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Abstract

This report investigates two semantic embeddings of Z schemas in Is-
abelle/HOL. The first represents Z values as elements of a type class with
polymorphic type constructors and overloaded operators. In contrast, the
second embedding uses a Z universe: all Z values are represented as ele-
ments of a single monomorphic HOL type.

1 Introduction

Embedding a specification formalism such as Z [Spi88] in higher order
logic (HOL) is attractive because of the automation provided by theorem
prover tools like the HOL system [GM93] or Isabelle/HOL [Pau93]. In
[Völ01b], a deep Isabelle/HOL embedding of the logic ZC [HR00] was con-
structed. ZC is a first-order logic which has been proposed as a foundation
for Z schemas. The embedding keeps ZC completely separated from HOL:
ZC propositions and terms are represented as members of a new HOL type.
While this clean separation is attractive from a purist point of view, the ex-
plicit representation of syntactical aspects such as substitution means that
proof goals can get cluttered with relatively low level syntactic side condi-
tions. It also allows for very little reuse of the existing HOL theories and
tools. This motivates the search for more shallow, semantic embeddings
which permit a greater reuse of the extensive Isabelle/HOL libraries.

In agreeance with most previous work [JG94, KSW96] on the embed-
ding of Z schemas in HOL, both semantic embeddings in this report will
identify ZC formulae with HOL formulae. This means that there is no
separate representation of ZC logical values and logical operators. Instead
the standard HOL type bool and logical connectives are used. Similarly,
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ZC variables and operations such as substitution will be identified directly
with their HOL counterparts. Thus, there is no need to reason explicitly
about substitution or freeness of variables.

The challenge of embedding Z schemas in HOL is that a direct identifi-
cation of Z types with corresponding HOL type constructors is not possi-
ble. The problem is caused by schemas which require a generic record type
where field values can be elements of different HOL types. Such a type can
not be constructed in the simply typed polymorphic λ-calculus underlying
HOL. Previous work [JG94, KSW96] on Z embeddings has sidestepped
this problem by treating field labels outside of HOL: schemas are encoded
externally as tuples before analysing them in HOL. This results in shallow
embeddings well suited for reasoning about concrete specifications. Be-
cause of the encoding, rules such as commutativity of schema disjunction
can not be derived within HOL. As noted in [JG94], this can cause a cer-
tain amount of duplication in proof efforts. Furthermore, it makes these
embeddings less suitable for an analysis of the schema calculus itself.

This report investigate two approaches which are more faithful in the
sense that field labels are preserved in the HOL representation of schemas.
The underlying view of Z schemas is essentially that of [HR00]. In contrast
to that source and most of the Z literature, we will speak of “records”
instead of “bindings”.

The report only provides a summary of the actual Isabelle/HOL theory
development. The reader is refered to the source files [Völ01a] for further
details.

2 Labels

A concrete representation of labels as strings has been chosen here. Strings
are simply lists of characters in Isabelle/HOL.

string = char list

In the Z notation, labels can be adorned by suffixing them with special
characters, namely ‘!’ (shriek), ‘?’ (query) and ‘′’ (prime).

special chars :: char set
special chars = { ‘!’, ‘?’, ‘′’}

The suffix of a string is defined to be the tail starting with the occurrence
of the first special character. If there are no special characters in a string,
then the suffix is the empty list.

suffix :: string → string
suffix s = dropWhile (λc. c 6∈ special chars) s

Not all strings are deemed to be legal Z labels. Instead, it is required that
the suffix of a string contains no duplicate characters, is sorted and only
consists of special characters.

legal s = let x = suffix s in
nodups x ∧ sorted (op ≤) x ∧ set x ⊆ special chars
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In order to allow reuse of the constant name “legal”, it is overloaded on a
new type class label class which comprises all list types and hence also the
type of strings:

axclass label class < term
instance list :: (term) label class
legal :: (α :: label class) → bool

Adorning a label with a special character is modelled by corresponding
operations. Again, in order to allow a reuse of constant names, overloaded
constants are chosen:

shriek , query , prime :: (α :: label class) → α

For legal strings, each of these operations toggles the occurrence of the
corresponding special character in the suffix. For example, if a legal string
s is already “primed”, i.e. it contains the prime character in its suffix,
then prime s is the string with this prime character removed. All three
operations are idempotent on the set of legal strings and preserve legality:

legal (s :: string) ⇒ legal (shriek s) ∧ shriek (shriek s) = s

legal (s :: string) ⇒ legal (query s) ∧ query (query s) = s

legal (s :: string) ⇒ legal (prime s) ∧ prime (prime s) = s

It should be noted that there are alternative ways to model labels in HOL.
For example, it would be possible to define a datatype which separates the
stem of a label from the special character suffix. One could also cater for
different encodings of labels by introducing an axiomatic class with rules
that capture the properties of the operations prime, query and shriek. The
treatment outlined above has the advantage that it corresponds directly
to concrete labels in Z schemas.

3 Records in HOL

Because HOL is based on the simply-typed lambda calculus, there is no
way to have a generic HOL “record type constructor” which allows field
values of arbitrary, different Z types. There are a number of methods one
can try to overcome this problem:

1. Suppression of labels by extra-logical encodings

2. Introduction of a new type constructor and new constants for every
new record type

3. Extension of HOL’s type system by dependent record types.

4. Representation of records in a class of HOL types and using over-
loaded record operations.

5. Encoding field values as elements of a single type and then using a
HOL representation of type-homogenous records, i.e. records whose
field values are all of the same type.
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The first method underlies previous Z embeddings [JG94, KSW96] and
has already been discussed above. The second method has been imple-
mented in Isabelle/HOL[NW98] and HOL98. Its drawbacks are that each
new record type has to be declared explicitly and that there is no HOL
representation of generic record operations such as extension, restriction
and extraction. Although implemented to some extend in PVS[RSC95],
the problem with the third method is that it is still not clear how best to
combine records and polymorphism [GJ96]. Since type extension to the
core of a theorem prover is a serious task, it makes sense to wait until the
theoretical issues have been sufficiently clarified.

The fourth method underlies the class/overloading approach to the
embedding of Z schemas in Section 8. The last method is used indirectly
in the universe approach in Section 10.

4 Homogenous Records as Labelled Lists

While the representation of general records in HOL is problematic, there
are several ways to encode type-homogenous records where all fields values
are of the same type. Here an encoding as lists of pairs will be chosen:

α llst = (string × α) list

The representation of a type-homogenous record r with field values of
some type α in (α llst) is the labelled list obtained by sorting the set
of fields of r in lexicographic order according to the field names. A list
element(l, x) corresponds to a record field with label l and value x. For
example, the representation of the empty record is the empty list, while
the representation of record 〈|x = 1, y = 2 |〉 is the list [(“x”, 1), (“y”, 2)].
The representation is unique because of the sorting of list elements by their
labels.

In [Völ01b], type-homogenous records were represented as a new type
(α rcd) isomorphic to the set of all finite mappings from strings to α. That
type has the advantage of a 1-1 correspondence between records and their
HOL representation. However, the drawback is that the new type con-
structor rcd is not a HOL datatype. This means that types containing an
occurrence of rcd are not covered by Isabelle/HOL’s packages for datatypes
and primitive recursive functions [Pau94]. This would entail a lot of extra
work in the theory development. It is for this technical reason that the
encoding of records as labelled lists was chosen here.

Not all elements of type (α llst) correspond to records. In fact, a list
represents a record if it is sorted by labels and its labels are unique:

is rcd :: α llst → bool
is rcd x = sorted (λx y. fst x ≤ fst y) x ∧ nodups (map fst x)

The constant labels is overloaded to allow reuse. For an element x of type
(α llst), it is defined as the fst-image of the set underlying x.

labels :: (α :: label class) → string set
labels (x :: α llst) = fst ‘ (set x)
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A fundamental record operation is the retrieval of the value associated with
a label l. The operation returns some unspecified value (SOME y.False)
if l does not occur among the labels of the list. The operation is defined
by primitive recursion over lists:

lkp llst [ ] l = (SOME y. False)
lkp llst ((a, b) # xs) l = if a = l then b else lkp llst xs l

The binary union of records and the restriction of a record to a set of labels
are modelled via functions un llst and restr llst :

un llst :: [α llst , α llst ] → α llst
un llst x y = insort (λx y. fst x ≤ fst y)

(x@ [a ∈ y. a 6∈ set x])
restr llst :: [α llst , string set ] → α llst
restr llst x ls = [p ∈ x. fst p ∈ ls]

Function (insort R) sorts a list according to some relation R while the
infix operator “ @ ” appends two lists. The list comprehension [a ∈ x. P x]
filters the elements fulfilling a predicate P from a list x.

Compatibility of two records ensures that their union is again a record:

compatible :: [α llst , α llst ] → bool
compatible x y = (∀a b c. (a, b) ∈ set x ∧ (a, c) ∈ set y

⇒ b = c)
is rcd x ∧ is rcd y ∧ compatible x y ⇒ is rcd (un llst x y)

The reader is referred to the Isabelle source files for the further development
of this theory.

5 A Class of Records

The representation of records in HOL will be based on a datatype of la-
belled pairs:

datatype α β lprd = Lpair string α β

The empty record 〈| |〉 is represented by the single element ( ) of the one-
element type unit . Non-empty records are constructed in HOL starting
from ( ) by successively adding fields using the constructor Lpair . As an
example, here is the representation of a record with two fields a and b
associated with values 1 :: N and True :: bool :

〈| “a” = 1, “b” = True |〉 =̃ Lpair “a” 1 (Lpair “b” True ())

In this way, every record with field values of HOL class term can be rep-
resented as an element of a type in class rc:

axclass rc < label class
instance unit :: (term) rc
instance lprd :: (term, rc) rc
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The pretty-printing facilities of Isabelle make it possible to use the usual
notation for concrete records. Internally, this is translated into the corre-
sponding HOL terms. To aid legibility, this paper will also use the normal
record notation for concrete elements of class rc.

The set of labels of a record is defined by recursion over the type struc-
ture of class rc:

labels ( ) = { }
labels (Lpair s a x) = {s} ∪ labels x

The above representation of records in HOL and the definition of the labels-
function appear simple and natural. Unfortunately, the problem with this
representation becomes clear when trying to define the basic generic record
operations lookup (lookup of the value belonging to a label), upd (field
update or extension) and restr (restricting a record to a set of labels).

For these functions, the dependency of the result type on the argument
type can not be expressed in HOL. As a consequence, the result type has
to be represented by a new type variable. This leads to the following type
declarations:

lookup :: [α :: rc, string ] → β

upd :: [α :: rc, string , β] → (γ :: rc)
restr :: [α :: rc, string set ] → (β :: rc)

In the HOL theorem proving tradition, the uncontrolled introduction of
axioms is shunned whenever possible. This is because of the grave dan-
ger of creating an inconsistent logic. Instead, new constants are usually
introduced by applying definition principles which are guaranteed to be
safe. Unfortunately, Isabelle/HOL’s definition facilities do not cater for
functions whose result type contains type variables not occurring in the
argument types. Hence it is necessary to introduce non-definitional ax-
ioms which characterise the three overloaded record operations.

rules
s = t ⇒ lookup (Lpair s a x) t = a

s 6= t ⇒ lookup (Lpair s a x) t = lookup x t

upd () s a = Lpair s a ()
s < t ⇒ upd (Lpair t b x) s a = Lpair s a (Lpair t b x)
s = t ⇒ upd (Lpair t b x) s a = Lpair s a x
s > t ⇒ upd (Lpair t b x) s a = Lpair t b (upd x s a)

restr () ls = ()
s ∈ ls ⇒ restr (Lpair s a x) ls = Lpair s a (restr x ls)
s 6∈ ls ⇒ restr (Lpair s a x) ls = restr x ls

Why do these axioms not compromise consistency? We will argue the case
of the operator restr , the safety of the other record operations follows sim-
ilarly. Consider a HOL theory which includes the record class rc and the
operator restr as defined above. The crucial observation is that by orient-
ing the three restr equations from left to right, one obtains a terminating,
orthogonal, and hence complete term rewriting system R [Klo92]. Let =R
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be the equivalence relation generated by R on terms of class rc, i.e. re-
lation t =R t′ holds provided the equality of t and t′ can be proven from
the three restr equations. Let Ter0 denote the set of all terms of class rc
without any occurrence of the restr operator. Since terms in Ter0 can not
be reduced further in R, they are in normal form. By the uniqueness of
normal forms, it follows that for each term (t :: α :: rc) there is at most one
term t′ ∈ Ter0 such that t =R t′. This leads to the following requirement
for the restr function:

restr x ls = y, if y =R restr x ls ∧ y ∈ Ter0

By the remarks mentioned above, this specification provides an unambigu-
ous meaning of (restr x ls) provided this term can be rewritten in R to an
element of Ter0. No constraint will be put on the value of (restr x ls) if
such a rewrite is not possible.

By construction, this specification of the restr function is consistent
with the three restr axioms. It leads to a theory extension which is defi-
nitional in the sense that the new axioms determine the meaning of terms
by reducing them to terms in the original theory. This ensures that con-
sistency is not compromised.

In order to model binary logical operations on Z schemas, it is necessary
to introduce further an operation which appends two records. The safety
of this definition follows from a similar argument as above.

append :: [α :: rc, β :: rc] → (γ :: rc)
append () y = y

append x () = x

s < t ⇒ append (Lpair s a x) (Lpair t b y)
= Lpair s a (append x (Lpair t b y))

s = t ⇒ append (Lpair s a x) (Lpair t b y)
= Lpair s a (append x y)

s > t ⇒ append (Lpair s a x) (Lpair t b y)
= Lpair t b (append (Lpair s a x) y)

The reader might wonder why append was not defined using the two equa-
tions:

(1) append x () = x

(2) append x (Lpair s a y) = upd (append x y) s a

The problem lies in the second equation which contains a hidden type
variable on the right-hand side. This is because the occurrence of the
term (append x y) can be of any type γ :: rc. Clearly such an axiom
would be semantically problematic, consider for example the case of a non-
empty record x and γ = unit . Note that the above argumentation about
consistency breaks down because the resulting term rewriting system would
not be orthogonal - rule (2’) can be applied with different types of γ on
the right-hand side.

The fact that the defining equations of the four record operations do
not introduce new type variables makes them suitable for use in the Is-
abelle/HOL simplifier. In particular, the value of these functions for con-
crete records can be determined automatically. However, this will only
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work provided the result type fits the type of the term as determined by
its context. This means for example that simplification will automatically
rewrite the term

(lookup 〈|“x” = 1|〉 “x” :: N)

to 1 using the first lookup rule. On the other hand, there is no rule appli-
cable to the term:

(lookup 〈|“x” = 1|〉 “x” :: bool)

Similarly, one can prove automatically the statements:

append 〈|“b” = 1|〉 〈|“c” = True|〉 = 〈|“b” = 1, “c” = True|〉
append 〈|“b” = 1|〉 〈|“c” = 2|〉 6= 〈|“b” = 2, “c” = 1 |〉

because the type of the append term as determined by the context fits with
the type expected by the append rewrite rules. On the other hand, it is
impossible to use these equations to either prove or disprove the following
statements:

append 〈|“b” = 1|〉 〈|“c” = True|〉 = 〈|“b” = True, “c” = 1|〉
append 〈|“b” = 1|〉 〈|“c” = True|〉 6= 〈|“c” = True |〉

The failure to prove results about such “ill-formed” terms is in agreeance
with the fact that no value was specified for record operator terms which
can not be completely evaluated, see the definition of restr above.

6 Z Types

Following [HR00], we consider Z to be a typed set theory with natural
numbers as the only primitive type. Type forming operations are sets,
binary products and records. This type structure can be represented easily
in HOL by a datatype zt :

zt = NatT | SetT zt | PrdT zt zt | RcdT (zt llst)

The restriction to these four type constructors is mainly for presentation
purposes. The approach can be extended to accommodate further primi-
tive types such as lists or partial functions.

The type zt as defined above contains elements which do not repre-
sent a Z type. The problem is caused by the fact that in the expression
(RcdT Ts), the list of pairs Ts might either not represent a record or
it might contain illegal strings as labels. Predicate legal excludes such
elements.

legal NatT = True
legal (SetT A) = legal A
legal (PrdT A B) = legal A ∧ legal B
legal (RcdT As) = (∀(s, T ) ∈ set As. legal s ∧ legal T )

∧ is rcd As
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7 A Class of Z Values

The HOL representation of records as labelled products makes it possible
to introduce a class zc which represents all Z values. Subclass zrc consists
of the records in zc.

axclass zc < label class
N :: zc
× :: (zc, zc) zc
tset :: (zc) zc

axclass zrc < zc, rc
unit :: zrc
lprd :: (zc, zrc) zrc

The datatype tset consists of sets labelled with their Z type.

datatype α tset = TSet zt (α set)

The use of type constructor tset instead of set in class zc makes it possible
to distinguish empty sets of the same HOL type but different Z type.

Membership of a value (x :: α :: zc) in a Z type (T :: zt) is denoted as
(x : T ). This typing relationship is defined inductively over the structure
of class rc.

(n :: N) : T = (T = NatT )
(a, b) : T = (∃A B. T = PrdT A B ∧ a : A ∧ b : B)
(TSet A x) : T = (A = T ∧ ∀ a ∈ x. a : T )
(x :: unit) : T = (T = RcdT [ ])
Lpair s a b : T = legal s ∧ (∀ l : labels b. s < l) ∧

(∃ A B. a : A ∧ b : RcdT B

∧ T = RcdT ((s,A) # B))

Note that Z typing is finer than HOL typing. While elements of the same
Z type have to be of the same HOL type, the converse is in general not true
due to the fact that labels of record fields effect the Z type but not the HOL
type. Consider for example the records zlblot“a” = 1|〉 and 〈|“b” = 1|〉 -
both have HOL type (lprd N unit) but their Z types are RcdT [(“a”,NatT )]
and RcdT [(“b”,NatT )], respectively.

The principle Isabelle tool to prove properties of classes is the intro-
duction of axiomatic type classes. This method was used to establish
uniqueness of Z typing:

a : A ∧ a : B ⇒ A = B

Class zc contains elements which do not respresent well-formed Z values.
Similar to the case of type zt , predicate legal excludes such elements.

legal x = ∃ T. x : T ∧ legal T

From the general definition, equations can be derived which characterise
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the predicate legal by recursion over the structure of class zc:

legal (n :: N) = True
legal (x, y) = legal x ∧ legal y
legal (TSet T x) = legal T ∧ ∀a ∈ x. a : T
legal () = True
legal (Lpair s a x) = legal s ∧ legal a ∧ legal x

∧ (∀l ∈ labels x. s < l)

Another general rule which was proven with the help of axiomatic classes
is:

a : RcdT Ts ⇒ labels a = labelsTs

Unfortunately, the rules in Isabelle’s axiomatic type classes are restricted
to a single type variable each. This makes it impossible to prove generic
statements which contain more than one type variable of the underlying
class. For example, it is not possible to prove a rule which relates the type
of (restr x ls) to the type of x in general.

8 Z Schemas using Overloading

8.1 Representation of Schemas

Schemas are the distinguishing feature of the Z specification formalism.
They consists of a declaration part and a predicate part. In HOL, a schema
can be modelled by pairing a Z type record with a predicate:

α schema = zt llst × (α → bool)

The first component reflects the Z typing information contained in the
declaration part. More precisely, the Z type of the elements belonging to
a schema S is RcdT (fst S).

The second component of a schema reflects the predicate part. The set
of records associated with a schema consists of those records which are of
the declared type and which fullfill the predicate.

set of :: α schema → α set
set of (Ts, P ) = {x. x : RcdT Ts ∧ P x}

A schema is said to be normal if its predicate only holds for records which
are of the declared type:

is normal (Ts, P ) = (∀x. P x⇒ x : RcdT Ts)

Obviously, any schema can be modified to a normal schema by setting
the predicate part to False for arguments not of the right type. This
modification does not change the set of elements associated with a schema:

is normal (Ts, (λx. P x ∧ x : RcdT Ts))
set of (Ts, (λx. P x ∧ x : RcdT Ts)) = set of (Ts, P )
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For the definition of schema operations below, it is convenient to introduce
an inclusion operator which checks whether the restriction of a Z value to
the type of a Z schema is contained in the associated set:

op IN :: [α, β schema] → bool
x IN S = restr x (labels (fst S)) ∈ set of S

8.2 Schema Operations

Using the above representation of schemas, it is straightforward to translate
logical schema operations to HOL. Below, we will give a brief account
of negation, disjunction and existential quantification. The other logical
schema operations can be treated analogously.

Negation on schemas is defined by:

NOT :: α schema → α schema
NOT (Ts, P ) = (Ts, (λx. x : RcdT Ts ∧ ¬(P x)))

The disjunction of two schemas is given by:

op OR :: [α schema, β schema] → γ schema
S1 OR S2 =

let Ts = un llst (fst S1) (fst S2) in
(Ts, (λx. (x IN S1 ∨ x IN S2) ∧ x : RcdT Ts))

Lastly, the definition of existential quantification over a label l in a schema
S is:

EXI :: [string , α, β schema] → γ schema
EXI l (A :: α) (S :: β schema) =

let Ts = restr llst (fst S) {s. s 6= l} in
(Ts, (λx. (∃ l (a :: α). (upd x l a : β) IN S) ∧ x : RcdT Ts))

The purpose of the argument A in this definition is purely to specify the
HOL type of the element associated with label l in schema S. This avoids
the introduction of a new type variable on the right-hand side of the equa-
tion.

The schemas produced by the three operators are per construction in
normal form:

is normal (NOT S)
is normal (S1 OR S2)
is normal (EXI l T S)

Here are some other basic algebraic properties of the schema operators
which can be proven easily in HOL:

is normal S ⇒ NOT (NOT S) = S

is rcd As ∧ is rcd Bs ∧ compatible As Bs
⇒ ((As, P ) OR (Bs,Q)) = ((Bs,Q) OR (As, P ))

is rcdAs ∧ is normal (As, P )
⇒ ((As, P ) OR (As, P )) = (As, P )
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The class based approach outlined above can be used to reason about
concrete schemas. As an example, the HOL theories [Völ01a] associated
with this technical report provide two different definitions of a simple tank
schema and then proceed to show their equivalence.

On the other hand, many generic schema calculus theorems can not be
deduced in the class approach without introducing further non-definitional
axioms about record operations and their effect on Z typing. This problem
is caused mainly by the restriction of Isabelle’s axiomatic classes to a single
type variable. The need to introduce further axioms makes the class based
approach less attractive for the theoretical investigation of schema calculi.

9 A Z Universe in HOL

9.1 Definition

As an alterative to the Z class approach sketched above, we abandon the
idea of representing different Z types by corresponding HOL types. Instead,
a single HOL type Z will be introduced which contains a representation of
every Z value.

Such a Z universe could be constructed via an isomorphism with a
subset of the disjoint sum over class zc [Völ99]. The exposition below
provides an alternative axiomatic construction. As a first attempt, consider
the definition of a HOL datatype:

Z ??= Nat N | Set zt (Z set) | Prd Z Z | Rcd (Z llst)

Unfortunately, there are two major problems with the constructor Set :

1. Datatype constructors are injective. This is not possible for Set since
for any HOL type A the cardinality of type (A set) is strictly greater
than that of A.

2. Datatype constructors are total. For the constructor Set , this clashes
with the fact that Z is a typed set theory where all elements of a set
have to be of the same type.

These two problems suggest that (Set T ) should really be a partial function
which is only defined for argument sets x whose elements are of Z type T .
This partiality could be modelled explicitly in HOL by setting the target
type of (Set T ) to be (Z opt). A more low cost approach is to keep (Set T )
a total function but to disregard argument sets x whose elements are not of
Z type T . This is the method chosen here. Injectivity of function (Set T )
is only demanded for sets with elements of Z type T, thus eliminating the
cardinality problem described above.

The axiomatisation of the universe Z will be based on an inductive
construction of the carrier sets of Z types. For the definition of the carrier
set of a record type, it is convenient to introduce two further functions on
labelled lists. The first of these is the equivalent of the well-known map
combinator on lists. The second is the the labelled list counterpart of the
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product set (×) and power set (P) operators.

map llst :: [α → β, α llst ] → β llst
map llst f = map (λ (x, y). (x, f y))
llsts :: α set llst → α llst set
llsts [] = {[ ]}
llsts ((l, s) # x) =

⋃
a∈s,y∈llsts x{(l, a) # y}

The carrier function is defined by primitive recursion over type zt .

carrier :: zt → Z set
carrier NatT = Nat ′ nats
carrier (SetT T x) = Set T ′ (P (carrier T ))
carrier (PrdT A B) = Prd ′ (carrier A× carrier B)
carrier (RcdT Ts) = Rcd ′ (llsts (map llst carrier Ts))

Based on this definition, the Z universe can be specified by axioms which
are a modification of the usual datatype axioms so as to deal with the
Set constructor in the way outlined above. Firstly, there are the usual
distinctness rules for the four constructors:

A-1 Nat x 6= Set T y

Nat x 6= Prd y

Nat x 6= Rcd y

Set T x 6= Prd y

Set T x 6= Rcd y

Prd x 6= Rcd y

Secondly, we have injectivity properties of the constructors. For the Set
constructor, there are two rules. The first guarantees disjointness of the
sets (carrier (Set T )) for T :: zt . The second rule requires injectivity of
(Set T ) for arguments which are subsets of (carrier T ).

A-2 inj Nat
Set A x = Set B y ⇒ A = B

inj on Set (sets (carrier T ))
inj Prd
inj Rcd

In case of HOL datatypes, the last axiom is an induction theorem which
expresses the fact that every element can be written as a constructor term.
The carrier function allows us to specify this property more succinctly:

A-3 ∃T. x ∈ carrier T

The soundness of these rules follows from the fact that the universe Z is
isomorphic to the set {(x :: α :: rc). ∃ T.x : T} of all typeable elements in
class zc. A definitional construction of Z as a subset of the disjoint sum
over rc is planned for the future.
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9.2 Further Development

The definition of the carrier function and axiom A-3 yield the following
induction theorem:

∀n. P (Nat n)
∀ a b. P a ∧ P b ⇒ P (Prd (a, b))
∀ r. list all P (map snd r) ⇒ P (Rcd r)
∀T xs. xs ⊆ carrier T ∧ xs ⊆ {x. P x} ⇒ P (Set T xs)
∀x. P x

The formulation of this theorem uses a function (list all P ) which requires
a predicate P to hold for all element of a list.

list all P x = ∀a ∈ set x. P a

The proof of the universe induction theorem is by induction over the
Z type associated with each element of the universe by axiom A-3. The
uniqueness of this associated Z type follows from the disjointness of carri-
ers: type zt :

A6=B ⇒ carrier A ∩ carrier B = { }

Because of the existence and uniqueness of the associated Z type, a function
ztof can be defined which associates each element of the universe with its
Z type. The characteristic equation of this function is:

ztof x = T = (x ∈ carrier T )

The effect of function ztof on constructor terms is described by a system
of primitive recursive equations:

ztof (Nat n) = NatT
ztof (Prd (a, b)) = PrdT (ztof a) (ztof b)

x ⊆ carrier T ⇒ ztof (Set T x) = SetT T

ztof (Rcd x) = RcdT (map llst ztof x)

Inductive datatypes in HOL come with a package for the construction
of primitive recursive functions solving such systems of equations. This
package is based on a primitive recursion combinator. The distinctness
and injectivity axioms of Z together with the induction theorem allow the
definition of a primitive recursion combinator on Z as well. Its construction
is entirely analogous to the case of an inductive datatype - the combinator
can be defined as the graph of a suitable inductively defined relation. The
main difference lies in the conditional guard to the equation describing the
effect of a primitive recursive function on the Set constructor, see the ztof
example above. The reader is referred to the source files for details of this
development. The primitive recursion combinator provides a convenient
means to define further functions on the universe.
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10 Z Schemas using a Z Universe

In the universe approach, schemas and their operations are monomorphic.
Furthermore, Z terms are build from the four universe constructors. Apart
from these two differences, most definitions are completely analogous to the
class approach. The type of schemas is:

schema = zt llst × (zt → bool)

In order to keep the number of occurences of the constructors Rcd and
RcdT at bay, it pays off to introduce a Z typing operator which takes
records (in the form of labelled lists) as arguments:

op :r :: [Z llst , zt llst ] → bool
x :r Ts = (ztof (Rcd x) = RcdT Ts)

Here are the defining equations of the functions is normal and set of on
the Z universe:

set of :: schema → Z set
set of (Ts, P ) = {x. x :r Ts ∧ P x}
set of :: schema → bool
is normal (Ts, P ) = (∀x. P x⇒ x :r Ts)

The definition of the operator IN employs the labelled list restriction op-
erator restr llst instead of the overloaded record operator restr :

op IN :: [Z, schema] → bool
x IN S = restr llst x (labels (fst S)) ∈ set of S

The definition of the operators NOT and OR remains unchanged except
for the omission of the RcdT constructor made possible by the definition
of :r above:

NOT (Ts, P ) = (Ts, (λx. x :r Ts ∧ ¬(P x)))
S1 OR S2 =

let Ts = un llst (fst S1) (fst S2) in
(Ts, (λx. (x IN S1 ∨ x IN S2) ∧ x :r Ts))

The definition of the EXI operator is simplified because there is no need
to record type information by a spurious argument:

EXI :: [string , schema] → schema
EXI l S =

let Ts = restr llst (fst S) {s. s 6= l} in
(Ts, (λx. (∃ l a. un llst [(l, a)] x IN S ∧ x :r Ts)))

Compared to the class approach, the universe setting provides a superior
framework for proving generic theorems about Z typing and the schema
calculus. For example, the following rule is proven easily by ordinary list
induction:

x :r Ts ⇒ restr llst x ls :r restr llst Ts ls

The Isabelle source files contain further schema calculus rules as well as a
simple, concrete tank schema example.
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11 Conclusions

Two semantic embeddings of Z schemas were constructed which allow a
better reuse of the existing Isabelle/HOL framework compared to the deep
embedding of ZC in [Völ01b]. In both of these embeddings, HOL propo-
sitions are used directly to reason about schemas. Compared to previous
work, the main difference lies in the fact that record labels are not treated
outside of HOL but instead are explicitly modelled in the logic.

The two approaches differ in the representation of Z values. In the
first embedding, Z types such as natural numbers, sets and products are
mapped directly to corresponding HOL type constructors. The handling of
Z schemas is based on a representation of records as polymorphic, labelled
products. Record operators are overloaded and their definition requires
non-definitional axioms. Consistency was established using careful reason-
ing based on term rewriting theory. The resulting framework appears to be
a suitable foundation for the verification of concrete schemas. On the other
hand, Isabelle’s restriction to axiomatic classes with a single type variable
makes it impossible to prove certain generic theorems about schemas in
this setting. Because of this, the class method appears to be less suitable
as a framework for the theoretical investigation of schema calculi.

For this purpose, it appears instead preferable to encode all Z values
in a single HOL type (Z universe). The axiomatic definition of such a
universe was carried out in analogy to the axiomatisation of an inductive
HOL datatype. The requirement of type homogeneity for Z sets led to
considering the universe constructor Set to be a partial function. While
partial functions can be modelled explicity in HOL, a simpler approach
was chosen here which leaves Set a total function but requires explicit rea-
soning about membership of arguments in carrier sets. Basic developments
of the Z universe theory include proofs of an induction theorem, disjoint-
ness of carrier sets and the definition of a primitive-recursion combinator.
The development of a schema calculus on the universe is analogous to the
Z class approach but has the benefit that there is no need to introduce
non-definitional axioms. Constants such as a primitive recursion combina-
tor can be introduced definitionally and generic rules can be proven using
normal Isabelle tactics. Reasoning about concrete Z schemas involves deal-
ing with the universe constructors, but Isabelle’s automated tactics makes
handling these less awkward than one might expect.

Further work is planned on establishing a connection between the two
embeddings in HOL. This should also lead to a more thorough justification
of the universe axioms. Furthermore, as it stands, the work only deals with
a minimal subset of the ZC schema calculus. This needs be be extended
to cover further operations such as schema piping. The suitability of the
universe approach to modelling object-oriented formalisms merits further
investigation.

Efficient reasoning about concrete schemas requires tuning of Isabelle’s
tactics. In particular, string handling is slow in Isabelle 99-2. This problem
could be tackled either by implementing faster decision procedures or by
choosing an alternative representation of labels.
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