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Karlsruhe Institute of Technology (KIT) is doing research and development in the field of
megawatt-class radio frequency (RF) sources (gyrotrons) for the Electron Cyclotron
Resonance Heating (ECRH) systems of the International Thermonuclear Experimental
Reactor (ITER) and the DEMOnstration Fusion Power Plant that will follow ITER. In the
focus is the development and verification of the European coaxial-cavity gyrotron technology
which shall lead to gyrotrons operating at an RF output power significantly larger than 1 MW
CW and at an operating frequency above 200 GHz. A major step into that direction is the final
verification of the European 170 GHz 2 MW coaxial-cavity pre-prototype at longer pulses up
to 1 s. It bases on the upgrade of an already existing highly modular short-pulse (ms-range)
pre-prototype. That pre-prototype has shown a world record output power of 2.2 MW already.
This paper summarizes briefly the already achieved experimental results using the short-pulse
pre-prototype and discusses in detail the design and manufacturing process of the upgrade of
the pre-prototype toward longer pulses up to 1 s.

Introduction

At Karlsruhe Institute of Technology (KIT), the activities in gyrotron research and develop-
ment shall lead to a gyrotron design that will fulfil the increasing requirements for a possible
upgrade for the International Thermonuclear Experimental Reactor (ITER) [1] as well as the
minimum requirements for a future DEMOnstration power plant (DEMO) [2], the nuclear
fusion demonstration power plant that will follow ITER. Today, the requirements for the initial
gyrotron installation at ITER are a radio frequency (RF) output power capability of 1 MW
(3600 s) at an operating frequency of 170 GHz for each single gyrotron [3]. The expected per-
formance requirement for a possible ITER upgrade is an RF output power of significantly lar-
ger than 1 MW. For future DEMO an RF output power level of minimum 2 MW CW at even
higher operating frequencies up to 240 GHz is under consideration [4, 5]. It is expected that
the coaxial-cavity gyrotron [6, 7] technology will allow an operation at those output power
levels. Compared with the conventional hollow-cavity gyrotron technology as used for, e.g.
Wendelstein7-X (W7-X) and ITER today, the coaxial-cavity gyrotron technology allows the
effective reduction of the voltage depression due to the space charge effect of the electron
beam and the reduction of the mode competition due to the mode selectivity of the carefully
chosen corrugated inner conductor at high operating frequencies. First experimental results
obtained with the 170 GHz 2 MW short-pulse coaxial-cavity pre-prototype (Fig. 1) at pulse
length of a few milliseconds (ms) have shown the potential of the coaxial-cavity concept in
the multi-MW operation regime. Nonetheless, until today, the coaxial-cavity gyrotron technol-
ogy has not been verified at longer pulses above a few ms. Therefore, a focus of KIT is the
verification of this technology at pulse lengths up to 1 s which will prove the long-pulse cap-
abilities for longer pulses also. For the very first time, a coaxial cavity gyrotron will be operated
and investigated in the experiment in long-pulse operation.

In particular, the paper is organized as following. In the Review of experimental results of
the modular short-pulse prototype section, the experimental results of the modular pre-
prototype coaxial-cavity gyrotron are presented. Then, in the Design and manufacturing of
the coaxial-cavity longer-pulse pre-prototype gyrotron section the coaxial-cavity gyrotron
design and manufacturing process of the launcher, cavity, beam tunnel, and mirror box as
well as the vacuum compatible connections are presented. In addition to [8], the present
extended paper presents in the Advanced magnetron injection guns subsection two advanced
and innovative magnetron injection guns (MIG), which are designed for stable long-pulse
operation.
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Review of experimental results of the modular short-pulse
prototype

During the experimental short-pulse test campaign, the already
existing KIT 170 GHz 2 MW coaxial-cavity modular pre-
prototype did show an excellent and very stable performance.
The tube was operated at an acceleration voltage of up to Uc =
93 kV and an electron beam current of Ib = 80 A. At the nominal
operating parameters, listed in Table 1 (Uc = 90 kV, Ib = 75 A), an
RF output power of 2 MW up to 10 ms pulse length has been
achieved. An electronic (interaction) efficiency between the elec-
tron beam and the electromagnetic field of ∼30% was achieved
at nominal operating parameters [9]. During the experiments,
the magnetic field of the superconducting magnet was set to
6.90 T. The acceleration voltage was shifted up to ∼93 kV. At
the same time, the electron beam current was set to 80 A. That
allowed to generate a world record in RF output power of
2.2 MW at 170 GHz. The calorimetrically measured RF output
power and electronic efficiency versus cathode voltage is shown
in Fig. 2 [9]. The achieved results are in excellent agreement
with the multi-mode simulations done at KIT [9].

The experimental results were performed with an improved
design of the launcher [10] with smoothed inner wall corruga-
tions. That launcher is the major part of the quasi-optical system
which converts the very high-order mode into a Gaussian mode.
The efficiency of the mode converter had been verified in low-
power measurements before implementing that launcher into
the pre-prototype. The measured results are in excellent agree-
ment with the expectations from numerical analysis. The funda-
mental Gaussian mode content had been extracted from the
measured patterns and was calculated to be around 96%. In add-
ition, at high output power, the profile of the RF beam had been
measured with an infrared camera (IR-camera) (Fig. 3 [9]) at sev-
eral different distances from the microwave window. The analysis
of the data verified again the very good quality of the generated
RF beam and it is in accordance with the low-power measure-
ments. The amount of the RF stray radiation losses inside the
gyrotron tube had been obtained by measuring the RF power
radiated through the relief window with a very sensitive ballistic
calorimeter. Finally the stray radiation losses with the new
launcher are significantly reduced from 7% (previous experi-
ments) down to 4% [9].

Design and manufacturing of the coaxial-cavity longer
pulse pre-prototype gyrotron

In order to increase the pulse length from the ms-range up to
range of 1 s, the main components of the 2 MW coaxial-cavity

Table 1. Design parameters for the coaxial-cavity gyrotron

Operating cavity mode TE34,19

Frequency ( f) 170 GHz

RF output power (Pout) 2 MW

Beam current (Ib) 75 A

Accelerating voltage (Uc) 90 kV

Velocity ratio (pitch factor) (α) ∼1.3

Cavity magnetic field (Bcav) 6.87 T

Overall efficiency (with depressed collector) 50%

Fig. 1. Sketch of the 2 MW 170 GHz KIT coaxial-cavity gyrotron.

Fig. 2. Measured RF output power and overall efficiency as a function of the acceler-
ating voltage Uc (obtained at Bcav = 6.87 T and Ib ∼75 A, operation without depressed
collector).

Fig. 3. IR image of the measured gyrotron RF output beam in 85 and 1000 mm dis-
tance from the window.
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gyrotron such as the beam tunnel, the cavity, the launcher, the
mirrors, the chemical vapor deposited (CVD) diamond RF output
window, and the collector have to be equipped with an active
cooling system. The corresponding design activity was starting
in 2015 already. The final design of the longer pulse gyrotron
with the already manufactured components is shown in Fig. 4.
One of the main project requirements is to keep the modularity
of the gyrotron. Therefore, an independent cooling system for
each component is considered. This allows the monitoring of
the internal losses in each gyrotron component and of the final
energy balance of the tube during longer pulse operation. In the
following, the advanced, water-cooled components are presented.
The longer pulse components as well as the inverse magnetron
injection gun (IMIG) are manufactured, brazed, and assembled
at the KIT for the very first time.

Launcher

As stated before already, the launcher together with the mirror
system is responsible for the conversion of the main
TE34,19-mode into the fundamental Gaussian mode of the RF out-
put beam [10]. Especially, at the tip of the launcher, where the
complete RF-power is finally focused, the thermal loading of
0.4 kW/cm2 is critical. In order to achieve a stable operation, it
is necessary to cool that launcher tip therefore. To achieve that,
the water inlet and outlet of the launcher is connected at the bot-
tom of the launcher. A helix cooling structure was proposed to
make that configuration possible. Due to that helix structure
(see. Fig. 4), the channels have to be milled with a five-axis milling
cutter. In order to caulk the channels, a stainless steel coat is
imposed and brazed from the outside of the launcher. The intro-
duction of a bellow is necessary as the launcher and the coat con-
sist of different materials that have different thermal expansion
coefficients. The already manufactured launcher shows an excel-
lent surface quality. The tolerances are in the range of below
±10 µm. The launcher performance has been successfully verified
in the cold measurement test setup. Figure 5 shows the radiated

pattern which was sampled at a distance of 10 cm from the axis
to the position of the first mirror. The measurement results cor-
respond well to the simulation results and the measurements of
the previous launchers. The simulated radiation pattern is being
calculated with the full wave three-dimensional (3D) vector ana-
lysis code SURF 3D [11]. Furthermore, excellent soldered and
brazed joints with a leakage rate of <10−12 mbar l/s were achieved
for the launcher parts.

Cavity

At the gyrotron cavity, the kinetic energies of the individual elec-
trons of the electron beam are transferred to the electromagnetic
field. The expected total power loss in the cavity due to thermal
wall loading is about 50 kW at nominal 2 MW gyrotron oper-
ation. Due to the high quality factor of the cavity, one finds the
peak thermal wall loading of approximately 2 kW/cm2 in a very
narrow region at the center of the cavity. It leads to a very high-
temperature gradient at the inner side of the cavity wall, which
results in thermal stress, and finally, leads to a deformation of
the cavity wall. Depending on that deformation, the operating
frequency of the gyrotron is shifted and the quality factor of the
cavity is changing significantly. Therefore, it is mandatory to
implement an effective water cooling. The chosen approach of

Fig. 4. Subcomponents of the KIT 170 GHz 2 MW
coaxial-cavity longer pulse gyrotron.

Fig. 5. Radiation pattern of the water-cooled launcher.
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the active cooling system is similar to the design of the cooling
system for the launcher. However, due to the position and orien-
tation, the implementation of a helix-type channel system is not
necessary. The different temperatures and material properties of
the coat and the outer cavity wall require also the implementation
of a bellow. The reduction of the water cooling gap (see Fig. 4,
cavity) increases the flow velocity of the water and therefore
the cooling capacity. The limitation of the cavity is a maximum
temperature of approximately 350 °C. Based on the temperature
limitations, the multi-physics software COMSOL predicts a max-
imum pulse length of approximately 1 s.

Additionally, the cavity uptaper is extended and optimized
(Fig. 6). The simulation results predict a transmission of 99.94%
of the TE34,19-mode and a very low mode conversion.

Beam tunnel

The beam tunnel consists of stacked copper and ceramic rings.
Compared with the cavity, the thermal loading is relatively low.
However, an active cooling is considered also. Figure 4 shows
the construction of the beam tunnel including the water cooling
system. A coat is brazed to the outside of the beam tunnel.
Together with the outer metal layer, it forms an annular gap
for the cooling water.

Mirror box

In order to build-up a cost-effective pre-prototype gyrotron, the
mirrors and the mirror box of the quasi-optical system are reused
from the refurbished industrial coaxial-cavity gyrotron prototype
[12, 13]. Nevertheless, slight modifications of the absorber ceram-
ics, collector flanges, and window housing are necessary in order
to satisfy the requirement of the modularity. The redesigned mir-
ror box is shown in Fig. 4 and Fig. 7. The water inlets for the mir-
rors, the beam tunnel, the cavity, and the launcher are fixed at the
bottom of the mirror box (Fig. 7). Due to the fact that the gyro-
tron will operate at pulse lengths of up to 1 s, it is necessary to
bake out the tube at 350 °C. This requires that the water channels
and connections are heat-resistant up to the maximum bake-out
temperature. Therefore, metallic sealed components are added
to the construction. Already, a first prototype of a metallic sealed

water connection was developed, which has shown excellent per-
formance at the nominal operating water pressure.

Vacuum compatible connections

One of the most critical issues in a gyrotron is the high-vacuum
compatible brazed and welded joints. Figure 8 shows the grinding
patterns of different brazed and soldered joints with variable
material compositions. At the top of Fig. 8, two grinding patterns
of a soldered joint with Glidcop [14] and stainless steel are shown.
It shows that that the solder diffused into the gap between
Glidcop and stainless steel perfectly due to the capillary forces
caused by the carefully designed and manufactured gap between
both materials. In addition, excellent solder joints between CVD
diamond and copper were achieved.

At the bottom of Fig. 8, the grinding patterns of an electron
beam welded joint with iron-nickel and stainless steel as well as
CuCrZr (copper chrome zirconium) with iron-nickel is shown.
At the welded joint, both materials coalesced perfectly with excel-
lent leak tightness. In both scenarios, the leakage rate is below
10−12 mbar l/s.

Advanced MIG

A major step toward higher output power and operating fre-
quency is the IMIG [15]. An IMIG has been designed and already
manufactured for the KIT 2 MW coaxial-cavity gyrotron [16]. It
is expected that this gun leads to a more stable operation at
even higher output power. Due to the triode configuration of
the MIG, including a separate modulation anode, the IMIG has
the flexibility to be operated at multiple frequencies such as 170
and 204 GHz. Because of the possibility of larger emitter radius,
the gyrotron can be operated at a larger operating beam current
and therefore at a higher RF output power. The requested beam
and operating parameters are presented in Table 1 and Table 2.
The simulated parameters of the IMIG indicate a high electron
beam quality [15], which promises a reliable gyrotron operation
at nominal operating parameters. Additionally, the IMIG is the
first MIG which fulfils the design criteria for preventing the gen-
eration of trapped electrons as presented in [17]. The generation
of a beam halo is suppressed by the use of two halo shields [15].
Based on its triode configuration, the presented IMIG can be
modified and operated in a conventional hollow gyrotrons easily
[18]. In the existing IMIG design, the emitter radius is set to
62 mm with an emitter thickness of 5 mm. The emitter has an

Fig. 6. Optimized cavity design of the longer pulse gyrotron configuration compared
with that of the existing short-pulse configuration.

Fig. 7. Bottom view of the mirror box with the water connections for each
subcomponent.
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angle of 25° with respect to the z-axis of the tube. In order to keep
the temperature in the neighboring regions of the emitter low at
both edges, isolation gaps with a width of 200 µm are designed.
As a result, the electrons, emitted from the emitter edges have a
very high pitch factor, which is related to the field enhancement
at the emitter edges. In order to eliminate the electrons with
high pitch factor, the emitter is pushed into the cathode by
70 µm in order to reduce the local electric field.

The alignment of the components of a MIG against the z-axis
of the gyrotron and the individual subcomponents of that MIG
against each other is one of the most critical issues during manu-
facturing and final assembly of any gyrotron. A misalignment of
any subcomponent reduces the quality of the electron beam sig-
nificantly. Even a misalignment in the range of a few hundreds
of micrometers can significantly impact the beam parameters.
Hence, the tolerance margin for the positioning of the emitter
in the tube is the key for the creation of a properly performing
tube. Additional to the above described manufacturing and
assembly tolerances, the different thermal expansions of the dif-
ferent components during operation are impacting the quality
of the tube. In order to minimize that thermal effect, the thermo-
mechanical behavior was investigated by the use of COMSOL. In
comparison to the “conventional” MIG (Fig. 13), the cathode and
emitter of the IMIG (Fig. 9) are placed at the outside of the MIG.
Hence, it is directly cooled by passing oil at the outer surface of
the cathode elements. That is the major benefit if comparing to
the standard MIG used in all conventional gyrotrons. The compo-
nents of the cathode and anode are made of materials with high
thermal conductivity, mainly CuCrZr (indicated in Fig. 9 using
orange color) and molybdenum (Fig. 9, marked by dark blue
color). Therefore, the heat loading of the neighboring emitter
regions is directly guided outside of the MIG and absorbed by
the oil flow. Compared with conventional MIGs, the temperature
of the loaded parts is significantly reduced by 40% down to
∼150 °C. Corresponding simulation results are presented in

[19]. In order to verify the simulations, a measurement setup
was designed and manufactured (see Fig. 10).

Another significant influence on the beam quality, hence on
the generated output power and efficiency, is caused by an
inhomogeneous temperature distribution at the surface of the
emitter. Obviously an inhomogeneous temperature distribution
leads to an inhomogeneous emission. The emission inhomogen-
eity can be experimentally investigated by measuring the cur-
rent–voltage characteristics as published in [20].

Measurements of the temperature distribution of the emitter of
the IMIG did indicate an azimuthal sinusoidal temperature distri-
bution (see Fig. 12(a)). The expected nominal temperature was
1000 °C, whereas the measured minimum temperature was
993 °C, measured at the connections of the heater. The reason
for this lower temperature is that the ends of the filament are
not overlapping each other. Using the Child–Langmuir Law, the
calculated current density is 3.4 A/cm2 at minimum temperature
and 4.16 A/cm2 at the maximum temperature considering a tem-
perature difference of ΔT = +7 °C. Considering that measured
temperature inhomogeneity, the simulated pitch factor spread is
slightly increased from 6.5 up to 6.7% as shown in Fig. 12(b).
With increasing temperature inhomogeneity, the spread increases
up to 10% at a temperature distribution of ±27 °C, while the aver-
age pitch factor remains constant [21].

Overall, the measurements of the surface quality and the
mechanics tolerances of the manufactured IMIG (see Fig. 11)
shows an excellent surface condition and only small tolerances
in the final assembly which promise a homogenous electric
field distribution in the emitter region and a high quality of the

Fig. 8. Examples for grinding patterns of brazed and welded
joints.

Table 2. Electron beam parameters at the cavity center

Radius guiding center (Rg) 10.0 mm

Beam thickness (Δrb) 0.3 mm

Pitch factor (α) 1.3

Velocity spread (δβt) 2.4%

Fig. 9. Sketch of the already manufactured inverse magnetron injection gun.
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hollow electron beam. The emitter position will be checked by the
help of a precise optical laser measurement. Furthermore, excel-
lent welding and solder joints with a very low leakage rate of
<10−12 mbar l/s has been achieved.

It was already mentioned that the field enhancement at the
emitter edges has a significant influence regarding the electron

beam quality. Tolerance studies of the radial emitter position
have confirmed those observations and have shown that the
manufacturing tolerances of some microns becomes critical. A
possible solution for this major issue is the implementation of
an anti-emission coating at the edges of the emitter. For example,
considering a misalignment of ±80 µm, the variation of the pitch
factor measured over the emitter area is 83.3% smaller compared
with the variation using a conventional emitter [22]. A new con-
ventional MIG with an advanced coated emitter for the 170 GHz

Fig. 10. Measurement setup for the verification of the emitter temperature
distribution.

Fig. 11. Assembled inverse magnetron injection gun during bake-out process.

Fig. 12. (a) Temperature distribution (blue) and current density (red) as a function of the
azimuthal emitter position, (b) pitch factor and RMS α spread simulated at the cavity.

Fig. 13. Advanced conventional magnetron injection gun with an anti-emission coat-
ing (colored in green) at the emitter (colored in red).
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2 MW longer pulse coaxial-cavity gyrotron, as shown in Fig. 13, is
already in final manufacturing.

Conclusion

KIT is pushing forward the coaxial-cavity gyrotron development by
building up a modular longer pulse 170 GHz, 2 MWpre-prototype
targeting at a pulse length of up to 1 s. The design principle and the
manufacturing process of that pre-prototype have been presented
here. All the subcomponents have been manufactured, brazed,
and successfully tested regarding vacuum tightness. Furthermore,
the IMIG is manufactured at KIT with an expected high electron
beam quality. Additionally, an advanced conventional MIG with
coated emitter is still under production at Thales Electron
Devices. Both MIGs can be operated in hollow as well as in a
204 GHz coaxial-cavity gyrotron. The longer pulse 2 MW coaxial-
cavity gyrotron and the IMIG will be tested before the end of 2017.
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