
Resource-aware Programming in a
High-level Language

Improved performance with manageable effort on clustered
MPSoCs

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)
bei der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte
DISSERTATION

von
Dipl.-Inform. Andreas Zwinkau

Datum der mündlichen Prüfung: 2018-04-26
Referent: Prof. Dr.-Ing. Gregor Snelting
Korreferent: Prof. Dr.-Ing. Jürgen Teich

ii

Abstract

Until 2001 Moore’s Law and Dennard Scaling implied that execution speed dou-
bled every 18 months due to better CPUs. Today, concurrency is the dominant
way for speedups from supercomputers to mobiles. However, more recent phe-
nomenons like Dark Silicon increasingly complicate speedups from hardware.
To realize further performance gains, software has to become more aware of
the hardware resources. A related phenomenon is increasingly heterogeneous
hardware. Supercomputers integrate accelerators like GPUs. Mobile SoCs (for
example in smartphones) integrate more and more features. Exploiting special
hardware is a well-known technique to lower energy consumption, which is
another important aspect that must be balanced with raw performance. For
example, supercomputers are also rated by “performance per watt”. Currently,
low-level programmers are used to think about hardware, while the mainstream
high-level programmers prefer to abstract as much of the platform as possible
(for example clouds). High-level does not imply that hardware is irrelevant, just
that it can be abstracted. If you write a Java application for Android, battery
use might be an important aspect. Eventually, even high-level programming
languages are pressured to become resource-aware to improve speed or energy
consumption.

Within the transregional collaborative research center “Invasive Computing”, I
worked on these problems. In my dissertation, I propose a framework to make
high-level applications resource-aware and thus improve performance, which
for example might result in improved efficiency or speedups for the system as
a whole.

One core idea is that applications do not optimize on their own. Instead, they
give information to the operating system. The operating system with its global
view makes resource decisions. This process we call “invasion” of resources.
The job of the application is to adapt to the operating system’s decision, not to

iii

make its own. The challenge is to define the language, which applications use
to communicate resource constraints and performance hints. Such a language
must be expressive enough for complex information, extensible for future
resource types, and convenient for the programmer.

The major contributions in this dissertation are:

• A theoretic model of resource allocation to precisely describe the es-
sence of the resource-aware framework, to reason about the correctness
of the operating system decisions with respect to the constraints of an
application, and to proof my claims of efficiency and speedup in theory.

• A framework and compilation path for resource-aware programming
implemented for the high-level programming language X10. We imple-
mented applications from High Performance Computing to evaluate this
approach. Speedups of 5x can be demonstrated.

• A memory consistency model for the X10 programming language as a
necessary step for a formal semantics, which bridges the theoretic model
to the concrete implementation.

In one sentence: Resource-aware programming in high-level languages on
MPSoCs is feasible with manageable effort and improves performance.

iv

Zusammenfassung

Bis 2001 bedeutete Moores und Dennards Gesetz eine Verdoppelung der Aus-
führungszeit alle 18 Monate durch verbesserte CPUs. Heute ist Nebenläu-
figkeit das dominante Mittel zur Beschleunigung von Supercomputern bis zu
mobilen Geräten. Allerdings behindern neuere Phänomene wie „Dark Sili-
con“ zunehmend eine weitere Beschleunigung durch Hardware. Um weitere
Beschleunigung zu erreichen muss sich auch die Software mehr ihrer Hard-
ware Resourcen gewahr werden. Verbunden mit diesem Phänomen ist eine
immer heterogenere Hardware. Supercomputer integrieren Beschleuniger wie
GPUs. Mobile SoCs (bspw. Smartphones) integrieren immer mehr Fähigkeiten.
Spezialhardware auszunutzen ist eine bekannte Methode, um den Energiever-
brauch zu senken, was ein weiterer wichtiger Aspekt ist, welcher mit der reinen
Geschwindigkeit abgewogen werde muss. Zum Beispiel werden Supercom-
puter auch nach „Performance pro Watt“ bewertet. Zur Zeit sind systemnahe
low-level Programmierer es gewohnt über Hardware nachzudenken, während
der gemeine high-level Programmierer es vorzieht von der Plattform möglichst
zu abstrahieren (bspw. Cloud). „High-level“ bedeutet nicht, dass Hardware
irrelevant ist, sondern dass sie abstrahiert werden kann. Falls Sie eine Java-
Anwendung für Android entwickeln, kann der Akku ein wichtiger Aspekt sein.
Irgendwann müssen aber auch Hochsprachen resourcengewahr werden, um
Geschwindigkeit oder Energieverbrauch zu verbessern.

Innerhalb des Transregio „Invasive Computing“ habe ich an diesen Prob-
lemen gearbeitet. In meiner Dissertation stelle ich ein Framework vor, mit
dem man Hochsprachenanwendungen resourcengewahr machen kann, um so
die Leistung zu verbessern. Das könnte beispielsweise erhöhte Effizienz oder
schnellerer Ausführung für das System als Ganzes bringen.

v

Ein Kerngedanke dabei ist, dass Anwendungen sich nicht selbst optimieren.
Stattdessen geben sie alle Informationen an das Betriebssystem. Das Betrieb-
ssystem hat eine globale Sicht und trifft Entscheidungen über die Resourcen.
Diesen Prozess nennen wir „Invasion“. Die Aufgabe der Anwendung ist es,
sich an diese Entscheidungen anzupassen, aber nicht selbst welche zu fällen.
Die Herausforderung besteht darin eine Sprache zu definieren, mit der Anwen-
dungen Resourcenbedingungen und Leistungsinformationen kommunizieren.
So eine Sprache muss ausdrucksstark genug für komplexe Informationen, er-
weiterbar für neue Resourcentypen, und angenehm für den Programmierer
sein.

Die zentralen Beiträge dieser Dissertation sind:

• Ein theoretisches Modell der Resourcen-Verwaltung, um die Essenz des
resourcengewahren Frameworks zu beschreiben, die Korrektheit der
Entscheidungen des Betriebssystems bezüglich der Bedingungen einer
Anwendung zu begründen und zum Beweis meiner Thesen von Effizienz
und Beschleunigung in der Theorie.

• Ein Framework und eine Übersetzungspfad resourcengewahrer Program-
mierung für die Hochsprache X10. Zur Bewertung des Ansatzes haben
wir Anwendungen aus dem High Performance Computing implementiert.
Eine Beschleunigung von 5x konnte gemessen werden.

• Ein Speicherkonsistenzmodell für die X10 Programmiersprache, da dies
ein notwendiger Schritt zu einer formalen Semantik ist, die das theoretis-
che Modell und die konkrete Implementierung verknüpft.

Zusammengefasst zeige ich, dass resourcengewahre Programmierung in Hoch-
sprachen auf zukünftigen Architekturen mit vielen Kernen mit vertretbarem
Aufwand machbar ist und die Leistung verbessert.

vi

Contents

1. Introduction 1
1.1. Free Lunch is Over . 2

1.2. The End of Moore’s Law . 4

1.3. Heterogeneity . 6

1.4. Clustered MPSoCs . 8

1.5. Resource-Awareness . 9

1.6. High-Level Languages . 12

1.7. Dissertation Overview . 14

1.8. Contributions . 16

2. Allocation Model 19
2.1. Resources and Claims . 20

2.2. Actor Claims . 22

2.3. Constraints . 23

2.4. Validity . 24

2.5. Hints . 26

2.5.1. Hint Example . 27

2.5.2. Scaling Hints . 28

2.6. Shortcuts and Implementation of Resource Management 29

2.7. Proof: Efficiency is not Worse . 30

2.8. Proof: Utilization Improves . 32

2.9. Proof: Speedups are Unbounded 36

3. Implementing Invasive Computing 41
3.1. The DFG Transregio . 42

3.2. Invasive Hardware Architecture 44

3.3. Operating System: iRTSS . 46

3.3.1. OctoPOS . 46

vii

Contents

3.3.2. Agent System . 48

3.4. The X10 Programming Language 49

3.4.1. Activities . 50

3.4.2. Places . 52

3.4.3. Distributed Data . 53

4. X10 Memory Consistency Model 57
4.1. Intro to Memory Consistency Models 58

4.1.1. What Is Sequential Consistency? 58

4.1.2. What Is a Data Race? . 59

4.2. Requirements for X10 . 60

4.2.1. Data Races Are Undefined Behavior 60

4.2.2. Termination Can Be Assumed 61

4.3. Actions and Executions . 61

4.4. Synchronizes-with and Happens-before 63

4.5. Well-formed Executions . 64

4.6. Constructs in the Standard Library 65

4.6.1. Atomics . 65

4.6.2. Clock . 65

4.6.3. Condition . 65

4.6.4. Lock . 65

4.7. Differences to other languages . 67

4.7.1. Differences between X10 and Java 67

4.7.2. Differences between X10 and C++ 68

4.7.3. Differences between X10 and Chapel 68

4.8. StoreStore Barrier After Constructor 69

4.9. Global Address Space and the Memory Model 69

4.10. Threads and Activities . 70

5. Framework InvadeX10 73
5.1. Development Methodology . 73

5.2. Hello World . 74

5.3. Invasive Command Space . 76

5.3.1. Performance Modelling . 79

5.4. Constraint Graphs . 80

5.5. Invasion and Retreat . 82

5.6. Explicit Reinvasion . 86

5.7. Reinvasion from External Trigger 88

5.8. Infection . 91

viii

Contents

5.9. Adapting X10 Semantics . 92

5.10. Invading Communication Resources 93

5.11. Compiler Integration . 96

5.12. Framework Offsprings . 99

5.12.1. Invasive OpenMP . 101

5.12.2. Invasive MPI . 101

5.12.3. Communicating Thread Pools 101

6. Case Study: Invasive Multigrid 103
6.1. The Multigrid Application . 103

6.1.1. Problem formulation and discretization 104

6.1.2. Geometric Multigrid Solver 106

6.1.3. Parallelization . 106

6.1.4. Invasive Parallel Multigrid 106

6.2. Communication Reduction on Data Redistribution 108

6.3. Multigrid Overhead . 110

7. Case Study: Invasive Numeric Integration 115
7.1. Numerical Integration . 115

7.1.1. Job-Queue Framework . 116

7.2. Integration Overhead . 118

8. Multi-Application Evaluation 121
8.1. Utilization . 121

8.2. Arbitrary Speedup . 124

9. Conclusions 127
9.1. Summary . 127

9.2. Mistakes in Hindsight . 128

9.2.1. Reinvade from Inside . 128

9.2.2. X10 Language . 129

9.3. Future Work . 130

9.3.1. Make it Usable . 130

9.3.2. Decoupled Performance Modelling 131

9.3.3. Energy-Awareness . 132

Acknowledgments 133

ix

Contents

Appendix 135

A. CHIPit Measurements 137
A.1. Multigrid . 138

A.2. MultigridNonInvasive . 138

A.3. Integrate3 . 139

A.4. Integrate3NonInvasive . 139

A.5. MultigridVsIntegrate . 140

A.6. MultigridVsIntegrateNonInvasive 140

B. Decoupled Performance Modelling 141
B.1. Composable Parallel Regions . 142

B.1.1. Parallel Regions in Sequence 142

B.1.2. Nested Parallel Regions . 143

B.1.3. Example . 144

B.2. Non-linear Speedups . 145

B.2.1. Mutual Exclusion . 146

B.2.2. Caching . 146

B.2.3. Communication . 148

B.2.4. All of the Above . 148

B.2.5. Example . 149

B.3. Lessons for InvasIC . 152

List of Figures 155

Bibliography 157

Index 171

x

Chapter 1.

Introduction

If you want to get eggs you can’t buy at a store,
You have to do things never thought of before.

— Dr. Seuss

For decades we scaled our computer architectures according to a common
formula, but this will end soon. It does not mean that our current technology
will stop working, but on our path up the mountain of ever more powerful
computing, there is a cliff. The following sections describe how long-term
hardware trends lead to that cliff, what ideas there are to overcome it, why
hardware alone cannot solve it, and my contributions to a solution.

Let us start by considering power. Digital computers require electrical power
since their invention during the second world war. Power is a limited resource
and thus a limiting factor for computation. If you own a smartphone or laptop,
you most certainly want the battery to last longer. If you own a data or
computing center, you most certainly would love to reduce your cooling and
electricity bill.

The power a chip consumes is determined by two drains. We expend dynamic
power Pdynamic when transistors switch between 0 and 1 states and static power
Pstatic due to leakage independent of the activity. We can observe which
aspects of a chip contribute to power consumption. To reduce dynamic power
consumption, we can

1

Chapter 1. Introduction

• use fewer transistors N, which is obvious but usually defeats the goal.
We might do this temporarily for parts of the chip (clock gating).

• use smaller transistors to reduce capacitance C, which is what Moore’s
law [Moo65] stated in 1965 as the long term path for ever more powerful
computers.

• lower the voltage V. This is a quadratic factor, so the power reduction is
large in relation to the others. However, lowering the voltage also lowers
transistor speed.

• lower the switch frequency f . This reduces power, but not the energy. We
need more time units for the same task, as switch frequency corresponds
to clock frequency.

• less switching activity A, which means to build more clever logic to avoid
switching transistors.

Overall, dynamic power Pdynamic is roughly N×C×V2× f ×A and the primary
focus for managing power consumption.

In 1974, Robert Dennard observed [DGnY+
74] that power density stays constant.

This is known as “Dennard scaling” or Dennard’s law. If you scale down the
transistors by a factor of 2, you can a) reduce voltage and threshold voltage, b)
increase clock frequency, and c) use the same power (assuming the same chip
size). For example, if we switch from 180 nm technology to 90 nm technology,
there is a factor of 2, which means 4 times as many transistors N on the same
area. In lockstep, we lower voltage V and C by factor 2. For the same power,
we can now also increase the switch frequency f (which roughly corresponds
to clock frequency).

4N × 1
2

C× (
1
2

V)2 × 2 f × A = N × C×V2 × f × A

Over five decades Dennard scaling meant the hardware speed doubled periodi-
cally and made all software exponentially faster.

1.1. Free Lunch is Over

At the beginning of the 21st century, Dennard scaling stopped. We found
ourselves unable increase the clock frequency very much above 3 GHz. The
main reason is that the threshold voltage Vt is now so low that the (exponentially

2

1.1. Free Lunch is Over

Figure 1.1.: The International Technology Roadmap for Semiconductors (ITRS)
featured this figure in 2011 [ITR11], which shows the exponential
growth of processing engines. By 2019 it predicts over 1000 PEs.
PE here does not directly correspond to cores as they exist in
mainstream computers, but it still illustrates the trend.

growing) leakage is too large. Moore’s law still keeps up, so we can put ever
more transistors into the same area. Thus, we got increasing parallelism as the
increase in transistors is translated to an increase in cores. The core speed does
not increase much anymore, though. If this trend continues for the next years,
we might see chips with a thousand cores by 2019. See fig. 1.1 for one such
prediction.

In general, speedups these days come from parallelism, but not only in terms
of multiple cores per chip. There are different forms of parallelism.

1. Out-of-order execution of instructions means that instructions can be
computed in parallel, if there are no true data dependencies between
them. Current Intel technology executes up to 4 parallel instructions, but

3

Chapter 1. Introduction

they might never increase this, as the code rarely provides opportunities
for more.

2. Vector instructions meaning that a whole vector of values is computed
in one step in a single instruction multiple data (SIMD) way. Examples
would be the SSE and AVX instruction sets by Intel. The current AVX-512

provides 512 bit vectors split into 32 registers.

3. Multicore means multiple processing elements (cores) on a single chip
within the same shared memory domain.

4. Simultaneous multithreading (“hyperthreading” as branded by Intel)
means it looks like multicore to the application, but cores share most
of their ALUs, and only one of the cores is active. This helps to hide
memory latency, which can be over a 1000 cycles for one read from RAM.
When a memory access blocks a CPU, the other CPU can continue.

5. Clusters means multiple computers in data centers.

All those tricks suffer from diminishing returns as illustrated by Amdahl’s
law:

T(n) = T(1)
(

B +
1− B

n

)
where T(n) is the speedup for parallelism n ∈N, we know T(1), and B ∈ (0, 1]
is the non-parallel fraction of the program. Even if n → ∞, T(n) = B T(1)
never gets infinitely fast.

There are ways the hardware industry pursues to provide ever more computing
power. However, the biggest gains might now be possible on the software side.
Changing algorithms to enable more parallelism on all levels makes it possible
to exploit more hardware parallelism.

1.2. The End of Moore’s Law

Parallelism and concurrency are still hard topics. They have spawned new
programming languages, tools, and abstraction layers. However, this era might
be over soon as well. There are signs that even Moore’s Law is nearing its end
although current architectures still scale according to the plan, as shown in
fig. 1.2. Intel announced a tick-tock clock in a 18 months rhythm in 2007. Each
tick means the process technology shrinks the transistor size. Each tock means
the microarchitecture is changed. In 2016 the clock stuttered. Instead of a tick

4

1.2. The End of Moore’s Law

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

102

103

104

105

106

107

Year

Tr
an

si
st

or
C

ou
nt

pe
r

m
m

2

Figure 1.2.: According to data from Wikipedia, we still see exponential growth
for the transistor count per area from the Intel 4004 in 1971 up
to the AMD 8-core Ryzen in 2017. The red line shows the linear
regression fits well. However, an increase from 192 in 1971 up
to 25000000 in 2017 means it doubled every 2.4 years. The green
dotted line shows a theoretical doubling every 18 months.

to 10 nm (codename “Cannonlake”), a second tock (codename “Koby Lake”)
updates the Skylake microarchitecture at 14 nm again. Intel slowed down the
shrinking process. We can still shrink further for now, but not at the speed of
“every 18 months”.

The problem is that Complementary metal–oxide–semiconductor (CMOS) tech-
nology is reaching its physical limits. Silicon has a lattice spacing of 0.5 nm in
its crystalline form. Various forms of leakage occur as we approach the limit
and Pstatic becomes a much more significant drain than before. The transistor’s
gate oxide is so small that it leaks electrons. Leakage means the CPU burns
energy while doing nothing and this means heat. If transistors heat up, they
get slower and leak even more.

We can shrink transistors even more, but we cannot lower voltage or thin
down the gate oxide accordingly. This would result in increased power density
and a burned chip. Since this is not an option, the alternative is turn off

5

Chapter 1. Introduction

transistors which are not actively used; A phenomenon called “Dark Silicon”.
Predictions [EBSA+

11] are 30% of a chip being dark at 20 nm and 80% at
8 nm.

For an analogy, consider the human brain. Most of the neurons in the brain
are inactive [Len03]. Yet, the brain can use up to 20% of the total body
power [Bro99] while it is only 2% of the body’s weight. This suggests that a
body cannot support all neurons firing at a high rate. Maybe the power runs
out, the brain overheats, or gets permanently damaged. Likewise, a future
highly active computer will either burn or empty the battery.

There are four possible ways [EBSA+
11] around this wall. First, we could re-

frain from building ever more cores into chips and just shrink the chips keeping
their performance constant. Second, we could lower the clock frequency, so
cores do not run that hot, but are slower individually. Third, we put a lot of
specialized cores on the now heterogeneous chip, which are more efficient for
specific tasks than generic cores. Fourth, we find a better transistor technology
than the current CMOS approach. All of those are pursued by researchers and
companies. If you want to improve performance incrementally the third option
is the most promising.

1.3. Heterogeneity

Here, we define a “heterogeneous” CPU as a multiprocessing CPU, where
the processing elements must be treated differently by the application or
operating system. For example, they may differ in performance, instruction
set, or monitoring. The definition is intentionally fuzzy because the concept of
heterogeneity is subject to the use. If two processing elements have different
cache sizes, one application might exhibit different performance, while another
application achieves the same. For the latter application the processing elements
are homogeneous.

Heterogeneity is an increasingly important topic for supercomputers. Since
2008 “accelerated” supercomputers are a significant part of the TOP500, as
you can see in fig. 1.3. Today, this mostly means NVidia GPUs or Intel Xeon
Phis. While this trend seems to have peaked in 2015 and since been in decline,
even homogeneous supercomputers are not quite homogeneous anymore. Data

6

1.3. Heterogeneity

Figure 1.3.: Composition of TOP500 supercomputers over time [McC16]. The
last Vector machine “Earth Simulator 2” dropped off the list in 2014.
RISC machines are also nearly extinct, although the “K machine”
was the fastest supercomputer in 2011. X86 dominates now. There
is no clear definition of “MPP” supercomputers. Roughly, MPP
means nodes are more tightly coupled than others. In this chart,
MPP mostly equals IBM Blue Gene computers. Finally, the top
right shows a significant part of “Accelerated”, which means super-
computers enhanced with NVidia GPUs or Intel Xeon Phis (or IBM
Cell in the early times).

centers build subclusters with a varying number of sockets per node and size
of memory to optimize for different applications. This means even the “x86”
parts in fig. 1.3 are often heterogeneous today.

For mobile computing, ARM’s big.Little architecture from 2011 is a prime
example of heterogeneity. It pairs high-performance processing elements (high
cluster) with low-energy processing elements (low cluster). This hardware re-
quired adaptations to the Linux task scheduler under the project name “Energy
Aware Scheduling”. The first challenge was to integrate task scheduling, idle
management, and frequency management, which were only loosely coupled
before. This example demonstrates how the heterogeneity challenge is already
seen in practice. Increasing heterogeneity further suggests ever more complex
scheduling problems.

7

Chapter 1. Introduction

Also, heterogeneity not only comes from silicon differences. Today’s chips
use dynamic voltage and frequency scaling (DVFS). This implies that even
identical processing elements not necessarily run at the same speed. For some
applications this is undesirable, because it makes load balancing harder. If
the load is not perfectly balanced, we observe idle resources and a subopti-
mal throughput. For an example, Karavadara [Kar16] investigated a way to
tune voltage and frequency for reactive stream processing networks. Even
without changing the applications, he could demonstrate reduced energy con-
sumption with experiments on the Intel Single-Chip Cloud Computer (SCC)
hardware [CLRB11].

Today, many ideas [BMF+
16, CAB+

13, ORS+04, WGH+
07, SSM+

07] are pur-
sued to find a scalable design, where the number of cores scales linearly in
development time, inter-dependencies, performance, etc. The closest architec-
ture to the one this dissertation uses is probably Runnemede [CAB+

13]. It aims
to maximise energy efficiency for high-performance computing and targets
applications like matrix multiplication. The project is an exploration of Intel to
maximize efficiency and aim for exascale computing. Where our architecture
only has two levels per CPU (PEs and tiles), Runnemede has three (execution
engines, blocks, and units). Where we uses X10, classical Fortran and C++
code is used on Runnemede, as well as parallelized C code. Runnemede also
uses custom hardware, like special instructions (sincos) and a special barrier
network on chip. Programmability and adaptive resource management has no
high priority. For example, no group of processing elements features cache
coherence.

In general, we can observe that the hardware landscape is bound to become
more heterogeneous in the next decades.

1.4. Clustered MPSoCs

Many people believe that cache coherence will not scale much further, but we
still could increase the core count. This suggests a “clustered architecture”,
where groups of cores have a cache-coherent shared-memory system like
current multicore computers. Between such clusters cache-coherence is not
supported by the hardware. The name is inspired by “compute clusters” of the
HPC domain, because the architecture feels similar: One node in a HPC cluster

8

1.5. Resource-Awareness

is a multicore computer, but between nodes some message passing protocol
must be used. The difference is that we are thinking about a single chip here
instead of each chip being a single node.

This CPU architecture style originates from “tiled architectures”, where the
primary motivation was a scalable design without a special focus on cache
coherence or shared memory. The original idea of tiled architectures is credited
to the RAW processor [TLM+

04]. In its first implementation it featured 4× 4
tiles, each identical with a MIPS processor, FPU, small caches, and routers for
the network-on-chip. Subsequently, the Tilera company was founded and in
2007 the 64-core TILE64 processor was released. Tilera’s main selling point was
energy-efficiency.

In 2009 Intel released the SCC. In contrast to RAW, it featured 2 cores per
tile in 6× 4 tiles and is usually run in a distributed fashion, where each tile
runs its own operation system instance. Kalray can sell you a many core chip
with 1024 processing elements clustered into tiles of 16 [Kal14]. They advertise
75 GFLOPS/W, which is state of the art.

For this work, we pursue the trend to more cores and more heterogeneity, so we
assume a multiprocessor system-on-chip (MPSoC) with a clustered architecture.
We also use the term “tile” for groups of cores as this is the familiar term in
the hardware domain and a tile implicitly has shared and consistent memory.
Section 3.2 describes more details on the hardware architecture used here.

1.5. Resource-Awareness

We observed the long term trends of computer hardware. Dennard’s and
Moore’s law will end in the next years. This is the cliff mentioned initially.
We face hardware platforms which will have many heterogeneous cores. To
optimize performance we will have to optimize for energy consumption, exploit
parallelism, and adapt to special hardware features.

Optimizing a single program is certainly a worthwhile task. However, today’s
systems rarely run only a single program. Even if it is a single program,
it usually consists of more or less inter-dependent parts. For example, the
probably most used program of a computer user today is the web browser.
Modern browsers provide tabs to open many websites at once and to contain
and isolate them. The needs of a website are very different depending on
whether it shows a Youtube video, holds a conference voice call, displays static

9

Chapter 1. Introduction

text and images, renders a 3D WebGL scene, or plays a multiplayer game.
To do each of those jobs in an efficient way, on a heterogeneous manycore
system, we can schedule them to different processing elements. Some could
be optimized for cryptography jobs, others for video decoding, and others for
3D rendering. For static text and images, we could use small, simple, slow
processing elements, for a game, we could use big, complex, fast ones.

To clarify, we distinguish between scheduling and allocation. An “allocation”
is to assign resources to applications1. “Scheduling” is to assign threads2 to
processing elements. Processing elements belong to applications because they
are resources. Since every thread also belongs to an application, scheduling
must respect allocation decisions and only assign threads to resources of the
corresponding application.

Scheduling and allocating resources is the primary job of the operating system
(OS). Current mainstream OSs excel in virtualizing to isolate programs. Pro-
cessing elements are virtualized to threads. Memory is virtualized to isolate
processes and to provide the illusion that every expressible address (usually
264 today) is also accessible. Permanent storage (disk space) is virtualized to
implement permissions and to change hardware transparently. Networking is
virtualized to host many services on the same host. Such virtualization has
its cost. For efficiency’s sake, we might have to reconsider the virtualization
mechanisms. For example, if the hardware provides more processing elements
than there are applications, why do we need threads? Instead, we give each
application its own processing element. However, conventional applications are
not aware of resource management. Instead, system administration performs
this job. In this work, we investigate the different paradigm of “resource-
awareness”, which means that applications actively consider their resource
needs, communicate these needs, and adapt to the resource allocation of the
system dynamically. We also assume that resources like processing elements
are allocated exclusively as recent hardware trends make multiplexing unneces-
sary.

Naturally, changing a paradigm is impossible if you build on the status quo.
Thus, we find related work in operating systems research, where there are no
constraints by underlying software layers.

1or claims or agents or whatever entity owns resources
2or activities or tasks or jobs or whatever represents computation

10

1.5. Resource-Awareness

One example is the Tesselation OS [CEH+
13], which runs on mainstream Intel

hardware and features a Resource Allocation Broker (RAB) service. Appli-
cations inform the RAB about high-level needs like a certain framerate and
continuously communicate the current state with a heartbeat mechanism. The
RAB also considers system information, e.g. cache miss rates, into account
and adapts resource allocation. In Tesselation OS, the operating system makes
allocation decisions, in contrast to applications. It runs on mainstream hard-
ware (Intel i7) and does not target clustered or heterogeneous architectures,
but it uses an exokernel approach, where applications get more direct access
to hardware than with Linux, for example. The Application Heartbeats frame-
work [MHS+10] uses a similar approach. They explored [MHS+11] approaches
for OS decision making from heuristics over control modelling to machine
learning. In both approaches the application has very little control, which
means it is easier to program for, but has limited optimization potential.

In contrast, Rinnegan [PS16] leaves the decision making to the applications.
They extended the Linux kernel to provide additional information about the
system state. They investigate heterogenity in the sense of mainstream cores
running at different clock speeds and outsourcing to the GPU. As Rinnegan
does not allocate resources exclusively, some sophistication is necessary to
avoid that application switch back and forth together in an infinite hunt for idle
resources. Their experiments show that this decentralized approach is within
2-4% of a more informed centralized one.

Thanks to the rising interest in container technology, the Linux kernel has
received a mechanism for resource management, control groups. The Barbe-
queRTRM framework [BMF15] exploits this and provides a resource manager
and an interface for applications.

On a higher level than MPSoCs, Apache Mesos is a successful framework
which provides resource management for cloud and cluster computing. The
core idea of Mesos is that applications share nodes to improve data locality.
The resource management happens with a two stage protocol, where applica-
tions are repeatedly offered resources, which they can then accept or ignore.
There is no way for applications to guide resource management except sim-
ple boolean predicates, which act as filters. A related technology is Google’s
Heracles [LCG+

15], which also distinguishes between low-priority best effort
services and high-priority services (websearch).

11

Chapter 1. Introduction

Mesos is intentionally designed with a simple offer-reject mechanism to avoid
complexity. The alternative would be “to provide a sufficiently expressive API
to capture all frameworks’ requirements, and to solve an online optimization
problem for millions of tasks” [HKZ+

11]. This thesis proposes such a “suffi-
ciently expressive API”. Others [KBL+

11, Kob15] in Invasive Computing also
work on the online optimization problem, but that is not part of this thesis.

In general, we can observe that resource-awareness provides measurable im-
provements. However, these techniques have not yet found their way into
mainstream programming (except Mesos for cloud computing). The reason
might be that there is no need, but that need will surely come if you consider
the hardware trends described earlier. Another reason might be that we have
not yet found the sweet spot between speedups due to special hardware and
the complexity and effort to achieve it, which suggests a need for further
probing. This thesis provides one more probe in this quest. We explicitly look
at the language level of the resource-awareness problem, how to express and
communicate resource needs and how to adapt to allocation changes.

We could have injected a resource management component into the runtime or
operating system, which treats applications as black boxes [BIM08, SGS14] and
thus does not require adapting the application code. This has the advantage
of reusing old code, However, we choose the opposite path, because it means
we avoid the limitations of backwards compatibility. Here, we explore the
opportunities of opening the box (the application) and rewiring its inputs.
Staying within the analogy, we even drill additional holes into the box to
provide richer interaction between boxes and their environment. The interaction
corresponds to the communication about resource needs and allocation changes
of the resource-aware paradigm, of course. This design decision of the research
project implies that legacy code is not a significant factor. Thus, the choice of
programming language is less constrained.

1.6. High-Level Languages

Applications are increasingly parallel (and concurrent) today and scale to
various numbers of processing elements. This means the OS must balance
between the applications, which requires information about the applications
like their scalability. Mainstream operating systems have no interface for such
information exchange and allocation decisions. Also, applications usually do
not look for a balance between heterogeneous resources, like CPU and GPU

12

1.6. High-Level Languages

in desktop computers, for example. There is a chicken-and-egg problem here,
which manifests in a dialog like “What do you need?” – “What do you want?”
This suggests that a basic research project is required to design the necessary
interfaces and to investigate the advantages of such a system.

Now let us consider the programmer, who must develop software for such a
platform. We must expect additional development costs. To adapt to special
hardware features, each feature must be explicitly addressed by a programmer.
This requires significant porting work. Optimizing for energy consumption
might require additional flexibility, since the needs change over time, even over
the lifetime of a single application. Finally, exploiting parallelism usually comes
with concurrency, which is known to be full of pitfalls. To ease this burden, we
would like to use a high-level programming language.

In general, programmer prefer to use the most high-level language possible
to increase productivity and reduce errors. Originally, the C programming
language was considered high-level, since it abstracted from the architecture-
specific nature of assembly. However, writing architecture- or even platform-
independent C is not easy. Thus, languages like Java were invented. They avoid
undefined or unspecified behavior and provide memory- and type-safety. For
example, the bit width of the int type is architecture-dependent in C, but always
32 bit in Java. Additionally, mechanisms like garbage collection are considered
features of higher level languages since they abstract away the need to reason
about the lifetime of objects.

The cost of abstraction is usually a decrease in performance, meaning speed
or resource consumption. Of course, performance is foremost decided by the
choice of algorithm. However once we are using a good algorithm, careful en-
gineering can give further improvements. For example, Java programmers can
fine-tune the garbage collector or call into C/C++ code to improve performance.
Java lacks a compositional value type, which severely limits its usefulness
for numeric tasks due to memory management and indirection overhead. In
contrast, languages like C#, D, and X10 have a data type equivalent to C’s
struct. Garbage collection is a complicated topic. It provides memory safety at
a cost. One downside of garbage collection is its indeterministic performance,
which makes it a tool to avoid for soft real-time tasks like games and low
latency servers. While there are real-time garbage collectors, their performance
suffers. If the indeterministic performance is not an issue, garbage collection
still requires more memory [HB05a] to reach competitive speed.

13

Chapter 1. Introduction

Invasive Computing chose X10 as its primary programming language. One
reason is that X10 is designed as a “partitioned global address space” (PGAS)
language, which makes it especially suitable for clustered architectures. It is
also a high-level language, providing features like garbage collection, yet still
targeting high performance. The reasons not to use OpenMP, MPI, UPC, Chapel,
Fortress, OpenCL, or others are explained in the funding proposal [TH09].
Due to this choice, we also dismissed similar technology like GASPI, GPI-2,
OpenSHMEM, Global Arrays, and OpenACC.

The described tradeoffs between high-level programming and performance
are open problems. With this work we come from the high-level side of the
problem and drill into performance territory. The goal is to keep the safety and
the productivity, while significantly improving performance. The methodology
is to build an interface for resource needs, which enables the OS to optimize
allocation. We specifically target future MPSoCs to overcome the cliff at the
end of Moore’s law.

1.7. Dissertation Overview

Resource-aware programming in high-level languages on MPSoCs is feasible
with manageable effort and improves performance. This is the thesis which
this dissertation proves in the following structure.

Here, Chapter 1 describes the clustered MPSoC architecture. It also argued
why optimizing sets of applications there is a relevant problem and explained
the need for high-level languages. Now, we consider our specific approach
of “resource-aware programming” and how it improves performance with
manageable effort.

There is no clear definition of “resource-aware” and the term is used with
many meanings in the literature. Thus, we call our specific approach “invasive”.
Chapter 2 shows a formal model of invasive resource allocation, which describes
the essence of my resource-awareness without the overhead of a concrete
implementation. There I prove that efficiency and utilization can only improve
(theorems 1 and 2), and that makespan can improve by an unbounded factor
(theorem 3).

14

1.7. Dissertation Overview

App A App B

OS

App A App B

OS

Figure 1.4.: On the left, current solutions are shown and on the right my
resource-aware paradigm. The brains represent decision-making
and the gears stand for the enactment of the decided policy. Note
the cycle on the left: Application and OS adapt to each other in a
feedback loop, which implies multiple steps to reach stability (if
at all). Roughly, resource-awareness is about giving more decision
power to the OS, represented by the different brain sizes. To enable
this, more information must be provided to the OS, represented
by thicker arrows. The advantage is that the OS decisions can be
directly translated into application policy without the application
thinking on it again.

For a concrete implementation, I build on the platform described in chapter 3

and built with a large team within Invasive Computing. The project yields an
FPGA-based implementation of the whole system, which makes the evaluation
more authoritative than a software simulation.

While a formal model and a practical implementation is available, there is still
a wide gap between them. To close this gap, we require formal semantics for
the implementation, especially the programming language X10 we used. Lee
and Palsberg [LP10] made a first step to formalize X10 concurrency, but they
did not tackle the distributed aspects (the at keyword). I took another step by
defining a memory consistency model in chapter 4. This is an important step
for the development of our X10 compiler, since the semantics of X10 were not
specified in full detail before.

Chapter 5 describes the design and implementation of my resource-aware
framework. While chapter 2 shows the essential mechanisms, constraints and
hints must also be useable in practice.

15

Chapter 1. Introduction

With an implementation of the framework, I describe two example applications
built on top in detail. Both are from the field of High Performance Computing,
but exhibit different behavior. The first one, “Multigrid” in chapter 6, is a heat
dissipation simulation with periodically changing resource needs. The second
one, “Integrate” in chapter 7, is numeric integration with unforeseeable and
dynamically changing resource needs. At this point, I prove the feasibility of my
approach through the implementation and execution of realistic applications
with manageable effort.

At this point, the theory and practice of resource-aware programming is laid
out and we can take a step back to evaluate the full system, where multiple
applications are interacting with each other. Chapter 8 investigates the speedup,
which is theoretically unbounded, since the dynamicity enabled by the frame-
work changes the game. For additional evidence, this chapter looks into the
situation when application compete for resources. This proves my claim of
improved performance.

This thesis concludes in chapter 9 with a short summary. The chapter also
documents the open ends and conjectures for future work and ponders the
impact and wider applicability of this work.

1.8. Contributions

The previous section described the linear flow of this dissertation and the
major contributions were already highlighted in the abstract. Here, I present a
complete list of the contributions in this dissertation.

1. A formal model of resource allocation in chapter 2 for a concise descrip-
tion of the concepts.

2. Proofs of improvements of efficiency (section 2.7), utilization (section 2.8),
and speedup (section 2.9) based on the formal model.

3. The system is implemented and executable on a Linux host system and
on custom hardware, see chapter 3.

4. A memory model for X10 in chapter 4 to fill a specification gap, which is
particularly embarrassing for a language designed for concurrency.

16

1.8. Contributions

5. An innovative language for resource-aware programming in the high-level
programming language X10 in chapter 5. This new paradigm of resource
awareness gives the programmer much more control about resource use
and more information to the system for optimization.

6. A compilation path for the proposed language is described in section 5.11.

7. Evaluation of our implementation with High Performance Computing
applications like heat simulation with a multigrid solver (chapter 6),
distributed numerical integration (chapter 7).

8. How performance for a system as a whole can improve is measured in
chapter 8.

17

Chapter 2.

Allocation Model

All models are wrong, but some are useful.
— George E. P. Box

For a clear view of invasive computing, unobstructed by technicalities, this
chapter presents a basic formal model of resource allocation, which describes
the partitioning of resources over time. It demonstrates the essence of the
resource-aware paradigm. Intuitively the approach is as follows: Given an
execution trace of an invasive program, we look at specific actions, like invade
or retreat, and specify if the trace is valid. Based on the model, this chapter then
provides guarantees for efficiency, utilization, and speedup improvements.

This chapter proposes a formal model for judging the validity of traces instead
of defining a constructive way to derive traces. The advantage is that this
model is independent of the allocation strategy of the resource management
component. The allocation strategies used in practice are usually heuristics
as the search space of possible allocations is huge. Allocation decisions also
depend on previous decisions, which makes the trace hard to predict and could
show chaotic behavior. Formalizing such strategies has little benefit, since
there are many possible variations and small changes can compound to large
differences. Thus, we abstract over the allocation strategy and focus on the
validity of execution traces.

19

Chapter 2. Allocation Model

2.1. Resources and Claims

Let the finite set of all system resources be R. We do not care about the actual
contents. For intuition, consider it a set of processing elements (cores of a CPU).
It might also include memory, bandwidth, or communication channels. For
example, you could partition the memory into chunks (e.g. each page) and
use that as resources. On our clustered architecture the network-on-chip can
reserve channels, so you could use those as a resource. In a real-time system,
we could use chunks of a timing period as a resource.

Resources are accounted for in a “claim” tuple κ = 〈R, c〉, where R ⊆ R is the
set of resources in use, and c are constraints for the resources of the claim R.
For now, ignore c. We define it later in section 2.3. The intuition behind the
term “claim” is that applications “stake their claims” of resources like gold
diggers, who have their exclusive patch of land.

Let the list of all claims in a system at some point in time be K; For example
[κ0, κ1, κ2]. We will use set operations on these lists, because they work intu-
itively, but we use the indices of the list elements to assign them an identity.
For example, κ2 ∈ K is the third claim of the list. All resources are in a claim at
any time, thus the invariant:

R =
⋃

〈R,c〉∈K
R

Initially, there is κ0 = 〈R, c0〉 holding all resources of the system. There is no
execution corresponding to this “idle claim”. It serves as a background buffer
of resources and is the only claim, which may be contain no resources. If other
claims are empty, we prune them from K.

Resources are also exclusive for each claim, thus another invariant:

∀κa, κb ∈ K : κa = κb ∨ Ra ∩ Rb = ∅

where κa = 〈Ra, ca〉 and κb = 〈Rb, cb〉

The partitioning of all resources of a system to an arbitrary number of claims
is a “distribution”. A running invasive system determines a trace of resource
distributions, which models its behavior with respect to resource allocation.
Such a trace is potentially infinite and we assume a globally consistent view
and order. The transition from one distribution to the next distribution in a

20

2.1. Resources and Claims

trace is a “redistribution” δ. Conventionally, the initial redistribution δ0 creates
a main claim κ1 for the main application with minimal resources (e.g. one
processing element).

Let K be the set of all possible distributions for an implicit set of resources
R. Since R is finite, so is the partitioning of resources. By definition, K ∈ K.
Formally, a “redistribution” δ is a mapping from one list of of claims to another:
δ = (K,K′) ∈ K2. A redistribution is where the implementation performs the
actual work of managing resources.

What happens at a redistribution is one of the following cases. In each case, let
δ = (K,K′), κi ∈ K = 〈R, c〉, and κ′i ∈ K′ = 〈R′, c′〉:

1. A new claim is created and given some initial resources R from other
claims (“invade”).

|K|+ 1 = |K′| and for every κi there is κ′i such that c = c′.

2. Resources can be moved between the resource sets of claims (“reinvade”).

|K| = |K′| and for every κi there is κ′i such that c = c′.

3. Like the previous case, but additionally the constraints of one claim κ∗

are changed.

|K| = |K′| and there is exactly one κ∗ ∈ K, such that for each κi there is
κ′i where either c = c′ or κ = κ∗.

4. A claim κ∗ is destroyed and all its resources moved to other claims
(“retreat”).

|K| − 1 = |K′| and for every κ′i there is κi such that c = c′.

The special case of δ being the identity function is allowed. This is why in the
two reinvade cases resources can move, but are not required.

Now we formally describe a “trace” as a starting state K0 = [〈R, c0〉] and a
sequence of redistributions δ0, δ1, The starting state specifies all resources
in the system R. Constraints are described below, but the intention of c0 is that
any claim could take those resources.

The sequence if redistributions is implied by the redistributions: For all redistri-
butions δn and δn+1 of the same trace, let δn be (K0,K1) and δn+1 be (K2,K3),
then K1 = K2. The sequence implies that we could assign a time to each

21

Chapter 2. Allocation Model

redistribution from a trace. So it makes sense to say a redistribution “happens
at a certain point in time”. In the same sense, we can say something “happens
at a certain redistribution”.

2.2. Actor Claims

For each redistribution δ = (K,K′) there is a subset Aδ ⊆ K that are “actor
claims”. Only those claims can change or disappear. Claims that appear are
by definition not in K, so there is no need to formally define them as actors.
This set can be larger than the set of actually changed claims in a redistribution,
thus we need a definition for identifying actor claims. There are three possible
reasons for a claim to be an actor:

• The idle claim κ0 is always an actor claim.

• Claims which are “asynchronously-malleable” are always actor claims.
See chapter 7 for more details about malleability.

• There can be (at most) one actor claim induced by the program code corre-
sponding to the trace, when an application initiates a redistribution with
respect to a specific claim. It might not exist, if e.g. resource management
redistributes periodically.

Often there are only two actor claims, namely κ0 and the one which explicitly
changes according to the program code involved in the redistribution.

To clarify, we distinguish between program and application. An “application”
always corresponds to a single claim. A “program” consists of one or more
applications and corresponds to an executable. For example, a robot can be
controlled by a single program, which includes different applications for motion
control, speech recognition, etc. This distinction implies that application can
share code and there is no bijective mapping between code and applications.

One requirement for traces is that only actor claims change. This implies all
non-actor claims stay the same. Formally,

∀δ = (K,K′) : ∀κi ∈ K \Aδ : κi = κ′i .

22

2.3. Constraints

Let an overline κ mark actor claims within claim sets with respect to a followup
redistribution. For example, in [κ0, κ1, κ2] the first and the third claims are actor
claims in the following redistribution.

The most simple invasive application acquires some resources, uses them, and
finally frees them. This requires two redistributions. In the following example,
there is an additional redistribution before and after, which represent a generic
setup. The presence of three claims displays the role of A. We start with an
initial state K0, where all resources belong to the idle claim κ0.

1. Initially
K0 = [κ0] = [〈{p0, p1, p2, p3, p4}, c0〉]

2. δ0 = (K0,K1) creates the main claim κ1, which contains the processing
element p0, which executes the simple invasive application.

K1 = [κ0, κ1] = [〈{p1, p2, p3, p4}, c0〉, 〈{p0}, c1〉]

3. δ1 = (K1,K2) invades resources and thus creates another claim κ2 with
resources from κ0. We observe that p0 is already claimed by non-actor κ1
and not available.

δ1(K1) = K2 = [κ0, κ1, κ2] = [〈{p3, p4}, c0〉, 〈{p0}, c1〉,
〈{p1, p2}, c2〉]

4. δ2 = (K2,K3) completely retreats κ2, thus moves all its resources back to
κ0.

δ2(K2) = K3 = [κ0, κ1] = [〈{p1, p2, p3, p4}, c0〉, 〈{p0}, c1〉]

5. δ3 = (K3,K4) completely retreats κ1, thus moves all its resources back to
κ0.

δ3(K3) = K4 = [κ0] = [〈{p0, p1, p2, p3, p4}, c0〉] = K0

2.3. Constraints

For the programmer developing an application in a resource-aware paradigm,
the challenge is to specify constraints. This is the mechanism for an application
to communicate about resource needs to the global resource management.

23

Chapter 2. Allocation Model

We usually deal with subsets of R, which naturally is in R = 2R, the powerset
of R.

The constraints c of a claim are a predicate R 7→ {⊥,>}, where R is the
resources domain. The output says whether the resources satisfy the constraints
(>) or does not (⊥). Constraints of a claim are guaranteed, thus the invariant:

∀〈R, c〉 : c(R) = >

For programmer convenience, we want c to be composable from simple building
blocks. Since constraints are predicates, ∧ and ∨ are obvious combinators.

It might be unintuitive that all constraints always apply for the full set of
resources, but this is necessary for composition. For an example, let us assume
you want to specify the request “two fast PEs and five slow ones”. You might
try (isFast∧ count(2)) ∧ (isSlow∧ count(5)), which is actually a contradiction.
The set of resources cannot be fast and slow at same time. Neither can it contain
exactly 2 and 5 PEs at the same time. You would have to use a predicate like
“contains that many fast PEs”. This is not composable, since fast and count are
mixed into the same predicate.

For generality, we should extend constraints to take the full resource partition-
ing into account. We might want to express constraints like TileSharing (see
chapter 5), which affects resources outside of its claim. Tile sharing means
that for a resource pa in a claim κa and another resource pb in another claim
κb, both resources can be on the same tile. By default TileSharing is forbidden
to err on the side of isolation. To express that constraints must consider the
resource sets of both claims. We omit this generalisation here, though, because
it is not necessary for the following sections and would only complicate the
equations.

2.4. Validity

A trace is “valid” if the three invariants of claims and the requirement for
redistributions hold. To summarize, the four conditions of valid traces are:

1. ∀K : R =
⋃
〈R,c〉∈K R

2. ∀κa, κb ∈ K : κa = κb ∨ Ra ∩ Rb = ∅,
where κa = 〈Ra, ca〉 and κb = 〈Rb, cb〉

24

2.4. Validity

3. ∀δ = (K,K′) : ∀κi ∈ K \Aδ : κi = κ′i

4. ∀〈R, c〉 : c(R) = >

Let us consider a few examples. We use n . . . m as a shortcut constraint notation,
which means the number of resources is in the range [n, m). More precisely,
n . . . m(R) = > iff n ≤ |R| < m and ⊥ otherwise.

Here is the first claim list example, which is valid by itself.

[
〈{p1, p2, p3, p4}, 0 . . . 999〉, 〈{p0}, 1 . . . 3〉

]
That example would be invalid, if R 6= {p0, p1, p2, p3, p4} though, because that
would violate condition 1 above.

We can see the exclusiveness invariant condition 2 violated. In the following
example, p1 is contained in two claims:

[
〈{p1, p2, p3, p4}, 0 . . . 999〉, 〈{p0, p1}, 1 . . . 3〉

]
To violate condition 3, we need two distributions and a redistribution, such
that δ = (KA,KB). While it is allowed that an actor claim remains unchanged,
a non-actor claim must not change. Thus, the addition of p4 to the non-actor
claim of KA below is a violation.

KA =
[

κ0, 〈{p0, p1}, 1 . . . 3〉, 〈{p2, p3}, 1 . . . 4〉
]

KB =
[

κ′0, 〈{p0, p1}, 1 . . . 3〉, 〈{p2, p3, p4}, 1 . . . 4〉
]

Finally, an example which violates condition 4, as the constraints of the second
claim are not fulfilled: 2 . . . 3({p0}) = ⊥.

[
〈{p1, p2, p3, p4}, 0 . . . 999〉, 〈{p0}, 2 . . . 3〉

]

25

Chapter 2. Allocation Model

2.5. Hints

The model only distinguishes valid and invalid behavior, but does not consider
performance. Additional “hints” are useful to improve performance, but do
not affect the validity of a trace. For example, applications can communicate
information about scalability to resource management. Now, if a resource can
be allocated to two applications, the scalability hint can be used as a tie breaker.
The hint reveals which application would profit more from the resource, so we
optimize for the throughput of the system as a whole.

For this section, we extend a claim with hints in addition to resources and
constraints. So, κ = 〈R, c, h〉 ∈ K. Similar to the constraints, a hint h is a
function R 7→ N. Where a constraint maps to ⊥, a hint maps to 0. Where a
constraint maps to >, a hint maps to 1 or more. The higher the number the
better for the application, although we are intentionally imprecise what “better”
means. It might model performance, energy consumption, etc.

Now we can express the optimization goal for resource management: Maxi-
mize

∑
〈R,c,h〉∈K

h(R).

Like constraints, hints can be composed from multiple independent hints. One
hint could be about parallelism and scalability and another about sharing with
other applications. Since we might want to compose these different aspects, let
them be in a finite set G. For composition we multiply the various hint function
results.

While G describes a single configuration, we might have fundamentally differ-
ent configurations for resources due to heterogenity, where the aspects must be
rated very differently. There might be complex dependencies, like “with such
resources it scales like this, but with other resources it scales like that”. This
implies we have different algorithms for each configuration and we assume we
always choose the best algorithm for some given resource set. To model this,
we employ the max operation over all G.

26

2.5. Hints

Overall, we model this with a set H of configurations. The composition
structure corresponds to constraints composed in disjunctive normal form. For
a claim κ = 〈R, c, h〉, the function h is derived from H as follows:

h(R) = maxG∈H

(
∏
f∈G

f (R)

)

To compose hints a commutative operation is desirable, since order should
not be relevant. A declarative constraint description avoids mistakes. This
motivates the use of ∏ in the formula. A sum would have been another option,
but the product means that each factor can set the result to zero, for example if
the wrong kind of resources are available.

Naturally, there might be multiple resource allocations resulting in the same
optimal evaluation. However, we do not even require resource management to
be optimal. In practice, resource management will use heuristics and distribute
resources suboptimally, because it must do so online under time pressure.

2.5.1. Hint Example

For an example, let us assume an application with two algorithms to choose
from. One is for fast processing elements, but only scales to 5 of them. The
other one is for slow processing elements, but needs at least 8. Both scale
linearly.

fscale1
(R) = min(15, 3|R|)

fscale2
(R) = |R| if |R| ≥ 8 else 0

ffast(R) = 1 if all cores in R are fast else 0

fslow(R) = 1 if all cores in R are slow else 0

H = {{ fscale1
, ffast}, { fscale2

, fslow}}

The fast processing elements are three times as fast as the slow ones. So 3 fast
ones are as good as 9 slow ones in our optimization problem. Look at a few
example evaluations. Let Fi be a fast core and Si a slow one.

h({F0, F1, S0, S1}) = max({(3× 4)× 0, 4× 0}) = 0
h({F0, F1, F2}) = max({(3× 3)× 1, 3× 0}) = 9

h({S0, S1, S2, S3, S4, S5, S6, S7, S8}) = max({(3× 9)× 0, 9× 1}) = 9

27

Chapter 2. Allocation Model

2.5.2. Scaling Hints

Let us devise a constraint to model linear scaling up to a certain number n of
resources:

hn(R) = min(n, |R|)

For example, h5({a, b, c}) = 3, but h2({a, b, c}) = 2. Assume 6 resources
p0, ..., p5 overall and an initial redistribution δ0, which creates κ1. The con-
straints will always be adapted to allow a resource amount between 0 and n
using the notation from above: 0 . . . n.

Technically, we should define H for hn and derive a function according to the
formula above. However, they are both hint functions R 7→N and the function
derived from H = {{hn}} would be equivalent to hn. Thus, we use the shortcut
and put hn into claims directly.

Here is an example trace, which shows how resource management obeys hints
and invariants like the actor claim criterium (condition 3 above).

δ0 where κ1 gets 4 resources due to its hints h4.

[κ0, κ1] = [〈{p4, p5}, 0 . . . 9, h0〉, 〈{p0, p1, p2, p3}, 1 . . . 5, h4〉]

δ1 where another claim κ2 appears with a h4 hint as well. However κ1 6∈ A,
so its resources stay the same.

[κ0, κ1, κ2] = [〈{}, 0 . . . 9, h0〉, 〈{p0, p1, p2, p3}, 1 . . . 5, h4〉,
〈{p4, p5}, 1 . . . 4, h4〉]

δ2 where claim κ1 changes its hints to h1 and thus retreats all resources
except p1. Let κ2 ∈ A, so it claims p0 and p3, but p2 goes to the idle
claim κ0.

[κ0, κ1, κ2] = [〈{p2}, 0 . . . 9, h0〉, 〈{p1}, 1 . . . 2, h1〉,
〈{p0, p3, p4, p5}, 1 . . . 4, h4〉]

28

2.6. Shortcuts and Implementation of Resource Management

2.6. Shortcuts and Implementation of Resource Management

This chapter formalizes the behavior of resource management, but an imple-
mentation thereof must match only observable behavior. In this thesis, we do
not investigate how resource management finds good allocations apart from
functional correctness. This section ponders some variations, which can be
beneficial in practice.

It would not be efficient to use c and h as black box functions in a mathematical
optimization problem. For example, computing the choices for max is easy to
parallelize, which is not possible with a black box approach.

Resource management should usually not consider all possible partitionings.
Only resources of the actor claims A can be adapted, so a heuristic can ignore
the rest. This sacrifices optimality, though. If the algorithm knows about the
constraints and hints of non-actor claims, they can be used to reserve resources
for them. Without that information an optimal solution could be impossible.
It might be worthwhile to give current actor claims less resources and spare
them for non-actor claims which scale better. In practice, often A consists of
only one claim plus the idle claim, which makes idle claim the single point of
resource exchange. Our implementation has a mechanism to reserve resources
even in non-actor claims, which means in their next reinvade, the claims can
drop reserved resources if possible.

The model defines the idle claim κ0. An implementation might use a special
non-claim resource pool, where resources can be taken from with less overhead.
Such a pool can always give resources away. It does not need constraints
and hints, which means there is no need to check them, which means faster
allocations. Still, the current implementation uses an idle claim, because special
resource pools require special cases in the code, which increases the error
potential.

The model assumes the resources of a claim are fully used by the application.
However, we can maintain two sets of resources per claim, the ones used by
the application and unused resources. This is a way to decentralize the idle
claim κ0. Reinvasion can be triggered concurrently by multiple applications,
thus we need to synchronize resource management. Especially κ0 is under
contention if it serves as the single point of resource exchange. Decentralization
lowers contention. Sometimes this might even allow to perform reinvades
without considering other claims at all. Less synchronization between claims

29

Chapter 2. Allocation Model

can improve performance at the cost of potentially worse heuristic decisions.
This argument gains even more weight, if a distributed resource management
system [KBL+

11] is used, where synchronization implies communication and
is even more costly.

2.7. Proof: Efficiency is not Worse

The distinctive feature of resource-aware programming is that application can
reconfigure their exclusive resource use during run time. Conventional solutions,
like those used on supercomputers today, only configure the resources at the
start of a run. This implies some fragmentation of the resource allocation, so
some resource will usually idle. We call this “waste” and try to give some
bounds for waste in the following.

For the following proofs we assume only uniform processing elements as
resources. This simplifies the notation, when we consider scalability, because
then |R| is the hardware parallelism. Otherwise we would have to filter for
processing elements every once in a while.

In parallel computing, the formula for “speedup” is the time for serial pro-
cessing divided by the time for parallel processing S = T1/Tp, where p is
the degree of parallelism. The quotient can be less than 1, as T1 measures
the fastest possible serial implementation. Nevertheless, the speedup initially
grows from p = 2 onwards. This implies that adding parallelism increases
the speed, but usually with each added processing element the increase is
smaller. At some point speedup plateaus and decreases, when the overhead
of synchronization becomes too large. To account for that we measure the
“efficiency” E by calculating the speedup attained per PE:

E =
S
p
=

T1
Tp

p
=

T1

Tp × p

For the theoretic speedup/efficiency, we can compute the limit p→ ∞. How-
ever, here we deal with real applications and concrete traces, so there is no
need to talk about ∞.

To define an “efficiency metric” for traces, we need to extend them with a
notion of time. Thus, for each redistribution δn, let tn be the time when it
happens. We do not care if the unit is seconds, milliseconds, or cycles, but

30

2.7. Proof: Efficiency is not Worse

assume positive integers. The start t0 is zero. Redistributions usually change
the parallelism, so we must take that into account when computing efficiency.
Assume an application whose claim is created in δi and destroyed in δj. Of
course, i < j and there are j− i intervals to consider. Let 〈Rn, cn〉 be the claim
of the application after δn. The time Tp equals tj − ti. We define the parallelism
as the mean parallelism

p =
∑

j−1
k=i (|Rk| × (tk+1 − tk))

tj − ti

and reuse the efficiency formula above. For the non-resource-aware case, the
set of resources is constant, thus p = |Rk|.

The formula is close to “Invasive Efficiency” (IE) [TWOSP12], which instead
of building on a trace concept uses parallelism profiles. Instead of computing
the sum over time intervals, IE computes the sum over all parallelism degrees,
which makes it unsuitable for the proofs below, but applicable for empiric
evaluations. IE additionally models overhead, which is absent in the more
abstract allocation model. Another factor in IE is underutilization, which
in terms of the model here means that h(R) < h(R ∪ x) for some x ⊂ R.
Intuitively, the application could run even faster with some more resources
according to the hints.

Definition 1. Claim Efficiency: The efficiency E of a claim, which exists from
δi to δj and contains the resources Ri to Rj respectively, is

E =
T1

Tp × p
=

T1

(tj − ti)×
∑

j−1
k=i (|Rk |×(tk+1−tk))

tj−ti

=
T1

∑
j−1
k=i (|Rk| × (tk+1 − tk))

A non-resource-aware application is characterized by being unable to change its
resource allocation while it runs. In other words, over its lifetime from δi to δj
the respective resource sets Ri to Rj are all equal. To convert a resource-aware
application into a non-resource-aware equivalent, we can start by allocating
the maximum number of resource we could exploit and keep them until the
end. For a better comparison and without loss of generality, we insert dummy
reinvades, where δ is the identity function, so both have the same number of
corresponding redistributions.

Theorem 1. Given a resource-aware application’s efficiency E and its non-resource-
aware equivalent’s efficiency E′, both aiming for minimal execution time, E ≥ E’.

31

Chapter 2. Allocation Model

Proof. Optimizing for minimum execution time implies tk+1− tk = t′k+1− t′k, as
the resource-aware application would use more resources if that would speed
it up. It also implies that non-resource-aware uses the maximum number of
resources, thus ∀k ∈ {i, ..., j} : |Rk| ≤ |R′k|.

E =
T1

∑
j−1
k=i (|Rk| × (tk+1 − tk))

≥ T1

∑
j−1
k=i (|R

′
k| × (tk+1 − tk))

= E′

This proof builds on the assumption that nothing restricts the resource allo-
cation of the resource-aware application. However, in a competitive scenario
resources might be allocated elsewhere. Then the non-resource-aware might
be restricted to a suboptimal amount of resources, which improves its effi-
ciency assuming sublinear speedup. Efficiency is inherently a tradeoff with
speedup [EZL89]. In some sense, you “pay” efficiency to attain speedup.
This means that efficiency is usually not the paramount optimization goal,
because then nobody would use parallel algorithms, except the few which scale
linearly.

There is a major assumptions in this proof, which does not hold in reality.
We assume that there is no overhead for resource allocation. You will see in
chapter 6 that there can be significant overhead for resource management and
also for the application to adapt to resource changes.

Now that we know that efficiency is guaranteed to not be worse for a single
resource-aware application, let us consider a multi-application scenario. There
the goal is not to optimize a single application, but to improve the performance
of the system as a whole. Thus, we have to look at scenarios with at least two
applications.

2.8. Proof: Utilization Improves

Another useful metric is utilization. We want a definition for the system as a
whole. One aspect is that resources in the idle claim are not utilized, so we
could calculate the percentage of non-idle-claim resources. However, we also
want to reason about non-resource-aware applications, where resources are

32

2.8. Proof: Utilization Improves

unused although the are not in the idle claim. Let these resource be Ridle the
“hidden idle resources”. Also, let u = |R| − |R0| − |Ridle| be the resources in
use.

Definition 2. Resource Utilization: The resource utilization U of claims is the
percentage of resources in use

U =
u
|R| =

|R| − |R0| − |Ridle|
|R| = 1− |R0|+ |Ridle|

|R|

Resource-aware applications are never under-utilized, since they would retreat
from resources instead, so Ridle = ∅. Nevertheless, the system has a whole
may be under-utilized, if not all resource can be exploited.

It might seem intuitive that utilization is higher in the resource-aware case,
because non-resource-aware application can be crippled for life due to lack
of resources at the start, while a resource-aware application can overcome
bad starting conditions and gain more resource later. The problem is that
application interact and work can be delayed. These delays can lead to a higher
utilization temporarily in the non-resource-aware case as illustrated in fig. 2.1.
While the intuition is indeed correct, it complicates the proof below as we must
account for delayed work.

For quantification, we need a measure of work an application does in a certain
time slice from tn to tn+1. For an implicit application let “work done” for the
time intervals 0 to e be

we =
e

∑
n=1
|Rn| × (tn − tn−1).

Let “delayed work” dn for the corresponding non-resource-aware case be the
difference of work: dn = wn − w′n. They differ in resources R used, but require
the same time.

For the non-resource-aware applications the resource partitioning is arbitrary,
as it depends on the system state when the applications started. For the
resource-aware applications, we assume an optimal allocation with respect to
their hints, because resource management can reallocate as necessary. Thus, a
resource-aware application may get a sub-optimal amount of resources if other
applications can make better use of them, since this is the optimization goal for
resource management. So, dn may be negative for specific applications.

33

Chapter 2. Allocation Model

time

0

0

1

1

2

2

3

3

4

4

5

5

non-resource-aware

utilization is higher

time

Pr
oc

es
si

ng
El

em
en

ts

0
1
2
3
4
5

resource-aware

Figure 2.1.: An example, where utilization is temporarily higher in the non-
resource-aware case. If the green application is resource-aware, it
uses uses the resources freed after the red application terminates
and finishes faster. This implies green runs longer in the non-
resource-aware case and utilization is higher until it finishes.

Since resource management maximises over hints, which specify utility of re-
sources, it also maximises work done and minimizes delayed work. In contrast,
non-resource-aware allocation can be arbitrary because only the situation right
at the start is considered and there is no opportunity to correct later. The
implications are more delayed work.

Lemma 1. A resource-aware system has less delayed work than a corresponding
non-resource aware one: ∑

|K|
n=0 dn ≥ 0

Proof. For simplification, we insert identity redistributions such that resource-
aware and non-resource-aware always have corresponding events, so ti = t′i.

Assume at time ti a resource x which a non-resource-aware application uses
x ∈ R′, but the corresponding resource-aware application does not x 6∈ R.

If x is used by another application, then x is neutral with respect to work done.

34

2.8. Proof: Utilization Improves

On the other hand, if x ∈ R0 and we assume proper resource management,
then x is not useful to the resource-aware application. This implies that the
non-resource-aware application uses it do get delayed work done. Thus, wi ≥ w′i .

In both cases the resource-aware application cannot delay more work than the
non-resource-aware one.

Lemma 1 implies that the makespan for resource-aware applications is at most
as high as for a corresponding non-resource-aware scenario, because the non-
resource-aware one can still have delayed work, but not vice versa. This fact is
the intuitive reason for higher utilization, but we still need to connect that to
the formula of U.

For a proof of utilization, we can not focus on utilization at specific times Un,
because we know it can vary. Instead, we care for the utilization over the whole
run time of the system until te, which we denote as

∫
U =

e

∑
n=0

Un × (tn+1 − tn).

Theorem 2. Let multiple resource-aware applications running in parallel have uti-
lization U, while the non-resource-aware equivalents run with utilization U′. Then∫

U ≥
∫

U′.

Proof. To simplify the formulas, we insert identity redistributions such that
the intervals tn+1 − tn are constant. Thus, without loss of generality, let
tn+1 − tn = 1 and ∫

U =
e

∑
n=0

Un.

Because the corresponding applications perform the same work on a homoge-
neous set of resources, we know

e

∑
n=0

un =
e′

∑
n=0

u′n.

The sum ∑ un corresponds to
∫

U by a constant factor e|R|, because

e

∑
n=0

un =
e

∑
n=0

u′n
|R|
|R| = e|R| ×

e

∑
n=0

u′n
|R| = e|R| ×

∫
U.

35

Chapter 2. Allocation Model

We know te ≤ t′e, because of lemma 1. Since we know tn+1 − tn = 1, we can as
well say e ≤ e′ and conclude

∫
U =

∑e
n=0 un

e|R| =
∑e′

n=0 u′n
e|R| ≥

∑e′
n=0 u′n
e′|R| =

∫
U′.

Since utilization improves more work is getting done, so we should see
speedups. How much of a speedup is possible?

2.9. Proof: Speedups are Unbounded

Let us assume that conventional applications specify a fixed exact number of
resources. If they all take half of the PEs plus one, we must run the application
sequentially, as illustrated in fig. 2.2. If the number of resources n → ∞, the
one additional resource becomes neglible, so 50% of the resources idle.

Let us assume that conventional applications specify a range of resources they
might use. This is more flexible than a fixed number, but leads to worse
results in certain cases, as illustrated in fig. 2.3. A long running conventional
application could be very restricted initially. If the blocked resources become
available shortly after, a conventional application is unable to exploit those
resources. If we increase the run time and the number of resources, the waste
can be arbitrarily big.

For a proof, we make an assumption on resource management: Redistribu-
tions are optimal with respect to speedups using information in the current
redistribution. Specifically, resource management is not an oracle, which can
look into the future and predict the run times of applications or when the next
redistribution will happen. For real time systems, such information might be
available, but we plan for the more general open case, where new applications
can appear at any time.

Theorem 3. For all k ∈N there is a scenario such that the makespan tm of the resource-
aware claim trace M and the makespan t′m of the non-resource-aware equivalent M′

fulfill ktm ≤ t′m.

36

2.9. Proof: Speedups are Unbounded

time

Pr
oc

es
si

ng
El

em
en

ts

0
1
2
3
4
5
6
7
8
9

10
11

Application A

Application Bidle

idle

makespan

Figure 2.2.: Idling with conventional applications with an exact resource
need approximates 50% of the resources in certain cases over the
makespan.

37

Chapter 2. Allocation Model

time

Pr
oc

es
si

ng
El

em
en

ts

0
1
2
3
4
5
6
7
8
9

10
11

Application A

Application B

idle

makespan

Figure 2.3.: Idling with conventional applications with an resource need range
is unbounded. Application A restricts B initially to 1 PE, which is
then kept for the whole run time, although A’s resource become
available very soon.

38

2.9. Proof: Speedups are Unbounded

Proof. Given some k ∈ N, we design a scenario with n ≥ 3k resources as
follows: One claim a can use n − 1 resources and instantly terminates. A
second claim b initially takes the remaining resource, but in the resource-aware
case could use all resources. Both provide scalability hints. Claim a scales
linearly with a speed of sa(R) = |R|, while claim b is worse with sb(R) = 1

2 |R|.
Let the execution time of b be eb(R) = k

sb(R) =
2k
|R| .

Due to the scalability hints, resource management will give n− 1 resources
to a in δ0 at t0 and one resource to b in δ1 at t1. Then a terminates in δ2 at t2.
Without loss of generality, let the total execution time of a be 1 = t2 − t0.

In the resource-aware case, b will get all resources in δ2. Assuming its work
until then is negligible, it will finish at t3 = t2 + eb(R) = 1 + 2k/n. In contrast
for the non-resource-aware case, b will only use one resource until it finishes at
t′3 = t2 + eb(1) = 1 + 2k.

ktm = k(1 + 2k/n) ≤ k(1 + 2n
3 /n) = 5

3 k ≤ 1 + 2k = t′m

The proof scenario has an interesting aspect. If we would use one less resource
in total, then the non-resource-aware application could finish much faster. The
allocation of claim b would fail, because a has all resources. If the program
strategy would be to try again later, b gets allocated after a finishes and can
use all resources. This is not a practical solution, because we usually do not
know when a finishes, though.

At this point, we have a formal allocation model of resource-aware computing
and its theoretic advantages, which are efficiency, utilization, and speedups
for systems as a whole. Naturally, the model abstracts real world issues
away. For example, we did not consider overheads, which might be significant.
Nevertheless, the promise is a good foundation for further research.

The next chapters describe the implementation of these ideas and their evalua-
tion with real programs in realistic case studies.

39

Chapter 3.

Implementing Invasive Computing

Predicting rain doesn’t count, building arks does.
— Warren E. Buffett

To develop a resource-aware application, you need an API or a language to
allocate, use, and free resources. We also realized that the runtime system
of our programming language X10 required changes, because various parts
are not designed with changing resources in mind. Likewise, adapting the
operating systems makes sense, as global resource management is its primary
job and someone has to provide the API for resource-awareness. Then it
turns out that hardware could be adapted to support resource isolation and
management for better efficiency. Ultimately, resource aware programming
requires changes to the whole computing stack to realize its full potential.
Invasive Computing [THH+

11] does just that. This chapter describes the
relevant parts of the stack and the platform on which this dissertation builds
a resource-aware language. While the concepts can be transfered into other
domains, the implementation targets the specific platform family which is
described in the following sections. We will look at the relevant components in
a bottom-up fashion, starting with the hardware, then the operating system,
and finally the programming language.

41

Chapter 3. Implementing Invasive Computing

Application

Framework, Runtime, Compiler

Operating System: Global Resource Allocation

Operating System: Local Resource Allocation

Processing Elements

Network-on-Chip, Monitoring

sy
st

em
so

ft
w

ar
e

ha
rd

w
ar

e

Figure 3.1.: The full Invasive Computing stack. The transregio tackled all levels.
This dissertation is part of the (bold) second level.

3.1. The DFG Transregio

In 2010 the CRC/Transregio “Invasive Computing” [THH+
11] was funded

by the Deutsche Forschungs-Gesellschaft (DFG) and set out to investigate the
design and programming of future computer architectures. With architectures
of 1000 processor cores on the horizon for 2020, the transregio reconsidered the
full stack. From processing elements, network-on-chip, hardware monitoring,
accelerators, up to the operating system, compiler, and applications, all compo-
nents were open for discussion. Figure 3.1 shows a visual overview of the stack.
In addition the workflow of development was investigated with simulation and
other design-time techniques.

Invasive Computing introduced the three-step operation of invade (allocating
resources), infect (using resources), and retreat (freeing resources). Resources
usually means processing elements, but also includes memory and communi-
cation resources. Those three steps are provided to programmers as explicit
operations and enable self-adaptive and resource-aware programming.

Invasive Computing deviates from mainstream architectures in three aspects:

42

3.1. The DFG Transregio

Reimplement Everything! We rewrote or reimplemented applications, instead
of supporting legacy code. While it is certainly desirable to build on existing
code bases, the dynamicity required for invasive applications would require
significant changes, as you will see in the case studies in later chapters. An
application which adapts at runtime to resources appearing and disappearing
must be able to move its data structures around. In a first step, we required the
programmer to do this explicitly. Only when solutions solidified, we moved
them into the runtime as a convenience function. This approach provides a
clean slate for new ideas.

Global Decisions! The job of current operating systems is usually described as
a) abstracting hardware and b) isolating applications. This implies that each
application optimizes resources on its own and the operating system maintains
the illusion of isolation. In contrast, an invasive application delegates resource
decisions to the global operating system. This does not violate the principle
of separation of mechanism and policy. Global policy is composed from all
applications individual policies.

Another part of invasive philosophy is that applications inform the system
about their resource needs, but the system with its global view decides the
actual allocation. Thus, we do not optimize single applications, but the system
as a whole. This imposes an unusual challenge on API design. Developers
only care about the performance of their application, but they should also
provide the option for more important applications to take away resources. Our
proposed solution is to provide a single method to adapt resources which may
give or take resources. See chapter 5 for the concrete API.

Exclusive Resources! Current operating systems are built on the paradigm of
scarce hardware resources and thus they virtualize them. Threads are virtual
cores for parallelism. Operating systems use virtual addresses for isolating
processes from each other and swapping memory to disk temporarily. Invasive
Computing envisions a different scenario where there are more cores than we
can power. Instead of virtualizing cores, we allocate them exclusively to certain
applications. Likewise, we partition memory and communication channels
to allocate them exclusively to applications. Isolation between application is
guaranteed by the MMU hardware today, but an invasive system can delegate
that to the interconnects of a clustered hardware architecture.

43

Chapter 3. Implementing Invasive Computing

The general idea is that resources (like cores and memory) are explicitly re-
quested before use and explicitly freed afterwards. By claiming resources
exclusively, some common abstraction layers for virtualizing or security can be
removed, which enables efficiency improvements. For example, virtual memory
requires a memory management unit (MMU) in hardware. By using a memory-
safe high-level programming language, the need for isolation disappears. Since
we also expect more heterogeneous hardware in the future, applications have
to access it directly for efficiency reasons anyways. Empiric results were shown
for HPC applications like parallel sorting [SSF13] and for robotics like motion
planning [KGVA16].

3.2. Invasive Hardware Architecture

To support thousands of cores on a single chip, global cache coherence via bus
snooping is considered unfeasible. In contrast to bus snooping, a directory-
based approach increases latency. Instead, we use a clustered architecture. The
cores are grouped into tiles, such that within a tile a limited number of cores
can use efficient bus-snooping for cache coherence. Between tiles we abandon
cache coherence for a more flexible network on chip. In fig. 3.2 you can see an
example architecture.

Although there is no cache coherence, all memory is accessible to every core. It
is possible to implement “cache coherence” or rather memory consistency in
software across tiles, but we consider this too error-prone for normal program-
ming. Still, Manuel Mohr exploited this to speed up message passing [MT17]
and the operating system does it internally. For X10 programmers, the type
system prevents access to remote memory.

The invasive network-on-chip iNoC provides a mesh communication scheme
between tiles and mechanisms to reserve guaranteed service (GS) connections.
These GS connections can guarantee a certain latency or throughput, which
enables predictability for concurrent applications. GS connections can be
mixed with best effort connections, which keeps the system flexible enough
to support mixtures of different applications. A resource-aware application
should consider its communication needs and whether it benefits from latency
or throughput guarantees. Even without guarantees, resource management can
use knowledge about communication behavior to improve allocation.

44

3.2. Invasive Hardware Architecture

Global
Memory

20

Core Core Core Core

Local Memory
21

Core Core Core Core

Local Memory
22

Core Core Core Core

Local Memory
10

Core Core Core Core

Local Memory
10

Core Core Core Core

Local Memory
12

Core Core Core Core

Local Memory
00

Core Core Core Core

Local Memory
01

Global
Memory

02

Figure 3.2.: An example of a clustered many-core architecture. The shown
example has 9 tiles, arranged in a 3×3 mesh and connected by a
network-on-chip. Seven of the tiles contain processor cores and two
tiles provide access to external memory. Each tile has a few MB
local on-chip memory. Global memory is off-chip DDR RAM.

45

Chapter 3. Implementing Invasive Computing

The iNoC also provides a memory transfer mechanism, like a DMA controller
on mainstream hardware. The operating system implements message passing
with it and the X10 runtime relies on that.

There were plans to make this architecture family more heterogeneous. Un-
fortunately, the implementations were not solid enough to use them for the
evaluations in this dissertation. Nevertheless, here is a short overview for
completeness as it influenced the design of the framework.

There are special cores called i-Cores [HBHG11], which are extended Leon
SPARC v8 cores. They include a reconfigurable fabric, which can be used to
dynamically load different accelerator instructions at runtime. For example,
an i-Core can decode H.264 video 22 times faster [HBHG11] than a Leon. A
resource-aware program should be able to exploit such accelerators. This
requires to request i-Cores and to use them correctly. As this uses instructions
not part of the official SPARC v8 ISA, special compiler support is necessary.

Another accelerator are Tightly-Coupled Processing Arrays (TCPAs). They are
energy-efficient [SHT+

15, HLB+
14] and timing-predictable [GSL+

14, TGR+
16].

TCPAs are a mesh of simple processors (16bit, no pipeline). Only the processing
elements at the edges of the mesh have memory access. TCPAs can be used to
accelerate hot loops by using symbolic tiling techniques. Like with an i-Core,
using TCPAs requires compiler and language support. Paul et al. [PSS+14]
used it in an invasive system to improve the processing rate and accuracy of a
computer vision algorithm known as Harris Corner Detection.

3.3. Operating System: iRTSS

On top of this hardware is a custom operating system called iRTSS. It consists
of a tile-local and a chip-global part.

3.3.1. OctoPOS

The iRTSS API is a superset of the API the custom operating system Octo-
POS [OSK+

11] provides. OctoPOS provides i-lets for concurrency. In contrast
to the widely known pthreads abstraction, these i-lets have run-to-completion

46

3.3. Operating System: iRTSS

1 finish {
2 async { foo(); }
3 l.lock(); // waits for a long time
4 bar();
5 l.unlock();
6 }

Figure 3.3.: Unintuitive Run-To-Completion Semantics. If you want to compute
a background i-let foo() while waiting for a lock, you might intu-
itively write this code. However, if you only have one core, then
your intuition can lead you astray: That “asynchronous” foo() does
not execute in parallel to lock().

semantics. While they can be interrupted, it is a nonpreemptive multitask-
ing model. This design choice makes sense on an architecture, where cores
are plentiful and multiplexing single cores is not worth the complexity and
overhead it introduces to the system.

Synchronisation is discouraged in OctoPOS, because everything is designed for
scalability. Apart from hardware cmpxchg instructions, the operating system
only provides a spinlock, which actively waits by continuously trying to take
the lock. Unfortunately, this sometimes leads to surprising behavior like the
following. If you want to perform something in parallel to a blocked i-let. For
example, waiting for a lock does not give the core to concurrent activities like
in fig. 3.3. What happens:

1. The background i-let foo() is queued by the scheduler, but not started.

2. The foreground i-let spins on the lock for a long time until it takes the
lock l. Nothing productive happens apart from continuously checking the
lock.

3. The foreground i-let computes bar() and unlocks

4. The foreground i-let hits the end of the finish block and waits for the child
activities.

5. The background i-let foo() is scheduled and starts running.

6. The background i-let finishes and the foreground i-let continues behind
the finish block.

47

Chapter 3. Implementing Invasive Computing

The two activities compute sequentially. The background i-let did not run in
parallel, while the foreground i-let was waiting on the lock.

Since we assumed only a single available core, parallelism is not an option,
though. What would be desirable is first to try once to take the lock, and if
that fails execute foo(). It is possible to code that using the tryLock() method,
but then the code fails to parallelize if it were execute with multiple cores
available. We considered options where the compiler implicitly instantiates
continuations and coroutines. However, that would have required a lot of work
in the compiler and so we decided this out of scope. Programmers would have
to live with this pitfall.

Octopos also provide “claims”, but they are not the claims defined in the
previous chapter, so we will call them “OctoPOS claim” here. An OctoPOS
claim only contains PEs of a single type on the same tile. Also, OctoPOS does
only provide the mechanisms for claim management, but leaves decisions to
higher levels. An OctoPOS claim is implicitly a scheduling domain, which
means an i-let created in one OctoPOS claim will never execute on a PE in
another OctoPOS claim.

While OctoPOS runs a separate instance on each tile and is generally a per-tile
operating system, it also provides communication mechanisms between tiles.
OctoPOS claims are used as target addresses for this communication. You
can spawn an i-let on a remote claim, which is the minimal mechanism as it
can only transfer two words (8 B) of data. Additionally, there is a mechanism
to transfer blocks of data asynchronously, which spawns i-lets on source and
target once the data is transferred. The programmer cannot control which PE
will execute an i-let, but since they are by definition of a single type and on the
same tile it should not matter.

What OctoPOS does not provide is resource management on an inter-tile level.
For this, the second part of iRTSS is responsible.

3.3.2. Agent System

As described in chapter 2, one core concept is the “claim”. Since a claim
potentially spans multiple tiles, OctoPOS cannot manage it. Instead, for each
claim, there is a corresponding “agent” which trades resources with other
agents. This “agent system” provides the resource management service for the
whole system. It interfaces with OctoPOS to control intra-tile resources.

48

3.4. The X10 Programming Language

Sebastian Kobbe developed the basics with DistRM [KBL+
11] where he de-

scribes a decentralized system, where resources are traded in a peer to peer
fashion. However, DistRM is not what is implemented in iRTSS, as we have no
hardware with hundreds of cores available yet. Instead, iRTSS uses a centralized
approach which is more efficient in our scenarios.

While the goal is to support any constraint and hint possible, only a few were
implemented. The iRTSS version we use for evaluation provides the means to
specify

1. the minimum and maximum number of PEs

2. if PEs should be Leon or i-Core

3. a scalability curve via Downey’s model A and σ

4. a specific which tiles the PEs may or may not be on

5. if tiles may be shared with other claims

The API of iRTSS was designed with the requirement that bindings to other
languages, like X10, are simple to realize. Although it is implemented in C++,
it is restricted to the int type, opaque pointers and a C API and ABI. There are
functions to modify the constraints request and of course invade, reinvade, and
retreat mechanisms. The framework exposed to the X10 programmers maps to
this lower-level C API.

3.4. The X10 Programming Language

Since we use the X10 programming language extensively and it is not a main-
stream language, this is a short introduction. Here is its history according to its
website1.

The genesis of the X10 project was the DARPA High Productivity
Computing Systems (HPCS) program. As such, X10 is intended
to be a programming language that achieves “Performance and
Productivity at Scale.” The primary hardware platforms being tar-
geted by the language are clusters of multi-core processors linked
together into a large scale system via a high-performance network.
Therefore, supporting both concurrency and distribution are first

1http://x10-lang.org/home/x10-history.html as of 2015-08-04

49

http://x10-lang.org/home/x10-history.html

Chapter 3. Implementing Invasive Computing

class concerns of the program language design. The language
must also support the development and use of reusable application
frameworks to increase programmer productivity; this requirement
motivates the inclusion of a sophisticated generic type system, clo-
sures, and object-oriented language features. Finally, like any new
language, to gain acceptance X10 must be able to smoothly inter-
operate with existing libraries written in other languages. This last
requirement constrains both the design and the implementation of
X10 in various ways

X10 started as an extended Java and later adopted a Scala-like syntax. Most
prominent are the new keywords async and at. They provide “activities” and
“places”.

3.4.1. Activities

An “activity” is like a lightweight thread or task in other languages. It models
parallelism in a scalable fashion and the programmer is encouraged to create
lots of activities. The X10 runtime system maps activities to OS primitives
like POSIX threads and thus limits the actual parallelism. The finish keyword
enables to wait for the termination of activities in a deadlock-free way. The
following snippet shows a parallel execution of foo and bar and waits for
termination of both at the end.

1 finish {
2 async { foo(); }
3 async { bar(); }
4 }

Figure 3.4 shows a more realistic example. It performs numerical integration.
The work load varies dynamically and is unpredictable, because you need to
know the flatness/steepness of a function, as illustrated in fig. 3.5. Numerical
integration is investigated in more detail in chapter 7.

On iRTSS, our runtime maps activities to OctoPOS i-lets directly. This implies
activities have run-to-completion semantics. In contrast, X10 on Linux maps
activities to pthreads which have different semantics. Fortunately, both is fine
by the X10 language specification [SBP+

14]. It requires some additional book-
keeping to implement the finish keyword: Activities must be accounted for in

50

3.4. The X10 Programming Language

1 import x10.lang.Math;
2 import x10.util.concurrent.AtomicFloat;
3 public class MinimalIntegrate {
4 static type T = float;
5 private val function:(T)=>T; // function to integrate
6 private val epsilon:double; // error threshold
7 private val max_depth:uint; // max recursion depth
8 private val result = new AtomicFloat(0.0f);
9 private def integrateRange(left:T, right:T, depth:uint):void {

10 val l = function(left);
11 val width = right− left;
12 if (depth > max_depth) {
13 result.addAndGet(l*width);
14 return; }
15 val r = function(right);
16 if (epsilon > Math.abs((l− r) as double)) {
17 result.addAndGet(l*width);
18 return; }
19 val center = left + width/2;
20 async { integrateRange(left, center, depth+1); }
21 async { integrateRange(center, right, depth+1); } }
22 public def this(p_function:(T)=>T, p_epsilon:T, md:uint) {
23 function = p_function;
24 epsilon = p_epsilon;
25 max_depth = md; }
26 public static def main(args: Array[String]) {
27 val fun = (x:T) => { return Math.sin(x) as T; };
28 val work = new MinimalIntegrate(fun, 0.001 as T, 5);
29 finish work.integrateRange(0,3,0);
30 val result = work.result.get().toString().substring(0,6);
31 Console.OUT.println("Integral of sin(x) between 0 and 3: "
32 +result+" (should be ~1.9899)"); } };

Figure 3.4.: Minimalistic numerical integration of
∫ 3

0 sin(x)dx in parallel X10

code.

51

Chapter 3. Implementing Invasive Computing

steep

flat

Figure 3.5.: To numerically compute an integral, like
∫ 3

0 sin(x2)dx here, you can
evaluate a function at various points using the recursive rectangle
method. Where the function is steep, we evaluate more points, since
we expect more volatility. Flat regions require less evaluations, since
we expect little volatility.

their lexically surrounding finish-block. At the end of a finish block, an activity
blocks until all activities spawned within have terminated. The implementation
inserts finish-state data structures at the corresponding places.

Conceptually, we organize activities in a tree, where leaf nodes are activities
and branch nodes are finish-blocks. Since a tree contains no cycles, finish
alone cannot result in deadlocks. X10 provides additional synchronization
mechanisms, like transactional memory via atomic and primitive atomic types
and barriers, such that programs can be deadlock-free by construction. While
synchronization mechanisms like locks are also available and using those may
introduce deadlocks, X10 promotes deadlock-freedom as it supports the safe
mechanisms with syntax and provides unsafe ones only by library.

3.4.2. Places

A “place” represents a shared memory domain. Within a place, all activities
have access to the same memory. Between places data can only be exchanged

52

3.4. The X10 Programming Language

via at, which migrates an activity and its context to another place and back.
Conceptually, places form a ring topology with place ids from 0 to n. On a
supercomputer system, a place usually maps to a process on a compute node.

The following snippet shows how to migrate to the next place to call the getX
method and migrate the return value back to assign it to x. The keyword here
always evaluates to the current place. The migration copies the object obj to the
next place and calls the method on it.

1 val x = at (here.next()) obj.getX();
The integration example in fig. 3.4 only works on a single place. Let us
generalize it to a “distributed” algorithm, which uses multiple places. We
could simple chop the integral into n regions for n places, but the load would
probably not be balanced, because steep regions require more resources. Since
we cannot predict the resource usage, we have to balance dynamically. In
fig. 3.6, we use a distributed queue to achieve this.

3.4.3. Distributed Data

While at provides a way to distribute (i.e. copy) data, you also need a way to
refer to data which already exists. There are three options.

1. Static fields exist once in each place. They are always immutable, but they
can contain an immutable reference to a mutable value (Cell, Array, ...).

2. A PlaceLocalHandle is a “variable” with one instance per place. In contrast
to static fields, it can be created dynamically.

3. A GlobalRef is a “global reference” for a single value. In contrast to the
previous two options, there is only one instance on one place. While the
reference can be freely copied to other places, the value is not copied
implicitly. To access the value, the programmer has to explicitly move the
computation to its home place or explicitly copy the value to the current
place.

While X10 is a garbage collected language, garbage collection is place-local.
This means PlaceLocalHandle and GlobalRef must be freed manually (or the
program leaks memory). Pointers stored in there might be referenced on other
places, so with only local information we cannot know if we are allowed to free
it safely.

53

Chapter 3. Implementing Invasive Computing

1 public def integrateRange(left:T, right:T):T {
2 /* initialize job queue with fair regions */
3 val stride = (right− left) / Place.places().size();
4 for (var i:uint = 0; i<parts; i++) {
5 val l = left + (i *stride);
6 val r = left + ((i+1)*stride);
7 todo().enqueue(new Job(l, r, 0)); }
8 /* parallel distributed worker activities */
9 finish for (p in Place.places()) at async {

10 while (true) {
11 val jobbox = todo().dequeue();
12 if (jobbox == null) /* all jobs finished */
13 break;
14 val job = jobbox();
15 integrateRange(job.left, job.right, job.depth); } }
16 return result().get() as T; }
17 private def integrateRange(left:T, right:T, depth:uint):void {
18 val l = function(left);
19 val width = right− left;
20 if (depth > max_depth) {
21 result().addAndGet(l*width);
22 return; }
23 val r = function(right);
24 val difference = Math.abs((l− r) as double);
25 if (difference < epsilon) {
26 result().addAndGet(l*width);
27 return; }
28 /* split in two parts for recursion */
29 val cntr = left + width/2;
30 todo().enqueue(new Job(left, cntr, depth+1));
31 todo().enqueue(new Job(cntr, right, depth+1)); }

Figure 3.6.: Distributed numerical integration with at.

54

3.4. The X10 Programming Language

X10 also provides distributed higher-level data structures. Such data structures
are built on top of above three basic ones. For example, the distributed
array DistArray is for matrices too large for a single place. It internally uses
PlaceLocalHandle such that each place stores the corresponding data and adds
distribution information to track the data.

This concludes the chapter on the platform this thesis builds upon, including
the hardware and operating system. We have a broad impression of the
mechanisms in our programming language, its philosophy, and style. The
next chapter dives into technical details of X10, before chapter 5 presents
the resource-aware framework developed in Invasive Computing including
compiler, runtime, and language changes.

55

Chapter 4.

X10 Memory Consistency Model

The point of rigour is not to destroy all intuition; in-
stead, it should be used to destroy bad intuition while
clarifying and elevating good intuition.

— Terence Tao

A memory consistency model (in short “memory model”) specifies what values
parallel execution threads can observe in shared data in what order. This is im-
portant for the programmer, who reasons about the behavior of a program, and
for the compiler, which must map it to the target hardware’s memory model.
Every implementation implicitly defines a model. Also, every programmer has
a model in mind. Hopefully, the models are equivalent, but without a clear
specification they usually are not.

In this chapter, we define a memory consistency model for X10. It was originally
published at the X10 workshop [Zwi16]. The model here is semantically
equivalent, but the presentation is revised. Furthermore, this chapter describes
the requirements analysis, discusses differences to other memory models, and
issues discovered with X10 semantics. The actual model is described from
section 4.3 until section 4.6.

57

Chapter 4. X10 Memory Consistency Model

The X10 specification [SBP+
14] does not contain a memory model. This is

perilous, since the compilation targets are Java and C++, which have different
memory models [MPA05, ISO14]. An X10 program’s behavior should be the
same, no matter which compiler backend is used. Thus, we must specify the
behavior for the source language X10.

4.1. Intro to Memory Consistency Models

For an overview over memory models of programming languages, the popular
short version is: “Sequential consistency (SC) for data race free programs”. The
formal version is:

A program whose sequentially consistent executions have no data
races must have only sequentially consistent executions.

An “execution” is the trace of a single run of a program. To understand the
definition, let us look into what SC and data race mean.

4.1.1. What Is Sequential Consistency?

Memory models in general are about the order of memory “actions”, which are
read, write, compare-and-swap, etc. Naturally, program code defines an order
within a single thread. A compiler and a programmer can understand and
work with this sequence. However, if two (or more) threads run in parallel, then
many interleavings become possible and programs may become indeterministic.
SC is originally defined by Lamport in 1971 [Lam79]. Since then, terminology
has changed. A modern definition is:

Within each thread memory accesses follow program order and
all threads immediately observe every access.

This implies a global total order of actions for a given execution.

For memory models we define the term “synchronization operations”, which
explicitly synchronize global memory state for the thread that executes it.
We can define a simple memory model SC, which declares every memory
access a synchronization operation. The problem is that this prohibits a lot
of optimizations, which we want to allow compilers and CPUs to do. Thus,
Java and C++ use weaker memory models. They define normal reads and

58

4.1. Intro to Memory Consistency Models

Let flag be false initiallyflag = true flag = true

Figure 4.1.: An example of a data race without a race condition. Two threads
set the same flag to true. There is a data race, because those actions
conflict and there is no happens-before relation. There is no race
condition, because the outcome is deterministic. We do not care
about the order in this case as the behavior is identical.

writes as not sequentially consistent. Instead, they provide a limited set of
synchronization operations like locks, monitors, semaphores, atomics, and
other special constructs. A library cannot provide such constructs [Boe05], so
they belong to the language specification.

With weaker memory models than the simple one above, one thread may
observe a different order of actions than another thread. Obviously, this means
additional complexity for a programmer, who tries to understand an execution
in a debugger. The compromise between performance and safety is to restrict
these order mismatches to data races and make the programmers responsible
to avoid them.

4.1.2. What Is a Data Race?

If two memory actions are a) not synchronization operations, b) access the
same data, and c) at least one writes, then we say they “conflict”. A conflict is
not necessarily a data race, because there may be additional synchronization
operations, which guarantee an order as they define “happens-before” relations
between actions. If two actions conflict and have no happens-before relation,
then we have a “data race”.

Be careful not to confuse a data race with a race condition, which means that
timing or ordering of events affects a program’s behavior. Some only consider it
a race condition, if the behavior is faulty/incorrect. We use a weaker definition
here for simplicity and to not require a notion of “correctness”. Although data
race and race condition often occur together, these are orthogonal concepts.
Race conditions are the reason why we have so many different executions with
parallel and concurrent programs. Figure 4.1 and fig. 4.2 show examples of
one, but not the other.

59

Chapter 4. X10 Memory Consistency Model

Assume at least 2 elements in queuex = queue.pop() y = queue.pop()

Figure 4.2.: An example of a race condition without a data race. Two threads
try to take an element from a properly synchronized queue. Sincepop is synchronized, there is no data race. There is a race condition,
because it is not deterministic which thread gets which element.

4.2. Requirements for X10

Before we present the actual memory model, we analyze the requirements and
derive design decisions.

The X10 compiler targets Java and C++, and there is also our inofficial assembly
backend [BBMZ12]. This means whatever memory model we design, it must be
possible to map it to the Java memory model (JMM) [MPA05], the C++ memory
model (CMM) [ISO14], and hardware memory models.

Another aspect is that X10 targets High-Performance Computing (HPC), so
performance is important.

4.2.1. Data Races Are Undefined Behavior

Programmers strive for data race free code, so CMM considers data races as
undefined behavior. “There are no benign data races” in C++ [ISO14]. In
contrast, Java must define the semantics of data races, otherwise a data race
could be exploited to, e.g., circumvent the security manager. Via data races the
current JMM fails [Loc14] to prevent an execution from reading values “out
of thin air”, which were never written according to the program. Must X10

care about the semantics of data races and Thin Air Reads? No, because X10

provides no isolation mechanism within the language, which would have to be
secure even with data races. Neither does X10 need to use a memory model
framework [SJMvP07], which supports this complexity.

If X10 defines semantics for data races, then the compiler must maintain this
semantics in C++ and must not generate code with undefined behavior. Thus,
the compiler must litter the code with additional synchronizing operations like
memory fences, which degrades performance. This is not acceptable for HPC

60

4.3. Actions and Executions

1 def foo(y:int,n:int):void {
2 var x:int = 0;
3 while (x < y) { x += n; }
4 }

Figure 4.3.: We store the local variables x, y, n in registers, so there is no
memory access within the loop. During the execution there is no
“action” (see below) with respect to the memory model, so we
consider the loop empty. Additionally, x is not used after the loop,
so we do not care about its value. We cannot guarantee termination,
since n might be zero. Still, the compiler can remove the loop.

programs, thus X10 cannot provide a semantics for data races. While undefined
behavior is a source of agony, the advantage is a simplified memory model and
a better performance.

4.2.2. Termination Can Be Assumed

With a similar argument, an X10 compiler can assume that all loops terminate.
C++ [ISO14, §1.10.27] allows to remove empty loops even if they might not
terminate. Thus, the compiler can remove an empty loop in X10, if it is compiled
directly to a C++ loop. Therefore, X10 must use an equivalently weak semantics
or the compiler must ensure not to generate empty loops by inserting dummy
statements. Since the upside of stronger semantics is not clear, we assume that
empty loops can be removed and thus assume termination. We see an example
in fig. 4.3. This is the behavior of the current X10 version 2.5.

4.3. Actions and Executions

This sections provides a complete memory model for X10. The structure of this
section mostly matches the Java memory model [MPA05] §7, with the necessary
parts from §5 and §9 merged in. Where it made sense, we copied the text
verbatim for better comparison, so a lot of credit goes to the authors of the
JMM. However, we changed details in the adaption to X10.

61

Chapter 4. X10 Memory Consistency Model

In X10, an “activity” is the concept to model a thread of execution. A “place” is
a shared memory domain. Activities within the same place use the same heap.
Activities in different places cannot communicate via shared memory. Instead,
the programmers must use the at construct to transfer an activity to another
place, which implicitly copies context data.

An action a is described by a tuple 〈t, k, v, u〉, comprising:

t the activity performing the action.

k the kind of action.

Most kinds are synchronization operations: activity creation (within the
spawning activity), start and end of an activity, global termination of
finish block, lock, unlock, library and external actions.

Two kinds are not: read and write.

v the variable or lock involved in the action. Variables and locks on different
places cannot overlap.

u an arbitrary unique identifier for the action.

As a notation for the variable or lock v of an action a, we use the notation a.v
in the following.

An execution E is described by a tuple 〈P, A,
po−→, so−→, W, V〉, comprising:

P a program.

A a set of actions.
po−→ program order, which for each activity t is a total order over all actions

performed by t ∈ A.

so−→ synchronization order, which is a total order over all synchronization
actions in A. For a0

so−→ a1, we say a1 is “subsequent” to a0.

W a write-seen function, which for each read r ∈ A, gives W(r), the write
action seen by r in E.

V a value-written function, which for each write w ∈ A, gives V(w), the
value written by w in E.

62

4.4. Synchronizes-with and Happens-before

An “external action” is an action that may be observable outside of an execution,
and may have a result based on an environment external to the execution. For
example, input and output of a program introduces external actions. An
external action tuple contains an additional component, which contains the
results of the external action as perceived by the activity performing the action.
This may be information about the success or failure of the action, and any
values read by the action. Parameters to the external action (e.g., which bytes
are written to which socket) are not part of the external action tuple, since it
does not concern the memory model.

A “library action” is an action from the standard library, which provides
additional synchronization mechanisms as shown in section 4.6.

4.4. Synchronizes-with and Happens-before

Two additional relations are uniquely determined from an execution. Since we
never reason about multiple executions at the same time, we do not annotate E
with those relations explicitly.

sw−→ “synchronizes-with”, a partial order over synchronization actions deter-
mined by the total synchronization order according to the rules below.

1. An unlock action on lock l synchronizes-with all subsequent lock actions
on l.

2. An action that creates an activity synchronizes-with the start action of the
created activity.

3. The write of the default value to each variable synchronizes-with the
first action in every activity (Conceptually, every object is created at the
start of the program). The default value of non-static val fields is their
initialization value.

4. The end action of an activity synchronizes-with the end of the surround-
ing finish block.

5. The last action of an atomic or when block synchronizes-with the first
action of subsequent atomic blocks and when conditions.

6. Further actions as specified in parts of the standard library in section 4.6.

63

Chapter 4. X10 Memory Consistency Model

A set of synchronizes-with relations is “sufficient” if it is the minimal set such
that you can take the transitive closure of those relations with program order
relations, and determine all the happens-before relations in the execution. This
set is unique.

hb−→ happens-before, a partial order over actions is the transitive closure of
synchronizes-with and program order.

4.5. Well-formed Executions

We only consider “well-formed executions”. An execution

E = 〈P, A,
po−→, so−→, W, V〉 is well-formed if the following conditions are true:

1. Each read of a variable x sees a write to x. For all reads r ∈ A, we have
W(r) ∈ A and W(r).v = r.v.

2. Synchronization order is consistent with program order and mutual
exclusion. Having synchronization order consistent with program order
implies that the happens-before order is a valid partial order: reflexive,
transitive, and antisymmetric. Having synchronization order consistent
with mutual exclusion mean that on each lock, the lock and unlock actions
are correctly nested.

3. The execution obeys intra-activity consistency. For each activity t, the
actions performed by t in A are the same as that activity t would generate
in program order in isolation, with each write w writing the value V(w),
given that each read r sees/returns the value V(W(r)). The memory
model determines the values seen by each read. The program order
must reflect the program order in which the actions would be performed
according to the intra-activity semantics of P, as specified by the parts of
the X10 specification that do not deal with the memory model.

4. The execution obeys happens-before consistency. Consider all reads r ∈ A.

It is not the case that r hb−→W(r). Additionally, there must be no write w

such that w.v = r.v and W(r) hb−→ w hb−→ r.

Like C++ [ISO14, §1.10.27], any X10 activity will eventually “terminate, make a
call to a library IO function, access or modify an atomic object, or perform a
synchronization operation”. This means in contrast to Java, we do not need to
consider infinite executions. No “hang” action is necessary.

64

4.6. Constructs in the Standard Library

4.6. Constructs in the Standard Library

4.6.1. Atomics

The X10 runtime comes with atomic boolean, double, float, integer, long, and
reference types in x10.util.concurrent. All method invocations of these constructs
synchronize-with subsequent invocations on the same object.

4.6.2. Clock

For x10.lang.Clock the synchronizing methods are advance, advanceAll, drop,
resume, resumeAll. All its method invocations synchronize-with subsequent
invocations on the same clock object. In the case of advanceAll and resumeAll
this affects all clocks the activity registers at.

4.6.3. Condition

All method invocations of x10.util.concurrent.Condition synchronize-with subse-
quent invocations on the same object.

4.6.4. Lock

The x10.util.concurrent.Lock class provides (surprise!) a lock. All its method
invocations synchronize-with subsequent invocations on the same object if the
operation is successful. Other synchronization primitives Monitor, SimpleInt-
Latch, SimpleLatch, IntLatch, Latch inherit from Lock, so they need no special
treatment.

For clarification, the behavior of the trylock method is equivalent in Java, C++,
and X10. The method acts like lock() if a lock is not taken already and returns a
boolean whether it has taken the lock. C++ explicitly gives trylock the freedom
for “spurious failure” [BA08], which means it might fail to lock even if nobody
else held it at the time. Java also provides this implicitly. The JavaDoc for Lock
says

65

Chapter 4. X10 Memory Consistency Model

x = 42 while(l.tryLock())l.lock() l.unlock()assert(x == 42)

Figure 4.4.: Undesirable use of trylock from [BA08]. The second thread waits
for someone else to take the lock1. The assert may fail, because
there is no happens-before relation with the assignment according
to JMM or CMM.

Unsuccessful locking and unlocking operations, and reentrant
locking/unlocking operations, do not require any memory synchro-
nization effects.

If trylock should be synchronizing even if it fails, it requires a slower lock()
implementation with an additional fence instruction. There is a motivating
example in fig. 4.4, which C++ uses to motivate spurious failure.

If the tryLock() succeeds in taking the lock, it would synchronize-with any
previous locking operation. Via Lock semantics we know there cannot be a
previous locking operation as we enter the loop. Thus, if we enter the loop,
there is no synchronize-with relation between the threads.

If (or when) the trylock fails it has no synchronization effects. Thus, there is no
synchronize-with relation to the first thread. We assume that tryLock() failing is
an "unsuccessful locking operation".

Therefore, in either case there is no happens-before relation between assignment
and assert. Hence, we have a data race and the value of x might or might not be
42. A compiler is free to move the assignment into the critical section, because
nobody outside of the critical section can observe the assignment.

Even while there is nothing explicit about Javas tryLock being "spurious", this
example demonstrates spurious behavior in Java. The JavaDoc of tryLock()
says:

Acquires the lock if it is available and returns immediately with
the value true.

1Advice for programmer: Convert x into an AtomicInteger, remove the lock, and spin on x
directly.

66

4.7. Differences to other languages

This is not wrong, but misleading in our example since the observed behavior
looks like a spurious failure. There is no happens-before relation between
assignment and assert, even if tryLock() correctly observed the lock as taken.

4.7. Differences to other languages

The two most well-known memory consistency models are Java and C++, so
we compare them in more detail here. Then there is the Chapel programming
language, which was designed at the same time with a similar purpose as
X10.

4.7.1. Differences between X10 and Java

Compared to Java, X10 lacks four features, which simplify the memory model
(and complexity of the language in general).

1. There is no Thread or Activity object in X10
2, so one cannot interrupt or

join an activity. There is only the finish block, which waits for the (global)
termination of all activities within.

2. X10 has no (user-defined) finalizers for objects. This also simplifies the
model. See the JMM [MPA05, §16] for the details. In general, finalizers
are avoided, because execution is non-deterministic.

3. X10 does not provide reflection in a modifying way. The issues of modi-
fying final fields in Java at any time do not exist. Corresponding to Javas
final fields are val fields in X10.

4. There is no security manager for isolation on the language level. To guar-
antee isolation like this, we would have to prohibit undefined behavior,
as it includes breaking isolation.

2They exist hidden in the runtime, but not accessible to the programmer.

67

Chapter 4. X10 Memory Consistency Model

4.7.2. Differences between X10 and C++

The CMM distinguishes between acquire and release synchronization, because
this is relevant to support “relaxed” operations. However, such mechanisms
are not provided by the X10 standard library nor supported by the compiler
in any way. For high performance applications it might become worthwhile
to provide this at some point, e.g., to implement non-blocking data structures.
Then we must adapt the memory model.

C++ has bitfields, where the compiler can compact fields to a certain amount
of bits. This affects the memory model, since writes to bitfields are usually also
writes to neighboring bitfields and might introduce data races. X10 has no such
feature, which also simplifies the memory model.

4.7.3. Differences between X10 and Chapel

Chapel [Inc17] is a very similar language to X10. It was initially funded by the
same DARPA program. It uses the PGAS paradigm. It provides high-level data
structure like distributed arrays. It is object-oriented and type-safe.

Even the memory consistency model (§29 of the specification) is similar. It
is based on sequential consistency for data-race-free programs. For other
programs, the specification says “Any Chapel program with a data race is not
a valid program, and an implementation cannot be relied upon to produce
consistent behavior”.

Unlike X10, Chapel provides weaker operations: non-sequentially consistent
atomic operations, which are like C++ relaxed memory order operations. Ad-
ditionally, Chapel has unordered memory operations, which require the use
of a separate synchronizing variable, so the compiler inserts a fence operation.
These mechanisms promise improved performance, if one is willing to pay
the price (no safety, ugly code). There should be no problem to add simi-
lar mechanisms to X10 without changing fundamental parts of the memory
model.

68

4.8. StoreStore Barrier After Constructor

4.8. StoreStore Barrier After Constructor

Our proposed X10 memory model, and also JMM and CMM, specify no relation
between references and the referenced location. This includes for example the
this-pointer of an object and its fields. If you assign to a field and share
the object reference with another activity, reading the field might not yield
the assigned value. This is counterintuitive, if the assignment is within the
constructor to an immutable val field. Even if the object sharing is synchronized,
the field accesses are not.

In Java, the final field semantics cover this even with a data race. In C++, this is
undefined behavior. The implementation advice from the JMM authors [MPA05,
journal version] is a store-store-barrier at the end of a constructor. This is NOP
on x86, which probably explains why nobody is hurt in practice. On ARMv8

the barrier is necessary, for example.

4.9. Global Address Space and the Memory Model

X10 models an asynchronous partitioned global address space (APGAS), but
the memory model does not address this explicitly. It is not necessary, because
an activity can only access its own part of the address space [SBP+

14, sec.
2.4]:

With remote reference, an activity can access objects at a remote
place (remote objects) when the activity has moved to the remote
place.

Moving an activity requires at and is already covered by program order. The
implicit deep copy of context before and after at does not concern the memory
model, apart from the normal read operations, which might or might not be
properly synchronized.

It is possible to introduce arbitrary additional features using native code within
the runtime, but also in user code. This extensibility is desirable and nobody
wants to restrict that. In this case the documentation must include information
about the synchronization. One example would be Rail.asyncCopy, which in
version 2.5.4 specifies with respect to synchronization:

The activity created to do the copying will be registered with the
dynamically enclosing finish.

69

Chapter 4. X10 Memory Consistency Model

1 finish {
2 async {
3 atomic { r = x; }
4 }
5 atomic { x = 42; }
6 }

activity creation

x = 42
start of activity

r = x
end of activity

global termination

Figure 4.5.: An example execution of an activity life cycle as written in the code
on the left. Each box is an action. The thick arrows are synchronize-
with edges and the dotted arrows show program order. The figure
demonstrates the difference between “activity creation” and “start
of activity” actions.

This implies the only way to synchronize is finish at the sending place. Thus,
synchronization with the receiving place requires an additional at.

4.10. Threads and Activities

The JMM talks about threads, while we have activities in X10. For the memory
model this does not matter much, since both just model parallel execution.
Figure 4.5 shows an example of activity creation.

The JMM explicitly mentions the problem of thread inlining [MPA05, fig. 12],
which puts code of one thread into another one and removes parallelism. This
must be forbidden in Java, because it introduces an additional happens-before
relation and a compiler might optimize the program in an undesirable way.
X10 uses lightweight activities, so the programmer is encouraged to create
more of them than a Java programmer would create threads. Consequently,
activity-inlining would be even more desirable than thread-inlining. The Java
example [MPA05, fig. 12] relies on a data race and is thus undefined in X10.
So, activity-inlining should be possible in X10.

70

4.10. Threads and Activities

This chapter presented a possible memory model for X10 together with a
rationale for its design. While we started with the JMM, due to X10’s roots
in Java, the outcome is closer to the CMM. One essential assumption of this
proposal is the use case of high performance computing. If X10 is changing
towards Java cloud computing and orchestration3, then Java interop might
get priority over performance. In this case, a semantics for data races might
become necessary and we must adapt the memory model towards Java.

During the specification process, we uncovered minor issues in the X10 stan-
dard library. The @Volatile annotation has unclear semantics and might be
unnecessary. The Fence utility class is broken and you should not use it. We
have reported these issues as 3547, 3548, and 3549 in the X10 bugtracker4. Sadly,
the issues are still open over one year later.

A possible critique of the style of the JMM and this work is the distance to
language semantics. Before inclusion in the language specification it would be
worthwhile to express the memory model closer to the feature descriptions and
language semantics. The Chapel specification [Inc17] is conveniently short and
could serve as a prototype.

With a solid basis of X10 semantics, we can proceed to define a resource-aware
framework on top.

3rumors via personal communication
4https://xtenlang.atlassian.net/projects/XTENLANG

71

https://xtenlang.atlassian.net/projects/XTENLANG

Chapter 5.

Framework InvadeX10

Not being able to get the future exactly right doesn’t
mean you don’t have to think about it.

— Peter Thiel

At the end of the first funding phase of Invasive Computing in 2014, we wrote
down documentation for the framework language InvadeX10 [ZBS13]. A previ-
ous publication [Zwi12] provides an shorter but non-exhaustive introduction.
Since then we added more features and changed details. This section provides
an overview over the current state of the language with all its invasion pa-
rameters and convenience methods. It provides a common language between
hardware and software developers, who easily misunderstand each other. De-
veloping a practical framework for a diverse set of applications is hard to get
right. From the start, we tried to use a methodology as objective as possible.

5.1. Development Methodology

The initial challenge is solve the chicken and egg problem mentioned in sec-
tion 1.6: First, understand the possibility of the hardware and the needs of the
software. Second, provide stubs for both domains to kickstart development.

As a first step, we inquired all related people to provide examples. Together
with basic engineering principles, this lead to a first prototype language. Natu-
rally, not all examples were fully covered, so we had to adapt them together

73

Chapter 5. Framework InvadeX10

with its original authors to maintain the intent. When the examples were ported
to the prototype, it served as common ground. For the software, we could
emulate the lower levels. For the hardware, we could design the interfaces
which enabled further development of the language.

A first prototype is not final and in general a language which stops evolving is
dead. For further development we established a process, where a document
had to be written for each change or extension to the language. The Language
Change Proposal (LCP) process is modelled after well-known processes like for
example RFCs (network protocols), PEPs (Python), and JSRs (Java). This process
provided parallelism, because at this point feature requests were increasingly
independent of each other. I served as the benevolent dictator of the language
and the gatekeeper for all changes. In nearly all cases, I also implemented the
framework parts.

5.2. Hello World

Now we look at the concrete language. We build on top of X10 as described
in section 3.4. The concepts of invasion and retreat were already described in
chapter 2; In between, there is also infect. Conceptually, there are three phases
for allocating, using, and freeing resources.

As traditional in programming languages, we start with a trivial “Hello World”
application that demonstrates all the necessary concepts. The invasive part
is:

1 val claim = Claim.invade(constraints);
2 claim.infect(ilet);
3 claim.retreat();

The static class method Claim.invade takes constraints and returns a claim object,
which represents the allocated resources. Here, we implement a capability-
based security concept. Since resources are exclusive to a claim, the claim serves
as a handle to access those resources. Section 5.9 investigates the implications
more deeply and discusses the changes to the semantics of X10.

A claim object provides an infect method to distribute computation across pro-
cessing elements. The argument of infect is an i-let object, which contains the
code to execute together with initial data. The infect call blocks the program, un-
til all i-let computations finish. This was considered the more safe alternative. If

74

5.2. Hello World

you desire concurrent execution, you may prefix it with async, the X10 keyword.
The semantics of X10 on mainstream operating systems matches the intent
accurately. Later, we realized that this is actually unintuitive when executed
on the OctoPOS operating system with its run-to-completion semantics. If the
current claim, which executes the infect has only one processing element, it
will run to completion (until the end of the current finish block usually) before
the activity to perform the infect begins. However, the programmer intuitively
assumes that infection starts immediately. Since a workaround is possible and
we already had a set of programs, we considered backwards compatibility more
important and kept the unintuitive behavior.

Another aspect of infection is “isolation”. The resources of a claim are not
accessible or visible outside of a claim, except via the claim as a handle. So,
infect also serves as the mechanism to cross isolation barriers between claims.

After the infect, the retreat method frees all resources within a claim, such that
the claim is empty. If you would call infect again it would dutifully execute the
given i-let on each of the claims processing elements, which are none.

Now consider the ilet variable of the example above. You could define it as
follows:

1 val greeting = "Hello from ilet ";
2 val ilet = (id: IncarnationID) => {
3 Console.OUT.println(msg + id.ordinal);
4 };

The ilet variable is assigned a closure. The closure takes one argument id, which
it may use to distinguish itself from other i-lets executed by infect on different
PEs and tiles. The whole expression is a closure, which means the compiler
includes its free variable greeting and the variable is copied to every processing
element. The X10 compiler and runtime system implicitly take care that all
data is serialized and deserialized if transfer to different places is necessary. If
the processing elements should get different data, then the programmer should
instead include a handle and fetch the correct data from within the i-let.

This i-let code executes on each PE in the claim during infect. For example, if
the claim contained four PEs, the hello message would be printed four times
with id numbers 0, 1, 2, and 3 (though not necessarily in that order).

75

Chapter 5. Framework InvadeX10

Now the last part is the constraints variable, what resources we want in the
claim. For example, we could use the following to express that we desire 3 to 6

processing elements.

1 val constraints = new PEQuantity(3,6);
This is a single simple constraint. The design of the invasive command space is
the largest part of the API proposed here. The next section describes its current
state exhaustively, but development continues.

5.3. Invasive Command Space

We structured the constraints and hints for invade in an extensible hierarchy.
The extensibility is important, because it continues to evolve as new uses for
the framework are found and new hardware features turn up. Figure 5.1 shows
the full hierarchy.

One of the most used constraints is PEQuantity, which specifies the number
of processing elements and was shown in the previous section already. The
PEQuantity predicate does not constraint individual PEs, but the set as a whole,
so we classify it as a “set constraint”. Additional predicates in this class are

• PlaceCoherent, which requires all PEs to be within the same place. This
implies shared memory, but will limit the number of PEs depending on
the hardware architecture.

• LatencyWithinTeam and ThroughputWithinTeam, which require a certain
latency or throughput between all places in a claim. This configures the
underlying NoC hardware to provide corresponding guarantees.

• TileSharing, which allows other claims to allocate PEs on the same tile if
both signal their willingness. This implies that applications share some
resources, like bus, tile-local memory, and caches. The idea is improve
utilization at the cost of predictability and performance of individual
applications.

Next to the constraint class concerning the whole set, there is a class concerning
places and one concerning individual PEs1. The constraints always apply to
each of them. The PlaceConstraints are

1My older publications described this as one class PredicateConstraints, which conflicts with the
predicate concept in chapter 2.

76

5.3. Invasive Command Space

Constraint

MultipleConstraints

AND
OR

PEConstraints

FPUAvailable
LocalMemory

Type

PlaceConstraints

LatencyToMaster
LatencyToMemory

ThroughputToMaster
ThroughputToMemory

ThisTile

SetConstraints

PEQuantity

PartitionConstraints

PlaceCoherent
LatencyWithinTeam

ThroughputWithinTeam
TileSharing

Hint

ScalabilityCurve
DowneyScalabilityCurve

AppClass
PotentiallyFewerPEs
PotentiallyMorePEs

Malleable

Figure 5.1.: The invasive constraint hierarchy as a class diagram. Edges rep-
resent inheritance. Boxed nodes are abstract classes and unboxed
ones concrete classes. For clarity not all concrete classes have their
own arrow, but the meaning should be intuitive.

77

Chapter 5. Framework InvadeX10

• LatencyToMaster and ThroughputToMaster, which require a certain la-
tency between all places in a claim to the place where the claim was
invaded from, the master. This is useful in a master-slave architecture,
where slaves primarily communicate with the master, but not with each
other. This configures the underlying NoC hardware to provide corre-
sponding guarantees.

• ThisTile requires the claim to have one place and it must be on the same
tile it was invaded from. This enables underlying communication layers to
exploit the shared memory and communicate cheaper. The X10 semantics
still provide type and memory safety (without using explicitly unsafe
mechanisms).

• TileLocalMemory requires a certain amount of tile-local memory to be
reserved for the claim. In contrast to the global DDR memory, this
tile-local memory is faster, but there is less of it available.

The PEConstraints apply to each PE in a claim individually:

• Type is necessary in heterogeneous environments. This constraint en-
forces a claim to be homogeneous. To combine heterogeneous resources
into one application, the programmer uses multiple homogeneous claims
with different type constraints. Our implementation knows about the
type i-Core, Leon, and TCPA.

• FPUAvailable specifies if the PE provides hardware support for floating
point arithmetic. This constraint is used exemplarily for the wide range
of possible CPU extensions. For the HPC programmers in our transregio,
it was a surprise that there might be CPUs without an FPU. For the hard-
ware architecture people, it was a surprise that programmers considered
it a matter of course.

Another class of constraints are hints, which are about the non-functional
aspects of claims. While the allocation model in chapter 2 separates them as
two parameters, the implementation merges both under the same abstract class
Constraint. Hints are for example:

• ScalabilityCurve which describes how an application scales in relation to
the number of processing elements.

• DowneyScalabilityCurve is special case of ScalabilityCurve, where the
curve is describe by only two parameters A and σ [Dow97]. See more
details in section 5.3.1 below.

78

5.3. Invasive Command Space

• ApplicationClass provides a general classification for the scheduler. Each
class can be configured internally as a set of weights for different param-
eters like temperature, power, or cache miss rate. However, on the X10

level only named classes are available. For example,

– High Performance: Fast execution has priority, so faster cores are
preferred.

– Low Latency: Quickly starting and execution without interruption
has priority, so prefer cores with a low load.

– Low Power: Avoid cores which draw a lot of power (fast ones) and
also avoid waking up idle cores.

• PotentiallyFewerPEs and PotentiallyMorePEs give more freedom to the
operating system for scheduling. In the case, where two claims are on
the same tile (see TileSharing above) one might have idle resources and
the other might have a high load. If the hints match, the OS is allowed to
cross the claim boundary when scheduling activities. This disturbes the
load balancing of the applications, but can increase utilization.

• Malleable which marks the claim as “async-malleable”. This is a more
complex hint explained in section 5.7. Intuitively, the application promises
to resize whenever resource management demands.

Now we also need two meta constraints to compose all those constraints and
hints, so there is AND and OR. These are extra classes in the implementation,
but due to X10 operator overloading they are usually not visible.

It is easy to come up with more ideas for constraints. For example, one could
specify scratchpad size, cache size and type, scheduling, layout, monitoring
possibilities and others. This just underlines the need for extensibility. The LCP
process requires a motivating example application, though. So far, nobody has
seen a practical need for such constraints.

5.3.1. Performance Modelling

If a system continuously optimizes applications with respect to global state,
it needs a performance model of the applications. While this work is not
concerned with the system’s optimization algorithm (see DistRM [KBL+

11]
and others [ATBS13]), the performance model must be communicated from

79

Chapter 5. Framework InvadeX10

applications to the system. At least the application-specific parts of the model.
Thus the programmer must know and parameterize the performance model of
the system.

The invasive system uses a simple models for two reasons: We want to optimize
applications in a scalable way online and to keep it easy for the programmer.
This means we cannot use complex models, which for example require an UML
model of the application [GBL09].

The invasive framework provides a constraint to specify scalability according
to Downey’s convex curves [Dow97]. To describe a “Downey curve”, we
need two parameters A and σ. Parameter A is the average parallelism, which
intuitively is the upper bound the application scales. For example, if your
application can use at most 64 cores, then A = 64. Parameter σ specifies
the time the application does not run with parallelism A. Downey gives the
speedup formula for 0 < σ ≤ 1 as

S(n) =

An

A+σ/2(n−1) =
An

A+(n−1)σ/2 1 ≤ n ≤ A
An

σ(A−1/2)+n(1−σ/2) =
An

σA−σ/2+n−nσ/2 A ≤ n ≤ 2A− 1

A n ≥ 2A− 1

and σ ≥ 1 as

S(n) =

{ An(σ+1)
σ(n+A−1)+A 1 ≤ n ≤ A + Aσ− σ

A n ≥ A + Aσ− σ

For σ = 1, the formula evaluates to the same result. Figure 5.2 illustrates the
behavior of the function S(n).

5.4. Constraint Graphs

The above constraint representation has limitations as already hinted at in
section 2.3. If you want to mix different resource types, say Leon and i-Core PEs,
you must invade two different claims. However, claims imply isolation, which
makes using these claims unwieldy. While this can be hidden in frameworks,
like ActorX10 [RPS+16], we can envision a more complex situation, which

80

5.4. Constraint Graphs

0 20 40 60 80 100 120 140 1600

1000

2000

3000

4000

5000

6000

7000

s=0.01
s=0.1
s=0.5
s=1.0
s=1.4
s=2.0
s=∞

Figure 5.2.: Examples of Downey Curves with A = 64 with n on the x-axis
and S(n) on the y-axis. Each line shows a different σ. For σ ' 0
the curve rises linearly until A and is flat afterwards. For a higher
σ ≤ 1 the “knee” at n = A (vertical line) is lower. For σ ≥ 1, S(n)
reaches parallelism A only after n = 2A. The higher σ, the later.
This graph resembles Downey’s figure 2 [Dow97]. The y-axis is
multiplied by 100, because our system relies on integer arithmetic.

81

Chapter 5. Framework InvadeX10

cannot be represented at all: Have two different resources and guarantee a
certain NoC latency between them. There is no way to express relationships
between claims, so we need a way to express this as a single claim.

A proposed solution are “constraint graphs” [WBB+
16], which represent the

desired resource structure as a labeled graph. A node represents a tile and
is annotated with resource types and counts. An edge represents a NoC
connection and is annotated with a maximum distance and a service level. This
allows for a very specific description. The tradeoff is that generic descriptions,
e.g. including a scalability curve, cannot be represented. Thus, constraint
graphs are not more or less powerful than the hierarchy constraints from the
previous section, but useful in different situations.

This approach is applicable, if the program architecture starts with a static actor
model2; A common technique in embedded and real time programming. For an
example, consider a video decoder, which has a pipeline structure. At design
time, we consider CPU speeds, memory sizes, communication bandwidth, and
other factors to find a configuration which meets our requirements. Such a
configuration can be specified as a constraint graph, as illustrated in fig. 5.3.

Our invadeX10 framework allows to model constraint graphs as data structures
and directly use them for resource allocation. We pursue the illustration
above further in fig. 5.4. We pack each constraint graph together with “quality
numbers” derived from requirements, like frame latency or power consumption,
into an “operating point”. The invade method is overloaded to also take a list
of operating points, as illustrated in fig. 5.5. Resource management will then
pick one of the operating points and return a claim with resources for it. For
deriving operating points from requirements, we use a design-time application
analysis and runtime mapping [WGW+

14] approach.

5.5. Invasion and Retreat

Invasion is the allocation of resources, which most prominently means process-
ing elements. The static invade method of the invasic.Claim class gets a Constraint
object as argument and returns a claim object. Internally, this spawns a new
agent, which communicates with other agents to bargain for claim resources.
This means that this is a potentially expensive operation in terms of run time.

2This is in no relation with “actor claims” from chapter 2. Neither is this about the π-calculus,
because we do not allow the dynamic creation of actors, indicated by the “static” prefix.

82

5.5. Invasion and Retreat

inp mem hs

inp mem

vs jug1

jug2

mem disp

64 128 64

64

6464

64

64

Tile A: 4 PEs

Tile B: 2 PEs

Tile C: 2 PEs

2; 3

2; 3

2; 3

Figure 5.3.: At the top, a Picture-in-Picture pipeline commonly used in NoC
research [BJM+

05]. Nodes are algorithm steps and edges are com-
munication channels with annotated bandwidth. The nodes are
grouped according to their placement on tiles. The implied con-
straint graph is below. The bandwidth is used verbatim, the process-
ing elements required is the number of steps in the corresponding
group. The edges have a hop distance and a service level annotated,
instead of explicit bandwidth requirements.

83

Chapter 5. Framework InvadeX10

1 val ag = new ActorGraph();
2 val inp1 = new Actor(act_inp1);
3 ag.addActor(inp1);
4 val hs = new Actor(act_hs);
5 ag.addActor(hs);
6 ag.addChannel(inp1, hs);
7 // further actors and channels ...
8

9 val constraintGraph = new ConstraintGraph(ag);
10 val a = constraintGraph.addCluster(1, [inp1, hs, vs, jug1], new RISC());
11 val b = constraintGraph.addCluster(2, [inp2, jug2], new RISC());
12 val c = constraintGraph.addCluster(3, [mem, disp], new RISC());
13 constraintGraph.addInterconnects(a, b,
14 2 /* hop distance */, 3 /* service level */);
15

16 val qualityNumbers = new Set[QualityNumber]();
17 qualityNumbers.add(Latency(4, "ms"));
18 qualityNumbers.add(Power(10, "MW"));
19

20 val op = new OperatingPoint(constraintGraph, qualityNumbers);
Figure 5.4.: Constraint graph and operating point example from fig. 5.3 in

X10 code. This is integrated with the ActorX10 framework, so we
model an actor graph first. Then we construct the constraint graph
and define quality numbers for latency and power consumption.
Finally, an OperatingPoint object is created.

1 //Create Binding from operating points.
2 val claim = Claim.invade(operatingPoints);
3 val binding = new Binding(claim, operatingPoints);
4

5 //Execute the task graph.
6 binding.infect();

Figure 5.5.: Assuming a list of operating points like in fig. 5.4, this code
demonstrates invasion. The binding classes infect method inspects
the claim to find out which operating point the agent system chose.
Then it extracts the actor graph from the correct operating point,
deploys the actors and runs them.

84

5.5. Invasion and Retreat

1 val claim = Claim.invade(
2 new PEQuantity(1,8) &&
3 new Type(PEType.RISC) &&
4 TileSharing.WITH_OTHER_APPLICATIONS &&
5 new DowneyScalabilityHint(5,100));

This invasion returns a claim containing between one and eight RISC PEs. The
claim might share its tiles with other claims featuring the same hint. It scales
according to a Downey curve [Dow97] with A = 5 and σ = 1.00, which roughly
means “nearly linearly up to 5 cores”. We explicitly avoid using floating point
values (e.g. 1.0 instead of 100) because it must be possible to use the API on
cores without floating point support. While floating point emulation in software
(soft float) is possible, there is not really a need to accept that inefficiency.

If the agent is unable to get the minimum amount of resources to fulfill the
constraints, a NotEnoughResources exception is thrown. This is an exceptional
situation as programmers should write programs, which can run with few
resources as well.

1 try {
2 val claim = Claim.invade(new PEQuantity(1000000));
3 } catch (e:NotEnoughResources) {
4 Console.ERR.println("Could not get all the PEs");
5 }

If no exception occured, the resources are now guaranteed to the application
exclusively. No other claim/application is able to use them and the resource set
will not change unless the program explicitly allows it. However, this guarantee
does not cover catastrophic failures, for example if the hardware burns. Some
possibilities to hide hardware failures are possible, like redundant resources
and transparent migration, our implementation currently does not provide any
of this, so the promise only holds according to the abilities of the resource
management.

A claim’s contents can be inspected, for applications that can adapt the follow-
ing infection. For example check the number of processing elements, get a list
of processing elements, or places.

1 val count = claim.size();
2 val places = claim.places();
3 val pes = claim.processingElements();

85

Chapter 5. Framework InvadeX10

4 if (pes.get(0).getType() == Type.RISC) { ... }
This allows to program to adapt its data structures and control flow to the
resource situation dynamically. For example, places with more PEs can be
given more data, as higher parallelism equals more computing power.

A retreat frees all resources of a claim, when the job is done. The claim object
is invalid afterwards, so the programmer must not call infect for example.

1 claim.retreat();

5.6. Explicit Reinvasion

While it is possible to retreat claims and invade anew, there is a reinvade method
for adapting claims, which is more efficient. It will (constraints permitting)
keep the resources already in the claim.

For many applications it only makes sense to adapt resources at certain points.
For example an iterative algorithm can do it between iterations. See chapter 6

for a realistic example. For this use case reinvade can be called without an
argument, which signals to the agent that at this point it may adapt resources.
The agent can add or remove resources depending on the load of the system,
but will always respect the constraints previously set. This call should be
cheap in terms of overhead, assuming that the claim will mostly not change,
so the application can call it often and the system gets opportunities for load
balancing.

For a quick feedback, infect returns a boolean, which is true iff the claim
resources changed. The application can inspect the claim (as described above)
to recalibrate itself to the changed situation.

1 val changed = claim.reinvade(); // optimize resources
2 if (changed) adaptMyself();

Alternatively, you can also use reinvasion to change the constraints by giving a
constraints parameter to reinvade. This call variant can be cheap, if the resources
currently in the claim fulfill the new constraints. The agent may return the
claim unchanged and optimize concurrently until the next reinvasion.

86

5.6. Explicit Reinvasion

1 val claim = Claim.invade(new PEQuantity(5,10);
2 // ... after a while, we could use more PEs ...
3 val changed = claim.reinvade(new PEQuantity(5,20);

There is a perilous situation with respect to retreating from resources: A claim
often spans across multiple tiles and claims are isolated from each other (see
section 5.9 below for details). Thus, if a claim retreats from all PEs on a tile, the
tile becomes inaccessible and all data there is lost. To err on the side of safety,
the agent system will by default never free a tile completely. This can break the
quantity constraint. For example, you have a claim with 4 PEs on 4 different
tiles and you reinvade with PEQuantity(2), you will still have 4 PEs, so you do
not lose the data on (at least) two tiles.

For a clean solution, we introduce a “resize handler”, which are methods the
application can register at a claim.

1 val claim = Claim.invade(constraints);
2 val resizeHandler = (add:List[PE], remove:List[PE]) => {
3 // do something
4 }
5 claim.register(resizeHandler);

When resources of a claim change, it happens in this order:

1. Agent decides to add or remove claim resources.

2. Agent adds resources.

3. Resource handlers are called and they all return.

4. Agent removes resources.

When the resize handler executes, it has access to the union of all resources
before and after the change. This enables the handler to move data from tiles
the claim is about to lose and to new tiles. See chapter 7 for a realistic case.

This mechanism is surprisingly hard to implement correctly, because it interacts
with the infect method (described in detail in section 5.8). First, there is no
requirement that infect cannot run multiple times in parallel, although it makes
no sense. Second, the resize handler can be called when no infect executes. As
there is no generic solution to this dilemma, the problem is left to the user: The
resize handler must synchronize itself with the rest of the application.

87

Chapter 5. Framework InvadeX10

Still, there is another problem. X10 activities form a single tree and you can
use finish to wait for the termination of a whole subtree. The activity that
executes the resize handler is called by the agent system, thus outside this tree.
If we use finish to wait for the termination of infect, we miss activities started
by resize handlers. Requiring the user to wrap all infect calls with additional
synchronization is tedious. Instead, infect implements its own finish mechanism
and the resize handler, knowing the claim it belongs to, registers its activities
there.

This registration is subtle, because while the resize handler runs infect may
return or start or not run at all. Fortunately, we are free to modify the X10

runtime. To implement finish, there is a finish state data structure, which
primarily contains a semaphore to count the sub-activities. Whenever an
activity or sub-finish-state is created, they register at their parent finish state.
Within infect, we can store a reference to the parent finish state in the claim.
The resize handler could use this reference to register its own sub-finish-state
and the usual X10 runtime mechanisms would work as always. An unsolved
problem is that the resize handler can only use the claim object, where it is
registered at, but claim objects get copied, for example due to at.

5.7. Reinvasion from External Trigger

While section 5.3 describes all constraints, this section focuses on a special one.
The Malleable hint marks a claim as “async-malleable”, which means the agent
system can reallocate its resources at any time, especially due to claim-external
events. For example, if another claim retreats completely, an async-malleable
claim can instantly take and use the resources without waiting until an explicit
reinvade call. The alternative would be that some resources idle, which is not
necessarily bad since the system knows about their state and could power them
off. Still, it is preferable to make good use of resources and Malleable opens up
more possibilities.

The term “malleable” was defined by Feitelson and Rudolph [FR96]. They
worked on job schedulers for parallel supercomputers and classified jobs as
shown in fig. 5.6. The intent of their work was a convergence of job scheduling
on supercomputers, because schedulers used different optimization goals and
techniques and often without documenting their assumptions. For a general
framework for scheduling, the framework must support all four cases and more
aspects further detailed in their paper.

88

5.7. Reinvasion from External Trigger

who decides when it is decided
number at submittal during execution

user Rigid Evolving

system Moldable Malleable

Figure 5.6.: Reproduced “table 2” by Feitelson and Rudolph [FR96]. One
question is who decides about the hardware parallelism, namely
the user or the system. The second question is when the decision
is made, namely at submission (before the application starts) or
during execution.

The Invasive Computing approach cannot be classified in this schema, because
user and system work together. The user sets constraints and informs the
system, which then ultimately decides but constrained by the user. Are we
in the column “during execution”, at least? Yes, but every application which
uses reinvasion is. The schema does not distinguish between applications that
adapt when it is convenient (at the next reinvade call) and application that can
adapt immediately (without waiting for a reinvade call). Thus, we use the term
“async-malleable” for the later case.

An example, which is malleable, but not async-malleable is the multigrid
application in chapter 6, a typical iterative numerical algorithm. It uses reinvade
to modify the resource claim at specific points during each iteration. If we
run multiple instances of the malleable multigrid solver concurrently, we
can observe an improved throughput compared to concurrent non-malleable
multigrid instances [BRS+13]. Still, resources may idle and wait for the next
reinvade call. We want to avoid that kind of waste as well.

The Malleable constraint was the initial reason to introduce the resize handler
concept and earlier work [BMZ15] registered the resize handler as parameter
of Malleable. However, it turned out the resize handler is useful even without
Malleable, so it became separated as described in the previous section.

How useful is this technique, if it only applies to certain applications? Any
application following a master-slave pattern has the option to add or remove
slaves, usually at a low cost. For example, it can be used inside a job-queue
framework [Böw15] and on top of this applications like numerical integration
can be implemented as described in chapter 7.

89

Chapter 5. Framework InvadeX10

1 val ilet = (id:IncarnationID)=>{
2 for (job in queue) {
3 if (queue.checkTermination(id)) break;
4 job.do(); } }
5 val constraints = new PEQuantity(4,10)
6 && new Malleable()
7 && new ScalabilityHint(speedupCurve);
8 val claim = Claim.invade(constraints);
9 queue.adaptTo(claim);

10 val resizeHandler = (add:List[PE], remove:List[PE])=>{
11 for (pe in add) queue.addWorker(pe,ilet);
12 queue.adapt();
13 for (pe in remove) queue.signalTermination(pe); }
14 claim.register(resizeHandler);
15 claim.infect(ilet);
16 claim.retreat();

Figure 5.7.: Example of a async-malleable invasive application with a master-
slave structure and a global queue of jobs. First, ilet states the actual
computation to perform. Then constraints describes a malleable
claim of 4 to 10 PEs and a speedup curve defined elsewhere. Theinvade call returns a resource claim and queue gets a chance to inter-
nally adapt itself to the claimed resources (e.g. for work stealing).
Next, resizeHandler defines how to handle resource changes. Theninfect starts an i-let on each PE of the claim, which execute jobs from
the global queue. Finally, we retreat the claim to free the resources.

Also, you can use async-malleable for parallel search algorithms and sorting
is frequent task. Flick et al. [SSF13] have enhanced multi-way merge sort with
malleability. Multi-way merge sort is a popular parallel sorting approach,
which contains a phase where it partitions the data into work packages that
it sorts internally and independently of each other. They use a central work
queue for sorting jobs and a number of worker threads that fetch jobs from
the queue. Workers can be added and removed without interrupting other
workers. If the work packages are small enough, the sorting process as a
whole becomes malleable. Moreover, with small work packages, response
to reconfiguration requests is nearly instantaneous. The authors measured
comparable performance to Intel’s TBB and others on an unloaded system.
However, when the system is under load from other applications, malleability
offered better performance.

90

5.8. Infection

In an async-malleable invasive application, the system can decide at any time
to resize a claim. The system is only required to meet the invasion constraints.
For example, requiring an async-malleable claim of 4 to 10 PEs, means the
system can resize to 5 or 9 PEs at any time. In contrast to normal claims, an
async-malleable claim must be adaptable even within an active infect phase.
The application is responsible for starting and terminating i-lets with respect to
added and removed PEs. Figure 5.7 shows an example use.

5.8. Infection

Infection is the phase, where resources in a claim are actually used. Since claims
are implicitly an isolation mechanism, we cannot use the X10 mechanisms
(async and at), but we need an extra method. Since in most cases, we want to
use all the resources, the infect method implicitly distributed across all PEs, as
you have seen in section 5.2.

The infect call executes one activity per processing element. The programmer is
free to create additional activities using async or communicate between places
within a claim using at.
The infect method is overloaded to support the map-reduce pattern for conve-
nience. So, if the i-let closure type has a non-void return type, the infect method
will collect the returned values.

1 val ilet = (id:IncarnationID) => { return x; };
2 val ret = claim.infect(ilet);

Here infect returns an array containing all values returned by i-lets run-
ning in parallel. This means the length of the ret array equals the size of
claim.processingElements(), since each PE executes exactly one i-let. For example,
if the i-let returns an Array[int], then infect returns an Array[Array[int]].
It is also possible to provide a reduce function, which combines returned values
into one.

1 val ilet = (id:IncarnationID) => { return 2; };
2 val reduce = (a:int, b:int) => { return a + b; };
3 val ret = claim.infect(ilet, reduce);

91

Chapter 5. Framework InvadeX10

In this example, infect returns an int, which is the sum of all returned values,
which depends on the number of PEs in the claim.

5.9. Adapting X10 Semantics

In normal X10, all places are available at all times. In constrast, with Inva-
sive Computing places appear and disappear. This requires a more dynamic
X10 [BBMZ14]. It is still convenient, if Place.places() returns a sequence of all
available places. Thus we need to adapt this method for more dynamicity. It
constructs a sequence instead of returning a static one.

A little bit more adaptation is necessary for fields like Place.MAX_PLACES and
PlaceGroup.WORLD, because they cannot be fields anymore. Instead, you must
call a method Place.getMaxPlaces() now.

Even more subtle are changes to code, which implicitly assumes a constant
number of places. One fundamental building block in X10 is PlaceLocalHandle,
which enables the programmer to dynamically create per-place variables. This
requires initialization at creation in every place and is done eagerly. When
additional places appear, each place local handle must be initialized before
it can be accessed. Instead of using eager initialization, we switch to a lazy
model. The tradeoff is that we must first check for initialization on every access.
However, every access already requires multiple indirections anyways, so the
overhead is negligible.

Still, we were unable to make the adaption completely transparent for applica-
tion programmers. In various cases application code must be adapted. If the
programmer uses a DistArray, the data must be redistributed from removed to
additional places, which is potentially a costly operation, so the programmer
should have control over that. For transparency, every DistArray would have to
register at its claim and add bookkeeping overhead for little gain.

The X10 core developers did similar work themselves under the project names
Resilient X10 [CGH+

14] and Elastic X10. Resilient X10 considers supercom-
puters where compute nodes sometimes fail. In the X10 language this means
places can disappear and their extension throws an exception to notify the pro-
grammer about such failures. In a dual manner, Elastic X10 adds the possibility
for places to appear in a cloud scenario, where administrators add additional
servers. Use both approaches together, then resources in terms of places can be
added and removed from a running application. This plays into the strategy

92

5.10. Invading Communication Resources

change of X10 development: Away from high performance computing towards
cloud computing. The user can add and remove resources who rents more or
less compute resources for his servers.

In contrast, our framework makes a more radical paradigm change still. Ap-
plications can give information to the system what and how many resources
are desired. In addition, more kinds of resources than places are handled:
From low level bus throughput and latency guarantees over single processing
element types to memory requirements. There is also no concept of exclusive
or shared resource use, which is relevant for performance.

5.10. Invading Communication Resources

This thesis describes a resource-aware framework and paradigm, but mostly we
consider processing elements as the sole resource type. In fact, it is only resource
supported by the implementation. Still, we want to enable the management of
other resources as well. This section is about communication resources; More
precisely about bandwidth and latency of the network-on-chip (NoC) which
connects tiles and is used for message passing between X10 places. While the
framework implementation does not support it yet, we designed the interface
and implemented the lower-level mechanisms. Some parts are missing the
operating and resource management system layers, though.

We investigated explicitly invading connections on the NoC together with
Heißwolf et al. [HZZ+

14]. Compared to a bus protocol in a multicore CPU,
NoCs are more complex and need more energy. Unfortunately, real power
consumption could only be measured by building an ASIC, which is out of
scope. For estimating the energy need, we synthesized a small system, derived
toggle rates from a netlist simulation, and came up with a power consumption
of 7.94 mW for an idle router (Pidle). While there are ways, like power gating,
to reduce Pidle, there more interesting number is the energy used for actually
communicating data. Hence, we report Pdata = Ptotal − Pidle.

An FPGA-prototype of an architecture with four processing tiles was realized.
The prototype has only one Leon3 RISC core per tile due to the limited amount
of resources available on the used ML605 FPGA board. Each tile has a tile local
memory of 256 kB used to store the executable and frequently used program
data. The cache hierarchy per tile consists of a 512 B L1 data- and instruction

93

Chapter 5. Framework InvadeX10

32x32 64x64 96x96 128x128

1

2

3

4

5

Ex
ec

ut
io

n
Sp

ee
du

p
[

1
se

qu
en

ti
al

]

BE_DDR BE_PF GS_DDR
GS_PF GS_DMA

(a) Application speedup with four tiles com-
pared to using a single one.

32x32 64x64 96x96 128x128

104

105

106

107

N
oC

ut
ili

za
ti

on
[F

li
ts
(3

2
bi

t)
] BE_DDR BE_PF

GS_DDR GS_PF
GS_DMA

(b) NoC utilization correlates with matrix size.

32x32 64x64 96x96 128x128

0

5 · 10−2

0.1

0.15

0.2

0.25

C
om

m
un

ic
at

io
n

Po
w

er
[P

da
ta

in
m

W
]

BE_DDR BE_PF
GS_DDR GS_PF
GS_DMA

(c) NoC power consumption correlates with utiliza-
tion and reductions up to 96% are visible.

Figure 5.8.: Parallel matrix multiplication executed with different settings on
a 4 tile prototype of the clustered architecture. Figure by Heiß-
wolf et al. [HZZ+

14].

94

5.10. Invading Communication Resources

cache and a 4 kB L2 cache. The prototype can be revered as heterogeneous
since one of the four tiles has a DDR3 memory attached to its front-side-bus
that can be accessed from the other tiles via the NoC.

As a test application, we used an integer matrix multiplication with different
matrix sizes. Two versions only use “best effort” (BE) communication without
invading resources explicitly. Three versions exploit the “guaranteed service”
(GS) connections. For each category, there are two sub variants: One uses
off-chip DDR3 memory directly (DDR) and the other prefetches to tile local
memory (PF). Additionally, our hardware supports DMA transfers managed
by the NoC, which makes the prefetching more efficient. Due to hardware-
constraints a DMA together with BE is not possible. This leaves us with five
variants to compare in fig. 5.8:

1. BE_DDR: Source matrices are located in the main memory, best effort
communication is used.

2. BE_PF: Required parts of source matrices are prefetched to tile local
memory by software, best effort communication is used.

3. GS_DDR: Source matrices are located in the main memory, GS connections
are established for communication.

4. GS_PF: Required parts of source matrices are prefetched to tile local
memory by software, GS connections are established for communication.

5. GS_DMA: Required parts of source matrices are prefetched to tile local
memory by hardware DMA, GS connections are established for commu-
nication.

Figure 5.8(a) compares the speedup of the different variants relative to a single
core variant executed on the tile that attaches the DDR-controller. The results
show that prefetching has no benefit with respect to execution time for small
matrix sizes due to the fact that all data fit into the L2-cache. A matrix with
64x64 elements even reaches speedups higher than four due to the fact that
the overall cache size is increased compared to the single core variant. If the
matrix sizes become bigger prefetching improves performance. For a matrix of
128x128 elements prefetching introduced by CAP improves performance by 26%
compared to the reference BE_DDR. Figure 5.8(b) shows the NoC utilization
caused by executing the variants of the matrix multiplication. To obtain these
numbers we used the NoC link monitors available on the prototype. The results
show that the amount of communication is proportional to the matrix size.

95

Chapter 5. Framework InvadeX10

For larger matrix sizes the amount of flits can be reduced by 26% if resource
allocation in the form of GS connections is used without prefetching. DMA
prefetching (GS_DMA) can reduce the amount of communication by up to
96% compared to the reference BE_DDR for the largest matrix size. Finally we
analyze the power consumption that is directly related to data transmissions
for an ASIC implementation of the NoC. Figure 5.8(c) summarizes the results.
The benefit of prefetching with respect to the power consumption grows with
the size of the matrix. The GS_DMA variant, that applies all of the proposed
CAP mechanisms, can reduce Pdata by up to 95%. If no prefetching is used
the allocation of communication resources (GS) can help to reduce the power
consumption by up to 20% depending on the matrix size.

In summary, we measure up to 96% less communication and 95% less trans-
mission power. Additionally, we see a speedup of up to 26% for the matrix
multiplication benchmark. These results suggest that exploiting communication
resources is in fact worthwhile and should be incorporated into a resource-
aware paradigm.

5.11. Compiler Integration

The research project included building a custom compiler. At first, engineering
work was necessary to port X10 to the invasive platform, which means modified
SPARCv8 processors and a custom operating system. Additionally, the adap-
tations from section 5.9 change fundamental assumptions of the X10 runtime.
While all those aspects could have been solved with the existing C++ backend of
X10, we also investigated optimizations, which require deeper compiler support.
We used the libFirm library [BBZ11, BBH+

13] for its dependency-graph struc-
ture, optimizations, and analysis capabilities. For code generation we added
code generation for SPARC. Work on register permutation [BMR15a, BMR15b]
and data transfers [MT17] was enabled by using libFirm. The work on the
memory model (chapter 4) is directly motivated from the compiler engineering,
since the compiler has to map from the source language’s memory model to the
hardware’s memory model, which requires the compiler to know both. This
is important for a language like X10, which is explicitly designed for parallel
execution.

When we started our project, X10 provided two backends. The “managed
backend” translates X10 to Java code and then uses javac and the JVM. His-
torically, this was the first backend as X10 was built with the Polyglot frame-

96

5.11. Compiler Integration

X10 Frontend

Managed Backend Java

Native Backend C++

libFirm Backend assembly

Figure 5.9.: The X10 compiler features three backends producing Java, C++,
or assembly output from X10 input. Optimization happens in
the frontend and in the libFirm backend. The managed frontend
delays optimization to the execution phase on a JVM and the
native frontend relies on the optimization of gcc compiling C++ to
assembly.

work [NCM03], which enables easy modifications to Java. Later, the need for
speed prompted the development of the “native backend”, which translates
X10 to C++ code and then uses gcc. In HPC code it is essential to provide an
“array of structs” data structure, which is not possible on the JVM 3. For our
work, we added a third backend by reusing libFirm compiler toolkit. This
backend generates assembly and then only uses assembler and linker from gcc.
Figure 5.9 illustrates the three backends.

While the X10 frontend and the libFirm backend already existed, integrating
still took years. One chunk was the support for generics in X10. Both existing
output formats, Java and C++, support generics4, but assembly does not. We
chose to use the C++ method of template instantiation, instead of the Java type
erasure approach, because it allows to optimize for different type parameters.
For example, an array of int and an array of double should not use the same
assembly code. Instead, the compiler must be enabled to do strength reduction
and other optimizations for loops to improve performance. Thanks to our
student Eduard Frank for implementing most of the template instantiation
parts.

3There is the ongoing project Valhalla to add value types to Java, but it has not been successful so
far.

4C++ templates are a superset

97

Chapter 5. Framework InvadeX10

Another essential optimization is inlining. While inlining is essential for all
optimizing compilers, it is especially significant for our backend, because
there are no primitive data types in X10. Instead, even int is declared as a
struct and provides native methods for arithmetic. The managed and native
backends use string templates to insert primitive operations into the Java and
C++ output, respectively. For assembly output, we cannot annotate assembly
strings to insert, because they would have to be architecture specific. Instead, we
implemented these methods as C functions in the runtime. Obviously, adding
function call overhead to arithmetic operations in tight loops is disastrous
for performance. The tricky aspect about this is that the C runtime and the
X10 code are in different compilation units, which means they are compiled
separately. What our compiler does is a limited form of link time optimization.
The C runtime is fed into cparser, a C compiler with libFirm backend, which
outputs the intermediate representation (IR) instead of assembly. The X10

compiler imports that IR code into the X10 compilation unit. Specific care has
to be taken here to match types. For example, the C int must be matched to
the X10 int. After the merge, inlining can remove the function call overhead for
arithmetics. Not only arithmetics profit, though. The compiler can inline other
parts of the C runtime; For example, inter-place communication, serialization,
and memory management. We thank Matthias Braun for implementing the
lion share of our link time optimization trick.

A third feature we added to our compiler was support for exceptions. We
use the zero-cost approach [HMP97], which has no overhead in the absence
of errors, but is slower when an exception is actually thrown. This matches
with the intuition that exceptions are exceptional and rare. For regular function
calling, exceptions have no overhead and can be ignored. For each try block,
the catch and finally blocks are registered in a special section and referenced by
the activation record (also known as “call frame” on the call stack). When the
application throws an exception a generic handler walks the call stack looking
for a matching handler and executing finally blocks during the walk. Thanks
to our students Julian Oppermann and Jonas Haag [Haa16] for implementing
most of the exception support.

The three described aspects were distinct blocks of work, we had to do for
a working compiler. Of course, much more had to be implemented, like
SPARC code generation, the message passing runtime, integrating a garbage
collector, or porting the standard library. The core team includes (ordered
by number of commits to x10i) Matthias Braun, myself, Manuel Mohr, and

98

5.12. Framework Offsprings

Sebastian Buchwald. While this was engineering work, some of our scientific
work [MT17, BLU16, MBZ+

15, BMR15a, BMR15b, Buc15] is directly inspired
from this.

Resource-awareness is inherently architecture specific in the details. While it
allows high-level programming, the ability to optimize for certain platform
features is essential. Likewise, compilation specifically targets a platform. Thus,
a framework for resource-aware computing naturally belongs into the runtime
of a compiler.

5.12. Framework Offsprings

Our framework has already spawned a few offsprings, which port the ideas of
Invasive Computing into more mainstream environments. This section reviews
and contrasts them.

The High Performance Computing community has published some works in
the same general direction and our ideas fall on fertile soil. While we focus on
many-core architectures, HPC targets supercomputers. Still, there are many
similarities, like the lack of consistent shared memory and the use of message
passing, which makes the programming of such systems quite similar.

Adaptive MPI [HLK04, HZKK06] uses processor virtualization to achieve mal-
leability. Computations are divided into a large number of virtual MPI pro-
cesses, which are mapped to the physical resources. A runtime system can
optimize this mapping using object migration. This technique allows for adap-
tive overlapping of communication and computation, automatic load balancing,
flexibility of running on arbitrary number of processors, and checkpoint/restart
support. In contrast, Invasive Computing assigns resources exclusively and pro-
grams cannot rely on resource virtualization to hide underutilization. Features
like load balancing or checkpointing must be implemented on top.

Leopold et al. [LS06] present a case study of making an existing MPI-2 appli-
cation malleable. The studied application is an iterative numerical simulation
using a master-slave design. New slaves become usable to the master starting
with the next iteration. They did not handle (but investigate) removal of slaves
due to limitations in MPI. In another paper [LSB06], they used a global water
prognosis application and parallelized it with MPI and OpenMP. They also

99

Chapter 5. Framework InvadeX10

1 int main() {
2 Claim claim;
3 int sum = 0;
4

5 claim.invade(PEQuantity(1,3));
6 std::cout << claim.toString() << std::endl;
7

8 // Parallel for−loop with given resources
9 #pragma omp for reduce reduction(+:sum)

10 for (int i=0; i<100000; i++)
11 sum += 1;
12

13 claim.retreat();
14 std::cout << claim.toString() << std::endl;
15 }

Figure 5.10.: iOMP example code from listing 2 in [GHM+
12]. The API for

invade and retreat is similar to the X10 API. There is no infect,
as the conventional OpenMP (pragma omp) mechanisms are used
instead.

made it malleable, but provide no performance evaluation thereof, because
“the performance gain from malleability is difficult to quantify, as it depends
on the cluster load.”

Maghraoui et al. [EMDSV07, EMDSV09] present a general approach for ex-
tending existing iterative MPI applications with malleability features. The
authors broaden the definition of malleable to also vary the number of appli-
cation processes, so they should rely not only on dynamic load balancing via
resource virtualization. Implementation-wise, they extended the middleware
library PCM (Process Checkpointing and Migration) with functions regarding
malleability. In particular, they support splitting and merging processes via
collective operations.

The work so far was conducted outside of Invasive Computing. Within the
transregio, we also investigated ways to bring resource-aware programming to
mainstream platforms.

100

5.12. Framework Offsprings

5.12.1. Invasive OpenMP

OpenMP is a widely used API for shared-memory parallel programming in
C/C++. It is integrated into many compilers, like the GCC. One project of
Invasive Computing ported the concepts to OpenMP and made them available
to a wider audience of HPC programmers. Implemented in iOMP [GHM+

12], it
provides a subset of the invasive command language in C++. Figure 5.10 shows
example code. Only the quantity of processing elements can be requested and
claims provide no isolation. Still, PEQuantity is modelled in a hierarchy, so it
would be easy to extend applications with more constraints.

In a test scenario similar to chapters 6 and 8, where multiple applications were
started at different times, the overall throughput improved while overhead
was insignificant assuming enough computational load. The conclusion is
that “Overall machine throughput can be drastically improved by dynamically
distributing the cores to concurrent applications”.

5.12.2. Invasive MPI

Comprés at al. [CMHGB16] ported the resource management of Invasive Com-
puting to MPI. In MPI with version 2.0 dynamic processes were added to the
standard, although it is not widely used, because of performance and limi-
tations. The adaptation pattern of the proposed MPI extensions is shown in
fig. 5.11.

This work does not support that applications specify constraints and hints for
their resources yet, so an essential part of resource-aware programming is still
missing. Still, the paper concludes that while the work to modify an existing
application into a resource-aware variant is “not trivial, the benefits to system
wide performance as well as the performance of the application itself may turn
out to be worthwhile.”

5.12.3. Communicating Thread Pools

In the world of Java, thread pools are a well-known tool for dynamic load
balancing. As we can transfer the ideas of Invasive Computing into mainstream
concepts, Tobias Weiberg explored this in his bachelor thesis [Wei14]. He made
drop-in replacements for java.util.concurrent.ThreadPoolExecutor. In a scenario

101

Chapter 5. Framework InvadeX10

1 void mpi_adapt(void) {
2 MPI_Probe_adapt(...);
3 if (current_operation == ADAPT_TRUE) {
4 MPI_Comm_adapt_begin(...);
5 // Adapt to changes
6 MPI_Comm_adapt_commit(...);
7 }
8 }

Figure 5.11.: MPI_Adapt from algorithm 1 in [CMHGB16]. The Probe_adapt
checks if adaptation is necessary and is well optimized, so it can
be called often with negligible overhead. The adapt_begin call con-
tains the most work, as it starts new processes and performs most
of the management. Finally, adapt_commit is a barrier synchroniza-
tion and some minor bookkeeping before the computation can
continue.

where multiple thread pools run on the same multicore system, dividing the
cores into disjoint sets for each thread pool, we can measure speedups due to
less contention and context switching. The speedups vary between 0 and 50%.
This means it very much depends on the circumstances if this is worthwhile.
However the overhead is neglible, so apart from the additional complexity
behind the scenes, there is no downside for communicating thread pools.

Now, the framework is documented and we can evaluate its advantages. The
next chapters present different case studies with realistic applications.

102

Chapter 6.

Case Study: Invasive Multigrid

We are dwarfs astride the shoulders of giants,
In the pursuit of that which we show our reliance.
For each step a thousand mistakes are made,
We learn from each with knowledge’s aide.

— /u/justafeather

6.1. The Multigrid Application

A program we use in various benchmarks [BRS+13, BBMZ14] is a time-depen-
dent heat dissipation simulation. A laser engraves symbols on a metal plate,
which heats up in the process. The basic idea is to have a 2D array of tempera-
ture points of the plate. In each simulation step they adjust the temperature
depending on their neighbor points. We get a dynamic behavior during com-
putation of a single time-step due to the multigrid method we use. Multigrid
is a well-known technique to speed up convergence. From time to time you
transform your array into a smaller, more coarse array and back. Naturally, for
smaller arrays you need less resources, which means the load for the system
is periodically lower. One such dip is called a v-cycle and is illustrated in
fig. 6.1.

103

https://www.reddit.com/r/WritingPrompts/comments/2mv6b3/ff_a_short_4line_rhyming_poem_or_limerick/cm7xcxk

Chapter 6. Case Study: Invasive Multigrid

Resource
Need

Time
restrict restrict interpolate interpolate

Figure 6.1.: An illustration of the v-cycle in the multigrid method. From a
fine grid, the data is restricted to a more coarse representation and
then interpolated back into the finer data. The more coarse, the less
compute resources are necessary.

Most of the implementation was done by Martin Schreiber. The description in
section 6.1.1 was primarily written by him [BRS+13]. We talk about a specific
implementation and the multigrid method is the dominating aspect, so we
refer to this application as “Multigrid”. It consists of nearly 3000 lines of
X10 code (including comments etc). My contribution was to implement the
resource-aware framework and together we developed the data redistribution
parts of the application.

Using our invasive framework, we can free resources during a v-cycle, so other
application can use them more productively. In this chapter we focus on the
application itself and chapter 8 investigates a multi-application scenario.

6.1.1. Problem formulation and discretization

We continue with a short description of the mathematical formulation of our
problem as well as its discretization and refer to [BHM00] and [TOS01] for
detailed information on multigrid solvers.

The heat distribution over time in an isotropic material is given by the following
equation:

dT(x, y, t)
dt

= α∆T(x, y, t) + E(x, y, t), (x, y) ∈ Ω.

104

6.1. The Multigrid Application

This equation describes the temperature distribution T, an external energy input
E (a laser hitting the material) on our domain Ω = [0; 1]2, and the thermal
diffusivity coefficient α. We set the boundary conditions to 0 implementing
homogeneous Dirichlet boundary conditions T(x, y, t) = 0, (x, y) ∈ dΩ.

For spacial discretization we store the temperature values at N×N grid-points
for each discrete grid-point (i, j) to a 2D array. The Laplace operator is dis-
cretized by the stencil approximating the 2nd partial derivatives

∆ ≈ 1
h2

0 1 0
1 −4 1
0 1 0

with the mesh-width h. The stencil is applied by computing the discrete
convolution using this stencil as the convolution kernel.

For discretization of the time-stepping, we approximate the temperature distri-
bution with 1st order forward differences and use an implicit update scheme

T(x, y, t + ∆t)− T(x, y, t)
∆t

= ∆T(x, y, t + ∆t) + E(x, y, t).

This leads to the system of linear equations A~x =~b representing the implicitly
discretized heat-equation. The external energy is handled by appropriate
updates of~b. The approximated solution for T(x, y, t) is then given in ~x after
computation of an approximated solution of this system of equations.

Since solving such a systems of linear equations by using direct solvers —
e. g. Gauss-elimination— would destroy the sparsity pattern of the matrix, we
employ an iterative solver to compute an approximate solution.

The Jacobi-Solver is one of such iterative solvers which we employed here
to solve our system of equations: The matrix A is formally decomposed
into A = L + D + R with L the lower diagonal components, D the diagonal
components and R the upper diagonal components. One solver-iteration is
executed by

~x(i+1) = D−1(~b + (D− A)~x(i))

with ~x(i) storing the approximated solution of ~x after the i-th iteration.

105

Chapter 6. Case Study: Invasive Multigrid

With this iterative solver, we avoid storing the matrix A explicitly and can use
sparse matrix data structures instead. For example, the diagonal matrix D is
just a vector. We use the Euclidean norm on the residual~r(i) = A ·~x(i) −~b for
the stopping criteria at the end of each V-cycle.

6.1.2. Geometric Multigrid Solver

Applying the iterative Jacobi solver for the heat equation directly would lead
to elimination of high frequencies in error only while leaving low frequencies
in error almost unchanged. Multigrid solvers were developed to account for
elimination of lower frequencies by applying the solver on coarser grids as
well. The scheme of a multigrid V-cycle running on different resolutions of
the original problem is given in fig. 6.1. We use the error-correction scheme
of restricting the residual instead of the solution, as it is the case for full-
approximation scheme. This reduces our 2D problem size on each level by a
factor of 4 which accounts for our dynamic behavior when solving for the next
time-step. E. g., if we solve a heat equation with a size of 128× 128, this leads
to (at most) 7 levels for the up- and down-cycle as 27 = 128.

6.1.3. Parallelization

Three data arrays have to be stored for each multigrid level: The approximated
solution ~x of the current level, its right side ~b and the residual ~r which is
prolonged to the finer level. We used the slicing method for the domain
decomposition, distributing our domain to computation units by splitting it
along the 2nd array dimension.

For our implementation in X10, all data arrays are stored in distributed arrays
with appropriate invasive extensions.

6.1.4. Invasive Parallel Multigrid

The parallel invasive multigrid program with a V-cycle is given in pseudo-code
in fig. 6.2. Extensions for invasion are in line 11 and lines 18-21.

Obviously, multigrid levels with a problem size below the number of cores
available in the system would not lead to any benefits from the cores unable to
run computations on the level.

106

6.1. The Multigrid Application

Basic variables:
N problem sizex solutionb right hand sider residuale approximated error

Multigrid:
Nr problem size for restricted levelrr restricted residualer restricted approx. error

Claims:
nc new claim after reinvadenc2 updated claim after V-cycle for

lower levels

1 vcycle(N, x, b):
2 r = computeResidual(N, x, b)
3 while |r| > threshold:
4 vcycleIteration(N, x, b)
5 r = computeResidual(N, x, b)
6 vcycleIteration(N, x, b):
7 smoother(N, x, b) # pre−smooth
8 if (N > 3):
9 r = residual(N, x, b)

10 nc = reinvade(N, claim)
11 Nr = N/2 # restricted level
12 rr = restrict(N, r) # restrict residual to new claim
13 er = (Nr, 0) # setup error with 0 values
14

15 nc2 = vcycleIteration(Nr, er, rr) # v−cycle recursion
16

17 if (nc != nc2): # redistribute
18 nc = nc2
19 x.redistribute(Nr, nc)
20 b.redistribute(Nr, nc)
21 e = prolongate(Nr, er) # prolongate error
22 x = x + e # apply correction
23 smoother(N, x, b) # post−smooth
24 return nc # possibly modified claim

Figure 6.2.: Invasive parallel multigrid in pseudo code

107

Chapter 6. Case Study: Invasive Multigrid

Running computations on levels with lower problem size, our multigrid also
requests fewer compute resources. Once the resource manager redistributes
these resources, two crucial aspects have to be considered for distributed
memory systems present on our target platforms: data locality and data
migration. While the responsibility of data locality is given to the resource
manager which is described in the next section, the data migration has to
be handled by the application itself. In case of a redistribution of resources,
possible data migration has to be done to decrease the latency of accessing data
stored at other places.

6.2. Communication Reduction on Data Redistribution

The tricky part of Multigrid is the data redistribution if reinvasion changes
the number of resources. A good balance between the places is essential, for
all the parallel computations to finish at roughly the same time. Otherwise,
processing elements idle, computation potential is wasted, and throughput
suffers. This brings up the question how to redistribute data. More specifically,
X10 provides DistArray as the primary data structure and for convenience, our
invasive runtime should come with redistribution methods. It turns out that the
layout of places makes a big difference. Description and figures in this section
is based on a joint publication [BBMZ14] together with Sebastian Buchwald,
Manuel Mohr, and Matthias Braun.

If the number of places changes, data saved in existing DistArrays may need
to be redistributed to balance the load. In case a new place appears, data
needs to be moved to this place in order to exploit its additional processing
power. Correspondingly, before a place is removed its data must be distributed
to other places. As this process is generic and mechanical, it makes sense to
offer it as part of a library instead of replicating the code in each application.
Communication is potentially expensive, in the following we will present ways
to reduce the amount of communication necessary.

We will focus on new places appearing, but the dual case of disappearing places
can be handled similarly, where the direction of all communication operations
is reversed. Figure 6.3 shows a simple example of a DistArray with a BlockDist
distribution, initially distributed over 4 places. If a new place appears, the
position of the new place relative to the existing places is not fixed yet. It might
make sense to choose the mapping from place ids to physical nodes in a cluster
so that neighboring nodes also have consecutive place ids. However, in general,

108

6.2. Communication Reduction on Data Redistribution

P1 P2 P3 P4 P’

P1 P2 P3 P4

P1 P2 P’ P3 P4

Figure 6.3.: The initial situation with four places P1 to P4 is in the middle and
each place contains five elements of a DistArray (black boxes). If a
new place P′ is added to the end, a migration to the top is necessary.
If a new place P′ is added in the center, a migration to the bottom
is necessary. Intuitively, as you see less moved (green) boxes at the
bottom, this strategy requires less communication.

the new place can be assigned an arbitrary id in the allowed range. As we will
show in the following, it does make a difference in terms of communication
overhead which place id is chosen.

We will assume that all communication operations have equal cost, independent
of source and destination place, and we will only focus on the number of
DistArray elements that have to be transferred. Let p be the number of places
before a new place is added and m the number of DistArray elements per place.
For ease of presentation, let us assume that m is also divisible by p + 1, so all
array elements mp can also be evenly distributed over p + 1 places. The amount
of data that has to be moved per place is d := m− mp

p+1 . If the new place is
added at the end of the place list, as shown in the upper half of fig. 6.3, the first
place has to copy one element, the second two elements, etc. Thus, the total
communication costs are

c = d · Σp
i=1i = d

p(p + 1)
2

= d
p2 + p

2
.

109

Chapter 6. Case Study: Invasive Multigrid

As the number of places p approaches infinity, c can be approximated by the
term dp2/2.

However, if the new place is added in the center as shown in the lower half
of fig. 6.3, the new place receives half its data from the left p

2 places and half
its data from the right p

2 places (assuming p is even). Following the same
reasoning as above, we find that

c′

2
= d · Σ

p
2
i=1i = d

p
2 (

p
2 + 1)
2

.

Hence, c′ = d p2+2p
4 , which approaches dp2

4 as p approaches infinity. This shows
that asymptotically, inserting the new place in the center can save up to 50% of
communication operations.

Throughout the argument we assumed that each place should have the same
number of elements, but if we have a varying number of PEs per place, then
load balancing should distribute the load unevenly. This generalization is
straightforward, as you can then calculate with PEs elements instead of places.
Likewise, if the system is heterogeneous, PEs may need a different number
of elements, but the basic idea is the same. However, in both cases it can be
more difficult to compute the “center”. A fitting definition of center is that the
compute power should be equal on both sides. Calculating the compute power
in practice can be hard though, so it might be necessary to use heuristics.

Another assumption we made is that the number of communication operations
is the metric to optimize for. Depending on the interconnect between places,
only some communication can be parallelized. For example, communication
between place 1 and 2 can probably be done in parallel with communication
between place 3 and 4. However, communication between place 2 and 5 might
not be parallelized with communication between place 3 and 5, because place 5

is a bottleneck. In this case, the new place P′ will always be the bottleneck and
our strategy to insert it in the center will at least not be worse.

6.3. Multigrid Overhead

We have shown the application itself and pondered the particularly tricky
aspect of data migration. Now we investigate, how the application actually
behaves when implemented and executed.

110

6.3. Multigrid Overhead

Figure 6.4.: A measurement of Multigrid with 100 iterations on guest layer
and visualized with the invadeVIEW tool. You can see the v-cycles
as quick dips. For the first iterations the laser is not active, so no
coarsening is necessary and no dibs are observed. In the end, the
laser takes a second pass over the plate, and the v-cycles get a more
chaotic.

A multigrid application actually has nearly constant resource use and is nearly
embarrassingly parallel. The v-cycle diagram in fig. 6.1 suggests valleys of low
resource use. In practice, the valleys are quick dips, as you can see in fig. 6.4
because the coarsening implies that there is much less to compute. Effectively,
a single multigrid is a worst-case scenario, because the application cannot gain
anything, while data redistribution adds overhead. The advantage of using our
invasive framework is that the application can adapt in a competitive scenario
and chapter 8 looks into that. Here we focus only on a single application
scenario.

We run evaluations on an invasive guest-layer platform with 3 compute tiles of
4 PEs each. We could configure a higher parallelism than 3× 4, but this matches
the synthesized FPGA configuration below. It also matches in finer details,
for example the amount of tile-local memory. Host OS is an Ubuntu 16.04

AMD64. The hardware is an Intel i7-3770 CPU at 3.4 GHz with 16 GB RAM and
4 cores (8 with hyperthreading). We measure using the Temci benchmarking
tool [Bec16], which relies on perf-stat. We use x10i in revision 3118333 and
with it iRTSS 2017-03-22.

To measure the overhead of Invasive Computing, we run Multigrid in two
modes: With and without reinvasion. Without reinvasion it is unable to change
its resources, so no data redistribution happens and we call this the “non-
invasive” case. Multigrid is configured to run for 100 iterations, which is
roughly one pass of the laser across the grid.

111

Chapter 6. Case Study: Invasive Multigrid

We measure the wall-clock time and the cycle counts across 40 runs. Then
Temci computes the mean and the standard error mean (SEM). For the invasive
Multigrid, we measure a mean wall-clock time of 4.0 s (SEM is 0.005 ms) and
30.0 Gcycles (SEM is 0.04 Gcycles). For the non-invasive Multigrid, we measure
a mean wall-clock time of 3.7 s (SEM is 0.007 ms) and 28.5 Gcycles (SEM is
0.022 Gcycles). This means an overhead of 5% in cycles and 8% in wall-clock
time. The p-values are practically zero.

When we look at the multigrid phases, we observe that one v-cycle takes 31 ms
and the reinvade and redistribute phase take 3 ms of that, which is the 8%
difference we measure in wall clock time.

Although reinvade and redistribute are not major factors, they are the ones
directly concerned with resource-awareness, so we investigate them further. We
run the application ten times and measure each reinvasion and redistribution
time. Each v-cycle requires multiple reinvade and redistribution steps, so the
numbers do not add up to the 3 ms above. We observe a median reinvasion
time of 171 µs with a median absolute deviation (MAD) of 50 µs. In contrast,
redistribution times are 519 µs with an MAD of 82 µs. Thus, redistribution
is usually the more time consuming phase which takes roughly three times
as long. However, we also see maximum times of 14 063 µs for reinvade and
102 602 µs for redistribute, which means either could dominate the time under
specific circumstances. For example, the garbage collector runs three times
during the 100 vcycles at indeterministic times. These maxima vary a lot
between runs, but the median and MAD are stable.

It is quite possible that this timing variation and cache issues come from the
fact that we simulate a manycore system on a multicore hardware, so multi-
plexing and cache thrashing would be no surprise. We also have cycle-accurate
hardware synthesis on an FPGA. Unfortunately, running this evaluation there
is less reliable, since most tries to run it fail. Sometimes the configuration of the
FPGA fails. At times, we have to turn it off and on again with a USB-controlled
power switch. If the software runs, it can crash due to invalid instructions
and memory accesses, panic when OctoPOS detect broken invariants, or hangs
due to a deadlock or infinite loop. The software problems nearly exclusively
happen with the invasive applications, which are identical except that the do
not call reinvade all the time. This suggests that the errors are in the agent
system. These problems could easily introduce bias into the measurements,

112

6.3. Multigrid Overhead

3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5
0

5

10

15

20

25
Multigrid

Multigrid non-invasive

Figure 6.5.: Distribution of wall clock times for invasive and non-invasive
(striped) multigrid applications.

but the numbers are still interesting. The tooling to investigate deeper is very
limited [FHB14], since the synthesized hardware lacks performance monitoring
to measure cache miss rates, for example.

We use the same X10 source code, compiler and iRTSS versions as before, but
generate SPARC code for the synthesized Leon cores. The hardware platform
is the same as the guest-layer: 3 compute tiles with 4 Leon PEs running at
25 MHz each. Our FPGA platform is CHIPit by Synopsis which contains six
Xilinx Virtex-5 LX330T FPGAs equivalent to 12 million ASIC gates.

We have 10 successful runs for each variant (and in the invasive case additionally
23 unsuccessful runs with a crash, panic, or hang) and recorded the wall time
as reported by iRTSS via clock. For the invasive variants we measure 306 s and
252 s with deviations of less then 1 s each. This corresponds to an overhead of
21%.

113

Chapter 7.

Case Study: Invasive Numeric
Integration

Don’t worry about people stealing an idea. If it’s orig-
inal, you will have to ram it down their throats.

— Howard H. Aiken

7.1. Numerical Integration

Numerical integration is an important basic technique in high performance
computing. We have already seen a small example in fig. 3.5 in section 3.4.1. In
realistic applications, functions might take hours to compute and the results
might be very precise, for example requiring a hundred decimal places.

Here we are concerned with the load balancing aspects, so we use a simple
function and the precision of double. Our integration algorithm is the recursive
rectangle method, which requires a recursion depth as termination condition
in steep regions. It is also adaptive, which requires a parameter ε as early
termination condition for flat regions. Figure 7.1 shows an illustration.

115

Chapter 7. Case Study: Invasive Numeric Integration

x

y

f (x) =
∫ 100

x=0

1
x

dx

Figure 7.1.: Our adaptive integration algorithm visualized. On the flat region
on the right, a wide box is approximation enough. On the steep
region on the left, tight steps are necessary. As 1/x → ∞ for x → 0,
the recursion depth termination is hit there.

7.1.1. Job-Queue Framework

As you have seen in the code in fig. 3.4, numerical integration can be expressed
on top of a job-queue abstraction. Norman Böwing developed a generic
framework in his master thesis [Böw15]. It features a two tiered work-stealing
algorithm, which balances jobs between processing elements within a place
and between places across the whole system.

If you consider a function like 1/x, work balancing is essential. Whichever
place evaluates the range close to zero, will create infinitely many jobs. In
contrast, the other places will sooner or later run out of jobs due to flatness, so
they must steal jobs from the first place again.

The job-queue framework uses reinvasion internally, which means there is no
code overhead for the programmer assuming he uses a job-queue framework
anyways. Figure 7.2 shows what the programmer has to specify. The application
is only 100 lines of X10 code. The distribute queue is 2000 lines of X10 code, but
generic and provided by the invasive standard library. Reinvasion is considered

116

7.1. Numerical Integration

1 private val parts = 5; // split factor
2 public def integrateRange(left:T, right:T) {
3 /* initialize starting jobs */
4 val stride = (right− left) / parts;
5 val initialWork = new ArrayList[Job]();
6 for (var i:uint = 0; i<parts; i++) {
7 val l = left + (i *stride);
8 val r = left + ((i+1)*stride);
9 initialWork.add(new Job(l, r, 0));

10 }
11

12 /* initialize job queue framework */
13 val constraints = new PEQuantity(1,12);
14 val builder = new JobQueueFrameworkBuilder[Job, T](constraints);
15 queue = builder
16 .setWorkList(initialWork)
17 .setAutomaticReinvades(true,100)
18 .build();
19

20 /* start computation */
21 val total = queue.start((job:Job) => {
22 return integrateRange(job.left, job.right, job.depth);
23 }, (i:T, j:T) => i + j);
24 return total;
25 }

Figure 7.2.: Extending the examples figs. 3.4 and 3.6, this is how numerical
integration can be programmed within our invasive framework.
The initial jobs are computed in the same way, but need to be
packed as Job objects. We configure the job queue framework with
custom constraints, the initial job list, and we also let it perform
automatic reinvades every 100 ms. The actual computation calls the
practically identical integrateRange from the previous examples.

117

Chapter 7. Case Study: Invasive Numeric Integration

Figure 7.3.: A measurement of Integrate with recursion depth 10 and ε = 0.01
integrating f (x) = 1/x on guest layer and visualized with the
invadeVIEW tool. It shows capricious unpredictable dynamicity.

periodically. The framework collects load information from all workers and
requests more or less resources accordingly. Figure 7.3 plots how this plays out
in practice.

To trigger reinvasion periodically works ok. Still, it introduces idle time,
from the point where another application retreats from resources until the
period ends and the job queue framework uses the resources. This suggests
an approach where a retreat of one application triggers reinvasion of another
application.

7.2. Integration Overhead

To measure the overhead, we run the application in two modes like the multi-
grid in section 6.3. Integration was configured to integrate f (x) = 1/x from 0

to 100 with a recursion depth of 10 and ε = 0.01. The non-invasive integration
uses all resource for the whole time.

We measured the wall-clock time and the cycle counts across 40 runs. Then
we compute the mean and the standard error mean (SEM). For the invasive
Integrate, we measured a mean wall-clock time of 51 s (SEM is 0.7 ms) and
990 Gcycles (SEM is 11 Gcycles). For the non-invasive integrate, we measured a
mean wall-clock time of 45 s (SEM is 0.5 ms) and 980 Gcycles (SEM is 4 Gcycles).
This means an overhead of 1% in cycles and 13% slowdown in wall-clock time.
The p-value for wall-clock time is practically zero, but for cycles the t-test
computes p = 0.36.

118

7.2. Integration Overhead

Looking deeper, we see 67% more branch misses and 48% more cache-references
with 15% more instructions in the invasive version. The task-clock and cpu-
clock measurements show nearly no difference and a p-value over 30%. This
suggests that invasive integration does roughly the same work, which seems
reasonable since no data redistribution is necessary and the computation is
the same. The higher wall clock time means that the job queue framework
likes to free resources, which is desirable in general, but unnecessary here.
Of course, more resources can be requested, but it requires additional work
stealing afterwards.

We can also run the benchmark on the FPGA platform with the same caveats as
before. We have 10 successful runs for each variant. The results are wall clock
times of 89 s (MAD 6 s) invasive and 38 s (MAD 2 s) non-invasive. This means
a slowdown of 134% which is excessive and requires looking deeper.

One theory is that the function evaluation is so cheap, that we primarily mea-
sure the overhead. Thus we vary the application such that function evaluation
takes much longer: We insert a 1 s “busy sleep”, which continuously polls the
time from the operating system. To counter the increase in run time, we also
lower recursion depth from 10 to 5 and increase ε from 0.01 to 0.1. We measure
at least 5 runs for each.

Now we measure a wall clock time on the guest-layer of 177 s (MAD 15 s)
invasive and 186 s (MAD 4 s) non-invasive, which is a speedup of 5%. Since
they perform the same computation work and invasive has additional overhead,
a speedup can only come from load balancing. Also, the deviation suggests that
there is not actually a difference between them. On the FPGA, we measure 178 s
(MAD 18 s) invasive and 231 s (MAD 25 s) non-invasive. Which is a speedup of
25% and the load balancing can be the only reason, as well. Considering the
deviation, the balancing seems to be consistent here, which is credible because
OctoPOS is simpler and more predictable than Linux.

In general, these varied measurement supports the theory that using the func-
tion 1

x is too cheap and we primarily measure communication, synchronization,
and other overhead in the first case. The fact that the invasive variant (at
least) as fast as the non-invasive one suggests that the overhead is actually
negligible given enough compute work, which matches the experience with
iOMP [GHM+

12].

119

Chapter 7. Case Study: Invasive Numeric Integration

It is interesting that the FPGA times are very close to the guest-layer ones,
although the guest-layer runs at hundred times the clock frequency. Also, the
guest-layer features a clever Intel i7, in contrast to a simple Leon, which could
mean another order of magnitude speedup. The advantage of the FPGA is that
there are more cores available, hence hardware parallelism, although this only
explains a factor of 3 here.

120

Chapter 8.

Multi-Application Evaluation

Seek a test that lets reality judge between you.
— Eliezer Yudkowsky

After looking at our two example applications Multigrid (Chapter 6) and
Integrate (Chapter 7) in detail, we now investigate their combination. Figure 8.1
shows the wrapper code, which executes both applications simultanously.

Running multiple Multigrid applications in parallel is boring, as they quickly
partition the resources equally and then stop trading. The reason is that most
of the time Multigrid requires the maximum amount of resources and the
quick dips never align in practice. For this reason we need an application like
Integrate, which has lower resource needs for longer periods of time.

8.1. Utilization

Once two invasive applications run on the same system, they have to trade
resources, because they are assigned exclusively. Figures 8.2 and 8.3 show such
a competitive scenario over time with a Multigrid and an Integrate application.
In the invasive case, it illustrates that PEs are traded back and forth. Also, most
of the time a 100% utilization is achieved and only temporarily some PEs are
idle. Without the ability to adapt if more resources become available, overall
utilization and performance suffers.

121

Chapter 8. Multi-Application Evaluation

1 static def runSeparate(fun:(Claim)=>void) {
2 val claim = Claim.invade(new PEQuantity(1)
3 && TileSharing.WITH_OTHER_APPLICATIONS);
4 claim.infect((id:IncarnationID)=>{
5 fun(claim);
6 });
7 claim.retreat();
8 }
9 public static def main(args:Array[String]) {

10 finish {
11 async runSeparate((claim:Claim)=>{
12 /* run numerical integration */
13 val depth = 10;
14 val epsilon = 0.01;
15 val work = new Integrate3(Integrate3.getFunction(),
16 epsilon, depth, false, true);
17 work.integrateRange(0f, 100f);
18 });
19 async runSeparate((claim:Claim)=>{
20 /* run multigrid */
21 val input = new multigrid.ImageInput();
22 val publish = new multigrid.NoOutput();
23 MainMultigrid.default_main(input, publish, 50, true);
24 });
25 }
26 }

Figure 8.1.: The runSeperate method executes the provided function in a newly
created claim with a single PE. The main function uses it to run the
two applications. This is done in parallel via X10’s async.

122

8.1. Utilization

Figure 8.2.: Resource use during a competitive scenario over time. Multigrid
in green and Integrate in blue. The red application is the main
application, which only started the other two. The upper diagram
shows absolute resources use. The lower diagram is stacked, so it
shows the total utilization.

We cannot calculate the utilization according to definition 2. Unfortunately,
there is no good way to measure the hidden idle resources Ridle, so we ignore
that factor. We need to calculate utilization over time:

∫
U (see section 2.8).

We can observe all redistributions δi and record the number of used resources
pi = |R| − |R0| and the wall clock time ti. Now we compute utilization as

∑
i

pi × (ti − ti−1).

Using this metric, we measure a utilization of 93% (MAD 2.8%) for the invasive
variant and 10% (MAD 0.2%) for the non-invasive one. This matches the graphs
in figs. 8.2 and 8.3. Since integration is not able to scale arbitrarily, 100%
utilization is impossible in this scenario.

123

Chapter 8. Multi-Application Evaluation

Figure 8.3.: Resource use during a non-invasive competitive scenario in contrast
to fig. 8.2. We see resource use like the theory illustration in fig. 2.3.
The blue integration application is unable to use the idle resources
after the green multigrid application has terminated and continues
to use only few PEs.

8.2. Arbitrary Speedup

Section 2.7 showed the speedups to be unbounded in theory. What about real
programs, though? What is the benefit if we evaluate a competitive scenario
and can we show arbitrary speedups with real programs there? We use the
Integrate application as the flexible one and Multigrid as initial resource hog.

Once again, we compare two variants, the invasive and the non-invasive one. In
both variants, the same two application, Multigrid and Integrate, are running
with the same parameters and data. More concretely, Integrate computes∫ 100

x=0 1/x to a maximum depth of 10, but may terminate early if ε ≤ 0.01.
Multigrid computes 50 iterations for the problem size 127, a maximum residual
norm of 0.00001, a recursion depth of 9, a time step size of 0.001, and a heat
coefficient of 0.001. The benchmarking platform is the same as in chapters 6

and 7. For each variant we measured the real wall clock time in 20 runs.

Figure 8.4 compares the means: 48 sec and 275 sec with insignificant deviations.
The large difference of the means and thus the 5× speedup is obvious.

124

8.2. Arbitrary Speedup

50 100 150 200 250

NonInvasive

Invasive

Figure 8.4.: Comparison of the means in the competitive scenario in a whisker
plot. The means are 48 sec (deviation is 5.1 σ per mean) for in-
vasive and 275 sec (0.013) non-invasive. Clearly, Invasive is more
than 5 times faster than NonInvasive, so computing a p-value is
unnecessary.

We can also run the benchmark on the FPGA platform with the same caveats as
before. We have 7 successful runs for each variant. The results are 22 s invasive
and 29 s non-invasive with insignificant deviations. The speedup is not as good,
but still obvious.

We can change the difference arbitrarily by adapting the number of iterations of
Multigrid or the depth of Integrate. Thus we conclude, the theoretic speedups
from section 2.7 can be observed with real programs as well.

125

Chapter 9.

Conclusions

It’s still magic even if you know how it’s done.
— Terry Pratchett, A Hat Full of Sky

Resource-aware programming in high-level languages on MPSoCs is feasible
with manageable effort and improves performance.

9.1. Summary

The introduction described recent trends in computer architectures, extrapo-
lated the trends, and identified the need for resource-awareness and high-level
languages. This thesis presented a framework for resource-aware programming
on a theoretical level (chapter 2), a useable implementation (chapter 5), and
first steps for a bridging between them with a memory consistency model
(chapter 4). Within Invasive Computing (chapter 3), we evaluated the imple-
mentation on two single application case studies (chapter 6, chapter 7) and also
in a competitive multi-application scenario (chapter 8).

The core idea is that applications provide information about their behavior
to a resource management system, which decides with global information.
Application then must adapt to these decisions. The theory promises improve-
ments for efficiency, utilization, and speed (theorems 1 to 3). In practice, those
promises were not always realized. Sometimes overhead overcomes the effi-
ciency improvements. Utilization can suffer if resource management heuristics

127

Chapter 9. Conclusions

go wrong. Speed improvements depend on the emergent application behaviors.
Still, chapter 8 shows improvements for utilization and speedup in practice
with complex real-world applications.

9.2. Mistakes in Hindsight

The framework presented here is certainly not perfect. Aspects like extensibility
due an open hierarchy of constraints have aged well. Additional constraints
and hints are easy to add, although interactions with others must be kept in
mind. The framework is used by other people, so backwards compatibility is a
factor and some issues remain. This section describes what should have been
done differently in hindsight.

9.2.1. Reinvade from Inside

We designed the framework with more focus on invasion than on reinvasion.
Invasion must be done from outside of a claim, because the claim does not exist
before. It turned out that reinvasion is the more important mechanism, because
it enables the dynamicity. Reinvade is usually performed more often, since
invade can by definition only be performed once per claim.

As we gained experience writing invasive applications, we repeatedly observed
that reinvade was performed from within the claim, as shown in fig. 9.1. Inside
the claim is the location where the data is which we need to define constraints
and hints. Combined with the idea that claims are an isolation mechanism, it
turned out that modifying resources is more intuitive from the inside.

In hindsight, it would have been a simpler and safer design, if we would only
provide a single method which executes this invade with a single PE. It would
take a single parameter: the closure to execute inside the new claim. The closure
itself would take the new claim as a parameter as fig. 9.2 illustrates. Apart
from being the common use, there are two advantages. First, the retreat can be
implicit at the return of the closure. This is safer as the programmer cannot
forget about it. Second, it decouples patterns like map-reduce. Currently,
we overload infect to support this pattern in an integrated way. Distributed
map-reduce is a hard problem in itself, so it is limiting to integrate it into our
framework. We could provide such a method for convenience of course, but it
should be promoted as the default way to invade.

128

9.2. Mistakes in Hindsight

1 val claim = Claim.invade(new PEQuantity(1)
2 && TileSharing.WITH_OTHER_APPLICATIONS);
3 claim.infect((id:IncarnationID)=>{
4 /* application code ... */
5 claim.reinvade(other_constraints);
6 /* application code ... */
7 });
8 claim.retreat();

Figure 9.1.: Reinvasion from inside the claim: After creating a new claim with
only a single PE, all the actual resource-aware dynamicity happens
within the claim during the infect within the i-let.

9.2.2. X10 Language

X10 is a well-designed language for HPC and backing by IBM promised success
in 2010. Nevertheless, it failed at its goal to replace Fortran and C++. Today,
development on X10 itself has practically stopped. While version 2.6.1 was
released in 2017, there are nearly no changes to the codebase anymore as fig. 9.3
shows.

One promise of X10 was dependent types, but they are only implemented in
a very limited form. The X10 dependent type checker only implements the
assignment of integer and boolean values and checking them for equality. The
only practical use seems to be that array dimensions are known at the type level
and the compiler guarantees consistency for array operations. Our initial hope
to use the type system for resource-awareness checks was disappointed.

1 Claim.create((c:Claim) => {
2 /* application code ... */
3 claim.reinvade(other_constraints);
4 /* application code ... */
5 /* implicit retreat */
6 });

Figure 9.2.: Alternative for fig. 9.1, where invade and retreat are implicit.

129

Chapter 9. Conclusions

Figure 9.3.: Contributions to the official X10 repository as seen by Github.
There was action from 2009 to 2016, but in 2017 only a small blip
can be observed.

X10 comes with garbage collection (GC) to provide memory and type safety
in an easy to use manner. It relies on GC nearly as much as Java and has no
particular support for explicit memory management. The only advantage are
value types, which allows for “arrays of structs” where Java would have to
use an array of references and thus indirection. The problem with garbage
collection [HB05b] is that it requires more memory than explicit memory man-
agement. It turned out that the systems we are able to synthesize on our FPGA
platform are relatively memory limited compared to desktop computers.

9.3. Future Work

Now let me describe the unfinished business from this thesis, which would be
worthwhile to proceed.

9.3.1. Make it Usable

The goal of science is invention, discovering new ideas never thought before.
Innovation makes inventions useable. While we have an implementation that
we used to develop and run real programs, it is still a research prototype.
Turning that into usable tools requires a lot more (primarily engineering)
work.

For example, Tobias Weiberg porting some aspects of resource-aware program-
ming to Java ThreadPools [Wei14] was one such effort. Due to the popularity
of containers, Linux has isolation mechanism like control groups for resource
management now. One could imagine a system daemon, which partitions

130

9.3. Future Work

resources for applications. In a similar fashion the core idea can be ported to
server orchestration, supercomputer cluster management or the dual use of
CPUs and GPUs, for example.

9.3.2. Decoupled Performance Modelling

Performance modelling is a wide field, which reaches from simple formulas
with one parameter (e.g. Amdahl’s Law) over the analysis of complex structures
(e.g. annotated UML graphs) to an analysis of code. In the case of constraints,
we are restricted to a simple model, because it has to be communicated to
resource management, which analyses it at runtime. The model we currently
use always felt too simple, but even if you introduce only a few additional
parameters it quickly explodes in complexity. Various people stated a need for
a better model but with very different ideas.

The one aspect that should be improved is to decouple the three factors plat-
form, application, and data. To calibrate any performance model you have
to profile the application on some platform with some data and measure its
behavior. Often people use different data to get more generic model parame-
ters. Sometimes people use different platforms (hardware or operating system).
However, if you use data with very different characteristics or a different
hardware or a different operating system, then people have to measure again.
Otherwise the models predictions are not trustworthy. In contrast, a decoupled
model does not need this full calibration process. For example, if we change
the hardware, we would only need to determine the hardware parameters and
reuse the others.

An initial idea would be to start with Amdahl’s Law, a simple formula. Then
we extend for various phenomena we observe in the real world. For example,
algorithms may contain mutually exclusive regions, where time grows linearly
with the parallelism. Cache sizes affect the speed and are sometimes the
reason for superlinear speedups [HM90], when total cache sizes grows with the
number of cores if they all have their own caches. Communication patterns can
be modelled [HZQ+

13], because we should know if a parallel algorithm sends
messages to single neighbors or uses all-to-all mechanisms. More detailed
notes on this topic are in appendix B, but none of that has been validated with
real soft- and hardware.

131

Chapter 9. Conclusions

9.3.3. Energy-Awareness

Energy consumption is still a growing concern. The hard aspect is that not only
the CPU must be considered, but also memory, cooling, disks, network, and
other components that draw power. For supercomputers, Sarood et al. [SLK+

13]
show that it is not straightforward optimize performance with a given power
budget. So did Rountree et al. [RAdS+12] with a focus on frequency scaling.
For mobile computers or smartphones, we also observe a trend to heterogenity.
Most prominently, ARM’s big.LITTLE architecture which mixes slow and fast
cores on the same system-on-chip. Currently, resource management is done
very naively: Either the slow or the fast cores are active, but not both at the
same time or some of both classes.

Currently, our resource manager focuses on performance and utilization, but
energy consumption adds another conflicting goal. The first challenge is to
develop the hints about energy consumption an application can give. Then
the second challenge is how the resource manager should weigh performance
against energy use. The boundaries for energy consumption are probably not
properties of the application but of the system: The smartphone user decides
when a low-power mode is used. The administrator of a supercomputer
specifies how much power should be consumed.

132

Acknowledgments

At first, I want to thank my doctoral advisor Gregor Snelting. He is a great
supervisor, a great professor, and a great scientist. He provided me with a lot of
freedom and supported me in political skirmish. I do not know any professor
where I would prefer to work.

Also thanks to my second advisor Jürgen Teich, whose relentless drive made
Invasive Computing possible. It follows that this work was partially sup-
ported by the German Research Foundation (DFG) as part of the Transregional
Collaborative Research Center “Invasive Computing” (SFB/TR 89).

Also essential for this thesis were my colleagues: Andreas Fried, Andreas
Lochbihler, Denis Lohner, Joachim Breitner, Jürgen Graf, Manuel Mohr, Martin
Hecker, Martin Mohr, Matthias Braun, Maximilian Wagner, Sebastian Buchwald,
Sebastian Ullrich, and Simon Bischof. Together we played, hacked, built,
discussed, learned, and teached. Some directly contributed by proof-reading
this thesis. Others contributed indirectly.

Another essential part of our chair is our secretary Brigitte Sehan, who managed
travel and other bureaucracy for me.

I had more colleagues within Invasive Computing, who built stuff above and
below me. They pushed me and I pushed them. In many discussions, we
beat the framework into its current shape. Explicitly, I want to thank Martin
Schreiber, Jochen Speck, Stephanie Friederich, Benjamin Oechslein, Jens Schedel,
Christoph Erhardt.

I had the honor to supervise quite a few great students. Some of their work
also contributed to this thesis. There is Johannes Bechberger. His tool Temci
helped with the benchmarking and was used for some of the plots. Norman
Böwing made the invasive job-queue framework used here.

133

I also want to thank the people who led me into the compiler field during my
diploma thesis: Christoph Mallon, Michael Beck, and Rubino Geiß.

My final thanks go to my lovely wife Anne-Kristin, who grounded me, moti-
vated me, and all around supported my through the whole PhD process.

♥

Appendix

135

Appendix A.

CHIPit Measurements

Starting at 2017-09-06, I measured the following executions with commands
like

octo_run.sh chipit 2017_06_28−2x2_chipit_rev2 1 $HOME/Multigrid.leonexe 1 withIoTile

on the CHIPit platform. The X10 main function prints a timestamp right at the
beginning and the end. The timestamp value is provided by OctoPOS. The start
times are very consistently at 6 s, so they are not mentioned in the evaluation.

A “hang” means the application locked up somehow. All cores are idle. All
activities and i-lets are blocked.

A “crash” means the application terminated with an error.

A “panic” means iRTSS terminated with an error.

Sometimes CHIPit fails to even load the code. These errors are not recorded
here, because they are indifferent to the code.

137

Appendix A. CHIPit Measurements

A.1. Multigrid

6023340000 — crash
6019877000 — hang
6055054000 — hang
6026941000 — hang
6064552000 — 305961451000

6052687000 — panic
6015753000 — 305948422000

5960559000 — hang
6022943000 — panic
6019227000 — hang
6120120000 — hang
6029979000 — hang
6024037000 — hang
6070010000 — 306002214000

6055339000 — hang
6055339000 — 305170982000

6021193000 — 305336807000

6014605000 — hang
6034719000 — panic
6230502000 — hang
6228665000 — hang
6056186000 — 305266846000

6122405000 — hang
6122405000 — 305531268000

6022033000 — panic
6022033000 — 306334512000

6055879000 — hang
6110203000 — hang
6215225000 — panic
6051823000 — hang
6016830000 — 304740104000

5932718000 — panic
6050126000 — 305819156000

A.2. MultigridNonInvasive

6016471000 — 252090548000

6130638000 — 251220463000

6026459000 — 251929601000

6050097000 — 252156316000

6019885000 — 252697562000

6051959000 — 252203716000

6023501000 — 251701900000

6020088000 — 252446842000

6053210000 — 251322617000

5942510000 — 251561023000

138

A.3. Integrate3

A.3. Integrate3

6098791000 — 89657730000

6050744000 — 90776434000

6199396000 — 70646868000

6015231000 — 92005066000

6047291000 — 76840486000

6285467000 — hang
6029948000 — 82472362000

6014959000 — 64751480000

6011776000 — 88619940000

6050268000 — 87017554000

6049786000 — 96044045000

A.4. Integrate3NonInvasive

6015786000 — 38868304000

6040247000 — 35546533000

6012950000 — 39748864000

6007883000 — 35907027000

6012478000 — 37153610000

6015613000 — 37964265000

6126903000 — 38451009000

6045066000 — 36843126000

6022314000 — 42140522000

6062065000 — 40238203000

139

Appendix A. CHIPit Measurements

A.5. MultigridVsIntegrate

5971906000 — 218715085000

6258059000 — 215956450000

6005036000 — hang
5979320000 — 221509589000

6071173000 — hang
5976634000 — 213470888000

5975091000 — panic
6004954000 — panic
5974314000 — 220158034000

5977047000 — 217284978000

5869514000 — 216931957000

A.6. MultigridVsIntegrateNonInvasive

6010570000 — 289084569000

6080787000 — 289150678000

6077190000 — 289140597000

6083952000 — 289158340000

6005996000 — 289073573000

6066288000 — 289118611000

5876878000 — 288958683000

140

Appendix B.

Decoupled Performance Modelling

This chapter contains some leftover notes on a better performance model, which tries to
decouple hardware and application factors. I could not bring myself to delete it from
this thesis, because these thoughts would probably get lost then. However, I did not find
the time pursue this further and validate the model, so is not yet a worthy contribution
at this point. To resolve this predicament, the appendix felt like a suitable way out.

We need a good performance model for parallel applications, e.g. for resource
management [KBL+

11]. There are only simplistic models [Dow97] available,
so here I try to make a less simple but more realistic model.

One important pragmatic goal is to separate program and hardware parameters.
Measuring parameters is time consuming. For current performance models,
the process must be repeated on every little hardware or software change. A
desired improvement is to only update the hardware parameters, when the
hardware changes and keeping the software parameters the same. Vice versa
when the software changes. One step further would be to separate (static)
program and (dynamic) data parameters.

Amdahl’s Law is common knowledge after fifty years. It provides an argument
that speedup through parallelization is bounded due to sequential portions in
an algorithm The law gives a time prediction of

T(n) = T(1)
(

B +
1− B

n

)
(B.1)

where n ∈N is the degree of parallelism, B ∈ [0, 1] is the sequential fraction of
the algorithm, and T(1) the time of single threaded execution.

141

Appendix B. Decoupled Performance Modelling

B.1. Composable Parallel Regions

One approximation of Amdahl’s Law is the simple algorithm pattern of one
parallel region. In reality, we can observe multiple parallel regions with different
characteristics. Those regions might be in sequence (algorithms with multiple
phases) or nested into each other (recursive parallelism).

With multiple region we require additional notation.

nr = degree of parallelism of a region r
sr = sequential fraction of a region
pr = fraction of a region wrt. its parent region
tr = time of a region r wrt. nr
Tr = time of a region r with nr = 1

The original law in new notation, with x being the name of former nameless
region:

tx = Tx

(
sx +

px

nx

)
with px = 1− sx

B.1.1. Parallel Regions in Sequence

For multiple parallel regions in sequence, we can extend the law as

tx = Txsx + ∑
i

Ti pi
ni

(B.2)

where i sums over all child regions of x. There is no px or nx necessary in this
equation.

The sx factor is computed from pi, since the fractions must always add up to
1.

sx = 1−∑
i

pi (B.3)

142

B.1. Composable Parallel Regions

B.1.2. Nested Parallel Regions

Nesting regions seems trivial. Just substitute Tr for tr in parent equation and
substitute accordingly. Naturally, a nested region might contain a sequential
part. In fact, a nested region without further nested regions contains only a
sequential part. In other words sr = 1, so the ∑ of the equation is 0.

Doing the substitution, we see a pattern:

tx = Txsx + ∑
i

ti pi
ni

= Txsx + ∑
i

(
Tisi + ∑j

tj pj
nj

)
pi

ni

= Txsx + ∑
i

Tisi pi + pi ∑j
tj pj
nj

ni

= Txsx + ∑
i

(
Tisi pi

ni
+

pi
ni

∑
j

tj pj

nj

)

= Txsx + ∑
i

(
Tisi pi

ni

)
+ ∑

i
∑

j

(
tj pi pj

ninj

)

= Txsx + ∑
i

Tisi pi
ni

+ ∑
i

∑
j

Tjsj pi pj

ninj
+ ∑

i
∑

j
∑
k

tj pi pj pk

ninjnk

The sum expands with each tx substitution. For a completely expanded version
we need two more definitions, for the expanding products:

u(r) = parent region of region r
Pr = pr × pu(r) × pu(u(r)) × ...
Nr = nr × nu(r) × nu(u(r)) × ...

Now, the formula for nested and sequenced regions is

tx = Txsx + ∑
i

TisiPi
Ni

(B.4)

143

Appendix B. Decoupled Performance Modelling

where i sums over all regions except root 0. Wlog, we define the root region to
have no sequential part and simplify the formula thus:

t0 = ∑
i

TisiPi
Ni

(B.5)

B.1.3. Example

Consider a setup, with two regions in sequence (a and b), where b has another
two nested regions in sequence (c and d).

Furthermore specify

r Tr pr

a 6 0.4
b 7 0.5
c 8 0.5
d 9 0.2

144

B.2. Non-linear Speedups

We can compute the actual factors like this:

t0 = ∑
i

TisiPi
Ni

=
TasaPa

Na
+

TbsbPb
Nb

+
TcscPc

Nc
+

TdsdPd
Nd

=
Tasa pa

na
+

Tbsb pb
nb

+
Tcsc pb pc

nbnc
+

Tdsd pb pd
nbnd

=
Ta pa

na
+

Tbsb pb
nb

+
Tc pb pc

nbnc
+

Td pb pd
nbnd

=
6× 0.4

na
+

7× 0.3× 0.5
nb

+
8× 0.5× 0.5

nbnc
+

9× 0.5× 0.2
nbnd

=
2.4
na

+
1.25
nb

+
2

nbnc
+

0.9
nbnd

B.2. Non-linear Speedups

This simple law is a very crude approximation. It assumes linear speedup
within parallel regions. In reality we can observe non-algorithmic influences,
which yield sublinear speedup, e.g. due to hardware contention or runtime
limitations. Also, superlinear speedups can be observed, e.g. due to cache
effects. To model this environment influence, we include a function e : N 7→ R+,
such that

e(n) =

> n for superlinear effects

n for linear effects

< n for sublinear effects

where n is also the degree of parallelism.

Thus instead of ni, we now use ei(ni). We can change the meaning of Ni
accordingly and avoid changing the formula.

Nr = er(nr)× er(nu(r))× er(nu(u(r)))× ...

The actual challenge in reality: How to obtain e? A disappointing but prag-
matic answer would be by measurement. More useful would be a generic
environment model, from which e can be derived without measurements.

145

Appendix B. Decoupled Performance Modelling

B.2.1. Mutual Exclusion

One very common method to coordinate parallel work is mutual exclusion. We
do not care about the actual mechanism (OS lock, spinlock, monitor, transac-
tional memory, etc), but assume a constant time per thread Te. Increasing the
number of threads n, naturally the time spent for mutual exclusion increases,
since it adds up: nr ∗ Te

r . This models a sublinear effect, which can be statically
derived from an algorithm.

There is a conservative assumption here that we do not parallelize mutual
exclusion with actual work. Hence, in practice the algorithm might be faster.

To integrate this effect into the formula, we need to split the exclusive parts se
r

from the rest of the sequential part sr. Hence, the formula becomes

t0 = ∑
i

(
Ti
Ni

siPi + niTe
i se

i Pi

)
(B.6)

B.2.2. Caching

Caching in general has a big effect on algorithms (even if not primarily memory
latency bound). Superlinear effects happen because increasing the number of
processors increases the total cache amount as well. The insight that increasing
cache size speeds up is not very helpful. In general, modifying the cache
changes speedup. Caches today have multiple layers, varying sizes, varying
retention strategies, different cache coherence protocols, and more variables.
Nevertheless, we only care about speedup due to parallelism, which keeps most
of those aspects constant. We only consider the size of the cache in relation
to the data and the data per processor decreases with more parallelism. Also,
we consider processor-local memory in general, so a scratchpad qualifies as
(software-managed) cache here. From data size d and the algorithm, we can
deduce how cache-dependent it is. Using the cache size per core c, we can
compute the relative cache size C:

Cr = min
(

1,
Nrc
dr

)
= min(dr, Nrc)/dr

146

B.2. Non-linear Speedups

The cache hit rate does not directly correlate with cache size. Instead even
small caches might cover a lot of misses, but 100% is only slowly approximated.
However, when the cache is as big as the data, a 100% hitrate can be achieved.
The following plot illustrates the approximation, which plots the hitrate hr(Cr)

against the relative cache size Cr.

Cr

h(Cr)

100%

100%

0%

h(C) = 1− (1− C)2

h(C) = 1− (1− C)3

h(C) = 1− (1− C)9

As this cache related speedup is by definition superlinear (up to 100%), this
effect creates a superlinear influence to the sequential speedup. We only
consider the sequential part of regions, since the parallel part just consists of
multiple nested sequential regions.

We also need to know the speed difference between cache hit and miss. For
example, mc = 10 means that a miss takes 10 times as long as a hit. Now the
relative time is

sc(C) = (1− h(C)) +
h(C)
mc = 1− mc − 1

mc h(C)

Now substitute this for the previous term

Tr =⇒ Tr ×
(

1− mc − 1
mc h(C)

)

The modified formula for nested regions becomes:

147

Appendix B. Decoupled Performance Modelling

tx = ∑
i

Ti
Ni

siPisc
i (min(di, Nic)/di) (B.7)

= ∑
i

Ti
Ni

siPi

(
1− mc − 1

mc hi(min(di, Nic)/di)

)
(B.8)

The minimum can usually be removed depending on your goal. If you are
interested in Nr → ∞, then consider min(dr, Nrc)/dr) = 1. However, for the
computation for finite numbers of Nr, we can usually assume that the data will
never fit completely into cache, so min(dr, Nrc)/dr = Nrc/dr.

B.2.3. Communication

As a start, we can consider communication as a phase within a region, where
the time changes according to the parallelism. How it changes depends on the
communication pattern of the algorithm. In addition to sr, we also define mr
(messaging), and let sr shrink so 1 = sr + mr + ∑u(i)=r pi. The time is given by
Tc

r (nr).

t0 = ∑
i

(
TisiPi

Ni
+ Tc

i (ni)miPi

)
(B.9)

The Tc
r (nr) factor follows communication patterns. If communication is constant

(only send data to one neighbor), then Tc
r (nr) ∈ O(1). For everybody-to-

everybody communication Tc
r (nr) ∈ O(nr) for complete connection graph.

In the case of bus communication, where messaging must be sequentialized,
Tc

r (nr) ∈ O(n2
r).

B.2.4. All of the Above

Combining the formulas for mutual exclusion and caching into one, yields this
monster:

t0 = ∑
i

(
Ti
Ni

siPisc
i (min(dr, Nrc)/dr) + Tc

i (ni)miPi + niTe
i se

i Pi

)
(B.10)

148

B.2. Non-linear Speedups

with 1 = si + mi + se
i + ∑u(i)=r pi.

For simplicity we ignore the cache effects within mutually excluded parts and
messaging. Also, ignore the mutual exclusion within messaging.

Limitations Limitations of this model:

• Only symmetric parallelism, which assumes that threads within a parallel
region are all doing the same with respect to the model. There cannot
be two parallel threads, where one spawns a 3-parallel region and the
other a 2-parallel region. Thus would require something like “maximum
time of several distinct parallel regions”, which complicates the formula
enormously. This prevents modelling pipeline applications and multiple
applications at once.

• Strict phases. The different kinds of operation (mutual exclusion, sequen-
tial computation, messaging) cannot be performed in parallel to each
other.

• Homogeneous cores. Our simple model assumes all parallel cores equal
so only the number matters. However, in real systems it matters which
cores are used. There is hyper-threading within a core, cores sharing
a NUMA domain or not, cores sharing a cache or not, cores being on
the same socket/tile/processor/rack/continent or not. Acknowledging
this in the model transforms it from a single-dimensional optimization
problem to a high-multi-dimensional one.

B.2.5. Example

We reuse the example from above, but refine the parameters. From the hardware
we set the cache size per core c =1KB and a cache miss takes mc = 10 times as
long as a hit. Let h(C) = 1− (1− C)9. As we are interested in finite results, we
simplify: min(dr, Nrc)/dr ⇒ Nrc/dr.

149

Appendix B. Decoupled Performance Modelling

cache effects messaging mut. excl.

r pr Tr dr sr mi Te
i se

i

a 0.4 21 1MB 0.7 0.1 3 0.2
b 0.6 17 10MB 0.2 0.2 4 0.1
c 0.3 42 100MB 0.9 0.1 – 0.0
d 0.2 19 1MB 0.4 0.2 – 0.0

Let Tc
r (nr) = nr for all regions except Tc

d(nd) = 1.

First, we just look at region a, because we can optimize it independently from
the others.

t0 = ∑
i

(
Ti
Ni

siPisc
i (Nic/dr) + Tc

i (ni)miPi + niTe
i se

i Pi

)
=

Ta

Na
saPasc

a(Nac/dr) + Tc
a (na)maPa + naTe

a se
aPa + . . .

=
21
na
× 0.7× 0.4× sc

a(na × 1KB/1MB) + Tc
a (na)× 0.1× 0.4

+ na × 3× 0.2× 0.4 + . . .

=
4.48
na
×
(

1− mc − 1
mc (1− (1− 0.001na)

9)

)
+ 0.04× Tc

a (na) + 0.24na + . . .

=
4.48
na
×
(

1− 0.9(1− (1− 0.001na)
9)
)
+ 0.04× Tc

a (na) + 0.24na + . . .

=
4.48
na
×
(

1− 0.9 + 0.9(1− 0.001na)
9
)
+ 0.04na + 0.24na + . . .

=
0.448

na
+

4.032
na

(1− 0.001na)
9 + 0.28na + . . .

This formula has a local minimum at na = 4. Mostly the messaging determines
the upper bound.

150

B.2. Non-linear Speedups

nx

t0 für a

4

2.2

0

Since the times are just summed up, we can optimize the regions independently
of each other. Now for region b without subregions c and d.

t0 = . . .
Tb
Nb

sbPbsc
b(Nrc/dr) + Tc

b (nb)mbPb + nbTe
b se

bPb + . . .

= . . .
17
nb
× 0.2× 0.6× sc

b(Nc × 1KB/10MB) + Tc
b (nb)× 0.2× 0.6

+ nb × 4× 0.1× 0.6 + . . .

= . . .
2.04
nb
×
(

1− mc − 1
mc (1− (1− 0.0001nb)

9)

)
+ 0.12× Tc

b (nb) + 0.24nb + . . .

= . . .
2.04
nb
×
(

0.1 + 0.9(1− 0.0001nb)
9
)
+ 0.12nb + 0.24nb + . . .

= . . .
0.204

nb
+

1.836
nb

(1− 0.0001nb)
9 + 0.36nb + . . .

Local minimum at nb = 2.

151

Appendix B. Decoupled Performance Modelling

t0 = . . .
Tc

Nc
scPcsc

c(Nrc/dr) + Tc
c (nc)mcPc + ncTe

c se
cPc + . . .

= . . .
42

nb × nc
× 0.9× 0.18× sc

c(Nc × 1KB/100MB)

+ Tc
c (nc)× 0.1× 0.18 + nc × 0× 0.0× 0.18 + . . .

= . . .
6.804

nc
×
(

1− mc − 1
mc (1− (1− 0.0001Nc)

9)

)
+ 0.018× Tc

c (nc) + . . .

= . . .
6.804

nc
×
(

0.1 + 0.9(1− 0.00001Nc)
9
)
+ 0.018nc + . . .

= . . .
0.6804

nc
+

6.1236
nc

(1− 0.00001Nc)
9 + 0.018nc + . . .

Local minimum at Nc = nb × nc = 20. With nb = 2, we conclude nc = 10.

t0 = . . .
Td
Nd

sdPdsc
d(Nrc/dr) + Td

d (nd)mdPd + ndTe
dse

dPd

= . . .
19

nb × nd
× 0.4× 0.12× sc

d(Nc × 1KB/1MB)

+ Tc
d(nd)× 0.2× 0.12 + nd × 0× 0.0× 0.12

= . . .
0.912

nd
×
(

1− mc − 1
mc (1− (1− 0.001Nc)

9)

)
+ 0.024× Td

d (nd)

= . . .
0.912

nd
×
(

0.1 + 0.9(1− 0.00001Nc)
9
)
+ 0.024× 1

= . . .
0.0912

nd
+

0.82
nd

(1− 0.001Nc)
9 + 0.024

There is no local minimum for d. It goes to 0.024 and scales infinitely.

B.3. Lessons for InvasIC

What constraints can be infered from this theoretical model? What example
algorithms can or cannot be modelled like this?

The hardware properties need no constraints, as the agent system can query
this info from the operating system once and use it statically.

152

B.3. Lessons for InvasIC

We could use a constraint to describe synchronization time. A static analysis
(aka the compiler) might be able to infer this.

For the cache effects, we need the data size and the hitrate function.

For communication, we need the pattern (all-to-all,neighbor-only,etc) and the
relative amount of time the algorithm uses. This must be combined with
hardware knowledge (hypergrid,bus,etc) to estimate Tc

r (nr).

153

List of Figures

1.1. Figure SYSD5 from ITRS 2011 . 3

1.2. Moore’s Law holds . 5

1.3. TOP500 supercomputer composition over time 7

1.4. Roughly, resource awareness . 15

2.1. Utilization variance . 34

2.2. 50% idling . 37

2.3. Unbounded idling . 38

3.1. The Invasive Computing stack . 42

3.2. Example clustered many-core architecture 45

3.3. Unintuitive run-to-completion semantics 47

3.4. Parallel integration example . 51

3.5. Flat regions requires less evaluations than steep ones 52

3.6. Distributed integration example 54

4.1. Data race without a race condition 59

4.2. Race condition without a data race 60

4.3. Compiler can remove a loop . 61

4.4. Undesirable use of trylock . 66

4.5. Example activity life cycle . 70

5.1. Constraint Hierarchy . 77

5.2. Examples of Downey Curves . 81

5.3. PiP example . 83

5.4. Constraint Graphs and Operating Points 84

5.5. Invading Operating Points . 84

5.6. Definition of Malleable . 89

5.7. Example of a async-malleable invasive application 90

155

List of Figures

5.8. Parallel matrix multiplication . 94

5.9. X10 compiler with its three backends 97

5.10. iOMP Example . 100

5.11. MPI Adapt . 102

6.1. V-Cycle illustration . 104

6.2. Invasive parallel multigrid in pseudo code 107

6.3. Redistribution of a DistArray . 109

6.4. V-Cycle measurement . 111

6.5. Distribution of time measurements 113

7.1. Integrate . 116

7.2. Invasive integration example . 117

7.3. Integrate measurement . 118

8.1. Multigrid vs Integrate example . 122

8.2. Resource use during a competitive scenario 123

8.3. Resource use during a non-invasive competitive scenario 124

8.4. Invasive 5x faster then NonInvasive 125

9.1. Reinvasion from Inside the Claim 129

9.2. Implicit invade and retreat . 129

9.3. Github statistics of X10 . 130

156

Bibliography

[ATBS13] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, and D. Soudris.
Distributed run-time resource management for malleable appli-
cations on many-core platforms. In 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6, May 2013.

[BA08] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++
concurrency memory model. SIGPLAN Not., 43(6):68–78, June
2008.

[BBH+
13] Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland

Leißa, Christoph Mallon, and Andreas Zwinkau. Simple and
efficient construction of Static Single Assignment form. In Ranjit
Jhala and Koen Bosschere, editors, Compiler Construction, volume
7791 of Lecture Notes in Computer Science, pages 102–122. Springer
Berlin Heidelberg, 2013.

[BBMZ12] Matthias Braun, Sebastian Buchwald, Manuel Mohr, and Andreas
Zwinkau. An X10 compiler for invasive architectures. Technical
Report 9, Karlsruhe Institute of Technology, 2012.

[BBMZ14] Matthias Braun, Sebastian Buchwald, Manuel Mohr, and Andreas
Zwinkau. Dynamic X10: Resource-aware programming for higher
efficiency. Technical Report 8, Karlsruhe Institute of Technology,
2014. X10 ’14.

[BBZ11] Matthias Braun, Sebastian Buchwald, and Andreas Zwinkau.
Firm—a graph-based intermediate representation. Technical Re-
port 35, Karlsruhe Institute of Technology, 2011.

[Bec16] Johannes Bechberger. Besser benchmarken, April 2016.

157

Appendix B. Bibliography

[BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick.
A Multigrid Tutorial. Society for Industrial Mathematics, 2000.

[BIM08] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated
management of multiple interacting resources in chip multipro-
cessors: A machine learning approach. In Proceedings of the 41st
annual IEEE/ACM International Symposium on Microarchitecture,
pages 318–329. IEEE Computer Society, 2008.

[BJM+
05] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou,

L. Benini, and G. De Micheli. NoC synthesis flow for customized
domain specific multiprocessor systems-on-chip. Parallel and
Distributed Systems, IEEE Transactions on, 2005.

[BLU16] Sebastian Buchwald, Denis Lohner, and Sebastian Ullrich. Ver-
ified construction of Static Single Assignment form. In Manuel
Hermenegildo, editor, 25th International Conference on Compiler
Construction, CC 2016, pages 67–76. ACM, 2016.

[BMF15] Patrick Bellasi, Giuseppe Massari, and William Fornaciari. Effec-
tive runtime resource management using linux control groups
with the BarbequeRTRM framework. ACM Transactions on Embed-
ded Computing Systems (TECS), 14(2):39, 2015.

[BMF+
16] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen,

Yanqi Zhou, Alexey Lavrov, Mohammad Shahrad, Adi Fuchs,
Samuel Payne, Xiaohua Liang, Matthew Matl, and David Went-
zlaff. OpenPiton: An open source manycore research framework.
In Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’16, pages 217–232, New York, NY, USA, 2016. ACM.

[BMR15a] Sebastian Buchwald, Manuel Mohr, and Ignaz Rutter. Optimal
shuffle code with permutation instructions, April 2015. Long
version of WADS 2015 paper with same title.

[BMR15b] Sebastian Buchwald, Manuel Mohr, and Ignaz Rutter. Optimal
shuffle code with permutation instructions. In Frank Dehne,
Jörg-Rüdiger Sack, and Ulrike Stege, editors, Algorithms and Data
Structures, volume 9214 of Lecture Notes in Computer Science, pages
528–541. Springer International Publishing, 2015.

158

Appendix B. Bibliography

[BMZ15] Sebastian Buchwald, Manuel Mohr, and Andreas Zwinkau. Mal-
leable invasive applications. In Proceedings of the 8th Working
Conference on Programming Languages (ATPS’15), Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2015.

[Boe05] Hans-J. Boehm. Threads cannot be implemented as a library.
SIGPLAN Not., 40(6):261–268, June 2005.

[Böw15] Norman Christopher Böwing. Invasives verteiltes job queue
framework, December 2015.

[Bro99] Guy Brown. The Energy of Life. Free Press, 1999.

[BRS+13] Hans-Joachim Bungartz, Christoph Riesinger, Martin Schreiber,
Gregor Snelting, and Andreas Zwinkau. Invasive Computing
in HPC with X10. In Proceedings of the third ACM SIGPLAN X10
Workshop, X10 ’13, pages 12–19, New York, NY, USA, 2013. ACM.

[Buc15] Sebastian Buchwald. Optgen: A generator for local optimizations.
In Björn Franke, editor, Compiler Construction, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2015.

[CAB+
13] Nicholas P. Carter, Aditya Agrawal, Shekhar Borkar, Romain

Cledat, Howard David, Dave Dunning, Joshua Fryman, Ivan
Ganev, Roger A. Golliver, Rob Knauerhase, Richard Lethin, Benoit
Meister, Asit K. Mishra, Wilfred R. Pinfold, Justin Teller, Josep
Torrellas, Nicolas Vasilache, Ganesh Venkatesh, and Jianping Xu.
Runnemede: An architecture for ubiquitous high-performance
computing. In Proceedings of the 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA),
HPCA ’13, pages 198–209, Washington, DC, USA, 2013. IEEE
Computer Society.

[CEH+
13] J.A. Colmenares, G. Eads, S. Hofmeyr, S. Bird, M. Moreto,

D. Chou, B. Gluzman, E. Roman, D.B. Bartolini, N. Mor,
K. Asanovic, and J.D. Kubiatowicz. Tessellation: Refactoring
the OS around explicit resource containers with continuous adap-
tation. In Design Automation Conference (DAC), 2013 50th ACM /
EDAC / IEEE, pages 1–10, May 2013.

[CGG+
14] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill

Kramer, and Marc Snir. Toward exascale resilience: 2014 up-
date. Supercomputing frontiers and innovations, 1(1):5–28, 2014.

159

Appendix B. Bibliography

[CGH+
14] David Cunningham, David Grove, Benjamin Herta, Arun Iyen-

gar, Kiyokuni Kawachiya, Hiroki Murata, Vijay Saraswat, Mikio
Takeuchi, and Olivier Tardieu. Resilient X10: Efficient failure-
aware programming. SIGPLAN Not., 49(8):67–80, February 2014.

[CLRB11] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and
improvements of programming models for the Intel SCC many-
core processor. In High Performance Computing and Simulation
(HPCS), 2011 International Conference on, pages 525–532, July 2011.

[CMHGB16] Isaías Comprés, Ao Mo-Hellenbrand, Michael Gerndt, and Hans-
Joachim Bungartz. Infrastructure and API extensions for elastic
execution of MPI applications. In Proceedings of the 23rd European
MPI Users’ Group Meeting, EuroMPI 2016, pages 82–97, New York,
NY, USA, 2016. ACM.

[DGnY+
74] Robert H. Dennard, Fritz H. Gaensslen, Hwa nien Yu, V. Leo

Rideout, Ernest Bassous, Andre, and R. Leblanc. Design of ion-
implanted MOSFETs with very small physical dimensions. IEEE
J. Solid-State Circuits, page 256, 1974.

[Dow97] Allen B Downey. A model for speedup of parallel programs.
Technical report, University of California, Berkeley, CA, USA,
1997.

[EBSA+
11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan

Sankaralingam, and Doug Burger. Dark Silicon and the end of
multicore scaling. In Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11, pages 365–376,
New York, NY, USA, 2011. ACM.

[EMDSV07] K. El Maghraoui, T.J. Desell, B.K. Szymanski, and C.A. Varela.
Dynamic malleability in iterative MPI applications. In Seventh
IEEE International Symposium on Cluster Computing and the Grid,
pages 591–598, May 2007.

[EMDSV09] K. El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski, and
Carlos A. Varela. Malleable iterative MPI applications. Concurr.
Comput. : Pract. Exper., 21(3):393–413, March 2009.

[EZL89] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus
efficiency in parallel systems. IEEE Transactions on Computers,
38(3):408–423, Mar 1989.

160

Appendix B. Bibliography

[FHB14] Stephanie Friederich, Jan Heisswolf, and Jürgen Becker. Hard-
ware/software debugging of large scale many-core architectures.
In Proceedings of the 27th Symposium on Integrated Circuits and Sys-
tems Design, SBCCI ’14, pages 45:1–45:7, New York, NY, USA,
2014. ACM.

[FR96] Dror G. Feitelson and Larry Rudolph. Toward convergence in job
schedulers for parallel supercomputers. In Job Scheduling Strategies
for Parallel Processing, pages 1–26. Springer Berlin Heidelberg,
1996.

[GBL09] Vahid Garousi, Lionel C. Briand, and Yvan Labiche. A UML-based
quantitative framework for early prediction of resource usage and
load in distributed real-time systems. Software & Systems Modeling,
8(2):275–302, 2009.

[GHM+
12] M. Gerndt, A. Hollmann, M. Meyer, M. Schreiber, and J. Wei-

dendorfer. Invasive Computing with iOMP. In Specification and
Design Languages (FDL), 2012 Forum on, pages 225–231, Sept 2012.

[GSL+
14] D. Gangadharan, É. Sousa, V. Lari, F. Hannig, and J. Teich.

Application-driven reconfiguration of shared resources for tim-
ing predictability of MPSoC platforms. In 2014 48th Asilomar
Conference on Signals, Systems and Computers, pages 398–403, Nov
2014.

[Haa16] Jonas Haag. Exception support in graph-based intermediate
representation, April 2016.

[HB05a] Matthew Hertz and Emery D. Berger. Quantifying the perfor-
mance of garbage collection vs. explicit memory management.
In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’05, pages 313–326, New York, NY, USA, 2005. ACM.

[HB05b] Matthew Hertz and Emery D Berger. Quantifying the perfor-
mance of garbage collection vs. explicit memory management. In
ACM SIGPLAN Notices, volume 40, pages 313–326. ACM, 2005.

[HBHG11] Jörg Henkel, Lars Bauer, Michael Hübner, and Artjom Grudnitsky.
i-Core: A run-time adaptive processor for embedded multi-core
systems. In International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), 2011.

161

Appendix B. Bibliography

[HKZ+
11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Gh-

odsi, Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion
Stoica. Mesos: A platform for fine-grained resource sharing in
the data center. In Proceedings of the 8th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’11, pages 295–308,
Berkeley, CA, USA, 2011. USENIX Association.

[HLB+
14] Frank Hannig, Vahid Lari, Srinivas Boppu, Alexandru Tanase,

and Oliver Reiche. Invasive tightly-coupled processor arrays: A
domain-specific architecture/compiler co-design approach. ACM
Trans. Embed. Comput. Syst., 13(4s):133:1–133:29, April 2014.

[HLK04] Chao Huang, Orion Lawlor, and L.V. Kalé. Adaptive MPI. In
Languages and Compilers for Parallel Computing, volume 2958 of
Lecture Notes in Computer Science, pages 306–322. Springer Berlin
Heidelberg, 2004.

[HM90] D. P. Helmbold and C. E. McDowell. Modeling speedup (n)
greater than n. IEEE Trans. Parallel Distrib. Syst., 1(2):250–256,
April 1990.

[HMP97] Markus Hof, Hanspeter Mössenböck, and Peter Pirkelbauer. Zero-
overhead exception handling using metaprogramming. In SOF-
SEM’97: Theory and Practice of Informatics, pages 423–431. Springer,
1997.

[Höl10] Urs Hölzle. Brawny cores still beat wimpy cores, most of the time.
IEEE Micro, 30(4), 2010.

[HZKK06] Chao Huang, Gengbin Zheng, Laxmikant Kalé, and Sameer Ku-
mar. Performance evaluation of adaptive MPI. In Proceedings of
the Eleventh ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 12–21, 2006.

[HZQ+
13] Tian Huang, Yongxin Zhu, Meikang Qiu, Xiaojing Yin, and

Xu Wang. Extending Amdahl’s law and Gustafson’s law by
evaluating interconnections on multi-core processors. The Journal
of Supercomputing, 66(1):305–319, 2013.

162

Appendix B. Bibliography

[HZZ+
14] Jan Heisswolf, Aurang Zaib, Andreas Zwinkau, Sebastian Kobbe,

Andreas Weichslgartner, Jürgen Teich, Jörg Henkel, Gregor Snelt-
ing, Andreas Herkersdorf, and Jürgen Becker. CAP: Communica-
tion aware programming. In Design Automation Conference (DAC),
2014 51th ACM / EDAC / IEEE, 2014.

[Inc17] Cray Inc. Chapel Language Specification v0.983, April 2017.

[ISO14] Programming language C++. Standard, International Organiza-
tion for Standardization, Geneva, CH, November 2014.

[ITR11] International technology roadmap for semiconductors, 2011.

[Kal14] Kalray. MPPA® MANYCORE is a family of programmable many-
core processors, 2014.

[Kar16] Nilesh Karavadara. RA-LPEL: A Resource-Aware Light-Weight Par-
allel Execution Layer for Reactive Stream Processing Networks on The
SCC Many-core Tiled Architecture. PhD thesis, University of Hert-
fordshire, 2016.

[KBL+
11] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang

Schröder-Preikschat, and Jörg Henkel. DistRM: Distributed re-
source management for on-chip many-core systems. In Proceedings
of the Seventh IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis, CODES+ISSS ’11, pages
119–128, New York, NY, USA, 2011. ACM.

[KGVA16] Manfred Kröhnert, Raphael Grimm, Nikolaus Vahrenkamp, and
Tamim Asfour. Resource-aware motion planning. In Robotics and
Automation (ICRA), 2016 IEEE International Conference on, pages
32–39. IEEE, 2016.

[Kob15] Sebastian Kobbe. Scalable and Distributed Resource Management for
Many-Core Systems. Dissertation, Chair for Embedded Systems
(CES), Department of Computer Science, Karlsruhe Institute of
Technology (KIT), Germany, 2015.

[Krö17] Manfred Kröhnert. A Contribution to Resource-Aware Architectures
for Humanoid Robots, volume 1. KIT Scientific Publishing, 2017.

[Lam79] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Trans. Comput.,
28(9):690–691, September 1979.

163

Appendix B. Bibliography

[LCG+
15] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-

ganathan, and Christos Kozyrakis. Heracles: improving resource
efficiency at scale. In ACM SIGARCH Computer Architecture News,
volume 43, pages 450–462. ACM, 2015.

[Len03] Peter Lennie. The cost of cortical computation. Current Biology,
13(6):493–497, mar 2003.

[Loc14] Andreas Lochbihler. Making the Java memory model safe. ACM
Transactions on Programming Languages and Systems, 35(4):12:1–
12:65, 2014.

[LP10] Jonathan K. Lee and Jens Palsberg. Featherweight X10: A core
calculus for async-finish parallelism. In Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’10, pages 25–36, New York, NY, USA, 2010.
ACM.

[LS06] Claudia Leopold and Michael Süß. Observations on MPI-2 sup-
port for hybrid master/slave applications in dynamic and het-
erogeneous environments. In Bernd Mohr, Jesper Larsson Träff,
Joachim Worringen, and Jack Dongarra, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, volume
4192 of Lecture Notes in Computer Science, pages 285–292. Springer
Berlin Heidelberg, 2006.

[LSB06] Claudia Leopold, Michael Süß, and Jens Breitbart. Programming
for malleability with hybrid MPI-2 and OpenMP: Experiences
with a simulation program for global water prognosis. In Proceed-
ings of the European Conference on Modelling and Simulation, pages
665–670, 2006.

[MBZ+
15] Manuel Mohr, Sebastian Buchwald, Andreas Zwinkau, Christoph

Erhardt, Benjamin Oechslein, Jens Schedel, and Daniel Lohmann.
Cutting out the middleman: OS-level support for X10 activities.
In Proceedings of the fifth ACM SIGPLAN X10 Workshop, X10 ’15,
pages 13–18, New York, NY, USA, 2015. ACM.

[McC16] John D. McCalpin. Memory bandwidth and system balance in
HPC systems. Supercomputing, 2016.

164

Appendix B. Bibliography

[MHS+10] Martina Maggio, Henry Hoffmann, Marco D Santambrogio,
Anant Agarwal, and Alberto Leva. Controlling software applica-
tions via resource allocation within the heartbeats framework. In
Decision and Control (CDC), 2010 49th IEEE Conference on, pages
3736–3741. IEEE, 2010.

[MHS+11] Martina Maggio, Henry Hoffmann, Marco D Santambrogio,
Anant Agarwal, and Alberto Leva. Decision making in autonomic
computing systems: comparison of approaches and techniques.
In Proceedings of the 8th ACM international conference on Autonomic
computing, pages 201–204. ACM, 2011.

[Moo65] G. E. Moore. Cramming more components onto integrated cir-
cuits. Electronics, 38(8):114–117, April 1965.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java mem-
ory model. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’05, pages
378–391, New York, NY, USA, 2005. ACM.

[MT17] Manuel Mohr and Carsten Tradowsky. Pegasus: Efficient data
transfers for PGAS languages on non-cache-coherent many-cores.
In Proceedings of Design, Automation and Test in Europe Conference
Exhibition, DATE. IEEE, 2017.

[NCM03] Nathaniel Nystrom, Michael R Clarkson, and Andrew C Myers.
Polyglot: An extensible compiler framework for Java. In Interna-
tional Conference on Compiler Construction, pages 138–152. Springer,
2003.

[ORS+04] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, L. W.
Jones, D. Franklin, V. Akella, and F. T. Chong. Synchroscalar: a
multiple clock domain, power-aware, tile-based embedded pro-
cessor. In Proceedings. 31st Annual International Symposium on
Computer Architecture, 2004., pages 150–161, June 2004.

[OSK+
11] Benjamin Oechslein, Jens Schedel, Jürgen Kleinöder, Lars Bauer,

Jörg Henkel, Daniel Lohmann, and Wolfgang Schröder-Preikschat.
OctoPOS: A parallel operating system for Invasive Computing.
In Ross McIlroy, Joe Sventek, Tim Harris, and Timothy Roscoe,

165

Appendix B. Bibliography

editors, Proceedings of the International Workshop on Systems for Fu-
ture Multi-Core Architectures (SFMA), volume USB Proceedings of
Sixth International ACM/EuroSys European Conference on Computer
Systems (EuroSys), pages 9–14. EuroSys, April 2011.

[PS16] Sankaralingam Panneerselvam and Michael Swift. Rinnegan:
Efficient resource use in heterogeneous architectures. In Proceed-
ings of the 2016 International Conference on Parallel Architectures and
Compilation, PACT ’16, pages 373–386, New York, NY, USA, 2016.
ACM.

[PSKA14] Johny Paul, Walter Stechele, Manfred Kröhnert, and Tamim As-
four. Resource-aware programming for robotic vision. CoRR,
abs/1405.2908, 2014.

[PSS+14] Johny Paul, Walter Stechele, Éricles Sousa, Vahid Lari, Frank
Hannig, Jürgen Teich, Manfred Kröhnert, and Tamim Asfour.
Self-adaptive harris corner detector on heterogeneous many-core
processor. In Design and Architectures for Signal and Image Processing
(DASIP), 2014 Conference on, pages 1–8. IEEE, 2014.

[RAdS+12] Barry Rountree, Dong H Ahn, Bronis R de Supinski, David K
Lowenthal, and Martin Schulz. Beyond DVFS: A first look at
performance under a hardware-enforced power bound. In Parallel
and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International, pages 947–953. IEEE,
2012.

[RPS+16] Sascha Roloff, Alexander Pöppl, Tobias Schwarzer, Stefan Wilder-
mann, Michael Bader, Michael Glaß, Frank Hannig, and Jürgen
Teich. ActorX10: An actor library for X10. In Proceedings of the
6th ACM SIGPLAN Workshop on X10, X10 2016, pages 24–29, New
York, NY, USA, 2016. ACM.

[SBdADP13] Juliana M. N. Silva, Cristina Boeres, Lúcia Maria de A. Drum-
mond, and Artur Alves Pessoa. Memory aware load balance
strategy on a parallel branch-and-bound application. CoRR,
abs/1302.5679, 2013.

[SBP+
14] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and

David Grove. X10 language specification. Technical report, IBM,
February 2014.

166

Appendix B. Bibliography

[SGS14] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Adaptive,
efficient, parallel execution of parallel programs. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, pages 169–180, New York,
NY, USA, 2014. ACM.

[SHT+
15] Éricles Sousa, Frank Hannig, Jürgen Teich, Qingqing Chen, and

Ulf Schlichtmann. Runtime adaptation of application execution
under thermal and power constraints in massively parallel pro-
cessor arrays. In Proceedings of the 18th International Workshop on
Software and Compilers for Embedded Systems, SCOPES ’15, pages
121–124, New York, NY, USA, 2015. ACM.

[SJMvP07] Vijay A. Saraswat, Radha Jagadeesan, Maged Michael, and
Christoph von Praun. A theory of memory models. In Pro-
ceedings of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’07, pages 161–172, New
York, NY, USA, 2007. ACM.

[SLK+
13] Osman Sarood, Akhil Langer, Laxmikant Kalé, Barry Rountree,

and Bronis De Supinski. Optimizing power allocation to CPU
and memory subsystems in overprovisioned HPC systems. In
Cluster Computing (CLUSTER), 2013 IEEE International Conference
on, pages 1–8. IEEE, 2013.

[SSF13] Jochen Speck, Peter Sanders, and Patrick Flick. Malleable sorting.
In International Symposium on Parallel and Distributed Processing.
IEEE Computer Society, May 2013.

[SSM+
07] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew

Petersen, Andrew Putnam, Ken Michelson, Mark Oskin, and
Susan J. Eggers. The WaveScalar architecture. ACM Trans. Comput.
Syst., 25(2):4:1–4:54, May 2007.

[TGR+
16] J. Teich, M. Glaß, S. Roloff, W. Schröder-Preikschat, G. Snelting,

A. Weichslgartner, and S. Wildermann. Language and compilation
of parallel programs for *-predictable MPSoC execution using
invasive computing. In 2016 IEEE 10th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSOC), pages
313–320, Sept 2016.

167

Appendix B. Bibliography

[TH09] Jürgen Teich and Sebastian Harl, editors. Invasive Computing.
Funding Proposal. DFG Transregional Collaborative Research
Centre 89, 2009.

[THH+
11] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-

Landsiedel, Wolfgang Schröder-Preikschat, and Gregor Snelting.
Invasive Computing: An overview. In Michael Hübner and Jürgen
Becker, editors, Multiprocessor System-on-Chip – Hardware Design
and Tool Integration, pages 241–268. Springer, Berlin, Heidelberg,
2011.

[TLM+
04] Michael Bedford Taylor, Walter Lee, Jason Miller, David Went-

zlaff, Ian Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson,
Jason Kim, James Psota, Arvind Saraf, Nathan Shnidman, Volker
Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal.
Evaluation of the Raw microprocessor: An exposed-wire-delay
architecture for ILP and streams. In Proceedings of the 31st Annual
International Symposium on Computer Architecture, ISCA ’04, pages
2–, Washington, DC, USA, 2004. IEEE Computer Society.

[TOS01] Ulrich Trottenberg, Cornelis Oosterlee, and Anton Schüller. Multi-
grid. Academic Press, 2001.

[TWOSP12] J. Teich, A. Weichslgartner, B. Oechslein, and W. Schröder-
Preikschat. Invasive Computing - concepts and overheads. In
Proceeding of the 2012 Forum on Specification and Design Languages,
pages 217–224, Sept 2012.

[Val11] Leslie G. Valiant. A bridging model for multi-core computing.
Journal of Computer and System Sciences, 77(1):154 – 166, 2011.
Celebrating Karp’s Kyoto Prize.

[WBB+
16] Stefan Wildermann, Michael Bader, Lars Bauer, Marvin

Damschen, Dirk Gabriel, Michael Gerndt, Michael Glaß, Jörg
Henkel, Johny Paul, Alexander Pöppl, Sascha Roloff, Tobias
Schwarzer, Gregor Snelting, Walter Stechele, Jürgen Teich, An-
dreas Weichslgartner, and Andreas Zwinkau. Invasive Comput-
ing for timing-predictable stream processing on MPSoCs. it –
Information Technology, 58(6):267–280, 2016.

[Wei14] Tobias Weiberg. Kommunizierende thread pools, March 2014.

168

Appendix B. Bibliography

[WGH+
07] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao,

Bruce Edwards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao,
John F. Brown III, and Anant Agarwal. On-chip interconnection
architecture of the Tile processor. IEEE Micro, 27(5):15–31, Septem-
ber 2007.

[WGW+
14] Andreas Weichslgartner, Deepak Gangadharan, Stefan Wilder-

mann, Michael Glaß, and Jürgen Teich. DAARM: Design-time
application analysis and run-time mapping for predictable exe-
cution in many-core systems. In Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2014 International Conference on,
pages 1–10. IEEE, 2014.

[ZBS13] Andreas Zwinkau, Sebastian Buchwald, and Gregor Snelting.
InvadeX10 documentation v0.5. Technical Report 7, Karlsruhe
Institute of Technology, 2013.

[Zwi12] Andreas Zwinkau. Resource awareness for efficiency in high-level
programming languages. Technical Report 12, Karlsruhe Institute
of Technology, 2012.

[Zwi16] Andreas Zwinkau. An X10 memory model. In Proceedings of the
sixth ACM SIGPLAN X10 Workshop, X10 ’16, June 2016.

169

Index

actions, 58

activity, 50, 50, 62

actor claims, 22

agent, 48

agent system, 48

allocation, 10

application, 22

async-malleable, 88

claim, 20, 74

clustered architecture, 8

conflict, 59

constraint graphs, 82

constraints, 76

Dark Silicon, 6

data race, 59

delayed work, 33

Dennard scaling, 2

distributed, 53

distribution, 20

efficiency, 30

efficiency metric, 30

execution, 58

external action, 63

finish, 50

global reference, 53

happens-before, 59

heterogeneous, 6

hidden idle resources, 33

hierarchy, 77

hints, 26

ilet, 74

infect, 74, 91

invade, 21, 74, 82
invasive, 14

isolation, 75

library action, 63

malleable, 88

managed backend, 96

Multigrid, 104

native backend, 97

OctoPOS claim, 48

operating point, 82

PEQuantity, 76

PGAS, 14

place, 52, 62

171

Index

program, 22

quality numbers, 82

redistribution, 21

reinvade, 21, 86

resize handler, 87

resource-awareness, 10

retreat, 21, 74, 86

Scheduling, 10

set constraint, 76

speedup, 30

subsequent, 62

sufficient, 64

synchronization operations, 58

synchronizes-with, 63

tiled architectures, 9

trace, 21

valid, 24

waste, 30

well-formed executions, 64

work done, 33

172

	Introduction
	Free Lunch is Over
	The End of Moore's Law
	Heterogeneity
	Clustered MPSoCs
	Resource-Awareness
	High-Level Languages
	Dissertation Overview
	Contributions

	Allocation Model
	Resources and Claims
	Actor Claims
	Constraints
	Validity
	Hints
	Hint Example
	Scaling Hints

	Shortcuts and Implementation of Resource Management
	Proof: Efficiency is not Worse
	Proof: Utilization Improves
	Proof: Speedups are Unbounded

	Implementing Invasive Computing
	The DFG Transregio
	Invasive Hardware Architecture
	Operating System: iRTSS
	OctoPOS
	Agent System

	The X10 Programming Language
	Activities
	Places
	Distributed Data

	X10 Memory Consistency Model
	Intro to Memory Consistency Models
	What Is Sequential Consistency?
	What Is a Data Race?

	Requirements for X10
	Data Races Are Undefined Behavior
	Termination Can Be Assumed

	Actions and Executions
	Synchronizes-with and Happens-before
	Well-formed Executions
	Constructs in the Standard Library
	Atomics
	Clock
	Condition
	Lock

	Differences to other languages
	Differences between X10 and Java
	Differences between X10 and C++
	Differences between X10 and Chapel

	StoreStore Barrier After Constructor
	Global Address Space and the Memory Model
	Threads and Activities

	Framework InvadeX10
	Development Methodology
	Hello World
	Invasive Command Space
	Performance Modelling

	Constraint Graphs
	Invasion and Retreat
	Explicit Reinvasion
	Reinvasion from External Trigger
	Infection
	Adapting X10 Semantics
	Invading Communication Resources
	Compiler Integration
	Framework Offsprings
	Invasive OpenMP
	Invasive MPI
	Communicating Thread Pools

	Case Study: Invasive Multigrid
	The Multigrid Application
	Problem formulation and discretization
	Geometric Multigrid Solver
	Parallelization
	Invasive Parallel Multigrid

	Communication Reduction on Data Redistribution
	Multigrid Overhead

	Case Study: Invasive Numeric Integration
	Numerical Integration
	Job-Queue Framework

	Integration Overhead

	Multi-Application Evaluation
	Utilization
	Arbitrary Speedup

	Conclusions
	Summary
	Mistakes in Hindsight
	Reinvade from Inside
	X10 Language

	Future Work
	Make it Usable
	Decoupled Performance Modelling
	Energy-Awareness

	Acknowledgments
	Appendix
	CHIPit Measurements
	Multigrid
	MultigridNonInvasive
	Integrate3
	Integrate3NonInvasive
	MultigridVsIntegrate
	MultigridVsIntegrateNonInvasive

	Decoupled Performance Modelling
	Composable Parallel Regions
	Parallel Regions in Sequence
	Nested Parallel Regions
	Example

	Non-linear Speedups
	Mutual Exclusion
	Caching
	Communication
	All of the Above
	Example

	Lessons for InvasIC

	List of Figures
	Bibliography
	Index

