for time series data analysis (see Section 5.1.2 on the preceding page).

To enable the handling of attributes, we integrate attributes into our formalisation of
dynamic trees. In the following, we extend the current definitions of identities, identity
profiles, and distances from the current formalisation (see Chapter 4 on page 39). Notably,
the goal is to generalise existing definitions with extensions for attributes. The extended
formalisation remains valid for trees without attributes.

Each tree represents a hierarchical relationship between the vertices it contains. In turn,
attributes of a vertex can be seen as part of the vertex’ hierarchy. However, it is important
to distinguish between these two hierarchies: The tree itself represents a hierarchy of objects.
Each object represents its attributes as a flat hierarchy. To better express these nested
hierarchies, in the following we refer to vertices that represent objects with attributes as
composite vertices.

Definition 5.1 (Composite vertex). Let T be a tree with a set of vertices V(T). Each
vertex v ∈ V(T) representing an object with a set of attributes A, with |A| ≥ 1, is called a
composite vertex. The label of a composite vertex is given by a specific attribute Ai that
identifies the object. The parent of a composite vertex is another composite vertex, if any.
A composite vertex can have any number of children.

5.2.1. Naive Encoding of Attributes

To motivate our approach for attribute handling in dynamic trees, we first introduce a naive
approach. The technique is similar in parts to the handling of attributes in common tree
distances (see Section 5.1 on page 77). Instead of treating attributes as separate features of
vertices, we treat them as defining feature of vertices. This mimics how we have implicitly
used vertex labels, which are also attributes, to identify vertices. This serves to demonstrate
the limitations of a pure identity and cardinality model, and the requirements to treat
attributes separately of identity.

Let T be a static labelled tree where each vertex v ∈ V(T) is a composite vertex with
several associated attributes A, in addition to its label. Its respective tree event stream
representation is Sdynamic, though the end events are ignored for simplicity. Furthermore,
we assume that each attribute A has the same underlying type of data from the domain of
values {1, . . . , k} for some finite, but possibly large k.

A naive approach to treat attributes is to include specific attribute values into a vertex’
identity. We introduce another dimension to reflect characteristics of attributes:

80

5.2. Encoding Attributes

• The attribute A(v) associated with a vertex v in the tree reflects the local character-
istics of the vertex.

Thus, a naive attribute-supporting identity can be defined as |P,Q,S,V,A〉, where A
specifies a given value of attributes A. Notably, this identity does not require to extend
the tree as proposed in literature (see Section 5.1.1 on page 77). Hence, the number of
identities that are computed for a identity profile does not increase with this approach.
Furthermore it has the advantage that attribute evaluation uses the same algorithm.

This naive approach can be easily applied to the formalisation presented in Chapter 4 on
page 39 as it does not require to change the definition of identity profiles and distances
based on identity profile projections. However, it implies several disadvantages relating to
a) the number of distinct attributes and values, b) the unfolding of attribute values.

Number of distinct attributes and values If the attribute value is part of the identity,
the alphabet size of the identity is proportional to the alphabet size of any given attribute.
Thus, the size of the identity profile does not only depend on the number of vertices but
also on the number of distinct values of attributes associated to vertices. For categorial
data this is bounded, but in case of continuous data it can become infinite.

This makes it unlikely that multiple vertices share the same identity. Even a small change
of any attribute creates a distinct identity. In turn, it is not feasible to match vertices
based on their attribute-supporting identity. Instead an explicit search for similar vertices
is required. Consequently, time complexity per vertex is O(n), instead of O(1) without
attributes.

Furthermore, space complexity depends on Property 4.4 on page 50, which relies on a
finite alphabet of identities. The lack of shared identities for vertices means compression
from collisions is unlikely. Therefore, one cannot expect sublinear space complexity.

Consequently, any approach to include attributes into tree representation that targets
applicability in streaming environments as well as scalability requires a method for discreti-
sation, aggregation, or sketching of attribute values.

Influence of sparsity of attributes Given a dynamic tree T , the unfolding of the tree
together with attribute values increases the number of identities. Each event only describes
a single edit operation within the tree (compare Section 4.4.3 on page 51). Therefore,
it only describes a single change of the value of one attribute Ai. In turn, the values
for attributes {A1, . . . , Ai−1, Ai+1, . . . , Am} are unknown for the current event. Thus, the
generated identities become sparse in attribute dimension.

To prevent this sparsity, values for each attribute Ai per vertex require buffering. Notably,
this must be performed before compressing a vertex to its identity. This can arbitrarily
delay the processing of a vertex waiting for additional attribute values.

In addition to the scope of a single object, sparsity also affects the available attributes
for all other objects. Not every object modelled as a vertex v ∈ V(T) requires the same set
of attributes {A1, . . . , Am}. Thus, the identity class needs to encode each of the available
attributes {A1, . . . , Ami},∀vi ∈ V(T). This, in turn, raises space complexity to O(nm).
Even if few vertices have attributes, space complexity depends on the total number of
distinct attributes in the entire tree.

81

5. Representation of Dynamic Tree Attributes

Implications for the Encoding of Attributes

The naive approach to directly encode attributes into the identity of a vertex is not feasible
due to scalability and complexity constraints for dynamic trees in streaming environments.
Direct encoding of attribute values prevents identity matching. Treating attribute categories
as separate dimensions of identities increases space complexity. Thus, attributes must be
treated orthogonal to identities.

Instead, we adapt the approach to encode relevant attributes within the tree. To meet
the requirements of dynamic trees in streaming environments we impose the following
requirements:

1. efficient handling of distinct attributes and values,

2. efficient handling of sparse attributes and values,

3. compatibility with different types of attributes including labels, and

4. continuous mapping of value similarity to distances instead of binary matching.

5.2.2. Attribute-Supporting Tree Model

So far, we have defined the identity profile projection of identities to yield either zero or
maximum similarity. This reflects that identities match comparable vertices, which is either
possible or not. In contrast, we desire a continuous range for distances based on attributes,
which themselves can have continuous values. Therefore, we need to separate the identity
matching of vertices, attribute type, and the comparison of attribute values.

To encode relevant attributes of vertices in a tree we partially adopt the method proposed
in literature to express attributes as vertices. Thus, each attribute that is related to a specific
composite vertex is represented by a new vertex. However, we explicitly distinguish these
attribute vertices from previously defined vertices. Attributes define an attached atomic
value and are in the following restricted to not contain references to further composite
vertices. For better distinction, we introduce the concept of atomic vertices to represent
attributes.

Definition 5.2 (Atomic vertex). Let v be a composite vertex and Ai an associated attribute.
The atomic vertex is a vertex representing the associated attribute Ai of v. An atomic
vertex is labelled with the key of the specific attribute Ai. The parent of an atomic vertex
is the respective composite vertex v. An atomic vertex never has children by itself.

Note that the label of a composite vertex is restricted to an attribute that statically
identifies the related object. By utilising a static identifying attribute to denote the
composite vertex, we ensure minimal distance distortion from attribute changes within a
dynamic tree.

Based on the definition of composite vertices and atomic vertices we define the attribute-
extended tree.

Definition 5.3 (Attribute-extended tree). Let T be a tree, and ai the number of attributes
for the composite vertices vi ∈ V(T), that is ai = |{A1, . . . , Ami}vi |. The attribute-extended
tree is constructed from T by adding ai − 1 atomic vertices to each composite vertex
vi ∈ V(T).

82

5.2. Encoding Attributes

in_rate value out_rate value

name 1

...

Figure 5.2.: Visualisation of the concept to map dynamic attributes to trees. The visualisa-
tion shows one composite vertex that is labelled name. This label is the value
of one selected attribute Ai. As the value of attribute Ai is utilised as the label
of the composite vertex, a weight of 1 is assigned as a default. The remaining
ai−1 attributes are appended to the composite vertex as atomic vertices. Each
atomic vertex is labelled with the name of its attribute Aj . Furthermore, the
value of attribute Aj is assigned as a weight.

Unless otherwise stated, we base the following discussions on the definition of attribute-
extended trees to define distances for dynamic trees. Thus, trees explicitly include attributes
in the following.

However, in contrast to approaches from literature, we do not add vertices for the values
of the given attributes. First, this unbalances the distance calculation as each attribute
except the label is counted twice (attribute key and attribute value). Second, the label of
the composite vertex is comparable to the attributes modelled by atomic vertices. Thus,
they need to be treated equally for distance calculation. This is not the case when also
integrating attribute values as vertices.

Instead, we model the attribute values as attributes to the tree’s vertices. Therefore, we
adapt the definition of weighted, labelled trees. We introduce an attributed, labelled tree T
as T = {V,E,A}. Extending the rooted tree introduced in Section 4.3.1 on page 47, the
attributed, labelled tree also consists of a finite set of attribute values A(T). Each vertex
that has no explicit assigned attribute value, for example composite vertices, defaults to an
implicit value of 1.

We explicitly do not replicate the original definition of weighted, labelled trees here, as
this limits weights to numbers [66]. To properly represent attributes, we require a variety
of data types, such as numeric types, string types, boolean types, or categorial types.
Figure 5.2 visualises the process object from Figure 5.1 on page 78 based on our definition
of attribute-extended trees. Values are not included in hierarchical tree information but
give a semantic context to vertices.

5.2.3. Attribute Identities

Our approach for expressing attributes distinguishes itself from approaches in literature by
the use of explicit, different types of vertices. The composite vertices represent labelled
objects, which logically correspond to regular vertices of classical approaches. In contrast,
each atomic vertex represents features of these objects, as both an attribute label and value.
However, to benefit from this differentiation requires special treatment of each type.

The identity of a vertex must distinguish between composite vertex and atomic vertex to
properly reflect its type. Most importantly, the dimensions defining the local context (see
Section 4.4.3 on page 54) are not meaningful for atomic vertices. Still, it is important for
us not to conflict with the previous handling of vertices.

To preserve the previous definitions, attributes must not conflict with the existing formal-

83

5. Representation of Dynamic Tree Attributes

isation. Rather, the attribute-extended tree should be compatible with the formalisation
presented in Chapter 4 on page 39. In fact, our previous choice of distances implicitly
expresses an attribute-based distance measure for composite vertices with one attribute,
namely its label.

Proof. We consider an attributed, labelled tree T with a set of composite vertices V(T).
For comparability, we assume that each composite vertex v ∈ V(T) has a single associated
attribute Al. The value of Al is 1, and the key is the label of the composite vertex. Let
|P(v) = ∅,Q(v) = ∅,S(v) = ∅,V(v)〉 with V(v) = |v.lbl〉 the identity class. As the value
for each composite vertex is 1 all identities associate the same property 1. Thus, the count
of each identity and the sum of all its values are equal. Depending on the specified identity
profile projection operator θ, such as 1 or M , we derive a distance based on existence of the
label of the given attribute Al or its multiplicity by counting it or summing its values.

The distinction of vertex types is motivated by the assumption that comparing attributes
of different objects is never meaningful. In other words, atomic vertices of a composite
vertex are only meaningful when compared to atomic vertices of similar composite vertex.
As the identity already expresses similarity, we restrict attribute comparison to composite
vertices with matching identity.

Example 5.4. Consider a process downloading data from a server, and another performing
calculations on this data. For each process, the total network traffic and processing time is
recorded. The chain of both processes is repeated multiple times and the repetitions are
compared.

It follows from this explanation that it is not meaningful to compare network traffic
of a download process with a calculation process. They are expected to differ. However,
traffic is not sufficient for a precise identification of each process. Traffic is expected to
differ slightly, for example if network packets are lost. Still, we can compare traffic directly
between processes of the same kind.

Consequently, the V dimension of vertices must reflect the associated composite vertex.
In case of composite vertices the vertex under consideration can be directly encoded into the
identity. In case of atomic vertices, the parent composite vertex is required in conjunction
with the atomic vertex.

This grouping of atomic vertices and composite vertex to a canonical entity is deemed as
the simplest semantically meaningful structural entity [216]; only considering the atomic
vertex without context is otherwise meaningless [207, 208]. However, we notably use only
the identity of each vertex, not any associated value.

Thus, we encode in V dimension

V(v) = |v.compositenode.lbl, v.lbl〉, (5.1)

where we again assume static labels of vertices for simplicity. This encoding enables a unified
treatment of composite vertices as well as atomic vertices. Consequently, our approach
realises a unified distance measurement for dynamic trees that includes attributes.

Proof. So far, we considered an identity class defined as V(v) = |v.lbl〉 relating to the label
of a vertex. Figure 5.3a on the facing page visualises the concept considered so far for
one specific composite vertex. Based on this representation the identity profile projection
operator M is used to determine the multiplicity of a given identity. In the following, we

84

5.2. Encoding Attributes

sh

wgetwget

(a) Consideration of multiplicity of
vertices in a tree without specific
attribute handling.

sh 1

wget 1wget 1

count 1count 1

(b) Proposed approach to handling of at-
tributes in trees

Figure 5.3.: Comparison of a tree with and without specific attribute handling. Figure 5.3a
on the left visualises the approach considered so far without handling of vertices.
The tree visualised on the right in Figure 5.3b shows the proposed approach to
attribute handling in trees with an assigned attribute count. For demonstration
purposes the value of count is 1.

introduce a further attribute count with a fixed value of 1 to each given vertex in the tree
T . Thus, each composite vertex has an assigned atomic vertex for attribute count with
value 1. This extension to the composite vertex is shown in Figure 5.3b.

We generate the identities for composite vertices as well as atomic vertices describing the
attribute count. By applying the multiplicity identity profile projection function we can
show that the following is valid:

M |wget〉 = M |wget,∅〉.

This follows by extension of V(v) = |v.lbl〉 to V ′(v) = |v.lbl,∅〉. The addition of a
constant ∅ does not add further information, resulting in equivalent identities for V and
V ′. Consequently, the attribute carries the same information for the actual cardinality of
identity as the composite vertex. Obviously, counting attributes of value 1 and summing
over their values is equivalent. Thus, the multiplicity of atomic vertices and the sum of
their attribute count are interchangeable. Given a value summation operator M ′, we derive

M ′|wget, count〉 = M |wget, count〉
= M |wget,∅〉
= M |wget〉.

In summary, the extended attribute-supporting encoding of identities has several advan-
tages: It is beneficial for space complexity and compression rates. Compared to approaches
from literature, values are not included in identities. Thus, only distinct attribute keys
per composite vertex have an impact on required space. More importantly, the distinction
between attribute key and value enables evaluation of existence of an attribute independent
from its value. Consequently, distance measures can apply specific weighting of either part.
Most importantly, it enables value-specific measures. These measures are not restricted to
results of either zero or maximum distance but allow for continuous ranges.

85

5. Representation of Dynamic Tree Attributes

For consistency, we following consider the shorthand notation |v.lbl〉 for the collection of
identities regarding a given composite vertex v ∈ V(T). The shorthand notation is defined
as

|v.lbl〉 = |v.lbl,∅〉+ |v.lbl, a1.lbl〉+ . . .+ |v.lbl, ak.lbl〉, ∀ai ∈ A, (5.2)

where A is the set of attributes, excluding the attribute identifying the composite vertex.
This shorthand notation also ensures symmetry with our proposed formalisation.

5.3. Attributed Tree Distances

We define the integration of attributes by introducing the differentiation between composite
vertices and atomic vertices. Based on this differentiation we have derived the formal
expression of attributes that generalises attribute type and value.

We further require an adapted distance function to leverage this formalisation. So far
we introduced the concept to distance measurement by replicating the evaluation of the
multiplicity identity profile projection operator by considering the new concept of attributes.
In the following we formally introduce this concept with respect to different attribute types
and statistics.

5.3.1. Measuring Attribute Values

By introducing attribute identities, both vertices and attributes support identity profile
projection and thus distance calculation. Consequently, Equation (5.2) allows to express the
distance of composite vertices via their attributes. Thus, the calculation of 〈v.lbl|M |v′.lbl〉
results in valid global distance for a composite vertex v (compare Figure 5.3 on the preceding
page) and its associated atomic vertices.

Global and Local Attributes

It is important to note that the global distance 〈wget|M |wget′〉 is only meaningful between
trees, and not individual vertices. The distance is based on the identity profile projection
operator M . This identity profile projection operator derives the multiplicity of identities
in a tree. As this operation relies on a collection of identities, we refer to this measure as a
global attribute.

Definition 5.5 (Global attribute). A global attribute is a statistic based on the aggregation
of values from a collection of identities.

A global attribute is not meaningful with only a single vertex or identity, but requires
knowledge about the tree up to a given state. For example, the identity profile projection
operator M introduced in Section 4.5.1 on page 69 derives the global attribute multiplicity
for each distinct identity from a collection of identities. In this case the global attribute is
a simple count or sum of distinct values. Still, the aggregation function deriving a global
attribute can in principle be arbitrarily complex.

More naturally, we also describe the concept of local attributes.

Definition 5.6 (Local attribute). A local attribute is a statistic derived from a single value
of a given identity.

86

5.3. Attributed Tree Distances

Local attributes do not depend on information of other vertices or the tree as a whole.
The most natural representation of a local attribute is the value of an attribute itself
without any conversions. Similar to how M maps to a global attribute, in Section 4.5.1 on
page 69 we also implicitly introduced an identity profile projection operator that derives
a local attribute: the identity profile projection operator 1. For each value or label the
function determines whether the given identity exists in a recorded identity profile.

Representing Attribute Values

As shown when introducing attributes, global attributes such as vertex multiplicity can be
expressed both as counts and sums of trivial attributes. Yet another view is to represent the
multiplicity of identities by a histogram. This histogram only requires one bin, namely that
of the single value all attributes share. Consequently, the global attribute on multiplicity
for a given value is the volume of this bin.

Figure 5.4a on the next page visualises the histogram of the identity for the composite
vertex wget in the tree given in Figure 5.3b on page 85. For each value 1 that is assigned
to the composite vertices the count of the bin at position 1 in the histogram is incremented
by 1 accordingly. Thus, distance calculation results based on multiplicity function M can
be expressed as the difference of the value bin.

Local attributes can be distinguished from global attributes in that a single attribute
is meaningful. Not only is the aggregation of attributes of relevance, but also individual
values. This can be expressed again by a distribution, but over multiple values.

Thus, we can express local and global attributes with the same mechanism: The values
of any attribute form a distribution of discrete, continuous, or categorial values. Global
attributes are an extreme case, where values are not relevant.

Distributions again lend themselves to the simile of identity profile projections. The
distance between attributes can be expressed via the overlap and difference of distributions,
as visualised in Figure 5.4 on the next page. Notably, this generalises the notion of
multiplicity distance, similar to how attributes generalise counts.

In specific, Figure 5.4b on the following page visualises the histogram representing
multiplicity of identities for atomic vertices for the composite vertex wget.

Each of the attribute values representations in Figures 5.4a to 5.4b on the next page
allow for direct distance measurement. In Figures 5.4d to 5.4e on the following page the
statistics for a similar composite vertex are depicted. As for distance measurement based
on identity profile projection, the distance can be described by symmetric difference. In
Figures 5.4g to 5.4h on the next page the overlap of each of the histograms is visualised.
Overlapping areas are depicted with a green colour, whereas remaining areas are depicted
with red colour.

By design, histograms are restricted to a fixed granularity. Continuous ranges of distance
values require the representation in terms of PDFs. Figure 5.4c on the following page
visualises the PDF for the histogram of the adjacent Figure. Again, we can determine the
distance by considering symmetric differences – the technique of deriving distances does
not depend on the type of distribution. In contrast to histograms, a PDF allows for a
continuous overlap and thus continuous distance results as visualised in Figure 5.4i on the
next page.

87

5. Representation of Dynamic Tree Attributes

1

2

3

1 2 3

(a) Global attribute of a vertex
v ∈ T with regard to iden-
tity profile projection opera-
tor M |v.lbl〉.

1

2

3

1 2 3

(b) Distribution of local at-
tributes of vertices v ∈ T
based on a histogram.

1 2 3

1

2

3

(c) Distribution of local at-
tributes of vertices v ∈ T
based on a probability
density function (PDF).

1

2

3

1 2 3

(d) Global attribute of a vertex
u ∈ T ′ with regard to iden-
tity profile projection opera-
tor M |u.lbl〉.

1

2

3

1 2 3

(e) Distribution of local at-
tributes of vertices u ∈ T ′

based on a histogram.

1 2 3

1

2

3

(f) Distribution of local at-
tributes of vertices u ∈ T ′

based on a PDF.

1

2

3

1 2 3

(g) Identity profile projection
〈v.lbl|M |u.lbl〉.

1

2

3

1 2 3

(h) Identity profile projection of
two histograms for trees T
and T ′.

1 2 31 2 3

1

2

3

(i) Identity profile projection of
two PDFs for trees T and T ′.

Figure 5.4.: Effect of local and global identity profile projection operators with regard to
underlying attribute statistics representation. Each of the first and second row
of Figures visualises different exemplary statistics for a group of vertices having
the same identity. The first column visualises the identity profile projection
operator M to determine the global attribute multiplicity. The second and
third column visualise two multiplicity identity profile projection operators that
are defined on local attributes. The second column visualises the multiplicity
based on a histogram whereas the third visualises the multiplicity by utilising
a PDF. Finally the last row of Figures visualises the identity profile projection
regarding the three different identity profile projection operators.

88

5.3. Attributed Tree Distances

Approximating Attribute Values

Expressing multiple attributes with a single distribution is similar to how multiple vertices
are expressed with a single identity. It is likewise a compression of a time series of data
(see Section 5.1.2 on page 79). Yet, distributions must be suitable for stream processing,
similar to constraints on identities.

Space complexity of a binning approach depends on the number of bins that are created
from the underlying data. This is efficient when a single bin holds most data, but has to
trade granularity for space complexity if distributions are smeared out. As such, histograms
are favourable if the required granularity is coarser than the spread of data.

The representation of data matching a specific distribution with a corresponding PDF
requires less space, aside from trivial distributions. For example, compare the two Fig-
ures 5.4b to 5.4c on the preceding page. Figure 5.4b on the facing page visualises a Gaussian
distribution based on a binning to the integer domain whereas Figure 5.4c on the preceding
page visualises the distribution itself. This distribution can be represented by three variables:
the mean µ, standard deviation σ, and the number of samples. Storing three values per
distribution is superior in space complexity to any non-trivial histogram.

However, not only values must be described efficiently. By definition, our approach to
tree distance measures utilises identities to represent the vertices of a given tree. This
results in multiple vertices sharing the same identity. The identity itself does not include
attribute values. As we expect the range of attribute values to be sparsely populated,
subgroups of vertices with the same identity can differ in this regard. For an attribute
value distinguishing subgroups of a given identity, we therefore expect a finite number of
distinct groups in the distribution of attribute values.

Example 5.7. Consider a shell script downloading several configuration files and executa-
bles. While the file sizes of configuration files and executable files differ, the file sizes in
each group are roughly the same. For each file, a wget process is spawned. As each process
has the same parent, the identity IdP = |wget, bash, . . .〉 is the same for each process.

However, the recorded traffic for each process is an indicator for the size of the downloaded
file. The processes of each file group create a group of similar traffic values. Thus, the
distribution of traffic for the identity |wget,bash, . . .〉 exhibits two distinct groups.

Deriving the properties of the overall population requires the buffering of a number of data
points from the population. A unimodal distribution does not fit groups of sub-populations
and would therefore result in distortion of distance calculation. Thus, we strive to describe
the overall, sparse population by the different sub-populations. This, in turn, enables the
minimisation of required memory for distance calculation.

This problem is known in literature as a mixture model [51, 55, 238]. Mixture models
are used to derive the properties of sub-populations given only observations of the overall
population without prior knowledge about sub-populations. In the following, we do
not consider the generalised approach but focus on Gaussian Mixture Models (GMMs).
Consequently, we restrict ourselves to the assumption that underlying sub-populations are
normally distributed. This assumption matches the constraints for most available machine
learning and data analysis methods based on the central limit theorem [27, 29].

Gaussian Mixture Models In GMMs it is assumed, that all data points are generated
from a mixture of a finite number of Gaussian distributions with unknown parameters. The
GMM is the weighted sum of Gaussian component densities. The parameters are estimated

89

5. Representation of Dynamic Tree Attributes

Splitting Component

5 9

1 2 3 4 5 6 7 8 9 10 11

Statistics Component

Figure 5.5.: Overview of the SplittedStatistics approach. The concept builds on two com-
ponents: a splitting component and a statistics component. While the splitting
component manages the creation and merging of bins by assigning appropri-
ate values, the statistics component handles the representation of values by
aggregating relevant statistics. The original values that are inserted into the
statistics component are rejected after processing.

from training data by utilising the iterative Expectation-Maximisation algorithm [206].
Incremental GMMs have a time complexity of O(nkd2) for n data points, k Gaussian
components, and d dimensions.

However, the analysis of distribution of attribute values based on GMM is not appropriate
given the constraints of online analysis of dynamic trees. Especially space complexity does
not meet our requirements as all components need to be remembered. As an alternative,
we propose an approximating approach that is based on ideas from GMM but focuses on
efficiency and scalability.

SplittedStatistics We propose a dynamic approach, the SplittedStatistics, that approx-
imates the learning of underlying distributions by utilising an incremental clustering of
attribute values. The approach automatically adapts to the required sensitivity of the
considered attribute.

The SplittedStatistics approach is based on two ideas: Different vertices can be represented
by a shared identity, with groups of vertices adhering to different attribute value distributions.
The first step targets the splitting of the underlying distributions. The second step focuses
on the representation of distributions. This targets the minimisation of data points required
to represent the actual distribution.

We therefore propose the SplittedStatistics consisting of two components: a) the splitting
component and b) the statistics component . Figure 5.5 visualises the interaction between
the two components. Again, this two-step procedure focuses on modularity and allows
independent optimisation and configuration for both components. In the following, we
first introduce the two components building upon one another. Based on this concept, we
introduce and evaluate two methods to realise attribute-supporting tree distances.

90

5.3. Attributed Tree Distances

Algorithm 2 Incremental assignment of data to dynamic bins
Precondition:

x is any value that should be assigned to the current sorted list of bins
λ is the distance threshold to determine the association to a bin

Postcondition: Updated list of bins

1: function add(x)
2: if |bins| > 0 then
3: index ← index of closest bin to x
4: if distance(bins[index], x) > λ then
5: bin ← new bin(x)
6: insert bin in order into bins
7: else
8: bins[index] ← bins[index] + x
9: Merge(bins, index)

10: else
11: bin ← new bin(x)
12: append bin to bins

Splitting Component The splitting component is based on splitting values into groups
to finally describe each group statistically. The splitting component defines a dynamic
clustering of values into bins. The approach is shown in Algorithm 2. For each new value x
of a given attribute, the distance to the closest existing bin is determined. If the distance is
below a predefined threshold λ, the value is inserted into the bin. Otherwise, if there are
no existing bins or no bin is close enough, a new bin is created and the value inserted. The
handling of the insertion of values into a specific bin is managed by a statistics component.
The statistics component defines the underlying statistic in each bin, such as a histogram
or PDF.

After adding a new value to a bin, the splitting component checks if neighbouring bins
can be merged. The merging approach is shown in Algorithm 3 on the following page. This
merging procedure depends on the overlap of the statistics instances of two neighbouring bins.
By merging the statistics of two bins, the component ensures space-efficient representation
of data.

The statistics themselves are independent from the splitting. This distinction allows to
individually react to specific events, such as low memory. If required, the available size
of the data structure, that is the available number of bins, can be reduced, resulting in a
greater approximation and mixing of statistics. Constraining available memory results in a
loss of precision but ensures availability of distance results.

Statistics Component To represent the statistics for the attribute under consideration,
different statistical approaches can be used. One approach that is commonly used in
literature, is the consideration of the count [123, 126, 153]. However, it has been shown that
the representation with PDF results in a higher precision [119]. Still, arbitrary distributions
cannot be matched efficiently by a single PDF. Thus, we abstract from the statistic in use
by introducing a generic statistic component. This ensures flexibility for different use cases.

The statistics component must summarise a stream of values X = (x0, . . . , xn) that are

91

5. Representation of Dynamic Tree Attributes

Algorithm 3 Incremental merging of dynamic bins
Precondition:

index is the index of a bin within the sorted list of bins that is checked for merging
ω is the required distance threshold for two bins

Postcondition: Merged list of bins

1: function merge(bins, index)
2: repeat
3: merged ← False
4: if distance(bins[index], bins[index+ 1]) < ω then
5: bins[index] ← bins[index] + bins[index+ 1]
6: remove bins[index+ 1] from bins
7: merged ← True
8: if distance(bins[index− 1], bins[index]) < ω then
9: bins[index− 1] ← bins[index− 1] + bins[index]

10: remove bins[index] from bins
11: index ← index− 1
12: merged ← True
13: until merged = False

assigned to a specific bin. Similar constraints apply as for identities: Space complexity
must be sublinear to the number of values n, and ideally linear to the number of identities.
Additionally, only a limited number of values may be buffered. The main focus is to retain
a high precision while storing only a small amount of values X ′ with |X ′| << |X|.

Generalising the utilisation of global and local attributes, we introduce two different
statistic component approaches for the concept of SplittedStatistics. The first is a generalised
approximation of Gaussian Mixture Model to smoothly model the population of an identity
as an incremental PDF statistics. However, as the incremental PDF statistics makes a
strong assumption on Gaussian distributions, we also introduce a MultisetStatistics to
robustly model arbitrary distributions without prior knowledge.

Incremental PDF Statistics The learning of precise PDFs in a streaming environment
is not efficient considering time and space complexity. We therefore consider a Gaussian
distribution to represent the original data. To realise an approximating GMM we require
the statistics component to represent a Gaussian distribution. Therefore, it calculates a
running mean as well as a running variance to summarise given input values. To focus on
scalability regarding time and space complexity, we process each value once to update mean
and variance before dropping it completely. Thus, we do not require to buffer any values,
but solely rely on the storage of running mean, variance, and the number of samples.

This method is advantageous for space complexity. By only considering the number
of samples, running mean, and running variance per distribution, space complexity only
depends on the number of represented distributions k, that is O(k). This, in turn, means,
that further details are lost. Once, a distribution is merged with another distribution, it
cannot be recovered. Furthermore, this makes the approach dependent on the order of
values being added. These effects can be limited by considering the buffering of a limited
number of values within each distribution.

92

5.3. Attributed Tree Distances

Another disadvantage is the limitation to Gaussian distributions. However, the flexibility
of the SplittedStatistics approach enables differing statistics calculations. To represent any
underlying distribution instead of being limited to Gaussian distributions, an extension
may consider the calculation of running quantiles. This does not limit the approach to
Gaussian distributions and is, therefore, more generic in its application to different use
cases. However, the consideration of running quantiles or the buffering of values is not part
of this thesis and requires further research.

Discrete Multiset Statistics The second approach, the MultisetStatistics, targets a
dynamic binning by transforming the given values. Depending on a given attribute, we
consider a transformation function that maps a given value x to a specific bin. The statistics
component only performs a counting for the given bins. This design enables a use case
specific discretisation of values. For example, we can consider the transformation function
of real values into integer values f : R 7→ Z. This transformation function performs a
binning of given attribute values. For each bin where an attribute value is assigned to, we
only consider the count.

Although this approach is very intuitive it requires specific parameter-tuning. As the
importance of different ranges of values for an attribute cannot be estimated automatically,
transformation functions need to be specified for each attribute to ensure highest possible
precision. The transformation function can be any arbitrary function, for example SAX
(compare Section 5.1.2 on page 79), that defines the position and width of bins. Thus, this
method is dependent on the actual use case and requires adequate initialisation for each
attribute to be evaluated. However, as described in Section 5.3.1, the MultisetStatistics
results in a loss of data due to transformation and only enables distance results in zero
distance or maximum distance.

Characteristics of Approximation Figure 5.6 on the next page visualises the two
proposed methods, incremental PDF statistics and MultisetStatistic, for the same input
distribution. Figure 5.6a on the following page shows the initial distribution, from which
values for both statistics are sampled. The initial distribution is a Gaussian distribution
that is parameterised with a mean µ of 5 and a standard deviation σ of 1. From this
distribution, 1000 values are picked randomly and fed to both statistics approaches.

The Figure 5.6b on the next page visualises the collected statistics for the Multiset-
Statistics. The MultisetStatistics in this example utilises the transformation function
f : R 7→ Z. While the overall shape matches the input data, the limited granularity means
that details of the initial distribution are lost. Figure 5.6c on the following page visualises
the incremental PDF statistics. The underlying distribution is accurately replicated. While
the MultisetStatistics stores statistics for 7 bins and therefore requires to store 14 values
in total, the incremental PDF statistics only requires to store 3 values for one Gaussian
distribution.

For further analysis of the proposed approaches, the generated statistics visualised in
Figures 5.6b to 5.6c on the next page are used. This can be compared to the utilisation of
a recorded identity profile (see Section 4.5.1 on page 67). However, in this use case we only
consider attribute statistics. To analyse the characteristics, a second validation distribution
is generated to check the resulting distance results. This validation distribution is generated
with differing mean values. The values for sample size as well as standard deviation are
fixed. For each iteration, the mean value is increased for 0.1 to influence the actual overlap

93

5. Representation of Dynamic Tree Attributes

0

50

100

150

200

2 4 6 8

x

C
ou

nt

(a) Histogram of generated input
distribution

0

100

200

300

400

2 4 6 8

x

C
ou

nt
(b) Binning of MultisetStatistic

0

100

200

300

400

2 4 6 8

x

C
ou

nt

(c) Distributions of incremental
PDF statistics

Figure 5.6.: Approximated statistics for attribute values. Figure 5.6a visualises 1000 values
generated randomly following a normal distribution with µ = 5 and σ = 1 that
are used as input. Figure 5.6b shows the binning of values via MultisetStatistic.
For binning, the values are rounded to integer precision. A distribution-based
approach, called incremental PDF statistics, is visualised in Figure 5.6c. It
shows the approximated distributions.

of the initial distribution as well as the validation distribution. With decreasing overlap we
can expect the resulting distance to grow. The optimal behaviour is, therefore, defined by

dist(a, b) = |a| − overlap(a, b) ∗ |a|; |a| = |b| (5.3)

where overlap defines a function to calculate the current overlap of the two given distributions
a and b. To calculate the overlap we utilise the overlapping coefficient [113], that is the
geometric overlap between the two distributions.

Next to the characteristics of overlap, we also analyse the behaviour for varying amounts
of samples. We therefore generate a validation distribution with differing sample counts in
the range from 0 to 2000. For each iteration the sample count is increased for 11. Values
for mean as well as standard deviation are fixed. Therefore, we can expect the optimal
behaviour to be defined as

dist(a, b) =

{
|a| − |b| if x ≤ |a|
−|a|+ |b| if x > |a|.

(5.4)

Figure 5.7 on the next page visualises the results for the analysis of differing overlap
as well as sample count. The Figure on the left, Figure 5.7a on the facing page shows
the characteristics for two distributions that share the same features. For one of the
distributions, the mean is changed repeatedly to vary the overlap of the two distributions.
Here, an overlap of 0 means, that both distributions have a relative distance of 1, whereas
an overlap of 1 means, that we expect a distance of 0. For MultisetStatistics as well as
incremental PDF statistics it can be seen, that they are close to the expected behaviour.
Summarising, the parameterless incremental PDF statistics approach shows a slightly better
precision than the MultisetStatistics.

94

5.3. Attributed Tree Distances

In Figure 5.7b the influence on the number of randomly generated samples from a given
distribution is visualised for the MultisetStatistics and incremental PDF statistics. When
the randomly generated number of samples matches the number of samples from the given
distribution, we expect a distance of 0. With increasing or decreasing number of samples
we expect the distance to increase or decrease linearly. As can be seen in the visualisation,
this expectation is approximated by both approaches. Still, the MultisetStatistics gives
better results for the given use case. However, it can be seen that MultisetStatistics shows
worst performance when the number of samples from validation distribution matches the
original number of samples. This is caused by statistical variations of statistics within the
single bins causing the resulting distance to grow. The incremental PDF statistics is more
robust to the precise position of samples but produces smaller distances than expected for
number of samples exceeding the original distribution.

Due to the incremental clustering of the incremental PDF statistics that approximates
GMMs, the encoding is dependent on the order of events. Depending on the order of values,
there is a chance that learned distributions differ for the same set of values. Following this,
attribute distances based on approximated GMM can differ when comparing two trees T1

and T2, e.g. , dist(T1, T2) 6= dist(T2, T1). Thus, the approximated GMM approach does not
comply with the requirement of metrics to be symmetric.

Deviation of Approximation In the following, we approximate the deviation we need
to expect from applying any of the proposed incremental approaches for SplittedStatistics
to measure distances based on attribute values. Let T = (T1,T2, . . . ,Tn) be a statistical
sample of dynamic trees. First, the distance between all possible pairs of dynamic trees are
computed as

aj,k(T) = distattrib(Tj ,Tk), j, k = 1, 2, . . . , n, (5.5)

where distattrib denotes the distance based on SplittedStatistics that provides a distance for
two dynamic trees. To not bias the actual analysis, the distance only considers attribute
events for distance calculation. Thus, it ignores all vertex events for the given trees.

Given that distance matrix A, we calculate the mean relative deviation ē for the given
distance distattrib regarding two characteristics of metrics: the identity and symmetry.
For distance metrics it is required, that the distance of an object to itself is 0, that is
the identity of indiscernibles. Thus, we can expect the distance of a dynamic tree T1 to
itself to be 0, that is distattrib(T1,T1) = 0. Therefore, to analyse deviation regarding this
characteristics of a metric, we consider all distances on the diagonal of the matrix as the
actual deviation. Thus, we calculate the mean relative identity deviation regarding the
identity of our proposed distance measure by

ēdiag =
1

n

n∑
i=1

ai,i
2〈Ti|Ti〉

. (5.6)

Another characteristic of a distance metric is the symmetry. Hence, the distance between
two dynamic trees T1 and T2 is independent from the order of the two trees for a given
distance measure, that is distattrib(T1,T2) = distattrib(T2,T1). As the exact distance for
the two dynamic trees is not known, we consider the mean distance of the two trees to be

95

5. Representation of Dynamic Tree Attributes

the expected distance value, that is

dist(T1,T2) =
dist(T1,T2) + dist(T2,T1)

2
. (5.7)

Given the expected distance in Equation (5.7) we can calculate the mean relative symmetry
deviation regarding the symmetry of our proposed distance measure by

ēsymm =
1

n2 − n

n∑
j=2

j−1∑
k=1

|aj,k − ak,j |
〈Tj |Tj〉+ 〈Tk|Tk〉

. (5.8)

Based on a statistical sample of n = 1000 batch jobs with sizes not smaller than 1000
vertices, we examined a mean relative symmetry deviation ēsymm of 0.001± 3.541× 10−5

and a mean relative identity deviation ēdiag of 0.005± 0.001 for incremental PDF statistics.
Figure 5.8 on the facing page visualises the influence of varying weighting of attribute

distance to vertex distance and varying tree sizes for incremental PDF statistics. With
increased weight of attribute distances in the overall distance calculation the deviation
increases linearly (compare Figure 5.8a). Attribute values are sparsely distributed within
the trees. With growing number of shared identities we expect attribute values to become
more relevant statistically and thus, we expect the representation of distribution by Split-
tedStatistics to improve. This assumption is supported by Figure 5.8b: With increased tree
sizes the relative deviation decreases.

The same analysis for MultisetStatistics can be found in the Appendix in Figure C.1
on page 177. As the MultisetStatistics does not depend on the order of events to learn
underlying statistics, deviations are negligible. In fact, any deviation that might appear for
MultisetStatistics is caused by rounding errors.

5.3.2. Incremental Dynamic Distances

The two distribution-based approaches MultisetStatistics and incremental PDF statistics
provide representations of attributes for dynamic trees. To approximate tree distances
based on the proposed methods, we use projections of attribute distributions for two given
objects. The distributions are generated by appropriate identity profile projection operators
that depend on a given SplittedStatistics, either MultisetStatistics or incremental PDF
statistics, as well as the specific statistic under consideration. For example, the multiplicity
identity profile projection operator M is defined on MultisetStatistics and the statistic
count of an object. In fact, the SplittedStatistics are a generalisation of a simple counting
approach (see Section 5.2.3 on page 83).

The process to create attribute distributions supplementing identities is a two-step
procedure. First, the identity is determined as a prerequisite to identify collected statistics of
related distributions. Given this, the overlap of attribute statistics can be determined based
on the updated statistics of the observed object. This update and overlap determination is
also defined incrementally: When an existing distribution of the observed identity profile is
extended, each new value is checked to still fit the recorded identity profile as stated by
identity profile projection. This determines the distance for the event under consideration.
A high-level overview of the functioning is visualised in Algorithm 4. Please note that the
distance result depends on the underlying statistics component. For MultisetStatistics only
minimum or maximum distance are returned while incremental PDF statistics allows for
continuous distance values.

96

5.3. Attributed Tree Distances

Algorithm 4 Attribute-based distance based on SplittedStatistics
Precondition:

x is any value that is added to the observed tree T ′

Id is the associated identity of the composite vertex
T is the recorded tree

Postcondition: Attribute-based distance

1: function UpdateAttribute(Id, x)
2: statistic′ ← get statistic of Id for T ′

3: Add(x) to statistic′ . See Algorithm 2 on page 91
4: statistic ← get statistic of Id for T
5: if BinValue(statistics′, x) ≥ BinValue(statistics, x) then
6: distance ← mismatch
7: else
8: distance ← match
9: return distance

Example Distances

In dynamic trees, various statistics can be considered important to represent the dynamics
of the tree and attributes. We already consider simple statistics such as the multiplicity
of identities M . We extend the available identity profile projection operators to support
the distribution of attribute values by introducing the identity profile projection operator
Λ. Similar to the identity profile projection operator M , it represents the distribution of
attribute values by means of multiplicity. However, it allows to distinguish between the
semantics of attributes and vertices.

The utilisation of the identity profile projection operators 1, M , and Λ do not represent
dynamics of dynamic trees. We therefore introduce further non-trivial statistics. Non-trivial
statistics focus on the tree dynamics to enable a more flexible representation and thus
potentially a better separability. In the following, we briefly discuss two non-trivial statistics
to derive attribute distributions. We focus on the lifetime of a vertex by considering its
start and exit event as well as the frequency.

Example 5.8. Trees that are equal in structure can still differ in their dynamic behaviour.
Consider a local process spawned to query a remote service for the location of a file in a
distributed storage. The natural latency of the request likely makes both traffic and transfer
rate insignificant. However, if the remote service is not available with regular performance,
the local process will take significantly longer to succeed with its request. In contrast to
traffic and transfer rates, lifetime must be calculated from start and end of a vertex.

The lifetime of a vertex encodes its duration as the delay between the start event of a
specific vertex v, ∅→ v and the exit event, v → ∅. This statistic expresses the relation of
the underlying identity on a local scale: lifetime is derived for each vertex separately, even
if concurrent vertices share the same identity. The lifetime d itself does not necessarily
depend on the lifetime of the children of v, dchildren, that is d ≥ dchildren. The consideration
of a lifetime of an object represents a realistic use case:

Example 5.9. Consider the utilisation of a bash script to execute tasks within a job in a
batch system. The bash script can describe entirely different tasks such as the preparation

97

5. Representation of Dynamic Tree Attributes

of the working environment or the execution of a complex data analysis task. Both scripts
result in two processes named equally. Yet, the duration of both tasks is distinctly different.
Thus, we need to differentiate between both tasks, even though they share the same identity.

Therefore, we introduce the duration identity profile projection operator D as a distri-
bution that is defined on SplittedStatistics utilising the statistic of duration. Thus, the
identity profile projection operator D is given by 〈T1|D|T2〉 and ensures the overlap of two
given identity profiles based on the distribution of durations of distinct identities.

Another important statistic to consider in the domain of dynamic objects is the presence
of repeating patterns. Repetition can be defined as the delay between a given type of
events for a specific identity. We therefore introduce a frequency identity profile projection
operator F as a distribution defined on SplittedStatistics utilising the frequency of identities,
that is 〈T1|F |T2〉. The frequency identity profile projection operator expresses the relation
of identities on a global scale: frequency is derived from two vertices of the same identity,
disregarding any intermediate siblings not reflected in the identities. Whenever a recurrent
pattern can be found in data, it has the characteristic to be invariant to shifts [155] and
therefore ensures a robust feature data analysis.

5.4. Summary

In this Chapter we focused on incremental tree distances taking attributes into account.
Thus, our evaluation of existing distances put special attention on approximation methods
to handle attributes in tree-structured data. Our evaluation revealed that most existing
approaches either focus on a semantic interpretation of textual attributes, or the modelling
of attributes and values as common tree vertices. Such approaches eliminate any need for
special handling of attributes.

However, attributes in dynamic, streaming trees require special consideration as not
only the mapping of one attribute value per vertex needs to be ensured, but a time series
of values. Based on our analysis of advantages and disadvantages of existing models, we
introduce a generic representation of attributes for dynamic, streaming trees.

The proposed generic representation of attributes for dynamic, streaming trees integrates
seamlessly with the existing framework for tree distance measures introduced in Chapter 4 on
page 39. Our proposed approach is distinguished from existing approaches by introducing
two differing types of vertices to model dynamic trees with attributes. In contrast to
the uniform modelling of nodes, attributes and values, our specific modelling enables a
generalisation of different types of attributes and values. Furthermore, this approach allows
to express complex relationships based on attributes and their dependency on specific
vertices.

In specific we introduce the concept of composite vertices as well as atomic vertices.
While composite vertices model regular objects in the tree and ensure the integration of
the underlying framework, atomic vertices model the attributes of an object represented
by a specific composite vertex. The atomic vertices carry the non-trivial attribute values
modelled as an associated vertex weight. Thus, the modelling of attributes does not formally
define values as vertices, but allows for a separate handling.

To represent the values of attributes and enable distance measurement, we focus on
statistical decomposition into proper distributions of values. As the underlying framework
targets compression of identities, we explicitly enable the representation of groups of values
via distributions. This distribution-based representation is not limited to the plain values

98

5.4. Summary

of an attribute. Instead, we distinguish local and global attributes supporting categorial,
discrete, and continuous values: Local attributes mainly focus on the representation of
attribute values of individual and overlapping identities. In addition, global attributes
enable the derivation of more complex measures such as statistics on multiplicity, frequency,
or lifetime of vertices.

In specific, we propose two methods to represent underlying attribute distributions: Mul-
tisetStatistics and incremental PDF statistics. While MultisetStatistics ensures properties
of a pseudo-metric, incremental PDF statistics focuses on optimisation of space complexity
and generic applicability for different data types and ranges. However, the two are a tradeoff
between robustness and accuracy: incremental PDF statistics provide smooth, accurate
representations if the type of distribution, such as a Gaussian, is known. MultisetStatistics
require a fixed resolution, but easily represent arbitrary shapes, including skewed data.

In summary, our approach to representing attributes integrates smoothly into our existing
formalisation, thus implicitly enabling distance-based projection. The distance is expressed
by considering the similarity or difference based on the overlap of distributions. Contrary
to approaches from literature, this approach allows continuous distance measurements for
any attributes with an underlying order, most importantly numerical attributes.

99

5. Representation of Dynamic Tree Attributes

0

500

1000

1500

M
ea

n
D

is
ta

nc
e

Statistic
MultiSet

PDF

1
6

12

0.25 0.50 0.75 1.00

Overlap

R
at

io

(a) Attribute-based distance for varying overlap

0

250

500

750

1000

M
ea

n
D

is
ta

nc
e

Statistic
MultiSet

PDF

0
35
75

0 500 1000 1500 2000

Sample Count

R
at

io

(b) Attribute-based distance for varying number
of samples

Figure 5.7.: Visualisation of characteristics of incremental PDF statistics and Multiset-
Statistics for distributions with varying overlap and sample count. Figure 5.7a
visualises the distances for a validation distribution with overlap in the range
from 0% to 100%. For an overlap of 100% we expect a distance of 0, while
we expect a maximal distance for an overlap of 0%. It can be seen, that
incremental PDF statistics shows slightly better results. Figure 5.7b shows
the characteristics of both statistics approaches by varying the number of
samples of the validation distribution. The count is varied from 0% to 200%.
This analysis shows that MultisetStatistics overall shows a better performance
except for the same amount of values initially learned (compare Figure 5.6b
on the facing page). For 1000 values the distribution is statistically not stable
to match the exact counts of given bins, thus we get higher distances than
expected. The incremental PDF statistics shows good performance for values
up to 100% and results in lower distances than expected for higher counts of
samples.

100

5.4. Summary

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00

Weight of Vertex Distance

R
el

at
iv

e
D

ev
ia

ti
on

25000

50000

75000

Count

(a) Relative deviation e of distance result with
regard to attribute influence

2500

5000

7500

10000

2500 5000 7500 10000

Observed Tree Size

R
ec

or
de

d
T
re

e
Si

ze

0.001 0.006
Deviation

(b) Mean relative deviation ē of distance result
for different tree sizes due to attributes

Figure 5.8.: Influence of attribute weighting and tree size to the relative deviation e for
incremental PDF statistics of calculated distance result for dynamic trees.
Statistics have been calculated from 10 independent, randomly selected samples
of 100 dynamic trees. The original dataset has been filtered to include only
dynamic trees with sizes of 1000 < max(|Ti|), ∀Ti ∈ T < 10 000. Figure 5.8a
shows influence of the weighting factor on the relative deviation e of the distance
result. It can be seen, that weight and relative deviation are linearly correlated.
When the influence of vertex identities is 0, only attributes affect the distance.
Thus, the relative deviation is at its maximum, when the attributes are weighted
highest. Figure 5.8b shows the influence of the tree size on the mean relative
deviation ē of the distance results for a vertex weight of 0. As statistics in
the underlying statistics component get more significant with more available
samples, the mean relative deviation decreases.

101

6. Superposition of Dynamic Tree
Features

There is a multitude of approximating tree distance approaches, each with a representation
of trees resulting in a different interpretation of differences and similarities (see Section 4.1
on page 39). Our own approach is capable of covering a variety of features, some of which
cannot be represented by common approaches. However, there is no single correct tree
distance, as relevant features of trees, vertices, and attributes strongly depend on the use
case.

In fact, black-box use cases such as ours, the online analysis of batch jobs in production
batch systems, do not provide prior information on features that are relevant in the first place.
We must rely on explorative data analyses and models based on a high-level understanding
of the given use case. Most critically, this means that we might overestimate the relevance
of features and robustness of their description.

For example, previous analysis of finite-length and infinite-length methods for tree
decomposition show complementary advantages and disadvantages (see Section 4.4.5 on
page 66). While infinite-length encoding allows a fast identification of equal ancestry,
they cannot express similar ancestry. Consequently distances to similar trees may be
overestimated. Identifying partially equal ancestry is better covered by finite-length encoding
approaches, which focus on identification of patterns within a tree. Therefore, hierarchical
dependencies become less important as the localisation of patterns in the tree is usually not
covered. This results in distance perturbation with a tendency to overestimate similarity of
trees (see Section 4.4.4 on page 58).

Without prior knowledge, it is impossible to tell which measure is feasible. Additionally,
we have no guarantee that any individual measure is appropriate by itself. This is especially
the case with our data being non-stationary, meaning that differing features may become
important over time.

Thus, we desire a method to assess multiple features in parallel. Notably, the goal is not
to merge multiple measures to a single one, as this implies dependencies that we cannot
estimate. Instead, multiple simple measures should be loosely coupled to be robust when
individual assumptions do not hold. In the following we propose to combine multiple
identity classes to an identity ensemble class to enable flexibility while retaining precision
and accuracy of individual methods.

6.1. Related Work

Ensemble methods are often used for classification. Classification is a method of supervised
learning with the goal to identify distinct classes in a given dataset. In this context,
classifiers are trained to categorise data as belonging to specific classes based on a set of
distinct features. Ensembles combine a set of classifiers in order to classify data with regard
to multiple features. Typically, classifiers are combined by weighted or unweighted voting.
The construction of expressive ensembles of classifiers is an active research area.

103

6. Superposition of Dynamic Tree Features

This is mainly justified by the discovery that ensembles are often more accurate and
robust than individual classifiers [76, 111]. In practice, a number of classifiers are built to
combine the results of the different classifiers into a common decision. One key concept
of an ensemble is the requirement of diversity [124]. That is, each classifier should cover
distinct features.

Diversity in an ensemble can be achieved by: selecting different algorithms to build a
classifier [144], changing the training data of the base classifier by sampling or directed
replication [47], selecting different parameters to train each classifier, or modifying the
classifiers internally either by re-weighting the training data or by randomisation [191].

Recent methods of ensemble schemes consider online approaches that adapt to non-
stationary data by iteratively evaluating accuracy of predictions [40] or constant deletion,
creation, or modification of classifiers based on their performance [111].

While we must also deal with non-stationary data, the online adaptation of ensembles is
undesirable in our use case: the distance between trees must be guaranteed to be well-defined
over time. Otherwise unexpected behaviour can be expected from subsequent analyses.
We therefore restrict our approach to a lightweight ensemble-based classifier building on
preferably orthogonal properties.

6.2. Encoding Identity Ensembles

To realise robust distance measurement for trees especially in situations of non-stationary
data and noise, we introduce an ensemble-based identity profile projection strategy based
on our framework. That is, a number of independent identity classes are used to describe
each entity of a tree and subsequently the tree as a whole.

Unlike attributes, which are a refinement of identities, ensembles are orthogonal, using
separate identity classes independently. In effect, this means that several independent
identities are assigned to each vertex. However, this does not translate trivially to the
representation of identity profiles, which may aggregate individual identities differently.

6.2.1. Ensemble Encoding

Ensembles relate each vertex to multiple identities at once. An overview about the concept
of identity ensembles is given in Figure 6.1 on the next page. There are no additional
dependencies, allowing pre-calculated identities to be reused. In addition, ensembles work
orthogonal to identities: vertices can be encoded separately for each identity class, without
interference. This naturally preserves complexity with regards to the number of vertices.

Definition 6.1 (Identity ensemble). The identity ensemble Ide of a vertex v ∈ V(T) is a
collection of identities of the given vertex v.

An identity ensemble Ide(v) is defined as

Id(v)e = ({|P(v),Q(v),S(v),V(v)〉1, . . . , |P(v),Q(v),S(v),V(v)〉m}) (6.1)

where m is the number identities |P,Q,S,V〉 to be used for the identity ensemble. Following
this definition, the identity ensemble of a tree T is, therefore, described as

Ide(T) = ({Ide(e) | e ∈ S(T)}). (6.2)

104

6.2. Encoding Identity Ensembles

Ensemble

Identity Identity Identity...

Aggregation Function

Distance Distance Distance...

Distance

Figure 6.1.: Schematic visualisation of the concept of an identity ensemble. An identity
ensemble is composed of a number of identity classes. For each identity class
an identity is created. For each identity the appropriate identity projection is
determined. Thus, several independent distances are aggregated to one final
distance that is considered for further evalutation.

Note that similar to identity profiles, the identity ensemble is intentionally defined as an
arbitrary collection of identities. It is left for further specification and implementation to
decide on the underlying type of collection, either ordered or unordered collection.

When defining an identity ensemble special care should be taken to select identities with
orthogonal characteristics. An appropriate choice of identities allows to reflect multiple
features at once. This can be complementary features, such as local and global similarities
with finite and infinite-length encodings, which are robust to changing characteristics of data
in non-stationary environments. Furthermore we expect results to become more accurate
when compared to a single identity.

Still, ensembles can be detrimental if chosen inappropriately. Most importantly, additional
identity classes have an impact on processing and memory, even though the complexity in
regards to vertices stays the same. Furthermore, using identity classes unsuitable for a use
case deteriorates the overall results.

6.2.2. Ensemble-Based projection

While identity ensembles are straightforward at vertex level, combining them to tree identity
profiles is not unambiguous. Most prominently, different identity classes do not necessarily
yield the same number of identities for a given tree. As such, there are several options to
aggregate identities to form identity profiles, and subsequently, to incrementally handle the
identities of individual vertices. In the following, we discuss the available options and refer
to advantages as well as disadvantages.

Independent Encoding

The most straightforward method of handling identities is an independent encoding of
identity ensembles. This encoding considers not just identities as independent, but identity
profiles as well. The identity ensemble profile is, therefore, given by

|T̃ 〉 = ({|T 〉1, . . . , |T 〉m}). (6.3)

105

6. Superposition of Dynamic Tree Features

Thus, the space complexity of the identity ensemble profile is O(m · nf̄), f̄ ≤ 1 (see
Section 4.5.3 on page 73) for m different identity classes within the specified identity
ensemble. This preserves the expected sublinear space complexity, and also converges
towards constant complexity for trees with high fanout.

Each of the generated identities is evaluated with regard to the respective streaming and
recorded identity profile. Therefore, the approach directly follows the established identity
profile projections considered so far. The independent handling of identities results in a
collection of parallel distance results, each treated independently from the others.

Independent encoding of identity ensembles does not consider correlation of information
of identities of the same vertex. For example, assume the two identity classes IdP and Idpq,
that is infinite-length and finite-length encoding. This identity class IdP maps the entire
ancestry of vertices, but not siblings. In contrast, the identity class Idpq only considers
local ancestry, but for both parents and siblings. If for a vertex v ∈ V(T) a sibling is
changed compared to a tree T ′, the mapping within the tree T for each identity can occur at
completely different positions than in T ′. While the identity of IdP considering P dimension
ensures correct location, the finite-length identity Idpq can be arbitrarily repositioned to a
similar context.

Dependent Encoding

To limit the influence of independently positioned identities within one identity ensemble,
one can strictly combine different identity classes. We refer to this option as dependent
encoding of identity ensembles. Dependent encoding of identity ensembles is based on
an identity profile projection regarding the set of all given identities within the identity
ensemble, that is

|T̃ 〉 =
∑

e∈S(T)

({|P(e),Q(e),S(e),V(e)〉1, . . . , |P(e),Q(e),S(e),V(e)〉m}), (6.4)

where m denotes the number of identity classes of the given identity ensemble. With this
encoding, an identity ensemble only matches when all individual identities match. Therefore,
very specific rules can be deployed to evaluate distances for tree-structured data.

However, the dependency is a severe constraint on identity ensembles. The encoding is
not flexible in measuring varying relevant features, but requires all features to be relevant.
Furthermore, the dependency of identities limits compression of similar identities. A
dependent identity ensembles can only compress two vertices if all identities match. The
chance for equal combinations of identities decrease exponentially with the number of
identity classes considered. Thus, the space complexity is worse compared to independent
encoding of identity ensembles.

Nested Encoding

To improve space complexity of dependent encoding, one can constraint dependencies to
a nested encoding of identity ensembles. Nested encoding creates an ordered dependency
between identity classes. Regarding the example with identity classes IdP and Idpq, this
means we use the identity of the position-specifying identity IdP to preselect matches for the
identity Idpq. In other words, we restrict the possibilities for mapping remaining identities of
a given identity ensemble. Consequently, we have the possibility to consecutively narrow the
locality or context of generated identities. An overview of the nested encoding strategy is

106

6.2. Encoding Identity Ensembles

Identity Class Identity Class Nested Encoding

Identity aa

b

c

a

Identity b

Identity a

Identity c

Identity a-1

Identity b-1

Identity a-2

Identity c-1

Identity a

Identity a-1 Identity a-2

Identity b

Identity b-1

...

Identity c

Identity c-1

Ensemble

E
v
e

n
ts

Figure 6.2.: Overview of nested ensemble encoding. The example defines an identity
ensemble from two differing identity classes. Green boxes denote the outer
identity class, whereas blue boxes denote the inner identity class. For each
event ("a", "b", "c", "a", . . .) respective identities are generated. With regard
to equality of identities of outer identity class, the identities of the inner identity
class are grouped. For example the identity created for the event entitled "a"
creates a collision for the outer identity class. However, the inner identity class
differentiates between the two events. Consequently, the inner identities "a-1"
and "a-2" are grouped into the identity "a".

visualised in Figure 6.2. For two identity classes that build an identity ensemble, respective
identities are generated. The order specified in the identity ensemble defines the nesting.
Therefore, identities of the inner identity class are mapped with regard to outer identities.
This results in a grouping of inner identities for equal identities on outer level.

However, nested encoding of identity ensembles comes with two disadvantages: Although
space complexity is better than dependent encoding of identity ensembles, it is still worse
than the independent encoding strategy. As the nesting is directly encoded, we do not
benefit much from compression. While outer identities can have collisions with any vertex
of the tree, subsequent identities are restricted to the parent identity vertices. Only if outer
identities are more generic than inner identities we can expect compression.

The second disadvantage is about the hierarchy of nesting. The first level identity specifies
the lookup key for matching further identities from remaining identity classes of the given
identity ensemble. Thus, a too specific first level identity, for example IdP might not be
existent in a given identity ensemble profile of a tree. Whenever the identity for IdP does
not exist in a given identity ensemble profile no further mapping of remaining identity
classes within the identity ensemble can be evaluated. Thus, nested encoding of identity
ensembles is sensitive to the order of given identity classes. For example, it can be more
efficient to utilise the identity Idpq to access further identities that can in the following
be used to raise accuracy of distance evaluation. Consequently, the mapping of nested
encoding is ambiguous and requires special care to select the order of identity classes.

107

6. Superposition of Dynamic Tree Features

Nested Independent Encoding

Further options such as nested and independent encoding of identity ensembles can be
considered. As identity ensembles can work equivalently to identity classes, this allows
having identity ensembles of identity ensembles. However, such options are vastly too
specific for our use case.

6.2.3. Summary

In summary, there are different options to encode identity ensembles, each targeting different
use cases. Independent encodings allow testing different identity classes in parallel, but
are not capable of expressing correlations between them. In contrast, dependent encodings
allow combining multiple identity classes, but cannot express partial similarities.

For our use case, we have only limited knowledge of the underlying rules of trees. Most
importantly, the models we use are based on estimates of isolated features. As such, we
cannot assume any specific correlation between models. This matches the behaviour of
independent encoding identity ensembles.

Additionally, an independent encoding of identity ensembles preserves the space com-
plexity of the underlying identity classes. We consider this most crucial in streaming
environments. As such, we restrict further evaluations to the application of independent
encoding identity ensembles.

6.3. Ensemble-Based Tree Distances

When utilising identity ensembles, we exploit the incremental behaviour of distance measures
for dynamic trees in streaming environments (see Section 4.5.4 on page 73). Furthermore,
an independent encoding of identity ensembles also makes the distance calculation for each
identity class independent. Consequently, for each identity in an identity ensembles we can
incrementally calculate the similarity to another tree or vertex, without regard to parallel
identities.

Thus, the identity ensemble profile projection is composed of the results from the identity
profile projection for each identity class. However, using an independent encoding for the
identity ensemble does not define how to merge the results to a single distance or similarity
value. Consequently, we introduce an aggregation function φ to combine the different
similarity measures of identity profile projections. Thus, the absolute distance for two trees
T1, T2 (see Equation (4.24)) is given by

dist(T1,T2) = 〈T̃1|θ|T̃1〉+ 〈T̃2|θ|T̃2〉 − 2

|S(T2)|∑
i=1

φ(〈T̃1|θ| P2,i,Q2,i,S2,i,V2,i〉1, . . . ,

〈T̃1|θ| P2,i,Q2,i,S2,i,V2,i〉m), (6.5)

where the aggregation function φ can be any arbitrary function to combine the different
results from identity profile projection of each identity class.

Given the absolute distance for the identity ensemble profile projection, we can accordingly
derive a relative distance (see Equation (4.25)) as well as an incremental distance (see
Equation (7.6)). The relative distance is given by

dist(T1,T2) = 1−
φ(〈T̃1|θ|T2〉1, . . . , 〈T̃1|θ|T2〉m)

〈T̃1|θ|T̃1〉+ 〈T̃2|θ|T̃2〉 − φ(〈T̃1|θ|T2〉1, . . . , 〈T̃1|θ|T2〉m)
, (6.6)

108

6.3. Ensemble-Based Tree Distances

and finally the incremental distance is given by the recursion formula

dist0 =
∑
j

αj〈T̃1|θj |T̃1〉, with
∑
j

αj = 1

disti = disti−1−φ

⊎
m

∑
j

αj(2〈T̃1|θj | P2,i,Q2,i,S2,i,V2,i〉m − 1)

 . (6.7)

6.3.1. Distance Aggregation Function

The choice of an aggregation function dictates how the results of independent identity
profile projections of identities are merged. Notably, this is distinct from the notion of
encoding identities together in an identity ensemble. Even if the result of each identity
profile projection is strictly linked, for example by multiplication, an independent encoding
of identities still allows for separate compression of each identity profile.

For simplicity, we desire an aggregation function to have the same domain and codomain
as the identity profile projection of identities. As such, the combination of similarity
measures can be expressed by an aggregation function defined as follows [35]:

Definition 6.2 (Aggregation function). An aggregation function φ is a function of m ≥ 1
arguments that maps the value range of given arguments onto the unit interval φ : [0, 1]m →
[0, 1].

Notably, this definition also preserves other features of the initial identity profile pro-
jections. Most importantly, any function that is monotonous with respect to any identity
profile projection is also monotonous with respect to an aggregation function of any identity
profile projection.

For our use case, we desire an aggregation function that satisfies the following conditions:
First, it must be robust to any individual identity class being too specific to match across
trees. Second, it must be robust to any individual identity class being too generic to ever
not match across trees. Finally, it should not suppress any valid identity classes.

Without loss of generality we assume the aggregation function φ to be the arithmetic
mean of the given similarity measures from specified identity ensemble profile projection,
that is

X̄ =
1

n

∑
x∈X

x, (6.8)

where X is a collection of n real values xi ∈ [0, 1], X = ({x1, . . . , xn}).

6.3.2. Auxiliary Identities

While we do have a model of the monitored jobs, it is based on high level specifications. As
such, any expectations on hierarchy and attributes are only estimates. On the one hand,
we have to assume that implementations deviate from our model. On the other hand, the
execution environment can lead to nondeterministic differences.

However, our identity-based approach is fundamentally designed for precise identification.
Thus, even small deviations can have exaggerated impact on calculated distances. Yet,
always ignoring such deviations can severely underestimate distances. As such, in addition
to identities conforming to a precise model, auxiliary identities that use a less restrictive
model are desirable.

109

6. Superposition of Dynamic Tree Features

Towards Use Case Independence

The previously introduced identity class IdP (see Section 4.4.4 on page 63) can exaggerate
distances from the renaming of vertices. Especially when tackling non-stationary data,
identity ensembles can have several advantages over single identities: they are easy to scale
and parallelise, they can adapt to changes by leveraging different features of trees, they can
quickly be adapted by pruning under-performing parts of the ensemble, and they therefore
usually generate more accurate results. In the following we discuss the possibility to
approximate the expected outcome by considering an ensemble-based approach to measure
the distance for two trees T1 and T2.

Example 6.3. Consider a simple tree event stream representation Ssimple(T) with σ(V(T))
in preorder. Given two trees T1 and T2, with their symmetric difference V(T1)4V(T2) =
{T1.root, T2.root}, that is both trees are equal except for their root vertices. An identity
profile projection of the identities derived from the definition IdP(e) = |P(e),Q(e) =
∅,S(e) = ∅,V(e)〉, on both trees T1 and T2, we obtain the maximum distance regarding
the two identity profiles IdP(T1) and IdP(T2). This is due to the fact, that the root vertex
is recursively encoded into each identity. Therefore, the overlap of both identity profiles is
0, that is IdP(T1) ∩ IdP(T2) = ∅. Consequently, the distance between both trees T1, T2 is
maximal.

Receiving a maximum distance for two identity profiles IdP(T1) and IdP(T2) when only
the root vertex of both trees is changed is consistent with identifying vertices by their
ancestry. However, for TED we would only expect a distance of 1 in total.

Our approach to distance measurement for trees considers the ancestry of a vertex as a
central characteristic to define its identity, compare Section 4.4.3 on page 54. However, it
seems also reasonable to assume that the influence of a parent vertex onto its descendants
decreases with increasing path lengths.

To accommodate this, one can use an identity ensemble class that builds on both, IdP

and Idpq:
Ide(T) = ({IdP(e), Idpq(e)})e∈S(T). (6.9)

This identity ensemble class combines the features of both identity classes IdP as well as
Idpq. The disadvantage of dynamic pq-gram identity profiles, for example the distortion by
diamonds, are compensated by IdP. In addition, the disadvantage of identity class IdP to
only identify exact matches for a given ancestry is compensated by flexibility of dynamic
pq-gram identity profiles. Thus, we expect the distances to more accurately describe
expectations by combining both identity profile projections. However, as mentioned before,
memory requirements increase by combining two identity profile projection schemes.

Figure 6.3 on the next page visualises behaviour of Ide as well as its components. The IdP

identity is only capable of expressing a limited range of differences. After 20% of different
vertices, the identity cannot distinguish changes anymore. In contrast, Idpq is not capable
of distinguishing the depth of changes, as signified by its smaller error band. However, Ide

exhibits features of both identities: It is expressive over the entire range of differences, but
also reflects how changes at different depths imply different impact.

The independent encoding of identity ensembles combining IdP and Idpq robustly measures
changes in the ancestry of nodes. For our use case, this corresponds to structural changes
due to non-stationary data. For example, such a change could be introduced by a software
update changing the name of an executable. However, it does not reflect changes due to
nondeterminism.

110

6.3. Ensemble-Based Tree Distances

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5

Probability of Perturbation

N
or

m
al

is
ed

D
is

ta
nc

e

Identity
Class

Ide

IdP

Idpq

Figure 6.3.: Visualisation of an identity ensemble for partial similarity. Each identity uses
a different context, allowing them to match different patterns individually or
combined. We introduce perturbations to an existing tree by renaming vertices,
which is equivalent of replacing the vertex.

Permutations of Consecutive Elements

Due to the nature of our use case, analysed trees are inherently nondeterministic at small
scales. Each pilot and payload consists of multiple processes, some of which are executing
concurrently. If multiple processes start or finish in a short time window, the sequence
of processes across different threads of execution is not deterministic. This introduces
micro changes in the order of siblings and concurrent processes. As a result, permutations
can occur in the order of consecutive children in Q dimension or the order of events in S
dimension.

In the following we consider micro changes to influence a limited neighbourhood of
siblings within a tree T . A micro change is expressed by the permutation of two vertices
u, v ∈ V(T). For further considerations we introduce a width that specifies the influence of
micro changes within a tree T . The width specifies how far apart the two vertices u, v can
be to each other, that is up to width− 1 vertices lie between u and v.

Furthermore we assume the chance of overlapping micro changes to be negligible. That
means that two micro changes are practically never intertwined. Furthermore, a vertex
that is already affected by a micro change cannot be part of another micro change.

To specify an identity ensemble that deals with permutations regarding micro changes
of a given width we first consider the identity class IdPqq (see Section 4.4.4 on page 64
for further details). The given identity class defines P with infinite-length and Q with
fixed-length encoding. Without utilisation of identity ensembles, one micro change of a
given width changes up to q+width identities. Consequently, the bigger the width of micro
changes and the longer the sequence of vertices in Q dimension, the bigger the possible
distortion in the resulting distance measure.

To lessen this impact, we adapt the approach used by windowed pq-grams for unordered
trees [25]. Instead of using a nondeterministic ordering, we sort vertices in a dimension

111

6. Superposition of Dynamic Tree Features

Algorithm 5 Identification of vertices for Q and V dimension
Precondition:

v is the anchor vertex
q is number of elements in Q dimension
w is the width of micro changes

Postcondition: Q and V dimension

1: function buildIdentity(v, q, w)
2: nodes ← empty list
3: append v to nodes
4: i ← 1
5: while i < q+ w− 1 do
6: append i’th order sibling of v to nodes
7: i ← i+ 1

8: sort nodes in descending order
9: V ← |nodes[0]〉

10: Q ← |nodes[1], . . . , nodes[q]〉

to guarantee a deterministic ordering. In contrast to windowed pq-grams, which sort all
children of a vertex and select a window from the result, we first select vertices within a
window and sort the resulting sample.

To accommodate the distance distortion caused by micro changes of a given width we
therefore introduce an identity ensemble to complement the identity class IdPqq . We therefore
introduce a further identity class in Q and P dimensions that is defined dependent on the
former identity class IdPqq , that is

IdPqOrder
q,w = |P∞,Qq,w,S = ∅,Vq,w〉.

It mimics the same definition as IdPqq in P dimension but extends the handling of the
Q dimension. The algorithm to build the identity for Q and V dimension is given in
Algorithm 5. Depending on the length of Q dimension of IdPqq and a given width of micro
changes the algorithm determines the number of eligible vertices for V and Q dimension.
Then, the vertices are sorted in descending order. V is assigned the last vertex while the
following q vertices are stored in the Q dimension.

The algorithm uses a window of q + width vertices to ensure that the complete pair of
potentially permuted vertices is selected. Furthermore, to ensure comparable sensitivity
as the underlying identity class, only q vertices are considered for the final identity in Q
dimension.

Figure 6.4 on the facing page visualises the distance distortion for a growing amount of
micro changes for a given width of 1. The identity considers an extent of q = 2 in Q. The
Figure visualises the reduction of effects from micro changes with an independent encoding
of identity ensemble IdPqOrder

q,w . The strict IdPqq is strongly affected by permutations, as a
permutation affects every enclosing window in Q. In contrast, the IdPqOrder

q,w fails to match
only if the permutation is at one end of the window in Q. However, as signified by the
smaller spread, the IdPqOrder

q,w fails to distinguish some constellations. For example, it can
hide permutations if the fanout is low. The identity ensemble retains features of both
identities.

112

6.4. Summary

0.00

0.01

0.02

0.03

0.04

0.025 0.050 0.075 0.100

Probability of Permutation

N
or

m
al

is
ed

D
is

ta
nc

e

Identity
Class

Ide

IdPq

IdPqOrder

Figure 6.4.: Visualisation of an identity ensemble that handles micro changes. Both iden-
tities use q = 2 in Q, and a permutation width w = 1 is used. The effective
fraction of permutations is notably lower than the permutation probability.
This results from permutations of identical siblings.

6.4. Summary

Tree distances can be defined with a variety of models, which are adequate for different use
cases. Both literature and our own work suggest several models suitable for our use case in
general. The black box nature of our use case makes it unfeasible to select a single, strict
model. Instead, it is desirable to use multiple distance models in parallel to cover multiple
possible features.

We propose a method to express multiple identity classes as a single identity ensemble.
This computes and evaluates multiple identities for every vertex, which can be resolved
independently or dependently as desired. For our work, we choose an independent resolution
and aggregation of identities. This reflects the inherent uncertainty on how individual
features in a black-box use case interact, and is the most robust for stream processing.

The introduction of identity ensembles allows for auxiliary identities in addition to
previously defined identities. These auxiliary identities are less restrictive, allowing for
partial matches across trees. In combination, an identity ensemble of strict and auxiliary
identities can express a range of similarities and differences, while retaining O(1) time
complexity per vertex.

In specific, we have introduced an auxiliary identity that absorbs local permutations
in the order of vertices. This reflects our use case, where the real execution environment
implies nondeterminism of order at small scales. As such, the introduction of identity
ensembles and auxiliary identities enables robust distance approximation for dynamic trees
that are unordered at small scale, and ordered at large scale.

113

7. Online Analysis of Dynamic Streaming
Trees

The distance measures introduced so far provide the basis for online analyses of dynamic
trees. As our formalisation explicitly defines an incremental variant, introduced measures
can be directly applied to streaming data. We have introduced extensions with regard to
preserving the complexity of our simplest approach. However, monitoring jobs requires the
analysis of thousands of jobs in parallel.

Within this Chapter, we introduce a pipeline for processing event streams of dynamic
trees. This pipeline connects the event streams from our monitoring, the incremental
distance measurements of trees and attributes, and the superposition of elements. The
target of this pipeline is the online distance measurement as an enabler for subsequent
online clustering and classification.

In the following, we explore the basic approach to processing a high number of monitoring
streams in parallel. The focus is on how the incremental behaviour of distance measuring
can be preserved in clustering. In specific, we explore how various features of our distance
measure allow for an efficient comparison of many trees at once.

Some of the concepts of online analysis regarding the clustering of dynamic trees to
detect anomalies have originally been published in Kuehn [137].

7.1. Related Work

A variety of data mining approaches for analysis of semi-structured data have been designed.
Most approaches in literature focus on clustering and classification of documents such as
XML. Especially hierarchical clustering approaches have been largely adopted due to high
quality of results [71, 73, 148, 151, 167].

Most of those methods are adaptions of agglomerative hierarchical clustering algorithms.
This means, they implement a bottom-up strategy where each single tree is considered
to be a cluster first. The clustering iteratively merges least dissimilar clusters until an
optimal partitioning with regard to a pre-defined quality measure is reached. However,
hierarchical clustering approaches are quadratic in time and thus are not scalable and
cannot be considered for online analysis.

The methods focus on different decomposition strategies. In Nierman and Jagadish [167],
for example, the authors utilise the TED to measure distance between two documents.
This is due to the complexity of TED being rather expensive. Other approaches therefore
improve the method by representing trees by other data structures that retain the structure
of trees [9, 74, 88, 115, 151, 165]. All of these methods focus on structural features of trees
and neglect content information.

Some methods explicitly focus on integration of content and structure [37, 98, 223,
236]. But there is still a lack for efficient methods that combine structure and content for
successive analysis. This is mainly due to the sheer size and complexity of using elements
to describe both features [143]. This is especially true in the era of big data analysis as well

115

7. Online Analysis of Dynamic Streaming Trees

as dynamic data analysis in an online manner. Especially the consideration of dynamic
data requires deliberate representation of data to prevent concentration of distance values
for high-dimensional data [56]. This problem results in a lack of separability within the
clustering and should, therefore, be avoided [38]. Thus, only meaningful data must be
considered for representation. Consequently, it is essential to combine content features and
structural features to derive meaningful clustering results.

In summary, it can be stated, that most methods focus on clustering or classification
of static trees. However, we need to consider dynamic trees and therefore strive for an
incremental clustering that is robust to the continuous changes of trees.

7.1.1. Selection of Algorithm

To realise an incremental clustering of streaming dynamic trees, we strive for an approach
that complies with the following requirements: Due to continuous changes to the objects
being clustered, the clustering approach itself needs to be incremental. However, it should
also be robust. This means, the incremental change of a dynamic tree that is part of the
clustering must not constantly change the identified clusters. Based on considerations
regarding our use case to anomaly detection of batch jobs (compare Section 2.2.3 on page 19)
we also require a clustering approach that is robust to outliers and enables their detection.
Furthermore, HEP batch jobs are built from a few common frameworks. For example, batch
jobs from the same collaboration can differ in details we must be sensitive to, but still,
share the same fundamental architecture. We therefore strive for an approach supporting
overlapping clusters. Finally, the approach should support scalability concerning space and
time complexity.

Based on different models and definitions of a cluster existing clustering algorithms can
be distinguished. As we represent relationship for two dynamic trees by their distance we
focus on distance-based clustering methods in the following before briefly describing our
selected clustering approach. We, therefore, distinguish connectivity-based, centroid-based,
and density-based clustering.

Connectivity-based clustering also known as hierarchical clustering is based on the
intuition that objects are more related to nearby objects. Hierarchical algorithms therefore
iteratively connect objects that are closest to each other based on their distance until all
objects are connected. Hierarchical clustering does not produce a single partitioning of the
data but a complete hierarchy of partitionings. However, due to the iterative procedure time
complexity of hierarchical clustering is O(n2). Furthermore the approach lacks robustness
as hierarchical clustering is sensitive to noise and outliers.

Centroid-based clustering algorithms such as k-means [232] find the k cluster centres and
assign each object to its nearest cluster centre, such that the squared distances between
objects and cluster centres are minimised. Usually centroid-based clustering algorithms
rely on the input parameter k to define a fixed number of clusters [104]. However, also
when the number of clusters is known in advance, the algorithm only finds a local optimum.
Furthermore it is sensitive to noise and outliers.

Density-based clustering algorithms define clusters as regions of high object density.
Objects in sparse areas are considered noise. Thus, density-based clustering by design
differentiates noise from clusters. As such, the clustering is stable even in the presence
of outliers. The most popular density-based clustering is DBSCAN [85]. However, in the
following we will focus on DenGraph that is an extension of DBSCAN [86, 192]. DenGraph
is a density-based graph clustering algorithm with a time complexity of O(n) for a number

116

7.2. Overview of the Approach

of n objects that are clustered. Notably, DenGraph allows the borders of clusters to overlap,
representing similar but distinct clusters. Furthermore, this makes clustering deterministic
regardless of ordering, as required for streams. In addition, DenGraph supports incremental
processing of nodes and edges as well as a recursive generation of sub-clusters to obtain a
hierarchy of clusters [192].

7.2. Overview of the Approach

The distance measurement framework for dynamic tree (see Chapter 4 on page 39) and its
extensions for attributes (see Chapter 5 on page 77) as well as ensemble-based distances
(see Chapter 6 on page 101) provides the means to handle streaming dynamic trees from
our monitoring sensors (see Chapter 3 on page 23). The goal is to evaluate the dynamic
trees as they are streamed in, with a focus on identifying groups and similarly outliers. In
the following Sections, we focus on the technical aspect of this: We require a means to
efficiently apply our incremental distance measurement to cluster monitoring data. This
forms the technical framework on which we then evaluate the criteria to meaningfully reason
about jobs (see Chapter 8 on page 129).

As we are working with multiple streams each describing a distinct dynamic tree, we
propose an approach using separate processing pipelines. An overview of the concept is
shown in Figure 7.1 on the next page. The input into the vertex identity pipeline is divided
into two separate streams. The first stream follows an event-based concept and describes
the evolving structure of a dynamic tree with start and end events of vertices. The second
stream is based on a sampling model and provides attribute events at discrete intervals. This
distinction into event-based and sampling-based event streams originates in our monitoring
use case. Our formalism is not negatively affected by this distinction. The formalism itself
is defined on any frequency of events, both equally-spaced or irregularly-spaced events. The
output of the vertex identity pipeline is a stream itself again. The pipeline focuses on a
non-blocking processing of input events to produce the incremental distance events. Thus,
the pipeline concept enables flexibility and more importantly online analysis of distance
results for dynamic trees.

Whenever an event is processed within the pipeline, first its vertex identity is generated
unless it is already known. This identity is supplemented with a number of distribution
statistics defined by the choice of identity profile projection operators. The combination of
vertex identity and its distributions forms the identity for the given event. However, based
on the given use case several identity classes can be combined to an identity ensemble. This
identity ensemble or individual identity is considered for distance calculation.

The distance calculation itself relies on the input of two objects. Within our framework
we enable different combinations of objects that are considered for distance calculation:

• distance calculation between two stored identity profiles or identity ensemble profiles1

from disk,

• distance calculation for a streaming dynamic tree and a stored identity profile, and

• distance calculation for two streaming dynamic trees.
1There is no distinction between identity profiles and identity ensemble profiles in our proposed formalism.

An identity ensemble profile can be considered a generalisation of identity profiles. To simplify further
discussions we do not distinguish between identity profiles and identity ensemble profiles. Instead, we
only refer to identity profiles.

117

7. Online Analysis of Dynamic Streaming Trees

Vertex Identity Pipeline

IdentityIdentity

StatisticsStatistics

E
ns

em
bl

e
Id

en
ti

ty

D
yn

am
ic

T
re

e
E

ve
nt

G
en

er
at

or

Ensemble Identity Profile

Disk Ensemble Identity Profile

Vertex Identity Pipeline

D
is

ta
nc

e

Structure
Events

Attribute
Events

time

Figure 7.1.: Structure of dynamic tree distance measurement framework. The framework
implements a pipelining concept that ensures that the output is a stream itself.
The input to the pipeline are two streams that contain events modifying the
structure of a tree as well as events describing attribute changes. For each
event a vertex identity is generated before related distribution statistics are
assigned. Distance calculation is either performed on an individual identity or a
combination of different identities, that is an identity ensemble. In addition, the
distance calculation component requires a second tree to compare the stream
to. The framework supports two different inputs: another streaming dynamic
tree or a recorded identity ensemble profile from disk.

Furthermore we want to stress, that we support tree event stream representation for static
trees, enabling distance calculation between static and dynamic trees.

For an online analysis, distance calculation between either two dynamic streaming trees
or one dynamic streaming tree and a recorded identity profile are reasonable. However,
distance calculation between two dynamic streaming trees does not have the characteristic
of monotonicity. This characteristic is especially relevant for outlier detection. Additionally,
while we expect non-stationary data, our analysis shows that data is practically stationary
well over the runtime of a single job. Thus, using stored identity profiles allows us to
compare currently running jobs against a wider range of groups of homogeneous jobs. In the
following, we therefore restrict the distance measurement to distance calculations between
a streaming dynamic tree and a recorded identity profile.

7.3. Incremental Clustering

To realise an incremental clustering of dynamic trees we reviewed existing approaches (see
Section 7.1 on page 113) that allow the clustering of semi-structured data. To the best of

118

7.3. Incremental Clustering

our knowledge we are the first to introduce an incremental clustering of streaming dynamic
trees.

As discussed previously, density-based clustering fulfils our basic requirements on cluster-
ing. From many available density-based clustering approaches we exemplarily select the
density-based clustering approach DenGraph. Density-based clustering is robust against
outliers, and naturally represents outliers. Both insertions and deletions are well-behaved,
making density-based clustering suitable for incremental changes in principle. Furthermore,
several density-based clustering approaches support hierarchical clustering, allowing us
to inspect further details in clusters. Finally, density-based clustering usually works on
arbitrary undirected graphs, and does not rely on geometric properties of an Euclidian
space – this is a critical feature for our distances derived from deeply nested data structures.

7.3.1. DenGraph

Without loss of generality, we have chosen the DenGraph algorithm for our work. While
extensions of the algorithm are optimised to handle partial and incremental graphs, the
general working principle is the same. The DenGraph algorithms cluster nodes of a graph
G = (V,E) consisting of a set of nodes V(G) and a set of weighted, undirected edges E(G).
The weights correspond to the distance between any two nodes that are connected by an
edge.

The core concept of the algorithm is the neighbourhood of a node. This neighbourhood is
evaluated regarding two parameters: The parameter ε defines the maximum distance to a
connected node. Any two nodes u, v are treated as neighbours when their corresponding
edge weight is smaller or equal to ε.

The ε neighbourhood of a node v ∈ V (G) is given by

Nε(v) = {u | dist(u, v) ≤ ε, ∀u ∈ V(G)}, (7.1)

where dist(u, v) is the distance between the two nodes u and v.
The second parameter η defines the number of neighbours that are required to categorise

a node to grow a new cluster. Each such node is called a core node and is defined by

Vcore = {v | |Nε(v)| ≥ η},∀v ∈ V(G). (7.2)

Core nodes and their neighbourhood define the DenGraph clusters. The concept of the
neighbourhood of nodes is visualised in Figure 7.2 on the next page. Border nodes are not
core nodes, but lie in the neighbourhood of a core node. Any node not in the neighbourhood
of a core node is considered noise.

The strict limitation of distances means that DenGraph operates on a limited number of
edges within the graph G. This limitation is defined by the parameters ε and η specifying
the region of interest. Thus, DenGraph effectively operates on sparse graphs, even if the
initial graph is complete. On the one hand, this allows for O(n) in non-degenerate graphs.
On the other hand, it means changing any individual node has a well-defined scope of effect.

Because of the dynamic behaviour of our data and the goal to achieve an online analysis, a
repeated static clustering is inefficient. The dynamic data and potential evolution of clusters
over time are best handled via incremental clustering. Thus, we use the DenGraph-IO [192]
algorithm, which supports incremental insertion, deletion, and modification of nodes and
edges in an existing clustering.

119

7. Online Analysis of Dynamic Streaming Trees

ɛ

Core

Border

Noise

ƞ = 4

Figure 7.2.: Visualisation of the neighbourhood of nodes in density-based clustering ap-
proaches. Density-based clustering approaches differentiate core, border, and
noise nodes. The categorisation of nodes is determined by evaluating a required
number η of nodes within a distance of ε. A node that has at least η nodes in
its ε neighbourhood is considered a core node. Nodes that are no core nodes
but have at least one core node in its ε neighbourhood are so-called border
nodes. Remaining nodes that are neither core nor border nodes are considered
noise.

7.3.2. Clustering Dynamic Trees

The challenge of clustering dynamic trees maps to the tree-to-tree similarity search for
dynamic trees. Given a dynamic tree T and a set of completed trees Γ = {T1, . . . ,Tm}, find
the trees Ti most similar to T . Based on our proposed framework to distance measurement
for dynamic trees we can consider the set Γ as a set of identity profiles that can be utilised
for distance calculation, that is Γ = {〈T1|, . . . , 〈Tm|}. We further assume this set Γ to be
the basis for an initial clustering to enable incremental clustering of dynamic trees.

Distances on Γ are defined by dist(Ti,Tj), ∀i, j < |Γ| as previously introduced (see
Chapters 4 on page 39 and 6 on page 101). By utilising DenGraph, we cluster our set of
existing dynamic trees Γ and assume to derive a valid clustering with a set of k clusters,
that is C = {C1, . . . , Ck} with |C| = k.

However, performing the initial clustering requires O(m2) distance calculations for m
tree identity profiles as we do not have sparse edges between the individual tree identity
profiles. While DenGraph operates on a weighted graph in O(m), our use case requires the
calculation of all edges to test dist(Ti,Tj) ≤ ε for pruning. Thus, we need to consider a
fully meshed graph, requiring O(m2) distance calculations. When incrementally inserting
dynamic trees into the existing clustering it still requires O(m) distance calculations per
tree to consider. Thus, we focus on the minimisation of search space in the following.
Otherwise scalability for the proposed online clustering cannot be guaranteed.

Sampling

Our approach of identifying groups of jobs hinges on the assumption that jobs of the same
workflow are interchangeable with some level of uncertainty. In turn, this means that given
a sufficient sample of jobs, additional jobs of the same workflow have negligible differences
to those of the sample.

This redundancy of information allows a reduction of the search space for clustering.
Instead of storing all monitored jobs, it is sufficient to work with a subset of data [188, 190].

120

7.3. Incremental Clustering

Cluster Representatives

Figure 7.3.: Overview of concept of Cluster Representatives. To efficiently represent dense
clusters, CRs act as a replacement for groups of nodes. Each CR represents its
group of nodes with a given accuracy. For arbitrarily-shaped clusters, several
CRs can be used to represent individual regions of the cluster. As such, large
clusters may be represented by multiple CRs as once.

Thus, we can reduce the number of identity profiles that must be considered in distance
calculations.

Density-based clustering allows to define a minimum information density sufficient to
describe clusters. This means that for a distance uncertainty ερ ≤ ε we preserve no more
than a number of ηρ ≥ η (ε/ερ)

d data points, for an estimate of dimensionality d. An
estimation for the dimensionality d must be derived from features of a given set of data Γ.
Thus, the estimation is use case specific and requires a repeated validation for non-stationary
data.

Downsampling further allows to reflect that data is inherently non-stationary. As
monitoring constantly streams in new data, the volume of recorded data is theoretically
unbounded. However, only recent data can be considered an indicator for the current
normal behaviour.

Instead of using the entire history of recorded data for clustering, only recent data
is required. As we use an incremental clustering, it is feasible to remove existing data.
This allows us to bias and eventually remove old data. With clustering reflecting this
incrementally, existing clusters naturally drift towards recent behaviour. This also includes
changes where clusters disappear over time and are replaced by new clusters.

Although sampling allows a significant reduction of tree identity profiles for dense clusters,
distance calculations are still required for mρ tree identity profiles, with mρ ≤ m. We
therefore consider the aggregation of tree identity profiles to represent distinct clusters.

Cluster Representatives

To improve the complexity of distance calculations, clustering methods introduce the concept
of Cluster Representatives (CRs) [58, 70, 71, 190]. A CR describes common features of all
members of a given cluster. Thus, a cluster can be depicted equivalently by its members or
its CR with some well-defined accuracy. As such, a CR can be used in place of the members
of its cluster for many operations.

In [37] the authors introduce CRs as a union of documents. However, the given approach
does not address different multiplicities of elements inside documents. Instead, we require
an aggregation of the identity profiles of trees contained in the group represented by a CR.

Since multiplicity is defined via attributes (see Section 5.3.1 on page 86), aggregation can
be expressed by the merging of attributes. For multiplicities, this merging corresponds to
the average multiplicity of each element in the group. In general, the merging of attributes
minimises the difference between the CR and all members of its group.

121

7. Online Analysis of Dynamic Streaming Trees

Definition 7.1 (Aggregated identity profile). Let Γ be a collection of identity profiles, that
is Γ = {{|T1〉, . . . , |Tg〉}} and θ a set of identity profile projection operators. An aggregated
identity profile is the mean identity profile |T ′〉 maximising the similarity to the identity
profiles of Γ by with respect to attribute statistics:

〈T ′|θ|Γ〉 =
∑
k

〈T ′|θ|Tk〉. (7.3)

For clusters of arbitrary shape, a single CR is not necessarily capable of describing all
members of a cluster within a given accuracy. This is especially the case in non-Euclidian
space, where the concept of averages is meaningless on a large scale. Thus, we use a set of
CRs for each cluster, each representing a different region of the cluster (see Figure 7.3 on
the previous page). Each CR unifies a set of tree objects for the given region. Hence, the
number of cluster representatives is always smaller or equal than the number of objects
belonging to their cluster.

Definition 7.2 (Cluster Representative (CR)). Let C be a cluster consisting of a set of
identity profiles, that is C = {|T1〉, . . . , |Tm〉}, and θ a set of identity profile projection
operators. The set of Cluster Representative (CR) of C, denoted by CCR = {|c1〉, . . . , |cr〉},
is the set of aggregated identity profiles that optimises the overlap between identity profiles
and aggregated identity profiles:

〈CCR|θ|C〉 =
∑
r

∑
m

〈cr|θ|Tm〉. (7.4)

Optimal overlap minimises the number of CRs r, and approaches a desired accuracy ϑ:

〈CCR|θ|C〉
〈C|θ|C〉

→ ϑ. (7.5)

This criteria implicitly satisfies several features desirable for identity profiles: Minimising
the number of CRs k within a given accuracy avoids using the nodes directly as CRs. The
general maximisation of overlap ensures that the cluster is adequately split into groups,
as a single CR representing several groups degrades overlap. Finally, a target accuracy ϑ
corresponds to clustering based on an ε neighbourhood; for ϑ = 1− ε, every CR represents
an ε neighbourhood.

The formation of CRs follows directly from the given choice of identity class and identity
profile projection operator. We profit from our proposed framework given in Chapters 4 on
page 39 and 5 on page 77 as no further concept nor definition needs to be introduced to
realise the aggregation of CRs. In turn, this gives CRs other properties of our approach,
such as supporting an incremental creation (see Algorithm 6 on the facing page).

The use of CRs reduces the number of existing nodes that new nodes must be compared
against. However, this must still be done explicitly for every CR. For a given cluster, it is
reasonable to assume that CRs share many identities. To simplify the association to specific
trees or clusters given an identity we further utilise the concept of inverted indexes [66].
An inverted index maps each identity to the set of trees or clusters containing this identity.
An inverted index for each cluster means that identities are not compared to O(kr) CRs
but only O(k) inverted indices of clusters.

This approach to represent clusters by CRs has several advantages: First, we can represent
arbitrary-shaped clusters. Second, we unify several overlapping identities and thus can
perform direct lookups. This direct lookup avoids linear search over a number of trees
to determine distances. Third we improve statistical reliability by unifying homogeneous
identity profiles.

122

7.4. Incremental Classification of Dynamic Trees

Algorithm 6 Incremental creation of Cluster Representatives
Precondition:

C is the current cluster to consider
|T 〉 is the identity profile to be inserted to C
ω is the distance threshold for two identity profiles

Postcondition: updated cluster C containing current CRs

1: function AddProfile(|T 〉, C)
2: distances ← array of length |CCR| initialised with 0
3: for identity ∈ |T 〉 do
4: distance ← distance(C, identity)
5: distances ← update distances element-wise with current distance
6: if min(distances) < ω then
7: update CR with smallest distance by |T 〉
8: else
9: add new CR to C and add |T 〉

10: return C

7.4. Incremental Classification of Dynamic Trees

In contrast to clustering and simplifying recorded jobs, the classification of monitored jobs
must be performed online to be meaningful. The duration of each job suggests that a
latency for decisions in the order of seconds is acceptable (for details on the distribution of
duration for CMS jobs see Figure C.3 on page 178). However, classifying several thousand
jobs in parallel requires an efficient approach. As such, we exploit features of both clustering
and distance measurement to reduce complexity.

7.4.1. Dynamic Probing with Virtual Nodes

Our choice of density-based clustering is already motivated by reducing the complexity of
identifying clusters. Thus, the existing clustering mechanism provides key features for an
efficient classification of nodes to clusters. Most importantly, the density-based clustering
limits comparisons to a strictly-defined neighbourhood. Additionally, incremental clustering
offers an existing, efficient way of representing dynamic distances.

However, inserting several thousands of vertices is likely to influence the clustering itself.
The integration of a dynamic tree T as a node into a clustering built from finished dynamic
trees would skew clusters due to incomplete data of T . However, categorising the tree T
at runtime is considered important for responsiveness and optimisation of time and space
complexity.

We, therefore, exploit clustering for classification by introducing the concept of virtual
nodes. The general concept of virtual nodes is visualised in Figure 7.4 on the following
page. A virtual node is tightly bound to the underlying clustering mechanism, without
being part of the clustered nodes. However, it is still part of the clustering and thus profits
from incremental changes to the clustering: Distances to relevant clusters can be updated
incrementally.

To not skew the actual clustering while still classifying incomplete dynamic trees, we
extend DenGraph with a probing mechanism based on the concept of virtual nodes. In

123

7. Online Analysis of Dynamic Streaming Trees

Virtual Nodes

Figure 7.4.: Dynamic data probing with virtual nodes. A virtual node is not considered in
the proper clustering process but is part of the overall mechanism. By exploiting
virtual nodes the clustering of dynamic objects is enabled. Each virtual node
encapsulates an objects dynamics and keeps the required incremental distances
based on the underlying clustering. Whenever a virtual node is finished, it
can directly be added to the proper clustering without any recalculation of
distances.

addition to the nodes forming existing clusters, we add a conceptual layer on top. Nodes
corresponding to currently monitored dynamic trees are inserted into this layer representing
the virtual nodes.

This overlay works similar to the regular layer of nodes. Most importantly, the ε
neighbourhood of the virtual nodes includes nodes in the regular layer. As such, these
virtual nodes are automatically classified as noise, border, or core nodes.

Virtual nodes support the same classification as regular nodes: Virtual nodes can be
border nodes of multiple clusters, and even form a bridge between clusters if they are core
nodes of multiple clusters. Additionally, incremental updates of virtual nodes are efficiently
evaluated in their ε neighbourhood.

However, there is no back propagation to the regular layer of nodes. Regular nodes are
not influenced by virtual nodes in their ε neighbourhood. This includes virtual border and
core nodes, which can never promote a regular node to a border or core node.

The use of virtual nodes lends itself well to analysing multiple streams in parallel. Since
the underlying clustering is immutable to the virtual nodes, it does not need to be duplicated
for each event stream but can be shared safely. Additionally, multiple virtual nodes can be
classified in parallel.

7.4.2. Divergence of Distances

A simple model of virtual nodes can be realised using insertion and deletion of the respective
state Ti of the dynamic tree T . However, this requires a repeated calculation of the local
ε neighbourhood. Instead, we reuse the same virtual node during the lifetime of its
corresponding dynamic tree. This allows for optimisations based on incremental distance
changes.

Notably, we have purposely defined the incremental dynamic tree distance and any
extensions to provide monotonic behaviour compared to an ideal behaviour (see Section 4.5.4
on page 73, Section 5.3 on page 86, and Section 6.3.1 on page 107). In short, ideal behaviour
means an incremental identity profile matches the recorded identity profile it is compared
to; at any step, a dynamic tree can only be equal to or worse than the ideal behaviour.

Notably, this property is only guaranteed for our choice of comparing incremental identity
profiles against recorded identity profiles (see Section 7.2 on page 115). When comparing
two incremental identity profiles, matching identities can be delayed for one stream. This

124

7.4. Incremental Classification of Dynamic Trees

causes temporary distance when an identity occurs in one stream, which is compensated
once the identity arrives in the other stream.

To optimise space and time requirements for classification, we exploit the monotonicity
of the underlying distance measurement. Once a dynamic tree diverges from the ideal
behaviour, it can never converge again.

Definition 7.3 (Divergent incremental dynamic tree distance). The recurrence formula
for the divergent incremental dynamic tree distance between a recorded identity profile of a
dynamic tree T1 and an observed dynamic tree T2 is given by

dist0 = 0

disti = disti−1+
∑
j

2αj(1− 〈T1|θj |P2,i, Q2,i, S2,i, V2,i〉), with
∑
j

αj = 1, (7.6)

where θj defines an identity profile projection operator (see Section 4.5.4 on page 73).

Compared to the regular incremental dynamic tree distance, this formulation requires
an additional step if |T1| > |T2| to compensate for missing vertices. However, the two are
linked by a fixed, linear relation. It is inexpensive to incrementally calculate the regular
and divergent distances from the same identity profile projection.

Notably, both distances have the same end result. However, the divergent distance
is advantageous for incremental classification. The divergence of distances means that
nodes can only leave the local ε neighbourhood of a virtual node, but they cannot enter it.
Thus, by using the same virtual node for a dynamic tree, once a node diverges from the ε
neighbourhood at any step, it does not need to be considered in further steps.

7.4.3. Convergence and Anomaly Detection

The divergent distances mean that candidate clusters are consecutively eliminated from the
ε neighbourhood of a virtual node. This is the primary means of reducing complexity in our
approach: for each dynamic tree, dozens of CRs must be compared in the first steps (see
Section 7.3.2 on page 119). However, once the tree unfolds to regions where CRs diverge
from a common trunk, many also exit the ε neighbourhood.

However, while the ε neighbourhood is based on relative distances, the divergent incre-
mental dynamic tree distance is an absolute distance. The required normalisation of the
relative dynamic tree distance (see Equation (4.27)) notably does not preserve monotonicity:
the relative distance grows for mismatches, but shrinks for matches. Still, we can derive an
estimate for a normalised distance that preserves divergence.

Proof. Let T1 and T2 be a recorded and dynamic tree, respectively. Let |T1〉 and |T2〉
be the respective identity profiles based on any identity and identity ensemble as well as
identity profile projection operator θ. The relative dynamic tree distance at any stage i of
T2 is given by Equation (4.27) as

distdynamic(T1,T2,i) = 1− 〈T1|θ|T2,i〉
〈T1|θ|T1〉+ 〈T2,i|θ|T2,i〉 − 〈T1|θ|T2,i〉

125

7. Online Analysis of Dynamic Streaming Trees

This distance is composed of the size of the recorded identity profile 〈T1|θ|T1〉, and the
current overlap and difference.

= 1−

overlap︷ ︸︸ ︷
〈T1|θ|T2,i〉

〈T1|θ|T1〉+ 〈T2,i|θ|T2,i〉 − 〈T1|θ|T2,i〉︸ ︷︷ ︸
difference

As an estimate, the overlap of identity profiles for T1 and T2 can never be greater than the
identity profile of the known, recorded tree T1. Furthermore, the difference equals half the
divergent incremental dynamic tree distance (see Equation (7.6)), which we denote by Ξi

for brevity.

≥ 1− 〈T1|θ|T1〉
〈T1|θ|T1〉+ Ξi

This provides an estimate for a normalised, divergent incremental dynamic tree distance
measure.

Notably, the precise distance lies within an ε neighbourhood if the monotonous, smaller
estimate does as well. This allows us to define a simple threshold for convergence.

1− 〈T1|θ|T1〉
〈T1|θ|T1〉+ Ξi

≤ ε

Ξi

〈T1|θ|T1〉
≤ ε

1− ε
(7.7)

For dynamic trees conforming to a workflow, we expect the dynamic tree distance to
converge to a cluster of that workflow within a threshold of ε. Notably, such trees must
be tracked for their entire lifetime. Even an otherwise ideal tree can in principle diverge
shortly before its expected end. However, we can expect a tree to diverge from clusters
of other workflows, allowing for a reduction of comparisons. Table 7.1 on the next page
shows the results for divergence of 1000 dynamic attributed trees with respect to 800 core
nodes. 50% of core nodes can be excluded prematurely from further distance calculations
for unfinished dynamic trees.

Additionally, divergence offers an efficient tool to detect outliers. The dynamic tree of
a job that deviates from known behaviour, for example due to software bugs, will also
diverge in distance from all workflow clusters. In this case, no viable node remains in the ε
neighbourhood of the virtual node. As these jobs do not correspond to normal behaviour
by definition, we consider them anomalous.

7.4.4. Improvement of Anomaly Detection

To improve divergence and thus the detection point of anomalies while retaining accuracy
we can exploit implications of vertex insertion events for dynamic trees. This observations
relies on the requirement that after a vertex was added to a tree, it will be removed at a
later point in time. Consequently, when the identity of a vertex v ∈ T does not match
at insertion time, the identity of v will also not match at removal time. We can therefore
anticipate the mismatching identity of the removal event during processing of the insertion
event. Thus, the cost for a mismatching identity for insertion events is substituted by the
sum of insertion and deletion for a mismatching vertex.

126

7.5. Summary

Table 7.1.: Dynamic tree distance divergence at runtime. Classification of dynamic trees is
decided by association with the ε neighbourhood of cluster nodes. Dynamic trees
that have finished can be precisely classified. Our approximation allows to detect
the divergence of dynamic trees from a specific ε neighbourhood. Shown here
are the final classification and runtime estimates for 1000 dynamic attributed
trees with respect to 800 cluster nodes. On average, for every matching cluster
node, 15 cluster nodes do not match. From these, our approximation excludes
50% of candidates even without full knowledge of the dynamic tree. This is
consistent with the fact that approximately half the dynamic trees are smaller
than the recorded tree, thus not being targets of our approximation.

Final

Divergent Convergent

Runtime Divergent 372 275 0
Undecided 354 938 53 787

A sketch of the algorithm to improve the detection point of anomalies based on structural
events is given in Algorithm 7 on the following page. For correctness, the mismatching
deletion event in subsequent events is not counted again. This is ensured by a simple
counter that validates the number of applied overestimates.

This technique results for our specific use case in an improvement of the anomaly detection
point in 27.72% of tree comparisons that appear anomalous with regard to a specified
distance threshold. On average, the detection point occurs 15.20% of events earlier without
introducing any false positives.

7.5. Summary

This Chapter is dedicated to demonstrate how our distance measures can be combined to
enable an efficient classification of our monitoring data. While our incremental measures are
the foundation of an online analysis due to their low complexity, an approach to combine
them for the end goal of classification is needed. Thus, we have proposed a pipelining
approach which combines multiple parallel distance calculations with an incremental
classification.

As our use case does not provide prior knowledge on classes, we have to derive them
from our data. Since trees do not form an Euclidian space, we use the local density-based
clustering approach of DenGraph. The class of density-based clustering algorithms is robust
against outliers and explicitly identifies them as noise. Most importantly, each object only
has an effect in a local scope, reducing complexity.

This clustering forms the basis for classifying trees described by our monitoring streams.
The incremental distance calculation allows us to incrementally classify nodes by matching
them to clusters. This concept is visualised in Figure 7.5 on page 127. To take full advantage
of the existing clustering approach, we introduce virtual nodes: representing dynamic trees,
they exploit the internal classification of the clustering for efficiency. However, to avoid
skewing of clusters due to partial trees, regular nodes and clusters are not influenced by
virtual nodes.

We use virtual nodes to optimise the classification of trees. By reformulating our

127

7. Online Analysis of Dynamic Streaming Trees

Algorithm 7 Improvement of divergence recognition for anomaly detection
Precondition:

σ(T ′) is the tree event stream representation of tree T ′

|T 〉 is the identity profile of the recorded tree

1: function overestimateEvents(σ(T ′), |T 〉)
2: mismatches ← 0
3: while event ∈ σ(T ′) do
4: if type(event) = start event then
5: if 〈T |event〉 = 0 then
6: overestimate distance
7: mismatches ← mismatches+ 1
8: else
9: handle distance as usual

10: else if type(event) = end event then
11: if 〈T |event〉 = 0 and mismatches > 0 then
12: skip distance handling
13: mismatches ← mismatches− 1
14: else
15: handle distance as usual

incremental distances, we arrive at a monotonous measure for incremental dynamic tree
distances. This allows us to discontinue comparisons to any tree which leaves the local
neighbourhood at any time. Instead of continually comparing each monitored tree against
all others, this limits comparisons to a converging window. If monitored trees are anomalous,
this window becomes empty during the lifetime of a job, allowing for an early detection of
outliers.

128

7.5. Summary

Distance

Vertex Identity Pipeline

Clustering

Ensemble Identity Profile

Vertex Identity Pipeline

Distance

C
lu

s
te

r
R

e
p

re
s
e

n
ta

ti
ti
v
e

s

Ensemble Identity Profile

Ensemble Identity Profile
Ensemble Identity Profile

...

Virtual Nodes

Ensemble Identity Profile
Ensemble Identity Profile

Finished Trees

Update Tree

Figure 7.5.: Overview of utilisation of density-based clustering of dynamic trees to support
online classification. For each event that is added by the vertex identity pipeline
the associated virtual node is updated. For each update of a virtual node the
distance with regard to current CRs of density-based clustering is updated.
Whenever a tree is finished, the respective identity ensemble profile can be
added to the clustering without recalculating all distances. A classification of
trees is done based on the layer of virtual nodes. This classification is based on
convergence to specific CRs. Incremental distance results enable the evaluation
of convergence or event divergence to given CRs.

129

8. Evaluation

In the following, we evaluate the different parts of our proposed methodology for online
analysis of dynamic trees in streaming environments. First, we start with an evaluation
regarding relevant characteristics of our proposed dynamic tree distance measurement:
scalability, sensitivity, and coverage, but also formal accuracy. We conclude the evaluation
by presenting three different real-world use cases that reflect the entire workflow of online
analysis of dynamic trees in streaming environments. In specific, we detail our findings for
the analysis of HEP batch jobs regarding the ability to learn usage patterns, enable the
utilisation of opportunistic resources, and towards an outlier detection during operation of
the GridKa data and computing centre.

For reproducibility and better understanding all workflows we utilise for evaluation are
documented in Appendix B on page 157. The workflows formally describe the data selection,
data transformation, and data analyses processes that are exploited within this Chapter as
well as previous Chapters. All results presented in this thesis rely on the results of these
workflows.

To evaluate the proposed approach, we implemented a reference framework that is called
Algorithm Simulation for Streaming Environments to aSsess tree Similarities (ASSESS)
based on Python2.7. ASSESS implements all of the proposed methods to handle distance
measurement of dynamic as well as static trees in streaming environments. For comparison
with TED, we utilise the official Python module zss in version 1.1.2 [106]. The module zss
implements the TED algorithm described in Zhang and Shasha [239]. As there is no official
implementation of the DenGraph algorithm for Python, we use our own implementation
published as the dengraph package [80]. For the DenGraph package we implemented the
features described in Falkowski, Barth, and Spiliopoulou [86] and Schlitter, Falkowski, and
Lässig [193] regarding the incremental update of clustering, the overlapping clusters as well
as the creation of a hierarchy of clusters.

Some of the results presented in this Chapter have already been published in Kuehn and
Streit [138].

8.1. Characteristics of Distance Measures

In Section 4.5 on page 67 we identified the characteristics of scalability, sensitivity, coverage
as well as formal accuracy to be relevant for assessing the quality of dynamic tree distances.
We, therefore, evaluate our proposed multi-step decomposition strategy for distance mea-
surements with regard to these characteristics. Specifically, we consider the performance
and characteristics using different, intuitive variants of both identity classes and distance
functions.

As a basis for our evaluation, we first introduce the constraints, assumptions, and
techniques behind our tests. They form the framework on which our evaluations are based
on. In specific, this Section is dedicated to the study of our distance measurements under
controlled conditions.

131

8. Evaluation

8.1.1. Conditions, Assumptions, and Techniques

As shown in Section 5.3.1 on page 96, incremental PDF statistics strictly expects Gaussian
distributions, and deviates from the underlying distribution if it does not match. Our studies
show that our data consists of attributes that do not follow a Gaussian distribution. To avoid
introducing separate incremental PDF statistics for every attribute, we restrict ourselves to
consider MultisetStatistics throughout this Chapter. We expect absolute differences for
attribute values to become less significant for great value ranges. We, therefore, parameterise
the MultisetStatistics with the transformation function f(x) = round (

√
x), which focuses

on relative distances instead.
To systematically analyse the different characteristics of our distance measures, we require

a methodology to control samples of dynamic trees and their distance to each other. Notably,
we use recorded data only as a basis, on which modifications are applied in a controlled
manner. These modifications allow us to evaluate our approach based on real data, but
under well-defined conditions.

Present Dataset

The dataset that is utilised within this thesis is a sample recorded with the tool BPNetMon
for user-centric monitoring introduced in Chapter 3.2 on page 28. Within a period of
approximately one year the recordings of BPNetMon were stored as input for further
analysis. The dataset contains batch jobs from 64 distinct worker nodes at the GridKa.
Further information on hardware and setup used for the environment and monitoring can
be found in Appendix D on page 179.

The original dataset contains the data from entire batch jobs, from any VO supported at
GridKa. However, the evaluation presented here is performed using only batch jobs of a
single VO.

• On the one hand, this simplifies the evaluation by ensuring limited reproducibil-
ity independent of our approach. Relying on the domain knowledge available for
this VO, we can reliably obtain payloads and reason about their general, expected
characteristics.

• On the other hand, this provides a realistic challenge for our approach. By limiting our
data to a homogeneous setup, we avoid trivial distinctions from different technologies,
and instead show the separability even for small differences.

Therefore, we have selected batch jobs of the CMS VO for further analysis. Table 8.1 on
the next page summarises statistics about the dataset regarding the different batch jobs
as well as the derived dataset of CMS payloads. Both datasets have also been analysed
independent from available identity classes. Thus, the stated alphabet size is derived in
terms of distinct Unix process names available in the dataset. Notably, both datasets
provide a wide range of values for the different properties analysed. Especially the range of
vertex counts requires a scalable algorithm.

Generation of Trees

We use data from a real world use case as the basis for our evaluation to portray the
characteristics of our approach under realistic conditions. However, this means that we lack

132

8.1. Characteristics of Distance Measures

Table 8.1.: Statistics on present datasets that are used for evaluation within the scope of
this thesis. Statistics on pilots are considered for all 64 worker nodes we utilised
for monitoring. The subset on payloads is collected from available pilots of 15
worker nodes. Payloads are only considered for the CMS experiment. Data for
incomplete trees are skipped from our datasets.

Property Pilots CMS payloads

Samples 2 298 176 131 734
Duration (h)
µ 8 3
max 420 60

vertices
µ 8942 1706
max 3 880 692 3 639 289

Tree depth
µ 15 8
max 37 22

Fanout
µ 12 5
max 828 699

Alphabet size
µ 95 46
max 458 379

Attributed vertices
µ 31 9
max 9055 1503

Attribute events
µ 466 106
max 111 744 6341

a robust basis for comparing our results against: An important motivation for our work is
that the precise features of our data are not known in advance.

To benefit both from real data and from synthetic data, we use a hybrid approach. Instead
of comparing arbitrary trees from our recorded data, we generate well-defined variants
for each tree through selective modification. This includes standard edit operations akin
to TED, such as renaming, deletion, and insertion of vertices but also a move operation.
We also consider move operations here to replicate micro changes we experience in our
original data. In addition, we also provide duplication, permutation, and repetition of entire
branches. All of these operations can be controlled precisely by specifying the probability
per operation. The operations can further be restricted to specific elements within the tree,
for example leaf vertices, inner vertices, or vertices containing attributes.

To assess the characteristics of our approach, we empirically relate precise edit distances
with a set of edit operations to our dynamic tree distance using tree decomposition based
on identities. However, the computation of exact edit distance with moves is NP-hard [163].
TED for ordered trees still requires polynomial time [75, 209, 239]. Efficient approximations

133

8. Evaluation

have been proposed only for sorted trees in literature [22, 94, 233]. Even with a restriction
to static trees, this is unfeasible given the complexity and scale of our data. To the best of
our knowledge, there are no efficient algorithms to reliably approximate such edit distance,
at least none which are not covered by our own approach.

We, therefore, exploit our generation mechanism, where a given dynamic or static tree
T is subject to a series of random perturbations. As we perform these perturbations, we
track the changes between the original tree T and the perturbed tree T ′. This is directly
translated to equivalent edit distances, allowing us to derive an approximate tree edit
distance at O(n) time complexity for generated trees1. To avoid any redundant operations,
we perform perturbations in streaming order of the given tree. This enables us to compare
the edit distance of a perturbed tree T ′ with our dynamic tree distance derived from the
projection 〈T |θ|T ′〉.

Cost Models

Deriving the actual distance from individual edit operations is expressed with a cost model
in TED. The classical TED assigns a uniform cost of 1 to any operation, such as the deletion
of a vertex. However, other cost models are viable as well. In specific, our own view of
process trees of jobs suggests a cost dependent on the size of the subtree rooted at the
vertex under consideration.

The different cost models presented in the following are based on the standard edit
operations of TED [75, 239]: deletion of a vertex, insertion of a new vertex as well as
renaming of a label of a vertex (see Section 4.3.2 on page 48). To refer to the costs of an
operation applied to a vertex v we use cd(v) for deletion, ci(v) for insertion, and cr(v, w)
for renaming v to w.

Tree Edit Distance The TED applies a unit cost model that is based on the minimal
number of edit operations required to transform one tree into another:

γTED(v, v′) = c (delete, insert, rename)

Usually, the cost c for each type of edit operation is chosen to be a constant [41]. This cost
model is only dependent on the number of operations on individual vertices.

Recent studies [19, 150] compare TED with alternative measures, noting that it matches
trivial human intuition of differences. That is, the number of changes directly translates
to the distance. It does not take into account the structural relations of vertices in their
respective trees.

Fanout-Weighted Tree Edit Distance However, we often have to assume that the struc-
ture of a tree itself carries further information. Simply put, a vertex is not only defined by
its own attributes, but also its parent. Therefore, whenever one vertex of a tree is edited,
this implies a change of its descendants. While TED typically gives no weight to structural
changes, the Fanout-weighted Tree Edit Distance (FTED) proposed in literature [21] uses
the fanout of a vertex as an estimate for structural impact.

The FTED considers the fanout of each vertex to determine the cost of edit operations.
The fanout of a vertex is the number of direct children. Hence, edit operations on a vertex

1Notably, this approach is only applicable in the context of our generator. It is not a general purpose tree
distance for arbitrary trees.

134

8.1. Characteristics of Distance Measures

with a large number of children have a high cost. This amplifies differences of vertices with
many edges, and suppresses differences of vertices with few edges, particularly leaf vertices.

γFTED(v, v′) =

fv + c if v 6= ∅ ∧ v′ = ∅ (delete)
fv′ + c if v = ∅ ∧ v′ 6= ∅ (insert)
fv+fv′

2 + c if v 6= ∅ ∧ v′ 6= ∅ ∧ λ(v) 6= λ(v′) (rename)

Subtree-Weighted Tree Edit Distance The cost model of FTED is a simplification of
structural impact to a finite context. This disregards recursive impact of changes on
structure: Changing the definition of a vertex invalidates the definition of its children,
which in turn invalidates their children as well. This can be severely underestimated by
FTED, for example if a vertex has only one child that has a significant fanout.

Instead, we propose an exact cost model of recursive structural impact which we call
Subtree-weighted Tree Edit Distance (STED). If a vertex changes, this affects all its
descendants. Thus, the cost of operations is proportional to the size of the subtree of a
vertex:

γSTED(v, v′) =

{
|V(T(v)) \ {v}|+ c if v 6= ∅ ∧ v′ = ∅ (delete)
|V(T′(v′)) \ {v′}|+ c if v = ∅ ∧ v′ 6= ∅ (insert)

Following ancestry considerations for tree-structured data, we further extend the cost of
vertex mapping of STED for subtree move operations. For subtree move operations, we
consider two use cases: local permutations as well as moves over long ranges.

Example 8.1. Let a tree describe a job according to the HEP computing model. In a job
each task that is mapped to a vertex v within the tree, depends on its ancestry and most
importantly on its parent v.parent. Dependencies between the different tasks are explicitly
modelled by ancestors. Thus, the order of two tasks (including all their descendants)
represented by their subtrees rooted at vertices u, v sharing the same parent can change
without influencing all tasks or vertices that are descendants to u and v. However, moving a
subtree rooted at vertex v from its parent to any another vertex u 6= v.parent, does indeed
influence all subsequent tasks because their ancestry changes.

A local permutation does not change the ancestry of vertices. Thus, its weight depends
only on the width of permutation, that is ‖u.pos− v.pos‖, but not the subtree. In contrast,
moving a vertex outside its local context changes ancestry, thus affecting the full subtree.
Consequently, we extend the STED by the following cases and following refer to this cost
model as Subtree-weighted Tree Edit Distance with Move (STEDM):

γSTED(v, v′) =

{
‖v.pos− v′.pos‖c if v.parent = v′.parent (permutation)
γSTED(v,∅) + γSTED(∅, v′) else

8.1.2. Approximation Accuracy

Our approach to distance measurement is by design an approximation: The use of identities
purposely introduces lossy compression. This enables sublinear complexity (see Section 4.5.3
on page 73), accumulation of attributes (see Section 5.3.1 on page 89) and is the motivation
for ensembles (see Section 6.3.2 on page 107). Still, it means that our approach purposely
ignores some information contained in trees.

135

8. Evaluation

However, the question is whether our approach preserves enough relevant information.
To assess this, we evaluate how well our approach approximates exact edit distances.
Notably, this is an evaluation only of the capabilities of our approach to represent structural
differences – to the best of our knowledge, there is no established approach providing a
comparable handling of attributes.

Distance Correlation

To estimate the applicability of our approach, we compare distance results to those of
established cost models. However, since absolute distances are dependent on the algorithm
implementing the specific cost models, a relative comparison is required. Our measure of
choice is the correlation of distances for pairs of trees.

As we expect that our approach is a suitable replacement for edit distances, we use
the linear correlation coefficient to relate distance measures. Broadly speaking, this is a
measure whether two samples of values describing the same data have a linear relation. A
correlation of 1 implies that the same relative information is present in both samples. On
the other hand, a correlation of 0 implies that distinct information is represented by each
sample. Ideally, a strong correlation between our tree distance and established ones shows
that our approximation introduces negligible errors.

Evaluation of Correlation Our accuracy evaluation uses a sample of dynamic trees
(T1,T2, . . . ,Tn) from our recorded data. However, to stay consistent with edit based
distances, we derive a set of static trees {T1, T2, . . . , Tn} that each include all vertices of
their respective dynamic tree. This is the starting dataset for our distance correlation
evaluation.

For each static tree Tj , we generate a number of variations Tj,1, Tj,2, . . . , Tj,m with well-
defined changes (see Section 8.1.1 on page 130). In turn, for each distance measure k under
consideration, we produce a vector (distk(Tj , Tj,1), distk(Tj , Tj,2), . . . , distk(Tj , Tj,m)), that
is the distance from the initial tree to each variation. Notably, we do not derive distances
between variations, as this would be unfeasible to calculate given the complexity of edit
based distances.

For each distance k, we aggregate the distance vectors of all trees T1, . . . , Tn. This gives us
a single vector Xk = (distk(T1, T1,1),distk(T1, T1,2), . . . , distk(Tn, Tn,m−1),distk(Tn, Tn,m))
of size n ·m for each distance. Thus, for two distances k and k′, we derive the correlation as

cor(k, k′) =

∑
i

(
Xk,i − X̄k

) (
Xk′,i − X̄k′

)√∑
i

(
Xk,i − X̄k

)2√∑
i

(
Xk′,i − X̄k′

)2 . (8.1)

To estimate the expressiveness of our algorithmic approach and the various different
identity classes, we following evaluate the distance correlation with respect to the established
cost models as well as our introduced cost model STED and the supplementary cost model
Subtree-weighted Tree Edit Distance with Moves (STEDWM) that builds on STED but
supports the move of subtrees without any further costs.

136

8.1. Characteristics of Distance Measures

Table 8.2.: Correlation of distance results for differing identity classes and distance functions.
The correlation is calculated for different cost models: the unit cost model of Tree
Edit Distance, the Fanout-weighted Tree Edit Distance cost model, our proposed
Subtree-weighted Tree Edit Distance cost model, and the supplementary cost
model Subtree-weighted Tree Edit Distance with Moves. Best correlation results
for the specific cost models are highlighted. The correlation is analysed for three
different distortion models including the insertion and deletion of vertices, the
move of subtrees as well as a combination from all possible operations. Notably,
IdP is not evaluated for cost models STED and STEDM as it provides a direct
implementation of these models. As such, the correlation for move distortions
cannot be evaluated for IdP as the distance is 0 in each case. In general, move
distortions for STEDM result in 0 distance. Therefore, correlations for all
identity classes are disregarded for move distortions.

Distance Correlation

Distortion Distance identity class TED FTED STED STEDM

Insert and 〈T |1|T ′〉 IdP 0.55 0.53 0.69 0.69

delete IdPq 0.62 0.60 0.73 0.73

IdPqOrder 0.62 0.59 0.72 0.72
Idpq 0.75 0.70 0.73 0.73
Idpq2 0.72 0.68 0.73 0.73
Ide,parent 0.62 0.58 0.71 0.71

Ide,noise 0.63 0.60 0.73 0.73

〈T |{M,D}|T ′〉 IdP 0.79 0.82 1.00 1.00

IdPq 0.85 0.87 0.98 0.98

IdPqOrder 0.84 0.87 0.98 0.98
Idpq 0.95 0.98 0.86 0.86
Idpq2 0.84 0.97 0.86 0.86
Ide,parent 0.81 0.91 0.97 0.97

Ide,noise 0.84 0.87 0.98 0.98

Move 〈T |1|T ′〉 IdP – – – –
IdPq 0.73 0.66 0.73 –
IdPqOrder 0.68 0.62 0.68 –
Idpq 0.71 0.64 0.71 –
Idpq2 0.72 0.65 0.72 –
Ide,parent 0.14 0.23 0.14 –
Ide,noise 0.71 0.63 0.71 –

〈T |{M,D}|T ′〉 IdP – – – –
IdPq 0.96 0.88 0.96 –
IdPqOrder 0.82 0.80 0.82 –
Idpq 0.96 0.88 0.96 –
Idpq2 0.96 0.88 0.96 –
Ide,parent – – – –
Ide,noise 0.95 0.88 0.95 –

137

8. Evaluation

Table 8.2.: Correlation of distance results (continued)

Distance Correlation

Distortion Distance identity class TED FTED STED STEDM

Insert, delete, 〈T |1|T ′〉 IdP 0.44 0.40 0.66 0.66

and move IdPq 0.57 0.51 0.70 0.69

IdPqOrder 0.51 0.47 0.68 0.68
Idpq 0.76 0.66 0.60 0.57
Idpq2 0.73 0.65 0.65 0.63
Ide,parent 0.50 0.46 0.67 0.67

Ide,noise 0.57 0.51 0.70 0.69

〈T |{M,D}|T ′〉 IdP 0.62 0.67 0.99 1.00

IdPq 0.70 0.71 0.98 0.97

IdPqOrder 0.64 0.69 0.98 0.98
Idpq 0.94 0.93 0.75 0.70
Idpq2 0.81 0.87 0.77 0.75
Ide,parent 0.67 0.77 0.96 0.97

Ide,noise 0.67 0.70 0.98 0.98

Comparison with Established Cost Models The correlation of our distances with various
cost models for edit distances is shown in Table 8.2 on the previous page. We have used
several distortion scenarios as well as several of our identity profile projection operators
and identity classes. As expected, our naive identity profile projection operator 1 using
only the presence of vertices is inferior to our identity profile projection operator taking
into account both multiplicity M and duration D.

The best match for TED is our re-implementation of pq-grams, Idpq. This is to be
expected, as pq-grams are designed for this purpose. Notably, TED ignores most short and
long range relations between vertices, which our specialised identities take into account.
Our identity class using infinite-length encoding of parents and finite-length encoding of
siblings IdPq performs equally well as pq-grams if vertices are only moved. As we tested
moves to replicate the behaviour of micro changes and out-of-order arrivals of events in
streams, this is not surprising. Instead, this is to be expected as a simple permutation does
not influence the structure of the trees.

Our distance measures based on our own identity classes generally correlate well with
STED. This is to be expected, as STED implements the cost model we have based our
identity classes on. In specific, the identity class using only the infinite-length parent
encoding IdP is a perfect match for STED under insertions and deletions. In contrast, the
fixed-length parent encoding of pq-grams is inferior to express the impact of changes on
subtrees.

There are three identity classes that we expect to be most suitable for our use case: The
IdPq is a strict consequence from our model of workflows, representing the definition of
processes by their parents and sequences by their siblings. Consequently, this identity class
correlates well with the strictly defined edit distances. In contrast, the IdPqOrder reflects
the unpredictability of sibling sequences. This makes it naturally less correlated with strict
edit distances, but performs well with distances allowing for permutations. Finally, the

138

8.1. Characteristics of Distance Measures

ensemble identity class Ide,noise is a combination of the former two: It offers the precision of
IdPq, being highly correlated with strict edit distances. At the same time, it incorporates
the robustness of IdPqOrder, performing well even for a multitude of types of differences.

8.1.3. Scalability

For scalability analysis we benchmark key performance characteristics of our algorithm.
As our approach consists of the identity generation as well as distance calculation we
analyse both components independently. This analysis mainly emphasises on runtime
performance, as space complexity has already been shown in Section 4.5.3 on page 73. The
runtime analysis of identity generation and distance calculation is performed with respect
to available tuning parameters.

All benchmark evaluation have been performed using pypy version 2.0.2, which implements
Python version 2.7. The operating system is Scientific Linux 6.7, the current standard
used in HEP. Our analysis environment provides an Intel(R) Xeon(R) CPU E5–2640 v2,
2.00GHz with 16 cores. In addition, the system provides 128GB DDR3 RAM with a
configured clock speed of 1600MHz. The benchmark is not parallelised, meaning that a
single core is used per run to determine key performance measures for identity generation
and distance calculation.

Benchmarking

Our benchmarking of different identity classes is based on a random sample of different
batch jobs of selected sizes of 50 ≤ n ≤ 250, 000 vertices from our dataset. For each distance
calculation, the number of vertices of the two trees are approximately the same. We have
evaluated our approach with respect to both identity classes and identity profile projection
operators.

Figure 8.1 on the next page shows the runtime for generation and lookup of identities
for different identity classes. In general, the accumulated runtime for each identity class is
linear to the number of vertices, meaning that each identity is processed in constant time.
This is to be expected based on our theoretical analysis of time complexity (see Chapter 4
on page 39 for an analysis of identity classes and distances as well as Chapter 6 on page 101
for ensemble). Thus, each of our identity classes is suitable for stream processing.

Our infinite-length parent encoding identity class IdPq performs faster than the dynamic
pq-grams, even for small extends in P. This matches our expectation, as the recursive
calculation of infinite-length encoding requires only information from the parent vertex.
In turn, this allows our more complex identity class IdPqOrder to be as fast as the simpler
pq-grams.

Finally, our use of ensembles gives notable speed advantages. The performance of Ide,noise

is superior to the sum of IdPq and IdPqOrder. By calculating both ensemble identities
together instead of separately, we gain roughly 25% performance.

Figures 8.2a to 8.2b on page 139 show the impact of the distance measurements for
multiplicity 〈T |M |T ′〉, as well as multiplicity and duration 〈T |{M,D}|T ′〉. We exclude
the existence 〈T |1|T ′〉, as it does not reflect our desired cost models (see Section 8.1.2 on
page 134) but requires the same number of operations as 〈T |M |T ′〉.

In general, the runtime of distance measurements is directly proportional to the number
of events that are processed. The performance for a single event is roughly constant, but
the number of events depends on the identity profile projection operator. Consequently,

139

8. Evaluation

0

10

20

0e+00 1e+05 2e+05 3e+05

Tree Size

Id
en

ti
ty

R
un

ti
m

e
(s

)
Identity
Class

Ide,noise

Idpq

IdPqOrder

IdP

IdPq

Figure 8.1.: Runtime behaviour of different identity classes for 〈T |M |T ′〉. It can be seen
that all identity classes scale linearly. The fastest identity class is IdP while
the slowest is the identity ensemble class Ide,noise.

〈T |{M,D}|T ′〉 takes twice as much time as 〈T |M |T ′〉. However, all of our distance
measures are suitable for stream processing.

8.1.4. Sensitivity and Coverage

Our STED cost model uses the subtree size of a given vertex to reflect the intuition that
vertices are defined by their ancestry. This implies that differences of inner vertices must
be rated higher than differences of leaf vertices to derive an expressive distance. This
meets the demand regarding sensitivity listed in Section 4.5 on page 67 with respect to
the structure of a tree. To verify sensitivity of our proposed distance measure, we analyse
relative distances with respect to a generated distortion.

Figure 8.3 on page 140 shows the difference in distance for changes on inner and leaf
vertices, respectively. As desired and expected for our identity class Ide,noise, changes
on inner vertices are rated higher than for leaf vertices. This matches our definition of
high-quality vertices with regard to process trees: inner vertices define all their descendants,
and thus have a higher impact on distances.

In addition, the number of siblings included in identities has the inverse impact on inner
and leaf vertices, rating the later higher. This is a result of the P dimension of identity
classes not taking into account siblings of parents. Thus, increasing q to q′ affects at most
q′ − q siblings per change of vertex, but none of their children. For inner vertices, the
number of included siblings is negligible compared to the size of subtrees. In contrast,
changes to a leaf vertex only affect the leaf vertex itself and its siblings. Thus, the identity
class Ide,noise allows to adjust the sensitivity for inner versus leaf vertices.

Our multi-step approach natively provides modular coverage. As demonstrated so far,
the multiplicity distance covers different structural features of trees. Figure 8.4 on page 141
shows how coverage is easily extended by adding a distance operator sensitive to specific
features. By construction, the multiplicity distance is indifferent to attributes. However,

140

8.2. Applicability to High Energy Physics Jobs

0

25

50

75

0e+00 1e+05 2e+05 3e+05

Tree Size

D
is

ta
nc

e
R

un
ti

m
e

(s
)

Identity
Class

Ide,noise

Idpq

IdPqOrder

IdP

IdPq

(a) Runtime of 〈T |M |T ′〉.

0

50

100

150

0e+00 1e+05 2e+05 3e+05

Tree Size

D
is

ta
nc

e
R

un
ti

m
e

(s
)

Identity
Class

Ide,noise

Idpq

IdPqOrder

IdP

IdPq

(b) Runtime of 〈T |{M,D}|T ′〉

Figure 8.2.: Comparison of runtime for distance measures 〈T |M |T ′〉 and 〈T |{M,D}|T ′〉.
While both distance measures show linear scalability, the identity profile projec-
tion based on 〈T |{M,D}|T ′〉 does require more time as additional operations
are performed for evaluating the duration of vertices.

our approach allows to simply add a new distance component that ensures coverage of
desired features.

8.2. Applicability to High Energy Physics Jobs

The motivation of our work is the clustering and classification of HEP jobs, ideally at
runtime. This is reflected by our choice of preferred cost model, identity class, and identity
profile projection operator (see Section 8.1.2 on page 134). Thus, the evaluation of our
approach with regards to HEP jobs is of key importance.

However, part of the reason for our work is the current lack of classification mechanisms
for dynamic trees and in specific, attributed dynamic trees. Thus, there is no ground truth
for us to compare our approach to. Still, we can manually derive a general classification
for jobs of individual VOs based on the external monitoring provided by the Experiment
Dashboard (see Section 2.2.2 on page 17).

8.2.1. Mapping of Experiment Dashboard Data

From monitoring at the different worker nodes at GridKa itself, no ground truth is available
for the underlying workflows of batch jobs and their domain-specific results. Thus, evaluation
of clustering as well as anomaly detection cannot rely on external quality criteria. However,
there is no precise internal quality measure for density-based clustering producing arbitrarily-
shaped clusters [45, 101]. Some measures seem promising [101] but score differently for
varying use cases. Thus, having an external criteria to evaluate results especially for
qualitative measures is crucial.

141

8. Evaluation

Inner Vertices Leaves

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.25

0.50

0.75

1.00

Perturbation

R
el

at
iv

e
D

is
ta

nc
e

Identity
Class

Ide,noise2,2

Ide,noise3,3

Ide,noise4,4

Figure 8.3.: Relative distance results of 〈T |M |T ′〉 for insertion and deletion of vertices. The
left plot shows the relative distance with regard to edit operations on internal
vertices only. The right plot visualises the effect of edit operations on leaf
vertices only. The sensitivity to edit operations is shown for the noise ensemble
identity class with differing width, that is q = {2, 3, 4}. It becomes apparent,
that edit operations on vertices that define the ancestry for other vertices have
a higher influence on distance results. Thus, the distance 〈T |M |T ′〉 is more
sensitive to high-quality vertices.

The Experiment Dashboard at CERN offers an API to collect status information from
listed payloads. Especially the application of job processing monitoring, namely the Task
monitor, is of interest to supplement existing monitoring data with qualitative information
about its underlying workflow and results. Thus, mapping this information to our recorded
data has the potential to supplement monitoring data with qualitative results. For example,
the state of a payload, reasons for failure of payloads, related workflows, or associated
processing or simulation campaigns of the collaboration can be supplemented based on data
from the Task monitor.

To realise a mapping between monitored data and information from the Experiment
Dashboard all information of eligible jobs are queried. In the following, we refer to this
dataset as Dashboard data while the dataset we collected within the GridKa is referred to
as monitoring data. As Dashboard data is only available for the CMS experiment, we limit
both datasets to one single experiment, namely the CMS experiment.

The mapping itself consists of two consecutive tasks. The first tasks focuses on estimating
the difference in timing between the two datasets. Finally, we optimise the overlap of
Dashboard data versus monitoring data by considering the estimated time shifts to find
the best one-to-one matching.

Measuring Time Variations

Each payload from the Dashboard data is associated with a timestamp stating its start
and end. We cannot expect this timestamp to match the timestamps from monitoring data

142

8.2. Applicability to High Energy Physics Jobs

〈T |M | T ′〉 〈T | {M,D} | T ′〉

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

Perturbation

R
el

at
iv

e
D

is
ta

nc
e

Identity
Class

Ide,noise2,2

Ide,noise3,3

Ide,noise4,4

Figure 8.4.: Visualisation of influence of relative distance results of removal of attribute
values regarding the distances 〈T |M |T ′〉 and 〈T |{M,D}|T ′〉. The left plot
shows the distance with regard to a distance operator that ignores attributes.
In contrast, the right plot shows the distance with regard to a modular addition
of an attribute distance operator.

for several reasons: a) we have no knowledge on the time zone that is used to store the
job status updates, b) the scope of reports is not known to us, thus we cannot expect the
duration of the process encapsulating the payload in monitoring data to match the duration
of the payload in Dashboard data, and c) we can expect differing latencies for different
reports. Thus, we first measure the generic offset of timestamps and in addition, analyse
variances of timestamps to limit the number of possible candidates for matching.

Payload Matching

Based on pre-calculated values for time offset and its variances, we limit the set of possible
matches per payload. All matches are in a time range defined by our own timing information
from monitoring data of jobs, and the average offset of timing information. With this
limited matching possibilities, we can perform a naive search of best matches.

To perform the matching, for each payload from the monitoring data the matching set
of payloads from Dashboard data is determined. We perform a recursive matching: After
selecting the best matching Dashboard data for a monitored payload, we check for the
selected Dashboard data whether there is a better payload to match. Once an ideal match
is determined, we unwind the recursions, successively assigning the remaining optimal
matches. This is repeated until all possible matches for monitoring data are found.

Characteristics of Mapping

Matching monitoring data and Dashboard data shows several features of our data: First, the
monitoring data includes more payloads than the Dashboard data. This has several reasons:
User workflows not utilising official frameworks do not necessarily follow the procedure

143

8. Evaluation

to report about job status. Also, defective payloads that do not start correctly may fail
to submit a job status report. Second, several payloads do not correctly terminate their
reports to the Experiments Dashboard. This triggers a timeout for the report, resulting in
an exit timestamp corresponding to the maximum runtime of jobs. Both features show that
the Experiment Dashboard is not suitable to serve as a job monitoring for sites. While it
can supplement information derived locally, a dedicated monitoring by sites is required to
have all relevant information.

Table 8.3 on the next page shows an excerpt of information available after matching mon-
itoring data and available Dashboard data. The mapping adds supplementary information
that cannot be derived from monitoring alone. However, this mapping does not provide a
perfect ground truth for job characteristics. Information contained in Dashboard data does
not cover all jobs, and there is no strict correspondence guaranteed between the two. Thus,
we expect our monitoring data to contain features not described by Dashboard data, and
classification not to perfectly replicate the Experiment Dashboard mapping.

8.2.2. Optimisation of Clustering

By mapping Dashboard data we enable the comparison of clusters to known external classes,
promoting them to external quality measures. External quality measures evaluate the
quality or accuracy of clustering algorithms by comparing the calculated clusters to a known
ground truth [101]. External measures are more reliable and usually preferred over internal
measures due to added objectivity. One of the most widely used external measures for
clustering and information retrieval is the F-measure [159].

The F-measure is a single measure that merges precision and recall as their weighted
harmonic mean. The precision and recall for a given class i and a calculated cluster j are
given by

precision(i, j) =
nij

nj
(8.2)

recall(i, j) =
nij

ni
, (8.3)

where nij denotes the number of objects with class label i in cluster j, nj denotes the
number of objects in cluster j, and ni denotes the number of objects in class i. The balanced
F-measure equally weighting precision and recall is given by

F (i, j) =
2 · precision(i, j) · recall(i, j)
precision(i, j) + recall(i, j)

. (8.4)

However, the balanced F-measure determines a score only for binary classification problems.
We, therefore, consider the total weighted F-measure to enable quality measurement for

multi-class classification problems. The total weighted F-measure is the weighted average
of all values for the maximum F-measure for each class, that is

F =
1

n

∑
i

nimax({F (i, j) | j}). (8.5)

The values of F-measure lie in the range between [0, 1], and bigger values are an indicator
for better clustering quality.

The F -measure allows us to assess the quality of any existing clustering of our data. This
enables the scanning of the parameter space for our clustering: Tables 8.5 on page 145

144

8.2. Applicability to High Energy Physics Jobs

T
ab

le
8.

3.
:S

up
pl

em
en

te
d

m
on

it
or

in
g

da
ta

fo
r

pa
yl

oa
ds

af
te

r
m

at
ch

in
g

E
xp

er
im

en
t

D
as

hb
oa

rd
da

ta
.

Se
ve

ra
l

ex
am

pl
es

of
m

at
ch

in
g

m
on

it
or

in
g

da
ta

co
lle

ct
ed

in
G

ri
dK

a
to

D
as

hb
oa

rd
da

ta
co

lle
ct

ed
by

C
M

S
ar

e
sh

ow
n.

M
at

ch
in

g
is

pe
rf

or
m

ed
on

ly
us

in
g

st
ar

t
an

d
ex

it
ti

m
es

ta
m

ps
.

D
as

hb
oa

rd
da

ta
ad

ds
fo

r
ex

am
pl

e
a

ge
ne

ra
lc

at
eg

or
y,

th
e

st
at

us
of

an
y

pa
yl

oa
d

th
at

re
po

rt
ed

co
m

pl
et

io
n,

an
d

a
de

sc
ri

pt
io

n
of

th
e

pa
yl

oa
d

in
a

cu
st

om
fo

rm
at

.

M
on

it
or

in
g

D
at

a
D

as
hb

oa
rd

D
at

a

ID
St

ar
t

/
E

xi
t

St
ar

t
/

E
xi

t
A

ct
iv

it
y

St
at

us
C

am
pa

ig
n

1
14

05
03

26
81

14
05

04
16

85
20

14
-0

7-
10

T
22

:5
1:

24
20

14
-0

7-
11

T
01

:2
1:

24
re

pr
oc

es
si

ng
SU

C
C

E
E

D
E

D
w

m
ag

en
t_

pd
m

vs
er

v_
H

IG
-F

al
l1

3d
r-

00
17

4_
T

1_
E

S_
P

IC
_

M
SS

_
00

26
1_

v0
_

_
14

06
23

2
0
36

51
_
1
29

6
2

14
05

32
08

49
14

05
32

52
25

20
14

-0
7-

14
T

06
:5

4:
12

20
14

-0
7-

14
T

08
:0

7:
03

hc
te

st
D

O
N

E
sc

ia
ba

_
ou

tp
ut

_
c8

1g
k9

3
14

05
44

35
08

14
05

45
30

08
20

14
-0

7-
15

T
16

:5
8:

39
20

14
-0

7-
15

T
20

:2
0:

00
pr

od
uc

ti
on

SU
C

C
E

E
D

E
D

w
m

ag
en

t_
pd

m
vs

er
v_

B
2G

-S
um

m
er

12
-0

07
31

_
00

15
2_

v0
_

_
14

07
13

_
16

16
51

_
80

02
4

14
06

84
58

24
14

06
84

77
58

20
14

-0
7-

31
T

22
:3

0:
31

20
14

-0
7-

31
T

23
:0

2:
35

an
al

ys
is

un
kn

ow
n

pe
ru

zz
i_

nu
ov

om
at

er
ia

le
_

V
29

A
_

sp
lit

m
or

e_
g2

5w
7e

5
14

06
84

94
64

14
06

86
39

60
20

14
-0

7-
31

T
23

:3
1:

08
20

14
-0

8-
01

T
03

:3
2:

38
re

pr
oc

es
si

ng
FA

IL
E

D
w

m
ag

en
t_

pd
m

vs
er

v_
SM

P
-S

um
m

er
12

D
R

53
X

-0
00

06
_

T
1_

D
E

_
K

IT
_

M
SS

_
00

23
4_

v0
_

_
14

05
27

_
20

23
46

_
50

31

145

8. Evaluation

Table 8.4.: Selected campaigns from High Energy Physics for clustering. To consider relevant
sizes of classes we condensed several versions of each campaign into one class.
Each class is subdivided with regard to its outcome. We differentiate failed and
succeeded payloads. Notably, we have different distributions of outcomes. For
some classes, failures are seldom whereas other classes show more failures than
successes.

State

Campaign Workflow Type Failed Succeeded

alahiff_HCA-Spring14dr Reprocessing 276 1511
alahiff_JME-Upg2023SHCAL14DR Reprocessing 418 286
pdmvserv_SMP-Summer12DR53X Reprocessing 105 237
vlimant_EGM-Fall14DR73 Production 1 754

and 8.6 on the next page show the respective F -measure for various combinations of
clustering parameters η and ε. To perform the analysis we selected specific HEP campaigns
from our monitoring data. We expect the campaigns to represent individual HEP workflows.
The selection of campaigns considers the inclusion of the two main types of workflows:
production and reprocessing. An overview of data distribution to the single campaigns is
shown in Table 8.4.

Based on the outcome of analysis from Section 8.1.2 on page 134 we identified the
dynamic distance measure based on the identity profile projection operator {M,D} as
the most appropriate for our use case. We further consider the identity profile projection
operator {M,D,Λ} relevant. In comparison to the first option, the identity profile projection
operator {M,D,Λ} also considers the distribution of attributes. The characteristics of the
identity profile projection operator Λ have not been evaluated so far, as no comparable
method in the field of tree distance measures exists in literature. We, therefore, compare
the two different identity profile projection operators based on the calculated F -measure
and identify the parameters that yield the best clustering for both options.

The ideal clustering for only structural information tends towards small distances, below
10%. This indicates that similar nodes are very similar, and distinct nodes not similar at
all. While this separates clusters well, it means that there is little room for distinctions
inside clusters.

In contrast, clustering of trees with attributes yields a higher cutoff of ε. This suggests
that clusters can be divided internally, allowing for sub-clusters to be detected. Additionally,
the higher F -measure indicates that separability is even higher when attributes are used as
well.

Thus, the inclusion of traffic attributes is critical for two reasons: First, it improves our
approach itself. We can derive a better separability, and clusters have better precision and
recall. Second, it allows to reason about traffic usage by jobs. This allows us to classify
workflows for different use cases, without prior knowledge.

146

8.2. Applicability to High Energy Physics Jobs

Table 8.5.: Overview of calculated total weighted F-measures F for density-based clustering
based on dynamic tree distance 〈T1|{D,M}|T2〉. To calculate F , we consider
different combinations of parameters η and ε. Best clustering results with regard
to the determined activities based on Dashboard data are derived with η = 2
and ε = 0.1 when considering identity profile projection based on identity profile
projection operators D and M , that is the lifetime of processes as well as their
multiplicity.

η

ε 2 3 4 5 6 7 8 9 10

0.05 0.457 0.456 0.452 0.304 0.304 0.304 0.307 0.307 0.306
0.1 0.678 0.677 0.674 0.674 0.361 0.361 0.361 0.361 0.361
0.2 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290
0.3 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
0.4 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
0.5 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

Table 8.6.: Overview of calculated total weighted F-measures F for density-based clustering
based on dynamic tree distance 〈T1|{D,M,Λ}|T2〉. To calculate F , we consider
different combinations of parameters η and ε. Best clustering results with
regard to the determined activities based on Dashboard data are derived with
η = 6 and ε = 0.2 when considering identity profile projection based on identity
profile projection operators D, M , and Λ, that is the lifetime of processes, their
multiplicity, and the distribution of attributes for network traffic.

η

ε 2 3 4 5 6 7 8 9 10

0.05 0.565 0.565 0.487 0.209 0.209 0.305 0.305 0.305 0.305
0.1 0.550 0.777 0.343 0.209 0.272 0.164 0.164 0.137 0.024
0.2 0.779 0.777 0.781 0.781 0.801 0.798 0.784 0.710 0.714
0.3 0.163 0.162 0.162 0.153 0.153 0.153 0.153 0.153 0.153
0.4 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.000 0.000
0.5 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

147

8. Evaluation

Figure 8.5.: Convergence of classification versus event progress, for trees which are not
classified as outliers. The core nodes of clusters are chosen as candidates for
classifiers to have sufficient statistics given our data sample. As trees unfold,
their distance diverges from unsuitable candidates. Once the distance to a
candidate is above an ε threshold used for neighbourhoods in clustering, the
candidate is excluded from further comparisons.

8.2.3. Convergence of Classification

The classification of jobs consists of two stages: First, the identification of clusters in the
known data, as shown previously. Second, the classification of monitored jobs as membership
to a cluster. We express the later as the convergence and divergence of distances from the
neighbourhood of each cluster (see Section 7.4 on page 121).

Notably, while we cannot guarantee early on that a job will converge to a specific cluster,
we can detect early that it will diverge from others. This allows for some optimisations:
Algorithmically, once a tree is guaranteed to be divergent from a cluster, we do not need to
continue comparing tree and cluster. Logically, excluding a certain group of clusters allows
us to negatively reason about a job – for example, that it is not a disk-intensive job.

Figure 8.5 shows the convergence of individual jobs to their respective core nodes from
a given clustering2. The number of core nodes that remain as candidates drops to 50%
already after a relative event progress of 25% for many jobs. As such, much less core
nodes must be compared over the full lifetime of a job than there are actual nodes. This
supports our assumption, that the proposed approach for online analyses of dynamic trees
is advantageous for streaming environments as the number of required calculations can be
efficiently reduced.

2We consider the convergence of jobs to core nodes in this evaluation as we require a sufficient amount of
trees for statistical relevance. In a real scenario the CRs of clustering are considered. This requires even
less calculations than anticipated in this example.

148

8.2. Applicability to High Energy Physics Jobs

0

10000

20000

0.00 0.25 0.50 0.75 1.00

Relative Event Progress

C
ou

nt

Figure 8.6.: Visualisation of distribution of detected anomalies for distance comparison
between two diverging trees T and T ′. The distribution is shown with regard
to the event progress. Approximately 54.30% of tested trees are detected
within 50.00% of streamed events. The peak at the end of the streamed events
is justified by the number of events of the observed tree T ′. Whenever the
T ′ has much less events than the recorded tree T , divergence either requires
a sufficient amount of mismatching events or the completion of T ′ to safely
determine missing vertices from T while retaining monotonicity.

8.2.4. Detecting Anomalies

Early detection of anomalies is an important use case for monitoring jobs. On the one hand,
it allows for targeted countermeasures without affecting all batch jobs of a VO. On the
other hand, detecting misbehaving payloads while they are running enables live debugging.

Conceptually, we define an anomaly as any job that does not match established behaviour.
In other words, the respective dynamic attributed tree diverges from all known clusters.
Due to the monotonicity of our divergent dynamic distance, this means we can identify
anomalies early.

Figure 8.6 shows the fraction of a tree we must track to be sure it is anomalous. Notably,
of the anomalies not identified during runtime, most are smaller trees than the CR they
are compared against. Thus, while they are detected late according to their own time, they
are in fact detected early in terms of the recorded tree sample. For this sample, 54.30% of
jobs are detected as outliers before less than 50% of their events have been processed.

The approach considered so far is completely unsupervised and does not require any
intervention of human resources. However, we can significantly improve the outcome of
our anomaly detection by considering supplemented monitoring data to recognise failed
payloads as anomalies. This is advantageous for users as well as operators as more jobs can
be acted on early.

In Table 8.4 on page 144 it can be seen that a substantial amount of payloads can
be identified as anomalies based on this extended definition of anomalies for HEP. This
shows how our approach enables the combination of autonomous monitoring and external

149

8. Evaluation

information to derive superior classification with a semi-supervised learning approach.

8.3. Summary

In this Chapter, we have evaluated our approach for key characteristics and its quality
of outcome with regard to a real use case. The former part is dedicated to the formal
performance of our approach. The later part shows the applicability of our approach to
realistic scenarios.

As our approach is by design an approximation, we have evaluated its conformity with
exact edit distances. When compared against edit distances taking subtrees into account,
our distances are close to an optimal match. Most importantly, an ensemble using both an
exact and unordered view of siblings has proven to be an accurate and robust approximation.

We have evaluated the runtime characteristics of both identity classes and identity profile
projection operators. This shows that all our approaches are constant per event, thus
making them suitable for stream processing. Additionally, both sensitivity and coverage
are adequate for our use case.

Evaluating our approach for the use case of HEP jobs requires a reliable classification
for comparison. As no exact comparison is available, we have collected monitoring data
from the CMS Experiment Dashboard. This allows us to create a mapping of payloads to
workflows.

We use the classification to the derive the F -measure, which expresses both precision
and recall. This allows for a scan of clustering parameters, and in turn the derivation of
optimal parameters. The results show that attributes are important for separability.

Finally, we use a reference implementation of our online clustering to demonstrate
characteristics of our approach. In specific, we evaluate the temporal evolution of our
classification. On the one hand, this shows that only a fraction of theoretically possible
comparisons needs to be processed. On the other hand, it demonstrate how we can detect
and react on anomalous jobs during their runtime.

150

9. Conclusions & Outlook

Tree structures are a natural format to express hierarchical data. However, the complexity of
such data makes its efficient and precise handling highly non-trivial. Especially for comparing
trees, exact approaches have super-linear complexity, while approximate approaches make
strong assumptions on structure, sequence, and types of data. However, realistic tree
structures may be large, change over time, contain arbitrary data, and be provided in an
arbitrary order. The work presented in this thesis is centred on an approach and formalism
to efficiently measure and work with similarities and distances for attributed dynamic trees
in streaming environments.

The motivation for this work is the monitoring of HEP batch jobs. Recently, this has
been complicated by the adoption of the pilot paradigm. Pilots are placeholder batch jobs
that acquire resources and fetch batch jobs for execution by themselves. This creates an
overlay batch system over existing batch systems. The efficient inspection, evaluation, and
finally classification of jobs contained in pilots brings up a number of challenges.

First, we have assessed means and requirements to identify jobs in this environment. The
technical setup necessitates a monitoring of the process hierarchy of batch jobs to identify
pilots and recognise contained jobs. Also, the major categories of HEP workflows, namely
simulation and reconstruction workflows, suggest that network traffic is key for separating
workflows. However, as we operate in a production system dedicated to the processing of
workflows, any approach we consider must be limited in space and processing resources.
Thus, we have devised a sensor creating a monitoring stream of process and network traffic
data as streaming, dynamic trees.

Working with dynamic trees in streams in this environment requires an efficient approach,
and a formalism reflecting it. As part of this thesis, we propose a new formalism to express
established decomposition-based approaches to measuring tree distances. Our formalisation
has two goals: First, a generalisation of decomposition-based distance methods. We have
shown that we can easily replicate common distance measures from literature with our
formalisation and provide our distance measures as well. Second, our formalisation naturally
translates to dynamic trees and incremental distances. This makes all our distance measures
suitable for stream processing of dynamic trees.

A distinct feature of our use case is traffic monitoring for processes, expressed as attributes
of vertices in our dynamic trees. As such, we have focused on integrating distances based on
attributes into our approach. In contrast to most existing approaches, we describe attributes
as vertices with distinct, attached values. This is the basis for integrating attributes into
our approach, accumulating dynamic attributes using statistics. This aggregation allows us
to derive continuous distances from attribute values.

Relations in trees are necessarily complex, and the black box nature of our use case means
that many relations are unknown. Motivated by this, we have introduced an ensemble
method to combine individual, simple distance measures to express complex relations.
Ensembles allow the independent but parallel evaluation of multiple distance measures. We
have presented and used ensembles to suppress noise occurring in the stream of tree event
data, without sacrificing precise distance evaluation.

151

9. Conclusions & Outlook

The ultimate goal of our monitoring and comparison of dynamic tree data is a meaningful
classification of tree data in near real-time to enable outlier detection of batch jobs. We
provide a classification of dynamic trees by using an incremental clustering. Aside from
choosing a suitable clustering mechanism, we propose three optimisations targeting the
online analysis of dynamic trees. First, we extend the density-based clustering approach
DenGraph for CRs to efficiently represent arbitrarily shaped clusters. This, in turn, enables
the reduction of required distance calculations for incremental clustering. Second, we
introduce the concept of virtual nodes to our clustering. The nodes of monitored jobs are
inserted tentatively into our clustering mechanism, allowing them to be classified without
skewing existing clusters. Third, we provide an approximated normalised incremental
divergent distance for dynamic trees. Using constraints of the clustering and virtual nodes,
we can reliably exclude clusters during the runtime of jobs.

Finally, we have evaluated multiple aspects of our approach. To avoid bias, instead of
synthetic data we use a hybrid approach combining recorded data from monitoring together
with well-defined test scenarios. Our benchmarking shows that our approach is linear in
time and sublinear in space complexity concerning the length of streams. This means that
we can, in principle, process tree-structured data of arbitrary size. Furthermore, we have
conducted a correlation analysis to compare our distance approximations to different tree
edit distance cost models. This correlation analysis shows that our approach is a viable
replacement for exact tree distances.

Finally, we have demonstrated the interaction of all proposed components to facilitate
an online analysis and outlier detection for our use case. By comparing our clustering
with external quality measures, we have shown that our approach replicates the categories
of workflows and even recognises sub-structures. Building on this, we have been able
to demonstrate early outlier detection based on our divergence approach, as well as the
superior sensitivity introduced by our handling of attributes in dynamic trees.

9.1. Future Applicability and Extensions

Our approach and formalisation for distance measurements on attributed dynamic trees in a
streaming context provide a strong foundation for future research. With its modularity and
extensibility, we can further investigate more complex decompositions, distances, ensembles,
and optimisations.

So far, we have restricted ourselves to simple decompositions, reflecting the limited
knowledge about our data. Given the workflow established in the course of this thesis,
we can in the future exploratory approach extended decomposition strategies, reflecting
all three decomposition dimensions we have identified for stream analysis. Instead of
pre-defined decompositions, an automatic learning of relevant decompositions could provide
valuable insights. Furthermore, such an automatism would allow applying our approach to
other fields with little effort.

Our approach to handling attributes already provides an efficient, precise means of
expressing features of dynamic trees that are missing from most tree distance approaches.
Still, our focus on streaming capabilities means that we have forgone the adoption of more
complex representations common in time series analysis. This offers the opportunity to
either integrate complex time series analysis with hierarchical structure or to find more
complex approximations suitable outside of streaming environments.

Future optimisations are required to support additional granularity of decomposition

152

9.1. Future Applicability and Extensions

and features. While we can show that sublinear or even constant complexity can be
expected for non-degenerate trees, we cannot guarantee it. Introducing sketching methods
to handle identity profiles would guarantee minimal space complexity even for use cases
relying on large or unlimited identity alphabets. To express complex attributes, skewed
distributions could balance the generality of MultisetStatistics and simplicity of incremental
PDF statistics.

The efficiency of our approach allows us to perform online analysis even without leveraging
the distributed environment to our advantage. Only the collection of data by our monitoring
sensors is parallelised and distributed over the entire batch system. Our concept of virtual
nodes already supports concurrency of classification, and could further be parallelised.
Ideally, the classification of streamed trees and subsequent clustering would be distributed
by parallelising the clustering itself. Such a distribution of clustering allows for a multi-agent
approach to classifying jobs and detecting anomalous workflows.

Finally, our approach is not limited to the use case of HEP batch job monitoring. It is
an efficient tool for comparing any hierarchical data, especially if it is dynamic or features
attributes.

153

A. Software Tools and Frameworks

In the following, a brief description on the tools that have been implemented during the
course of this thesis is given. A more specific documentation can be found online. Each of
the tools is published under version control and includes a range of unit tests to demonstrate
functionality and ensure validity.

A.1. ASSESS

ASSESS is the reference implementation of proposed distance measures and optimisations
defined upon. This application provides a framework to test the different distance measure-
ment approaches for dynamic trees as well as static trees. The application is based around
the concept of events. Each event describes a single change within a tree. Therefore, we
differentiate between three kinds of events:

• events to append a vertex,

• events to remove a vertex, and

• events to change an attribute of a given vertex.

Each event is handled independently. Depending on the current configuration, different
actions are performed based on a given event. The main components can be divided into:

• algorithmic components, and

• analysis components.

The algorithmic components offer methods to analyse distances and similarities of dynamic
as well as static trees. The analysis components offer possibilities to prepare the calculated
data as well as its performance for further analysis.

The main class within algorithmic components is the TreeDistanceAlgorithm. It relies
on two components:

• an identity class, and

• the distance functionality to be used.

Each of those components is implemented by different methods providing differing
complexities and precision.

The identity class implements the identity building process. We implemented methods
from literature as well as our own approaches. The most complex one considers the ensemble
of identity classes that allows to combine different identity classes into one single identity
class.

155

A. Software Tools and Frameworks

Another important component that is provided by the framework are different kinds of
decorators. The most important part of the framework is to compare different approaches
against each other. Therefore we provide different decorators that support the generation
of different output that can further be analysed. The most important decorators include:

• Distance decorators: distance decorators take care on preparing the actual distance
calculations for further usage. Those include the preprocessing for matrix-based
comparison but also for incremental distances for each possible combination of
identities.

• Identity decorators: identity decorators allow the logging of generated identities for
further analysis.

• Anomaly decorator : the anomaly decorator prepares information about the information
if an anomaly has been detected.

• Performance decorators : performance decorators allow to measure runtime of different
functionalities like identity building process, distance calculation or the approach as
a whole.

• Compression decorator : the compression decorator prepares key data for input sizes
as well as compressed sizes based on identity class in use.

A.2. BPNetMon

The application BPNetMon is based on the ideas of NetHogs - a small ‘net top’ tool,
grouping processes by bandwidth instead of breaking the traffic down per protocol or per
subnet. Detailed information about NetHogs are available at SourceForge.

Preliminaries and Build The usage of GridKa Monitor requires the libpcap packages to
be installed on the system. The application furthermore requires root access for execution.
The application can be build by utilizing SCons. It comes packaged with the local version
2.3.0. It can be used if SCons is not installed locally.

To make a clean build the command scons-local-2.3.0/scons.py -c can be considered.
The executable is located at build/your_system/gridka_monitor.

We already tested the application for different Linux flavours including for example:

• Debian,

• Scientific Linux, or

• Ubuntu.

Parameters

Loading the External Configuration File The concrete execution can be configured via a
configuration file called config. It is expected to be stored at /etc/sysconfig/gnm.
If you want to specify another folder you can do so with the parameter l. The
configuration file can contain different named groups that might be loaded. To declare
which group is used the parameter c is given when execution the application. The

156

A.2. BPNetMon

parameter c expects the name of the group containing the different configuration
parameters: sudo gridka_monitor -l /your/location -c gridka.

Setting the Pid for Grouping Processes The grouping pid can be set when starting the
monitoring tool by using the parameter g: sudo gridka_monitor -c eileen -g
$(pgrep -n sge_execd).

Setting the Name for Grouping Processes To allow an easy installation and monitoring
the grouping process can also be determined by its process name with parameter n. If
a grouping name is specified the grouping pid has no influence. When this parameter
is used the tool ensures to re-initialise the monitoring after a restart of grouping name:
sudo gridka_monitor -c gridka -n "sge_execd".

Setting the Log Interval The log interval can also be overwritten besides what is being
specified in the configuration file. This is done by specifying the log interval with
parameter i and some value in seconds > 0: sudo gridka_monitor -c gridka -i
20.

Configuration Options

groupingpid pid_t: The option groupingpid specifies the maximum valid pid being taken
as ppid to group the single processes. For a better handling and dynamic adaptions
the groupingpid can also be given as input parameter of the application itself. For
example the parameter should be initialised with the pid of the shepherd process to
group the processes by batch jobs being started by the shepherd process.

groupingname string: The option groupingname specifies the process that is being taken
to group the single processes. The first process that is found is taken into account
for grouping. Others are being ignored. As soon as the process is finished, the
tool gets into waiting state and looks for new starting processes with process name
groupingname.

skipotherpids bool: Next to the grouping of jobs there might also be background traffic
by other processes in the process tree. By activating skipotherpids this traffic is
not being monitored. By setting skipotherpids to false the traffic is going to be
logged independently from the grouped processes.

loginterval unsigned int: The option loginterval specifies the intervals being logged to
in seconds.

detail processconnection | process | tree | treeconnection | group | job, or
groupconnection: The detail controls the amount and grouping of information being
logged. The option processconnection logs all connections of every process not
being skipped. By defining tree all processes are logged and additionally the traffic
owned by a process is accumulated and logged. The option treeconnection logs
details about the connections belonging to a process. By defining process only the
accumulated traffic and its processes is logged. The option group accumulates the
traffic of all connections and subprocesses of a grouped process. The last option
groupconnection logs every connection belonging to the process and subprocesses
being inside a single group.

157

A. Software Tools and Frameworks

The last option job is a special case implemented for sending information to UGE.
It identifies the job ID and regularly sends aggregated job information to the batch
system.

A.3. DenGraph

The implementation of DenGraph implements the density-based clustering approach de-
scribed in the papers Schlitter, Falkowski, and Lässig [192, 193]. We further extend the
implementation by the notion of CRs based on our representation of identity profiles. This
enables the reduction of necessary distance calculations as our use case otherwise requires a
fully-meshed representation.

A.4. Tree Generator

The Tree Generator takes a stream of vertices and attributes and enables the execution of
changes based on those events. Each change including the insertion, deletion, renaming, or
move of vertices is tracked within the generator. Based on a specified cost model, specific
distances are calculated given the history of changes that were applied to each vertex as
well as its ancestry.

To enable specific results of tree distortion a probability can be given that determines
when a change is introduced. In a second step the change to be executed is evaluated.
Therefore the Tree Generator can be configured with different probabilities for each possible
change operation.

We further introduced another possibility to specify limit or specify on which part of
the tree a given change should be executed. This is enabled by introducing a filtering
mechanism to determine if a specific vertex is considered for analysis if it should be changed.
This enables to implement a distortion based only on leaf vertices, inner vertices, or vertices
containing attributes.

158

B. Configuration and Evaluation
Workflows

B.1. Batch System Monitoring

1 [t r e e s]
2 i n t e rn = ^10\.\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3} $ | 192\ . 108\ . 4 [5 −9] \ . \ d{1 ,3} $
3 extern = .∗
4 s p l i t i n t e r n e x t e r n = true
5 s k i po th e rp i d s = true
6 l o g i n t e r v a l = 20
7 d e t a i l = t r e e connec t i on
8 l o g d i r = /var / log /gnm
9

10 [uge]
11 i n t e rn = ^10\.\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3} $ | 192\ . 108\ . 4 [5 −9] \ . \ d{1 ,3} $
12 extern = .∗
13 s k i po th e rp i d s = true
14 l o g i n t e r v a l = 300
15 d e t a i l = job
16 groupingname = sge_execd
17 l o g d i r = /var / log /gnm

Listing B.1: Configuration in use at GridKa. The configuration named tree is used for
online analysis of batch jobs whereas the configuration named uge is used
to exemplarily report monitored data to the Univa® Grid Engine® batch
system. The most relevant difference between the two configurations is
the detail. While the former configuration monitors data for each process
within the Unix process tree the latter aggregates all data for one single
process.

B.2. Workflows

The results and argumentation presented in this thesis are based on several workflows. Each
of these workflows has a specific objective to produce results and support argumentation.
In general, each workflow can be divided into three tasks:

• data selection and generation,

• data processing, and

• data analysis.

Each of these tasks can be composed of several steps. Furthermore, the workflow
mechanism we utilise supports the reprocessing of specific steps of a given workflow. This
is especially useful when certain criteria, for example in ASSESS, are changed to prevent
from re-processing of unchanged steps.

The steps of the workflows are executed sequentially as each step depends on some
input data and the input data is often given by the previous step. Whenever possible,

159

B. Configuration and Evaluation Workflows

the processing of the steps itself is parallelised. We therefore consider different levels of
parallelisation: distribution to several machines as well as multi-core processing.

Each of the workflows producing qualitative analysis results is based on one data prepro-
cessing workflow that targets the processing of raw data we recorded by utilising BPNetMon
to derive specific payloads or pilots.

In the following, the preprocessing workflow as well as the data analysis workflows along
with their configuration are briefly presented.

Index by ... Usually the first step considered in workflows. This creates a key-value index
by a specified criteria such as number of vertices, number of attributes or something
else. The key following holds the number of vertices for example while the value
usually stores information on the file path where the given tree can be read from.

Subset data The activity to subset data requires a specification of the criteria how to build
the subset. This might contain a range of values the number of vertices is expected to
fall into. Keys that do not match the specified criteria are not considered for further
steps of the workflow.

Squish index The activity to squish an index takes care on grouping keys based on a
dynamic binning approach. This dynamic binning can further be parameterised by
specifying the maximum number of keys that may fall into the bin as well as the
maximum distance between single keys. The new key becomes the mean value of all
keys inserted into a group. All values are summarised into one list.

Select data Data selection works on the specified index. For each given key in the index
the data selection is performed. For each key given values for count and repetition
are evaluated to determine the final values that are considered in the following steps
of the workflow.

Aggregate data To aggregate the whole index of key-value pairs into one single bin by
skipping the available keys, this method can be used.

Perturbate tree The selective distortion of trees is key for many analyses to properly
analyse characteristics. Without aimed distortions qualified reslts would be hard to
derive based on real data only.

Process as matrix, Process as vector The methods to process distances as matrix or
vector are part of the key functionality of the ASSESS reference implementation.
The first method ensures that for each given tree the pairwise distance is calculated.
Furthermore the calculations can be optimised by defining if distances are symmetric
and therefore some calculations might be skipped. The second method calculates
single distances for a given observed tree to a list of recorded trees.

Furthermore, many specific methods are available. For example the plotting of results, a
specific analysis of results, or even the clustering based on pre-calculated distance measures.

160

B.2. Workflows

Pre-processing

Before executing the different workflows the data from monitoring are prepared for frequent
processing. This pre-processing includes the indexing of pilots and payloads to enable
search for specific features such as related VO or time of execution.

We further analyse the data to exclude incomplete monitoring data. Incomplete data
is recorded for example when starting or stopping the monitoring. As the batch job has
already been started or is not finished yet, it cannot be guaranteed that all information are
available.

The repeated analysis of pilots and payloads further makes it necessary to access individual
data. We therefore extract single payloads of CMS pilots and save them for convenient
processing.

161

B. Configuration and Evaluation Workflows

Dataset Statistics

The workflow is about gathering statistical information describing the whole dataset of
pilots as well as CMS payloads. We are interested in statistics regarding data without
attributes, and data with attributes. This enables an improved comparison to methods for
static trees not supporting time series of attributes values.

To summarise only valid data, we will filter the input depending on the number of vertices.
Each tree with less than 100 vertices is being skipped from the final analysis.

Specifically, this workflow collects the following data by considering each for the two
variants given attributes or no attributes:

• number of vertices,

• fanout, and

• depth of leaf vertices.

Furthermore the data on

• duration of tree,

• number of vertices with attributes, and

• number of events per attribute

are collected. After relevant data is collected, analysis regarding the distribution of
relevant values is executed.

Input Description Configuration

1 – Index by |vertices| All worker nodes
2 – Index by |vertices| All payloads
3 1, 2 Subset data |T > 100|
4 1, 2 Calculate statistics
5 4 Prepare plot
6 4 Analyse distributions

162

B.2. Workflows

Diamond Analysis

Diamonds can occur in tree decomposition methods targeting fixed-length identity encoding.
We therefore analyse available data for different effects of diamonds regarding the fixed-
length encoding of dynamic pq-grams for different parameters.

The analysis itself targets the number of diamonds, the number of nested diamonds as
well as the perturbation that is introduced.

Input Description Configuration

1 – Index by |vertices|
2 1 Squish index
3 2 Subset data 25 < |T |
4 3 Select data Seed fixed

Repetition: 10
Count: 1

5 4 Analyse diamonds Identity class: (Idpq1,0, Id
pq
2,0), (Idpq2,0, Id

pq
3,0),

. . . , (Idpq7,0, Id
pq
8,0)

6 4 Analyse diamond perturbation Compare step 5
7 5, 6 Prepare plot

163

B. Configuration and Evaluation Workflows

Distance Progress

This workflow is intended to visualise the progress of distance calculation while incrementally
checking the distance to different combinations of trees:

• dist(T ,T),

• dist(T ,T ′), with |S(T)| = |S(T ′)|, and

• dist(T ,T ′), with |S(T)| < |S(T ′)|.

For better comparison, the recorded tree is equal for each tested case. Therefore, the
influence of incremental distance results can directly be compared.

Input Description Configuration

1 - Index by |vertices| worker node = c01-007-106
2 1 Subset data 900 < |T | < 1100
3 2 Aggregate data
4 3 Select data Seed fixed

Repetition: 1
Count: 1

5 4 Process as matrix identity class: IdP

similarity: 〈Ssimple(T)|M |Ssimple(T)〉
MultisetStatistics: round(

√
x)

Analysis: absolute distance vector
6 4 Perturbate tree Seed fixed

base probability: 10%
delete probability: 33%
insert probability: 33%
edit probability: 33%

7 6 Process as vector identity class: IdP

similarity: 〈Ssimple(T)|M |Ssimple(T)〉
MultisetStatistics: round(

√
x)

Analysis: absolute distance vector
8 4 Perturbate tree Seed fixed

base probability: 30%
delete probability: 100%

9 8 Process as vector emphCompare step 7
10 5, 7, 9 Prepare plot

164

B.2. Workflows

Tree Generator Validation

To show the validity of our approach to tree generation by introducing distortions into a
given tree, we introduce different distortions into selected trees. The selected trees are a
subset of available data with a limited amount of vertices only to provide the possibility
to calculate exact distances based on TED. For each chosen tree and its distortion exact
distances for TED are calculated. The calculated distances measured by an external
implementation as well as the derived distances are compared to validate the quality of
derived measures.

Results show, that our tree generator correctly estimates an upper bound for exact tree
edit distance.

Input Description Configuration

1 – Index by |vertices|
2 1 Squish index
3 2 Subset data 100 < |T | < 500
4 3 Select data Seed fixed

Repetition: 1
Count: 10

5 4 Perturbate tree Seed fixed
Base probability: 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9

Insert probability: 33%
Delete probability: 33%
Edit probability: 33%

6 5 Process as vector Identity class:
Distance: TED
Analysis: absolute, normalised distance

7 4 Perturbate tree Seed fixed
Base probability: 0.05, 0.1
Move probability: 100%

8 7 Process as vector Compare step 6
9 6, 8 Calculate correlation

165

B. Configuration and Evaluation Workflows

Distance Correlation

Given the validity of our Tree Generator (compare Section B.2 on the preceding page)
we create different distance based on several cost models to show the correlation of our
proposed distances. We therefore select a number of trees. For each tree a set of distortions
is introduced, each representing different available scenarios such as permutation of vertices.
While distorting the given trees the number of edit operations are counted within the Tree
Generator for further utilisation in the distance correlation estimate.

Each vector of correlated trees as well as the original tree the distortions are based on
are analysed regarding different identity classes as well as distance measures. The resulting
vectors of distance results are considered in the following for correlation analysis.

Input Description Configuration

1 – Index by |vertices| All payloads
2 1 Squish index
3 2 Subset data |T | < 15 000
4 3 Select data Seed fixed

Repetition: 1
Count: 5

5 4 Aggregate samples
6 5 Perturbate tree Seed fixed

Base probability: 0.025, 0.05, 0.075, 0.1, 0.15,
0.2, 0.25, 0.3

Insert probability: 50%
Delete probability: 50%

7 6 Process as vector Identity class: IdP, IdPq2 , IdPqOrder
2 , Idpq1,2, Id

pq
2,2,

Ide,noise2 , Ide,parent2

Similarity: 〈T |1|T ′〉, 〈T |M |T ′〉
MultisetStatistics: round(

√
x)

Analysis: absolute, normalised distance and
base data

8 5 Perturbate tree Compare step 6
Move probability: 100%

9 8 Process as vector Compare step 7
10 5 Perturbate tree Compuare step 6

Insert probability: 25%
Delete probability: 25%
Move probability: 50%

11 10 Process as vector Compare step 7
12 7, 9, 11 Calculate correlation

166

B.2. Workflows

Pseudo Metric Validation

The formalism introduced in this thesis targets the introduction of a pseudo metric. We
cannot rely on exact metrics here, because we rely on approximating dynamic trees.
Therefore we expect also different objects to have a distance of 0. This can happen for
example when considering the similarity IdP in the context of high repetition counts for
vertices.

This workflow targets the analysis for meeting the requirements of pseudo metrics for the
two implementations of SplittedStatistics: MultisetStatistics and incremental PDF statistics.
For both methods we therefore evaluate metric characteristics of identity, symmetry, non-
negativity as well as triangle inequality.

Input Description Configuration

1 – Index by |vertices|
2 1 Subset data |T | > 1000
3 2 Select data Seed fixed

Repetition: 1
Count: 1000

4 3 Process as matrix Identity class: IdP

Similarity: 〈T |M |T 〉
MultisetStatistics: round(

√
x)

Analysis: absolute, normalised distance and
base data

5 3 Process as matrix Compare step 4
incremental PDF statistics

6 4, 5 Analyse pseudo metric

167

B. Configuration and Evaluation Workflows

Splitted Statistics Analysis

For SplittedStatistics we currently implement two variants to represent attribute values:

• MultisetStatistics, and

• incremental PDF statistics.

This workflow is intended to analyse the characteristics of both approaches. We want to
evaluate the precision regarding varied overlap of distributions and number of samples.

We already showed that MultisetStatistics is a pseudo-metric (see workflow B.2 on the
previous page). Thus, it is symmetric but we can expect different pairs of trees to result
in a distance of 0. The incremental PDF statistics does an approximation approach and
therefore is not even a pseudo-metric.

Characteristics

To analyse the characteristics of MultisetStatistics and incremental PDF statistics we
mainly focus the adaptation to changing distributions. We therefore first learn a given
distribution for both statistics to apply a validation distribution to. The first characteristic
to consider is the overlap: By iteratively changing the overlap of validation distribution
from 100% to 0% we show the accuracy of both methods to an expected distance value.

Furthermore we are interested in varying numbers of samples. We therefore iteratively
change the number of samples of the given validation distribution to show the influence.
The number of samples is changed from 0 to a factor of 2. Again, for each variation the
expected distance can be calculated and thus the deviation from expected distance.

Input Description Configuration

1 – Analyse attribute statistics

168

B.2. Workflows

Deviation

This workflow is intended to analyse the relative mean deviation error regarding the
weighting of attributes. I expect the deviation error to grow linearly with greater influence
of attributes.

The workflow itself selects 100 randomly chosen trees. For each pair of trees, the distance
matrix is calculated to analyse the deviation error. Results are plotted regarding the
weighting.

Input Description Configuration

1 – Index by |vertices|
2 1 Subset data 1000 < |T | < 10 000
3 2 Select data Seed fixed

Repetition: 10
Count: 100

4 3 Process as matrix Identity class: IdP

Similarity: 〈T |{M,D}|T ′〉
Weighting: αM : 0, . . . , 1, αD : 1− αM

MultisetStatistics: round(
√
x)

Analysis: absolute, normalised distance
and base data

5 3 Process as matrix Compare step 4
incremental PDF statistics

6 4, 5 Analyse deviation

169

B. Configuration and Evaluation Workflows

Sensitivity Analysis

The analysis of sensitivity focuses on determining the differences between high-quality
vertices and low-quality vertices. High-quality vertices are vertices that have a high number
of children and a big size of subtree of the specific vertex, Furthermore, high-quality vertices
have attributes and a high number of attribute changes.

Therefore, we run two workflows that target the structure of trees as well as the attributes
within a tree.

Structure

By definition from high-quality and low-quality vertices we therefore analyse distance results
regarding perturbed trees for specific groups of vertices. The vertices we consider are inner
vertices as high-quality vertices, and leaf vertices as low-quality vertices. We expect greater
changes in distance for changes on high-quality vertices.

Input Description Configuration

1 - Index by |vertices| worker node = c01-007-125
2 1 Squish index
3 2 Subset data 25 < |T | < 15 000
4 3 Aggregate data
5 4 Select data Seed fixed

Count: 1
Repetition: 1

6 5 Perturbate tree Seed fixed
Repetition: 10
Base probability: (0.01, 0.025, 0.05, 0.075, 0.1,
0.125, 0.15, 0.175, 0.2, 0.25)

Insert probability: 50%
Delete probability: 50%
Leaf vertices only

7 6 Process as vector Identity class: Ide,noise2

Similarity: 〈T |1|T ′〉, 〈T |M |T ′〉
MultisetStatistics: round(

√
x)

Analysis: absolute, normalised distance and
base data

8 6 Process as vector Compare step 7
Identity class: Ide,noise3

9 6 Process as vector Compare step 7
Identity class: Ide,noise4

10 5 Perturbate tree Compare step 6
Inner vertices only

11 10 Process as vector Compare step 7
12 10 Process as vector Compare step 8
13 10 Process as vector Compare step 9
13 7, 8, 9, 11, Prepare Plot

12, 13

170

B.2. Workflows

Attributes

High-quality vertices are not only related to vertices with a great amount of children but
also to vertices having a great amount of attributes or even repeatedly changing attribute
values. For this workflow we therefore measure the impacts on tree distances while removing
different amounts of vertices containing attributes. For this analysis we expect the distance
to increase with increasing number of attribute values that are related to a vertex that is
deleted from a given tree.

Input Description Configuration

1 – Index by |attributes| worker node = c01-007-125
2 1 Squish index
3 2 Subset data |attribute events| > 5000
4 3 Aggregate data
5 4 Select data Seed fixed

Count: 1
Repetition: 1

6 5 Perturbate tree Seed fixed
Repetition: 10
Base probability: (0.01, 0.025, 0.05, 0.075, 0.1,
0.125, 0.15, 0.175, 0.2, 0.25)

Delete probability: 100%
Attribute vertices only

7 6 Process as vector Identity class: Ide,noise2

Similarity: 〈T |M |T ′〉, 〈T |{M,D,Λ}|T ′〉
MultisetStatistics: round(

√
x)

Analysis: absolute, normalised distance and
base data

8 6 Process as vector Compare step 7
Identity class: Ide,noise3

9 6 Process as vector Compare step 7
Identity class: Ide,noise4

10 7, 8, 9 Prepare plot

171

B. Configuration and Evaluation Workflows

Ensemble Validation

This thesis introduces the concept of ensembles into tree distance measurements. For this,
we introduce two specific examples: an ensemble distance to handle noisy data being defined
by permutations of vertices having the same parent as well as an ensemble supporting a
partial matching of parent vertices. We expect the noise ensemble measure to be effective
handling out-of-order events in streams as well as noise introduced by the operating system
with regard to our considered use case. Furthermore we expect the partial matching
ensemble to be efficient to handle data that is subject to changes over time and therefore
needs to be considered non-stationary.

The following two workflows briefly analyse the characteristics of both introduced identity
ensemble classes.

Noise

The ensemble that targets the handling of permutations of vertices having the same parent
for some given range q includes two identity classes:

• IdPq that uses infinite-length encoding in P dimension and finite-length encoding in
Q dimension, and

• IdPqOrder that uses infinite-length encoding in P dimension and fixed-length encoding
in Q dimension while ensuring ordered Q dimension.

To analyse this ensemble Ide,noise we select one specific tree. The selected tree is disturbed
for different probabilities in the range [0, 0.1]. Each distortion is repeated several times for
statistical relevance.

Input Description Configuration

1 - Index by |vertices| worker node = c01-007-106
2 1 Squish index
3 2 Subset data 1500 < |T | < 3000
4 3 Select data Seed fixed

Repetition: 1
Count: 1

5 4 Perturbate tree Seed fixed
Base probability: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,
0.07, 0.08, 0.09, 0.1

Move probability: 100%

6 5 Process as vector Identity class: IdPq2 , IdPqOrder
2 , Ide,noise2

Similarity: 〈T |M |T ′〉
MultisetStatistics: int(x)
Analysis: absolute, normalised distance

7 6 Prepare plot

172

B.2. Workflows

Use Case

The ensemble that targets the partial matching of parent vertices includes two identity
classes:

• IdP that uses infinite-length encoding in P dimension, and

• Idpq that uses finite-length encoding in P dimension and fixed-length encoding in Q
dimension.

To analyse this ensemble Ide,parent we select one specific tree. The selected tree is
disturbed for different probabilities in the range [0, 0.1]. Each distortion is repeated several
times for statistical relevance.

Input Description Configuration

1 - Index by |vertices| worker node = c01-007-106
2 1 Squish index
3 2 Subset data 1500 < |T | < 3000
4 3 Select data Seed fixed

Repetition: 1
Count: 1

5 4 Perturbate tree Seed fixed
Base probability: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,
0.07, 0.08, 0.09, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225,
0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425,
0.45, 0.475, 0.5

Move probability: 100%

6 5 Process as vector Identity class: IdP2 , Idpq1,0, Id
e,parent
1

Similarity: 〈T |M |T ′〉
MultisetStatistics: int(x)
Analysis: absolute, normalised distance

7 6 Prepare plot

173

B. Configuration and Evaluation Workflows

Benchmarking

To show the efficiency and scalability of our proposed approach we realise a benchmarking
to evaluate the theoretical analysis of time and space complexity based on performance
and compression measurement. To measure performance and compression of our approach
we utilise the reference implementation ASSESS.

Performance

The benchmarking workflow measures performance characteristics of distances and identity
classes. For distances we differentiate

• 〈T |1|T ′〉,

• 〈T |M |T ′〉, and

• 〈T |{M,D}|T ′〉.

To cover a sufficient amount of identity classes we differentiate

• independent encoding of available dimensions

– dynamic pq-grams Idpq for different combinations of p and q as an example for
finite-length encoding of the two dimensions P and Q,

– IdP as an example for infinite-length encoding in P dimension,

– IdPq for different combinations of q as an example of a combination of infinite-
length encoding in P dimension and finite-length encoding in Q dimension,

– IdPqOrder for different combinations of q as a more complex example that builds
on IdPq but also considers a sorting of Q dimension,

– Ide,noise as an example for ensembles,

• dependent encoding

– IdP(q) for different combinations of q as an example of a combination of infinite-
length encoding in P dimension and finite-length encoding in Q dimension.

This range of examples covers different possibilities of how to encode trees This, in turn,
enables the comparison of performance regarding these different characteristics.

For the analysis we select a number of trees with increasing amount of vertices. This is
repeated several times for each identified range of vertices.

174

B.2. Workflows

Input Description Configuration

1 – Index by |vertices| Worker node: c01-007-102, c01-007-103
2 1 Squish index
3 2 Subset data |T | < 500 000
4 3 Select data Seed fixed

Repetition: 2
Count: 2

5 4 Process as vector Identity class: IdP, IdPqOrder
i , Idpqi,i , Id

Pq
i , Ide,noisei ,

Id
P (q)
i , ∀i ∈ {2, 3, 4}

Similarity: 〈T |1|T 〉, 〈T |M |T ′〉, 〈T |{M,D}|T ′〉
MultisetStatistics: int(x)
Analysis: overall runtime, identity runtime,

distance runtime, absolute distance, and base data
6 5 Prepare plot

Compression

This workflow empirically evaluates space complexity for different identity classes. In
specific, we distinguish between fixed-length and infinite-length encoding schemes as different
complexities are expected.

For selected payloads we collect different statistics:

• number of vertices,

• height of a tree,

• size of the alphabet, and

• number of unique identities.

This workflow evaluates

• dynamic pq-grams Idpq as an example for finite-length encoding of the two dimensions
P and Q,

• IdP as an example for infinite-length encoding in P dimension,

• IdPq as an example of a combination of infinite-length encoding in P dimension and
finite-length encoding in Q dimension, and

• IdPqOrder for different combinations of q as a more complex example that builds on
IdPq but also considers a sorting of Q dimension.

175

B. Configuration and Evaluation Workflows

Input Description Configuration

1 – Index by |vertices| All worker nodes
2 1 Squish index
3 2 Subset data |T | > 25
4 3 Select data Seed fixed

Repetition: 1
Count: 100

5 4 Analyse compression Identity class: IdP, IdPqOrder
2 , Idpq2,2, Id

Pq
2

6 5 Prepare plot

176

B.2. Workflows

Use Case Evalution

The final analysis of our proposed approach targets the validity of results regarding our
considered use case of clustering, classification, and anomaly detection based on HEP batch
jobs. We therefore consider different payloads from CMS collaboration that we mapped
recorded job data from CERN Experiment Dashboard. The supplemented data enables the
validation of clustering. Based on these results we make qualitative statements about the
approach itself, its validity, and thus its feasibility for online analysis in production batch
systems.

Input Description Configuration

1 – Index by activity All supplemented monitoring data
2 1 Subset data activity ∈ {pdmvserv_SMP-Summer12DR53X,

alahiff_JME-Upg2023SHCAL14DR,
vlimant_EGM-Fall14DR73,
alahiff_HCA-Spring14dr}

3 2 Aggregate data
4 3 Select data Seed fixed

Repetition: 1
Count: 1000

5 4 Process as matrix Identity class: Ide,noise2

Similarity: 〈T |{M,D,Λ}|T ′〉, 〈T |{M,D}|T ′〉
MultisetStatistics: round(

√
x)

Analysis: absolute and normalised distance
6 5 Perform clustering η : 2, 3, . . . , 10

ε : 0.05, 0.1, 0.2, 0.3, 0.4, 0.5

7 6 Perform classification Identity class: Ide,noise2

Similarity: 〈T |{M,D,Λ}|T ′〉
MultisetStatistics: round(

√
(x))

Analysis: normalised distance,
anomalies (threshold: 20%)

8 7 Analyse classification
9 7 Analyse anomaly detection

177

C. Additional Plots

0e+00

1e-14

2e-14

0.00 0.25 0.50 0.75 1.00

Weight of Vertex Distance

R
el

at
iv

e
D

ev
ia

ti
on

20000

40000

60000

80000
Count

(a) Relative deviation e of distance result with
regard to attribute influence

2500

5000

7500

10000

2500 5000 7500 10000

Observed Tree Size

R
ec

or
de

d
T
re

e
Si

ze

0
Deviation

(b) Mean relative deviation ē of distance result
for different tree sizes due to attributes

Figure C.1.: Influence of attribute weighting and tree size to the relative deviation e for
MultisetStatistics of calculated distance result for dynamic trees. Statistics
have been calculated from 10 independent, randomly selected samples of 100
dynamic trees. The original dataset has been filtered to include only dynamic
trees with sizes of 1000 < max(|Ti|),∀Ti ∈ T < 10 000. Figure C.1a shows
influence of the weighting factor on the relative deviation e of the distance
result. It can be seen, that deviation is 0 for weights 0, 0.5 and 1. As those
weight map to distances of 2, 1 and 0, deviation e can only be an effect of
floating point division errors. This effect can also be seen in Figure C.1b. Here,
the mean relative deviation hardly differs throughout the range of tree sizes.
Thus, the MultisetStatistics can be considered a pseudo metric.

179

C. Additional Plots

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00

Relative Deviation

W
ei

gh
t

of
V

er
te

x
D

is
ta

nc
e

500

1000

1500

Count

(a) Relative deviation e of distance result for
incremental PDF statistics

-9e-16

4e-15

9e-15

1e-14

2e-14

0.00 0.25 0.50 0.75 1.00

Relative Deviation

W
ei

gh
t

of
V

er
te

x
D

is
ta

nc
e

400

800

1200

1600
Count

(b) Relative deviation e of distance result for
MultisetStatistics

Figure C.2.: Relative deviation e of MultisetStatistics and incremental PDF statistics on
diagonal

10

1000

0 20 40 60

Duration (h)

C
ou

nt

Figure C.3.: Visualisation of distribution of durations of CMS payloads.

180

D. Hardware and setup

At the GridKa data and computing centre the monitoring tool is currently running on
two racks each consisting of 32 worker nodes. Each worker node has 16 physical cores
with hyper-threading enabled. On each worker node 24 job slots are configured that are
monitored in parallel. The operating system in use is Scientific Linux 6.4, a rebuild of Red
Hat Enterprise Linux. Long term measurements and data collection are in progress with
a measurement interval of 20 s and a logging of the complete process hierarchy for single
batch jobs.

Each sensor agent gathers TCP/UDP packets and the corresponding batch job information
for the assigned worker node. Extracted data is composed time series regarding the actual
network traffic, relevant Unix process information as well as information about the batch
job itself. These data is transmitted to a central collector and analysis component where
specific traffic information per job are processed and analysed. As the job IDs from the
batch system are not unique, a unique ID is generated. The central collector takes care of
this by combining the start timestamp of the job with its job ID.

For an improved data handling and analysis the central component adds metadata to the
measurements. They include general information about the monitoring process of a single
job, e.g. duration, experiment, worker node, or additional information about possibly
missing data. These are stored in a database enabling a fast access to specific batch job
data.

181

Bibliography

[1] A Multi-TeV Linear Collider based on CLIC Technology: CLIC Conceptual Design
Report. Tech. rep. Dec. 2013.

[2] HTCondor Admin. HTCondor Homepage. Feb. 2017. url: https://research.cs.
wisc.edu/htcondor/ (visited on 02/21/2017).

[3] Anthony Agelastos et al. “Continuous whole-system monitoring toward rapid under-
standing of production HPC applications and systems.” In: Parallel Computing 58
(2016), pp. 90–106.

[4] Anthony Agelastos et al. “The Lightweight Distributed Metric Service - A Scalable
Infrastructure for Continuous Monitoring of Large Scale Computing Systems and
Applications.” In: SC (2014), pp. 154–165.

[5] Charu C Aggarwal. “Sketching Aggregates over Probabilistic Streams”. In: Managing
and Mining Uncertain Data. Boston, MA: Springer US, Mar. 2009, pp. 1–33.

[6] Cristina Aiftimiei et al. “GridICE: monitoring the user/application activities on the
grid”. In: Journal of Physics: Conference Series 119.6 (July 2008), p. 062003.

[7] Tatsuya Akutsu, Daiji Fukagawa, and Atsuhiro Takasu. “Approximating Tree Edit
Distance through String Edit Distance.” In: Algorithmica 57.2 (2010), pp. 325–348.

[8] Tatsuya Akutsu and Magnús M Halldórsson. “On the approximation of largest
common subtrees and largest common point sets.” In: Theor. Comput. Sci. 233.1-2
(2000), pp. 33–50.

[9] M Alishahi and M Naghibzadeh. “Tag name structure-based clustering of XML
documents”. In: International Journal of . . . (2010).

[10] Mohamad Alishahi et al. “XML document clustering based on common tag names
anywhere in the structure”. In: 2009 14th International CSI Computer Conference
(CSICC 2009) (Postponed from July 2009). IEEE, 2009, pp. 588–595.

[11] Mara Alpuente and Daniel Romero. “A Tool for Computing the Visual Similarity of
Web Pages.” In: SAINT (2010).

[12] Ganesh Ananthanarayanan et al. “Disk-Locality in Datacenter Computing Considered
Irrelevant.” In: HotOS (2011).

[13] P Andrade et al. “Service Availability Monitoring Framework Based On Commodity
Software”. In: Journal of Physics: Conference Series 396.3 (2012), p. 032008.

[14] J Andreeva et al. “Experiment Dashboard - a generic, scalable solution for monitoring
of the LHC computing activities, distributed sites and services”. In: Journal of
Physics: Conference Series 396.3 (Dec. 2012), p. 032093.

[15] J Andreeva et al. “WLCG Transfers Dashboard: a Unified Monitoring Tool for
Heterogeneous Data Transfers”. In: Journal of Physics: Conference Series 513.3
(June 2014), p. 032005.

183

https://research.cs.wisc.edu/htcondor/
https://research.cs.wisc.edu/htcondor/

Bibliography

[16] F. Angiulli and C. Pizzuti. “Outlier mining in large high-dimensional data sets”. In:
IEEE Transactions on Knowledge and Data Engineering 17.2 (Feb. 2005), pp. 203–
215. issn: 1041-4347. doi: 10.1109/TKDE.2005.31.

[17] Tatsuya Asai et al. “Efficient algorithms for finding frequent substructures from
semi-structured data streams”. In: JSAI’03/JSAI04: Proceedings of the 2003 and
2004 international conference on New frontiers in artificial intelligence. Fujitsu.
Springer-Verlag, June 2003, pp. 29–45.

[18] Tatsuya Asai et al. Online algorithms for mining semi-structured data stream. IEEE,
2002.

[19] Nikolaus Augsten and Michael Böhlen. “Similarity Joins in Relational Database
Systems”. In: Synthesis Lectures on Data Management 5.5 (Nov. 2013), pp. 1–124.

[20] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. “An Incrementally Main-
tainable Index for Approximate Lookups in Hierarchical Data.” In: VLDB (2006).

[21] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. “Approximate Matching of
Hierarchical Data Using pq-Grams.” In: VLDB (2005), pp. 301–312.

[22] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. “The pq -gram distance
between ordered labeled trees”. In: ACM Transactions on Database Systems (TODS)
35.1 (Feb. 2010), pp. 4–36.

[23] Nikolaus Augsten et al. “Approximate Joins for Data-Centric XML.” In: ICDE
(2008), pp. 814–823.

[24] Nikolaus Augsten et al. On-the-fly token similarity joins in relational databases. New
York, New York, USA: ACM, June 2014.

[25] Nikolaus Augsten et al. “Windowed pq-grams for approximate joins of data-centric
XML”. In: The VLDB Journal 21.4 (Sept. 2011), pp. 463–488.

[26] Pablo Neira Ayuso, Rafael M Gasca, and Laurent Lefèvre. “Communicating between
the kernel and user-space in Linux using Netlink sockets.” In: Softw., Pract. Exper.
1 (2010), n/a–n/a.

[27] Imre Bárány and Van Vu. “Central limit theorems for Gaussian polytopes”. In: The
Annals of Probability 36.5 (Sept. 2008), pp. 1998–1998.

[28] Adam M Bates et al. “Trustworthy Whole-System Provenance for the Linux Kernel.”
In: USENIX Security Symposium (2015).

[29] Heinz Bauer. Measure and Integration Theory. Berlin, New York: DE GRUYTER,
2001.

[30] L A T Bauerdick and A Sciabà. “Towards a global monitoring system for CMS
computing operations”. In: Journal of Physics: Conference Series 396.3 (Dec. 2012),
p. 032099.

[31] L Bauerdick et al. “Using Xrootd to Federate Regional Storage”. In: Journal of
Physics: Conference Series 396.4 (Dec. 2012), p. 042009.

[32] Mustafa Gokce Baydogan, George Runger, and Eugene Tuv. “A bag-of-features
framework to classify time series”. In: IEEE transactions on pattern (2013).

[33] Olaf Behnke et al., eds. Data analysis in high energy physics. Weinheim, Germany:
Wiley-VCH, 2013. isbn: 9783527410583, 9783527653447, 9783527653430. url: http:
//www.wiley-vch.de/publish/dt/books/ISBN3-527-41058-9.

184

http://dx.doi.org/10.1109/TKDE.2005.31
http://www.wiley-vch.de/publish/dt/books/ISBN3-527-41058-9
http://www.wiley-vch.de/publish/dt/books/ISBN3-527-41058-9

Bibliography

[34] Gerd Behrmann, Dmitry Ozerov, and Thomas Zangerl. “Xrootd in dCache - design
and experiences”. In: Journal of Physics: Conference Series 331.5 (2011), p. 052021.

[35] Gleb Beliakov, Ana Pradera, and Tomasa Calvo. Aggregation Functions: A Guide
for Practitioners. 1st. Springer Publishing Company, Incorporated, 2008. isbn:
3540737200, 9783540737209.

[36] Douglas P Benjamin. “Grid Computing in the Collider Detector at Fermilab (CDF)
scientific experiment”. In: CoRR (2008).

[37] Karima Bessine et al. “XCLSC: Structure and content-based clustering of XML
documents”. In: 2015 12th International Symposium on Programming and Systems
(ISPS). IEEE, 2015, pp. 1–7.

[38] Kevin S Beyer et al. “When Is ”Nearest Neighbor” Meaningful?” In: ICDT 1540.Chap-
ter 15 (1999), pp. 217–235.

[39] Abhinav Bhatele et al. “There Goes the Neighborhood: Performance Degradation due
to Nearby Jobs”. In: the International Conference for High Performance Computing,
Networking, Storage and Analysis. New York, New York, USA: ACM Press, 2013,
pp. 1–12.

[40] Albert Bifet et al. “New ensemble methods for evolving data streams”. In: the 15th
ACM SIGKDD international conference. New York, New York, USA: ACM Press,
2009, pp. 139–148.

[41] Philip Bille. “A survey on tree edit distance and related problems.” In: Theor.
Comput. Sci. 337.1-3 (2005), pp. 217–239.

[42] I Bird et al. LHC Computing Grid. Tech. rep. CERN-LHCC-2005-024.LCG-TDR-001.
June 2005.

[43] I Bird et al. Update of the Computing Models of the WLCG and the LHC Experiments.
Tech. rep. CERN-LHCC-2014-014. LCG-TDR-002. Apr. 2014.

[44] Kenneth Bloom and The CMS Collaboration. “CMS Use of a Data Federation”. In:
Journal of Physics: Conference Series 513.4 (2014), p. 042005.

[45] Hamed R Bonab and Fazli Can. “A Theoretical Framework on the Ideal Number of
Classifiers for Online Ensembles in Data Streams.” In: CIKM (2016), pp. 2053–2056.

[46] Daniele Bonacorsi. “CMS storage federations”. In: 2012 IEEE Nuclear Science
Symposium and Medical Imaging Conference (2012 NSS/MIC). IEEE, 2012, pp. 2012–
2015.

[47] Leo Breiman. “Bagging Predictors.” In: Machine Learning (1996).

[48] Alex D Breslow et al. “The case for colocation of high performance computing
workloads.” In: Concurrency and Computation - Practice and Experience 28.2 (2016),
pp. 232–251.

[49] David Buttler. “A Short Survey of Document Structure Similarity Algorithms.” In:
International Conference on Internet Computing (2004), pp. 3–9.

[50] Giulia Casarosa. “The Belle II Experiment”. In: Journal of Physics: Conference
Series 556.1 (Nov. 2014), p. 012072.

[51] Leopoldo Catania. “Dynamic Adaptive Mixture Models”. In: arXiv.org (Mar. 2016).
arXiv: 1603.01308v1 [stat.ME].

185

http://arxiv.org/abs/1603.01308v1

Bibliography

[52] CERN. Future Linear Collider Study. 2016. url: https://fcc.web.cern.ch/
(visited on 03/17/2017).

[53] CERN. Processing: What to record? 2017. url: https://home.cern/about/
computing/processing-what-record (visited on 03/10/2017).

[54] CERN. The Large Hadron Collider. Jan. 2014. url: http://home.cern/topics/
large-hadron-collider (visited on 02/21/2017).

[55] José E Chacón. “Mixture model modal clustering”. In: arXiv.org (Sept. 2016). arXiv:
1609.04721v1 [stat.ML].

[56] Edgar Chávez and Gonzalo Navarro. “A Probabilistic Spell for the Curse of Dimen-
sionality.” In: ALENEX 2153.Chapter 12 (2001), pp. 147–160.

[57] Sudarshan S Chawathe and Hector Garcia-Molina. “Meaningful change detection in
structured data”. In: ACM SIGMOD Record 26.2 (June 1997), pp. 26–37.

[58] Mostafa Haghir Chehreghani et al. “Clustering Rooted Ordered Trees”. In: 2007
IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2007,
pp. 450–455.

[59] Abdur Chowdhury et al. “Collection statistics for fast duplicate document detection.”
In: ACM Trans. Inf. Syst. 20.2 (2002), pp. 171–191.

[60] Catalin Cirstoiu et al. “Monitoring, accounting and automated decision support
for the alice experiment based on the MonALISA framework.” In: GMW@HPDC
(2007), p. 39.

[61] Sergio Cittolin, Attila Rácz, and Paris Sphicas. CMS The TriDAS Project: Technical
Design Report, Volume 2: Data Acquisition and High-Level Trigger. CMS trigger
and data-acquisition project. Technical Design Report CMS. Geneva: CERN, 2002.
url: http://cds.cern.ch/record/578006.

[62] ATLAS collaboration and G Aad. The ATLAS Experiment at the CERN Large
Hadron Collider, 2008.

[63] the ATLAS Collaboration. “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC”. In: arXiv.org 1
(July 2012), pp. 1–29. arXiv: 1207.7214v2 [hep-ex].

[64] The CMS Collaboration. “Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC”. In: arXiv.org 1 (July 2012), pp. 30–61. arXiv:
1207.7235v2 [hep-ex].

[65] COMPASS Collaboration and P Abbon. “The COMPASS Experiment at CERN”.
In: arXiv.org 3 (Mar. 2007), pp. 455–518. arXiv: hep-ex/0703049v1 [hep-ex].

[66] Thomas H. Cormen et al. Introduction to Algorithms, Third Edition. 3rd. The MIT
Press, 2009. isbn: 0262033844, 9780262033848.

[67] Graham Cormode and Minos N Garofalakis. “Sketching probabilistic data streams.”
In: SIGMOD (2007), pp. 281–292.

[68] Graham Cormode and S Muthukrishnan. “The string edit distance matching problem
with moves.” In: ACM Trans. Algorithms 3.1 (2007), p. 2.

[69] Univa Corporation. Univa Corporation - Products Suite. 2017. url: http://www.
univa.com/products/ (visited on 02/21/2017).

186

https://fcc.web.cern.ch/
https://home.cern/about/computing/processing-what-record
https://home.cern/about/computing/processing-what-record
http://home.cern/topics/large-hadron-collider
http://home.cern/topics/large-hadron-collider
http://arxiv.org/abs/1609.04721v1
http://cds.cern.ch/record/578006
http://arxiv.org/abs/1207.7214v2
http://arxiv.org/abs/1207.7235v2
http://arxiv.org/abs/hep-ex/0703049v1
http://www.univa.com/products/
http://www.univa.com/products/

Bibliography

[70] G Costa and R Ortale. “On Effective XML Clustering by Path Commonality: An
Efficient and Scalable Algorithm”. In: 2012 IEEE 24th International Conference on
Tools with Artificial Intelligence (ICTAI 2012). IEEE, 2012, pp. 389–396.

[71] Gianni Costa et al. “A Tree-Based Approach to Clustering XML Documents by
Structure”. In: Knowledge Discovery in Databases: PKDD 2004. Berlin, Heidelberg:
Springer, Berlin, Heidelberg, Sept. 2004, pp. 137–148.

[72] Isabel F Cruz et al. “Measuring Structural Similarity Among Web Documents -
Preliminary Results.” In: EP (1998).

[73] Theodore Dalamagas et al. “A methodology for clustering XML documents by
structure.” In: Inf. Syst. () 31.3 (2006), pp. 187–228.

[74] Theodore Dalamagas et al. “Clustering XML Documents Using Structural Sum-
maries.” In: EDBT Workshops 3268.Chapter 54 (2004), pp. 547–556.

[75] Erik D Demaine et al. “An optimal decomposition algorithm for tree edit distance.”
In: ACM Trans. Algorithms 6.1 (2009), pp. 2–19.

[76] Thomas G Dietterich. “Ensemble Methods in Machine Learning”. In: Multiple Clas-
sifier Systems. Berlin, Heidelberg: Springer, Berlin, Heidelberg, June 2000, pp. 1–
15.

[77] P A M Dirac. “A new notation for quantum mechanics”. In: Mathematical Proceedings
of the Cambridge Philosophical Society 35.03 (Oct. 2008), pp. 416–418.

[78] Brendan Dolan-Gavitt et al. “Tappan Zee (North) Bridge: Mining Memory Accesses
for Introspection”. In: the 2013 ACM SIGSAC conference. New York, New York,
USA: ACM Press, 2013, pp. 839–850.

[79] Laurence Field Domenico Giordano Cristovao Cordeiro. “CERN Computing in
Commercial Clouds”. 22nd International Conference on Computing in High Energy
and Nuclear Physics. Oct. 2016. url: https://indico.cern.ch/event/505613/
contributions/2227325/ (visited on 03/07/2017).

[80] Max Fischer Eileen Kuehn. Python package index: dengraph. 2017. url: https:
//pypi.python.org/pypi/dengraph (visited on 03/13/2017).

[81] Elasticsearch. Kibana: Explore, Visualize, Discover Data | Elastic. 2017. url: https:
//www.elastic.co/products/kibana (visited on 03/13/2017).

[82] M. Ellert et al. “The NorduGrid project: using Globus toolkit for building {GRID}
infrastructure”. In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 502.23 (2003).
Proceedings of the {VIII} International Workshop on Advanced Computing and
Analysis Techniques in Physics Research, pp. 407–410. issn: 0168-9002. doi: https:
//doi.org/10.1016/S0168-9002(03)00453-4. url: http://www.sciencedirect.
com/science/article/pii/S0168900203004534.

[83] Arnout Engelen. NetHogs: Linux ’net top’ tool. 2017. url: https://github.com/
raboof/nethogs (visited on 03/02/2017).

[84] Günter Erli et al. “On-demand provisioning of HEP compute resources
on cloud sites and shared HPC centers ”. 22nd International Conference on
Computing in High Energy and Nuclear Physics. Oct. 2016. url: https://indico.
cern.ch/event/505613/contributions/2230729/ (visited on 03/07/2017).

187

https://indico.cern.ch/event/505613/contributions/2227325/
https://indico.cern.ch/event/505613/contributions/2227325/
https://pypi.python.org/pypi/dengraph
https://pypi.python.org/pypi/dengraph
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)00453-4
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)00453-4
http://www.sciencedirect.com/science/article/pii/S0168900203004534
http://www.sciencedirect.com/science/article/pii/S0168900203004534
https://github.com/raboof/nethogs
https://github.com/raboof/nethogs
https://indico.cern.ch/event/505613/contributions/2230729/
https://indico.cern.ch/event/505613/contributions/2230729/

Bibliography

[85] Martin Ester et al. “A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise.” In: KDD (1996).

[86] Tanja Falkowski, Anja Barth, and Myra Spiliopoulou. “DENGRAPH: A Density-
based Community Detection Algorithm”. In: IEEE/WIC/ACM International Con-
ference on Web Intelligence (WI’07). IEEE, 2007, pp. 112–115.

[87] L Field et al. “Towards sustainability: An interoperability outline for a Regional
ARC based infrastructure in the WLCG and EGEE infrastructures”. In: Journal of
Physics: Conference Series 219.6 (May 2010), p. 062051.

[88] Sergio Flesca et al. “Exploiting structural similarity for effective Web information
extraction.” In: Data Knowl. Eng. () 60.1 (2007), pp. 222–234.

[89] Sergio Flesca et al. “Fast Detection of XML Structural Similarity.” In: IEEE Trans.
Knowl. Data Eng. () 17.2 (2005), pp. 160–175.

[90] Ian T Foster, Carl Kesselman, and Steven Tuecke. “The Anatomy of the Grid -
Enabling Scalable Virtual Organizations.” In: IJHPCA 15.3 (2001), pp. 200–222.

[91] Patrick Fuhrmann and Volker Gülzow. “dCache, Storage System for the Future.” In:
Euro-Par 4128.Chapter 116 (2006), pp. 1106–1113.

[92] Robert Gardner et al. “Data federation strategies for ATLAS using XRootD”. In:
Journal of Physics: Conference Series 513.4 (June 2014), p. 042049.

[93] Minos N Garofalakis and Amit Kumar. “Correlating XML data streams using
tree-edit distance embeddings.” In: PODS (2003), pp. 143–154.

[94] Minos N Garofalakis and Amit Kumar. “XML stream processing using tree-edit
distance embeddings.” In: ACM Trans. Database Syst. () 30.1 (2005), pp. 279–332.

[95] ILC GDE. ILC - International Linear Collider. 2013. url: http://www.linearcol-
lider.org/ILC (visited on 02/23/2017).

[96] Andreas Gellrich. “Integration of grid and local batch system resources at DESY”.
22nd International Conference on Computing in High Energy and Nuclear Physics.
Oct. 2016. url: https : / / indico . cern . ch / event / 505613 / contributions /
2227414/ (visited on 03/07/2017).

[97] Pierre Geurts. “Pattern Extraction for Time Series Classification”. In: Principles
of Data Mining and Knowledge Discovery. Berlin, Heidelberg: Springer, Berlin,
Heidelberg, Sept. 2001, pp. 115–127.

[98] Saptarshi Ghosh and Pabitra Mitra. “Combining content and structure similarity
for XML document classification using composite SVM kernels”. In: 2008 19th
International Conference on Pattern Recognition (ICPR). IEEE, 2008, pp. 1–4.

[99] Globus. GT 6.0 GridFTP. 2017. url: http://toolkit.globus.org/toolkit/
docs/latest-stable/gridftp/ (visited on 02/27/2017).

[100] M Gollapalli et al. Approximate Record Matching Using Hash Grams. IEEE, 2011.

[101] Luis Guerra et al. “A comparison of clustering quality indices using outliers and
noise.” In: Intell. Data Anal. (2012).

[102] Arvind Gupta and Naomi Nishimura. “Finding Largest Subtrees and Smallest
Supertrees.” In: Algorithmica 21.2 (1998), pp. 183–210.

188

http://www.linearcol-lider.org/ILC
http://www.linearcol-lider.org/ILC
https://indico.cern.ch/event/505613/contributions/2227414/
https://indico.cern.ch/event/505613/contributions/2227414/
http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/

Bibliography

[103] M Hadjieleftheriou, J W Byers, and G Kollios. “Robust sketching and aggregation
of distributed data streams”. In: (2005).

[104] G Hamerly and C Elkan. “Learning the k in k-means”. In: NIPS (2003).

[105] Andreas Heiss. GridKa Monitoring Dashboard. 2017. url: http://web-kit.gridka.
de/monitoring/ (visited on 02/16/2017).

[106] Tim Henderson. Tree edit distance using the Zhang Shasha algorithm. 2014. url:
https://pypi.python.org/pypi/zss/1.1.2 (visited on 03/13/2017).

[107] Israel Nathan Herstein. Topics in algebra. Tech. rep. New York, Toronto, London,
1964.

[108] KEK High Energy Accelerator Research Organization. SuperKEKB Project. 2011.
url: http://www-superkekb.kek.jp (visited on 02/21/2017).

[109] Kouichi Hirata, Yoshiyuki Yamamoto, and Tetsuji Kuboyama. “Improved MAX
SNP-Hard Results for Finding an Edit Distance between Unordered Trees.” In: CPM
6661.Chapter 34 (2011), pp. 402–415.

[110] D Hufnagel and the CMS Collaboration. “Enabling opportunistic resources for CMS
Computing Operations”. In: Journal of Physics: Conference Series 664.2 (Dec. 2015),
p. 022025.

[111] Elena Ikonomovska, João Gama, and Sao Deroski. “Online tree-based ensembles and
option trees for regression on evolving data streams”. In: Neurocomputing 150 (Feb.
2015), pp. 458–470.

[112] Piotr Indyk. “Stable distributions, pseudorandom generators, embeddings, and data
stream computation.” In: J. ACM () 53.3 (2006), pp. 307–323.

[113] Henry F Inman and Edwin L Bradley Jr. “The overlapping coefficient as a measure
of agreement between probability distributions and point estimation of the overlap
of two normal densities”. In: Communications in Statistics - Theory and Methods
18.10 (June 2007), pp. 3851–3874.

[114] Intel Corporation. Intelő 64 and IA-32 Architectures Software Developer’s Manual.
Dec. 2016.

[115] Swami Iyer and Dan A. Simovici. “Structural classification of XML documents
using multisets”. In: International Journal on Artificial Intelligence Tools 17.05
(2008), pp. 1003–1022. doi: 10.1142/S0218213008004266. url: http://www.
worldscientific.com/doi/abs/10.1142/S0218213008004266.

[116] Anubhav Jain et al. “FireWorks - a dynamic workflow system designed for high-
throughput applications.” In: Concurrency and Computation - Practice and Experi-
ence 27.17 (2015), pp. 5037–5059.

[117] Youngseon Jeong, Myong Kee Jeong, and Olufemi A Omitaomu. “Weighted dynamic
time warping for time series classification.” In: Pattern Recognition 44.9 (2011),
pp. 2231–2240.

[118] Yang Ji, Sangho Lee, and Wenke Lee. “RecProv - Towards Provenance-Aware User
Space Record and Replay.” In: IPAW 9672.Chapter 1 (2016), pp. 3–15.

[119] Bin Jiang et al. “Clustering Uncertain Data Based on Probability Distribution
Similarity.” In: IEEE Trans. Knowl. Data Eng. () (2013).

189

http://web-kit.gridka.de/monitoring/
http://web-kit.gridka.de/monitoring/
https://pypi.python.org/pypi/zss/1.1.2
http://www-superkekb.kek.jp
http://dx.doi.org/10.1142/S0218213008004266
http://www.worldscientific.com/doi/abs/10.1142/S0218213008004266
http://www.worldscientific.com/doi/abs/10.1142/S0218213008004266

Bibliography

[120] Haifeng Jiang et al. “Holistic Twig Joins on Indexed XML Documents.” In: VLDB
(2003), pp. 273–284.

[121] Tao Jiang, Lusheng Wang, and Kaizhong Zhang. “Alignment of trees an alternative
to tree edit”. In: Theoretical Computer Science 143.1 (July 1995), pp. 137–148.

[122] A Jokanovic, J C Sancho, and G Rodriguez. “Quiet neighborhoods: Key to protect
job performance predictability”. In: (IPDPS) (2015).

[123] Sachindra Joshi et al. “A bag of paths model for measuring structural similarity in
Web documents.” In: KDD (2003), pp. 577–582.

[124] Anna Jurek et al. “A survey of commonly used ensemble-based classification tech-
niques.” In: Knowledge Eng. Review 29.05 (2014), pp. 551–581.

[125] Karin Kailing et al. “Efficient Similarity Search for Hierarchical Data in Large
Databases.” In: EDBT 2992.Chapter 39 (2004), pp. 676–693.

[126] K Kailing et al. “Efficient similarity search in large databases of tree structured
objects”. In: Proceedings. 20th International Conference on Data Engineering. IEEE,
2004, p. 835.

[127] Melanie Kambadur et al. “Measuring interference between live datacenter applica-
tions”. In: 2012 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2012, pp. 1–12.

[128] Vasileios P Kemerlis et al. “libdft - practical dynamic data flow tracking for com-
modity systems.” In: VEE 47.7 (2012), pp. 121–132.

[129] E Keogh. Data mining and machine learning in time series databases. Tutorial in
ICML, 2004.

[130] Eamonn J Keogh and Shruti Kasetty. “On the Need for Time Series Data Mining
Benchmarks - A Survey and Empirical Demonstration.” In: Data Min. Knowl. Discov.
7.4 (2003), pp. 349–371.

[131] Eamonn Keogh and Chotirat Ann Ratanamahatana. “Exact indexing of dynamic
time warping”. In: Knowledge and Information Systems 7.3 (Mar. 2005), pp. 358–386.

[132] Michael Kerrisk. cgroups - Linux control groups. 2016. url: http://man7.org/
linux/man-pages/man7/cgroups.7.html (visited on 02/20/2017).

[133] Michael Kerrisk. ptrace - Linux manual page. 2016. url: http://man7.org/linux/
man-pages/man2/ptrace.2.html (visited on 02/16/2017).

[134] Michael Kerrisk. strace - Linux manual page. 2016. url: http://man7.org/linux/
man-pages/man1/strace.1.html (visited on 02/16/2017).

[135] Samuel T King and Peter M Chen. “Backtracking intrusions”. In: ACM Transactions
on Computer Systems 23.1 (Feb. 2005), pp. 51–76.

[136] Andreas Knüpfer et al. “The Vampir Performance Analysis Tool-Set”. In: Tools for
High Performance Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 139–155.

[137] Eileen Kuehn. “Clustering Evolving Batch System Jobs for Online Anomaly Detec-
tion”. In: ICDMW ’15: Proceedings of the 2015 IEEE International Conference on
Data Mining Workshop (ICDMW). IEEE Computer Society, Nov. 2015, pp. 1534–
1535.

190

http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man1/strace.1.html
http://man7.org/linux/man-pages/man1/strace.1.html

Bibliography

[138] Eileen Kuehn and Achim Streit. “Online Distance Measurement for Tree Data Event
Streams.” In: DASC/PiCom/DataCom/CyberSciTech (2016), pp. 681–688.

[139] Eileen Kuehn et al. “Active Job Monitoring in Pilots”. In: Journal of Physics:
Conference Series 664.5 (Dec. 2015), p. 052019.

[140] Eileen Kuehn et al. “Analyzing data flows of WLCG jobs at batch job level”. In:
Journal of Physics: Conference Series 608.1 (May 2015), p. 012017.

[141] Eileen Kuehn et al. “Monitoring Data Streams at Process Level in Scientific Big
Data Batch Clusters.” In: BDC (2014), pp. 90–95.

[142] E Kuehn et al. “A scalable architecture for online anomaly detection of WLCG batch
jobs”. In: Journal of Physics: Conference Series 762.1 (Nov. 2016), p. 012002.

[143] Sangeetha Kutty, Richi Nayak, and Yuefeng Li. HCX: an efficient hybrid clustering
approach for XML documents. an efficient hybrid clustering approach for XML
documents. New York, New York, USA: ACM, Sept. 2009.

[144] Issam H Laradji, Mohammed Salahadin, and Lahouari Ghouti. “XML classifica-
tion using ensemble learning on extracted features.” In: ACM Southeast Regional
Conference (2014), pp. 1–6.

[145] Thomas Larsson and Tomas Akenine-Möller. “Collision Detection for Continuously
Deforming Bodies”. In: Eurographics 2001 - Short Presentations. Eurographics
Association, 2001. doi: 10.2312/egs.20011005.

[146] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. IEEE Computer Society, Mar. 2004.

[147] Aleksandar Lazarevic et al. “A Comparative Study of Anomaly Detection Schemes
in Network Intrusion Detection”. In: Proceedings of the 2003 SIAM International
Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied
Mathematics, Dec. 2013, pp. 25–36.

[148] Mong-Li Lee et al. “XClust: clustering XML schemas for effective integration.” In:
CIKM (2002), pp. 292–299.

[149] Anna Lesniewska. “Clustering XML Documents by Structure.” In: ADBIS 5968.Chap-
ter 30 (2009), pp. 238–246.

[150] Fei Li et al. “A survey on tree edit distance lower bound estimation techniques for
similarity join on XML data”. In: ACM SIGMOD Record 42.4 (Feb. 2014), pp. 29–39.

[151] Wang Lian et al. “An Efficient and Scalable Algorithm for Clustering XML Documents
by Structure.” In: IEEE Trans. Knowl. Data Eng. () 16.1 (2004), pp. 82–96.

[152] Jessica Lin, Rohan Khade, and Yuan Li. “Rotation-invariant similarity in time series
using bag-of-patterns representation”. In: Journal of Intelligent Information Systems
39.2 (2012), pp. 287–315.

[153] Jessica Lin and Yuan Li. “Finding Structural Similarity in Time Series Data Using
Bag-of-Patterns Representation.” In: SSDBM 5566.Chapter 33 (2009), pp. 461–477.

[154] J Lin et al. “Experiencing SAX: a novel symbolic representation of time series”. In:
Data Mining and Knowledge Discovery (2007).

[155] Jason Lines and Anthony Bagnall. “Time series classification with ensembles of
elastic distance measures”. In: Data Mining and Knowledge Discovery 29.3 (2015),
pp. 565–592.

191

http://dx.doi.org/10.2312/egs.20011005

Bibliography

[156] Lei Liu et al. “A Methodology for Clustering XML Documents Based on Labeled
Tree”. In: 2009 Sixth International Conference on Fuzzy Systems and Knowledge
Discovery. IEEE, 2009, pp. 397–401.

[157] Markus Lorch et al. “Authorization and account management in the Open Science
Grid.” In: GRID (2005).

[158] Chi-Keung Luk et al. “Pin - building customized program analysis tools with dynamic
instrumentation.” In: PLDI 40.6 (2005), pp. 190–200.

[159] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to
Information Retrieval. Cambridge: Cambridge University Press, 2009.

[160] Matthew L Massie, Brent N Chun, and David E Culler. “The ganglia distributed
monitoring system - design, implementation, and experience.” In: Parallel Computing
30.7 (2004), pp. 817–840.

[161] B T Meadows. “The BaBar Experiment at SLAC”. In: Physics of Mass. Boston:
Kluwer Academic Publishers, 2002, pp. 227–236.

[162] Bernd Mohr et al. “The HOPSA Workflow and Tools”. In: Tools for High Performance
Computing 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, May 2013, pp. 127–
146.

[163] S Muthukrishnan and Süleyman Cenk Sahinalp. “Approximate nearest neighbors
and sequence comparison with block operations.” In: STOC (2000), pp. 416–424.

[164] Javier Navaridas, Jose Antonio Pascual, and José Miguel-Alonso. “Effects of Job and
Task Placement on Parallel Scientific Applications Performance.” In: PDP (2009).

[165] Richi Nayak. “Fast and effective clustering of XML data using structural information.”
In: Knowl. Inf. Syst. (2008).

[166] Richi Nayak and Wina Iryadi. “XML schema clustering with semantic and hierarchical
similarity measures.” In: Knowl.-Based Syst. () 20.4 (2007), pp. 336–349.

[167] Andrew Nierman and H V Jagadish. “Evaluating Structural Similarity in XML
Documents.” In: WebDB (2002), pp. 61–66.

[168] P Nilsson et al. “Next Generation PanDA Pilot for ATLAS and Other Experiments”.
In: Journal of Physics: Conference Series 513.3 (June 2014), p. 032071.

[169] Torkel Ödegaard and Raintank Inc. Grafana - Beautiful Metrics Dashboards, Data Vi-
sualization and Monitoring. 2015. url: http://grafana.org (visited on 03/13/2017).

[170] LCG Office. REBUS: Topology - Federation pledges for DE-KIT in year 2016. 2017.
url: https://wlcg-rebus.cern.ch/apps/topology/federation/211/ (visited
on 02/27/2017).

[171] WLCG Project Office. Welcome to the Worldwide LHC Computing Grid | WLCG.
2016. url: http://wlcg.web.cern.ch (visited on 02/21/2017).

[172] M de Palma. “The CMS experiment at LHC”. In: Nuclear Physics B - Proceedings
Supplements 61.3 (Feb. 1998), pp. 32–38.

[173] Ady Wahyudi Paundu et al. “Leveraging Static Probe Instrumentation for VM-based
Anomaly Detection System.” In: ICICS 9543.Chapter 27 (2015), pp. 320–334.

[174] Mateusz Pawlik and Nikolaus Augsten. “A Memory-Efficient Tree Edit Distance
Algorithm.” In: DEXA 8644.Chapter 16 (2014), pp. 196–210.

192

http://grafana.org
https://wlcg-rebus.cern.ch/apps/topology/federation/211/
http://wlcg.web.cern.ch

Bibliography

[175] Andrea Perrotta. “Performance of the CMS High Level Trigger”. In: Journal of
Physics: Conference Series 664.8 (Dec. 2015), p. 082044.

[176] Jerome Petazzonl. Gathering LXC and Docker Containers Metrics. 2013. url:
https://blog.docker.com/2013/10/gathering-lxc-docker-containers-
metrics/ (visited on 02/20/2017).

[177] Maciej Piernik, Dariusz Brzezinski, and Tadeusz Morzy. “Clustering XML documents
by patterns”. In: Knowledge and Information Systems 46.1 (2016), pp. 185–212.

[178] Maciej Piernik et al. “XML clustering: a review of structural approaches”. In: The
Knowledge Engineering Review 30.03 (May 2015), pp. 297–323.

[179] Devin J Pohly et al. “Hi-Fi - collecting high-fidelity whole-system provenance.” In:
ACSAC (2012), pp. 259–268.

[180] The Icinga Project. Icinga - Open Source Monitoring. 2017. url: https://www.
icinga.com (visited on 02/21/2017).

[181] Hong-Jun Qiu and Wen-Jing Yu. “A methodology for using edges to measure
structural and semantic similarity of XML documents”. In: 2009 International
Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2009, pp. 1653–
1658.

[182] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. “Efficient Algorithms
for Mining Outliers from Large Data Sets.” In: SIGMOD Conference 29.2 (2000),
pp. 427–438.

[183] Chotirat Ann Ratanamahatana and Eamonn J Keogh. “Making Time-Series Clas-
sification More Accurate Using Learned Constraints.” In: SDM (2004), pp. 11–
22.

[184] Chotirat Ann Ratanamahatana and Eamonn J Keogh. “Three Myths about Dynamic
Time Warping Data Mining.” In: SDM (2005), pp. 506–510.

[185] Gang Ren et al. “Google-Wide Profiling - A Continuous Profiling Infrastructure for
Data Centers.” In: IEEE Micro (2010).

[186] Leonardo Ribeiro and Theo Härder. “Evaluating Performance and Quality of XML-
Based Similarity Joins.” In: ADBIS 5207.Chapter 18 (2008), pp. 246–261.

[187] Juan José Rodrguez, Carlos J Alonso, and José A Maestro. “Support vector machines
of interval-based features for time series classification.” In: Knowl.-Based Syst. ()
18.4-5 (2005), pp. 171–178.

[188] Frédéric Ros and Serge Guillaume. “DENDIS - A new density-based sampling for
clustering algorithm.” In: Expert Syst. Appl. 56 (2016), pp. 349–359.

[189] Tai Sakuma and Thomas McCauley. “Detector and Event Visualization with SketchUp
at the CMS Experiment”. In: Journal of Physics: Conference Series 513.2 (2014),
p. 022032. url: http://stacks.iop.org/1742-6596/513/i=2/a=022032.

[190] Till Schäfer and Petra Mutzel. “StruClus - Structural Clustering of Large-Scale
Graph Databases.” In: CoRR cs.DB (2016).

[191] Robert E Schapire and Yoram Singer. “Improved Boosting Algorithms Using Confidence-
rated Predictions.” In: Machine Learning 37.3 (1999), pp. 297–336.

193

https://blog.docker.com/2013/10/gathering-lxc-docker-containers-metrics/
https://blog.docker.com/2013/10/gathering-lxc-docker-containers-metrics/
https://www.icinga.com
https://www.icinga.com
http://stacks.iop.org/1742-6596/513/i=2/a=022032

Bibliography

[192] Nico Schlitter, Tanja Falkowski, and Jörg Lässig. “DenGraph-HO - a density-based
hierarchical graph clustering algorithm.” In: Expert Systems 31.5 (2014), pp. 469–
479.

[193] Nico Schlitter, Tanja Falkowski, and Jörg Lässig. “DenGraph-HO - Density-based
Hierarchical Community Detection for Explorative Visual Network Analysis.” In:
SGAI Conf. Chapter 22 (2011), pp. 283–296.

[194] Matthias Schnepf. “Calculation of cross-section limits for the production of single
top quarks in association with a Higgs boson using container technologies”. MS.
Karlsruhe Institute of Technology, 2017. url: https://ekp-invenio.physik.uni-
karlsruhe.de/record/48876.

[195] J Schovancova et al. “ATLAS Distributed Computing Monitoring tools during the
LHC Run I”. In: Journal of Physics: Conference Series 513.3 (June 2014), p. 032084.

[196] J Schukraft. “The ALICE heavy-ion experiment at the CERN LHC”. In: Nuclear
Physics A 566 (Jan. 1994), pp. 311–319.

[197] Rolf Seuster et al. “Context-aweare distributed cloud computing using Cloud-
Scheduler”. 22nd International Conference on Computing in High Energy and
Nuclear Physics. Oct. 2016. url: https://indico.cern.ch/event/505613/
contributions/2230405/ (visited on 03/07/2017).

[198] Igor Sfiligoi et al. “The Pilot Way to Grid Resources Using glideinWMS”. In: 2009
WRI World Congress on Computer Science and Information Engineering. IEEE,
2009, pp. 428–432.

[199] Dana Shapira and James A Storer. “Edit distance with move operations”. In: Journal
of Discrete Algorithms 5.2 (June 2007), pp. 380–392.

[200] Hadi Sharifi, Omar Aaziz, and Jonathan Cook. “Monitoring HPC applications in
the production environment”. In: the 2nd Workshop. New York, New York, USA:
ACM Press, 2015, pp. 39–47.

[201] Li Sheng en et al. “An Efficient Semantic Similarity Search on XML Documents”. In:
2010 International Conference on Computational Intelligence and Security (CIS).
IEEE, 2010, pp. 86–90.

[202] Jamie Shiers. “The Worldwide LHC Computing Grid (worldwide LCG).” In: Com-
puter Physics Communications 177.1-2 (2007), pp. 219–223.

[203] Arie Shoshani, Alexander Sim, and Junmin Gu. “Storage Resource Managers”. In:
Grid Resource Management: State of the Art and Future Trends. Ed. by Jarek
Nabrzyski, Jennifer M. Schopf, and Jan Wglarz. Boston, MA: Springer US, 2004,
pp. 321–340. isbn: 978-1-4615-0509-9. doi: 10.1007/978-1-4615-0509-9_20. url:
http://dx.doi.org/10.1007/978-1-4615-0509-9_20.

[204] M. Stamatogiannakis, P.T. Groth, and H.J. Bos. “Decoupling Provenance Capture
and Analysis from Execution”. In: 7th USENIX Workshop on the Theory and Practice
of Provenance (TaPP’15). 2015.

[205] Manolis Stamatogiannakis, Paul T Groth, and Herbert Bos. “Looking Inside the
Black-Box - Capturing Data Provenance Using Dynamic Instrumentation.” In: IPAW
8628.Chapter 12 (2014), pp. 155–167.

[206] D E Sturim et al. “Speaker verification using text-constrained Gaussian Mixture
Models”. In: Proceedings of ICASSP ’02. IEEE, 2002, pp. I–677–I–680.

194

https://ekp-invenio.physik.uni-karlsruhe.de/record/48876
https://ekp-invenio.physik.uni-karlsruhe.de/record/48876
https://indico.cern.ch/event/505613/contributions/2230405/
https://indico.cern.ch/event/505613/contributions/2230405/
http://dx.doi.org/10.1007/978-1-4615-0509-9_20
http://dx.doi.org/10.1007/978-1-4615-0509-9_20

Bibliography

[207] Andrea Tagarelli, Mario Longo, and Sergio Greco. “Word Sense Disambiguation for
XML Structure Feature Generation.” In: ESWC (2009).

[208] Kamal Taha and Ramez Elmasri. “XCDSearch: An XML Context-Driven Search
Engine”. In: IEEE Transactions on Knowledge and Data Engineering 22.12 (2010),
pp. 1781–1796.

[209] Kuo-Chung Tai. “The Tree-to-Tree Correction Problem.” In: J. ACM () 26.3 (1979),
pp. 422–433.

[210] Yoshimasa Takabatake, Yasuo Tabei, and Hiroshi Sakamoto. “Online Pattern Match-
ing for String Edit Distance with Moves.” In: SPIRE 8799.Chapter 20 (2014),
pp. 203–214.

[211] Naiyana Tansalarak and Kajal T Claypool. “QMatch - Using paths to match XML
schemas.” In: Data Knowl. Eng. () 60.2 (2007), pp. 260–282.

[212] Yufei Tao, Xiaokui Xiao, and Shuigeng Zhou. “Mining distance-based outliers from
large databases in any metric space”. In: the 12th ACM SIGKDD international
conference. New York, New York, USA: ACM Press, 2006, p. 394.

[213] Dawood Tariq, Maisem Ali, and Ashish Gehani. “Towards Automated Collection of
Application-Level Data Provenance.” In: TaPP (2012).

[214] Shirish Tatikonda and Srinivasan Parthasarathy. “Hashing tree-structured data:
Methods and applications.” In: ICDE (2010), pp. 429–440.

[215] tcpdump. TCPDUMP/LIBPCAP public repository. 2013. url: http://www.tcpdump.
org (visited on 03/13/2017).

[216] Joe Tekli. “An Overview on XML Semantic Disambiguation from Unstructured Text
to Semi-Structured Data: Background, Applications, and Ongoing Challenges”. In:
IEEE Transactions on Knowledge and Data Engineering PP.99 (2016), pp. 1–1.

[217] Inc. The Cacti Group. Cacti - The Complete RRDTool-based Graphing Solution.
2017. url: http://www.cacti.net (visited on 02/21/2017).

[218] The CMS Trigger and Data Acquisition Group. “The CMS High Level Trigger”. In:
arXiv.org 3 (Dec. 2005), pp. 605–667. arXiv: hep-ex/0512077v1 [hep-ex].

[219] The International Linear Collider - Technical Design Report. Tech. rep. 2013.

[220] The LHCb Collaboration et al. “ The LHCb Detector at the LHC”. In: Journal of
Instrumentation 3.08 (Aug. 2008), S08005–S08005.

[221] M Theobald, R Schenkel, and G Weikum. “Exploiting Structure, Annotation, and
Ontological Knowledge for Automatic Classification of XML Data.” In: WebDB
(2003).

[222] M Tomasek, M Cajkovsky, and I Klimek. “Cloud-centric application tracing and
user monitoring intrusion prevention system”. In: 2013 IEEE 17th International
Conference on Intelligent Engineering Systems (INES). IEEE, 2013, pp. 339–343.

[223] Tien Tran, Richi Nayak, and Peter Bruza. “Combining Structure and Content
Similarities for XML Document Clustering.” In: AusDM (2008), pp. 219–225.

[224] Ken Ueno et al. “Anytime Classification Using the Nearest Neighbor Algorithm with
Applications to Stream Mining.” In: ICDM (2006).

195

http://www.tcpdump.org
http://www.tcpdump.org
http://www.cacti.net
http://arxiv.org/abs/hep-ex/0512077v1

Bibliography

[225] Jonas Wagner et al. “High System-Code Security with Low Overhead”. In: 2015
IEEE Symposium on Security and Privacy (SP). IEEE, 2015, pp. 866–879.

[226] Xiaozhe Wang, Kate A Smith, and Rob J Hyndman. “Characteristic-Based Clustering
for Time Series Data.” In: Data Min. Knowl. Discov. 13.3 (2006), pp. 335–364.

[227] WLCG Project Office. Tiers (as at June 2014). 2015. url: https://espace2013.
cern.ch/WLCG-document-repository/images1/WLCG/WLCG-TiersJun14_v9.png
(visited on 01/04/2017).

[228] Hao Wu et al. “Automatic Cloud Bursting under FermiCloud”. In: 2013 International
Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2013, pp. 681–686.

[229] Xin Wu and Guiquan Liu. “XML Twig Pattern Matching Using Version Tree”. In:
Data Knowl. Eng. 64.3 (Mar. 2008), pp. 580–599. issn: 0169-023X. doi: 10.1016/j.
datak.2007.09.013. url: http://dx.doi.org/10.1016/j.datak.2007.09.013.

[230] Zhengzheng Xing, Jian Pei, and Philip S Yu. “Early Prediction on Time Series - A
Nearest Neighbor Approach.” In: IJCAI (2009).

[231] J Xu, A H Sung, and Q Liu. “Tree based behavior monitoring for adaptive fraud
detection”. In: Pattern Recognition 1 (2006), pp. 1208–1211.

[232] R Xu and D WunschII. “Survey of Clustering Algorithms”. In: IEEE Transactions
on neural networks 16.3 (May 2005), pp. 645–678.

[233] Rui Yang, Panos Kalnis, and Anthony K. H. Tung. “Similarity Evaluation on
Tree-structured Data”. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’05. Baltimore, Maryland: ACM,
2005, pp. 754–765. isbn: 1-59593-060-4. doi: 10.1145/1066157.1066243. url:
http://doi.acm.org/10.1145/1066157.1066243.

[234] Shanzhen Yi, Bo Huang, and Weng Tat Chan. “XML Application Schema Matching
Using Similarity Measure and Relaxation Labeling”. In: Inf. Sci. 169.1-2 (Jan.
2005), pp. 27–46. issn: 0020-0255. doi: 10.1016/j.ins.2004.02.013. url:
http://dx.doi.org/10.1016/j.ins.2004.02.013.

[235] Heng Yin et al. “Panorama - capturing system-wide information flow for malware
detection and analysis.” In: ACM Conference on Computer and Communications
Security (2007), pp. 116–127.

[236] Guo Yongming, Chen Dehua, and Le Jiajin. “Clustering XML Documents by Com-
bining Content and Structure”. In: 2008 International Symposium on Information
Science and Engineering (ISISE). IEEE, 2008, pp. 583–587.

[237] J P Yoon, V Raghavan, and V Chakilam. “BitCube: a three-dimensional bitmap
indexing for XML documents”. In: Thirteenth International Conference on Scientific
and Statistical Database Management. SSDBM 2001. IEEE Comput. Soc, pp. 158–
167.

[238] Derek S Young. “An Overview of Mixture Models”. In: arXiv.org (Aug. 2008). arXiv:
0808.0383v3 [math.ST].

[239] K. Zhang and D. Shasha. “Simple Fast Algorithms for the Editing Distance Between
Trees and Related Problems”. In: SIAM J. Comput. 18.6 (Dec. 1989), pp. 1245–1262.
issn: 0097-5397. doi: 10.1137/0218082. url: http://dx.doi.org/10.1137/
0218082.

196

https://espace2013.cern.ch/WLCG-document-repository/images1/WLCG/WLCG-TiersJun14_v9.png
https://espace2013.cern.ch/WLCG-document-repository/images1/WLCG/WLCG-TiersJun14_v9.png
http://dx.doi.org/10.1016/j.datak.2007.09.013
http://dx.doi.org/10.1016/j.datak.2007.09.013
http://dx.doi.org/10.1016/j.datak.2007.09.013
http://dx.doi.org/10.1145/1066157.1066243
http://doi.acm.org/10.1145/1066157.1066243
http://dx.doi.org/10.1016/j.ins.2004.02.013
http://dx.doi.org/10.1016/j.ins.2004.02.013
http://arxiv.org/abs/0808.0383v3
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.1137/0218082

Bibliography

[240] Kaizhong Zhang, Rick Statman, and Dennis Shasha. “On the Editing Distance
Between Unordered Labeled Trees”. In: Inf. Process. Lett. 42.3 (May 1992), pp. 133–
139. issn: 0020-0190. doi: 10.1016/0020-0190(92)90136-J. url: http://dx.doi.
org/10.1016/0020-0190(92)90136-J.

[241] Zhongping Zhang, Rong Li Shunliang Cao, and Yangyong Zhu. “Similarity metric
for XML documents”. In: In Proc. of Workshop on Knowledge and Experience
Management. 2003.

[242] David Yu Zhu et al. “TaintEraser: Protecting Sensitive Data Leaks Using Application-
Level Taint Tracking”. In: ACM SIGOPS Operating Systems Review 45.1 (Feb. 2011),
pp. 142–154.

197

http://dx.doi.org/10.1016/0020-0190(92)90136-J
http://dx.doi.org/10.1016/0020-0190(92)90136-J
http://dx.doi.org/10.1016/0020-0190(92)90136-J

Glossary

aggregation function A function aggregating distances from projecting multiple identities
to a single distance. Ensembles of identities require an aggregation function to define
how individual identities are combined. 107

Algorithm Simulation for Streaming Environments to aSsess tree Similarities Prototyp-
ical implementation of the distance measurement framework for dynamic and static
trees proposed in this thesis. The prototype considers all relevant components in-
cluding different identity classes and identity ensemble classes defined upon the
identity classes, different distance and similarity functions, and implementations for
MultisetStatistics as well as incremental PDF statistics. 129, 185

atomic vertex A fundamental vertex of a tree, composed only of a label and value. Atomic
vertices never have children, and only occur as children of composite vertices. 82–87,
100, 181

Batch Process Network Monitor Prototypical implementation of a network monitoring
sensor utilising libpcap as well as netsockets to acquire the required information of
processes and network traffic. The implementation has been deployed in production
environments and supports several flavours of the Linux distribution. 32, 185

Cluster Representative A compact representation of a cluster of entities. Simple Cluster
Representatives may be formed as the average of entities of the cluster. For arbitrarily
shaped clusters or non-Euclidean space, complex Cluster Representatives are required.
119–121, 185

composite vertex A complex vertex of a tree, with attributes and features. Composite
vertices form fully featured trees, with each composite vertex potentially having a
parent and multiple children. All features of a composite vertex can be expressed by
atomic vertices as children. 80–87, 98, 100, 181

diamond A distortion in tree representations that attribute multiple parents to the same
vertex. Lossy tree representations, such as embeddings, may retain enough information
of a tree to differentiate parents, but not children. This causes separate branches in
the representation to collapse, forming a diamond shaped structure. xi, 59–65, 108

dynamic tree event stream representation Extension of the tree event stream represen-
tation. The dynamic tree event stream representation supports all available tree edit
operations to describe trees based on vertex events. 53, 54, 72

embedding A representation of trees with a simpler structure, such as vectors or sets.
Commonly used with decomposition, storing representations of vertices or subtrees,
or summaries, storing general features such as width, height, and fanout. 46, 181, 182

199

Glossary

HTCondor Batch system for high throughput computing. HTCondor is designed to use
spatially and administratively distributed resources. As such, it is commonly used for
managing grid, cloud, and other opportunistic resources. 16

identity A fixed set of information shared by similar vertices of trees. An identity may
encode features of a vertex, its position in a tree, or even related vertices such as
parents, siblings or children. All vertices with the same identity are considered
equivalent, and the identity may represent them equally. xv, 4, 50, 51, 54–73, 75,
80–82, 84–90, 92, 96–100, 102–111, 115, 116, 120, 121, 123, 124, 127, 131, 133, 136–138,
151, 153, 154, 161, 173, 181, 182

identity class A definition of the information to be included in the identity of each vertex
in a tree. An identity class allows to create comparable identities for the vertices of
one or multiple trees. The granularity and meaning of equality of vertices given their
identities is defined by the identity class used to derive the identities. 55, 57, 63–66,
70, 72, 75, 82, 84, 85, 101–111, 115, 120, 129, 130, 134–140, 148, 153, 154, 161–165,
167–175, 182

identity ensemble A collection of multiple identities describing the same vertex. Even for
the same vertex, each identity is separate. Comparing identity ensembles allows for
partial equality if only a fraction of identities of vertices match. 102–111, 115, 116,
123, 182

identity ensemble class A group of identity classes defining the information for each
identities of an identity ensemble. Implicitly defines the granularity and scope of full
and partial identity equality. 101, 108, 138, 170

identity ensemble profile An identity profile composed of identity ensembles instead of
identities. 103–105, 115, 116

identity ensemble profile projection An identity profile projection based on identity en-
sembles instead of identities. 106, 107

identity profile A collection of identities of each vertex of a single tree. An identity profile
is an abstract representation of a tree, similar to how an embedding is an actual
representation of a tree. 2, 50, 51, 57, 58, 67–75, 80, 81, 87, 93, 98, 99, 102–104, 107,
108, 115, 116, 118–121, 123, 124, 126, 151, 156, 182

identity profile projection A projection of one identity profile onto another, yielding the
overlap of the two identity profiles. 68–72, 75, 81, 82, 85–88, 98, 102, 104, 106–108,
123, 139, 145, 182

identity profile projection operator An operator defining how the projection of identity
profiles is performed to derive similarities and distances. The identity profile projection
operator provides defines the space in which identity profiles are stored and compared.
For example, an operator for multiplicity of identities uses the L1-space for projections.
xi, 69–72, 74, 84–88, 98, 99, 115, 120, 123, 136, 137, 139, 144, 145, 148

opportunistic resource Computing resources that are not permanently provided, but in-
stead dynamically acquired. Usually refers only to processing resources, especially

200

Glossary

from cloud providers. Resources are acquired only transiently when demand strongly
outweighs static supply, and released promptly when demand declines. 12, 13, 20, 21,
31, 129

payload A payload is a user-defined batch job that runs within a pilot. Neither management
nor scheduling of payloads are performed by the local batch system, but by the pilot
and an external global batch job scheduler. xi, 3, 11, 12, 18, 19, 21–23, 26, 28–31,
34–38, 109, 130, 131, 140–143, 147, 148, 158–160, 173, 175, 178, 182

pilot A pilot is a special placeholder batch job submitted to a batch system in place of
actual batch jobs. Pilots only acquire resources, but do not perform computational
work by themselves. Instead, pilots contact external global batch job schedulers,
which push in actual batch jobs as so-called payloads to be executed by the pilot.
Pilots are used by a VO to create overlay batch systems that incorporate resources
from multiple batch systems. xi, 2, 3, 11, 12, 18, 19, 21, 23, 26, 29–31, 34–38, 109,
131, 149, 158–160, 182

proc filesystem A virtual file system that exposes kernel data and APIs with a directory-
and file-like interface. The procfs provides information about processes, but also
network, block devices, and other system resources. It is available in the Linux
operating system as well as many Unix-like operating systems. 33, 185

Service Availability Monitoring Testing framework and infrastructure validating the avail-
ability of services and sites in the WLCG. SAM tests are probes that check both
availability and functionality of services and sites by replicating common workflows.
Results of these tests are used to rate the availability of sites. 18, 185

simple tree event stream representation Extension of the tree event stream representa-
tion. The simple tree event stream representation only supports events referring to
the creation of vertices. 53, 54, 57, 71, 72, 108

Subtree-weighted Tree Edit Distance A variant of the TED taking into account the
subtree of vertices. While the TED weights all vertices equally, the Subtree-weighted
Tree Edit Distance weights each vertex by the number of its descendants. This reflects
a hierarchical weight of vertices if children are assumed to be defined by their parent.
133, 135, 186

Subtree-weighted Tree Edit Distance with Moves An extension to the STED differenti-
ating between permutations and moves across branches. Permutations, that is moves
between siblings, are not weighted by subtree size, while moves across branches are.
This reflects that the path from each subtree vertex to the root vertex is not affected
by a permutation of a parent. 134, 135, 186

tree event stream representation Representation of a tree as a sequence of vertex edit
operations, such as vertex creation events, vertex deletion events as well as change
events. The representation implements several constraints such as the preservation of
ancestry of vertices to maintain a valid tree at every point in time. 52–54, 57, 72, 73,
78, 81, 116, 126, 181, 183

201

Glossary

Virtual Organisation A Virtual Organisation represents a group in the WLCG. VOs may
represent actual organisations, such as the experiments related to the LHC, but also
abstract groups, such as administrators of the WLCG sites and services. xiii, 14, 15,
186

XRootD Remote data access protocol and service. The XRootD protocol allows reading of
data from local and remote data providers. 16

202

Acronyms

ALICE A Large Ion Collider Experiment 15, 16

API Application Programming Interface 16, 28, 33, 139

ASSESS Algorithm Simulation for Streaming Environments to aSsess tree Similarities 129,
153, 157, 158, 172, 185

ATLAS A Toroidal LHC Apparatus 15, 16, 18

BPNetMon Batch Process Network Monitor xi, 32, 34, 35, 130, 154, 158, 185

CE computing element 9, 11, 15, 18

CMS Compact Muon Solenoid xi, xiii, 8–12, 14–16, 18, 36, 121, 130, 131, 140, 143, 148,
159, 160, 175, 178

CR Cluster Representative 119–121, 123, 127, 146, 147, 150, 156, 185

DAG Directed Acyclic Graph 59

DTW Dynamic Time Warping 79

FTED Fanout-weighted Tree Edit Distance 132, 133, 135, 136

GMM Gaussian Mixture Model 89, 90, 92, 95, 96

HEP High Energy Physics xi, 1–4, 7, 10, 12, 13, 15, 19–23, 26, 28–32, 35, 37, 38, 66, 67,
114, 129, 133, 137, 139, 144, 147–149, 151, 175

HLT High-Level Trigger 8

HPC High Performance Computing 13, 26

LHC Large Hadron Collider 7–10, 12–15, 183

LHCb Large Hadron Collider beauty 15, 16

MONARC Models of Networked Analysis at Regional Centres for LHC Experiments 8, 9

PDF probability density function 87–89, 91, 92

procfs proc filesystem 33, 185

SAM Service Availability Monitoring 18, 185

203

Acronyms

SAX Symbolic Aggregate approXimation 79, 80, 93

SE storage element 9, 16, 19, 20

SLA service level agreement 13, 18

STED Subtree-weighted Tree Edit Distance 133–136, 138, 186

STEDWM Subtree-weighted Tree Edit Distance with Moves 134, 135, 186

TED Tree Edit Distance xi, 1, 39–41, 43, 46, 61, 67, 68, 75, 78, 108, 113, 129, 131, 132,
135, 136, 163

UGE Univa® Grid Engine® 16, 157

VO Virtual Organisation xiii, 14–18, 20, 21, 24, 29, 130, 139, 146, 159, 182, 186

WLCG Worldwide LHC Computing Grid xi, 2, 3, 8–10, 13–15, 18, 20, 30, 38, 183

204

	Introduction
	Main Contributions
	Requirements to identify workflows in an overlay batch system
	Formalisation of distance measures for streaming dynamic trees
	Integration of attribute data for continuous vertex distances
	Combination of distinct measures in streaming environments
	Classification of semi-structured data in real-time

	Structure of this Thesis

	Background
	Computing in High Energy Physics
	Data Flows
	WLCG and Tiers
	Computing Model
	Virtual Organisations in the WLCG

	GridKa Data and Computing Centre
	Resources for HEP Batch Workflows
	Monitoring
	Tracking of Batch Job Behaviour

	Complexities in High Energy Physics Batch Systems

	Monitoring of High Energy Physics Batch Jobs
	Related Work
	Taxonomy to Host-Based Monitoring
	User-Centric Monitoring
	Data Collection in Production Systems

	Methodology to User-Centric Monitoring
	Towards Modelling of Workflows
	Monitoring Workflow Features
	User-Centric Monitoring Sensor
	Data Recording at GridKa

	Implications for Online Analysis

	Formalisation of Distances for Dynamic Streaming Trees
	Related Work
	Tree Edit Distance
	Approximating Tree Distances
	Summary

	Overview of the Approach
	Preliminaries
	Basic Notation
	Dynamic Trees

	Decomposition-Based Tree Embeddings
	Vertex Identities
	Identity Profiles for Trees
	Identities and Identity Profiles in Streaming Environments
	Embedding Trees by Encoding Vertex Identities
	Summary

	Tree Distances
	Identity Profile Projection
	Static Projection Distance
	Dynamic Distance
	Incremental Tree Distances

	Summary

	Representation of Dynamic Tree Attributes
	Related Work
	Attributes in Trees
	Time Series Analysis

	Encoding Attributes
	Naive Encoding of Attributes
	Attribute-Supporting Tree Model
	Attribute Identities

	Attributed Tree Distances
	Measuring Attribute Values
	Incremental Dynamic Distances

	Summary

	Superposition of Dynamic Tree Features
	Related Work
	Encoding Identity Ensembles
	Ensemble Encoding
	Ensemble-Based projection
	Summary

	Ensemble-Based Tree Distances
	Distance Aggregation Function
	Auxiliary Identities

	Summary

	Online Analysis of Dynamic Streaming Trees
	Related Work
	Selection of Algorithm

	Overview of the Approach
	Incremental Clustering
	DenGraph
	Clustering Dynamic Trees

	Incremental Classification of Dynamic Trees
	Dynamic Probing with Virtual Nodes
	Divergence of Distances
	Convergence and Anomaly Detection
	Improvement of Anomaly Detection

	Summary

	Evaluation
	Characteristics of Distance Measures
	Conditions, Assumptions, and Techniques
	Approximation Accuracy
	Scalability
	Sensitivity and Coverage

	Applicability to High Energy Physics Jobs
	Mapping of Experiment Dashboard Data
	Optimisation of Clustering
	Convergence of Classification
	Detecting Anomalies

	Summary

	Conclusions & Outlook
	Future Applicability and Extensions

	Software Tools and Frameworks
	ASSESS
	BPNetMon
	DenGraph
	Tree Generator

	Configuration and Evaluation Workflows
	Batch System Monitoring
	Workflows

	Additional Plots
	Hardware and setup
	Bibliography
	Glossary
	Acronyms

