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Lunar meteorite MacAlpine Hills (MAC) 88105 is a Wwstudied feldspathic regolith breccia dominated
by rock and mineral fragments from the lunar high&a Thin section MAC 88105,159 contains a small
rock fragment, 400 x 350 um in size, which is cosifponally anomalous compared with other MAC
88105 lithic components. The clast is composedliofne and plagioclase with minor pyroxene and
interstitial devitrified glass component. It is nm&gian, akin to samples in the lunar High-Mg Suitej
also alkali-rich, akin to samples in the lunar Higlkali Suite. It could represent a small fragmehtate-
stage interstitial melt from an Mg-Suite parertdibgy. However, olivine and pyroxene in the claste
Fe/Mn ratios and minor element concentrations dinatdifferent from known types of lunar lithologies
As Fe/Mn ratios are notably indicative of planetarigin, the clast could either (i) have a uniquedr
magmatic source, or (ii) have a non-lunar origia.{iconsist of achondritic meteorite debris thavised

delivery to the lunar surface). Both hypothesesarsidered and discussed.

1. Introduction

The lunar regolith is an important boundary layatween the Moon and the surrounding space
environment (Horz et al., 1991; McKay et al., 198licey et al., 2006). At any one locality the lunar
regolith typically contains a record of diverse kagpes (Korotev et al., 2003), mixed verticallydan
laterally by impacts, and material added to the Mbg projectiles (see Joy et al., 2012 for a sungnar
Interactions with the solar wind (Wieler, 1998) att@ galactic environment (Crawford et al., 2010)

further modify the regolith.
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Lunar regolith breccias (Fruland, 1983) are rocksned when the regolith was consolidated by pressur
(e.g., shock, overburdening) and/or thermal singerThey, therefore, provide a random global samgpli

of consolidated regolith from the Moon. These sasp@lre not thought to have been fused by the impact
cratering event that ejected them from the lunafase into Earth-crossing orbits, because manyernt
have high trappe8Ar/*°Ar ratios, thought to be an indicator of sampleiquity (McKay et al. 1986;
Eugster et al., 2001; Joy et al, 201la). This estggthat they represent examples of lithified
palaeoregoliths from different times in the Moopast. Regolith breccias are, thus, time-capsulese o
they are consolidated into rocks they preservecardeof ancient lunar and Solar System processes.
Temporally constraining this archive sheds lightdifferent times in the Moon’s past, helping totbet
understand the geological history of the Moon ft¢kicKay et al., 1986; Joy et al., 2011a), and the

bombardment history of the Moon, Earth and Solat&wy (Joy et al., 2012).

We present here results from the serendipitousodsy of a compositionally unusual clast found in
lunar meteorite MacAlpine Hills (MAC) 88105 and dliss its possible origin. MAC 88105, and its
paired stone MAC 88104, are feldspathic polymigbigh breccias (Lindstrom et al., 1991; Jolliffadt,
1991; Koeberl et al., 1991; Neal et al., 1991; Wharand Kallemeyn, 1991). The meteorites are congpose
of clasts of anorthositic igneous rocks, metaatagtanulitic clasts, impact glass and melt (Delar891;
Taylor, 1991; Cohen et al., 2005; Joy et al., 2018ad rare mare basalt fragments (Robinson et al.,
2012) consolidated by a fine-grained glassy meltrimaThe MAC 88104/05 samples have bulk
compositions similar to present day regoliths ie tButer-Feldspathic Highlands Terrane (FHT-O),
including the south polar highlands area, highlasmlgh of Tycho crater, farside far northern highls

and feldspathic terranes surrounding Mare Aus{sde Fig. 11d of Joy et al., 2010a).
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2. Sample and Methods

We were allocated a thick (100 um) section, MAC 8159, by the Meteorite Working Group. The
section is approximately 12 x 6 x 0.1 mm in sizee lidve previously analysed the mineral chemistry of
impact melt breccia clasts in the sample, and threselts were published by Joy et al. (2010a).
Additional mineral chemistry data is also presentede from phases in the MAC 88104,47, MAC
88105,158 and MAC 88104,48 sections. The samples egbon coated and analysed using the London
Natural History Museum’s (NHM) JEOL 5900 LV SEMtét with an Oxford Instruments INCA energy
dispersive spectrometer (EDS) X-ray microanalyzstesn (20 KV, 2 nA, 1 um beam). This technique
was used to collect back-scatter electron (BSE)fats# colour element maps of the MAC 88105,159
section that are shown in Figure 1. Mineral chemistas analysed using the NHM Cameca SX 50
electron microprobe (EMP, 20 KV, 20 nA, 1 um beafolljpwing the instrument setup described in full
by Joy et al. (2010a). Data were checked for mirgtcichiometry and only data with analytical tetaff

between 97 and 102 % were accepted (see Electhgpiendix).

We also measured olivine and pyroxene mineral chieies using the NASA Johnson Space Center
Cameca SX 100 EMP instrument using a 1 um beangceaealerating voltage of 20 KV and a beam
current of 40 nA following the method used by Jbwle (2012). Long count times (200-300 secs) were
employed on the Mn, Ni and Co peaks, and Co waeciad for the Fe K; Co Ko peak overlap.
Elements were standardised to natural mineral atdsdand pure metals. For these high beam current
settings the detection limits were ~63 ppm for MiA7 ppm for Co and ~80 ppm for Ni. There is good

agreement between the data acquired from the NHMI&E Cameca SX 50 instruments (Table EA S1).
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104 We measured 41 elements in a plagioclase grainji@ne grain and in the bulk mesostasis of thestcla
105 by laser ablation inductively coupled plasma mascgometry (LA-ICP-MS) using aAgilent 7500a
106  quadrupole system at University College London (UGke operated thdlew Waveaperture imaged
107  frequency quintupled Nd:YAG laser ablation syst&h3(nm) laser source with a pulse frequency of 20
108 Hz set at 75% efficiency, and with a spot size ®fpBn. Background conditions were monitored for 1
109 minute and the sample was ablated for 30 secorats. \Were reduced using the GEMOC Glitter software

110  (http://www.glitter-gemoc.con)/ where plots of counts per second versus time weamined for each

111  element per analysis, and integration intervalstf@ gas background and the sample analysis were

112 selected manually.
113

114  Analyses were calibrated with NIST 612 externah@tad measurements (a synthetic doped glass; Pearce
115 et al., 1997) using the same instrument setup.i@al¢’Ca) was used as an internal standard for the
116  plagioclase and mesostasis analyses, using CaQiateain clasts determined by EMP analysis (Table
117  1). For the olivine grain, we assessed the suitglif which element is an appropriate internahgiard.

118  We considered usinffCa (85262 ppm in NIST 612; Pearce et al., 199T),(48.11 ppm in NIST 612;
119  Pearce et al., 1997) aftMn (38.43 ppm in NIST 612: Pearce et al., 1997)hase three elements are
120 measured with both the EMP and the LA-ICP-MS. NEP (8.4 wt% Ca) is not a good matrix match for
121 lunar olivine (typically <0.2 wt% Ca) and usingaitth “*Ca for internal normalisation results in low trace
122 element concentrations (Table EA S2). The conctotraf>>Mn in NIST 612 is also not a good match
123 for lunar olivine (which typically has >700 ppm Me.g., Papike et al., 1998; Shearer and Papike, 2005;
124  Schnare et al., 2008; Fagen et @D13) and using it for internal normalisation résuh high trace
125  element concentrations (Table EA S2; note alsoalisteally high Ca abundances of ~7 wt%Yi has

126  the most similar concentrations in the NIST 61td#d to lunar olivine (typically 40-400 ppm Ti,
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occasionally up to 1000 ppm Ti) and so we seleitted the element best suited to act an internal LA

ICP-MS standard when using NIST 612 as the extetaaldard for olivine analysis.

When using'“Ca as the internal standard, repeatability of thH8TN612 external standard measurements
has a total relative standard deviation range dfiden 0.7 and 7% for all elements analysed andonas
average 3.5%. Accuracy was assessed by comparimgpeat NIST 612 measurements to the Pearce et
al. (1997) NIST 612 values, where the percentative difference had a range of between 0.58 and
8.56 % and an average of 2.6%. When uéifigas the internal standard, repeatability of tHETN612
standard measurements has a total relative startiavidtion range of between 1.5 and 7% for all
elements analysed and was on average 3.6%. Accui@eyssessed by comparing our repeat NIST 612
measurements to the Pearce et al. (1997) NIST élL2s, where the percent error relative differdmamt

a range of between 0.15 and 16 % and on avera@&ol®Reported errors (Table 1) are one sigma as

calculated by the Glitter software.

Oxygen isotope compositions were analyzeditu with the University of Hawai‘i Cameca ims-1280 ion
microprobe using a technique similar to that désdiby Makide et al. (2009) and Joy et al. (3022
400 pA focused Csprimary ion beam was rastered over a 7 x 7 praa for 100 s to remove carbon
coating and any surface contaminants. Then therragts reduced to 5 x 5 firmnd data were collected.
The secondary ion mass spectrometer was operatetiOakeV with a 50 eV energy window. Three
oxygen isotopes were collected using multicollettinode.’®*0” was measured on a Faraday cup, while
0™ and*®0” were measured with electron multipliers. The masslving power for°0” and'®0~ was
~2000, and that forO~ was ~6000, sufficient to separate interfeﬁ?(gH‘. A normal-incidence electron

flood gun was used for charge compensation.
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Oxygen isotope analyses are reported in standlaatation where&*®0 has been calculated @70 =
((["*Osampid“®Osampd/[ *0red®Oref])-1) % 1000, and similarly fos'’O using™0/*°0 ratio. A¥O (deviation

from the terrestrial fractionation line) is calaald ass 'O — 0.52 x3'%0.

Terrestrial standards (San Carlos olivine and Majiaka anorthite) were used to set up the instrument
and check reproducibility of our measurement proftolnn order to minimise any possible differences i
instrumental effects associated with different si@nmpounts, we analysed lunar plagioclase grairteén
host MAC 88105,159 rock as an internal standarce Weighted mean oA'’O on lunar plagioclase
measurements was assumed toAb® = 0, and data for the clast are reported relativéhe lunar
plagioclase. In order to verify the positions of 8puttered region, the phases studied for oxygopes
were imaged in secondary and backscattered elsctrsimg the University of Hawai'i JEOL 5900LV

scanning electron microscope after ion probe measents.

3. Results

The MAC 88105,159 section is composed of a feldspategolith breccia with impact melt breccia
clasts, anorthositic clasts and rare basalt anditgrdithologies (Fig. 1, see also Joy et al. 28)10Ne
identified a magnesian lithic clast (Fig. 2) asnigecompositionally distinct (Mg-rich and K-rich) &
false-colour element map of the sample (Fig. 1hg @last is 400 x 350 um in size and is transduyesl
50-80 um wide fracture that also cross-cuts theosading matrix (Fig. 2). The clast has a

hypocrystalline texture (crystals within a glassyswstasis groundmass) and is fine grained. It is
7
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composed of blocky subhedral olivine and plagicelerystals trapping elongate xenomorphic pyroxenes
and a late-stage glassy mesostasis (Fig. 2). Térereno particles of Fe-metal present that would be
indicative of an impact melt origin. Modal abundasoof minerals by mode were determined using
analysis of BSE and element map images (followiregrhethods outlined in Snape et al., 2011) andthes
phase proportions (Fig. 2¢) indicate that the dasin olivine-gabbro. However, given the smalksid

the clast, this may not be representative of threrdithology from where it was sourced. Minenalce
elements measured in the clast are plotted in €i§urand major and minor element data are plotted i

Figures 4 to 8.

3.1 Mineral Chemistry Results

The clast has ~30 % (by area) zoned forsteritigirwi grains (Fg.gs Table EA S1). Olivine has Ni at
concentrations of <160 ppm (by EMP analysis, oféss than detection limits of ~80 ppm: Table EA.S1)
Concentrations of other minor elements in olivine plotted in Figure 6 compared with a wide ranfje o
olivine in lunar meteorites and Apollo samples.\vDié grains in the clast have higher Cr concerutnati
(0.07-0.28 wt% GIOs: Fig. 6) and marginally higher CaO (0.15-0.44 wiay Ti (~170-1000 ppm) than
lunar samples with similar Mg-rich olivine (i.ehase from the Mg-Suite and KREEP basalts: Papike et

al., 1998; Shervais and McGee, 1998; Taylor eall2).

Approximately 42 % (by area) of the clast is zofwocky plagioclase (Ap.g, whereAn# = atomic
Ca/[Ca+Na+K]; Mg# = 59-81, where Mg# = atomic 100y/f1g+Fe]; Table EA S3). Plagioclase grains

have a positive Eu-anomaly (Eu/Eu* = 6.6 where Et/& calculated as EWV[Sm, x Gd,] and where
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«n are the chondrite normalised values using the dBicentrations reported by Anders and Grevesse,

1989) with trivalent REE at x2to x24,,(Fig. 3).

Elongate pyroxene crystals, which contribute to 94°by area of the clast, are associated with divin
and plagioclase grain boundaries and cross-cuingmostasis. These have augite compositions (Fig. 4:
Erysss Fs.12 Woss.45 Mg# = 79-86; Table EA S4). Minor element concatitms in pyroxene are plotted

in Figure 5 and show that the clast has notablyénid\l, Na, Ti, and marginally higher Cr conceritras
(2.5-5 wt% AbOs;, 0.19-0.32 wt% N#, 1.96-2.97 wt% Ti@ Fig. 5) compared with similar Mg-rich
lunar pyroxene (i.e., those from the Mg-Suite andBEP basalts: Papike et al., 1998; Shervais and

McGee, 1998; Taylor et al., 2012).

Fe/Mn ratios in olivine (46+10; quoted error is tatandard deviations) and pyroxene (2345) in thstcl
are significantly lower than Fe/Mn ratios in oliei(95+15) and pyroxene (57+13) in the host MAC
88105,159 meteorite (Figs. 8 and 9). They are dissimilar in terms of Fe/Mn ratio to olivine and

pyroxene in other lunar meteorites and Apollo sasgFigs. 6d, 8 and 9).

The remaining 11 % of the clast is composed of &acK- partially devitrified, interstitial glassy
mesostasis with a bulk alkali-calcic dacite compasi(Table 1). Also present in the clast are srfwlio

pm) accessory (~0.5 %) Ti-rich phases (Fig. 2)ersttits to determine their nature was hampered iy the
small phase size, resulting in mixed analyses witftounding minerals. The element maps of the clast
reveal that two grains are Cr-bearing suggestiag) &l least two of the grains are probably Cr-legri
spinel. All the other grains are only Ti-bearing.tivo cases the ratio of TiFreO measured in mixed
EMPA analyses is more similar to iimenite thani€hrspinel suggesting, thus, that some these geas

small ilmenite crystals, but this cannot be confichwith the existing data. A mixed area of mesdstas
9
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with some pyroxene and Ti-rich phases (see Figvi2ere the left hand blue circle is located) hak bul
trace elements with a negative Eu-anomaly (Eu/EQ*35) and trivalent REE of xjlto x133, (Fig. 3a,

Table 1).

3.2 Clast Reconstructed Bulk Composition

The bulk composition of the clast is listed in Tafill Major element composition was estimated by two
independent approaches: (i) normalised raster-bE&8 analysis, where EDS X-ray spectra were
collected from each digitised pixel of a selectedion (polygon) of the clast. The accumulated X-ray
counts were added together and in-built systemixnadrrections performed on the total counts tavaer
element atomic abundances (see method of Joy, @04Da for full details), and (i) modal recomhina

of the plagioclase (41 % by area), olivine (30% drga) and bulk mesostasis region (29% by area)
compositions as listed in Table 1. The bulk trakement composition was estimated using the same
modal recombination approach using the phase ptioperlisted above, and the mineral compositions

listed in Table 1.

The modelled bulk clast composition supports theeokations from mineral chemistry that the clast is
both magnesian and rich in alkali (volatile) andampatible elements (Table 1). (Table 1). In teohs
bulk SiG, and alkalis it is classified as a basalt. It heseatially no Eu-anomaly (Eu/Eu* = 0.97, Fig. 3a)
and, compared with bulk rock MAC 88104/05 (Joy let 2010a) it has high trivalent REE abundances
(bulk MAC 88104/05: ~xg to x12,; bulk clast: x1¢, to x51,). It has K/Th ratios (~3000) that are an
order of magnitude higher than the bulk lunar riélgabserved from remote sensing measurements (the

average lunar surface has a K/Th ratio of ~360id®egki et al., 2011, to ~810 in the northern fagesid
10
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highlands: Gillis et al., 2004), but which are danito some rare plutonic High Alkali Suite hand

specimen samples (as reported in the electronexinfl Wieczorek et al., 2006).

3.3 Oxygen Isotope Results

In order to investigate whether or not the clagginated in the Earth-Moon system or elsewhere, we
performedin situion microprobe oxygen isotope analysis of plagieel olivine and pyroxene grains in
the clast and compared these data with oxygenpestaneasured in the host MAC 88105,159 lunar
material. The weighted mean of the host meteoriteCV88105,159 lunar plagioclase grains (14 data
points) was assumed to lie on the terrestrial ivaation line (TFL) A0 = 0.00 # 0.15, @ standard
error: Fig. 10 Table 2). The clast oxygen isotoptad8 data points) gave a weighted mean'dd =
0.12 + 0.20 (& standard error; Fig. 10). These results show imgeof A'’O, the clast is statistically
indistinguishable from the TFL ((0.12 + 0.20) —Q0.+ 0.15) = (0.12 £+ 0.25)). Its weighted mean
composition is also statistically indistinguishalfleem the average of SNC (Shergottite-Nakhla-
Chassigny) martian meteorites (Fig. 10). Howeuess, weighted mean of the clast is isotopically dti
from the average composition of HED (Howardite-EeeDiogenite) meteorites (Fig. 10) that are

thought to have originated from the asteroid Vesta.

4, Discussion

11
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4.1. Petrological history. The mineral chemistrg &ilk clast chemistry show that the clast is magme
but also rich in alkali (volatile) and incompatififace elements. Although, we have to bear in ntirad
the clast itself is very small, and may not be espntative of its parent lithology (Warren, 201Bgse
are unusual characteristics of a rock sourced aqmrimitive melt. It implies the presence of mixiofyan
evolved melt component in the clast’'s parent maliree region or later assimilation of an evolvedtme

component.

4.2 Origin. The clast has mineral-chemistry chamdstics that differentiate it from known lunar
lithologies (Figs. 5, 6, 8 and 9). In particulae thlivine and pyroxene crystals have Fe/Mn ratias are
unique compared with previously sampled lunar ragkgs. The ratio of Fe/Mn in mafic minerals and
bulk samples is indicative of planetary reservaind subsequent geological evolution of planetadjdso
(i.e., volatile loss, metal segregation during can@oval, oxygen fugacity and melt fractionatiomake

et al., 1989; Papike, 1998; Karner et al., 2008620Papike et al., 2003; Gross et al., 2011; Gergbs
Treimen, 2010; Goodrich and Delaney, 2000). Thesiptes planetary sources of the clast are discussed

below.

4.2.1 Sampling a unigue region of lunar crust? éutyh the olivine and pyroxene mineral compositions
are not lunar-like (Figs. 5, 6 8 and 9), other aebtaristics maybe consistent with the clast beiergved
from lunar rocks. Its magnesian nature is simiaroicks from the lunar Mg-Suite, although plagiselés
alkali-rich compared to plagioclase in Mg-Suite kec(Fig. 7). Conversely, although the clast's
aluminous and alkali-rich nature is more similarsemples from the High Alkali Suite, olivine and
pyroxene in the clast are too magnesian (Fig. [Bgiclase trace element concentrations (Fig. 8) ar
similar to rocks from both the High Alkali Suite cartMg-Suite. If the rock is lunar, then it shares

12
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characteristics of both these magmatic suitespadth it differs from both. It is plausible that theck
represents a Mg-Suite cumulate that was infiltrdigdate stage evolved K-rich fluids (akin to High
Alkali Suite or KREEP basalt melts) to accounttfoe alkali-rich plagioclase and trapped mesostdais

K-rich glass.

If the clast originated from the Moon then an erpl#on is required for the non-lunar Fe/Mn ratiios,
both the early formed olivine (Figs. 8a and 8b) #wrellater crystallised pyroxene (Fig. 8c and ddile

following mechanisms could account for differencé-&/Mn ratios between the clast and lunar rocks:

(1) Oxygen fugacity effects. Low Fe/Mn ratio in tblast could result from a source region with highe
fO, than typical lunar melts. However, no ferric madgshases are present in the clast that would stippo
this model. Alternatively, the low ratio could imythat the clast has experienced reduction to renfa
from olivine and pyroxene, that could have decréaseth mineral's Fe/Mg and Fe/Mn ratios, and
increased Ni concentrations in the clast comparigtdl lwnar rocks. However, no metallic Fe is obsdrve
in the clast, so if reduction occurred, the reagltimetal products and siderophile elements were

effectively removed from the rock before it cryitad.

(2) Crystallisation or fractionation effects. A dease in Fe/Mn ratio in mafic phases could indithte
olivine was removed (fractionated) from the sanmgpkBurce region, as Mn is somewhat incompatible in
olivine and Fe is compatible (Humayun et al. 20D#1 and Humayun, 2008); this process could decrease
the system’s bulk Fe and increase the bulk Fe/Mbdatrease the Fe/Mn ratio. However, as the chsst h

a bulk rock Mg# of 84-89 (Table 1), precipitatintivime in equilibrium should be k@ (calculated

13
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using equation 3 of Joy et al., 2008 and referettoe®in). As these calculated values are similahé
most primitive olivine composition measured in thast (F@g), this indicates that little or no olivine was
removed from the parent system and so this isikelylto be the cause of the Fe/Mn variation. Fe/Mn
ratios could potentially also be lowered if Fe-Ti IBe-Cr-Al oxides precipitated as an early phase
removing Fe from the melt (Karner et al., 2003; ret al., 2011), however both olivine and pyroxene
the clast are generally Ti-rich, Cr-rich and Alkricompared with lunar phases with similar Mg# (Flgs

and 6), suggesting that early oxide removal hadbeeh extensive.

(3) Unique lunar crustal or mantle mineralogy. Timgar mantle and crust is heterogeneous, with regio
that contain differing amounts of volatile elemefgts., Hauri et al., 2011; McCubbin et al. 2014rtase

et al., 2013). The clast could, therefore, haventmmirced from a region with higher concentratiofis
volatile elements. Manganese is a moderately Velatement and generally has low concentrations in
lunar materials, presumably because it was vdatiliand depleted during the Moon’s formation byfgia
impact €.g., Hartmann and Davis, 1975; Papike et al., 2003; €diNind Palme, 2008). However, in
principle, as yet undiscovered relatively volatileh regions may exist in the lunar crust or maiiben
which this clast might have been derived. An origirsuch a region might also explain the relatively

alkali-rich nature of the plagioclase grains witttie clast.

In summary, although there are possibly mechanisnmaccount for the clasts’s non-lunar-like Fe/Mn
ratios in olivine and pyroxene, such models woub dave to account for the clast’'s different maher
chemistry compared with known lunar rock types (€aB). Indeed, the clast appears sufficiently

compositionally unique compared with known lunark®that it may not be lunar at all.
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4.2.2 A non-lunar origin? As the Fe/Mn ratios aé thlivine and pyroxene are not lunar-like (Figarl
9), it is plausible that the clast may have beane from a different parent body and survivedvdey
to the Moon as impact debris. Meteoritic debrisehaveviously been identified on the Moon as rare

samples found in the lunar regolith (see Joy eRall2 for a summary).

Compositional and isotopic constraints for a metieoorigin, and potential parent bodies, are liste
Table 3. Olivine grains in the clast have non-luRefMn ratios that are more similar to trends irrtraa
meteorites, terrestrial samples, and some chorglmilerdinary chondrites (Fig. 8). However, we di n
consider that the clast is a chondrule relic ageti@ are no Fe-metal, sulphide, Al-rich spinel or
nepheline grains present, indicative of plagioclage chondrules; (ii) the clast bulk MgO/A&); ratio
(~0.8) is lower than bulk chondrules (typically >51McSween, 1977), and clast bulk MgO/Fi3
typically lower (<0.21) than in chondrules (typigab>45: McSween, 1977); and (iii) plagioclase gsai
in the clast are a lot blockier than found in ptegse-rich chondrules (Krot et al.,, 2002). Thestla
pyroxenes have Fe/Mn ratios that are distinct froost basaltic achondrite groups, although are withi

the spread of terrestrial pyroxene data (Fig. 8).

Additional constraints are provided by the oxygestope data. Minerals in the clast have oxygerefsot
ratios (Table 2) that are (i) statistically indigguishable from the Terrestrial Fractionation L{ne.., the
clast could be a terrestrial or a lunar sampl@)afie statistically (2 error) different from the bulk HED
meteorite trend; and (iii) are withino2error of the bulk SNC meteorite and angrite meteaxygen

isotope trends (Fig. 10).
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Despite the fact that the oxygen isotopic compasits consistent with the TFL, and that the plalgise
An# values overlap with terrestrial values (Fig. @ provisionally discount a terrestrial origirr the
clast. This is because the olivine Ni contentdaner (Clast = <150 ppm Ni: Table EA S1), than high
(Fo.go) olivine in terrestrial mafic rocks (typically >80ppm Ni; Karner et al., 2003; PetDB database
www petdb.org/) and Archean samples (>600 ppm Ni; Barnes e1883; Karner et al., 2003; Cheng and
Kusky, 2007; Mondal et al., 2006; Pettigrew andtétat2006). Additionally, although the Fe/Mn ratio
in the clast's mafic phases overlap with examplemfterrestrial samples, they do not exactly folkie

terrestrial Fe/Mn ratio trend (Fig. 8).

It is notable that the Fe/Mn ratios in olivine fairy close to the martian olivine trend (Figs.a8a 8b),
and that the oxygen isotope values do not ruleaomttartian origin (Fig. 10). However, evidence from
other mineral chemistry data appears to discounggian source, as the olivine and pyroxene mineral
compositions are atypically magnesian, and theigi¢ase too Ca-rich (anorthitic) compared with kmow
martian meteorites.é., Papike et al., 2003, 2009; Karner et al., 200842@006; Sarbadhikari et al.,
2011: Fig. 9). Moreover, unlike the olivine, the/Ma ratios in pyroxene do not follow the martiaartd
(Karner et al., 2003; 2006; see Figs. 8 and 9). ¢él®y, we have to recognise that our current set of
martian meteorites are derived from a very fewtioos on Mars, and it would be unwise to assume tha
we have anything approaching a complete picturthefrange of the composition of martian igneous

rocks that we could use for such a comparison.

As we have no recognisable meteorite samples fremu¥ or Mercury to compare with, it is difficult to
assess if these planets could have been the sofitbe clast. However, the clast bulk K (7300-8400
ppm; Table 1) and Th (~2.5 ppm) in the clast isabhyt higher than that recorded in any Mercury stefa
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374  regoliths by the Messenger mission gamma-ray speetier (GRS) instrument (1150 = 220 ppm K; 0.22
375 £ 0.06 ppm Th; see Peplowski et al., 2011). Itis® digher than that recorded by the GRS instrurnant
376  board the Venera landers (3000-4500 ppm K; 0.7+ p; see Fig. 2 of Peplowski et al., 2011 and
377  references therein). This suggests that the casnlike typical rocks in Mercury's or Venus's uppe
378  crust, although clearly the full diversity of thesmistal rocks is presumably greater than deduced f
379 relatively low spatial resolution orbital remotensieig of Mercury and threi@ situ measurements made

380 on Venus.

381

382 Compared with asteroid material sampled at thegpteday by near Earth objects (NEOs), mafic mineral
383  compositions in the clast are dissimilar to lithpes sampled by aubrite (Bearley and Jones, 1998),
384  winonaite (Benedix et al., 2005), acopulcoite, tydre (McCoy et al., 1996, 1997), mesosiderite (Neh
385 et al.1980) and ureilite (Downes et al., 2008) achitic meteorites. Plagioclase grains in the ciastnot

386  as calcic, and Fe/Mn ratios in olivine and pyroxane lower than in angrite meteorites (Fig. 9, Rayeit

387 al., 2003). Fe/Mn ratios and the augite-rich Naripegnature of pyroxene are also dissimilar to éhivs

388 HED pyroxene (Figs. 8c and 8d, and Fig. 9; see Bls8ween et al., 2012; Beck et al., 2012). HED

389  meteorites have already been shown to not fit witgh the clast’'s oxygen-isotope composition (Fig).1

390

391 The clast could, therefore, have originated fromliflerent, so-far unsampled, achondritic parentybod
392  with differentiates that were melted from a pringtireserve (to account for magnesian mafic phases)
393  included a fractionated residual liquid compongataccount for the Na-K-rich mesostasis). Rareitcan
394 igneous fragments and glasses (some magnesian)okawvereported in a number of meteorites that are
395 presumed to have originated within differentiatedsts by magmatism or impact processes on small
396 asteroidal parent bodies (e.g., Bonin, 2012). ,Ittherefore, possible that this clast could represe
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lithology from a differentiated asteroid parent pdthiat is poorly represented, or not represented, i

meteorites being delivered to Earth at the predamnt

Whatever its sourcéf the clast is exogenous to the Moon, the timingoflelivery to the lunar surface
could help to shed new light on the sources ofgmtigs being delivered to the Moon at differeninp®

in lunar history. Constraining the age of lunaralégs is complicated as they contain many différeck
types that may have undergone several formationspade-exposure episodes. In regolith samples that
have undergone exposure to the space environnenhulk-rock ratio of ‘trapped’ (parentlesSir to
solar wind-implanted®Ar has been shown to be indicative of the last tiheeregolith system was closed
from surface exposuré€., it was turned from a soil into a rock). This ismtaratio can then be calibrated
to a temporal antiquity age record using the arigmtope record of Apollo samples of known age
(Eugster et al., 2001; Joy et al., 2011a). Thepedf’Ar/*°Ar of MAC 88015 was measured by Eugster et
al. (1991) to be 5.7. Applying this ratio to theeagplibration of Joy et al. (2011a) implies that GIA
88105 was closed from lunar surface exposure &2~@a. Therefore, any meteorite components in the
MAC 88105 parent regolith would have to have beelivered to the lunar surface before this time.
Eugster et al. (1991) report that the parent rdgaelias immature and had a surface residence time of
about 650 Ma prior to brecciation: this impliestttige clast possibly was delivered between ~3.4 a1k

~2.82 Ga during Late Imbrian epoch to early Erdtestan period.

Highly-siderophile-element signatures for impactitiée.g., Puchtel et al., 2008; Galenas et al., 2012;
FischerGoddeand Becker, 2012), and discoveries of projeciileancient breccias (Joy et al., 2012),
imply that chondritic asteroids were common sourfeisnpactors during the basin-forming epoch (>3.7
Ga). Delivery of achondritic material to the lursarrface during an interval of ~3.47 Ga and ~2.82Ga

18



420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Joy et al. MAC 88105

consistent with a variety of impactors (chondriichondritic, iron) found in younger Apollo 16 réigo
breccias and Apollo landing site soils (see Jowlet 2012 for a summary), and reflects a possible

diversification of impactor sources in post-basimiing epoch (<3.7 Ga) projectile populations.

4.3. Summary

We have discovered a compositionally unusual elétsin lunar meteorite MAC 88105,159. The clast is
composed of forsteritic olivine, bytownitic plaglase, augitic pyroxene, and a mesostasis of déettri
K-rich glass with an alkali-calcic dacite compamiti In terms of olivine and pyroxene mineral Mgisit
similar to Mg-Suite samples, however, in terms oftfplagioclase are sodic and more akin to sambles o
the high alkali suite. This indicates that the ranky represent a new type of lunar lithology that
experienced an unusual petrological origin comlgirinprimitive mafic melt with a late-stage alkali-
element (ITE-rich) component. However, despite e¢heinilarities to some known lunar rock types,
pyroxene and olivine in the clast have Fe/Mn ratizg are notably different from any known indigeso
lunar samples (Figs. 8 and 9). As Fe/Mn ratioskang indicators of planetary heritage, this evidence
suggests that the clast may not have originatad ft®e Moon, and instead may represent material from
another differentiated parent body. We suggest ttiege Fe/Mn ratios and other unique compositional
characteristics point towards derivation from amcadritic basaltic meteorite that was derived from

parent body that was more oxidised and more velsith, than the Moon.

Although in this study we have not been able tanitefely identify the parent body from which thitast

is derived, the plausible discovery of an achorriteteorite implanted in the lunar regolith prior
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~2.82 Ga adds to the diverse suit of meteoriticenitalready known to be sampled in regolith bi@xzc
and Apollo soils(see Joy et al., 2012 for a summary). This furtimefedlines the importance of the lunar
regolith as an archive of impact debris derivednfrather bodies in the Solar System, including fbssi
samples of the early Earth of astrobiological digance that may not be preserved anywhere elgg, (
Armstrong et al., 2002; Crawford et al., 2008)eritifying such materials, both within the existingar
sample collection, and in samples collected byr&utunar missions, will be an important aspectuofr

science in the coming decades.
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Table captions

Table 1. Major (EMPA) and trace element (LA-ICP-M®mposition of an olivine grain, a plagioclase
grain and a mixed mesostasis area (pyroxene andhKgtass and Ti-phases) in the clast in MAC
88105,159. Also listed is the bulk composition lné tclast estimated (i) by a raster-beam EDS amsalysi
(see Joy et al., 2010a for details) and (ii) by aadconstruction using proportions 30% plagiogl@s

olivine and 30% mesostasis (Fig. 1).

Table 2. Results dh situ oxygen isotope studies. Data were collected frtagipclase in host meteorite
MAC 88105,159 (top) and minerals phases in thet ¢lasttom). The weighted meaxt’O of the lunar
plagioclase was normalised to the TRAL7{O = 0) and then the lunar dataset and clast etatesre

normalised by the same amount (right hand columi®gighted mean host MAC 88105,159 data and
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clast data errors ares atandard error (standard deviation of data divickedthe square root of number of

measurements).

Table 3. Summary of compositional and mineralog#alilarities and differences between the clast in

MAC 88105,159 and other planetary bodies.

Figure Captions

Figure 1. (a) Back-scatter electron image and dtgefcolour element maps of sample MAC 88105,159.
For the false-colour map image pixels are colotnedenote distribution and concentration of magmasi
(green), aluminium (white), iron (red), silica (bl titanium (pink), calcium (yellow) and potassium
(cyan) (after Joy et al., 2011b). Location of thest; which appears green as it is magnesiandisated
with a red square inlay. Other green phases irsdingple are olivine-rich clasts or single olivinenerial

fragments.

Figure 2. Close up images of clast in MAC 88105,1G9 Back-scatter electron image of clast. Red
circles denote collection locations and size of SIbkygen measurements. Blue circles denote location
and size of LA-ICP-MS pits for trace element anisly¢b) False colour element map of the clast (see
figure 1b for colour details). Minerals phases demoted where Ol = olivine, pyx = pyroxene, plag =

plagioclase and ms = mesostasis. (c) Mineral figion within the clast where blue = plagioclass] =
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olivine, green = pyroxene, yellow = mesostasis glgénk = Ti-rich phase and white = holes or host

meteorite MAC 88105,159.

Figure 3. REE concentrations in the clast (Table (&) Cl chondrite-normalised REE values of
plagioclase and olivine mineral grains and bulkaameesostasis (glass + ilmenite + pyroxene). REE
abundances of CI chondrite were from Anders and/é€sse (1989). Also shown are the modelled (modal
recombination) bulk clast composition (Table 1) d@imel composition of high-K KREEP (Warren, 1989)
for comparison. (b) Clast plagioclase REE value garad with those from the lunar ferroan anorthosite
(FAN) suite (Papike et al., 1997; Floss et al., 89%e Mg-Suite (HMS: medium grey box: data from
Papike et al., 1996; Shervais and McGee, 1998)tlamdHigh Alkali Suite (HAS: dark grey box: data

from Shervais and McGee, 1999). Error bars showr2aigma.

Figure 4. Pyroxene compositions measured in th&t giwtted onto a pyroxene quadrilateral. Data are
compared with pyroxene in clasts and mineral fragsén the host MAC 88105,159 meteorite and also

in MAC 88104,47, MAC 88105,158 and MAC 88104,48.

Figure 5. Minor elements in pyroxene in the clashpared with pyroxene in lunar meteorites and Apoll

samples. Note that for a given Mg# the clast pynexbave higher concentrations of Na, Ti, and Al
compared to most other lunar materials. Meteodtta sources are as follows: MAC 88104/05, Dar al
Gani 400, Meteorite Hills 01210 and Pecora Escarprd2007: Joy et al. (2010a); North West Africa
4472: Joy et al. (2011c); Miller Range 07006: Jbgle (2010b); Robinson et al. (2012); La Paz 02205

and pairs Joy et al. (2006); and Miller Range 0508¥ et al. (2008). Data for Apollo samples, ings
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feldspathic lithologies, Mg-Suite, KREEP and massdits (Takeda et al., 1975; Papike et al., 1991,

1996; 1998; Shervais and McGee, 1999; Jolliff gt1899; Schnare et al., 2008; Taylor et al., 2012)

Figure 6. Minor elements in olivine in the clasthgmared with olivine in lunar meteorites (see Fig. 5
caption for literature sources) and Apollo samplestuding feldspathic lithologies, Mg-Suite, KREEP
and mare basalts (see Fig. 5 caption for literasowgces). Note that for a given Mg# the clastindv

have equivalent Ca and Ti higher concentratior@raind lower FeO/MnO ratios.

Figure 7. Average Mg# of olivine and pyroxene vkagjpclase 100xCa/[Ca+Na] (average 79) in the
clast. Error bars show range of compositions indlast. Note that the clast plagioclase data has be
recalculated from that presented in the text whigs reported for 100xCa/[Ca+Na+K]. The data are
compared with possibly pristine non-mare rockstisby Warren (1993). The outer ferroan anorthosite
suite (FAS) field was taken from Warren (1993). Tweer ferroan anorthosite suite field and High-Mg
Suite (HMS) fields outline those rocks that havghhtonfidence of pristinity (i.e., those with pirdty
values of >8: Warren, 1993). The approximate boonftiashed line) between Mg-Suite and High Alkali

Suite rocks was taken from Wieczorek et al. (2006).

Figure 8. Mn vs. total Fe atoms per formula uni{ap and (b) olivine, and (c) and (d) pyroxenehia t
clast. Data in in (a) and (c) are compared withitngliases in other lunar meteorites and numerotth Ea
rocks (taken from the PetDB database including llmsperidotites, lherzolite, troctolites, gabbros,
gabbronorite, harzbergites etc. where reportedda id converted from wt% Fe@). Also shown are

average planetary trend lines where the Moon lareslinear fits (olivine: Mn = [0.0114xFe]-0.0003;
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pyroxene: Mn = [0.0116xFe]-0.0038) to lunar metieogyroxene and olivine data as reported in Fig. 5
caption; the Earth line is taken from a linear(fitivine: Mn = [0.0194xFe]-0.0015; pyroxene: Mn =
[0.0309xFe]-0.0028) to data compiled in the PetBabase from numerous terrestrial rocks; planetary
trend lines for SNC meteorites (Mars) and HED metes (Vesta) are from Papike et al. (2009), and
ordinary chondrites (OC) and CO-type carbonacebosdrites are from Berlin et al. (2011). In (bdan
(d) data from olivine and pyroxene phases in lunateorite MAC 88104/05 (Joy et al., 2010a and this

study), and Apollo Mg-Suite is plotted for compangPapike et al., 1998; Shervais and McGee, 1998).

Figure 9. Range of typical plagioclase compositi@mere An# = Ca/[Ca+Na+K]) vs. olivine and

pyroxene atomic Mn/Fe ratios for different plangtéiodies (fields for meteorite groups, Earth and
Apollo basalts taken from Papike et al., 2003).08fiown are the total range of plagioclase, pyrexen
and olivine compositions reported in lunar metesri{references listed in Fig. 5 caption. Average
composition of the MAC 88105,159 clast is plotteded where the bars denote the range in compositio

plagioclase and mafic phases.

Figure 10. Time order analysis at’O oxygen isotope analysis of phases in the lunaigmoof host
meteorite MAC 88105,159 (grey symbols) where theghted mean (grey line and square grey symbol)
has been normalised to the TRAY'O. The & standard errors of these lunar measurements & &1
shown as error bars on grey square symbol. Analgghases in the clast are shown as red symbols
where the weighted mean (normalised to the weightedn of the lunar portion corrected to the TFL) is
AY0 = 0.12 shown as the solid red line and red sossardol. The & uncertainty (+ 0.25) levels for the
mean of the clast (including the standard errothenmeans for both the clast and lunar measureiments
are shown as error bars on the red square symbeseTerrors are appropriate to compare\ffi® of the
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891 clast with those of average SNE&'{O 0.29: average of data compiled by Mittlefehldakt 2008), HED
892  (A'O -0.22: average of data compiled by Mittlefehltiak, 2008) and angrite meteorites O -0.07:

893  Rumble et al., 2008).
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