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Abstract: The article reports on the composition, mixing state and water affinity of iron silicate parti-14 

cles which were produced in a non-thermal low-pressure microwave plasma reactor. The particles are 15 

intended to be used as meteoric smoke particle analogues. We used the organometallic precursors 16 

ferrocene (Fe(C5H5)2) and tetraethyl orthosilicate (TEOS, Si(OC2H5)4) in various mixing ratios to pro-17 

duce nanoparticles with radii between 1 nm and 4 nm. The nanoparticles were deposited on sample 18 

grids and their stoichiometric composition was analyzed in an electron microscope using energy dis-19 

persive X-ray spectroscopy (EDS). We show that the pure silicon oxide and iron oxide particles consist 20 

of SiO2 and Fe2O3, respectively. For Fe:(Fe+Si) ratios between 0.2 and 0.8 our reactor produces (in 21 

contrast to other particle sources) mixed iron silicates with a stoichiometric composition according to 22 

FexSi(1-x)O3 (0 ≤ x ≤ 1). This indicates that the particles are formed by polymerization of FeO3 and SiO3 23 

and that rearrangement to the more stable silicates ferrosilite (FeSiO3) and fayalite (Fe2SiO4) does not 24 

occur at these conditions. To investigate the internal mixing state of the particles, the H2O surface 25 

desorption energy of the particles was measured. We found that the nanoparticles are internally mixed 26 

and that differential coating resulting in a core-shell structure does not occur.  27 

Keywords: Microwave Plasma, Nanoparticles, EDS, Meteoric Smoke Particles, Iron Silicates 28 

1 Introduction 29 

Nanoparticles are of great importance for many chemical and physical applications and research 30 

fields. In planetary atmospheres, they serve as important condensation nuclei triggering the formation 31 

of clouds: Every day, about 40 tons of meteoric material enters the atmosphere of Earth (1, 2). This 32 

material ablates in the upper atmosphere with peak ablation heights of the major elemental compo-33 

nents Fe, Si and Mg at a height between 80 km and 90 km (3). Oxides, carbonates and hydroxides are 34 

formed via oxidation by O3, O2, CO2 and H2O and then serve as building blocks for so called Meteoric 35 

Smoke Particles (MSP) (4). In the summer mesopause in Earth’s atmosphere, the majority of MSPs is 36 

smaller than 2 nm in radius (5-10) and they are believed to serve as nuclei for the formation of noctilu-37 

cent clouds (NLCs) (10-12). On Mars, the peak meteoric ablation height is between 60 km and 100 km 38 

(13-15), which is consistent with heights of CO2 cloud observations (16-21) adverting the importance 39 

of MSPs as potential condensation nuclei. Indeed, Listowski and co-workers were only able to model 40 

realistic Martian mesospheric cloud patterns when assuming the presence of MSPs (22). 41 

Due the small size of MSPs it is a challenging task to measure the MSP concentration and composi-42 

tion in the mesosphere which is subject of ongoing research. Current investigations point to an iron 43 

rich chemical formula (11, 23). Analogue materials for various kinds of cosmic dust have been pro-44 

duced by vapor condensation, sol-gel preparation or photo-oxidation (24-26). These methods do not 45 

mimic realistic conditions at which particles are formed in planetary atmospheres or the interstellar 46 

medium, but are used to produce particles with chemical compositions they might consist of. Here, we 47 

present a method to produce MSP analogues of realistic size using a non-thermal low-pressure mi-48 
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crowave plasma reactor. This method does not mimic realistic conditions at which MSPs are produced 49 

in the atmosphere as well, but allows creating particles which consist of the major elements expected 50 

to be in MSPs. These particles thus serve as MSP analogues and are used to study cloud formation 51 

processes at realistic mesospheric conditions of Mars and Earth with the recently introduced MICE-52 

TRAPS setup (27, 28). 53 

Understanding mesospheric cloud formation requires nucleation experiments conducted with the com-54 

plete composition range of MSPs, since the nucleation ability of the particles is likely to be material 55 

dependent. In addition, MSPs might heat up in the low pressure environment of the mesosphere by 56 

absorption of sunlight (29). The absorption ability of the particles is material dependent and is studied 57 

in ongoing research.  58 

In this work, we characterize mixed iron silicate nanoparticles produced in a non-thermal low pressure 59 

microwave plasma reactor. The paper is organized as follows: In section 2, we introduce the used 60 

experimental techniques which are Energy Dispersive Spectroscopy (EDS) and H2O adsorption 61 

measurements with MICE-TRAPS. We show in section 3 that pure iron oxide and silicon oxide parti-62 

cles are composed of Fe2O3 and SiO2, respectively. Mixed iron-silicate particles, however, are com-63 

posed of a homogeneous mix of FeO3 and SiO3 molecules with their ratio being controlled by the iron 64 

and silicon concentration in the plasma reactor. We conclude with a summary of the results and an 65 

outlook in section 4. 66 

2 Experimental 67 

2.1 Nanoparticle generation 68 

Metal oxide nanoparticles were produced in a non-thermal low-pressure (60 mbar) microwave plasma 69 

reactor. The operating principle of such nanoparticle sources has been described previously in detail 70 

(e.g. 30). The shape of metal oxide nanoparticles produced in similar experimental setups has been 71 

shown to be compact and spherical with a marginal degree of agglomeration (31-34). The design of 72 

the nanoparticle source employed in this experiment is depicted schematically in Figure 1. Compared 73 

to other designs of this type the setup differs in the way of precursor vaporization and mixing with the 74 

background gas flow which we will describe in more detail. Organometallic precursors are stored in 75 

separate and independently temperature-controlled reservoirs. The amount of precursor vapor added 76 

to the background flow in the mixer is determined solely by the temperature of the precursor reservoir. 77 

This setup has the advantages that it is very simple and that liquid and solid precursors can be vapor-78 

ized using identical reservoirs without the need for additional flow controlled gas lines. In this study we 79 

use tetraethyl orthosilicate (TEOS, Si(OC2H5)4, Sigma Aldrich) and ferrocene (Fe(C5H5)2, Sigma Al-80 

drich) as precursors for silicon and iron, respectively. The precursor vapors are mixed with a continu-81 

ous 3 slpm flow of Helium to which a 100 sccm flow of O2 is added downstream. The addition of O2 is 82 

processed behind an orifice in flow direction to avoid premature oxidization and deposition of the low 83 

volatile metal oxides, which has been observed to occur for some precursors. Pressure and flow con-84 

ditions ensure diffusive mixing of vapors and gases within a few centimeters. After mixing, the flow 85 

enters a quartz glass tube of 2.2 cm inner diameter and 40 cm length. The Reynolds number of the 86 

flow in this tube of Re~24 indicates a laminar regime. The tube is placed in the center of the micro-87 

wave resonator at which a microwave induced plasma of about 15 cm length is ignited (2.45 GHz, 350 88 

W). The flow rate results in a retention time of about 60 ms in the plasma during which the precursor 89 

molecules completely decompose causing the release of Fe and Si atoms. The presence of oxygen (3 90 

mol%) in the gas flow assures oxidization of these atoms which then form particles. In addition, the 91 

organic parts of the precursors are efficiently oxidized to volatile carbon dioxide and water which are 92 

not included in the particle material. A precursor mixing ratio of 30 ppm (0.003 mol%) or less was 93 

maintained in the reactor cell such that the ratio of O2 per precursor molecule was always at or higher 94 

than 1000. For comparison, to oxidize the organic parts of TEOS and ferrocene molecules requires 11 95 

and 12.5 molecules of O2, respectively. The bulk of the particle-laden flow behind the discharge region 96 

is pumped off and discarded and less than 20% of the sample flow is extracted and fed to the nano-97 

particle characterization unit. 98 
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 99 

Fig. 1: Schematic representation of the microwave plasma nanoparticle source. 100 

To study nanoparticle properties using the MICE-TRAPS apparatus the nanoparticles were separated 101 

from the residual gas of the nanoparticle source using an aerodynamic lens (ADL) and a differential 102 

pumping stage which has been described in detail previously (28). After the ADL, the particle beam 103 

enters the main vacuum chamber through a skimmer. At this point, a target plate was inserted to de-104 

posit the particles on standard transmission electron microscope (TEM) sample grids (Ø 3mm, copper 105 

mesh, coated with carbon film). The particle mass distribution at the output of the nanoparticle source 106 

depends on pressure, flow conditions, precursor concentration in the plasma reactor and retention 107 

time. It was found, that for the conditions employed in this experiment using only a single precursor, 108 

particles with diameter ranging from 2 to 8 nm were produced. The charge state of the particles de-109 

pends on various parameters such as precursor composition and concentration, microwave power, 110 

retention time and other parameters of the microwave induced plasma. Although the exact particle 111 

charge distribution could not be measured, we assume that about 50% of the particles are neutral and 112 

50% are singly charged with a preference towards carrying a positive charge. The exact values, how-113 

ever, may differ substantially depending on the above mentioned parameters. 114 

2.2 Nanoparticle composition 115 

After particle deposition, the TEM sample grids were analyzed in a scanning electron microscope 116 

(SEM, FEI Quanta 650 FEG) using an energy dispersive X-ray spectrometer (EDS, Bruker Quantax 117 

XFlash 5010). The sample grids loaded with nanoparticles were placed perpendicular to the electron 118 

beam. EDS spectra were obtained with a 10 keV beam scanning a square area size of 200x200µm on 119 

the sample surface. Exemplary SEM images and EDS spectra of a bare TEM grid (a) and a grid with 120 

iron-silicate particle deposit (b) are shown in Fig. 2 for photon energies between 0.1keV and 2keV. 121 

The insert in the lower right part shows the EDS spectra of the iron-silicate particle deposit for photon 122 

energies between 5 keV and 7 keV. The EDS spectrum of the bare grid shows the characteristic 123 

peaks associated with the copper bulk material of the grid (L-line, 0.93 keV). The spectrum also shows 124 

weak peaks of C (K-line, 0.277 keV) and O which are always observed by the EDS detector in this 125 

instrument independent of the sample. The EDS spectrum of an iron silicate deposit shows peaks 126 

which are attributed to the presence of O (K-line, 0.525 keV), Fe (L-line, 0.705 keV) and Si (K-line, 127 

1.74 keV). The carbon peak in the EDS spectra of the iron silicate deposit is only slightly increased 128 

compared to the bare grid. This confirms that no eminent amount of carbon is present in the particle 129 

material. 130 

 131 
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 132 

Fig. 2: Left panels: SEM images of a bare grid (a, top) and of a grid covered with iron-silicate nanoparticles (b, bottom) (scale 133 

bar 1 mm). Right panels: EDS spectra taken at the electron beam scanning locations indicated by the green boxes in the SEM 134 

images. Horizontal axis is photon energy (0.1 to 2keV) and vertical axis is photon count rate (0 to 5.5 cps/eV bin). Positions of 135 

the main emission peaks of C, O, Fe, Cu, and Si are labeled. The insert shows the high energy part of the spectrum (5 to 7keV) 136 

using the same vertical scale and illustrates the intensity of the FeK-line at low iron content. 137 

Quantitative analysis of the elemental composition was performed using the Esprit 1.9 software by 138 

Bruker. The analysis employed in the software is based on evaluating the peak to background ratios 139 

which are then input to a modified ZAF matrix correction which accounts for atomic number (Z), ab-140 

sorption (A) and secondary fluorescence effects (F). A detailed description of the method can be found 141 

in (35-37). Data was only obtained for thick deposit layers, so that no copper signal from the TEM grid 142 

is present in the EDS spectra. At 10 keV excitation energy the FeK-line and FeL-line can be used for 143 

quantitative analysis. In general, analysis of the FeK-line usually provides more accurate results than 144 

the FeL-line as interference with the overlapping OK-line and additional errors occurring due to a higher 145 

background and varying absorption effects in the low energy range can be avoided. However, for 146 

samples with a low iron content as presented in panel b) of Fig. 2 (Fe:(Fe+Si)=0.38) the intensity of 147 

the FeK-line (6.405keV) was so low (cf. insert) that analyzing the FeL-line resulted in a lower uncertain-148 

ty determined by the analysis software. For analysis of the iron content we always used the line result-149 

ing in the lower uncertainty. For each sample, EDS spectra were taken at three different scanning 150 

locations. It was found that for all samples the variance of analyzed elemental composition between 151 

each location was smaller than the uncertainty given by the analysis software for a single spectrum. 152 

Thus, we assume that the result is independent from the chosen scanning location. 153 

2.3 Nanoparticle mixing state 154 

To study the particle mixing state, the nanoparticle surface was investigated by measuring the desorp-155 

tion energy of water molecules with the MICE-TRAPS apparatus. The device (38) and the method 156 

using CO2 as the adsorbent (39) have been described in previous publications. In this work, H2O has 157 

been used as the adsorbent. In brief, the nanoparticles are mass selected and trapped in MICE and 158 

are exposed to a flux of water molecules at a temperature of about 145K. Under such conditions the 159 

initially bare particle surface adsorbs water molecules until an equilibrium surface concentration is 160 

reached. The adsorption equilibrium is determined by the ratio of adsorption and desorption rate 161 

where the latter is described by the H2O desorption energy, a surface property characteristic for the 162 

nanoparticle material. The desorption energy is expected to reflect the chemical composition of the 163 

nanoparticle surface and provides indications on the internal particle mixing state. The adsorption pro-164 
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cess is monitored by measuring the particle mass with a time-of-flight mass spectrometer (TOF-MS) at 165 

regular time intervals. This is achieved by extracting small samples of the trapped particle cloud from 166 

MICE through the electrostatic exit lens of the ion trap and guiding the particles into the acceleration 167 

zone of the TOF-MS. The left panel of Fig. 3 shows exemplary measurements of the particle mass as 168 

a function of the trapping time in MICE for pure iron oxide and silica nanoparticles. 169 

 170 

 171 

Fig. 3: Left panel: Nanoparticle mass during H2O adsorption process as function of the residence time in MICE for iron oxide 172 

(red triangles) and silica (black dots) nanoparticles with initial mass m0 = 2·10
-22

kg. The solid lines are exponential decay fits to 173 

determine the adsorbed water mass for each measurement. Right panel: Smoothed time-of-flight mass spectra for two selected 174 

points marked with error bars in the left panel at t=73s. The particle mass is shown as a function of the TOF signal. The position 175 

of the peak maximum is used as the mean particle mass plotted in the left panel. 176 

Starting with an initial mass of m0=2·10
-22

 kg (=1.2·10
5
 u) for both materials the particles adsorb water 177 

vapor and quickly reach an equilibrium state. Iron oxide exhibits a higher desorption energy than silica 178 

and adsorbs more water on the particle surface. The mass of adsorbed water mads is determined from 179 

the measurement by fitting a single exponential decay of the form 𝑚(𝑡) = 𝑚0 +𝑚𝑎𝑑𝑠(1 − 𝑒−𝑡/𝜏) to the 180 

data. The adsorbed water mass relates to the desorption energy Fdes by the following equation (40):  181 

                                                 𝑚𝑎𝑑𝑠 =
𝑛𝐻2𝑂∙𝐴0

𝑓𝑣𝑖𝑏√2𝜋
∙ √𝑚𝐻2𝑂𝑘𝑇 ⋅ exp⁡(

𝐹𝑑𝑒𝑠

𝑘𝑇
)                                                   (1)                     182 

Here, 𝑛𝐻2𝑂 is the water vapor density in MICE, 𝑚𝐻2𝑂 is the mass of a water molecule, k is the Boltz-183 

mann constant, T is the temperature,⁡ fvib is the vibrational frequency (10
13

 Hz for H2O), and 𝐴0 =184 

(6√𝜋⁡𝑚0 𝜚⁄ )
2/3

 is the initial particle surface area which is calculated from the initial particle mass m0 185 

and particle density ϱ assuming spherical particles. For iron-silicates of various compositions no tabu-186 

lated values for the bulk densities are available. We assume a density that is a linear combination of 187 

the densities of iron oxide (ϱ~5.2g/cm³) and silica (ϱ~2.3g/cm³) according to the elemental ratio of iron 188 

to silicon. Equation (1) can be rearranged to yield the desorption energy as function of particle size 189 

and adsorbed water mass. 190 

The data points in the left panel of Fig. 3 were obtained from the peak position of the time-of-flight 191 

mass spectra shown in the right panel exemplary for the two data points marked with error bars. The 192 

width of the peaks is specific for the TOF instrument and detector design. The width of the particle 193 

mass distribution trapped in MICE is typically much smaller. The peak position, however, is a very 194 

precise indicator of the mean particles mass. The difference in adsorbed water mass between both 195 

particle materials can easily be resolved. 196 
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To investigate the particle mixing state we analyze Fdes as function of particle composition determined 197 

from EDS. For mixed particles containing both Fe and Si, we consider three possible scenarios: 1: 198 

Two independent classes of particles are produced in the particle source, one pure Fe-containing and 199 

one pure Si-containing class. 2: The particles created in the particle source exhibit a core-shell struc-200 

ture, where the core contains only one metal oxide which is then covered with a shell of the other met-201 

al oxide. This scenario could be realized if differential break-up of the precursors occurs in the flow 202 

reactor. 3: The particles are completely internally mixed, i.e. the chemical composition at the surface 203 

and in the bulk are identical. For case 1 the mass spectra for mixed particles should exhibit two distinct 204 

peaks, as both particle classes would adsorb water according to the measurements shown in Fig. 3. 205 

For case 2 the spectra should exhibit one distinct peak with the desorption energy being the same as 206 

either pure Fe- or pure Si-oxide particles. For case 3 one distinct TOF peak resulting in an intermedi-207 

ate value for the desorption energy would be anticipated.  While changing the Fe content of the parti-208 

cles a continuous transition of the desorption energy from pure Si to pure Fe oxide would be expected. 209 

3 Results and Discussion 210 

3.1 EDS analysis 211 

Mixed iron silicates were produced by varying the temperature of the precursors. For TEOS, tempera-212 

tures were varied between 2°C and 30°C and for Ferrocene between 45°C and 90°C. The particles 213 

were deposited on sample grids whereupon the iron, silicon and oxygen content was analyzed using 214 

EDS. The iron to silicon ratio of the particle material was proportional to the vapor pressure ratio of 215 

both precursors at the applied temperatures. Fig. 4 shows the element to oxygen ratio for iron and 216 

silicon containing nanoparticles produced in the microwave nanoparticle source and analyzed using 217 

EDS as described above.  218 

 219 

Fig. 4: Element to oxygen ratio M:O of iron-silicate nanoparticles plotted against the relative content of Fe. Open symbols indi-220 

cate elemental ratios of natural iron and silicate minerals. 221 

The relative abundances of Fe (red triangles), Si (black dots) and Fe+Si combined (blue squares) with 222 

respect to oxygen against the relative Fe content in the particles are shown. Additionally, the plot con-223 
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tains the relative abundances of Fe, Si, and Fe+Si for the natural occurring minerals silica (SiO2), 224 

magnetite (Fe3O4), hematite (Fe2O3), ferrosilite (FeSiO3), and fayalite (Fe2SiO4) according to their the-225 

oretical stoichiometric composition shown as open symbols. At zero iron content, the nanoparticle 226 

composition coincides with the composition of silica, which agrees with a previous finding in a similar 227 

experimental arrangement (41). At zero silicon content, the nanoparticle composition matches the iron 228 

to oxygen ratio of Fe2O3. This compares well with studies in which microwave plasma particle sources 229 

were used to produce iron oxide nanoparticles and which identified the particle material as Fe2O3 us-230 

ing XRD, Raman spectroscopy and Mössbauer spectroscopy (42, 43). At intermediate iron content 231 

(0.2 < Fe:(Fe+Si) < 0.8), the particle composition does not show a linear transition between SiO2 and 232 

Fe2O3. Instead, the particle composition follows a lower M:O ratio and Fe appears to be continuously 233 

interchangeable with Si. In fact, the measured composition is well represented by the system FexSi(1-234 

x)O3 (0 ≤ x ≤ 1) which is plotted in Fig 4 as solid lines. The continuous exchange of Fe and Si indicates 235 

that the particle formation occurs by polymerization of gas phase FeO3 and SiO3. In contrast to the 236 

production of iron oxide and silica particles, further rearrangement to more stable silicates does not 237 

occur. In addition, we observed a 10 to 100 times higher particle mass production rate when mixed 238 

iron silicates were produced compared to only using one precursor material. These observations show 239 

that the chemistry involved in particle formation is altered when producing mixed iron silicates. Photo-240 

oxidization in the presence of O2 and O3 at room temperature and atmospheric pressure has shown to 241 

produce a different particle material (25, 26): Here, independent of the applied gas phase concentra-242 

tions of the iron and silicon precursors, only an iron to silicon ratio of 2 was produced. This reaction 243 

product corresponds to the mineral fayalite (Fe2SiO4) and indicates a different reaction pathway. 244 

However, the composition as determined by EDS does not necessarily reflect the composition of indi-245 

vidual particles as the scan area of the electron beam (200x200µm) always covers many deposited 246 

nanoparticles. The EDS results are an average of the composition of the particles deposited on the 247 

sample grids. To elucidate the particle mixing state, additional information was provided by measuring 248 

the surface sensitive adsorption and desorption of H2O on the nanoparticles. 249 

3.2 H2O desorption energy 250 

The water vapor surface desorption energy of oxide nanoparticles with varying Fe and Si content has 251 

been measured using the method described above. One example measurement is shown in the left 252 

panel of Fig. 5 for a mixing ratio of Fe:(Fe+Si) = 0.65. 253 

 254 

Fig. 5: Left panel: Nanoparticle mass against residence time in MICE for mixed iron and silicon containing particles. Right panel: 255 

Smoothed TOF mass spectrum corresponding to the point marked with error bars at t=83s.   256 
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The right panel depicts the TOF spectrum corresponding to the single data point marked with error 257 

bars at t=83 s residence time. The TOF spectrum shows a single peak only with a peak width which is 258 

identical to the peak width for pure nanoparticles. As we have argued above, this indicates that all 259 

particles of the trapped particle population indeed adsorb the same amount of water molecules and 260 

thus have the same desorption energy. This finding eliminates the possibility of two or more particle 261 

classes with different desorption energies present in the trapped particle cloud. 262 

To further investigate the particle mixing state, a series of desorption energy measurements were per-263 

formed with particles of 2 nm in radius and varying Fe:(Fe+Si) particle mixing ratios and the results are 264 

shown in Fig. 6. The data shows a linear transition of the desorption energy from pure silica to pure 265 

iron-oxide particles. This indicates that the surface composition also follows a smooth transition and 266 

that the stoichiometric composition which has been determined by EDS measurements directly reflects 267 

the surface properties of the nanoparticles. We conclude that the nanoparticles are completely inter-268 

nally mixed and that differential coating to a core-shell structure does not occur. 269 

 270 

Fig. 6: H2O desorption energy for nanoparticles (r = 2nm ± 0.2nm) of varying Fe and Si content. The solid line represents a 271 

linear fit to the data. 272 

4 Summary and Outlook 273 

In this study, we characterized the composition of MSP analogue nanoparticles produced in a non-274 

thermal low-pressure microwave plasma source. EDS measurements show that silicon oxide particles 275 

consist of silica (SiO2) and iron oxide particles are composed of Fe2O3. In addition, mixed iron silicates 276 

with an Fe:(Fe+Si) ratio between 0.2 and 0.8 are present in the form of FexSi(1-x)O3 (0 ≤ x ≤ 1) with the 277 

ratio of Fe to Si molecules reflecting the iron and silicon molecule concentration in the plasma reactor. 278 

H2O adsorption measurements using MICE-TRAPS were used to conclude that only one particle class 279 

is produced, that the nanoparticles are internally mixed and that differential coating to a core-shell 280 

structure does not occur. In future work, we will add a magnesium precursor to the system and study 281 

the composition of mixed magnesium-iron-silicates. Measurements of the material dependent light 282 

absorption coefficient of these now well characterized particles as well as their H2O nucleation ability 283 

will be part of upcoming publications. 284 
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