Manchester computer architectures,
1948 - 1975

S H Lavington,

Internal Report CSM-182, February 1993

Invited article prepared for a special Manchester Issue of the IEEE Annals of the History of
Computing.

Department of computer Science
University of Essex

Colchester

CO4 3SQ

UK

Tel: 0206 872 677

e-mail: lavington @uk.ac.essex

Manchester computer architectures,
1948 - 1975.

S H Lavington,

Department of Computer Science, University of Essex, Colchester.

A bstract

Because of changes in computer technology and terminology, it is often difficult for present-
day observers to judge the significance of early digital computer projects. In this paper we
tollow some architectural themes of interest, as they evolved in the design of three innovative
Manchester University computers: the Mark I, Atlas and MUS. Themes such as operand
address-generation, instruction formats and memory-management are traced during the period
1948-75. These themes are illustrated by a set of normalised diagrams which may act as an aid
to further study of original references.

Keywords

Asynchronous design, caches, index registers, paging, pipeline, Williams tube storage, virtual
memory.

1 Introduction

The purpose of this review is to explain in modemn terminology the structure of the principal
digital computer designs to emerge from Manchester University in the period 1948-75. There
are three aims in this analysis:

(a) toexamine the contemporary reasons for the introduction of various features which now
appear curious or novel;

(b) to compare these features with contemporary developments in other centres of
innovation;

(¢) to assess the longer-term impact, where it exists, of early Manchester ideas whose
influence might be detected on computer architectures of the 1980s and 90s.

The computer design group at the University of Manchester was responsible for five prototype
machines during the period under review [1]. The names of these prototypes and their UK
industrial derivatives are summarised in Table 1.

University date of first Industrial date first delivered

prototype operation derivative to a customer

Mark I 1948* Ferranti Mk I 1951

Meg 1954 Ferranti Mercury 1957

Experimental 1953 Metropolitan 1956
transistor machine Vickers MV 950

Muse (later Atlas) 1962* Ferranti Atlas 1963*

MUS 1975*% ICL 2980* 1975

Table 1: summary of five Manchester computer projects. Asterisks denote qualifying
comments in the text.

In this paper we concentrate on the first, fourth and fifth projects in Table 1 because these are
the most interesting architecturally. For completeness, however, the other two machines are
briefly described in Appendix A.

Before analysing the architectures of the three computers of principal interest, it is perhaps
appropriate to hint at the motivations, personalities, resources, and working environment that
characterised the computer design group at Manchester University during the period under
discussion. The full story will be found in [1], but we may give a quick sketch that is sufficient

to suggest where priorities lay.

From 1947 to about 1952 the Manchester group consisted of two or three key faculty (or
equivalent), supported by an equal number of Ph.D. students. They worked with war-surplus
components and an enthusiasm for electronic innovation which was inspired by Professor F.C.
Williams’ notable successes in war- time radar lechnology a few years' earlier. (See also the
article by Mary Croarken in this issue of the Annals). From about 1952 to 1959 there were
about four key people, who had by then developed links with the nearby Manchester electrical
engineering company Ferranti; these links provided technical support in the form of
components and facilities. During this period, systems software and high- level language
considerations were beginning to exert an influence. From 1959 to 1968 the group of about
eight key University people was supplemented by an equal number of Ferranti hardware and
software design engineers who brought access to relatively lavish industrial resources
compared with the resources available to other UK Universities. There were consequential
pressures to maintain a reliable and responsive computing service to an ever-growing
community of internal and external users. Another set of pressures on academic staff was
introduced in 1964 when the computer group, which had up to then been part of the
University's Department of Electrical Engineering, split off to form the UK's first Department
of Computer Science. The first undergraduates arrived in October 1965.

Finally, the period 1968 to 1975 saw a gradual expansion of key academics from about eight
to 16 by 1971, in which year the MUS design team also included about 25 Ph.D. students and
19 engineers on secondment from ICL (the company who had taken over Ferranti's mainframe
computer interests). In 1968 the computer design group obtained its first major research grant
from public funds (an award of £630,446 from the UK's Science Research Council).
Coincidentally, there was a divergence from 1974 onwards in the computer design visions of

the University and ICL. (The ICL viewpoint is ably recounted in [2]). 1975 also saw the effective
end of the team leadership of Professor Tom Kilburn, who had arrived in Manchester in December
1946. Tom Kilburn's personal attributes of non-derivative thought, few words and much focussed
hard work had characterised the computer design team's efforts for 25 years.

In Section 2 we establish the technology framework within which the main themes of the paper
can be presented. Amongst the architectural themes which are then discussed in Section 3 are:
operand address-generation, number and use of central registers, instruction formats, context-
switching, and memory management. In Section 4 we examine what, if anything, has carried over
from 1970s to influence the design of present-day computers.

2 Technology overview

The overall characteristics of the three computers under review are summarised using modern
terminology in Table 2. Although the Atlas and MUS were rated amongst the fastest in the world
at the time, the performances are today seen as quite modest. Indeed, the small amount of
available RAM for each computer today seems scarcely credible. The Mark I described in Table 2
is the April 1949 machine rather than its June 1948 predecessor which was even smaller: the so-
called 'baby machine' that first ran a program on Monday 21st June 1948 had just 32 words of 32
bits each for its main memory, no index registers, manual Input/Output, and a simple seven-
function instruction set. The 1949 version of the Mark I given in Table 2 had two B-lines (general-
purpose index registers), 128 words of primary memory, and 1024 words of drum backing
memory. The production Mark I which was first delivered in February 1951 extended the capacity
to eight B-lines, 256 words of primary memory, and 3.75K words of drum storage. The Atlas
described in Table 2 is the first production version as inaugurated at Manchester in December
1962; subsequent production Atlases had more RAM. The MUS is the one-off machine as it
existed at Manchester in 1975. Note that, especially in the case of MUS, it is somewhat misleading
to give a single value for some of the parameters in the Table. For example, as is shown later, MUS
instructions could be 16, 32, 48 or 80 bits long.

Mark I Atlas MUS
Peak MIP rate (fixed-point add): 0.0006 0.6 20
Peak FLOP rate (hardware fipt add): - 0.6 4
Principal computational word length, bits: 40 48 64
Principal instruction length, bits: 20 48 16
Instruction format for most instructions: l-addr 1-addr l-addr
Primary memory (RAM) size on prototype, Mbytes: 0.00064 0.096 0.128
Range of directly-addressable locations, Mbytes: 1 6 4096
Virtual memory (hardware addr. translation): no yes yes
Number of general-purpose registers - (see text): 2 128 1

Table 2: overall characteristics of three Manchester University computer designs, expressed in
modern terminology. (Note: the production Mark I had eight general-purpose registers).

Each machine in Table 2 occupied a floor-area equivalent to a large room, putting it in the modern
category of ‘large mainframe'. The photographs of Figures 1 to 3 show the scale. The technology
of each machine is now only of specialised interest, but highlights are given in Appendix B for
completeness. As always, however, there is no substitute for reading the original papers.

3

References [3] to [17] give a selection of technical papers for the Mark I, Atlas. and MUS. A
modern explanation of the Mark I and Atlas instruction sets will be found in [18]. Atlas is
discussed in Bell & Newell [19], along with a reprint of [8]; Bell & Newell introduce Atlas as:
one of the most important machines described in this book' and comment that 'Atlas was
about the earliest computer to be designed with a software operating system and the idea of
user machine in mind'. The MUS hardware and software are covered in considerable depth in
the book by Morris and Ibbett [20]. A readily-accessible summary will be found in [21]. The
architecture of the ICL 2900 series is described by Buckle [21]: whilst there are some
fundamental differences, the architecture of the 2900 series owes much to and has a great deal
in common with MUS [1].

We now discuss five architectural themes of interest, using modern terminology where
possible. The accompanying diagrams have been ‘normalised’ to highlight the development of
concepts over the 30-year review period.

3 Architectural themes
3.1 Separate registers and ALU dedicated to address-generation.

The Manchester Mark I used random-access electrostatic storage both for primary memory
and for most CPU registers. (The cost per bit was in general cheaper than flip-flop registers).
From an engineering view, the natural sub-unit or 'building block' for the Mark I consisted of a
Williams Tube (storing say 32 words) and a serial adder. Variations on this basic sub-unit were
used for four purposes within the Mark I's CPU (see Figure 4):

the main accumulator and ALU:

a fast multiplier unit;

the collection of index registers (so-called B lines);

the Program Counter and Instruction Register (so-called Control).

This physical separation of computational activity and organisational activity, initially on
technological grounds, probably influenced later thinking when it came to providing facilities
in Atlas and MUS for the generation of operand addresses.

In Atlas, programmers could make use of up to 90 of the 128 general- purpose 24-bit registers
(B lines) for addressing purposes. It was envisaged that a program might wish to keep the
base-addresses and offsets (and bounds) of several data-structures and working areas in a
number of registers. The one-address instruction format allowed for double modification: that
1S to say, the final operand address was the sum of the address-bits in the instruction and the
contents of any rwo of the 90 general-purpose registers; (BO always contained zero). The
address arithmetic was carried out in a special fixed-point B-arithmetic unit, whose operation
could be overlapped in time with the main 48-bit computational ALU. The physical
arrangement 18 shown diagrammatically in Figure 5. The Atlas B-arithmetic unit could, of
course, also be used in its own right for 24-bit fixed-point computation via a set of B-
arithmetic instructions.

MUS also had a separate B-arithmetic unit, used both for address- generation purposes and

32-bit fixed-point computation. However, MUS took a very different view of general-purpose
registers - see also Section 3.2. Address-generation for scalar variables (including the
descriptors of structured data) was the responsibility of a Primary Operand Unit (PROP, see
Figure 6), which made use of a limited number of implicitly-invoked dedicated registers
which held the addresses of the Name Segment, current Name Base. Stack Pointer, etc. For
structured data, the MUS B-arithmetic unit worked in cooperation with a Secondary Operand
Unit (SEOP, see Figure 6) which contained registers for holding the current descriptor(s),
buffers for holding the elements of a structure, etc. All the main MUS sub-units illustrated in
Figure 6 operated asynchronously. The Instruction Buffering Unit(IBU), PROP, and SEOP all
had their own fully-associative caches and were all pipelined internally - (see also Apendix
B). Each of the three units also had certain arithmetic and logical facilities appropriate to its
function. For example, SEOP was responsible for array bound-checking and for string
operations on blocks of data (e.g. string compare, table look-up). Taken overall, it was
possible for as many as about 40 MUS instructions to be in part-completion concurrently,
spread out across the IBU/PROP/SEOP/ALU chain.

3.2 Number of central registers and format for instructions.

In common with two-thirds of the fifteen notable early computer projects in Britain and
America [23], the Manchester Mark I used a single- address instruction format. The
Manchester tendency to separate out address-generation facilities from the main (floating-
point) computation (see above) probably helped to keep the Atlas design on this track.
However, by the mid-1960s, when the design-requirements for MUS were being formulated,
there were several examples of high-performance 2- and 3-address computers in the market
place. The MUS design team considered several opuions. The factors that led the team to
choose an augmented one- address format are discussed at len gth 1n [20]. Some of the factors
- €g maximising address-space; minimising the number of operand- and instruction-fetches:
aiding efficient pipeline design - apply equally to today's designs - be they CISC or RISC.
Other MUS factors, particularly the need to minimise size of object-code and to ease the high-
level compiler-writer's task, are not given so much emphasis today. Since MUS was
asynchronous, popular overall metrics such as number of clock-cycles per instruction did not
apply directly. Instead, the designers tended to concentrate on ensuring a good overlap of
‘organisational’ and ‘computational’ activity, as illustrated below for the scalar product loop.

Perhaps the point at which the MUS5 designers differed most from today's architects is in their
views about the number and purpose of a computer's central registers. Experience with Atlas
had suggested that, to quote a catch-phrase of the time, there were only three sensible choices
for the number of fast registers in a computer: zero, one. or infinity. For computational
purposes, each MUS instruction specified one 'register’ (an accumulator, or sometimes the top-
of-stack). For address-generation purposes, each instruction used one of a limited number of
special registers’ (eg Current Name Base; Global Name Base: top-of-stack) implicitly, in order
to locate a primary operand; this primary operand could be a scalar variable, or it could be one
of an 'infinite’ number of named structure-descriptors. The most-frequently-used primary
operands, be they scalars, descriptors, or the top few locations of the stack, were automatically
cached in a 32-line fully-associative fast cache. This employed special CAM chips - (see also
Appendix B). Once the address of a secondary operand such as an array-element had been
calculated, the eight most-frequently-used long words (128 bits) were cached in another fully-
associative 'vector' cache within the SEOP unit in Fi gure 6. The overall effect of these

arrangements was to lift from the compiler- writer the burden of optimising register use,
whether for addressing purposes or for computational purposes.

This may be illustrated by the MUS5 code compiled for a scalar product (dot product) sequence
written in the block-structured language Algol:

FOR1:=1 STEP 1 UNTIL n DO
sum := sum + x[i] * y[i];

ALCC =0

ACC => sum clear the scalar 'sum'

B=l initialise the index, held in the B accumulator
Ll: B=>i start of the main loop

ACC = x[B] load main fipt acc. using named descriptor x

ACC * y[B] multiply, using named descriptor y

ACC + sum add in the current sum

B CINC n compare-and-increment B, setting a status-bit

iIF=/, ->L1 jump if status-bit indicates not equal to zero.

Each of the nine MUS object-code instructions is a short (16-bit) order. This may be compared
with a CYBER 205 FORTRAN object-code sequence for performing the same task, which
consists of 18 32-bit instructions and one 64-bit DOTV macro instruction. The MUS jump-
prediction unit and 128-bit wide instruction highway (see Figure 6) helped to reduce
instruction-fetching time; likewise, the associatively-accessed primary and secondary operand
caches helped to minimise operand-fetch times.

An MUS descriptor was 64 bits long, iIncluding a 32-bit origin address, a 24-bit bound, and
option-indicators for element-sizes of 1,4,8,16,32 and 64 bits. Automatic bound-checking was
provided. Further details will be found in [20].

Optimising the pipeline throughput during a scalar product loop was taken as an important
design-objective for both Atlas and MUS. In one Atlas paper [8], the time for a five-
instruction Atlas scalar product loop is quoted as 12.2 microseconds, though it was measured
to be 10.95 microseconds at the Manchester Atlas inauguration ceremony on 7th December
1962. A hand-coded 5-instruction version of the six-instruction MUS5 scalar product loop
given above executed in just less than one microsecond, once at least one cycle of the loop had
been executed and hence the two vector descriptors and the scalar control-variable had all
migrated to the associatively-accessed cache. The MUS floating-point multiply time, which
was considered relatively slow compared with contemporary supercomputers such as the
CDC 7600, accounted for about half of the total loop-time [20]. Note that, unlike some
present-day designs, near-optimum MUS scalar product performance could be obtained
without the use of a vectorising compiler and without significant vector start-up overheads.

A final point about both Atlas and MUS instruction formats: neither machine permitted
register-to-register arithmetic in the normal sense. On the (rare) occasions when the result of a
computation in (say) the main accumulator was then required in the B-accumulator, pipeline
continuity was considerably disrupted.

3.3 Context-switching and procedure calling

It can be imagined that the large number of index registers (‘B registers’) on the Atlas
computer contributed to long delays when program-swapping. However, the switching from
user-program to the operating system software was speeded up by two features. Firstly, Atlas
had three program counters: one for users, one for operating system services, and the third for
the 'extracodes’ which were library sub-routines in fast ROM (see Appendix B). Secondly, 37
of the 128 B-registers had dedicated system usage and were not swapped on a program-
change. Nevertheless, the 90 B-registers that were available to user-programs had to be
preserved on major context-switches; this fact biassed the MUS5 design team towards the
address-generation strategy described in Section 3.1.

In addition, the MUS5 design took block-structured languages and recursive procedure-calling
more seriously - influenced by the Burroughs B5000. Stack-frame manipulation upon
procedure entry/exit was carried out automatically with reference to dedicated Name base and
Stack Front registers - actions which today are commonplace. In the mid-70s, however, these
features helped MUS5 to out-perform rival machines such as the CDC 7600 on Algol
benchmarks [17], even though MUS5 was slower in terms of raw technology. It should also be
remarked that such Algol successes were hollow victories so long as the majority of scientific
users continued to program in Fortran!

3.4 Memory management.

The early exposure to difficulties of integrating a small but fast random-access primary
memory with a larger but slower spinning memory, engendered an interest that persisted at
Manchester throughout the period under review. Memory management was certainly a
research issue in the autumn of 1948. From informal conversations with Kilburn, Newman,
Tootill and Williams, the four inventors whose names appear on the B-line (index register)
patent, it seems possible that the idea of a page- relocation register preceded the discussion of
B-lines as a more general vehicle for address-generation purposes.

The challenge of removing from users the burden of organising their own overlays (‘drum
transfers’) was a design-objective in the Mark I Autocode - a very early high-level language
that was in use by March 1954 [6]. Atlas took this challenge down to the hardware level, by
providing a set of associatively-accessed (content-addressable) page- address registers (PARs,
see Figure 5) - which today would be recognised as an address-translation look-aside buffer.
(The actual associative look- up was implemented using exclusive-or (‘'not equivalence’) logic
gates). If the PARs signalled a page-fault, page-replacement was organised by a 'drum
learning program’ which resided in fast ROM [8].

The Atlas virtual address space of 6Mbytes was segmented both formally (by hardware) and
informally (by compiler-writers). Hardware segmentation distinguished four areas: the user-
program space; three operating- system areas, namely the fast ROM, a subsidiary RAM
Working Memory, and the so-called V store. This last contained the memory-mapped
addresses of all /O data and control registers and other 'system' registers. In MUS the notion
of a paged, segmented Virtual Memory was taken further, with the address containing
process-number as well as segment-number; variable-sized pages were also accomodated by

the associative address-translation hardware - (the Current Page Registers, CPRs, of Figure 6).

Although invisible to the programmer, the MUS5 memory hierarchy actually consisted of four
physical storage 'units": closest to the ALU came the associatively-accessed special caches
called Name Stores - (see also Section 3.2 above): then came the primary RAM, then a larger
(but slower) RAM, and finally the fixed-head discs (or drums). A general-purpose
autonomous block-transfer unit (STU in Figure 6) was used to move blocks between the two
RAMs, via a 16-port time-multiplexed cross-bar switch (the Exchange, in Figure 6). MUS had
three main data-highways between CPU and memory (see Figure 6) - in what might today be
called a ‘super-Harvard architecture’. The [nstructuon-Buffering Unit (IBU) had an
associatively- accessed jump-prediction memory which helped to ensure profitable pre-
fetching of instructions, hence reducing pipeline discontinuities.

3.5 Other points of architectural interest.

(a) The commercial version of the Mark I computer had a hardware random number
generator, a requirement specified by Alan Turing, and a 'sideways add' instruction
which summed the number of logical Is in a word. One can imagine how these two
instructions could have been of interest to programmers whose field was AI or

cryptanalysis.

(b) Both Atlas and MUS had a hardware instruction-counter, which interrupted (eg) every
2048 obeyed instructions; (the counter’s limit was variable up to 216 on MUS. This was
used as the basis for charging for computing time; it was also very useful for
performance- monitoring purposes.

(c) Both Atlas and MUS were asynchronous designs. This made hardware fault-finding
particularly difficult in cases where the machine simply 'stopped dead', since it was not
possible to get a repetitive trace on an oscilloscope. Both computers had a diagnostic
facility which was able to generate, at a selectable frequency, sequences of Reset/
Interrupt/ Go pulses which caused the CPU to be forced back and start running from a
known initial hardware/software state at periodic intervals. During the MUS design, the
problem of arbitration and the synchronising of asynchronous events was first properly
analysed [15].

4 Significance

In studying the history of the design of cars or planes, particular machines are seen to have
served particular needs, according to the technological limitations of the age. This is the same
with computers. Disentangling generic design-ideas from those ideas which have had only
imited time-significance is not easy - especially since computer architecture is still
(regrettably) a somewhat ad hoc subject.

If there is one area where the Manchester ideas may have had a lasting influence, it is probably
the recurring topic of hardware support for memory-management. By this we mean memory-
management in its widest sense - ie the transparent organisation of efficient and safe access to

all the data and instructions required to solve a user's hi gh-level problem. This is a topic on
which research is still active today, though the requirements demanded by applications and
languages are now rather different from those of 30 years ago. Thus, topics such as persistent
stores, object stores, structure stores (‘active memory’), etc. are all under investigation in
various centres world-wide. Unlike the period reviewed in this paper, however, current
research embraces the added challenges of parallel and distributed computing platforms. It has
to be said that it was not until the late 1970s and the Dataflow project that computer design at
Manchester started to address parallelism in the modern sense of the word.

References.

1 S H Lavington, "A history of Manchester computers”. NCC Publications, (National
Computing Centre, Manchester M1 7ED, UK), 1975.

2 M Campbell-Kelly, "ICL: a business and technical history”. Oxford University Press,
1989.

3 F C Williams and T Kilburn, "A storage system for use with binary digital computing
machines”. Proc. IEE, Vol. 96, part 2, No. 30,1949, pages 183 ff.

4 T Kilburn, G C Tootill, D B G Edwards and B W Pollard, "Digital computers at
Manchesters University". Proc. IEE, Vol. 100, Part 2. 1953, pages 487 - 500.

5 B W Pollard and K Lonsdale, "The construction and operation of the Manchester
University computer”. Proc. IEE, Vol. 100, part 2, 1953, pages 501 - 512.

6 R A Brooker, "The programming strategy used with the Manchester University Mark |
computer”. Proc. IEE, Vol. 103, part B, supp. 1-3, 1956, pages 151 - 157.

7 T Kilburn, "Muse". Paper presented at the first International Conference on Information
Processing, UNESCO, Paris, June 1959. Proceedin gs published by Butterworths,
London, 1960, pages 433 ff.

8 T Kilburn, D B G Edwards, M K Lanigan and F H Sumner, "One level storage system".
IRE Trans on Electronic Computers, Vol. EC-11, No. 2. April 1962, pages 223 - 235.

9 T Kilburn and R L Grimsdale, "A digital computer store with very short read time".
Proc. IEE, Vol. 107, Part B, No. 36, Nov. 1960, pages 567 - 572.

10 T Kilburn, D B G Edwards, D Aspinall, "A parallel arithmetic unit using a saturated
transistor fast-carry circuit". Proc. IEE, Vol. 107, Part B, No. 36. Nov. 1960, pages
- 573 - 584.

11 T Kilburn, D J Howarth, R B Payne and F H Sumner. "The Manchester University
Atlas operating system: part 1, Internal organisation. Computer Journal, Vol. 4, No. 3,
1961, pages 222 - 225. Part 2, Users' description, Computer Journal, Vol. 4, No. 3,
1961, pages 226 - 229.

12 T Kilburn, D Morris, J S Rohl and F H Sumner, "A system design proposal”. Proc.
IFIP Congress 1968, Section D, pages 76 - 80.

13 D Aspinall, D J Kinniment and D B G Edwards, "An integrated associative memory
matrix". Proc. IFIP Congress, 1968, Section D, pages 86 - 90.

14 R N Ibbett, "The MUS instruction pipeline". Computer Journal, Vol. 15, No. 1, Feb.
1972, pages 43 - 50.

15

16

17

18

19

20
21

22
23

24

¥

26

27

D J Kinniment and J V Woods, "Synchronisation and arbitration circuits in digital
systems”. Proc. IEE, Vol. 123, 1976, pages 961 - 966.

D Morris, G D Detlefsen, G R Frank and T J Sweeney, "The structure of the MUS5
operating system". Computer Journal, Vol. 15, No. 2, 1972, pages 113 - 116.

S H Lavington and A E Knowles, "Assessing the power of an order code". Proc. IFIP
Congress 1977. Published in Information Processing 77, North Holland Publishing
Co., 1977, pages 477 - 480.

S H Lavington, "The Manchester Mark I and Atlas: a historical perspective”. Comm.
ACM, Vol. 21, No. 1, January 1978, pages 4 - 12.

C G Bell and A Newell, "Computer structures: readings and examples”. McGraw-Hill,
1971.

D Morris and R N Ibbett, "The MUS computer system". Macmillan. 1979

R N Ibbett and P C Capon, “The development of the MUS5 computer system”. CACM,
Vol. 21 No.1, Jan. 1978, pages 13 - 24.

J K Buckle, "The ICL 2900 series." Macmillan, 1978.

S H Lavington, "Early British computers". Manchester University Press, 1980.
(Published in the USA by Digital Press).

T Kilburn, D B G Edwards and G E Thomas, "The Manchester University Mark 2
digital computing machine". Proc. IEE, Vol. 103, Part B, supp. 1-3, 1956, pages 247 -
268.

Prof. T Kilburn - private communication, 1974. For an earlier view of the penalties of
floating-point in respect of memory capacity and ALU complexity, see the famous 1946
Burks/Goldstine/von Neumann report reproduced as Chapter 4 of reference [19] given

above).

K Lonsdale and E T Warburton, "Mercury: a high-speed digital computer". Proc. IEE,
Vol.103, Part B, Supp. 1-3, 1956, pages 483 -490.

T Kilburn, R L Grimsdale and D C Webb, "A transistor digital computer with a
magnetic drum store". Proc. IEE, Vol. 103, Part B, supp. 1-3, 1956, pages 390 - 406.

Appendix A: Brief description of the second and third Manchester computer projects -
(see Table 1).

The Manchester Mark II, or Meg, project spanned the period approximately 1951 to 1955 [1].
Meg had the same 40-bit word length as the Mark I, with the same one- address instruction
format and the same arrangement of two 20- bit instructions per word. Meg (the 'megacycle
machine’) was planned as a faster, more compact, easier-to-maintain version of the Mark L
Meg's serial arithmetic unit had a one microsecond digit period, but parallel access was made
to 1ts random-access main memory via a 10-bit wide highway. (The Mark I was entirely
serial). From today's viewpoint, an interesting architectural feature is Meg's incorporation of a
hardware floating- point arithmetic unit - one of the first electronic machines to have this

10

facility. Meg used a 30-bit mantissa, 10-bit exponent, and base of two [24]. It has been said
[25] that the Mark I programmers were at first hostile to the suggestion that the new machine
should incorporate hardware support for floating-point arithmetic because, as mathematicians,
they did not care to be limited to a fixed-format arrangement regardless of their application.
Although floating-point accuracy is still an issue today, most users now take hardware support
for granted.

The Ferranti Mercury [26], the commercial derivative of the Manchester University Meg,
would be rated according to present-day standards as a 0.017 MIP machine. Its market rival,
the more expensive IBM 704, was faster at about 0.04 MIPs [1]. At least four Mercury
computers were still working in 1970.

The third entry in Table 1, the experimental transistor computer project, spanned the period
approximately 1952 to 1955 [1]. This was a relatively slow and small-scale machine
compared with Meg. It used a magnetic drum ('fixed-head disk’) for all storage purposes,
including the main computational registers [27]. The principal impact of this computer project
at Manchester was that it gave invaluable experience in the desi gn of logic circuits which used
the new ‘crystal triodes’, better known as transistors. In 1953 the available transistors were
germanium point-contact devices, of modest reliability. In the commercial derivative of the
University project, the Metropolitan- Vickers MV950 computer, the logic circuits were
converted to use germanium junction transistors which had by then begun to replace point-
contact devices. The MV950, of which six were manufactured, was one of the first
commercially-available transistor computers. Contemporary transistor- based digital
computer design took place at the UK Atomic Energy Authority's Harwell Lab. (CADET), at
the MIT Lincoln Lab. (TX-0), and at the Philco Corporation (TRANSAC S-1000) - see [23].

Appendix B: additional hardware details of the Mark I, Atlas and MUS.

The Mark I used thermionic vacuum tubes (mostly EF 50 pentodes) and thermionic diodes in
its serial ALU. The digit period was 8.5 microseconds. Both the RAM primary memory and
all central registers (ie double-length accumulator, multiplier register, instruction register,
program counter, and the two index registers) were implemented as CRT electrostatic storage
(‘Williams Tubes'). In a survey of six British and nine American pioneering computers which
came into operation during the period 1948 to 1953, five used Williams Tubes for main
memory [23]. The Mark I's serial addition time of 1.8 milliseconds was one of the slowest; in
comparison, the MIT Whirlwind computer was probably the fastest machine with a 49
microsecond parallel add time.

The Atlas used germanium junction transistors (mostly OCI107) and germanium
semiconductor diodes for the main logic circuits in its pipelined ALU, with a special
symmetrical surface-barrier transistor (the SB240) being employed in the parallel adder to
give an exceptionally-short carry- propagation delay (for those days) of 200 nanoseconds.
Most of the 128 general- purpose registers were held in a fast, 0.7 microsecond cycle-time,
magnetic core store. Operating system subroutines and some frequently-used library
subroutines were held in a special 48Kbyte read-only memory made from a woven wire mesh
into which were inserted very small rods of copper or ferrite: the access time was 0.3

11

microseconds. The main memory (core) had a cycle-time of 2 microseconds and was four-way
interleaved. The memory hierarchy is illustrated schematically in Figure 5.

Atlas was a pipelined machine. Its system of autonomous sub-units, interleaved memory-
banks, vectored interrupts and memory-mapped I/O would be readily recognised by the
designers of today's microprocessors.

Both Atlas and its successor, MUS5, were asynchronous machines - (ie no system clocks).
MUS employed ECL SSI and MSI integrated circuits. Special tunnel diode flip-flops with
high gain-bandwidth product were employed as arbitration circuits in the interfaces between
asynchronous sub-units [15]. MUS was highly pipelined - (see also Section 3.1). For
example, the Primary Operand Unit of Figure 6 had a five-stage, 50 nanosecond per stage,
pipeline.

The basic gate-delay of MUS's Emitter-Coupled Logic family was about 2 nanoseconds, to
which should be added perhaps another two nanoseconds to account for typical
interconnection and loading effects. The overall working figure of 4 nanoseconds per gate
was reckoned to be slightly longer than the equivalent figure for the contemporary CDC7600
[20], which used bipolar transistor logic. A unique feature (at the time) for MUS was its use
of integrated-circuit Content-Addressable (ie associative) memory. The CAM used was a
Manchester design, manufactured by Ferranti's silicon foundry. Each CAM chip contained
four lines of two bits each, with an association (read’) ume of five nanoseconds [13]. These
CAM chips were used in the MUS5 address-translation unit (the CPRs of Figure 6), and in each
of the fully-associative caches within the IBU, PROP and SEOP sub-units of Figure 6. For
example the PROP cache, called the Name Store for reasons described in Section 3.2, had 32
lines or entries. Each line contained a named variable or descriptor having a 19-bit address-
part made up of 4 process bits and 15 offset bits, and a 64-bit value part. The address-part was
held in CAM chips and the value part in RAM chips.

12

Photograph Captions

Figure 1: The Manchester University Mark I computer in 1949,

The control panel is situated in the fourth rack from the left. Despite its primitive
appearance, the prototype Mark I performed useful computation on number theory
and ray tracing before being closed down in the summer of 1950 to make way for

the installation of the production Mark I.

Figure 2: The Manchester University Atlas computer in 19635.

The CPU and primary memory were housed in five cabinets, of which two are
shown in the photograph. The cabinet in the centre, partly obscured by the
operator’s head, held 48 K bytes of fast ROM containing the ‘Extracodes’. The
one-inch magnetic tape decks in the background used fixed-block transfers which
allowed reading/writing in the forwards or backwards direction.

Figure 2: The Manchester University MUS computer in 1974.

One logic ‘door’ in the central block of cabinets has been swung open to reveal a
set of six 12-layer printed-circuit ‘platters’ or mother-boards. Each mother-board
had up to 200 small ‘daughter-board’ plug-in modules, on which were mounted
the ECL chips. The MUS CPU occupied about 66 mother-boards.

g o e

’

ek,

i

A

-

AR

P—
st

IGURE 2.

'S M09 4

INPUT OUTPUT

Y A
ShaaEeme i > ACC —~ M _I\
R e Bl
A |
J/ |1 A |
r % —] . 5
— + [+ 4 I ALU L -l wy [
) 1 RS s
A A Sy A A A
| I |
ol . s _ >, s - RS
1
SECONDARY PRIMARY
L .(': :‘:’.__
MEMORY MEMORY

F igure 4: Simplified block-diagram of data-paths within the Manchester Mark L.
Key: PC = program counter; IR = instruction register; BO, B1 are B lines
(index registers); ACC = double-length accumulator: MPY = multiplier.
(The 1949 prototype Mark 1 had two B-lines: the 1951 production Mark I
had eight B-lines).

| INPUT | OUTPUT

PC (M)
PC (E)
PC (I) Z‘
- | 125 other yes 25 ACC I-\
B Registers
A V

A" 24 1 24

t\ B-ALU

i
7
>
N

Working Space

.‘ .- LN R ra = - A - -
: a‘
- £
| ROM |
» L
: i
. i
- i
. 4
: i
. b
i

. PRIVATE MEMORY

= sgc
-
e PARs e
MAG. TAPE DRUM
SUB-SYSTEM| | RAM SUB-S$STEM

ONE-LEVEL MEMORY

L N e T
[]
B o, o o _w

Figure 5: Simplified block-diagram of data-paths within the Manchester ATLAS

Computer. Key: SAC = Store Access Control; PARs = Page Address
Registers.

/ B \ ACC »\
" 32 64 jm

38 .

|
V
A
p R e
64
Pt
IBU - PROP = SEOP
64
128 1 j/ 5
& e e
CPRs \
+ 64
A el S : {
Primary
RAM
To/from
other computers e
and I/O systems —
Drum
Sub-system
V EONE-LEVEL MEMORY

STU

Figure 6: Simplified block-diagram of data-paths within the MUS computer system. Key:
IBU = Instruction Buffering Unit; PROP = Primary Operand Unit; SEQP =
Secondary Operand Unit; CPRs = Current Page Registers; EXCH = Exchange (a
time-multiplexed Cross-bar Switch); STU = Store-to-store autonomous transfer
unit. (Note that there was actually no direct route from PROP to the Main ALU,
though there was a route back; the only way into this ALU was via SEOP).

