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Abstract. Despite considerable progress in recent years, out-
put of both global and regional circulation models is still af-
flicted with biases to a degree that precludes its direct use,
especially in climate change impact studies. This is well
known, and to overcome this problem, bias correction (BC;
i.e. the correction of model output towards observations in
a post-processing step) has now become a standard proce-
dure in climate change impact studies. In this paper we ar-
gue that BC is currently often used in an invalid way: it
is added to the GCM/RCM model chain without sufficient
proof that the consistency of the latter (i.e. the agreement
between model dynamics/model output and our judgement)
as well as the generality of its applicability increases. BC
methods often impair the advantages of circulation models
by altering spatiotemporal field consistency, relations among
variables and by violating conservation principles. Currently
used BC methods largely neglect feedback mechanisms, and
it is unclear whether they are time-invariant under climate
change conditions. Applying BC increases agreement of cli-
mate model output with observations in hindcasts and hence
narrows the uncertainty range of simulations and predictions
without, however, providing a satisfactory physical justifica-
tion. This is in most cases not transparent to the end user. We
argue that this hides rather than reduces uncertainty, which
may lead to avoidable forejudging of end users and decision
makers.

We present here a brief overview of state-of-the-art bias
correction methods, discuss the related assumptions and im-
plications, draw conclusions on the validity of bias correction
and propose ways to cope with biased output of circulation

models in the short term and how to reduce the bias in the
long term. The most promising strategy for improved future
global and regional circulation model simulations is the in-
crease in model resolution to the convection-permitting scale
in combination with ensemble predictions based on sophisti-
cated approaches for ensemble perturbation.

With this article, we advocate communicating the entire
uncertainty range associated with climate change predictions
openly and hope to stimulate a lively discussion on bias cor-
rection among the atmospheric and hydrological community
and end users of climate change impact studies.

1 Introduction

Understanding and quantifying the causes and effects of cli-
mate change is currently one of the most challenging ob-
stacles in science and of high relevance for society. Today,
besides observations, among the best (but certainly not per-
fect) tools we have to understand Earth’s climate dynamics
and evolution are global circulation models (GCMs). Con-
fidence in the fidelity of predictions by such models comes
from several sources (Randall et al., 2007): firstly, model fun-
damentals are based on established physical laws, such as
conservation of mass, energy and momentum, and process
insight comes from a wealth of observations. Secondly, the
models are able to simulate important aspects of the current
climate, among them many patterns of climate variability ob-
served across a range of time scales such as the seasonal
shifts of temperatures, storm tracks or rain belts. Further, the
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models have proven their ability to reproduce features of past
climates and climate changes. Finally, on large spatial and
temporal aggregation scales (global, multi-annual) and espe-
cially for projections of temperature changes, most models
point in the same direction.

However, for most hydrologically relevant variables,
GCMs currently do not provide reliable information on
scales below about 200 km (Maraun et al., 2010). This is
too coarse for a realistic representation of most hydrologi-
cal processes that act over a large range and down to very
fine scales (Bl̈oschl and Sivapalan, 1995; Kundzewicz et al.,
2007). This is especially true for the main driver of hydro-
logical processes – precipitation. The resolution of GCMs
precludes the simulation of realistic circulation patterns that
lead to extreme rainfall events (Kundzewicz et al., 2007), and
for hydrological simulations and predictions to become reli-
able on relevant scales, precipitation input needs to be re-
alistic, not only with respect to the mean but also with re-
spect to intensity (especially extremes), intermittency (Ines
and Hansen, 2006) as well as temporal and spatial variabil-
ity across regions and seasons (Maraun et al., 2010). GCM
output is thus currently an inadequate basis for reliable hy-
drological predictions of climate change impact on scales rel-
evant for decision makers. The same applies to regional agri-
cultural studies (Ines and Hansen, 2006).

One avenue to close this scale gap is stochastic downscal-
ing. Stochastic downscaling establishes a functional relation-
ship between the most robust and reliable fields provided by
GCMs such as geopotential height or temperature and lo-
cally observed meteorological variables such as precipitation
or temperature in a region of interest (e.g. Wójcik and Buis-
hand, 2003; Burger, 1996; Stehlik and Bárdossy, 2002).

A physically more consistent approach to overcome this
scale mismatch is dynamical downscaling: a high-resolution
(typically 10–50 km) regional circulation model (RCM) is
nested into a GCM, which provides the forcing at the bound-
aries. Due to the higher resolution and a more complete rep-
resentation of physical processes in RCMs, this can consid-
erably improve simulations and projections of regional-scale
climate (Maraun et al., 2010). Applying RCMs has the great-
est potential to improve rainfall simulations when the forcing
is mainly regional. In the case of large-scale forcing (such
as propagation of frontal systems), the quality achievable by
the RCM will inevitably be limited by the quality of the
boundary conditions provided by the GCM (Wulfmeyer et
al., 2011). Often, the output of RCMs is then used in impact
models such as hydrological models (HMs).

However, despite considerable progress in recent years, re-
production of hydrologically relevant variables in present-
day climate on appropriate scales based on GCM-RCM
model chains is still afflicted with systematic errors (bias)
to a degree that precludes their direct interpretation or ap-
plication for simulation and prediction in HMs. This is well
known and has been recognized by many authors, e.g. Wilby
et al. (2000), Wood et al. (2004), Randall et al. (2007), Piani

et al. (2010), Hagemann et al. (2011), Chen et al. (2011),
Rojas et al. (2011), Haddeland et al. (2012), Johnson and
Sharma (2012). To overcome this problem, post-processing
of either GCM or RCM output by correcting with and to-
wards observations has become a standard procedure in cli-
mate change impact studies (CCIS). This bias correction
(BC) procedure significantly alters the model output and
therefore influences the results of all CCIS relying on bias-
corrected data.

Based on this, the main question we pursue in this article
is whether and when the application of BC methods, which
often, unlike the other components of the modelling chain
for CCIS (GCMs, RCMs and HMs), lack a sound physical
basis, is justified or not. To this end, we start with a defini-
tion of bias and present an overview of its causes and typical
magnitudes in Sect. 2. We continue in Sect. 3 by present-
ing approaches to deal with biased model output with a fo-
cus on BC and reflect why BC, despite its known deficits, is
nevertheless routinely applied. In Sect. 4 we present a brief
overview of state-of-the-art BC methods. Based on this, we
discuss BC with respect to the assumptions made when ap-
plying it and reflect on its implications in Sect. 5. It is a mat-
ter of on-going scientific discussion whether these assump-
tions are really satisfied and thus whether and when the ap-
plication of BC is justified or not. We complete Sect. 5 by
presenting an overview of opinions from current literature
and formulate our own reservations with BC. Finally, we pro-
pose ways to cope with biased model output from GCMs and
RCMs in the short term and how to reduce the bias in the long
term in Sect. 6 and draw final conclusions in Sect. 7.

2 Model bias: definition, causes and magnitude

2.1 Definition

When we say bias, what do we mean? The international def-
inition of bias according to WMO (WWRP 2009-1, 2009)
is the correspondence between a mean forecast and mean
observation averaged over a certain domain and time. Ac-
cording to the recommendation of the Joint Working Group
on Forecast Verification Research (JWGFVR), the com-
parison should be performed between gridded data sets
(WWRP 2009-1, 2009), with the grid resolution of the mod-
els degraded by a factor of 3–4 to take into account numerical
filter effects (see e.g. Bauer et al., 2011).

However, in the context of CCIS, the definition of bias
is not as strict: it varies with the scope of the studies and
is often used in a general sense for addressing any devi-
ation of interest (e.g. with respect to the mean, variance,
covariance, length of dry spells, etc.) of the model from
the corresponding “true” value. Typically, biases are calcu-
lated for precipitation or temperature on continental, river
basin or model grid scale for annual, seasonal, or monthly
aggregations. Unlike weather forecast verification, where
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atmospheric variables are averaged over short times scales
and thus allow the analysis of individual events, climate mod-
els cannot be verified for single cases. Instead, their ability to
reproduce climate variability is analysed, and typically aver-
aged over the order of ten years. Maraun et al. (2010) give an
overview of metrics to validate GCM/RCM output. Chen et
al. (2011) and Haerter et al. (2011) define bias as the time-
independent component of the model error, i.e. the portion of
the error that occurs at all times. However, it should be kept
in mind that, as the bias is a result of a dynamic model error
chain, it will always be a combination of time-variant errors.

Throughout this text, we will stick to the broad defini-
tion of bias established in the CCIS community, i.e. we will
use “bias” for any discrepancy of interest between a model
(GCM, RCM or HM) output characteristic and the “truth”.
However, for the future we strongly suggest that the use of
“bias” should be narrowed again to the WMO definition (see
also Sect. 6.1).

2.2 Causes

The most obvious reasons for biased model output are im-
perfect model representations of atmospheric physics (Ma-
raun, 2012), incorrect initialization of the model or errors
in the parameterization chain: with respect to GCMs, it is
currently subject of intense discussion whether better initial-
ization of the state of the oceans and the land surface leads
to an improvement of simulations beyond decades. The pro-
cess chain leading to the model climate depends on the pa-
rameterization of various processes of all compartments of
the Earth system including the cryosphere, the hydrosphere
and the biosphere as well as the atmosphere with its fine-
scale, complex turbulent and aerosol-cloud-precipitation mi-
crophysics. It is likely that strong deficiencies still exist with
respect to the simulation of the cryosphere, the water cycle
over the land surface which is controlled by soil and vegeta-
tion properties and the corresponding energy balance closure
as well as the parameterization of aerosol-cloud-precipitation
microphysics (e.g. Doherty et al., 2009; WCRP, 2009).

With respect to RCMs, errors can be introduced by incor-
rect boundaries provided by reanalyses or GCMs or incon-
sistencies between the physics of GCMs and RCMs. Further-
more, in spite of the higher resolution of RCMs, several defi-
ciencies remain with respect to the parameterizations. There
are strong indications that the main errors in state-of-the-
art RCMs are due to incorrect energy balance closure, its
feedback to the convective and stable atmospheric boundary
layer and the resulting formation of clouds and precipitation,
which is strongly controlled by the choice of the microphys-
ical scheme. Furthermore, with respect to precipitation, it is
important to consider that the overall bias depends on a time-
variant combination of effects leading to precipitation events
involving different combinations of model physics.

Within the WWRP projects D-PHASE (Rotach et al.,
2009) and COPS (Wulfmeyer et al., 2011), a forcing concept

was developed resulting in the following understanding of
model errors: if large-scale forcing is present, the main error
is driven by GCM boundaries but the fine structure of errors
down to the scale of catchments is still influenced by local
forcing (land-surface heterogeneity and orography). The im-
portance of local forcing increases from weakly forced con-
ditions (no surface front but upper level instability) to local
forcing where convection and precipitation are initiated by
orography and/or land-surface heterogeneity. It is clear that
the models must be able to simulate the statistics of precipi-
tation depending on the combination of forcing conditions.

Another source of bias that applies to both GCMs and
RCMs is climate variability: models are parameterized and
evaluated on finite-length time series which may not cover
the full range of atmospheric dynamics. This makes them
subject to sampling uncertainty or bias. This applies even
more to the parameterization of BC methods (Maraun, 2012).

Further, apparent model biases can occur if the reference
data sets (the “truth”) used for model parameterization and
validation are inadequate. On smaller scales, high quality
observation-derived data sets such as E-OBS (Haylock et
al., 2008) are available, which may be biased due to non-
representativeness of the underlying observations. On larger
scales, it is mainly only reanalysis data such as the WATCH
data set (Weedon et al., 2011), NCEP/NCAR or ERA-interim
(Dee et al., 2011) that are available. They are in turn subject
to model biases and can significantly deviate from the true
weather (Maraun et al., 2010). It is therefore important to
develop and validate new high-resolution observation-based
reference data sets by exploiting the full range of available
observations.

HMs using output from RCMs add further sources of bias:
RCMs contain hydrological components to calculate land
surface-atmosphere interaction. If the RCM output is used
in a HM, an assumption is made on the interchangeability
of the two hydrological schemes, i.e. comparability of their
land-atmosphere feedback functioning. This is usually not
fulfilled (Rojas et al., 2011; see also Sect. 5.1). Also, biases
occur if the spatial or temporal resolution of the GCM/RCM
input for the HMs is inadequate (Hay et al., 2002). HMs are
usually calibrated on interpolated meteorological point ob-
servations and observed streamflow. Thus, the models are
tuned to reproduce streamflow based on biased input (smooth
fields based on sparse data). When changing the input to grid-
ded RCM fields, this model configuration will likely create a
biased output, as it still compensates “for the old bias”.

For hydrological CCIS, perhaps the most troublesome sys-
tematic biases are those in precipitation: “The biases ordi-
narily present in hydrological output from GCMs affect all
aspects of the intensity spectrum. Simulated precipitation
statistics are generally affected by a positive bias in the num-
ber of wet days, which is partly compensated by an exces-
sive number of occurrences of drizzle, a bias in the mean,
the standard deviation (variability), and the inability to re-
produce extreme events” (Piani et al., 2010). This was also
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reported by many others, e.g. Stephens et al. (2010), Sun et
al. (2006). Specifically for Europe, Christensen et al. (2008)
and Dosio and Paruolo (2011) report that wintertime precip-
itation is generally too abundant. A comprehensive overview
of systematic errors in present-day RCMs can be found in
Rojas et al. (2011).

2.3 Magnitude

In this section, we will illustrate the magnitude of biases (and
with it the magnitude of BC impact by removing them) in the
GCM/RCM/HM chain with examples reported in the litera-
ture and from own studies. Johnson and Sharma (2012) com-
pared raw output from a GCM (CSIRO Mk3.5) and RCM
(MIROC) with observations: in interior Australia, both mod-
els over-predicted annual rainfall by up to 200 %, but under-
predicted along the coasts. Rojas et al. (2011) found that
averaged annual precipitation simulated by the HIRHAM
5 RCM over Europe in the control period 1961–2000 almost
doubled the observed measurements. Hagemann et al. (2011)
reported, from a study applying three GCMs, two emission
scenarios and two global hydrological models (GHMs) that
“ for some regions, the impact of the bias correction on the
climate change signal may be larger than the signal itself,
thereby identifying another level of uncertainty that is com-
parable in magnitude to the uncertainty related to the choice
of the GCM or GHM.” Sun et al. (2011) investigated the in-
fluence of BC on the mean and spread of a 39 model ensem-
ble on gridded annual precipitation in the Murray-Darling
basin (Australia): BC changed the ensemble mean by 17.7 %
and the ensemble spread by 122 % (relative to the observa-
tion). Sharma et al. (2007) compared mean monthly rain-
fall amounts from a GCM (ECHAM4) with spatially in-
terpolated observations on model grid scale: BC changed
the correlation between observations and raw GCM output
from 0.32 to 0.66, i.e. it caused a relative change of 48 %.
Likewise, the root-mean-square error (RMSE) was changed
by 56 % (from 3.64 mm to 2.06 mm). This also had a no-
ticeable impact on discharge simulations (Ping river basin,
Thailand, 34 453 km2): the relative RMSE changed by 54 %
(from 172 to 93 m3 s−1). On the other hand, the influence
of climatic variability seems to be less prominent. Chen et
al. (2011) compared the relative contribution of GCM, emis-
sion scenario, period for bias correction and inter-annual
variability to the uncertainty of hydrological climate im-
pact studies. They concluded that “the choice of different
decadal periods over which to derive the bias correction
parameters is a source of comparatively minor uncertainty
compared to the choice of GCM, SRES scenario and the
natural inter-annual variability.” In the recently conducted
study “Flood hazards in a changing climate” (Schädler et
al., 2012), climate change impact on flood magnitudes was
analysed in a multi-model study including two GCMs, two
RCMs, three HMs in three mesoscale catchments in Ger-
many. The GCM/RCM/HM model chain was applied to the

reference period 1971–2000, and monthly mean flood mag-
nitudes were calculated. Here we discuss the results at the
example of gauge Wetter/Ruhr (3908 km2). The flood magni-
tudes were afflicted with strong biases (for scenarios with the
RCM “CLM” on average 168 % relative to the observations).
To reduce them, BC was applied to precipitation and tem-
perature of the RCM. The effect on the mean monthly flood
magnitudes (i.e. the difference in the flood magnitudes with
and without bias correction relative to the observed ones) was
in the range of 23–181 %, again evaluated in the observation
period.

The main point we want to make in this section is that,
just as model biases can be on an order of magnitude that
precludes the direct use of model output in CCIS, the im-
pact of any BC method that corrects for this bias is of equal
magnitude. Hence, BC will have a large influence on the
GCM/RCM/HM output in absolute terms and likely also on
climate change signals (i.e. the relative change between a
control and prediction period). However, this impact of BC
is only very rarely explicitly quantified and made transparent
in CCIS; also the crucial assumption – stationarity of the BC
method under non-stationary conditions – is often not criti-
cally discussed.

3 Hiding model bias through bias correction

As discussed in the introduction, the problem of biased
GCM/RCM output is well known, and considerable efforts
have been made to tackle this problem. We broadly classify
them into three approaches.

The first is toreduce the biasby improving the models, ad-
dressing the deficiencies as outlined in Sect. 2.2. This is the
most difficult but, in the long term, the most promising and
potentially reliable approach as it is tied directly to the phys-
ical model basis. This approach will be discussed in detail in
Sect. 6.3.

As a complete removal of bias is likely not possible by
a single deterministic model, this step needs to be com-
bined with the development of multi-model ensembles for
GCMs, RCMs as well as HMs. The ensemble spread is es-
sential toquantify the uncertaintyassociated with CCIS re-
sults. This approach is currently subject to intense research
and promises considerable improvement in the mid-term. We
discuss this in more detail in Sect. 6.2.

Our focus in this section is on the third approach, namely
the correction of model output in a post-processing step.
Post-processing canreduce GCM/RCM biasand can be re-
garded as a valid part of the model chain when it meets the
requirements we impose on the incorporation of any model
component (including the process descriptions inside the
models): they should increase consistency (correspondence
between model dynamics/output and our judgement), qual-
ity (correspondence between model output and observations)
and value (benefit of model output to users) of the model (see
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Murphy, 1993). Consistency relates to the agreement of the
model component with our understanding of the functioning
of the system under consideration. For a model component
to increase consistency, we should be sure that it is generally
applicable, i.e. it should work under the full range of possi-
ble boundary conditions and model states. As an example,
let us assume a thermometer (our model) that we know has
a constant bias of−3 K. Adding a bias correction (add +3 K
to the thermometer reading) in a post-processing step would
be in full agreement with the three requirements. However, if
we had only one pair of model output (the thermometer read-
ing) and the corresponding true value, e.g. 3◦C and 6◦C, we
could not be sure whether the correction should be “reading
+3 K” or “reading∗2”. Applying either of the corrections on
the single set of reading plus true value would increase qual-
ity and value. However, we could not be sure whether this
would still hold for other value pairs. The correction would
thus not increase consistency and possibly hide (overesti-
mate) the true quality and value of the model. The latter case,
in our view, often applies to the way BC methods are cur-
rently applied in CCIS, whichhide biasesof the GCM/RCM
output from subsequent users. BC methods in this context
are usually either applied in combination with a downscaling
procedure or on the scale of the model output and are also re-
ferred to as model output statistics (MOS). In this paper, we
will, in line with the broad definition of “bias” in Sect. 2.1,
refer to it as statistical bias correction or simply bias correc-
tion (BC). For a good overview and also classification of dif-
ferent approaches, see e.g. Maraun et al. (2010) or Themeßl
et al. (2011). Note that, in this paper, we exclude the field of
empirical-statistical downscaling (Wilby and Wigley, 1997)
as used in perfect prognosis approaches as there the intention
is to downscale large-scale data rather than correcting model
errors.

A typical modelling chain for hydrological CCIS thus
comprises GCM output used in an RCM, whose output is
then bias-corrected and applied to a HM. Unlike the other
components, most BC methods lack a sound physical ba-
sis; they usually do not satisfy conservation laws and are
not a model of the physical world in itself (Haerter et al.,
2011). This makes their application more questionable than
the other components. Why is it used then or has been in-
troduced in the first place? Essentially it is a quick fix that
was “born under the pressure to get answers on the poten-
tial impact of climate changes on our society” (Vannitsem,
2011) and, as a consequence, from the necessity to make bi-
ased GCM-RCM output usable for interpretation or further
use in HMs.

Compared to the other approaches to tackle the problem of
biased model output as described at the beginning of this sec-
tion, BC has, from the user perspective, several advantages:
as BC methods act on model output, they can be developed
and applied by any potential user without the need for full
insight into the generating model, tailored to the variable and
application of interest with manageable effort (compared to

the efforts to advance GCMs or RCMs). In line with this,
Johnson and Sharma (2012) list a number of reasons that
make BC attractive: ease of application, ability to allow fu-
ture changes in variability (unlike scaling methods), and flex-
ibility to correct the GCM simulations for the parameters of
interest. As another advantage, Li et al. (2010) mention the
lower computational requirements compared to alternatives
based on dynamical models.

In that sense, the range of existing BC methods (see
Sect. 4) reflects the range of GCM/RCM model deficiencies
in reproducing present-day climate from the user perspective.
Many BC methods have therefore been developed more from
the perspective of necessity rather than validity.

4 Bias correction methods

BC methods have been developed and applied by many users
of GCM/RCM output and for various purposes. The follow-
ing list of BC methods is far from being complete and should
rather be understood as to give the reader a taste of the range
and approaches of BC (a more complete overview can be
found e.g. in Themeßl et al., 2011): monthly mean correc-
tion (Fowler and Kilsby, 2007), delta change method (Hay et
al., 2000), multiple linear regression (Hay and Clark, 2003),
analog methods (Moron et al., 2008), local intensity scal-
ing (Schmidli et al., 2006), quantile mapping (Wood et al.,
2004; Sun et al., 2011), fitted histogram equalization (Piani
et al., 2010), and gamma-gamma transformation (Sharma et
al., 2007).

In recent years, BC methods have evolved from time-
averaged corrections of mean precipitation and temperature
towards more advanced methods that correct higher distri-
bution moments (Piani et al., 2010), include further vari-
ables such as radiation, humidity and wind (Haddeland et al.,
2012), allow for time-dependent model biases (Buser et al.,
2009; Li et al., 2010) or correct model output hierarchically
on several nested time scales (Haerter et al., 2011; Johnson
and Sharma, 2012).

Most BC methods consist of comparable steps which
we will briefly present here as the example of the fitted
histogram equalization approach as proposed by Piani et
al. (2010): after matching the resolution of the model and
the reference, outliers are excluded and the remaining values
of both the GCM and baseline fields are ordered by magni-
tude. The obtained probability density function of the model
data is then mapped onto that of the observations. This em-
pirical transfer function constitutes the BC and acts on all
moments of the distribution. The transfer functions are de-
termined separately for each calendar month, grid point and
variable.

The important point here is that BC is carried out sepa-
rately across time, space and variable, a characteristic shared
by most of the current BC approaches. Doing so implies sev-
eral strong assumptions which affect the applicability of BC.
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5 Applicability of bias correction

Here we will discuss which assumptions are taken when ap-
plying BC methods and what the related implications are. Af-
ter this, we will review current literature for statements about
the applicability of BC and finally draw our own conclusions.

5.1 Assumptions and implications of bias correction

Due to the variety of existing BC approaches, not all as-
sumptions and implications listed below apply to all meth-
ods. Therefore, the list should be seen as a general overview.

– Reliability:
The assumption is, plainly spoken, that a GCM/RCM,
with such obvious deficiencies that BC is required, is
nevertheless suitable to predict the (sometimes subtle)
effects of climate change (see also discussion in Sect. 1).

– Effectiveness:
The assumption is that the chosen BC method is effec-
tive, i.e. that it sufficiently corrects all biases of inter-
est without introducing unwanted side effects (other bi-
ases). However, Chen et al. (2011) report that the choice
of the BC method may be another source of uncertainty.
Along the same line, Haerter et al. (2011) found that
“ the consequences of choosing a certain bias-correction
method are much more dramatic in the case of precipita-
tion than in the case of temperature.” In one of the few
studies applying multiple BC techniques, Teutschbein
et al. (2011) found that “the choice of downscaled pre-
cipitation (authors note: based on different BC tech-
niques) time series had a major impact on the stream-
flow simulations.”

– Time invariance:
The assumption is that the selected BC method, parame-
terized on a finite period of time for a finite size region,
also holds under varying forcing and extreme climate
conditions.

However, this is likely not generally valid: Christensen
et al. (2008) report on possible nonlinear characteris-
tics of model biases as a function of increasing temper-
atures or precipitation amounts. Hagemann et al. (2011)
showed that BC can alter the climate change signal for
specific locations and months and that BC will lead to
changes in the climate change signals if low precip-
itation amounts (or temperatures) are differently cor-
rected as high amounts or if the distribution between
low and high amounts changes in a future climate. Ma-
raun (2012) investigated possible bias non-stationarity
in a pseudo-reality approach. He defined different types
of bias non-stationarities and distinguished between ap-
parent and real non-stationarities. He could not iden-
tify any non-stationarities due to changing relative oc-
currences of weather types, but found considerable bias

changes due to different climate sensitivities, and appar-
ent bias changes due to sampling variability. Similarly,
Vannitsem (2011) used artificial reality approaches
(scalar systems and a low-order model of moist gen-
eral circulation) to examine BC properties under tran-
sient conditions. For the first, the main finding was
that the quality of BC was specific to the system and
the model error source, thus precluding the possibility
to deduce universal evolution relations. For the latter,
the main finding was that “systematic correction as-
sociated with the presence of model errors cannot be
straightforwardly transposed from one climate condi-
tion to another.” Buser et al. (2009), upon developing
a BC method that explicitly allows for the bias to vary
with time, stated that “the problem remains to make as-
sumptions on the nature of the change” and that “de-
pending on the assumptions made, the climate change
signal may differ considerably.” The authors conclude
that “the aforementioned result is of general interest,
as it questions an important implicit assumption of cur-
rent scenario models, namely that the model bias will
not significantly depend upon the climate state.” Fi-
nally, Terink et al. (2010) applied reanalysis data to
134 subbasins of the Rhine River and evaluated BC in
a split sampling approach. For the validation period,
they found that, while temperature was corrected very
well, results for precipitation with BC were worse than
without.

– Completeness:
Closely connected to the assumption of time invari-
ance as discussed above is the assumption that the fi-
nite length control period used to derive BC parameters
(e.g. transfer functions) covers the entire spectrum of
the variable of interest. However, especially for short
control periods, this is not fulfilled. This implies that
applying the BC method to predicted values outside the
observed range requires an extrapolation of the trans-
fer function beyond the observed range and may lead to
bias-correction of GCM/RCM output beyond physical
limits. Maraun et al. (2010) present a brief overview on
approaches to address this problem.

– Minor role of spatiotemporal field covariance:
BC is in most approaches parameterized and applied in-
dividually for finite size regions (e.g. grid cells) of the
domain of interest. In general, this alters the spatiotem-
poral covariance structure of the respective GCM/RCM
field and thus impairs the main advantage of dynamic
models, which is to create thermodynamic fields with
covariance structures that are consistent with atmo-
spheric physics. From a hydrological point of view,
changes in the covariance structure may strongly af-
fect hydrological functioning whenever non-linear pro-
cesses are involved, e.g. surface runoff generation or
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macropore flow initiation. Applying BC methods as-
sumes that the effect of spatiotemporal field covariance
(e.g. the direction and magnitude of temperature gradi-
ents or the length of dry spells) is either not significantly
affected by BC or of minor importance, which may not
always hold (Johnson and Sharma, 2012).

– Minor role of feedbacks among variables:
The assumption is that the links and feedbacks between
the meteorological states and fluxes (temperature, hu-
midity, precipitations, evapotranspiration, etc.) are not
of key importance, i.e. the resulting fields can be cor-
rected after, not during, modelling the related processes.
On this topic, Seneviratne et al. (2006) conclude from a
climate change study in Europe that “the most striking
result of our analysis is that land–atmosphere coupling
is significantly affected by global warming and is itself a
key player for climate change.” Further, they summarize
that their “investigation reveals how profoundly green-
house gas forcing may affect the functioning of the re-
gional climate system and the role of land-surface pro-
cesses.” Berg et al. (2009) showed that daily precipi-
tation exhibits some scaling with temperature. Piani et
al. (2010) pointed out that “any bias correction involv-
ing multiple fields induces changes in the correlation
of such fields and that the relationship between pre-
cipitation and temperature depends on the geograph-
ical region and the time period and area over which
precipitation is averaged.” Furthermore, they conclude
that “the question is not settled whether the statisti-
cal relationship can be applied to future changes in
global surface temperature.” Along this line, Johnson
and Sharma (2012) report from a study conducted in
Australia that “there are clearly significant correla-
tions between temperature and precipitation, particu-
larly at (...) longer time scales.” According to Wood
et al. (2004), this may have noticeable impact on pro-
cesses like evapotranspiration or snowmelt. Haddeland
et al. (2012) shed light on the (in addition to precipita-
tion and temperature) significant role of radiation, hu-
midity and wind when simulating the terrestrial water
balance especially in energy-limited areas. These vari-
ables are all dynamically coupled by various feedback
processes.

– Comparable bias behaviour of GCM/RCM atmospheric
fields and fields related to terrestrial hydrology:
From the output of GCM/RCM systems, usually fields
of direct interest and fields required as input for further
models (such as HMs) are evaluated and bias corrected.
This includes rainfall, temperature, relative humidity,
wind, radiation, etc., but rarely fields of terrestrial hy-
drology, although any GCM/RCM contains land surface
models (LSMs) that include terrestrial hydrological pro-
cesses such as surface and subsurface runoff production.
The reason is the usually very simple representation of

these processes, resulting in poor agreement with obser-
vations (Rojas et al., 2011). This can partly be explained
by the fact that the main focus of LSMs in GCMs/RCMs
is on the influence of the water balance on surface heat
fluxes (and not discharge calculation; van den Hurk et
al., 2005), while the focus of HMs is terrestrial water
availability and use. LSMs typically solve the water and
energy balance, while HMs typically only solve the wa-
ter balance (Haddeland et al., 2011).

Thus, if the stationarity of BC methods is tested, this is
usually done for meteorological fields, but not so often
for discharge, the primary quantity of interest of terres-
trial hydrology. It is now possible to imagine that, for
meteorological fields, the bias may be found to be suffi-
ciently stationary to make them acceptable for CCIS and
that this is extrapolated to fields of terrestrial hydrology.
However, due to the strongly non-linear nature of terres-
trial hydrological processes, it may well be that small
bias instationarities in the meteorological forcing may
be amplified to large bias instationarities of terrestrial
hydrological variables. This can due to the usually sim-
ple representation of runoff-formation processes not be-
ing evaluated in the GCM/LSM system itself, but must
be done with the output of the HM.

– No bias due to offsets:
Many existing BC methods identify bias by comparing
model output and observations for identical regions in
space and identical points of time during a reference pe-
riod. This implies that any model deficiency that mani-
fests as spatial or temporal offset is falsely recognized as
an offset in magnitude, i.e. a bias (Haerter et al., 2011).

– Bias can be associated with typical timescales:
Many existing BC methods determine and correct bias
for one (or a few) aggregation times of interest (sea-
son, month), thus assuming that bias occurs mainly and
can be attributed to effects at this selected time scale.
However, Haerter et al. (2011) argue that “fluctuations
on different scales (caused by disparate physical mech-
anisms) can mix and lead to unexpected and unwanted
behavior in the corrected time series and blur the inter-
pretation for future scenario corrections.” In support,
they present an example where bias correction based on
daily temperature led to an improvement of the day-to-
day variance, but the variance of the monthly means in
fact became less realistic after performing the bias cor-
rection. On the other hand, Rojas et al. (2011) found that
BC of temperature based on monthly transfer functions
fully preserved observed annual and seasonal statistics.

5.2 Conclusions on the applicability of bias correction

The range of existing BC methods as outlined in Sect. 4 re-
flects the user perspective of deficits of GCM/RCM models
to reproduce present-day and to predict future climate. In
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general, the biases corrected for are a function of time, space
and meteorological variable and spread in a non-uniform way
through the entire distribution of the variables. The biases
also manifest in the characteristics of spatiotemporal field
covariance. In short, the bias structure is complex, which is a
direct result of the complex nature of hydro-meteorological
atmospheric and land-surface process interactions. The ques-
tion is then whether or not the application of BC, which is
essentially a post-processing step neglecting these complex
interactions, is suitable and valid to make GCM/RCM out-
put usable for CCIS. This is increasingly discussed in the
scientific community. Hagemann et al. (2011) conclude that
“ it is rather difficult to judge whether the impact of the bias
correction on the climate change signal leads to a more re-
alistic signal or not”; Vannitsem (2011) wonders “whether
this type of post processing can still be used in the context
of a transient climate, in particular in the context of decadal
forecasts. The obvious answer would be no in a strict sense
since modifications of external parameters generically im-
ply modifications of the variability of the system”. Haerter
et al. (2011) formulate limitations to the application of BC:
(i) at every grid box where BC is to be applied, it must be
ensured that the model provides a realistic representation of
the physical processes involved; (ii) quantitative discrepan-
cies between the modelled and observed probability density
function of the quantity at hand must be constant in time;
(iii) BC cannot improve the representation of fundamentally
misrepresented physical processes; (iv) only when short-term
and long-term fluctuations are aligned, the bias correction
will lead to improvements on both timescales. Teutschbein
and Seibert (2010) generally recommend the application of
bias-correction methods but warn that “the need for bias cor-
rections adds significantly to uncertainties in modelling cli-
mate change impacts.”

Let us go back once more to the core of most CCIS, the
GCM/RCM/HM model chain: most of the confidence we
have in them comes from the fact that the models are based
upon established physical-chemical laws, their capability to
produce thermodynamic fields with a spatiotemporal cor-
relation structure consistent with atmospheric physics and
their inherent consideration of various feedback processes.
This is especially important for hydrological considerations,
as hydro-meteorological atmospheric and land-surface pro-
cesses interactions are complex and non-negligible. BC im-
pairs these advantages by altering spatiotemporal field con-
sistency, relations among variables and conservation princi-
ples. In addition, it remains doubtful that BC methods pa-
rameterized on observed climate will hold under changing
climate conditions.

Further we ask what can be gained from advancing BC: let
us extrapolate the current evolution of bias correction from
simple towards more complex methods (see Sect. 4). If we
arrive at the perfect BC method correcting at high spatial and
temporal resolution all moments of the variable of interest,
assure consistency over many spatial and temporal scales as

well as inter-field correlations, discriminate between differ-
ent weather situations, allow for the bias to be time-transient
and include feedback effects, then we inevitably arrive at a
complexity of the BC method comparable to the GCM or
RCM itself, but still lack the physical justification of the lat-
ter. This will limit our confidence in climate change predic-
tions involving BC.

Applying BC on GCM/RCM output (by definition) in-
creases agreement with observations and hence narrows the
uncertainty range of simulations and predictions, without
however providing a satisfactory physical justification. This
is in most cases not transparent to the end user. We argue that
this hides rather than reduces uncertainty, which may lead to
avoidable forejudging by end users and decision makers.

Our last argument relates to hydrology-related outcomes
of CCIS based on GCM/RCM/HM model chains such as
future flood or drought characteristics: instead of bias-
correcting the meteorological forcing, a logical step would
be to simply bias-correct the outcome of the HMs, e.g. dis-
charge simulations and predictions. Applying this “end-of-
pipe” bias-correction would be based on the same justifi-
cation as BC of GCM/RCM output, but we dare say that it
would not be accepted by hydrologically educated end users,
at least not without an explicit knowledge of the impact of
BC on the result.

In short, we conclude that BC is currently often used in an
invalid way: it is added to the GCM/RCM model chain with-
out sufficient proof that the consistency of the latter, i.e. the
agreement between model dynamics/output, and our judge-
ment and the generality of its applicability increases.

6 Ways forward: proposals on how to use and how to
avoid bias correction

Notwithstanding the reservations we have with current BC
practice, providing answers on climate change impact re-
mains an urgent task, and the deficiencies of present-day
GCMs and RCMs that prepared the grounds for BC in the
first place do not vanish by criticizing the shortcomings of
BC either. In the following section, we therefore propose
ways forward to cope with and to reduce the bias associated
with output of GCMs and RCMs for CCIS.

6.1 Proposals for the short term

The first and easiest task to accomplish is to openly commu-
nicate to the end user the impact of BC and the uncertainties
associated with it by

– providing all results of any impact study for bothbias-
corrected AND non-corrected input, for the hindcast pe-
riod and the projection, along with a detailed explana-
tion of the BC method. From the spread of the results
in the hindcast period and the projection, the impact of
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BC must therefore be made comprehensible to any end
user. For non-expert end users, it may be better to avoid
publication of the bias-corrected results altogether.

– Further, to avoid confusion, we strongly suggest re-
stricting the use of the term “bias” to the definition given
by WMO (WWRP 2009-1, 2009) (see Sect. 2.1). Any
other discrepancy of interest between a model result and
the related observation/reference should be named dif-
ferently (e.g. mean difference of the variance, etc.).

These steps will not lead to less biased GCM/RCM output;
however they will contribute to the quantification of bias
and to raising its awareness among end users. Maraun et
al. (2010) stated with respect to end user needs for down-
scaled precipitation that “as well as the product, the end user
might also require a clear statement of the assumptions in-
volved and limitations of the downscaling procedure, a trans-
parent explanation of the method, a description of the driv-
ing variables used in the downscaling procedure and their
source, a clear statement of the validation method and per-
formance, and some characterization of the uncertainty or
reliability of the supplied data.” We agree and suggest that
the same also holds for BC methods.

6.2 Proposals for the mid term

The second set of proposals, namely the use of nested
GCM/RCM approaches and the use of multi-model ensem-
bles, is already subject of intense research (see also Sect. 3):

– Nested approaches(i.e. the use of RCMs to down-
scale GCM output) have already proven their potential
to improve the quality of regional climate simulations
and climate change predictions depending upon forc-
ing conditions. Improvements can be attributed to the
higher spatial resolution and hence a better description
of orographic effects, land/sea contrast, land surface
characteristics (Maraun et al., 2010) and especially to
the move from parameterized to explicit representation
of convection. RCMs also contain (compared to GCMs)
better representations of fine-scale physical and dynam-
ical processes including feedback processes which leads
to a more realistic regional redistribution of mass, en-
ergy and momentum, e.g. in the form of mesoscale cir-
culation patterns which are absent in GCMs (Maraun et
al., 2010; Liang et al., 2008).

– Multi-model ensemblesprovide an ensemble of sim-
ulations and predictions either by the use of several
models for some or all components of the modelling
chain (GCM/RCM/HM) and/or by using ensembles of
perturbed initial conditions or model parameterizations.
Ensemble approaches help to quantify uncertainty of
CCIS through the ensemble spread (e.g. Knutti, 2008).

They are also useful to attribute uncertainty to dif-
ferent components of the modelling chain and natu-
ral variability (Maraun et al., 2010; Teutschbein and
Seibert, 2010). With respect to uncertainty quantifica-
tion, many projects such as ENSEMBLES (Christensen
et al., 2008), PRUDENCE (Christensen and Chris-
tensen, 2007) and among many others, Wilby (2010),
Ott et al. (2012), Scḧadler et al. (2012) or Sun et
al. (2011) promote the use of model ensembles to
avoid non-representativeness of the sample. Currently
within the CoordinatedRegional climate Downscal-
ing Experiment (CORDEX) (Giorgi et al., 2009), high-
resolution (50 km, 25 km and – for Europe – 11 km)
ensembles and comparisons of regional climate sim-
ulations are underway for all continents, forced with
the most recent re-analysis data (ERA-interim) and
GCM data from CMIP5 for the IPCC-AR5 report
(e.g. Warrach-Sagi et al., 2012). Haddeland et al. (2011)
highlighted that ensemble approaches should also in-
clude HMs as they contribute considerably to over-
all impact uncertainty. It is interesting that, with re-
spect to the ensemble mean, Jacob et al. (2007) pointed
out that “when many RCMs are used in a coordinated
way, ... the ensemble mean nearly always is in better
agreement with observed climatology than any individ-
ual model.” Similar findings were reported e.g. by Ines
and Hansen (2006), Gleckler et al. (2008), Dosio and
Paruolo (2011) or Nikulin et al. (2012). It should be kept
in mind, however, that, just as with the application of
BC methods, averaging across an ensemble invariably
compromises physical consistency among fields.

In short, nested approaches can help to reduce the bias; multi-
model ensembles can help to quantify the uncertainty as-
sociated with CCIS results. Implementing any of these ap-
proaches requires considerable expertise across a range of
models as well as extensive data handling and computing
power. Establishing full multi-model ensembles as a standard
will therefore be more likely to happen in the mid- rather than
the short term.

6.3 Proposals for the long term

The most challenging, time-consuming but ultimately most
promising and satisfying approach to reduce the bias in
GCM/RCM/HM model chains is to improve the models
themselves. Present-day GCMs, RCMs and HMs are far
from being perfect, and issues such as truncation of scales,
violation of scaling laws, collapsing physical processes to
their mean, lack of feedback from regional to global scales,
etc. still compromise the physical foundation of the mod-
els. However, they are the only basis on which we can, by
and by, add new insights in the functioning of the coupled
atmosphere-land-ocean system.
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This can be achieved in several ways:

– Improved process descriptions: besides improvements
as a result of deeper insight into meteorological pro-
cesses based on novel experiments and observations,
especially the explicit representation of convection in
RCMs, also GCMs have the potential to substantially
enhance model accuracy (Maraun et al., 2010). Explicit
incorporation of convection adds process knowledge to
the model and allows for small-scale land-atmosphere
feedback processes. Convection-permitting approaches
partially alleviate the wet-day bias and underestimation
of precipitation extremes present in most GCMs/RCMs
(see Sect. 2.2) (Stephens et al., 2010; Maraun et al.,
2010; Warrach-Sagi et al., 2012). Recent results from
campaigns and modeling activities within projects of
the World Weather Research Program (WWRP) demon-
strate advanced model performance if the models are
operated on the convection-permitting scale, i.e. grid
resolutions of about 4 km (Rotach et al., 2009; Bauer
et al., 2011; Wulfmeyer et al., 2011).

– An indispensable prerequisite for the move from param-
eterized toexplicit representation of deep convection
is increased spatiotemporal resolution. This is compu-
tationally expensive and currently restricts convection-
permitting approaches mainly to RCMs. However, first
tests with the global Nonhydrostatic ICosahedral At-
mospheric Model (NICAM) (Satoh et al., 2008) at
convection-permitting resolution (e.g. Fudeyasu et al.,
2008) show encouraging results.

– Improved ensemble prediction systems (EPS) by suit-
able perturbations: extensive research is required on the
development of multi-model or multi-physics EPS. It is
not clear yet what is the most promising approach. In
any case, it is also necessary to perturb the land-surface
model.

– Integration of state-of-the-art hydrological models in
GCMs/RCMs: as described in Sect. 5.1, terrestrial hy-
drological processes in GCMs and RCMs are usually
represented in a way which precludes their direct use
for hydrological problems. Instead, HMs are succes-
sively applied at the expense of losing the possibility
for direct land-atmosphere feedback. The way forward
is then to integrate state-of-the-art hydrological mod-
els, capable of closing the energy, mass and momentum
balance of the atmospheric model components while
at the same time operating at acceptable computation
times (e.g. Van den Hurk et al., 2005). Given the impor-
tance of land-atmosphere interaction (especially related
to water availability on the ground and its partitioning
into evapotranspiration and runoff) for local heat fluxes
and convection initiation (Betts, 2009; Van den Hurk et
al., 2005), this has the potential to substantially improve
the reliability of climate simulations and predictions.

Have the research activities conducted to develop and test BC
methods then, after all, been a waste of time? Surely not. De-
spite our opinion that BC should not be applied in the way
it is currently often done, analysing the nature and quantify-
ing the magnitude of model biases associated with research
on BC or post-processing in general has greatly improved
the identification of model deficiencies (e.g. Vannitsem and
Nicolis, 2008; Vannitsem, 2008; Eden et al. 2012). In that
sense, the methods of BC can be seen as model diagnostic
tools, for instance for problems associated with model reso-
lution (e.g. Giorgi and Marinucci, 1996) or coupling of cli-
mate system components (e.g. Gupta et al., 2012).

Knowledge of the spatio-temporal patterns of bias thus
helps to identify specific model deficits and offers the pos-
sibility of targeted improvement of GCM/RCM/HM process
formulations, resolution and parameterization.

7 Summary and conclusions

In this article, we have argued that bias correction as cur-
rently used to correct the output of global or regional circula-
tion models (GCM/RCM) in climate change impact studies
(CCIS) is often not a valid procedure. To motivate this, we
started with a definition of bias and presented an overview
of its causes. We have demonstrated that biases of present-
day circulation models are substantial and that, as a con-
sequence, removing them through bias correction (BC) in-
fluences the results of CCIS in a non-negligible way. We
have presented approaches to deal with biased model out-
put with a focus on BC. We argue that the range of existing
BC methods reflects the range of circulation model deficien-
cies from the user perspective and that they have been devel-
oped more from the perspective of necessity rather than va-
lidity. Based on a brief overview of state-of-the-art BC meth-
ods, we discussed the related assumptions and implications
and concluded that BC is currently often used in an invalid
way: it is added to the GCM/RCM model chain without suf-
ficient proof that the consistency of the latter, i.e. the agree-
ment between model dynamics/output, and our judgement
and the generality of its applicability increases. BC methods
often impair the advantages of circulation models by altering
spatiotemporal field consistency, relations among variables
and by violating conservation principles. BC largely neglects
feedback mechanisms, and it is unclear whether BC methods
are time-invariant under climate change conditions. Apply-
ing BC increases agreement of GCM/RCM output with ob-
servations and hence narrows the uncertainty range of sim-
ulations and predictions, often without providing a satisfac-
tory physical justification. This is in most cases not trans-
parent to the end user. We argued that this hides rather than
reduces uncertainty, which may lead to avoidable forejudg-
ing by end users and decision makers. Finally, we proposed
ways to cope with biased output of circulation models in
the short term and how to reduce the bias in the long term.
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The most promising strategy for improved future GCM and
RCM simulations is the increase in model resolution at the
convection-permitting scale in combination with ensemble
predictions based on sophisticated approaches for ensemble
perturbation.

With this article, we advocate openly communicating the
entire uncertainty range associated with climate change pre-
dictions and hope to stimulate a lively discussion on BC
among the atmospheric and hydrological community and end
users of CCIS.
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