
EVOLUTION COMPLEXITY:

INVESTIGATIONS INTO SOFTWARE FLEXIBILITY

Technical report CSM-424, ISSN 1744-8050 (Aug. 2005 revision)
Department of Computer Science, University of Essex

Amnon H. Eden (1) Tom Mens (2)

Department of Computer Science
University of Essex

and
Center For Inquiry

Software Engineering Lab
Université de Mons-Hainaut

Abstract. Flexibility has been hailed as a desirable quality since the earliest days of software engineer-

ing. Classic and modern literature suggest that particular programming paradigms, architectural styles and

design patterns are more “flexible” than others but stop short of suggesting objective criteria for measur-

ing such claims.

We suggest that flexibility can be measured by applying notions of measurement from computa-

tional complexity to the software evolution process. We define evolution complexity (EC) metrics, and

demonstrate that—

(a) EC can be used to establish informal claims on software flexibility;

(b) EC can be constant ���� or linear ���� in the size of the change;

(c) EC can be used to choose the most flexible software design policy.

We describe a small-scale experiment designed to test these claims.

Keywords: Software evolution, flexibility, science of software design.

Related terms: Computational complexity, software complexity, design patterns, soft-

ware architecture.

 (1) Email: eden@essex.ac.uk, postal address: Colchester, Essex CO4 3SQ, United Kingdom,

phone +44 (1206) 872677, fax +44 (1206) 872788

 (2) Email: tom.mens@umh.ac.be, postal address: Av. du champ de Mars 6, 7000 Mons, Belgium,
phone +32 (65) 373453, fax +32 (65) 373459

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/19749342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

– 2 –

� �������	�
���
Ever since the earliest days of software engineering, from the “software crisis” �[19]
through “software’s chronic crisis” �[10], evolution (or “maintenance”) of industrial

software systems has remained notoriously expensive, the cost of which often exceeds
that of the development phase �[1]. Classic and contemporary software design literature
argue that “flexibility” is a major concern in determining the maintainability of soft-
ware. Textbooks about software design emphasize the flexibility of particular choices,

thereby implying their superiority. In particular, object-oriented programming, architec-
tural styles, and design patterns are presented as more “flexible” than their alternatives.

We observe two problems with the current notion of software flexibility. The first

problem is the absence of reliable metrics thereof. No formal criteria for flexibility were

offered (3), and no metrics for quantifying it are known to us.

The second problem we observe in the current notion of “flexibility” is that it is
misconceived as an absolute quality. For example, such misconception is reflected in

IEEE’s definition of software flexibility:

Flexibility: The ease with which a system or component can be modified for

use in applications or environments other than those for which it was spe-

cifically designed �[12]

We find this surprising because hardly any artefact is “flexible” in absolute terms.
The RAM capacity of a notebook or a desktop computer, for example, can be expanded
only if the hardware and the operating system were specifically designed to accommo-
date for such changes (and even then only to the extent to which it was specifically

designed for). The same applies to articles of clothing (such as trousers and skirts)
which cannot be expanded in size unless specific provisions were made for this purpose.
Other examples can be drawn from consumer appliances to urban architecture, each of
which is only flexible towards a particular class of changes. (4)

The same rule applies to software, as we will demonstrate below, and yet claims

on the flexibility of particular programming paradigms, architectural styles, and design
patterns (“design policies”) are rarely qualified. For example, in his seminal paper on

 (3) With the exception of the works discussed in Section �5.

 (4) The same rule also applies to biological species. Every organism can only adapt to a particular
class of changes in its environment but is sensitive to others. For example birds can adapt to
changes in the amount of sunlight but are sensitive to changes in the temperature, whereas the re-
verse is true for many botanical genus. Some bacteria can tolerate changes in the ph value (acidity)
whereas others (extremophiles) are resistant to extreme temperatures.

– 3 –

modular decomposition, Parnas �[22] claimed that the Abstract Data Type architecture is
“flexible”. Twenty years later Garlan, Kaiser and Notkin �[9] qualified this claim by
demonstrating a specific class of changes towards which the same architectural style is
not flexible. In Section �3.1, we corroborate and make precise Garlan et. al’s observation.

Such reservations regarding the flexibility of design patterns were also made by
Gamma et. al:

Each design pattern lets some aspect of system structure vary independently

of other aspects, thereby making a system more robust to a particular kind
of change. (�[8], p. 24, our emphasis)

To summarize, we argue that “flexibility” is a quality that is relative the class of
changes; suggesting that a particular software is flexible (or not) in absolute terms is

misleading. We seek to remedy both these problems in this paper.

������������	

The contributions we seek can be summarized as follows:

(a) To corroborate and make precise informal claims on the flexibility of particular
programming paradigms, architectural styles and design patterns.

(b) To provide means for measuring flexibility with varying degrees of accuracy.
(c) To provide means for choosing the most flexible design policy.

������

The remainder of this paper is organized as follows: In Section �2, we formulate our
terminology and illustrate it with an example. In Section �3, we discuss the evolution

complexity (EC) of four problems, illustrating how EC metrics can be used to establish
informal claims on software flexibility. In Section �4 we describe a small-scale experi-
ment that corroborates the prediction made in the preceding section. In Section �5 we
discuss related work, including the notion of software complexity. In Section �6 we

summarize the conclusions that can be drawn from our discussion. We conclude in
Section �7 with a discussion of future directions and of the possible tradeoffs between
EC and other concepts.

– 4 –

�
��
�
�
����
In this section, we define the terminology used in our discussion and motivate our defi-
nitions with an example.

We use the term design policy with reference to any sensible collection of design

decisions pertaining to a particular implementation, such as programming paradigms,
architectural styles and design patterns. We generalize the implementations we discuss
in terms of design policies, thereby expanding the scope of our discussion. We also use
the terms implementation and program interchangeably with reference to a unit of

source code that is used as the ultimate specification of the software system.

��� ���������
���
Software evolves as the result of a host of possible changes in its operational environ-

ment �[15], such as changes in the client’s expectations and changes in the hardware or
other software. In software engineering terms we also say that implementations are
adjusted to changes in the definition of the problem, namely the functional and/or non-

functional requirements. To facilitate our definitions, we unpack each problem as a set
of elements (e.g., states or variables). This approach will enable us to define evolution
complexity as a function of the change in the problem.

We focus on the correlation between changes in the problem and the correspond-
ing changes in the implementation. To distinguish between these two kinds of changes,
we refer to the former as shifts and to the latter as adjustments, hence the term co-

evolution, which ‘packages’ the two. Co-evolution and related terminology is illustrated

in Figure 1. The glossary in Table 1 summarizes these terms.

New
Implementation

Old
Implementation

Old
Problem

R
ealizes

R
ealizes

Adjustment

Shift New
Problem

Figure 1. A co-evolution step

– 5 –

Table 1. Glossary of terms (illustrated in Figure 1)

Problem. A well-defined description of the program's observable behaviour (“func-
tional requirements”) or organization (“non-functional requirements”).

Implementation. The subject of the evolution process; a program (unit of source code)
which realizes a particular problem.

Shift. A specific change in a given problem, encoded as a pair �������,����� where ����
designates the problem before the shift and ���� designates the revised problem.

Adjustment. A specific change in a given implementation, encoded as a pair
���	����	���� where 	��� designates the implementation before the adjustment and
	��� designates the revised implementation.

Co-evolution step. A pair ������� consisting of a shift ������������� and an adjust-
ment ���	����	���� , such that 	��� realizes ���� and 	��� realizes ����.

��� ����������������Collection�
������	��

Let us illustrate our terminology using the problem of data structures and its implemen-

tations using the Collection interface in the java.util package (accompanying the
Java™ class library, version 1.4.2). The design policy that guided the authors of
java.util is also known as (part of) the Iterator design pattern �[8].

�����
�

Provide several concrete data structures and operations thereon. We may unpack an

instance of this problem as two sets such as the following:

♦ �
��
��� � Provide a client with data structures

���LinkedList�ArrayList��

and a collection of operations shared by them

����add�contains,size��

To make this example concrete, we use the data structures and their respective

operations to represent a movie cast and the audition process.

– 6 –

����
�
�������

Clients of Java’s data structures are made flexible by means of the Collection inter-
face. The interface hides the particulars of each data structure and exposes only the
common operations thereon. Figure 2 illustrates how this policy was realized in the

java.util class library. A Java program demonstrating how the Collection interface
can be used for the purpose of representing the audition process is given in Table 2. We
encode this implementation as 	�������	�.

client

add()
contains()
size()

<<interface>>
Collection

Uses

add()
contains()
size()

ArrayList

add()
contains()
size()

LinkedList

Figure 2. Data structures and their interface in java.util.

Table 2. Java program illustrating the use of Collection. Class Director is resilient to (changes
in) the choice of data structure representing the cast because it communicates therewith solely via the

interface.

public class Director {
 public void audition(Collection movieCast, Actor candidate) {
 if (! movieCast.contains(candidate) && CanAct(candidate))
 movieCast.add(candidate);
 }
 ...
}

public class Movie {
 private ArrayList theCast; // Data structure chosen here
 ...
}

– 7 –

��

�������
��

��������
	�
�	

The following detailed encoding of the shift, adjustments and co-evolution steps is only
necessary for formulating specific units (“steps”) in the evolution process. It can be
skipped without reducing the readability of much of this paper.

Consider two ways in which this example can evolve:

♦ Change the implementation of the movie’s “cast” from ArrayList into
LinkedList

♦ Use operation ������ from the movie’s “cast” (for example because an actor has
resigned)

We may encode the two revised problems as follows, respectively:

♦ �
DS ���

 � Use LinkedList where ArrayList was used before
♦ �
�� Op

 � Include also the operation ������

We may encode each shift as a pair of problems (before and after the change) as
follows:

♦ �
� � ��
������� DS ���
� (change data structure)

♦ ��� � ��
�������
�� Op
�	 	 (add ������ operation)	

We may encode the two revised implementations respectively:

♦ 	
DS �
� 	�������	� with LinkedList where ArrayList was used

♦ 	
Op �
� 	�������	� with method remove in Collection and in all data structures

We may also encode the respective adjustments as pairs of implementations as

follows:

♦ �
��� �	�������	��	 DS �

♦ ����� �	�������	��	 Op
�

In conclusion, we may define two co-evolution steps, each representing a pair of

changes (a shift and an adjustment) as follows:

♦ �
� � ��
���
��	

♦ ���� ���������

We may summarize at this point our intuition regarding the flexibility of the ex-
ample described above as follows:

– 8 –

♦ It is “flexible” towards changing the data structure (�
�) in the sense that the re-
sources required to realize �
� do not depend on the number of data structures (the
change is local to class Movie in Table 2);

♦ It is “inflexible” towards adding an operation (���) in the sense that the resources

required to realize ��� grow with the number of the data structures (every data
structure would have to be modified).

In the following section we demonstrate how EC establishes these intuitions.

��� ������
���	�� ����
���

From our discussion in the notion of flexibility and from its definitions (Section �1) we
understand that particular software is considered “flexible towards evolution step �” if
the resources required for realizing it are “fixed”. In actuality, the “effort” required to

carry out a particular change, whether measured in terms of time or money, depends on
the size of the programming team, the relevant experience of its members and the soft-
ware development tools at their disposal, the clarity and currency of the documentation,
and on a complex range of other cognitive, social and financial factors that are difficult

to measure. Given the complexity of this problem we ask, How can we quantify flexibil-
ity? A possible solution to this problem can be obtained by combining notions of meas-
urement in the theory of computational complexity with what can be summarized as the
principle “software evolution is software too”.

In his award-winning paper “Software Processes are Software Too” �[20] (5), Os-

terweil suggests to treat human and executable processes uniformly. In other words, that
every aspect of the software process can be conceptualized as software, thereby allow-
ing it to be subjected to the same techniques and formalisms we use to analyze software.

The reason is because “manual and automated processes are both executed, they both
address requirements that need to be understood, both benefit from being modelled by a
variety of … models, both must evolve guided by measurement, and so forth.” �[21]

Evolution complexity can be defined as the application of Osterweil’s principle to

software evolution. We conceptualize the evolution process as software (or technically,
as a metaprogram (6)), thereby subjecting it to the same techniques and formalisms used
for analyzing software. For example, we may use computational complexity to measure
the complexity of the evolution process, leading to following definition:

 (5) In a 10 year retrospective, Osterweil’s paper of 1987 was awarded in 1997 a prize as the most

influential paper of ICSE 9.

 (6) A metaprogram is a program that manipulates other programs. The canonical example is a com-
piler. Metaprogramming functions are built into many programming languages.

– 9 –

Computational complexity �[27] is concerned with estimating how the resources

that computational processes require grow with changes in the problem. Similarly,

evolution complexity is concerned with estimating how the resources that evolution
processes require grow with changes in the problem. In the remainder of this paper we
demonstrate Definition 1 and illustrate how it can be used to corroborate and quantify
informal claims regarding the (hitherto elusive) quality of flexibility of specific pro-

gramming paradigms, architectural styles and design patterns.

���
��

We identify the following possible misconceptions of Definition 1:

♦ We do not claim that software evolution can, should, or eventually will be fully
automated. Rather, we argue that treating the evolution process as if it were

automated is a metaphor that is useful for the purpose of quantifying its complex-
ity. (7)

♦ Computational complexity does not measure the actual time that computational
processes require. Likewise, EC does not measure the actual resources evolution

processes requires, but its complexity. “Complexity” measures not the magnitude
of these resources but how they grow as a function of the change in the problem.

��

Collection
���
����

�
��	��
�

The complexity of a particular computational process is measured by breaking it into
commensurable sub-steps. Similarly, the complexity of a particular co-evolution step
������� can be measured by breaking it into commensurable sub-steps. A first ap-
proximation to this measure is provided by the number of modules in adjustment � that

are affected by shift �. Thus, a rudimentary EC metric is obtained by calculating the
number of modules that were changed, added or removed as a result of the respective
shift. This is obtained by calculating the symmetric set difference between the sets of
modules in the “before” and “after” implementations. In a class-based programming

language such as Java, classes are such modular units. This metric is encoded by the
following definition:

 (7) Similar misconceptions of Osterweil’s general principle are discussed in �[21].

Definition 1 (evolution complexity). The complexity of a co-evolution step � is the

complexity of the metaprogramming process that realizes �.

– 10 –

Definition 2. The metric ��������� measures the complexity of a co-evolution step
������	���,	����� as follows:

�
�
������� ����
���������	����	����
�

Where ���������	����	���� designates the symmetric set difference (8) between the set
of class definitions in 	��� and the set of class definitions in 	���.

This metric relies on the simplifying assumption that the resources required for adding,

removing, or changing each modular unit commensurate. We discuss this assumption in

the next subsection.

Let us demonstrate how ��������� can be used to compare the complexity of the two
co-evolution steps described in Collection example (Section �2.2). Consider the number
of classes affected by changing the data structure (�
�) with the number of classes

affected by adding an operation (���,). The results of this comparison are summarized in
Table 3.

Table 3. �
�

������� -complexity of evolving the Collection interface

Shift

Design policy

Change data structure Add operation

Collection interface ���� ��

�
� 	 (9)

This suggests that the complexity of changing the data structure (�
�) is inde-
pendent of the size of the implementation (constant complexity) whereas the complexity
of adding an operation (���) is proportional to the number of data structures in the im-

plementation (linear complexity). It implies, for example, that adding an operation to a
library with 20 data structures is twice as hard as making the same adjustment to a
library with only 10 data structures. This establishes the intuitions expressed in Section
�2.2. It also corroborates our more general claim regarding the notion of flexibility,

namely that each design policy is only flexible towards the class of changes it was
specifically tailored to accommodate.

 (8) The symmetric set difference between sets � and � is defined as ��� � ���� ������ �

 (9) The actual number of steps is

�
��, whose complexity is equivalent to linear complexity by
the abstraction conveyed by the conventional big Oh notation.

– 11 –

��

�
�
�����
�
�
����
���
��

Early in the software lifecycle, for example during the design phase, only very general
information on the software is available (it’s “architecture”) but a detailed implementa-
tion is not. In such situations, a coarse metric such as ��������� can provide us with a first

approximation that can help the software designer to choose the “most flexible” design
policy.

However, � �������� is inadequate in at least three situations:

(a) Where the evolution of different class definitions do not commensurate. During
late phases in the software lifecycle, it may become evident that the evolutions of

two classes do not commensurate. For example, evolving a class definition of 2-
lines does not commensurate with the evolution of a class definition that is 200-
lines long. In such cases more refined EC metrics, which possibly take into ac-
count the size of each class, can give better approximations.

(b) Where classes were not yet defined. During even earlier phases of architectural
design, a complete list of classes has not been compiled yet. In such cases, less re-
fined approximations are required. For example, a metric incorporating a less re-
fined notion of modularity such as Java’s package structure may be more appro-

priate.
(c) Where the programming language does not support classes. Evolution complexity

should also be defined for programming languages that are not class-based.

We conclude that EC must accommodate both for varying degrees of modular

granularity, as well as for varying degrees of information on each module. This intuition
is relayed in the generalized metric for evolution complexity:

Definition 3. The generalized metric ��������
µ

�measures the complexity of a co-

evolution step ������	���,	����� as follows:

� �������
µ ����

��� ���� �������� 	 �	 �
���µ

∈∆� 	

Where � is any software complexity metric, and ���������	����	���� designates the

symmetric set-difference between the set of modules in 	��� and the set of modules in
	���.

– 12 –

The generalized metric is parameterised by the variables ��������and �:

♦ ������� represents any notion of “module”, including classes, procedures,
methods, and packages. For example, � � �!"�#�� is a coarse metric which measures
EC in terms of number of packages in the implementation.

♦ � represents any metric of software complexity that is meaningful w.r.t. a particu-

lar module �. For example, fixing ��$���yields the metric $��
�������� which in-

corporates information about the size of each module, whereas fixing ����
(Cyclomatic Complexity) incorporates information about the flow control.

Evidently, Definition 3�gives rise to any number of EC metrics. Various such
metrics are demonstrated in the remainder of this paper.

��

�	���
���
Why assume that the resources required for adding, removing, and changing a module
commensurate? Because experience teaches that the cost of software evolution exceeds

that of the development process �[1]. (This is probably due to the inherent complexity of
large systems, where every change in an existing module can potentially have a “dom-
ino effect”, which is precisely the reason why quantifying flexibility is of interest.) It is
therefore not unreasonable to assume that removing and changing a module requires on

average resources of the same magnitude as adding a new module.

Nonetheless, a situation may arise where only adding a module is demanding and
where the effort it involves is, say, proportional to its size (which can be measured in
terms of “Lines of Code”). Let us assume that this is the case, and that removing and

changing a module are inconsequential. To model evolution complexity after these
concerns, we may construct an ad-hoc a metric /%�� $��

�������� can as follows:

Definition 4. The metric /%�� $��
�������� measures the complexity of a co-evolution step

������	���,	����� as follows:

/%�� $��
�������� ����

��� ���� �������� 	 �&�������� 	 �
$�����

∈� 	

Alternatively to this ad-hoc approach, we may specialize the generalized metric
for this purpose. Observe that /%�� $��

��������
�
can also be derived from Definition 3 by replac-

ing � in with the software complexity metric %���$��, defined as follows:

– 13 –

%���$�������
when is a new module

Otherwise

$����� �

'

��
�
��

�

This example demonstrates that the generalized metric for evolution complexity
can be used for measuring any well-defined claim on flexibility, namely whenever such
a claim is made in the context of a concrete co-evolution step. Further demonstrations to
this claim are given in the following section.

� ���������
���
In this section, we demonstrate the use of EC metrics to establish and quantify informal
claims on the flexibility of various programming paradigms, architectural styles, and
design patterns.

��� !�	"
��	�������������
In 1972, Parnas �[22] presented the problem of Key Word in Context (KWIC) to discuss
the cons and pros of two modular decomposition policies. The problem has become a
classic in software design literature, and in 1993 Garlan and Shaw �[24] used it to dem-
onstrate the flexibility of architectural styles. In this section, we use EC to establish and
to quantify the informal claims made in �[24].

�����
�

Parnas describes the KWIC problem as follows:

The KWIC [Key Word in Context] index system accepts an ordered set of

lines, each line is an ordered set of words, and each word is an ordered set

of characters. Any line may be “circularly shifted” by repeatedly removing

the first word and appending it at the end of the line. The KWIC index sys-

tem outputs a listing of all circular shifts of all lines in alphabetical order.

�[22]

The description can be encoded as follows:

– 14 –

♦ �()
� � Represent an indexing system with data

$	�����$	����$	��$� �)������)�����)���)���*������*�����*�����

and algorithms

%�#��
������*	+��%��*�,��	-����������

����
�
�������	

Parnas discusses several design (“modular decomposition”) policies that can possibly
guide the solution to the KWIC problem. In their analysis of the same problem, Garlan
and Shaw �[24] describe Parnas’ solutions as three architectural styles: Shared Data,
Abstract Data Structure and Pipes and Filters. Below we describe each one of these
solutions. (10) Note that they differ not in the number of modules, which is .%�#. in all
architectural styles, but in the way data and functionality are distributed:

♦ 	�*���� � Implement �()
� as Shared Data. Traditional modular decomposition
(“functional decomposition” according to Parnas) yields one module-per-
functionality, all of which operate on some shared representation of the data.
	�*���� is illustrated in Figure 3.

♦ 	%
� � Implement �()
� as Abstract Data Type. Alternatively, Parnas describes
an implementation that conforms to the principles of data abstraction (a.k.a. in-

formation hiding), where operations over data are only allowed via an abstract in-
terface. 	%
� is illustrated in Figure 4.

♦ 	 /0 � Implement �()
� as Pipes and Filters. Finally, Garlan and Shaw suggest a
modular decomposition which encapsulates each algorithm in an independent
module, or a “filter”, which is a stateless process that accepts an input stream and
produces an output stream. 	 /0 is illustrated in Figure 5.

 (10) In addition, Garlan and Show suggest other architectural styles that may also be used to solve the

KWIC problem such as blackboard architecture, omitted from discussion for lack of space.

– 15 –

Figure 3. 	�*����, a Shared Data implementation to the KWIC problem (adapted from �[24]).

Figure 4. 	%
�, an Abstract Data Type implementation to the KWIC problem (adapted from �[24]).

– 16 –

�����	

Consider the following shifts to �()
�:

♦ �
��� � Compact the data representation to an efficient format, e.g., by packing
four letters to a byte.

♦ ������ � Parallelize the processes, thereby allowing simultaneous, distributed
processing of multiple documents.

�����	�	

Informal claims about the flexibility of each implementation were made by Parnas �[22],
later refined by Shaw and Garlan �[24].

Regarding 	�1 they claim:

♦ “A change in data storage format will affect almost all of the modules.”
♦ “Changes in the overall processing algorithm and enhancements to system func-

tion are not easily accomodated.”

Regarding 	%
� they claim:

♦ “Both algorithms and data representations can be changed in individual modules
without affecting others.”

♦ “the solution is not particularly well-suited to [functional] enhancements.”

Regarding 	 /0 they claim:

♦ “it supports ease of modification [of the algorithm]”
♦ “it is virtually impossible to modify the design to support an interactive system

[because] decisions about data representation will be wired into the assumptions
about the kind of data that is transmitted along the pipes.”

These claims were summarized in comparative matrix, cited in Table 4.

Figure 5. 	 /0, a Pipes and Filters implementation to the KWIC problem (adapted from �[24]).

– 17 –

We may use the metric � �������� to corroborate these claims and to make them pre-
cise. The results of this analysis are summarized in Table 5, whose structure follows the
informal claims as cited in Table 4.

Table 4. Informal claims about the flexibility of three implementations
towards shifts in the KWIC problem (adapted from �[24]).

Shift

Design policy

Change Data

Representation

Enhance

functionality

Shared Data 2 2

Abstract Data Type
 2

Pipes and Filters 2

Table 5. � �������� -complexity of evolving three implementations towards
shifts in the KWIC problem.

Shift

Design policy

Change Data

Representation

Enhance

functionality

Shared Data ��.%�#.� ��.%�#.��

Abstract Data Type ����� ��.%�#.�

Pipes and Filters ��.%�#.�� �����

��� #��$����
�$������
$���

Object-oriented programming (OOP) is hailed, among other reasons, for promoting
flexibility. Experienced programmers, however, observe that object-oriented mecha-
nisms such as inheritance and dynamic binding make programs more flexible only
towards the particular changes they specifically were tailored to accommodate. For
example, it has been established that gratuitous use of inheritance may lead to the prob-
lem of “fragile base class” �[26] and yield highly inflexible systems.

The purpose of this subsection is to establish this intuition. We describe an exam-
ple to the problem of representing a deterministic finite-state automaton (DFSA) and

– 18 –

analyze the complexity of evolving object-oriented vs. procedural implementations
towards shifts in this problem.

�����
�

We make the DFSA problem concrete using a digital clock as an example: Consider a
clock with three display states:
	����34���,
	����3��!����,�
	����3
��� and
two setting states ���4���, ���
���. The clock accepts input from two buttons ,� and
,5, which are used to change between states or to perform a specific action depending
on the current state. The clock’s behaviour can be modelled as a deterministic finite
state automaton (DFSA), illustrated in Figure 6.

Figure 6. DFSA representation of a digital clock

We may encode this problem as follows:

♦ �
0�% � Represent a DFSA with a set of states

���
	����34����
	����3��!�����
	����3
�������4�������
�����

and alphabet

���,��,5��

�����	

Consider two shifts to this problem:

♦ �
 � � add letter � to �
♦ �
 � � add state � to �

– 19 –

����
�
�������	

Consider the following two implementations of �
0�%:

♦ 	�� � Implement �
0�% in OOP. The State pattern �[8] manifests a classical object-
oriented solution to the representation of a DFSA. Overall, there are
�
 classes
and
�
�
�
 methods in this implementation, sketched in Table 6.

♦ 	 1�� � Implement �
0�% in procedural style. In the same chapter, the authors de-
scribe the “anti-pattern” as follows:

An alternative is to use data values to define internal states and have con-

text operations check the data explicitly. But then we'd have look-alike con-

ditional or case statement scattered throughout the context's implementa-

tion. (�[8], p. 307)

Overall, there are
�
 functions in this implementation, each consisting of a
“switch” state with
�
 “cases”, sketched in Table 7.

Table 6. 	��, an object-oriented (Java™) implementation to the Clock problem

interface ClockState {
 void b1(); // button 1 pressed
 void b2(); // button 2 pressed
}
class DisplayHour implements ClockState {
 public void b1() {/* b1 pressed */}
 public void b2() {/* b2 pressed */}
}
class DisplaySecond implements ClockState {
 public void b1() {/* b1 pressed */}
 public void b2() {/* b2 pressed */}
}
class DisplayDate implements ClockState {
 public void b1() {/* b1 pressed */}
 public void b2() {/* b2 pressed */}
}
class SetHour implements ClockState {
 public void b1() {/* b1 pressed */}
 public void b2() {/* b2 pressed */}
}
class SetDate implements ClockState {
 public void b1() {/* b1 pressed */}
 public void b2() {/* b2 pressed */}
}

– 20 –

Table 7. 	���!, a procedural (ANSI C) implementation of the Clock problem

enum states = {DisplayHour, DisplaySecond, DisplayDate, SetHour, SetDate};

struct clock_r {
 states state; // Current state
} aClock;

void b1(aClock) { // button 1 pressed
 switch (aClock.state) {
 case DisplayHour: /*...*/;
 case DisplaySecond: /*...*/;
 case DisplayDate: /*...*/;
 case SetHour: /*...*/;
 case SetDate: /*...*/; }
}

void b2(aClock) { // button 2 pressed
 switch (aClock.state) {
 case DisplayHour: /*...*/;
 case DisplaySecond: /*...*/;
 case DisplayDate: /*...*/;
 case SetHour: /*...*/;
 case SetDate: /*...*/; }
}

�����	�	

Informal claims about the flexibility of each co-evolution step are made in �[8].

Regarding 	�� they claim:

♦ “new states ... can be added easily”
♦ “decentralizing the transition logic in this way makes it easy to modify or extend

the logic” (ibid., pp. 307–308)

Regarding 	 1�� they claim:

♦ “Adding a new state ... complicates maintenance.”

The difficulty at this point lies in comparing adjustments in a Java™ program
with adjustments in an ANSI C program. The question is, Which commensurable units
of modularity can be used to compare such adjustments? As the simplest solution, we
define the function /����� 0��!�	� :

/����� 0��!�	��
When is written in ANSI C

When is written in Java

0��!�	���� 	� 	

�������� 	� 	

��
�
�� �

�

– 21 –

Fixing also the software complexity metric �6 ��yields the metric � /
�
����� 0��!. The

results of analyzing the complexity of two co-evolution steps in this example using
� /
�
����� 0��! are summarized in Table 8.

Table 8. � /
�
����� 0��!-complexity of evolving object-oriented vs. procedural imple-

mentations towards shifts in the DFSA problem.

Shift

Design policy

Add letter Add state

O-O programming ��
�
� ��
�
�

Procedural programming ��
�
� ��
�
�

It may be (justly) argued however that evolving ANSI C functions and Java™

classes do not commensurate, and that a more refined approach may be in place. A more
sophisticated notion of software complexity, for example as suggested by the cyclo-
matic complexity metric �[17], may provide a more faithful measure of the relative com-
plexity of different modules. This yields the following metric:

Definition 5. The metric � /
��
����� 0��!measures the complexity of a co-evolution step

������	���,	����� as follows:

� /
��
����� 0��!���� / ��� ���� ����� 0��!� 	 �	 �

�����
∈∆� 	

where ����� of module � is its Cyclomatic Complexity, namely—

#nodes in the flow graph of when is an ANSI C function

Total sum of #nodes in the flow graphs
when is a Java classof all methods in

� �

�����
��

�
�= �
�
�

�

Analyzing the complexity of the same co-evolution steps using the metric

� /
��
����� 0��! yields slightly different results, summarized in Table 9.

– 22 –

Table 9. � /
��
����� 0��! -complexity of evolving an object-oriented vs. procedural

implementation of DFSA problem.

Shift

Design policy

Add letter Add state

O-O programming ��
�
�
�
� ��
�
�

Procedural programming ��
�
� ��
�
�
�
�

��	��		���

We may conclude from the results from applying different EC metrics the following:

♦ That neither programming paradigm is “flexible” in absolute terms, regardless of
the metric chosen.

♦ That the answer to the question, “Which programming paradigm is more flexi-
ble?” can be reduced to the question, “Which changes to the problem are most
likely?”.

♦ That the accuracy of the EC metric varies with the amount of information avail-

able about the implementation.
♦ That metrics of different granularity levels are useful during both early and late

phases in the software lifecycle: Unrefined metrics, such as � /
�
����� 0��!, are useful

during the design process, whereas refined metrics, such as � /
��
����� 0��!, become

useful during software evolution.

A third solution to the DFSA problem has not been discussed: States and alphabet
can be represented in a data structure rather than being hard-coded as classes or func-
tions. This solution is more flexible because the complexity of either evolution step is
constant. This solution however does not affect the conclusions drawn above.

���
��
$�����������
In �[18], we analyzed the evolution complexity of two design patterns. In this section, we

summarize the conclusions drawn from our analysis.

 �	����

The patterns catalogue �[8] discusses the problem of representing abstract syntax trees

and operations thereon. It is argued that an “ideally” flexible implementation is one

– 23 –

written in a programming language that supports double dispatch �[4]. Since such
mechanism is not provided by the programming languages at the focus of the authors
(C++ and Smalltalk in �[8], but also neither in most other O-O programming languages),
the Visitor pattern is presented. The pattern consists of two class hierarchies, represent-

ing (a) the set of elements in abstract syntax (e.g., a variable) and (b) the set of opera-
tions thereof (e.g., “print this tree”).

Regarding the Visitor they claim:

♦ “[it] makes adding new operations easy”
♦ “Adding new concrete element classes is hard”

We may use ��������� to corroborate these claims and to make them precise. The
results of this analysis are summarized in Table 10.

Table 10. �
�
������� -complexity of evolving the Visitor pattern

Shift

Design policy

Add operation Add element

	7	�	��� � ��
���
�

��	�����
!������

The patterns catalogue �[8] discusses the problem of providing “an interface for creating

families of related or dependent objects without specifying their concrete classes.” The
actual object that need be created depends on the global context (“current configura-
tion”). For example, when a GUI (Graphical User Interface) client seeks to create a new

“dialogue box”, considerations of flexibility determine that it must remain independent
from the question which windowing systems have been implemented and from the
particulars of how dialogue boxes are generated in each.

The authors discuss two design policies in implementing a solution to this prob-
lem: In the first (the “anti-pattern”), a simple compound “switch” statement (multiple
conditional branching) is used to determine which object to create. As an alternative, the
Abstract Factory pattern conforms to the general spirit of the OOP paradigm, employing

the standard combination of subtyping and dynamic binding to hide the concrete class
of the object created behind a uniform interface. In �[18], we analyze the complexity of
evolving each design policy, the results of which are summarized in Table 11.

– 24 –

Table 11. � �������� -complexity of evolving the Abstract Factory vs. Switch implementations towards
shifts in the Object Creation problem (with (clients, products, � configurations).

Shift

Design policy

Add configuration Add state

Abstract Factory ��

� ��
�
�

�

"Switch" ��
(
� ��
(
�

These results provide further corroboration to the more general claims we made,
namely that the flexibility of each implementation depends on which shifts are most
likely. This suggests that a software architect must weigh carefully the question which

shifts exactly are most likely to occur before choosing the appropriate design policy. For
example, because the 'switch' design policy would be the most flexible choice for an
application with considerably more clients than products and configurations.

 !�������
�����
�����

A metric is validated when it can be shown to measure what it is supposed to measure.

The most obvious test to the metrics we suggested is to investigate how the actual re-
sources required for realizing a particular evolution step grow as a function of the re-
spective shift in a controlled environment. Below, we describe the initial results ob-
tained from consolidating the results obtained from conducting several small-scale

experiments to this extent at the University of Essex and at the Université de Mons-
Hainaut. Further empirical evidence will require larger sample groups.

This experiment was designed to establish some of the specific predictions made

in Section �3.2 regarding the complexity of evolving an object-oriented implementation
towards shifts in the DFSA problem. The detailed instructions as handed to the subjects
were made available in �[6]. Below, we summarize the relevant tasks the conclusions
drawn.

In the first part of the experiment, subjects were required to implement a rudimen-
tary clock, represented as a state machine (�
0�%) with three states (
�
�8) and one
letter in the alphabet (
�
��). Next, the subjects were asked to evolve the implementa-
tion in a series of tasks, and to measure the time required to complete each task:

– 25 –

♦ In task 4, subjects added a second letter to � (shift �
 �)
♦ In task 5, subjects added three more states to � (shift �
 �)
♦ In task 6, subjects added a third letter to �

In Section �3.2, we suggest the metrics � /
�
����� 0��! and � /

��
����� 0��! for measuring the

complexity of these evolution steps. Both metrics predict that the complexity of adding

a letter to the alphabet grows proportionally with the number of states (
�
). In terms of
this experiment, both metrics predict that task 6 will require twice the time that task 4
requires. In reality, task 6 took on average 1.56 times as much as task 4. We believe that
these initial results, collected from 4 subjects (standard deviation: 1.8), corroborate our

prediction.

% &�������'��(�

����"��

�����
#���
���

��������
�����
#���

Curtis suggests that “In the maintenance phase [software] complexity determines …
how much effort will be required to modify program modules to incorporate specific

changes.” �[5] Zuse �[28] counts over two hundred metrics for software complexity in
literature. Three prominent examples are the following:

♦ Lines of Code (LoC) counts the number of lines in the program’s text.
♦ McCabe’s Cyclomatic Complexity (CC) �[17] measures the number of nodes in the

flow graph of the program (demonstrated in Section �3.2).

♦ Halstead’s Volume �[11] metric is given by the equation � 5 5 � 5�9 �9 �:�#�� �� � ,
where �� is the number of distinct operators, �5 is the number of distinct oper-
ands, 9� is the total number of operators and 95 is the total number of operands in
the respective module.

In Sections �2.4 and �3.2, we demonstrated how various software complexity met-
rics can be used for measuring flexibility. Unfortunately, neither simple nor sophisti-

cated software complexity metrics have been proven accurate as indicators of productiv-
ity, comprehensibility or maintainability �[28]. This suggests that the accuracy of an EC
metric is only limited by the accuracy of the software complexity. We hope that the
future will bring accurate software complexity metrics.

$
����	
���
	���"��

��������

Quantifying the actual resources required for software evolution remains a relatively
unexplored problem. Jørgensen �[14] used several models to predict the effort that ran-

– 26 –

domly selected software maintenance tasks require. The size of individual maintenance
tasks was measured in LOC. Sneed �[25] proposed a number of ways to extend existing
cost estimation methods to the estimation of maintenance costs. Ramil et al. �[23] pro-
vided and validated six different models that predict software evolution effort as a

function of software evolution metrics. None of these approaches however suggests an
obvious ways in which it is tied to the notion of software flexibility.

$
����	
���
	���"��

��
#�������

We are unaware of alternative approaches for measuring software flexibility, nor of any
formal criteria for establishing this quality. It has been suggested that a more accurate
way to measure flexibility relies on algorithms or measures that compute the impact of
changes �[16]. For example, Chaumun et al. �[3] report on experimental results with a

change-impact model for object-oriented systems. Because the cost and complexity of
software evolution may depend on the type of evolution activity, we also require a finer
granularity of recognition of types of software evolution activities. Such an attempt to
make an objective classification of evolution activities was carried out in �[2].

) *�����������	��	���
����

We argued that “flexibility” is a quality that is relative to the change in the problem. We

corroborated this claim by examining the flexibility of recognized programming para-
digms, architectural styles and design patterns. We concluded that neither design policy
is flexible in absolute terms.

We suggested that, if a software process such as evolution or development is
treated as an executable (meta-)program, its complexity can be measured by borrowing
notions from computational complexity. This motivated our definition of evolution
complexity and of various metrics thereof. We suggested that “flexibility” can be quan-

tified in these terms.

We demonstrated that the benefits gained from this approach are manifold:

(a) EC can be used to corroborate and quantify informal claims on the flexibility of
particular programming paradigms, architectural styles, and design patterns.

(b) EC can be used to measure “flexibility” with varying degrees of accuracy.

(c) EC can be used to choose the most “flexible” design policy, given the most likely
changes to the problem.

– 27 –

+ ,�������
��	�
����
The small-scale experiment described in Section �4 should be expanded in all aspects,
e.g., testing predictions made w.r.t. other problems, as well as for the purpose of estab-
lishing more statistically-valid results (using larger sample groups). Of particular inter-

est is to examine the validity of coarse (such as ���������) vs. refined (such as � /
��
����� 0��!)

metrics.

Evolution complexity can be used to analyze the flexibility of design policies be-

yond the examples given here. For example, it can be used to throw light on the claims

made on the recent introduction of generics to Java and in comparing the flexibility of
particular technologies (e.g., CORBA vs. .NET). In particular, EC can be used in sup-
porting the decision whether to apply a particular refactoring �[7], possibly by incorpo-
rating a range of EC metrics into integrated development environments which support

refactoring, such as IBM Eclipse and Borland JBuilder.

An examination of the relation between evolution complexity and actual resources
consumed by the evolution effort is also of interest, albeit more of socio-economic

nature than from the software engineering perspective.

Note, however, that given the similarity between the concepts, evolution complex-
ity is no more dependent on empirical validation than computational complexity. So
defined, it remains to be examined whether polynomial, exponential, and logarithmic

complexity functions are meaningful in the context of software evolution.

���������
�����
#���
����
���	

Studying the flexibility of different programming paradigms towards shifts in the DFSA
problem (Section �3.2) suggests that a trade-off that may exist between EC and computa-

tional complexity, a relation that is analogous to the trade-off between space and time
(computational) complexities. While evidence at this stage is anecdotal, it remains to be
examined whether decreased EC (increased “flexibility”) leads to time and/or space
penalties. Trade-off may also exist between the development effort (early design) and

the evolution effort, in the spirit of the adage “weeks of programming can save you
hours of planning”. But metrics for measuring the complexity of the software develop-
ment process are yet to be proposed.

!	(��'���$�������

This research has been carried out in the context of the scientific network RELEASE
financed by the European Science Foundation (ESF). The authors wish to thank Jeff

– 28 –

Reynolds and Mehdi Jazayeri for their comments and suggestions. We also wish to
thank Nguyen Long, Jon (Mac) Nicholson, Peter Ebraert, and K. Allem for taking part
in our experiment. The authors wish to thank Naomi Draaijer and Mary J. Anna for their
inspiration.

&������	���
[1] B. Boehm. Software Engineering Economics. Englewood Cliffs: Prentice-Hall, 1981.

[2] N. Chapin, J. Hale, K. Khan, J. Ramil, W.G. Than. “Types of software evolution and software
maintenance”. J. Software Maintenance and Evolution, Vol. 13 (2001), pp. 3–30. New York: John
Wiley & Sons.

[3] M.A. Chaumun, H. Kabaili, R.K. Keller, F. Lustman. “A change impact model for changeability
assessment in Object-Oriented Software Systems.” Science of Computer Programming, Vol. 45,
Nos. 2–3 (2002), pp. 155–174. Amsterdam: Elsevier.

[4] I. Craig. The Interpretation of Object-Oriented Programming Languages. New York: Springer-
Verlag, 2000.

[5] B. Curtis. “In search of software complexity.” Proc. Workshop on Qualitative Software Models for
Reliability, Complexity and Cost (Oct. 1979), pp. 95–106.

[6] A.H. Eden. “An experiment in evolution complexity: instructions to subjects.” Technical report
CSM-431 (Jun. 2005), Department of Computer Science, University of Essex, ISSN 1744-8050.

[7] M. Fowler. Refactoring. Addison-Wesley, 2003.

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Reading: Addison-Wesley, 1995.

[9] D. Garlan, G.E. Kaiser, D. Notkin. “Using tool abstraction to compose systems.” IEEE Computer,
Vol. 25, No. 6 (June 1992), pp. 30–38. Los Alamitos: IEEE Computer Society.

[10] W.W. Gibbs. “Software's chronic crisis”. Scientific American (Sep. 1994), p. 86–95.

[11] M.H. Halstead. Elements of Software Science. New York: Elsevier, 1977.

[12] IEEE. Standard Glossary of Software Engineering Terminology 610.12-1990, Vol. 1. Los
Alamitos: IEEE Press, 1999.

[13] ISO. Information Technology—Software Product Evaluation—Quality Characteristics and Guide-
lines for their Use. ISO/IEC 9126. ISO/IEC, 1991.

[14] M. Jørgensen. “Experience with the accuracy of software maintenance task effort prediction
models.” IEEE Trans. Software Engineering, Vol. 21, No. 8 (1995), pp. 674–681. Los Alamitos:
IEEE Computer Society Press.

[15] M.M. Lehman, J.F. Ramil, P. Wernick, D.E. Perry, W.M. Turski. “Metrics and laws of software
evolution—the nineties view.” Proc. Int’l Symposium Software Metrics (5–7 Nov., 1997), Albu-
querque, NM, pp. 20–32 . Los Alamitos: IEEE Computer Society Press.

[16] L. Li, A. Offutt. “Algorithmic analysis of the impact of changes to object-oriented software.”
Proc. Int’l Conf. Software Maintenance—ICSM (1996), pp. 171–184. Los Alamitos: IEEE Com-
puter Society Press.

[17] T. McCabe. “A software complexity measure.” Trans. Software Engineering Vol. 2 (1976), pp.
308–320. Los Alamitos: IEEE Computer Society Press.

[18] T. Mens, A.H. Eden. “On the evolution complexity of design patterns”. Electronic Lecture Notes
in Computer Science, Vol. 127, No. 3, pp. 147–163. Amsterdam: Elsevier, 2004.

– 29 –

[19] P. Naur, B. Randell, (eds.) Software Engineering: Report of a conference sponsored by the NATO
Science Committee (7–11 Oct. 1968), Garmisch, Germany. Brussels, Scientific Affairs Division,
NATO, 1969.

[20] L. Osterweil. “Software processes are software too” Proc. 9th Int’l Conference Software Engineer-
ing—ICSE (Mar. 1987), pp. 2–13. Los Alamitos: IEEE Computer Society.

[21] L. Osterweil. “Software processes are software too revisited.” Proc. 19th Int’l Conference Soft-
ware Engineering—ICSE (May 1997), pp. 540–548. Los Alamitos: IEEE Computer Society.

[22] D.L. Parnas. “On the criteria to be used in decomposing systems into modules.” Communications
of the ACM, Vol. 15, No. 12 (Dec. 1972), pp. 1053–1058. New York: ACM Computing Society.

[23] J.F. Ramil, M.M. Lehman. “Metrics of software evolution as effort predictors—a case study”.
Proc. Int’l Conf. Software Maintenance (Oct. 2000), pp. 163–172. Los Alamitos: IEEE Computer
Society Press.

[24] M. Shaw, D. Garlan. Software Architecture—Perspectives on an Emerging Discipline. Upper
Saddle River: Prentice Hall, 1996.

[25] H. Sneed. “Estimating the costs of software maintenance tasks.” Proc. Int’l Conf. Software Main-
tenance (1995), pp. 168–181. Los Alamitos: IEEE Computer Society Press.

[26] A. Taivalsaari. “On the notion of inheritance”. ACM Computing Surveys, Vol. 28, No. 3 (Sep.
1996), pp. 438–479. New York: ACM Computing Society.

[27] A. Urquhart. “Complexity”. Ch. in L. Floridi (ed.), The Blackwell Guide to Philosophy of Comput-
ing and Information. Oxford: Blackwell, 2004.

[28] H. Zuse. Software Complexity. Berlin: Walter de Gruyter, 1998.

