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1. Introduction

Synchrotron radiation has proven to be a unique tool for the study of various phenomenons
for samples coming from different reasearch areas. Example experimental methods in-
clude – each named with just one possible application: X-ray topography can image
crystal imperfections [Moo95]. Time-resolved spectroscopy allows to track excitated states
of matter [Bon+80]. Fourier transform IR spectroscopy and microscopy show molecu-
lar vibrations in cancer cells [BS12]. X-Ray crystallography can map the structure of
viruses [Liu+09]. Angle-resolved photoemission spectroscopy unveils superconducting
gap quasi particles [Nor+98; Kam+00]. Broadband THz spectroscopy [Bar+13] allows
gas-phase studies of unstable molecules.

Coherent synchrotron radiation (CSR) enhances the potential of the methods, as it can
increase the photon flux by several orders of magnitude. Emission is coherent for wavelength
longer than the emitting ensemble of electrons – typically an electron bunch. When the
emitting electrons form substructures, so called micro-bunches, the CSR emission can
shift to frequencies higher than for smooth bunches. The principle is used in free-electron
lasers (FELs) [Dea+77] but is also applicable for storage-ring based synchrotron light
sources. It however, took a long time until these potentials where utilized. In the beginning,
synchrotron radiation and in particular CSR, as well as micro-bunching were regarded as
undesired at particle accelerators.

A first theory on the radiation of charged particles was formulated by J. Larmor [Lar97]
in 1897. One year later, in 1898, A. Liénard [Lié98] extended this work for relativistic
particles moving on a curved path. These authors, however, could not correctly account for
the relativity: The needed Lorentz transform was not formulated until 1904 [PB16]. Shortly
thereafter, a first theory of synchrotron radiation [Sch07] that still holds in its original
formulation was created by G. A. Schott – in 1907. The first experimental observation
of the radiation [Eld+47] at a synchrotron in 1947 lead to the naming. Just a few years
before, the spectrum of the radiation had been first calculated by J. Schwinger (in 1945).
His theory already included CSR [Sch98], however, CSR did not seem to be relevant, so
only parts were published in 1949 [Sch49]. As particle accelerators at that time focused on
high energy physics, this radiation was mainly an energy loss – with CSR just bringing
additional losses. Early publications considering the CSR suggested to shield it by parallel
plates [NS54]. It is interesting that this simple model still holds as a description for the
beam vacuum pipe.

Over the time, more and more use was made of the emitted radiation, first parasitically
at high-energy particle experiments [TH56; CM65], later also at dedicated synchrotron
light sources [RM73]. In 1984, the first beam line designed to couple out light with long
wavelengths from the accelerator vacuum chamber came into operation, the infra-red beam
line in Daresbury [Yar+84]. As it turned out later, the light was CSR emitted due to the
micro-bunching instability. First explicit observations of the increase of coherent emission
were made at the NSLS VUV (National Synchrotron Light Source Vacuum Ultraviolet)
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2 Dynamics of ultra-short electron bunch profiles

ring [Car+99; Car+01]. Shortly thereafter, stable CSR was produced using short bunches,
first at BESSY [Abo+02], later also at other machines (e.g. ANKA [Mül+05]). At that
time, the micro-bunching instability was still mostly seen as problem limiting the maximum
bunch charge. On the other hand, the term “bursting CSR” was coined, to emphasize on
the additional emission due to the micro-bunching. In the following, experimental studies
where conducted to map out the parameters governing the bursting behavior [Byr+02;
Abo+03; Tak+05; Kar+10; Mül10a; Wüs+10; Eva+12; Shi+12], and theoretic models
were formulated to predict thresholds [VW02; SH02; BCS10; Cai11] and to simulate the
dynamics. For simulations, there are two approaches: One is to solve the Vlasov-Fokker-
Planck equation for the longitudinal phase space density [WE00; Ven+05; Rou+14a].
Alternatively, using supercomputers, particle tracking with one million macro particles or
more [Eva+12; Rou+14b] can be performed. A good estimation for the threshold has been
found by [BCS10]. In the very same paper, they still proposed methods to counter-act the
micro-bunching. It is only since a couple of years, that also the potential due to emission
shorter then bunch length has been considered. There are suggestions for controlled (seeded)
micro-bunching [RCH11; She+11] in FELs, and beams have been modulated intentionally
using a laser [Ung+17]. However, until now there is no method that can control the
self-amplifying process that naturally forms micro-bunches at storage rings.

The aim of this thesis is to better understand the dynamics of the micro-bunching –
following the long-term goal to find possibilities to use and influence it. The scope spans
both, simulation and measurements: Current measurement equipment cannot fulfill the
requirements needed to to successfully proof or reject the predictions of the model. So,
experimental methods have to be advanced. Simulation, on the other hand, is demanding
for both, hardware and user of the simulation tool. And as there is no intuitive model, the
resulting data is sometimes hard to interpret and to visualize in a meaningful manner.

First (Chap. 2), the working principles of synchrotron light sources are discussed, including
the process of CSR emission. The micro-bunching then is described in a Vlasov-Fokker-
Planck picture (Chap. 3), that has already proven to be an efficient model when it comes to
simulations. While the focus of this thesis is always on the motion of electrons emitting CSR,
for some chapters it branches into a more experimental part and a simulation-centered
one: Different kinds of beam diagnostics relevant for this work are shortly presented
(Chap. 4), while the focus here is on electro-optical (EO) methods, which are also optimized
(Chap. 5). A comparison of two different methods to measure bunch profiles – namely a
streak camera and electro-optical spectral decoding (EOSD) – closes this experimental part
(Chap. 6). The simulation part is started by introducing concepts of parallelized computing
(Chap. 7). Those are used in the implementation of a Vlasov-Fokker-Planck solver (VFPS)
(Chap. 8) which is extensively benchmarked to show different numerical effects (Chap. 9)
that could otherwise be misinterpreted as physics. The actual numerical studies (Chap. 10)
include detailed descriptions of different beam behaviors as well as a study of ways how to
influence or utilize the CSR emission. Both parts merge in a comparison of measurement
and simulation results (Chap. 11) before a final outlook (Chap. 12) is given, on how the
numerical results can be utilized in experimental setups and how new predictions could be
verified.



2. Fundamentals of Accelerator Physics

“Time dilates as the speed of light
approaches. To the extent that light
consists of particles, it is in its own way,
timeless.”

Prokhor Zakharov

This chapter will introduce the fundamental quantities of accelerator physics that are
important for the generation of coherent synchrotron radiation at storage rings. This focus
narrows down the topic quite a bit. More comprehensive deductions as well as broader
views that do also include e.g. other types of accelerators can be found in almost any
standard work on accelerator physics, e.g. [Wil01; Hin08; Wie15]. Besides one of the
standard works [Wil96], this chapter is strongly influenced by [Ng06] which puts the focus
on beam instabilities.

Section 2.1 briefly comments on deflection and acceleration and introduces the fundamental
tools to theoretically describe an abstract model of a storage ring. Deflection will be
elaborated more in Section 2.2. For a detailed view on this particular topic, the reader may
consult e.g. [Wie15, Chap. 5], [Hin08, Chap. 6], or [Wil01, Chap. 3]. Here only the aspects
are discussed that are crucial to understand how synchrotron radiation (see Section 2.3)
can be influenced. To do so, mostly longitudinal beam dynamics has to be discussed. This
is done in section 2.4.

2.1. Charged, Relativistic Particles in Electro-Magnetic Fields

In high energy particle accelerators, a magnet optics is used to influence the beam path,
while the energy is increased using electric fields. The physical reason for this technical
implementation is the nature of the Lorentz force

~FL = Q (~v × ~B + ~E), (2.1)

where ~E denotes the electric field, ~B the magnetic field, Q the charge, and ~v the velocity
of the particle. The equation directly implies that for large ~v, it is easier to achieve large
forces using the magnetic component. However, because ~FL ⊥ ~B, a static magnetic field
will only deflect the particle and not change its energy

E =
√
m2c4 + |~p|2c2. (2.2)

The process of increasing the energy is usually handled by (a chain of) pre-accelerators and
will be omitted here. Instead, only acceleration of particles near the accelerator’s design
energy is considered. In fact, typically β = v/c ≈ 1, so the relevant changes are also more

3
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Figure 2.1.: Accelerator Coordinate System
The reference particle moves along s with velocity v0. An arbitrary particle’s position is
described in terms of the particle’s offsets x, y and z from this reference. Notice that the
time axis τ is inverted with respect to z. (Based on [Wil96].)

visible in momentum or energy. For a fixed energy E0, the synchronous or reference particle
has velocity v0. With the Lorentz factor γ = 1/

√
1− β2, its momentum can be expressed

as | ~p0| = γ m |~v0|. The momentum deviation is then typically given relative to p0, as

δ :=

∣∣∣ ~∆p ∣∣∣
|~p0|

= |~p− ~p0 |
|~p0|

= ∆E
β2E0

. (2.3)

Electro-magnetic fields can differ in shape, strength, orientation, and location: Motion
can follow complicated paths; but – for small beams – it is similar for almost all particles.
So, to describe the position of an arbitrary particle, it is convenient to do so from the
perspective of a reference particle, which marks the origin of a co-propagating coordinate
system (see Fig. 2.1). With this coordinate system in mind, the bunch head is pointing
in positive direction along the z-axis, motion along this axis is called longitudinal motion,
while transverse motion is in the x and y directions1. The time axis τ is oriented in opposite
direction to z because a stationary observer will first (small time) see things at large z.

For a circular accelerator with a circumference of L0 =
∮

ds, also the revolution time and
revolution frequency are defined based on the synchronous particle

1/frev := T0 := L0/v0. (2.4)

Sometimes, also an effective radius R̃ := L0/(2π) is defined. This definition accounts for the
fact that accelerators are not perfectly round but are typically designed to have alternating
deflecting and straight sections (cf. Sec. 2.2). The latter can house the accelerating
structures that compensate energy losses (cf. Sec. 2.3.2). Their technical realizations uses
a voltage that oscillates with fRF. The number of field oscillations per revolution is called
the harmonic number

h := fRF/frev (2.5)
and is always an integer. As section 2.4 shows, this number also denotes the number of
positions where on-momentum particles can be at. Because of this, h is also referred to as
the number of (RF) buckets.

2.2. Magnet Optics

To describe the effect of the accelerator magnets, it is useful to expand their fields into
multi-pole components

By(x) = By,0 +
∞∑
N=1

1
N !

∂NBy
∂xN

× xN , (2.6)

1In this thesis, transverse beam dynamics are neglected. Typically, x and y will stand for grid coordinates.
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and respectively for the x-components. Accordingly, the strength of different magnet types
is defined

1/R = e

|~p|
By, K = e

|~p|
∂By
∂x

, S = e

2|~p|
∂2By
∂x2 (2.7)

for dipole, quadrupole and sextupole magnets. The strength of the bending magnet here is
defined as the inverse radius of the deflection, the so-called “bending radius” R. It should
be noted that 2πR ≤ L0. The equality is an edge-case where the particle accelerator has a
constant By ≡ B0. This case is called an iso-magnetic ring, which is a theoretical model
that is not technically realized. In contrast, storage rings are typically designed [San69]
to have an iso-magnetic guide field, so By(s) ∈ {0, B0}. Strictly speaking, any location
where By = 0 is a straight section. However, typically parts of the accelerator that feature
any magnets and even space between the magnets that is required for technical reasons is
not called that way. In fact, the usage of the term ‘straight section’ most often implies a
purpose why there are no magnets placed at that specific location.

When only considering linear beam dynamics (esp. S ≡ 0) the linear equations of motion

x′′(s) + x(s)
( 1
R2(s) −K(s)

)
= 1
R(s)δ (2.8a)

y′′(s) + y(s) K(s) = 0 (2.8b)

can be derived [Wil96] directly from Eq. (2.7). Note that both, R(s) and K(s), are defined
by the magnets and thus periodic with the orbit length L0. In the linear model, there is no
coupling between horizontal and vertical plain. For 1/R 6= 0 and δ = 0 the solution is

u(s) = Au(s) cos(Ψu(s) + φu), (2.9)

where Au(s) = Au(s+ L0) is the oscillation amplitude. It can be expressed as a function
of the (constant) emittance ε, and the (position-dependent) beta-function β

A(s) =
√
ε× β(s). (2.10)

Inside gradient-free bending magnets (1/R 6= 0, K = 0), it is convenient to define the path
D(s) (called dispersion) of a particle with δ = 1. It has the form

D′′(s) + 1
R2D(s) = 1

R
(2.11)

and – for linear optics – gives the only influence of longitudinal beam dynamics to the
transverse plains. The resulting path can be described as [Wil96]

x(s) =
√
εx × βx(s) cos (Ψx(s) + φx) +D(s)δ. (2.12)

Notice that this expression is purely horizontal. To have coupling between x and y,
sextupole magnets have to be considered.

2.3. Radiation and Fields from Charged Particles

At rest, the static electric field of a charged particle is going out radially in all directions.
When the particle is moving, a magnetic field forms according to Ampère’s circuital law;
but also – when relativity is considered – the shape of the fields changes (Liénard-Wiechert
potential). When β → 1, the fields get a pancake-like shape with an opening angle of about
1/γ. This boosted Coulomb field is always perpendicular to the direction of motion and
cannot not lag behind (see Sec. 2.3.1). When the particle’s path is curved, parts of the
field are radiated off, leading to synchrotron radiation (Sec. 2.3.2).
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Figure 2.2.: Electric Field of a Relativistic Electron Bunch
Radial electric field measured by an observer at a distance of r = 10 mm from a relativistic
charge passing by. The field of the point-charge is a significantly broadened but for the
charge distribution with σz = 0.1 ps only a slight difference is visible when comparing to
the case with γ =∞. [Hil13, Fig. 2.4]

When placed inside a beam pipe, the fields cannot reach infinity but are trimmed at a
certain distance. Where the field lines touch the wall, image charges travel parallel to the
original particle, creating the so-called image current. When the wall is not perfectly smooth
or not perfectly conducting, these image charges account for so-called wake fields [Ng06,
p. 1]: Fields are left behind when the co-propagating image charges are slowed down. (For
a more comprehensive description of different wake fields, see Sec. 3.2.)

2.3.1. Coulomb Field

The Coulomb field of a point charge Q moving with constant velocity v = βc is always
co-propagating its source. While at rest, the field is equally distributed in all directions,
the shape changes to a more compressed shape. When the movement is along the z-axis,
the electric field of a point charge at r =

√
x2 + y2 can be expressed as [Jac98, p. 595]

Er(r, t) = Q

4πε0
× γ r

(r2 + γ2v2t2)3/2 . (2.13)

For the field of a line charge distribution Qb × %(z) this means

Er,%(r, t) = Qb

∞∫
−∞

Er(r, t− t′) %(t) dt′. (2.14)

So, for γ → ∞ the electric field has the same shape as the charge distribution, but for
γ < ∞ a point spread is introduced. Figure 2.2 illustrates the effect for a point charge
and a Gaussian charge distribution with σz = 0.1 ps, both moving with γ = 2544 and at
a distance of r = 10 mm from the observer. While for the point-charge, the spread is a
significant, for the charge distribution it is almost not visible. This means that the shape of
a relativistically moving charge distribution can be measured by observing the electric field
in its proximity. A technical implementation using electro-optical sampling is discussed in
Sec. 4.3.

2.3.2. Synchrotron Radiation

When a charged particle is moving on a curved trajectory with radius R, part of its
Coulomb field can no longer co-propagate. It is irradiated as so-called synchrotron radiation.
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Using classical electromagnetism theory, the total power emitted by one electron can be
derived [Sch49] to be [Hin08, p. 347]

P1 = Q2c

6πε0

γ4

R2 . (2.15)

This power is emitted in a spectrum that depends on the emission angle. When averaging
over space and a sufficiently long time [San69, p. 113] of ∆t > R/(γc) an “instantaneous”
radiated power spectrum

P (ω) = P1
ωc
S

(
ω

ωc

)
(2.16)

can be defined, where

ωc = 3
2
cγ3

R
(2.17)

is the critical frequency. The photons are emitted in forward direction, but there is a
uncertainty of

ΘRMS = 1/γ, (2.18)

that leads to an opening angle of the emitted radiation with the same value [Hin08, p. 348].
It is noteworthy that photons emitted in this angle to the inner side cross the electron path
in a distance of

s = 2R sin(1/γ). (2.19)

This will be of relevance when self-interaction of the electron-bunch is considered (see
Chap. 3). Further, as

P1 =
∞∫
0

P (ω)dω, (2.20)

the function S in Eq. (2.16) has to be normalized. It can be expressed as

S(ξ) = 9
√

3
8π ξ

∞∫
ξ

K5/3
(
ξ̂
)

dξ̂, (2.21)

where K5/3 is a modified Bessel function (see Appendix B.1).

With N particles, the total power is not only amplified by a factor of N , additionally there
is coherent amplification for wavelength larger than the emitting ensemble of electrons. It
can be expressed as

P (ω) = N
[
1 + (N − 1)|%̃(ω)|2

]
× P1(ω)

= N × P1(ω) +N(N − 1)|%̃(ω)|2 × P1(ω)
= PISR(ω) + PCSR(ω), (2.22)

where

%̃(ω) :=
∞∫
−∞

%(t)× e−iωtdt (2.23)

denotes the Fourier transform of the normalized longitudinal bunch profile %(t). The first
summand (PISR) gives the power of the incoherent synchrotron radiation (ISR) and is
linear to the number of particles. The CSR on the other hand increases quadratically with
the number of particles but also dependends on the bunch’s form-factor F (ω) := |%̃(ω)|2.
Example spectra are shown in Fig. 2.3.
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Figure 2.3.: Synchrotron radiation spectrum calculated for 108 electrons in a bunch of
Gaussian shape at the Karlsruhe Research Accelerator (KARA). [Hil13, p. 19]

2.3.3. Radiation Damping

When only constant deflection inside the bending magnets is considered, the total energy
lost by an electron in one revolution can be computed by integrating Eq. (2.15). The result
then is

W0 =
∮
P1dt = Q2

3ε0

γ4
0
R
. (2.24)

From this, the longitudinal damping time can be derived. The calculation can be found
in [San69], or in [Hin08, p. 351] which is based on the first source. Here, just the result

1/τd := 1
T0

W0
E0

JE
2 (2.25)

is given, where JE = 2 + d ≈ 2 is the longitudinal damping partition number. This
definition of the damping time is based on the orbit change of the single particles. As the
beam spread is a second order effect, its damping is twice as fast. Also, the beam spread
will not damp down to zero. Instead, due to the quantum nature of the emission, there is
always a non-zero spread of the energy distribution. For equilibrium cases, the distribution
is Gaussian with a spread of [San69, p. 123]

σδ = γ ×
√

Cq
JER

, (2.26)
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where Cq = 55~/(32
√

3mc) ≈ 3.84× 10−13 m may be called the quantum constant. Non-
equilibrium cases will be discussed later, starting from Sec. 3.3.2.

2.3.4. Beam Line Cutoff

Light cannot travel in structures smaller than its wavelength. For synchrotron radiation
this fact can be considered already for the emission, this will be done in Sec. 3.2.4. When
the emission frequencies of question are not completely suppressed, also the path between
the electron beam and the observer – the beam line – has to be considered. This, of course,
is the fact when unshielded emission models like the one in Eq. (2.16) are used. A beam
line model acts just on the synchrotron light already irradiated, so it has no influence on the
beam. However, to compare calculated results (e.g. from simulations) and measurements,
it is important not to be dominated by CSR in the very low frequency range. An easy
model just implements an exponential suppression. The spectrum PBL(f) that arrives at a
beam line then is [Mül10b]

PBL(f) = PSR(f)×
[
1− exp(−f/fc)2

]n
, (2.27)

where the cutoff is described by the cutoff frequency fc and the strength of the suppression
can be chosen by the order n.

2.4. Energy Deviation and Longitudinal Motion

As described in Section 2.2, particles with higher energy are deflected less by the accelerator
magnets. Thus a momentum offset δ usually introduces different path lengths. The relation
between deviations in energy and path length is called the momentum compaction factor.

αc :=
∞∑
n=0

αnδ
n := ∆L/L0

δ
. (2.28)

Usually one has δ � 1, thus often only α0 is considered to contribute significantly. Just
considering linear optics leads to another commonly used approximation, namely

αc ≈
1
L0

∮
D(s)
R(s) ds. (2.29)

The difference in path length generally leads to a difference in arrival time, which can be
seen as a motion relative to the synchronous particle and is called synchrotron motion2. It
is convenient to also define the slip factor, which gives the change in arrival time due to a
momentum offset3

ηc := ∆T/T0
δ

= αc −
1
γ2 . (2.30)

As the time scale of the synchrotron motion is slow compared to the revolution time, it
is possible to assume dΨz/dt = ∆Ψz/T0. Now, expressing arrival times as phases, the
definition above directly yields an equation for the average phase shift per turn due to an
energy offset:

Ψ̇z = −2πfrevhηcδ (2.31)

In the accelerating structure, the field is typically higher at earlier times and thus gives
more energy to the particles with less energy, and vice versa. This case (ηc > 0) is also
depicted in Fig. 2.4. The resulting mechanism is called phase focusing and also leads to
the bunching of the beam. It is noteworthy that such a mechanism is needed for stable
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Figure 2.4.: Phase Focusing
Particles with less momentum (red) move on a shorter path, so that they reach the RF
cavity at an earlier time, and thus at a smaller phase. This means they see a higher voltage
and are accelerated more than the synchronous particle (black). For higher momentum
particles (green) the same argument is reversed. (Based on [Wil96].)

operation of a storage ring. To allow ηc < 0, additional measures (like active feedback)
have to be implemented.

Due to synchrotron radiation it is guaranteed that the energy will not be constantly
fixed. In a storage ring, exactly the radiation losses W0 of the synchronous particle
will be compensated by the accelerating voltage. Typically this voltage is sinusoidal
with VRF(t) = V̂ sin(Ψz(t)), where Ψz(t) is the arrival time dependent phase. For the
synchronous particle this leads to the synchronous phase

sin(Ψz,0) := W0

eV̂
. (2.32)

When only incoherent synchrotron radiation in bending magnets is considered, Eq. (2.24)
holds for W0. Additional losses (see Sec. 3.2) lead to a different phase. If the losses are
current dependent, this phenomenon is called synchronous phase shift. At this point, it
should be noted that the original definition of the synchronous phase is only valid for
a single (virtual) particle. Many authors (e.g. [PS98; RBT11; Che+17]) relax it to the
average phase of a whole bunch of particles. In this thesis, however, the synchronous phase
will always refer to the position of the (virtual) particle that does gain exactly the energy
that it has lost before4. The shift of the average phase will be called coherent phase shift
or just phase shift.

For off-momentum particles, the energy changes by

∆E = eV̂ sin Ψz −W0 (2.33)

when passing the accelerating voltage. This directly leads to the second equation of motion

δ̇ = frev ∆E
β2E0

= frev
β2E0

eV̂ [sin(Ψz)− sin(Ψz,0)]. (2.34)

It also implies that the maximum positive/negative energy offset as well as the maximum
phase offset that can be compensated are dependent on Ψz,0. The trajectory along this
positions in phase space is called the separatrix. It marks the borders of the RF buckets.

2This gives the (implicit) definition that the synchronous particle does not show any synchrotron motion.
3For ultra-relativistic particles we have γ →∞, hence ηc ≈ αc.
4Section 10.1.2 will show the difference, while Sec. 12.1 will comment on the implications.
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For small phase variations
φ := Ψz −Ψz,0, (2.35)

the effect of the RF potential can be approximated as

eV̂ sin(Ψz) = eV̂ sin(Ψz,0 + φ) (2.36a)
= eV̂ [sin(Ψz,0) cos(φ) + sin(φ) cos(Ψz,0)] (2.36b)
≈ eV̂ [sin(Ψz,0) + φ cos(Ψz,0)]. (2.36c)

The voltage seen by the particles is called effective voltage5 V := V̂ cos(Ψz,0). Using this,
Eq. (2.34) simplifies to

δ̇ = eV frev
β2E0

φ. (2.37)

From the combination of Eqs. (2.31), (2.35), and (2.37), it follows that the change of energy
and phase follows a harmonic oscillation, called synchrotron oscillation, with

φ̈ = −fs,0
2φ (2.38a)

δ̈ = −fs,0
2δ, (2.38b)

where

fs,0 = frev

√
hηceV

2πβ2E0
(2.39)

is the nominal synchrotron frequency. It holds true for a single electron at E ≈ E0. For
example the oscillation frequency is lower for larger oscillations [cf. Eq. (2.36b)], and finally
approach 0 at the separatrix. The Hamiltonian of this system reads

H = πhfrevηcδ
2 + 1

2
eV frev
β2E0

φ2. (2.40)

For now, any possible additional interaction of the particles is neglected. (It will be discussed
as perturbations to the solution presented here, see Section 3.3.) Because of the the random
nature of quantum radiation and excitations, the particles are distributed Gaussian in δ,
where the RMS energy spread σδ,0 is determined by synchrotron radiation as described
in Eq. (2.26). As the solution to this harmonic oscillator is a rotation in phase space, the
spacial distribution is Gaussian as well. With the longitudinal coordinate

z = −βcT0
2πh φ, (2.41)

the RMS bunch length is
σz,0 = c|ηc|

2πfs,0 β
σδ,0. (2.42)

To reflect the fact that this equation only holds true without any interactions, σz,0 is called
the ‘natural’ or ‘zero-current’ bunch length.

5The definition V :=
√
V̂ 2 − U2

0 with U0 := W0/e is a fully equivalent.



3. Self-Interaction in the Longitudinal
Phase-Space

“Truthful movements spontaneously
attract to themselves all manner of
pure and disinterested help.”

Mahatma Gandhi

This chapter first introduces an equation that can be used to describe the temporal evolution
of a charge density, the Vlasov-Fokker-Planck Equation (Sec. 3.1). Self-interaction of the
distribution is discussed as a perturbation. To do so, the concept of wake fields and
impedances (Sec. 3.2) is used and also some example impedances are named. At last
(Sec. 3.3), a brief theoretical treatment of the effect of the perturbation is given for both,
equilibrium and non-equilibrium cases. These formulations make a rich toolbox that can
be used to describe most of the known longitudinal beam dynamics.

3.1. Vlasov-Fokker-Planck Equation

The longitudinal phase space is spanned by position z and particle energy E. For large
numbers of particles the normalized charge density ψ(z, E, t) of electrons in a storage ring
can be assumed to be smooth. When working with densities of finite spread, it is convenient
to define the dimensionless, generalized coordinates [WE00]

q := z

σz,0
(3.1a)

and

p := E − E0
σE,0

. (3.1b)

By giving it in multiples of synchrotron periods1, also the time can be made dimensionless

θ := fs,0 × t. (3.1c)

Assuming that the transverse dimensions of the charge distribution are σx,y � σz [DRS95],
using this set of coordinates, Eq. (2.40) simplifies to

H = 1
2
(
q2 + p2

)
. (3.2)

1Other authors prefer to define θ := ωs,0 × t, so that θ is an angle (in radian).

12
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In a conservative system, the area in the phase space is constant. It can then be described
by the Vlasov Equation [Vla45] (cited from [Ng06, p. 48])2

∂ψ

∂θ
+ ∂H

∂p

∂ψ

∂q
− ∂H

∂q

∂ψ

∂p
= 0. (3.3)

Due to synchrotron radiation the system of course is not conservative. However, if the
energy is sufficiently low, the time range is short, or in equilibrium cases, the Vlasov
equation can be a valid approximation.

To account for radiation losses, in the image of a charge density their quantum nature
usually is not considered. This is a good assumption for the large numbers of particles
that are investigated in this thesis but should be reconsidered in other cases. Another
simplification follows from σE � E0: It means that for the single particle radiation the fact
that P (E) ∝ E4 can be neglected, hence P (E)1 ≈ const. The evolution of ψ(q, p, θ) can
then be described by the Vlasov-Fokker-Planck equation (VFPE). Following the notation
of [BCS10], it reads

dψ

dθ
= ∂ψ

∂θ
+ ∂H

∂p

∂ψ

∂q
− ∂H

∂q

∂ψ

∂p
= βd

∂

∂p

(
pψ + ∂ψ

∂p

)
, (3.4)

where βd = 1/(fs,0 × τd) is the dimensionless parameter for the longitudinal damping time
τd. In this picture, collective effects can be described as a perturbation to the Hamiltonian

H(q, p, t) = He(q, p, t)︸ ︷︷ ︸
external fields

+ Hc(q, t)︸ ︷︷ ︸
collective effects

(3.5a)

= 1
2
(
q2 + p2

)
+ e frev
σE fs,0

∞∫
q

Vc(q′, t) dq′. (3.5b)

Here, the perturbation is expressed using the potential Vc of one full revolution. This time
(T0) is also reflected in the factor frev. To calculate the energy from the potential, the
factor e is needed, 1/σE and fs,0 are to normalize energy and time. How the potential can
be derived is discussed in the next section. It is noteworthy that Eq. (3.2) which makes
the first term in Eq. (3.5b) assumes the unperturbed Hamiltonian to be linear. In general,
also higher order terms of both, the momentum compaction factor αc [cf. Eq. (2.28)] and
the accelerating voltage VRF [cf. Eq. (2.34)] can be included (see [Sch+18a] for details).

3.2. Wake Fields and Impedances

Wake fields are electromagnetic fields that are left behind by moving particles. As the
deployed field has an energy, wake fields directly correspond to energy losses. A difference
can be drawn between primary and secondary fields. Primary fields can be considered to
be in proximity to the bunch E(x, y, z ≈ 0, t), secondary fields may lag behind. The latter
may include influences like reflections that do not correspond to (further) energy-losses
of the particle beam. Forces from an on-axis field can influence trailing particles. This
influence does not have to refer to bunch-bunch interaction. In most cases, the trailing
particles are still in the same bunch. However, if a wake persists for long enough, it can
also cause long-range interaction.

To avoid confusion, in this thesis an explicit difference is made between the three distinct
quantities wake field E, wake function W , and wake potential V . The wake function W (z)
is caused by a single particle, whereas the actual wake field E(z) is typically caused by an
electron bunch. However, although some authors speak of the wake function as the “single

2Especially when talking about the transverse plains, it is also referred to as Liouville theorem.
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particle wake” [Kle12], or “wake potential” [WE00; Ven+05], W is a charge-normalized
voltage with [W ] = 1 V/C. E(z), in contrast, really is a (wake) field with [E] = 1 V/m, and
V a (wake) potential with [V ] = 1 V. All three quantities are connected3 by [WE00, p. 7]

V (z) =
L∫

0

E(z, s) ds (3.6a)

= eNb

∞∫
−∞

W (z − z′) %(z′) dz′. (3.6b)

To emphasize causality, it is possible to use different integration limits in Eq. (3.6b).
The option preferred here is to express causality using a Heaviside step function in the
formulation of the wake, so W (z) ∝ Θ(z). When this is done, the longitudinal wake
function Wz(z) can be written as an impedance [Ng06, p. 13]4

Zz(ω) =
∞∫
−∞

Wz(z)e−iωz/v
dz
v
. (3.7)

Furthermore, E(s) is defined at any position, while W gives the integrated effect of the
whole structure that has the impedance5 Z. Notice that =[Wz(z)] ≡ 0, so it directly follows
that the impedance is Hermitian

Z(−ω) = <[Z(ω)]− i×=[Z(ω)]. (3.8)

To study beam dynamics caused by the wake field, the energy lost by a beam particle has
to be known. Eq. (3.6b) directly gives the representation as

∆E(z) = e× V (z)

= e2Nb

∞∫
−∞

W (z − z′) %(z′) dz′. (3.9a)

Alternatively, using Eq. (3.7), it can also be worked in the frequency domain6

∆E(z) = e2Nb
2π

∞∫
−∞

%̃(ω)Z(ω)eiωz/vdω. (3.9b)

While impedances are typically derived starting from the wake function, the impedance
representation has one great advantage: The effect of an impedance can be directly seen
from its value. Inductive impedances [=(Z) > 0] counter-act changes in the current. As
the instantaneous current rises on the arrival of the bunch and drops at its departure this
means that the bunch length will be increased. For capacitive impedances [=(Z) < 0]
the effect is the opposite, the bunch shortens. The resistive part of the impedance [<(Z)]
expresses energy losses but also leads to asymmetric distortions. [Ng06, p. 228]

3It has to be noted that this formulation neglects the finite propagation speed of the fields. This
assumption is valid as long as %(z′) can be seen as constant at those time scales.

4Notice that the definitions for the Fourier transform differ between authors. See Appendix B.2 for
details.

5As in this work mostly longitudinal effects will be considered, in the following, qualifiers for the
impedance will be disregarded, Z ≡ Zz.

6In the implementation, the factor of 1/(2π) is barely visible due to the usage of f = ω/(2π).
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Figure 3.1.: Real part of the resistive wall impedance calculated for a 35m long Aluminum
pipe with a diameter of 32mm. (These values approximate the part of KARA where
dipole magnets are installed.) The imaginary part has the same value but the opposite
sign, see Eq. (3.10).

3.2.1. Resistive Wall Impedance

The first impedance presented here is due to the resistivity of the vacuum chamber. It can
be explained by the effect of mirror-charges moving inside the resistive wall of the beam
pipe. The impedance can be calculated as [Ng06, p. 18]

ZRW (f) = [1− i sign(f)]
√
µrZ0
πcσc

L

2b

√
|f |, (3.10)

where σc is the conductivity, µr the permeability , L the length and b the radius of a round
beam pipe. Z0 is the vacuum impedance

Z0 : = µ0 × c (3.11)
= 2.99792458× 40πΩ (3.12)
≈ 377 Ω.

As one would expect, the impedance vanishes for superconducting or large beam pipes. A
non-trivial example with σc = 37.7×106 S/m, µr = 1+2.1×10−5 (both Aluminum [WebE18]),
L = 2π × 5.559 m = 35 m, and b = 16 mm is displayed in Fig. 3.1.

3.2.2. Impedance of a Collimator

A collimator is an aperture smaller than the beam pipe. It is typically brought to the beam
to protect sensitive structures from being hit by particle losses. It is of special interest
because it can easily be modified, e.g. in case an iris is used. In high frequency limit the
impedance of such a device is [SBZ07, p. 14]

ZColl = Z0
π

ln b

a
, (3.13)

where a < b is the inner radius of the collimator, and b the outer radius (typically the
one of the beam pipe). For example sizes of a = 2 mm and b = 16 mm, the impedance is
Z = 249.36 Ω. Note that it is =(Z) ≡ 0 for for infinitesimally short collimators only. If two
steps in the beam pipe can are considered separately, the imaginary part does not vanish.
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Figure 3.2.: Unshielded (free space) CSR impedance (FS) and CSR impedance shielded
by parallel plates (PP), calculated for an example accelerator with R = 5.559 m, and (for
the shielded case) g = 32 mm. For high frequencies both impedances converge, as short
wavelength are not effected by the shielding. For f → 0 Hz both impedances approach
Z = 0 Ω. (First published in [Sch+17c].)

3.2.3. Free Space CSR Impedance
The free space CSR impedance describes the effect of coherent synchrotron radiation of
particles traveling on a curved path in vacuum. Even though both, the particles and the
emitted photons, travel with the speed of light (β ≈ 1), photons can overtake the bunch
due to the curvature. Assuming that σx,y � σz, Derbenev, Rossbach and Saldin ([DRS95])
derived a “longitudinal overtake potential”. A good approximation [MKG97] is found to be

ZCSR0(n) ≈ Z0
Γ(2/3)

31/3

(√
3

2 + i

2

)
n1/3, (3.14)

where n = f/f0 is frequency expressed in multiples of the revolution frequency f0 in an
iso-magnetic ring of length 2πR.

3.2.4. Parallel Plates CSR Impedance
A more advanced CSR impedance adds the shielding effect of the beam pipe – being
approximated by two parallel plates with distance g. In terms of Bessel functions, it can
be approximated [Cai11] with the Airy functions Ai and Bi7:

ZPP(n,R/g) ≈ 4π2 21/3

ε0c

(
R

g

)
n−1/3

×
∑
p

Ai′(up)Ci′(up) + up Ai(up)Ci(up), (3.15)

where the prime marks the derivative, R is the beam path’s radius, Ci := Ai− iBi, and

up := π2 (2p+ 1)2

22/3

(
R

g

)2
n−4/3. (3.16)

7See Appendix B.1 for the function definitions.
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This impedance has already proven to describe the micro-bunching instability threshold
within the uncertainty of the measurements [Bro+16b]. For the limit g →∞ it converges
to the free space impedance. Figure 3.2 shows these two impedances, for an example
accelerator with R = 5.559 m, and (for the shielded case) g = 32 mm. An interesting feature
of this impedance is that it is capacitive for low frequencies (here: below 100GHz) and
becomes inductive for higher ones.

3.3. Perturbed Vlasov-Fokker-Planck Equation

When an impedance is considered in the Hamiltonian, the additional potential modifies
the solution of the VFPE and the bunch profile deforms. This deformation might stable
in time (Sec. 3.3.1), but when the perturbation term is large enough, the beam becomes
unstable (Sec. 3.3.2).

3.3.1. Potential Well Distortion
As discussed in Sec. 3.1, the effect of collective effects is treated as a perturbation to the
Hamiltonian. In the equilibrium case, a stationary solution is reached. In this case, the
particle distribution has to be a function of the Hamiltonian [Ng02, Eq. (3.2)]

ψ(q, p) = ψ(H). (3.17)

As only position dependent energies are altered [see Eq. (3.5b)], only the potential well
has changed. Thus, the change in the particle distribution does not affect the energy
distribution

ψ(q, p) = 1√
2π

exp
(
−p2

)
× %(q). (3.18)

The bunch shape %(q) that provides the solution to Eq. (3.17) is called the Haïssinski
distribution. It was first derived in [Hai73], but deductions can also be found e.g. in [Ng02].
It is

%(q) = ξ × exp

−q2

2 + e2Nbfrev
2πσEfs,0

∞∫
q

∞∫
−∞

%̃(ω)Z(ω)eiωq′σz,0/vdω dq′
 (3.19a)

= ξ × exp

−q2

2 +Qc

∞∫
q

e

2π

∞∫
−∞

%̃(ω)Z(ω)eiωq′dω dq′
 (3.19b)

= ξ × exp

−q2

2 + Qc
Nb

∞∫
q

Vc(q′) dq′
 , (3.19c)

where the constant Qc represents the charge. Notice that in Eq. (3.19c), both Qc as well
as Vc include the total charge, so that a corrective devision by Nb has to be applied. To
obtain the factor ξ, normalization is done, so that

∫∞
−∞ %(q) dq != 1. Examples will be

shown in Sec. 10.1.1. Notice that the equation is consistent with the expectations for an
unperturbed beam, as in the limit Nb → 0, the distribution still is Gaussian.

The potential also changes the synchrotron frequency: The particles do not only see the
accelerating voltage, as assumed in the derivation of Eq. (2.39) but additionally the wake
voltage [Eq. (3.6)]. As ∂V/∂z 6≡ 0 this also means that fs will be different on different
paths through phase space. This phenomenon is called “tune-spread” and will be illustrated
based on simulation data in Sec. 10.1.2. To express this position dependent motion of the
particles in phase space, the parameter

J(q, p, t) =

√(dq
dt

)2
+
(dp

dt

)2
(3.20)
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Figure 3.3.: The top row shows a visualization of azimuthal synchrotron modes of a
bunch in the longitudinal phase space. In the bottom row, the projection of the density
to the space axis and is sketched as a linear density. Also a combination of modes is
possible, e.g. a stationary distribution with small sub-structures caused by an octupole
motion. (Based on [Ng02, Fig. 7.1].)

can be used. It has the dimension of a frequency but should rather be seen as a “velocity”
in phase space, and will be called instantaneous synchrotron motion. For example, in the
unperturbed case, where all synchrotron motion can be expressed by a constant angular
frequency, it is

J0(q, p) = 2πfs,0

√
q2 + p2. (3.21)

3.3.2. Micro-Bunching Instability

For large number of particles Eq. (3.19) does not converge. This is not a mathematical or
numerical problem, there really is no stable charge distribution for such cases. A different
ansatz gives more insight. Extending the theory of the microwave instability for coasting
beams (see e.g. [Ng02]) to bunched beams a small structure starts to grow in intensity due
to positive feedback loop: The spectrum of the structure samples a part of the impedance
that supports its growth. The stability criterion for a bunched beam with a Gaussian
energy spread8 was derived by Krinsky and Wang [KW85] to be∣∣∣∣Zn

∣∣∣∣ < 2π|ηc|E0
eIpeak

δ2, (3.22)

where Ipeak = max[∂Qb(z)/∂z]/(βc) is the peak current of the electron bunch. This simple
treatment assumes [Ng02, p. 7-1] that the bunch is much longer than the wavelength of the
perturbation and that the growth time is much shorter than a synchrotron period. For
electron beams, however, this is not necessarily given.

If synchrotron oscillation cannot be neglected, different oscillation eigenmodes (see Fig. 3.3)
can be considered [Ng02]. For example the m = 2 mode corresponds to a length fluctuation
with a frequency of 2fs. As the bunch spectrum plays a vital role in its emission [see
Eq. (2.22)], the synchrotron oscillation modes are also connected to fluctuations in the
emitted synchrotron radiation. In this view, focused on the emission of synchrotron light,
the micro-bunching instability is referred to as “bursting CSR”.

As will be shown in Sec. 10.2.2, the instability may grow the bunch length beyond the
conditions where substructures are formed. In that case, a breakdown with shrinking

8The Krinsky-Wang criterion is an elaborated version of the Keil-Schnell citerion [KS69]. The latter
was first expanded to bunched beams by Boussard [Bou75].
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bunch length and decreased CSR emission follows its growth. Based on observations of
this particular periodic changes of the bunch length, the term “sawtooth instability” was
coined [Kre+93]. Experiments at the Stanford Linear Collider (SLC) positron damping
ring correlated streak camera images with different phases of the (coherent) synchrotron
oscillation. Afterwards, changes in the bunch profile where identified with specific modes:
Different kinds of substructures where observed [Pod99] and attributed to quadrupole and
sextupole motion, respectively. When the beam current is varied, not only rapid growth
and shrinking of the electron bunch are observed but also an overall bunch lengthening.
Based on calculations using the different modes of the synchrotron motion, Chao and
Gareyte [CG90] derived a scaling law [Ng02, Eq. 7.17] for arbitrary microwave instabilities.
When the part of the impedance sampled by the bunch behaves like

Z ∝ ωa (3.23)

the bunch length scales with
σz ∝ I1/(2+a)

b . (3.24)

Notice that this expression (implicitly) assumes that there is no fluctuation of the bunch
length. [Ng06, p. 225] explicitly states:

“As soon as the threshold is passed, the bunch will be lengthened (. . . ) to such
an extent that stability is regained again. Unlike proton bunches no overshoot
is observed in electron bunches, probably because of the smoothing effect of
synchrotron oscillation. Probably radiation damping also plays a role.”

So in the special case of the micro-bunching instability with a fluctuating length, Eq. (3.24)
can only give an estimate.

Until now, there is no closed formulation to describe the beam dynamics during the micro-
bunching instability. Reasons are the tune spread due to the potential well distortion – in
this case even with ∂V/∂t 6≡ 0 – and that mode-mixing of different azimuthal and radial
modes is possible. To get an insight, the dynamics have to be simulated, e.g. using particle
tracking or by iteratively solving the VFPE for a series of points in time (see Chap. 8).

In a bunched beam theory (BBT), when only the CSR impedance shielded by parallel plates
(see Sec. 3.2.4) is considered, and radiation damping can be neglected, two generalized
quantities can be used to describe the dynamics, namely the “CSR strength” and the
“shielding”. The first can be seen as a scaled current and is defined to be

ξ = Qbfrev
αcγ (σE,0/E0)2IA

(
R

σz,0

)1/3

, (3.25)

where IA = 17045 A is the Alfvén current. The shielding is the natural bunch length scaled
with the geometric sizes of the parallel plates approximating the beam pipe

Π = σz,0R
1/2

(g/2)3/2 . (3.26)

Based on agreeing simulations using both, a VFPS and a linearized Vlasov solver, the
relation, [BCS10] found that the beam becomes unstable for

ξth(Π) & 0.5 + 0.12 Π. (3.27)

This model is valid as long as the bunch profile does not change on shorter time scales than
the fields need to propagate.



4. Beam Diagnostics

“One doesn’t discover new lands
without losing sight of the shore.”

André Gide

The measurements carried out in the framework of this thesis where performed at the
KARA, that is formerly known as Ångströmquelle Karlsruhe (ANKA). This chapter
will shortly introduce two kinds of well tested measurement devices that were used for
reference measurements to verify the applicability of the model used for simulation (see
Chap. 11): Streak cameras (Sec. 4.1) for the longitudinal bunch profile and THz detectors
(Sec. 4.2) for CSR emission. To overcome limitations of the streak camera, also EO methods
were used. They are introduced in Sec. 4.3. As near-field EO at a storage ring itself is
a cutting-edge research topic, the complete Chap. 5 is dedicated to the optimization of
the setup. Measurements will be shown in Chap. 6 and later (Chap. 11) be compared to
simulation results.

4.1. Streak Camera

Provided that the bunch length is much larger than its height and width or that the opening
angle of the emission of the synchrotron light is small, for simple geometrical reasons, the
temporal profile of the emitting electron bunch is the same as the temporal probability
density function of detecting synchrotron light. The first condition is typically given but
for sufficiently high beam energy, the second is always true [cf. Eq. (2.18)]. This fact can
be utilized to indirectly measure the longitudinal bunch profile. As the pulse, however,
can be in the range of picoseconds or even shorter, detection of the temporal photon pulse
shape is a hard task. To do so, a streak camera (see Fig. 4.1) can be used. It first sends
the photons onto a photo cathode, the photo-electrons are then deflected by a time-varying
voltage. They are detected e.g. using a fluorescent screen. Using this method, the time
distribution is transformed to a spacial distribution that can easily be measured. Using
two time-varying voltages, a second time axis can be added. Thus, it is possible to monitor
the pulse shape over time.

The main drawbacks of streak cameras are the influence of shot noise, the lacking ability to
pick pulses of a pulse train, and the limited time range – to measure the bunch profile, the
coherent synchrotron oscillation has to be resolved. Pulse picking would be needed when
bunches have different shapes, e.g. because of current dependent bunch deformation. To
overcome this, often only a single bunch is stored in the accelerator. Shot noise especially
plays a role when the bunch charge is low. Under these conditions only a very limited
number of photons arrives at the streak camera. To still reconstruct the beam profile, it has
to be integrated over a long time. However, when the phase of the (coherent) synchrotron
motion is not perfectly known or the bunch profile varies in time, this integration introduces

20
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Figure 4.1.: Working Principle of a Streak Camera
A streak camera firsts turns an incident light pulse into photoelectrons. Those than can
be swept over a fluorescent screen using a time-varying voltage. This way, the original
temporal distribution is turned into a spacial distribution that can easily recorded using
a camera. Also, a second time varying voltage can be used to add a second (typically
slower) time axis. ([Hil13], based on [MPG04].)

significant errors. [Pod99] attacked this problem by only integrating over periods of time
where the shape should look similar. If the underlying model is correct, this approach
works, but it is of course not feasible for exploratory studies.

Using a dual sweep, a second time axis can be added. On this (slower) time axis, time
range can be traded for temporal resolution. The fact that lower bunch charges are of
higher importance when the synchrotron frequency is also low1 allows to partly compensate
the low intensity: In this case, longer integration times still allow to reconstruct low fs,0.
Still, using this approach, faster dynamical changes of the bunch profile will be averaged
out.

Streak cameras are commercially available [Axi17; BIF17; Ham17; Opt17; Syd17] and can
be placed at a beam line of the accelerator. They are comparably robust and user-friendly,
and can be considered the standard diagnostics to measure longitudinal bunch profiles at
electron storage rings. At KARA, a Hamamatsu C5680 is used. It features a dual sweep
unit.

For measurements of the bunch length, several factors have to be considered. First of all, on
the fluorescent screen every incoming light is detected as spots with a macroscopic diameter.
The effect is intensified when the photomultiplier is tuned to detect even single incoming
photons. As a counter measure, the resulting profiles may be unfolded with the point
spread function. Secondly, windows in the beam line act as dispersive elements. That way,
the light pulse is elongated. To minimize this effect, a filter is used to only pick light around
a central region of 550 nm, which is the region where the streak camera is most sensitive.
At last, noise on the recorded data can be hardly distinguishable from signal. This fact
has most impact, when the bunch length has to be determined. As the bunch shape is not
known a priori, no fits can be used. So, to minimize the effect of outliers, usually the full

1When neglecting the changing form factor, e.g. Eq. (3.19a) does not change if the ratio Nb/fs,0 is
constant. Eq. (3.22) contains the ratio |ηc|/Ipeak ∝ f2

s,0/Nb, see Sec. 3.3 for details.
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width half maximum (FWHM) should be preferred over the RMS as a measure to quantify
the bunch lengths. The results presented in this thesis are obtained using a fully automated
data evaluation by a custom made software [Sch13] that implements these guidelines.

An edge-case is the determination of the natural bunch lengths σz,0: In the needed limit
of very low bunch currents, collective effects become unimportant, so multiple bunches –
although with different current – have a sufficiently similar shape. So, when it is guaranteed
that phase2 and amplitude of the coherent synchrotron oscillation is also the same for all
bunches, streak camera measurements should be favorably carried out in a multi-bunch
environment. In this special case, averaging the (noisy) signal of the different bunches
comes as a feature rather than a problem. Furthermore, for very low current the bunch
form is known to be Gaussian, so a fit may be applied to reduce the impact of noise.

4.2. THz Detectors

To detect the synchrotron radiation, the spectral sensitivity has to be high enough to
detect pulse powers in the µJ range. The most sensitive detector available at KARA is a
hot electron bolometer (HEB). In such detectors, a superconductor is cooled exactly to
the critical temperature to be sensitive to very small temperature changes. The HEB can
even see ISR, however, it has a very limited dynamic range that has to be adjusted using
absorbers in front of the detector. The detector’s antenna is designed for a broad band
spectral sensitivity between 200GHz and 4THz with a peak at the lower and of this range.

For the sake of flexibility, mostly Schottky diodes are used. Those work at room temperature
and thus are easily set up, operated and replaced. Also for Schottky diodes, the sensitivity
range depends mainly on the antenna. At KARA, five wave guide coupled (narrow band)
ones from Virginia diodes [VDI17] are used [Ste+17b], ranging from 90GHz up to 140GHz,
from 140GHz up to 220GHz, from 220GHz up to 325GHz, from 325GHz up to 500GHz,
and from 500GHz up to 770GHz Also, a quasi-optical (broad band) diode from Advanced
Compound Semiconductor Technologies [ACST17] is available, with a sensitivity ranging
from 50GHz up to beyond 2THz. All of those Schottky diodes have time constants fast
enough to resolve individual bunches. The readout can be done using an oscilloscope or
KAPTURE (Karlsruhe pulse taking and ultra-fast readout electronics) [Cas+14]. The
latter allows for continuous acquisition of the data for every single bunch (with a spacing
of 2 ns) with up to four channels. Those channels can sample the same detector pulse with
delays of up to 100 ps, or alternatively pulses of up to four separate detectors.

The measured CSR radiation power

PCSR(t, I) =
f2∫
f1

s(f)× PCSR(t, I, f) df (4.1)

also involves the spectral sensitivity curve s(f) of the detector. Typically, the detected
energy is given in arbitrary units. The reason is that s(f) is also dependent on the shape
and the duration of the incident pulse but in the data sheet it is only given for DC signals.

When ∂PCSR(t, I)/∂t 6= 0, the fluctuation is often (e.g. [Kus09; Fei+11; Eva+12; Shi+12]
visualized using a spectrogram3

PCSR(f, I) =

∣∣∣∣∣∣
∞∫
−∞

PCSR(t, I)e−i2πftdt

∣∣∣∣∣∣ . (4.2)

2Especially the synchronous phase which is harder to validate than the relative phase.
3A good introduction can be found in [Bro+16b].
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Notice, that here f is in the kHz range, so it should not to be mixed up with the wavelength
of the emitted photons. While the time domain data might look almost chaotic, the
periodicity of the burst follows a very incisive pattern.

4.3. Electro-Optical Methods

Electro-optical measurements sample the electric field using the Pockels-effect, either using
individual, short pulses or a long, chirped laser pulse. The first method allows to scan large
time intervals and is referred to as (classical) electro-optical sampling (EOS), the latter
method – called EOSD – allows for single-shot measurements.

EOS was first used to measure repetitive ultrafast electrical transients [VMG83; MV86].
Latter, the principle has been applied for THz radiation, also advancing the technique
to EOSD [WZ95]. Electron bunch lengths and profiles were first obtained at linear
accelerators [Wil+02; Jam+06]. KARA is the storage ring where first EO measurements
were carried out both, using the THz radiation in far field CSR (see Sec. 2.3.2) at a beam
port [Ple+09], as well as using a dedicated in-vacuum setup. The latter, since its installation
in 2013 [Hil+13], is in regular operation at KARA. The setup is based on an EO crystal
that is placed right next to the electron beam and allows for measuring bunch profiles.
The principle uses the fact that the coulomb-field has almost the same shape as a charge
distribution moving at relativistic speed (see Sec. 2.3.1). Comprehensive studies using the
original setup, can be found in [Hil13], some more recent results – also using the optimized
design – are in Sec. 5.4.

4.3.1. The Pockels-Effect

The measurement principle is based on a crystal that becomes birefringent when it is
exposed to an electric field. This can be explained by the Pockels-effect. The Pockels-effect
is an electro-optical effect that imposes a linear change to the refractive index when an
external electric field Emod is applied [Poc06; Voi08]. To be precise, the refractive indexes
n along two of the crystal axes are proportional to the electric field. They are referred to as
the “slow”-axis (refractive index ns) and the “fast”-axis (nf). With Emod = 0, ns = nf = n0.
As described in [Ste07, p. 38] the maximum EO effect is obtained by alignment according
to Fig. 4.2.

When a laser pulse is sent through the crystal with the Pockels coefficient r41, this bire-
fringence then turns the linear polarization of a laser pulse into an elliptical one. The
modulation Λ is a function of the laser wavelength λ, the unperturbed refractive index n0
and the crystal thickness d

Λ = 2πd
λ

∆n = 2πd
λ
n3

0r41Ey. (4.3)

At KARA, a Gallium Phosphide (GaP) crystal and a near-infrared laser (central wavelength
1030 nm) are used. The crystal thickness originally was d = 5 mm, but was increased to
d = 7 mm to optimize performance (see Sec. 5.3).

4.3.2. The Electric Field Inside the EO Crystal

For EO measurements in the near field, it is used that the Coulomb field of the bunch has
almost the same shape as the longitudinal bunch profile (see Sec. 2.3.1). The Pockels-effect,
however, does not allow to differentiate between the primary coulomb field and wake fields
(cf. Sec. 3.2). In fact, what is really measured is not the Coulomb field itself: As the EO
crystal has a refractive index different from 1, the field can no longer co-propagate the
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Figure 4.2.: EO Crystal Orientation
The electric field to be measured ~Emod and the laser, both propagate into the same
direction. The latter is linearly polarized with ~Elaser ‖ ~Emod. To obtain the strongest
modulation, the crystal is placed in a way that [−1, 1, 0] ‖ ~Emod. Here, the electron
beam would pass the crystal either on the left or on the right hand side. The direction of
propagation for the electric fields is perpendicular to the (110)-plane with their directions
of polarization being parallel to the (-110)-axis X. Also, the fast and the slow axis are
displayed. [Hil13]

electron bunch and thus forms a primary wake field. Its shape corresponds to the Coulomb
field but is clinched in the direction of propagation because of the higher refractive index
n of the material. The wake field traverses the crystal from its front side to the back
with v = c/n. This stripping off of the Coulomb field can be compared to the effect of
a collimator for electron beams. From the bottom side, due to the limited resistivity, a
second wake field penetrates the crystal. This wake field is referred to as a Cherenkov
cone [Jam+06] and can be thought of as a resistive wall wake. As a counter-measure,
it has been suggested [Ste16] to apply a metalized surface to the crystal’s bottom side.
Alternatively, when the height of the crystal is large enough, there are radial positions,
where the Cherenkov cone and the Coulomb-like peak do not overlap.

On a longer time-scale, also secondary wake fields play a role. They develop due to a
multitude of reflections of the electric fields – not only at the crystal borders but also at
the crystal mount, parts of the laser transport system, and the electron beam pipe. To
get an impression, the (typically complex) geometry has to be considered in simulations4.
An example is shown in Fig. 4.3: The black curve marks the electric field that can be
probed electro-optically. It has to be noted that the first peak is just a fraction of the
signal. Similar effects have already been observed in the very first EOSD experiments, that
measured a THz pulse in free space [WZ95]:

“The minor peaks following the main peak are mainly due to multiple reflections
of the electrical pulse in the photoconductive emitter (impedance mismatch
along the biased electrodes), and the terahertz pulse in the sensor crystal.”

For the measurement in an accelerator beam pipe, the first source translates to primary
wake fields that are also present without the crystal. Those fields can be relevant for beam
dynamics. When drawing conclusions from such measurements of such a long-ranged wake
field, its position dependency has to be considered: The blue curve in Fig. 4.3 marks the
vertical component of the electric field at the beam orbit, the red curve the longitudinal
one. To influence the beam energy, only the longitudinal wake field plays a role5. It can be

4Sec. 5.2 will explain how the EO signal is derived from a simulation of the electric fields.
5The fields are of course related, see [Ng06, Chap. 1].
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Figure 4.3.: Simulated Fields inside the EO Crystal and at the Electron Orbit
The EO setup is capable to measure the component of the wake field Ey caused by the
electron bunch that is parallel to the laser modulation (black curve). However, this does
not imply the electrons see a field of the same shape: First of all, the EO crystal is next
to the electron beam path (here at a distance of y = 11.5 mm), but not right at the
same position (y = 0 mm). In fact, the vertical field component of the Coulomb field is
0V/m at the center of the electron bunch. Hence, the blue curve only shows wake fields
but no Coulomb-like peak at t = 0. Secondly, the influence of interest would be in the
longitudinal direction (Ez, red curve).

seen, that the the shape of the measurable field Ey(y 6= 0) deviates from the one that can
influence the beam energy Ez(y = 0), also, the amplitudes differ by one order of magnitude.
So, the component of the measured wake field that is used to study beam dynamics is the
peak at Ey(y 6= 0, t ≈ 0). As described above, this peak is directly related to the Coulomb
field of the electron bunch and – as long as its overlap with the Cherenkov cone is negligible
– has a very similar shape. Especially for the bunch tail, however, modulation of the laser
will also happen while it is counter-propagating the electron beam. This can lead to a
significant signal distortion of the measured longitudinal profile [Hil13, p. 105].

4.3.3. Electro-Optical Spectral Decoding

As usually only the part of the wake field representing the bunch shape is of interest, and
as the bunch shape varies with time, typically measurements are performed single-shot
using EOSD. The working principle uses a long chirped laser pulse, where f(τ) ∝ τ , so
that the time information can be encoded in the laser frequency. An implementation is
depicted in Fig. 4.4, the steps are:

1. The used laser [Hil13, Sec. 5.2] is a Ytterbium-doped fiver laser with a central wave-
length of 1050 nm. Using a piezo-stretcher, its repetition rate is actively synchronized
to the storage ring RF master oscillator (500MHz) and – to be syncronous with the
bunch – a harmonic of 2.7MHz.

2. The (vertically polarized) laser pulse is sent through a polarization maintaining,
dispersive fiber (∂n(λ)/∂λ 6= 0) which also introduces a chirp. The total chirp can
be controlled (or pre-compensated) using a grating compressor inside the amplifier
part of the laser. A second pulse stretcher/ compressor is placed in the free space
part in proximity to the EO crystal. Currently, however, this second compressor is
not used to decrease reflection losses. In the chirped pulse, a linear relation between
the pulse wavelength and the arrival time can be assumed.

3. The EO crystal is placed inside the electron beam pipe. The required optics to couple
the laser beam out of the fiber, into the EO crystal and later back into the next
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Figure 4.4.: Schematic drawing illustrating the working principle of the EOSD setup at
KARA. (Adapted from [Rot18, Fig. 2.6], see text for description.)

fiber, is placed on an optics plate, called the EO monitor. The in-vacuum part – the
EO arm – features the crystal mount and a reflective surface so that the laser beam
propagates parallel to the electron orbit (see Sec. 5.3 for details).

4. A polarizing beam splitter is also part of the EO monitor. It is used to couple
vertically and horizontally polarized parts into different fibers.

5. Typically, only the vertically polarized pulse is used. Neglecting losses, in absence of
the electron bunch, the unmodulated pulse contains the full power. In presence of the
electron bunch, it is called modulated pulse.

6. To detect the modulated pulse, e.g. a grating spectrometer can be used. (For details,
see Sec. 5.1.)

7. As the modulation Λ is proportional to the electric field [Eq. (4.3)], the bunch profile
can be reconstructed by dividing the modulated pulse by the unmodulated one.

Similar to streak camera measurements, there is a fast and a slow time axis. For the slow
time axis, the number of a detected single shot profile can be used. As the laser repetition
rate is precisely known, no further calibration is needed here. While the repetition rate
and timing of the electrons are fixed, the laser pulse can be shifted using fiber stretchers.
The fast time axis can be calibrated based on the beam overlap: When the laser pulse is
delayed by a known time, the position of the modulation will move accordingly.



5. Optimization of the EO Setup

“You would make a ship sail against
the winds and currents by lighting a
bon-fire under her deck? I have no time
for such nonsense.”

Napoleon (about steamships)

To be able to resolve the rich dynamics of the electron bunches during bursting CSR, the
existing EO setup was significantly enhanced. This chapter describes the steps taken to
achieve turn-by-turn recordings of the bunch profile that show significant sub-structures as
they are also predicted by the simulations (Chap. 10). In particular, it will be shown that
accepting a (known) deformation of the recorded pulse allows to significantly increase the
modulation strength. Measurements presented in this chapter have been carried out purely
to verify the improvements made to the EO setup. Actual bunch-profile measurements also
utilize other detectors introduced in the previous chapter and will be presented in Chap. 6.

5.1. Turn-By-Turn Detector Readout

The nature of the bursting CSR (Sec. 3.3.2) creates the requirement of the EO setup to
resolve both, fast and slow processes. Synchrotron motion [Eq. (2.39)] defines the time
scale of the fast ones. Structures on the bunch form and disappear within times ∆t < Ts.
The relaxation of an excited beam happens on the slow time scale ∆t > τd, defined by the
damping time τd (Sec. 2.3.3).

These requirements are hard to meet: Commercially available spectrometers have repetition
rates up to [cite something]. Compared to the tens of kHz of the synchrotron motion, this
is not enough. Alternatively, a time-stretch approach [Rou+15] can be used. It uses a long,
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Figure 5.1.: Schematic Drawing of KALYPSO
The detector consists of a line detector with 256 pixels. The pixels are individually
connected to one of two GOTTHARD (gain optimizing microstrip system with analog
readout) frontend chips, so they can be read out all in parallel. Digitization is performed
using a total of sixteen parallel channels. (Courtesy of Lorenzo Rota.)
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Figure 5.2.: Histogram of KALYPSO Background Measurement
Displayed is the number of ADC counts for a measurement of the KALYPSO detector
with no illumination by the laser. Sources for the noise include ambient light, fluctuations
of the voltage supply and ground levels, and thermal noise. Notice that most pixels (6
%) show 0 ADC counts, but due to a slight asymmetry of the distribution, the fitted
Gaussian distribution peaks at -0.83.

dispersive fiber to elongate the modulated, chirped light pulse after the EOSD measurement.
Afterwards, it can be detected using a fast photo diode which is attached to an oscilloscope.
This method offers an unmet repetition rate, however the recording time is limited by the
amount of needed memory. In [Rou+15], the readout rate of 88MHz was limited by the
laser rather then the readout, the total time recorded was 420/(847 kHz) = 0.5 ms.

To overcome these limitations, in cooperation between DESY (Deutsches Elektronen-Syn-
chrotron), Łódź University, PSI (Paul Scherrer Institute), and KIT (Karlsruhe Institute
of Technology), KALYPSO (Karlsruhe linear array detector for MHz-repetition rate
spectroscopy) was developed. A brief overview can be found in [Rot+17], a more compre-
hensive description is in [Rot18]. KALYPSO consists of a linear pixel array detector that
can be made of either Si or InGaAs. Each of the 256 pixels is individually connected to
one of two GOTTHARD frontend chips, allowing a readout at 2.7MHz. So for KARA, it
allows the continuous acquisition of one bunch at every revolution. The data is digitized
using a 14-bit eight-channel ADC. (A schematic is shown in Fig. 5.1.) To have a basic
data consistency check and properly aligned data (cf. Chap. 7), the two padding bits are
used as a counter, so the total data rate is 1 328.4MB/s. Using a PCI-Express interface, the
raw data can be directly streamed to a computer – either to the main memory or to the
graphics memory.

For an error estimation, measurement results for a constant signal are histogramed. Doing
so, not only the standard deviation is known, but the complete probability density function
can be estimated. Figure 5.2 shows such a histogram for the KALYPSO detector when the
EO laser is turned off. As no signal is present, the measurement allows to investigate the
background noise. The fact that the distribution is almost perfectly Gaussian might be
seen as an indication that multiple independent sources contribute to the total noise of the
detector (σKALYPSO). Sources for the fluctuation include ambient light, limited stability of
the voltage supply and ground levels, and thermal noise. The first two sources (σFEC) are
correlated for all pixels or for all pixels connected to the same GOTTHARD frontend chip.
Thus it is possible to separate them from uncorrelated noise σthermal. This separation is
shown in Fig. 5.3.

Notice that this separation has only been possible due to the knowledge of the correct
result. If there are for example unknown laser modulations, since the instantaneous error
of the baseline is not known, it is not possible to compensate for baseline fluctuation of the
front end electronic. It however, helps to identify possible measures to reduce the noise
level of the electronics.
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Figure 5.3.: Electronic Contributions to the EOSD Background Signal
The EOSD background signal (top) for the first number of shots shows a systematic drift
of the background on all pixels attached to one GOTTHARD front-end chip as well as a
fluctuation baseline afterwards. To investigate the source, average values are subtracted.
If the same average is used for all pixels in every shot, noise contributions by e.g. ambient
light or a shared ground level are corrected for. The resulting shot-to-shot intensity
fluctuation is lowered but still visible for the two chips (center). When background level
fluctuation treated individually on a per-chip basis, to compensate for e.g. per-chip voltage
supply fluctuations, what remains is only uncorrelated noise (bottom). For comparison:
The modulation due to the EO effect is up to 350 ADC counts. The amplitude of the
substructures that are to be resolved, however, is only in the per-cent range of that. It
has to be noticed that in the real experiment changing illumination from the laser cannot
be distinguished from these background effects, so they have to be treated as an error.

The total statistical uncertainty for a measurement of the laser profile σtotal also has a
contribution from the laser intensity fluctuation and from a timing jitter. The latter might
lead to a varying charge loss at the moment the pixel is sampled.

σthermal = 5.94 ADC Counts, (5.1a)
σADC = 6.78 ADC Counts, (5.1b)
σtotal = 12.81 ADC Counts. (5.1c)

As the contributions are independent, the errors due to the laser fluctuation σlaser, and the
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Figure 5.4.: Design of the EOS v1 EO Arm
In the sketch, metal is displayed in gray, light gray indicates parts that lay behind the
cutting plane. The laser path (red) is from the top side, first to a glass prism with a
metalized surface (the blue triangle). It serves as a mirror and is held by two metal
fingers. It is reflected back from the back of the EO crystal (purple) with a small angle in
the image plane and follows the same path on the way back. (Photo courtesy of Nicole
Hiller [Hil13].)

frontend chip σFEC can be calculated as

σlaser =
√
σ2

total − σ2
ADC

= 10.87 ADC Counts, (5.1d)

σFEC =
√
σ2

ADC − σ2
thermal

= 3.27 ADC Counts. (5.1e)

In comparison, σlaser > σADC and σthermal > σFEC. So to reduce the noise, first the laser
stability should be improved. Afterwards better cooling of the detector might be considered.

5.2. Reconstruction of the Measured Wake Fields

To measure individual bunches in a multi-bunch environment, the wake field inside the
EO crystal (see Sec. 4.3.2) has to decay before the next bunch arrives. For KARA, this
means the fields may last for ideally less then 2 ns. The original geometry (EOS v1, see
Fig. 5.4) was designed to be used at linear accelerators [SSM09] with a bunch spacing of
200 ns – and did not allow measurements in multi-bunch operation at KARA [Hil13]. In a
first step needed to optimize the in-vacuum part of the EO setup, it is crucial to verify
that the signal measured using the original geometry is well understood. To do so, the
EO signal is reconstructed based on simulations using CST Particle Studio [CST17]. This
software can be used to calculate electro-magnetic fields based on a computer aided design
(CAD) model.

In the wake field solver [CST17], the electron beam is approximated by line charge with a
Gaussian profile exciting the structure. The particle velocity is taken to be β = 1. When
the particles pass discontinuities, the fields are scattered and create wake fields. Also,
resistivity and magnetic permeability of the used materials is considered for resistive wall
wakes. The field strength is saved at positions defined by so-called “field probes”. The
solver also provides results such as the wake impedance, and loss factors.

The maximum frequency of the electro-magnetic field used for calculations is dependent
on the set length of the electron bunch. A second parameter, the ‘wake length’, which
describes the maximum distance from a source point, at which a wake field is evaluated.
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Figure 5.5.: EO sampling signal using EOS v1 normalized to the first peak (Coulomb-
like peak at t = 0). For Simulation A and B the bunch length is set to 3.4 mm respectively
4.5 mm, which are both possible values for the (non-constant) bunch length. Furthermore
the position of the line where the laser passes the crystal differs by about 2 mm. Note that
Simulation B matches the measured curve better for small times but has the tendency
to overestimate the amplitude of the wake fields at later times, while it is the other way
around for Simulation A. (First published in [Sch+15].)

Benchmarks have shown that the results converge already for a small wake length and are
almost independent from the wake length until they get numerically unstable when it is set
too large. The calculated impedance on the other hand becomes inaccurate for the highest
sampled frequencies.

There are three things that have been taken into account to reconstruct the EO modulation
Λ. First, the field is not constant at all positions inside the crystal. To attack this, a
number of field probes recording Ey is placed along the line where the laser passes the
crystal. Secondly, the laser pulse has a finite length but only the integrated intensity is
measured while sampling. Thirdly, the speed of the laser light is taken into account while
integrating over the laser path. Defining the point in time when the laser hits the reflecting
surface of the crystal as t = 0 one yields an EO signal [Sch+15]

Λ ∝
∫ T

−T
Ey (z(t), t) dt =

∫ T

−T
Ey

(
c

n
× |t|, t

)
dt, (5.2)

where T is the time, the laser needs to pass through the crystal in one direction, and n is
the refractive index of GaP.

The result of this method can be seen in Figure 5.5. The first peak corresponds to the
Coulomb field of the electron bunch, the ringing is due to secondary wake fields (see also
Secs. 3.2 and 4.3.2). The differences between simulation and measurements might be
explained in several ways. Of course, there are (and always will be) differences between
the CAD model and the real setup. For example the (small) angle between incoming
and outgoing direction of the laser has been neglected. Also the absolute position where
the laser passes the crystal is not known. Here, it has been slightly varied to find a fair
match. As the effects of those differences accumulate, they play a bigger role for later
times. Also, the bunch length is constant in the simulation. In the measurement however,
as a sampling method is used to span the wide time range, the bunch charge is decreasing
with every sampling point. And while the decreasing signal strength has been corrected in
the measurement data, this cannot be done for the decreasing bunch length. At last, the
bunch in the measurement should not assumed to be Gaussian. So it has a significantly
different spectrum that would have to be considered in the simulation to model the wake
field. Considering all these points, the overall shape is matched pretty well.

The most prominent ringing has a periodicity of T ≈ 110 ps, so it corresponds to λ0 ≈ 3.3 cm
in vacuum or in GaP (refractive index n = 3.3793) to λ ≈ 1 cm. The latter corresponds to
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Figure 5.6.: Comparison of Bunch Profile and EO Signal
The Gaussian bunch profile used for the simulation (black), causes an electric field Ey
inside the EO crystal. The resulting signal (colored) that would be measured using the
two versions of the EO setup was calculated according to Sec. 5.2. In the measurement
it seems as if the bunch was leaning to its tail. This is the opposite to what it is doing
because of the potential well distortion in the CSR wake. Due to the reduced distance
between laser and electron beam, the effect is stronger for EOS v2 (cf. Sec. 4.3.2). As
the deformation is known, it can be considered in the data evaluation.

the height of the crystal which can be identified as the main source of the long ranging,
secondary wake field and also1 to the diameter of the vacuum inside the EO arm. The
simulations show that both can be seen as cavities that store energy for a longer period of
time, so they should be changed in an updated design.

5.3. Optimization of the EO Arm Geometry

The most simple and efficient measure to avoid wake fields is to increase the distance
between the structure and the electron beam. Without any further adjustments, however,
some parts of the wake field may stay unchanged [Hil13, Sec. 7.2.2] whereas the change
would also decrease the Coulomb-like peak. As the important distance for the detection of
this peak is the one between the laser and the electron beam, a solution is to decrease the
distance between the laser and the lower edge of the EO arm. This change alternatively
allows to move the laser closer to the beam axis. To further increase the height of the
Coulomb-peak, the crystal width can be increased: Based on the dispersion of the field
entering the crystal at the front surface, the phase retardation first grows approximately
linear with the thickness. At a certain point that is dependent on the bunch length,
saturation is reached. As an example: For GaP crystals and bunches with a length of
100 fs, effects of the saturation are visible starting from a crystal thickness of 300 µm, but
phase retardation still grows until 400 µm. Extrapolating from the results shown in [Ste07,
p. 73], for bunch length of 2 ps or more, saturation should not be reached before a crystal
thickness of 10mm. Also a pulse lengthening is predicted for thicker crystals. So, the
increased signal comes at the cost of a limited resolution.

For the optimized EO arm (EOS v2 ), both changes are applied: The crystal height (and
witdh) is decreased from 10mm to 5mm, and its length is slightly increased from 5mm
to 7mm. Notice that these changes also increase the effect of the Cherenkov cone (see
Sec. 4.3.2). Even for measurements using EOS v1, it seems as if the bunch was leaning to its

1Just for information. As the distance is in vacuum, the inner arm diameter cannot account for the
most prominent ringing.
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Figure 5.7.: Design of the EOS v2 EO Arm
Metal parts are displayed in gray, the EO crystal (GaP) in violet. The metal surface facing
up left replaces the prism used as a mirror in EOS v1. The other main improvements are
the conical shape inside the EO arm and the decreased distance between laser path and
lower edge of the EO arm.
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Figure 5.8.: Wake Loss of EOS v1 and EOS v2
Wake losses calculated using CST Particle Studio, assuming a Gaussian bunch profile. It
can be seen, that the losses can be approximately halved using the 9mm setting. In the
5mm setting, on the other hand, the modulation is approximately doubled.

tail, but Fig. 5.6 shows that the increased signal height comes at the cost of a significantly
stronger deformation of the measured profile. As the deformation is systematic, it can be
considered in the data evaluation. The changed crystal dimensions, on the other hand,
increase the signal-to-noise ratio by a factor Λ2/Λ1 dependent on the distance ∆y between
the lower end of the EO arm and the electron beam. Based on Eqs. (2.13) and (5.2), it
can be estimated by

Λ2
Λ1
≈ l2

(∆y + h2/2)2 ×
(∆y + h1/2)2

l1

= (∆y + 5 mm)2

(∆y + 2.5 mm)2 ×
7 mm
5 mm . (5.3)

An exact expression would have to consider not only the velocity of the electrons, but also
the exact path of the laser. Here, it has been taken to be centered in the crystal, neglecting
also small angles that have to be present independently from the actual alignment. In total,
the new geometry realistically allows to increase the modulation strength by up to a factor
of four. In this case, however, it will probably still be limited to single-bunch operation.

The typical distance between the bottom of the EO arm and the electron beam ∆y was
estimated to be approximately 5mm. To have a modulation as strong as before, using
EOS v2, the new design distance is 9mm.
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Figure 5.9.: Wake impedance of EOS v1 and EOS v2
Real part of the wake impedance for EOS v1 (red) and EOS v2. ∆y is the distance between
the lowest part of the EO arm and the nominal beam orbit. For EOS v2, the optimized
distance between laser and lower edge of the arm leads to the possibility to increase the
distance to ∆y = 9 mm at the original signal level. For EOS v2 and ∆y = 5 mm the EO
signal will be increased. (First published in [Sch+17a].)

To disallow resonant modes, parallel surfaces are avoided in the metal part of EOS v2.
For the mirror, replacing the prism holder (the two metal fingers) by an integrated mirror
surface also allows to keep small size so that the advantages of the smaller crystal can
be fully exploited. The inner side has a conical shape (see Fig. 5.7) and was inspired by
a pickup beam position monitor that was also designed to avoid after-ringing [Ang+12;
Ang+15].

Figure 5.8 shows the wake losses calculated for EOS v1 (∆y = 5 mm) and EOS v2
(∆y = 5 mm and ∆y = 9 mm) and a range of bunch lengths between 1mm to 7mm. It can
be seen that the losses slightly increase for the closer setting – which gives approximately
doubled modulation when compared to EOS v1, but the alternative setting without increased
modulation approximately halves the losses.

To have a more general impression, that is also valid for non-Gaussian bunch profiles, the
real part of impedance <[Z(f)] has to be considered. Figure 5.9 shows that it has decreased
almost over the whole simulated frequency range, only a contribution around 5GHz is
significantly stronger than before. The predicted wake can be found in Appendix C.1,
a measurement result is shown in the next section. To investigate the region around
30 GHz = c/1 cm where there was the most prominent ringing in EOS v1 (cf. Fig. 5.5), the
number of grid points would have to be increased above the limit that was allowed with
the used CST license.

In total, the new EO arm design allows to increase the distance to the electron beam,
leading to a significantly lower wake loss. Alternatively, the modulation (and thus the
signal-to-noise ratio) can be increased by a factor of up to four. These improvements come
at the cost of a deformation of the signal that has to be considered in the data evaluation.
Furthermore, a conical shape of the inner side as well as the avoidance of parallel surfaces
reduce the impedance and also counter-act the persistence of secondary wake fields.

5.4. Test Measurements

To evaluate the optimized EO arm, a series of test measurements was carried out. At first,
the absolute signal was recorded using a photo diode while scanning the time delay between
laser pulse and the revolution signal from the accelerator. The result yields the needed
delay for measurements of the electron bunch’s electric field as well as a signature of the
trailing wake fields inside the crystal. As it was the standard procedure before the upgrade,
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Figure 5.10.: EOS wake field measurements using EOS v1 and EOS v2
The overall improvement is clearly visible: For EOS v2, the wake field decays much faster
in comparison to the measurement with EOS v1, where the wake field persists over the
entire measurement range of t = 2.5 ns. (First published in [Sch+17a].)

for this test, the EO arm was moved to the electron beam as close as possible without
loosing electrons. Figure 5.10 displays the measured wake fields for EOS v1 and EOS v2.
In the measurement with EOS v1 the wake field persists over the entire measurement range
of t = 2.5 ns. Using EOS v2, the overall improvement is clearly visible: the wake field
decays much faster. At t = 2 ns, where, in a multi-bunch environment, the subsequent
bunch would be located, the wake field has already dropped roughly to background level.
Notice that this major goal of the redesign of the EO arm could be reached even without
increasing the distance to the beam.

Two single-shot electron bunch profile measurements – recorded before and after the upgrade
to EOS v2 – are shown in Fig. 5.11. The improved data quality is clearly visible: As
predicted by simulation, the modulation is increased approximately by a factor of two2.
Due to continued firmware optimizations, the signal-to-noise is even further increased. The
electronic noise contribution was reduced from σADC = 11.7 to σADC = 6.8. [See Eq. (5.1)
for individual noise contributions.] The sensitivity has significantly improved, allowing for
clearer observation of substructures on the bunch profiles (see Sec. 6.2).

(a) EOS v1 modulation profile (b) EOS v2 modulation profile

Figure 5.11.: Single bunch profile recorded using EOSD
The modulation profile recorded using EOS v1 (a) is dominated by noise. In this single
profile it is hard to see substructure. For EOS v2 (b), the modulation is stronger –
approximately by the factor of two that has been predicted in the simulations. As
expected, the adjacent wake is influencing the overall shape of the measured profile. Due
to the deformation of the measured pulse but also of the electron bunch, structures are
still hard to see in a single profile. The darker, inner error bands are due to the electronic
noise (σADC = 11.7, σADC = 6.8), the lighter, outer ones include all sources of noise –
especially laser power fluctuation. The influence of detector is clearly visible, there are
pixel defects (e.g. pixel 104). (Data first published in [Sch+17a]).

2A second option to influence the modulation is alternating the separation in the beam splitter. Changing
the laser focusing on the other hand can only infleunce the total intensity.



6. Bunch-Profile Measurements

“We are never in a position to say what
really is or what really happens, but we
can only say what will be observed in
any concrete individual case.”

Erwin Schrödinger

This chapter shows possibilities and provides experimental data obtained using the detectors
introduced in Chap. 4. The data can serve as benchmark scenarios to show that simulation
results describe real beam dynamics. It also points out the complementary advantages of
using a streak camera (Sec. 6.1) or the near field EO setup (Sec. 6.2), and compares bunch
profiles obtained using the two methods (Sec. 6.3). At last (Sec. 6.4), an experimental
example for the connection between the evolution of the bunch profile and the emission of
CSR is shown. Interpretation is done later (Chap. 10), based on numerical studies.

6.1. Streak Camera Measurements

To obtain the average bunch profile including a precise measurements of the average bunch
length, streak cameras (see Sec. 4.1) are the weapon of choice. While they in principle
allow for single turn measurements, due to the strong influence of shot noise, they lack the
ability to resolve short substructures on highly compressed, low-charge bunches.

The result of a typical single streak camera measurement is shown in Fig. 6.1. The horizontal
and vertical time axis are variable and can be calibrated by the temporal gradient of the
sweep voltage. In the shown example, the sweep voltages are set so that the horizontal
axis shows 500 µs, and the vertical axis 191 ps. For a bunch length measurement, the time
span of the horizontal (slow) sweep should be chosen so that the synchrotron oscillation
can be resolved. However, a very short timescale introduces high statistical uncertainty
due to the photon emission’s Poisson noise. Notice that single photons can be identified
in Fig. 6.1 and also that the individual pulses of light arriving at the streak camera have
a certain width. So the horizontal axis has a uncertainty based on the spot size. Even
though single-bunch resolution is possible also in a multi-bunch environment, due to the
small photon count, a slower horizontal sweep combined with single-bunch operation is
preferable. This way, resolution on the slow time axis is sacrificed to an extent that it is
no longer possible to resolve individual turns, to get the best resolution for the averaged
bunch profile. Without single-bunch operation the signals of all bunches overlap and it
is not be possible to distinguish between them or (even worse) between pulse shape and
synchrotron oscillation. So the strong optimization for the averaged profile requires single
bunch operation.

36
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Figure 6.1.: Raw Image Recorded using a Streak Camera.
The position the photo electrons (green) hit the screen correlates to its arrival time. In
the shown case the sweep voltages are set so that the horizontal axis shows 500 µs, and
the vertical axis 191 ps. However, even without sweep, there is non-zero spot size coming
from the electron beam diameter. To minimize the effect of the transverse shape on the
bunch length measurement result, the spot has been chosen to be wide and flat. There
are overlays added for the bunch centroid (black) and its duration (gray) based on single
vertical slices.

The bunch length is obtained from a streak camera image using the projected bunch profile
to the vertical axis

ρ(y) =
Nx∑
x=0

I(x, y), (6.1)

where I(x, y) is the recorded intensity at the pixel indexed x, y. As it is more robust
against shoulders in the signal and remaining outliers, the FWHM is the measure of choice
to describe the bunch length from experimental data. To remove the influence of the
coherent synchrotron oscillation, first identifiable background photons are suppressed by
discriminating outliers

I ′(x, y) =
{
I(x, y) if ymin < y < ymax,

0 else,
(6.2)

where ymin/max are the positions closest to max(ρ(y)) where ρ(y) = 0. Afterwards, the
synchrotron oscillation is deducted, moving the signal to the vertical center

I ′(x, y) = I(x, y +Ny/2− COM(y(x±∆x))). (6.3)

COM(y(x±∆x)) marks the center of mass y position in the surrounding of x. The two
steps described by Eqs. (6.2) and (6.3) are repeated iteratively until the projection has
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Figure 6.2.: Bunch Length Histogram (Using Streak Camera Measurements)
For constant currents, there were series of 100 bunch length measurements using a streak
camera. The results are shown in a histogram where each vertical line stands for on of
these measurement series. The color indicates the share of these 100 measurements that
was evaluated with a given lengths. To visualize the spread of the obtained distribution
of bunch lengths, 10 times the standard deviation is added as a white line. Its increase
below currents of 0.2mA can be attributed to Poisson noise, but for higher currents
the influence of noise decreases. Instead, the distribution becomes broader because of
fluctuating length.

converged. More details to the data evaluation including benchmarks based on simulated
data can be found in [Sch13].

Using this method, static bunch deformation (see Sec. 3.3.1) and lengthening as well as
fluctuating bunch length (see Sec. 3.3.2) can be observed. The latter, however not as a
dynamical process: Obtaining the bunch length – e.g. using the algorithm described above
– requires to set the horizontal axis to a time range that is able to resolve the coherent
synchrotron oscillation. Otherwise, for a changing amplitude of the oscillation will cover the
changing length. Thus, a statistical approach is chosen. Figure 6.2 shows this fluctuation:
For constant currents, series of 100 bunch length measurements were done. The results are
then represented in a color-coded histogram. It has to be mentioned that the uncertainty
is much lower then the width of the distribution: The increasing spread below currents of
0.2mA can be attributed to Poisson noise, but for higher currents the influence of noise
decreases. Above 0.2mA, the fluctuation is not a measurement artefact, the actual values,
however, are influenced by the averaging done to obtain the single bunch lengths. So
high-frequency fluctuation cannot be resolved using this method.

As the FWHM pretty much has to be used for bunch length measurements but theory [e.g.
Eq. (3.24)] focuses on the standard deviation, the bunch lengthening is quantified based on
simulation results (see Sec. 10.1.3).

6.2. Electro-Optical Measurements

Electro-optical spectral decoding offers single-shot measurements of the bunch profile. In
contrast to streak camera measurements, every single revolution can be separately recorded
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Figure 6.3.: EOSDmeasurements using EOS v1 and EOS v2 , both using the KALYPSO 2
detector system. In both cases, the bunch head points to the bottom side (lower pixel
numbers). The time-range has been chosen to that substructures emerge roughly in the
center of the horizontal axis. The different signal to noise ratio is due to the increased
modulation – the EO arm has been moved as close to the beam as the one before. (Upper
dataset already published in [Rot+17], lower plot already published in [Rot18].)

with a signal-to-noise ratio that allows to see dynamic changes. A further advantage is that
continuous recordings are possible, only data storage sets the limit. As displayed in Fig. 5.6,
the measurement principle may introduce significant deformations to the measured profile.
The effect is systematic, so it does not influence the observation of temporal deformations,
significant structures and their turn-to-turn evolution. However, when doing quantitative
analysis, it should be considered. In Sec. 6.3, it will be discussed in comparison to streak
camera recordings taken at the same time.

Figure 6.3 shows two example recordings featuring emerging substructures. As for the
streak camera data (Fig. 6.1), the synchrotron oscillation is clearly visible. In contrast to
streak camera recordings, the vertical slices feature individual bunch profile measurements.
For the EOS v1 data, the influence of the substructures is visible e.g. in a 6fs modulation at
the bunch tail (upper side of the bunch profile after turn 4500). Due to the signal-to-noise
ratio, the traces are, however, easy to oversee. For the EOS v2 data, thanks to the improved
modulation strength and the decreased electronic noise, there is a clear intensity modulation
visible also in the bunch center. Also notice that the bunch recorded using EOS v2 seems
to lean backward. This is not real but due to the aforementioned measurement artifact.

As continuous recordings cannot be evaluated by hand, efforts have been undertaken to
allow automatic categorization of the bunch profiles using unsupervised machine learning.
Details on the method (investigated based on simulation data) can be found in [Bol17].

6.3. Comparison of Bunch Profile Measurement Methods

In the previous sections, the advantages and disadvantages of the two measurement
principles, streak camera and EOSD, have been pointed out individually. To directly
compare results, Figure 6.4 shows one averaged bunch profile measurement, simultaneously
recorded using both detectors.

For streak camera measurements, it can clearly be seen that the bunch is leaning forward,
due to the effect of the potential well distortion (cf. Sec. 3.3). For the EO measurements
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Figure 6.4.: Longitudinal Bunch Profiles measured using SC and EOSD
Comparison of averaged longitudinal bunch profiles [Hil13, p. 107], simultaneously mea-
sured using a streak camera (black) and EOSD (turquoise). The head is to the left. For
the streak camera measurements, it can be seen that the bunch is slightly leaning forward.
This is expected due to the potential well distortion in the CSR wake (cf. Sec. 3.3). For
the averaged EOSD measurements this effect is not visible. Using EOS v2, it is even
stronger (see Fig. 5.11). However, as the effect is known, it can be considered in the data
analysis.

(in this case using EOS v1 ), on the other hand, the effect becomes invisible, the maximum
is centered. As introduced in Sec. 4.3.2, this is because EO measurements are sensitive to
all electric fields that have the correct polarization Ey. So the measurement result relies
heavily on the wake field inside the crystal. For short time ranges, mostly the primary
wake fields, namely the Coulomb like wake field and the Cherenkov cone, are of importance.
The additional laser modulation caused by the Cherenkov cone is mostly visible at later
times, so it completely shadows the fact that the bunch is leaning forward. In contrast,
for a Gaussian bunch profile the impression would be the bunch was leaning backwards.
Another possible problem is that the field profiles recorded using EOSD show adjacent
wake fields, even when the effects of the Cherenkov cone is minimized. This makes it hard
to determine the point where the bunch profile has dropped back to background level (see
right hand side in Fig. 6.4).

Summarizing, the sensitivity to arbitrary wake fields introduces two problems to the near
field EO measurements that both effect absolute results. For a qualitative analysis, they
are not important. Streak cameras, on the other hand, typically do not yield single turn
recordings that allow to properly identify the shape of the bunch profile at all (cf. Fig. 6.1).
If averaged, the error due to dispersion in the beam line and other sources of point spread
is significantly lower than the error for EO. The remaining challenge for streak camera
recording is to correctly cope with the synchrotron oscillation, which is complicated by the
possibly low number of recorded photons for single revolutions.

6.4. Correlation with THz-Bursts

Both detector systems, the streak camera and the EO setup allow the use of measurement
triggers for synchronized data recordings. The successful synchronization was verified
by applying steps to the phase of the accelerating voltage. Using this well understood
mechanism (see Sec. 2.4) for a beam based method, all detectors are simultaneously exposed
to changing beam conditions that are easy to interpret. Details on the synchronisation and
its evlaluation can be found in [Keh+17b].
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(a) 18 ms of simultaneous measurement

(b) Zoom into the first burst

Figure 6.5.: Synchronous EOSD and THz Measurements
(a) shows 18ms of a simultaneous measurement of the longitudinal bunch profile (top)
and the CSR (bottom). In this time, here, four sawtooth-like “bursts” are observable.
These bursts are easily identified in the detected radiation. In the displayed time frame,
the amplitude of the coherent synchrotron oscillation changes several times, as can be
seen best at the borders of the recorded bunch profile. The zoom-in to the first burst (b)
shows (barely visible) structures that are present on the bunch profile during the burst.
(THz detector data courtesy of Miriam Brosi.)

Figure 6.5 shows synchronized turn-by-turn recordings of the longitudinal bunch profile
(using EOS v1) and the emitted CSR detected using a broadband Schottky diode attached
to KAPTURE. Unlike previous measurements (e.g. [Rou+15]), they are not dependent
on a trigger that just happens to be right before the burst. Instead, for the first time, a
time span containing multiple bursts can be recorded, allowing to zoom into any region of
interest afterwards.

The THz radiation shows a characteristic pattern that consists of a fast rise marking
the beginning of the burst and a significantly slower decrease. In between, the power
oscillates with a much lower amplitude. In the bunch profile measurement, there is a clear
coherent synchrotron oscillation (Fig. 6.5(b)). In the long-term measurement (Fig. 6.5(a)),
it becomes visible that the amplitude of the synchrotron oscillation is not constant but
more or less abruptly changing. It should be noted that there is no obvious coincidence
with the bursts. On the contrary, all possible combinations can be observed in this dataset:
At the beginning of the first burst, there is no change, at the beginning of the second burst,
synchrotron oscillation decreases, at the beginning of the third burst, it increases, and for
the last one, again, there is no change. Another feature visible in the zoom-in is the emerge
of substructures in the burst. They are slightly visible as a periodic pattern with five to six
times the synchrotron frequency. Those correlate to the fluctuation of the measured THz
intensity that show the same frequency. (A comprehensive description of the dynamics,
based on simulation data, is presented in Sec. 10.2.2.)



7. Parallelized Computing

“There are only two hard things
in Computer Science:
cache invalidation, naming things,
and off-by-1 errors.”

attributed to Phil Karlton

To perform systematic numerical studies, a fast simulation tool is needed. One cornerstone
in programming such a code is parallelized computing. Here, some fundamentals are given,
aiming to help understanding design choices in the implementation.

Although most today’s computers work differently, Von Neumann computers are still
broadly taught in computer lectures (e.g. [BU10; GS17]). When one neglects multiple
cores and the presence of different buses for instructions (e.g. the program) and data,
the description can still serve as a model for a single Compute Core1 or processing unit
(PU). One reason is that additions like pre-fetching, caching, non-executable-bits, etc. are
mostly transparent – they are literary invisible to the usual programmer. For a superficial
overview, even the aforementioned splitting of buses for instructions and data – the main
memory still is shared – can be ignored. In this work, the most important features of this
concept are just named briefly.

A simple processor will consist of at least2 a control unit (CU) that controls the instruction
stream, and an arithmetic logic unit (ALU) that does the actual computation. The Von
Neumann instruction cycle consists of five steps that are processed in an infinite loop. They
are:

1. Fetch: The CU fetches the next command from the command queue.

2. Decode: The CU interprets the command and directs it to an ALU.

3. Fetch Operands: The parameters for the command are loaded to the ALU.

4. Execute: The actual computation is performed (at the ALU).

5. Write Back: The result is written back to the memory.

For parallelized computations, the obvious approach is to have some of the components
(only ALUs, or whole PUs) be present more than once; but as Sec. 7.1.1 shows, this does not
have to be the case. Before going into detail, the next section will structure the possibilities
in an abstract way.

1OpenCL terminology
2At this high level of abstraction, registers do not need to be explicitly named. Also, memory may be

considered to be managed outside the processor.
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7.1. Parallelization Categories

A widely used scheme to categorize the different types of parallelization is called Flynn’s
taxonomy [Fly72]. It differentiates whether data or instruction streams are parallel, by
naming four different kinds of parallel computing (see Fig. 7.1).

SISD (single instruction stream, single data stream) : Historically, this was the most
common case for desktop computers. It will be discussed in Section 7.1.1.

SIMD (single instruction stream, multiple data streams) : Many ALUs share one CU.
This data parallel approach offers the best hardware-scalability. However, algorithms
have to be fitted to this model (see Section 7.1.3).

MISD (multiple instruction streams, single data stream) : This parallelization model
can be implemented using different computers, ‘voting’ on the result of a computation
to cope with bit-flips, e.g. in a high-radiation area. As it is (only) important for fault
tolerance, it will not be further discussed in this work.

MIMD (multiple instruction streams, multiple data streams) : Every piece of data can
be processed using its own instruction, so this model is more flexible then the SIMD
approach but also needs a more complex hardware. It will be discussed in Section 7.1.2.

To do efficient parallel programming, one has to be familiar with the pros and cons of the
different models. For example, it might be worth to rewrite an algorithm in a SIMD way,
but it is also very easy to oversight a detail that will need MISD instead.

7.1.1. Single Instruction, Single Data

A Von Neumann computer, as briefly (re-) introduced in the beginning of the chapter is an
example for a SISD design: It has one stream for both, data and instructions. However,
even this architectural approach with a single processor (core) allows a limited amount of
parallelization. This approach is called instruction-level parallelism and may be achieved
using e.g. pipelining, superscalar execution, or very long instruction words (VLIW). The
method will be explained using the following simple program (example taken from [Wiki18]):

1 e = a + b
2 f = c + d
3 g = e + f

The first two operations are independent and could be computed in parallel. The third
operation, however, depends on the result of the first two, and thus has to wait until the
results are saved to e and f, respectively.

In general, operations need more than one clock cycle [Gas+12] and different operations
may take different times. Traditionally calculation was computationally more expensive
than memory access. Nowadays, in some cases this relation does no longer hold true: A
simple computation on data already present will be done even before an electric signal can
travel the multiple centimeters to the memory modules. To simplify the explanation, this
fact will be ignored in the following. Furthermore, to keep the example short, fetching and
decoding the instruction will also be neglected. Strictly speaking, this implies the use of
different buses for instructions and data, but as stated before, for current hardware this is
the case anyways. For a very simple computer architecture, the above example may consist
of the following subcommands:
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Figure 7.1.: Flynn’s taxonomy of computer architectures
Flynn’s taxonomy [Fly72] classifies computer architectures by the number of instruction
streams and data streams. Traditionally, most (Von-Neumann-inspired) computers were
SISD. With just a single PU, they use a single instruction stream (SI. . . ) to work on a
singe data stream (. . . SD). A typical example for SIMD is found in graphic cards: They
can apply the same instruction to multiple data streams (. . .MD) at the same time, e.g.
when blending two overlapping, semi-transparent images. MISD is mostly relevant for fault
tolerance: If the PUs yield different results, an error must have occurred. MIMD includes
clusters and super-computers, but as of today, most PCs have multi-core processors and
those also do clearly belong into this category. (Illustrations taken from [Wiki17], similar
also in [Fly11].)
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1. Read a
2. Read b
3. Add a and b
4. Write result to e
5. Read c
6. Read d
7. Add c and d
8. Write result to f
9. Read e

10. Read f
11. Add e and f
12. Write result to g

Pipelining can mean that parts of hardware serving different purposes (here: reading,
calculating and writing) are used independently from each other. This is visualized in
Fig. 7.2. It is also possible to further divide operations into smaller chunks. So for example
a new computation can be started before the previous one is finished. A superscalar
processor [Gas+12] will automatically check data dependencies and issue commands from
a sequential instruction stream. This can be combined with out-of-order execution to allow
reshuffling independent commands to be more effective in keeping the full pipeline busy. Of
course, this needs logic in the processor, so as an alternative, using VLIW the complexity
of decision is delegated to the compiler. To do so, very specific knowledge on the processor
is needed at compile time.

Clock Cycle Read Add Write
1 a
2 b
3 c a,b
4 d e
5 e c,d
6 f
7 f
8 e,f
9 g

(a) Scalar, pipelined computation

Clock Cycle Read Add Write
1 a,b
2 c,d a,b
3 c,d e
4 f
5 e,f
6 e,f
7 g

(b) Pipelined computation with vector reads

Figure 7.2.: Visualization of an instruction pipeline processing the aforementioned
example. In a pipelined, scalar execution model (a), the execution of the 12 subcommands
takes 9 clock cycles. Slowly moving away from a purely scalar design, vector reads
(b) are an option to allow reading adjacent chunks of memory in one step. Even with
sequential processors further optimization is possible. Superscalar execution will allow
to check dependencies in hardware and out-of-order execution will then fill the pipeline
with commands that do not need current ones to be completed. Another approach is to
use very long instruction words that allow the compiler to explicitly state which (scalar)
operations are done in parallel. This, however, needs very specific knowledge on the
processor at compile time.

7.1.2. Multiple Instruction, Multiple Data

MIMD is the simplest approach to increasing the amount of work per clock cycle: Instead of
a single processor (or processor core), multiple of them are used. Symmetric multiprocessing
(SMP), where a number of equal processors is connected to the same memory through one
shared bus, has been used for decades. Multi-core architectures simply scale this model
down to a single CPU, plus they allow for more sharing of resources. On the other extreme,
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computing clusters do not share any local resources on a single computer but are built of
multiple computers connected by a network.

Notice that in a multi-threaded environment, the subdivision of the operations becomes an
important (anti-) feature: Consider int i = 0; to be incremented using i++;. If there are
two threads doing this there are two possible results: It will be the intuitive result (i==2)
if the second thread reads after the first one has written its result. Otherwise, it might also
be i==1. Notice that even plain assignments or reads cannot be assumed to be done in one
step. For example, when accessing a 64 bit variable on a 32 bit computer, two separate
operations are performed: one for the upper, one for the lower 32 bits [Pres17]. To handle
this, there are so called atomic operations that may not be divided.

In contrast to the explicitly multi-threaded approach, task-based programming offers a
higher level of abstraction [Mey14]. Logically parallel tasks do not have to be executed
in parallel. Dependent on hardware resources it might be useful to run them sequentially
to avoid context switches. When there is only one CU, doing one thing after the other is
faster then continuously changing between multiple task.

In MIMD, a further differentiation can be made by taking the memory into account. There
is uniform memory access (UMA) and non-uniform memory access (NUMA). For the latter,
there is local memory that can be accessed faster but might not always be synchronous.
For the first, all CUs share the same memory3. Examples are SMP systems (UMA) and
computing clusters (typically NUMA).

7.1.3. Single Instruction, Multiple Data

At a high level, SIMD can be seen like operating with vectors. For example, multiplying a
vector of size n by r,

~b = r × ~a

means
bi = r × ai ∀ i ∈ N∗, i ≤ n.

Here, the “×” is the single instruction, while the ai can all be loaded at once, using multiple
data streams. But this is not where SIMD ends. Consider particle tracking: A total of m
particles at time t0 with their speeds ~vj(t0) is located at positions ~rj(t0). Assuming that
∂v/∂t|t0 = 0, the positions at a later time can be easily computed as

~rj(t0 + ∆t) = ~rj(t0) + ∆t× ~vj(t0).

Writing the vectors with their 3D-coordinates component-wise yields

ri,j(t0 + ∆t) = ri,j(t0) + ∆t× vi,j(t0) ∀ i, j ∈ N∗, i ≤ 3, j ≤ m.

Using SIMD, this means just two sequential instructions: the multiplication followed by
the addition. Again, using multiple data streams all ri,j, vi,j – 3m pieces of data – can be
loaded at once. However, branching should be avoided: If parts of the data take different
paths in the code, more than one instruction is needed, so SIMD can no longer be used.

If the particles should interact according to a force ~F ∝ (~rj − ~rk)/|~rj − ~rk|3, division by
zero could happen. To check for it during the computation would include a branch for
every pair of particles. When the force is repulsing, it is better to just rely on this than
to check. For an attractive force on the other hand, the algorithm might be changed at a
different point: Implementing macro-particles of different “weight” and merging those that

3This has to be seen on the logical level of the computation. Hardware may provide coherent local
caches.
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are very close would avoid branching (at this point) and also gradually reduce the total
number of particles.

Notice that also loops include a branch: After every iteration it has to be checked whether
to return to the beginning of the loop or to continue. If loops are of the same size globally,
this is not a fundamental problem: All pieces of data are still operated on by the same
instruction. The reader should also bare in mind, that hardware designed for MIMD is
always capable to do SIMD. Therefore, the different instruction streams just have to be
fed with the same instruction.

7.2. Example Hardware Implementations

Brefore OpenCL, the hardware and ventor independet industry standard for parallel
computation, is be introduced in the next section, here a brief overview sumarizing the
range of currently available options is given. It will show the various flavors of parallel
computation and the rapid change of products that called for an abstract solution that
allows program independently from the individual piece of hardware.

Even for single-CPU systems, MIMD can come in different variants. Next to multi-core
architectures there is simultaneous multithreading (SMT) [IBM17b]. Intel introduced it
(as hyper threading) [Intel17] in 2002 as an extension to out-of-order execution (for SISD).
It interleaves instructions from multiple threads to make (even) more effective use of the
existing resources [Gas+12]. As an alternative, AMD introduced clustered multithreading
(CMT) [AMD05; Anand12], which is more on the muti-core side. Instead of keeping
resources busy by efficient scheduling, multiple cores share some ALUs that are (in a
statistical mean) not used that often.4

Also worth mentioning is the trend to integrate classical CPU and graphic-processing
cores into one chip. For this, AMD coined the term heterogeneous system architecture
(HSA) [HSA16]. It has the advantage that it allows heterogeneous uniform memory access
(hUMA) also including the graphics processor. For workloads, where synchronization
between the central processor and the graphic cards is a bottleneck, this comes as a great
advantage. Although being advertised especially by AMD and the HSA Foundation (other
members are ARM and Samsung), Intel processors do support a similar feature. The first
systems to support hUMA were Sony’s PlayStation 4 gaming consoles [Sony13].

Since 1997, desktop CPUs started to support SIMD commands. Intel’s MMX that allows
vector operations (128 bit) for integers was first extended for floating points by AMD
(3DNow! in 1998) and separately by Intel (Streaming SIMD Extension, SSE, 1999). Today,
using Advanced Vector Extension (AVX) 256-bit vector operations allow up to 8 bin32
operations per clock cycle [Gas+12]. These extensions are best combined with vector reads.
When properly aligned multiple data points can be read as one bigger piece of data. As a
consequence it might be faster to fetch four bin32 in one 128 bit read than three bin32
which make up to two (128 bit) reads. To restore memory alignment, padding bytes can
be used. In the example, it will add unused 32 bits after the 96 bits of the three bin32,
to again have usable chunks of 128 bits. As a result, cubic interpolation can be as fast
as quadratic interpolation or (without padding) can even outperform the latter. (See
Section 8.1.3 for details on interpolation.)

The theoretical peak performance of a chip can be calculated by its clock, number of parallel
execution units, vector length and special instructions. [DLP01] One that is available for all
the examples mentioned here, is fused multiply-add (FMA or fmadd) [IBM17a; IEEE08]. It

4With its new “Zen” architecture, [AMD17d] AMD is now also favoring SMT over CMT.
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doubles the theoretical peak performance5 which is usually measured in billions of floating
point operations per second (GFLOPS). An Intel Core i7-5820 with six cores at 3.3GHz
and AVX, for example, offers 317GFLOPS at a power consumption of 140 W [Intel14].

The layout of graphics cards is a bit different. To emphasize the importance of pipelining,
their hardware is even referred to as stream processors. Program counters are managed
per SIMD vector (typically 512 bit) so hardware threads (propagating as wavefronts)
are vectors [Gas+12]. This approach offers a large (theoretical) computing power using
smaller and thus more power and cost efficient chips. In the mid-range a Radeon R7 360
using 100W offers 1536GFLOPS [AMD17b] – more than twice the performance of the the
aforementioned i7 at just 60% of the electrical power. When it comes to highest performance
on a single piece of hardware, both Nvidia (Titan X, 10 974GFLOPS, 250W [NV17]) and
AMD (Radeon Pro Duo, 16 384GFLOPS, 350W [AMD17a]) dramatically increase both
computational performance and power consumption. It has to be kept in mind that graphic
cards combine many ALUs with just a few CUs. As an extreme example, the Titan X has
a total number of just 28 CUs for 3584 ALUs6 to run different instructions. This means
that branches are really bad: They will in fact disallow parallel execution, which is heavily
based on a SIMD approach.

Although not a fundamental problem, for real hardware tight computation loops might
come with a significant slow down – even if they have a fixed size. One reason is that of
course also the control logic takes its time. Secondly – even if all data takes the same
branch, the CU needs to be active. As discussed above, this is disadvantageous especially
for stream processors. If the number of iterations is static (i.e., at compile time) the loops
can be unrolled to increase the ratio of arithmetic to control instructions [DLP01; Gas+12].

7.3. OpenCL

To make use of the various features that can accelerate program execution the (binary)
program code has to be fitted to the actual hardware. To get optimal computational
performance, this can be done by hand. OpenCL [OCL16] offers a more general approach:
It is a hardware-independent solution for parallel computation and offers high-level access
to hardware-extensions like vector-units by an abstract, C-style language. Using a specific
compiler allows for efficient mapping onto the hardware. The result is parallel in a SIMD
fashion, but OpenCL also comes with management-functions like command queues that
can be used to implement task-based parallelization. In fact, there will always be at least
two (logical) threads, one for the host and one for the compute device. Between those,
memory does not have to be in sync, which is called relaxed consistency model. It requires
explicit synchronization and can be seen as a variant of NUMA, but with the addition that
consistency is not even guaranteed when host and compute device are the same hardware.

To make the usage of OpenCL more concrete, consider adding vectors of size N , ~C = ~A+ ~B.
Implemented in C, a function to perform this computation in a serial way might read:

1 // element -wise addition of A and B, stored in C
2 void add(float * C, float * A, float * B, int N) {
3 for (int i=0; i<N; i++) {
4 C[i] = A[i] + B[i];
5 }
6 }

5Another advantage is increased precision: “The operation fusedMultiplyAdd(x,y,z) computes x× y + z
as if with unbounded range and precision, rounding only once to the destination format.” [IEEE08, p. 4]

6The 3584 “CUDA Cores” [NV17] are arranged in 128-wide vectors.
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In OpenCL, the central element are so-called kernels that are executed on a device. The
unit of concurrent execution is called a work-item; each of those work-items will execute
the kernel’s function body. With OpenCL, the goal is often to represent parallelism
programmatically in the finest granularity possible [Gas+12]. The driver (or OpenCL
Platform) will then create appropriate chunks of work-items based on the used hardware.
(It is also possible to specify this manually, but without cross-dependencies the automatic
estimation works fine.) Following the above design-goal, the kernel for the vector-addition
will just add two elements and store the result. Which elements to take can be found out
using the built-in OpenCL-C-function get_global_id(int dimension).
1 __kernel void add( __global float * C, __global float * A,

__global float * B) {
2 int i = get_global_id (0);
3 C[i] = A[i] + B[i];
4 }

The kernel has to be compiled for the desired hardware. This will usually be done at
runtime. For that, first, the platform and the device have to be set up. After compilation,
the arguments have to be copied from the host memory to the memory of the computation
device and the parameters have to be set. However, what has to be done in the host
program to perform these steps will be omitted here. To understand the working principle,
it is enough to know that the kernel is executed using the function
1 cl_int cl:: CommandQueue :: enqueueNDRangeKernel (
2 const Kernel & kernel ,
3 const NDRange & offset ,
4 const NDRange & global ,
5 ... [ optional parameters ]);

where kernel names the OpenCL kernel to use, offset allows to start from arbitrary i
(would be set to 0 here), global gives the size of the work (would be set to N this example).
Work can also be N-dimensional: The type NDRange stands for N-dimensional range, which
is an N-dimensional array containing the size of the work in N dimensions. For example, a
kernel working on a 2D-array of size 256x256 might be called with global = {256,256}.

To circumvent branches, it is very useful to know predefined functions. For example, there
is a clamp function [cf. Eq. (9.4)] that acts like
1 float clamp ( float x, float minval , float maxval ) {
2 if (x < minval )
3 return minval ;
4 if (x > maxval )
5 return maxval ;
6 return x;
7 }

but is implemented in hardware – without branching. For automatic loop unrolling, the
#pragma unroll can be used in front of the loop. Even when the number of iterations is
not known at compile time, (partial) automatic unrolling can be performed if the number
of iterations is guaranteed to be a multiple of a N ∈ N. This can be indicated by #pragma
unroll N.

As stated in Sec. 7.1.3, for all SIMD techniques data-parallel thinking is very important.
Once started, it can become quite intuitive and OpenCL offers help in avoidance of branches
or unnecessary control structures. For further information the reader is referred to the
OpenCL website [OCL16]. It includes a good and up-to-date list of books and tutorials.
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7.4. Applicability

The aforementioned Intel Core i7-5960X [Intel14] for example multiplies its computational
power gained from the clock by a total factor of 128 by using eight cores (MIMD) and
vector units (SIMD). Graphic cards even have up to 8192 parallel ALUs (AMD Radeon
Pro Duo, [AMD17a]). As modern processors and compilers offer some level of automated
optimization (see Section 7.1.1), comparison to purely sequential computing is not really
fair, but it helps to get an impression.

In the framework of this thesis, parallelized computing in general, and SIMD in particular
are useful at two different points: The detector used in the EOSD spectrometer (KALYPSO,
see Sec. 5.1), can continuously stream 256 pixels of 14 bit data at 2.7 MHz. For each of these
pixels, first the background has to be subtracted before the modulation strength can be
computed by relating the measured signal for this particular pixel to the one of a reference
pulse. These tasks are easily parallelized in a SIMD manner. Secondly, also simulation of
beam dynamics can profit from this approach. The example of particle tracking has already
been mentioned, but here the numerical solution of the VFPE will be used. When the
charge density function ψ(q, p) is discretized on a grid, the needed number of grid points is
typically much lower then the number of needed particles needed for a simulation. However,
before parallelization was applied, “only a limited number of synchrotron periods [could]
be simulated in reasonable computation time, which means that statistics (. . . ) [was] not
optimal” [Sch+14]. Besides overcoming this limitation, the almost instant availability of
simulation results also opens the door to more exploratory work flows. It is an interesting
side-note, that many needed computation steps are also common in image processing –
another field where it is very common to parallelize computation.



8. Numerical Solution of the VFPE

“The best programs are the ones
written when the programmer is
supposed to be working on something
else.”

Melinda Varian

This chapter discusses the steps that are performed to simulate the dynamics of the
longitudinal phase space. Some choices are fixed in the simulation code Inovesa, created
in the framework of this thesis [Sch+17b]. Besides the algorithms, there are two kinds
of parameters, that influence the result: numerical and physical ones. For example when
an electron beam is accelerated by a voltage V = sin(2π 500 MHz× t)× 1 MV for a time
T = 2 ns (both physical settings), there has to be a numerical parameter ∆t which describes
how often the equations is evaluated. Wherever reasonable, both kinds of parameters can
be given at runtime (see lists in Appendix D).

8.1. Discretization

The discretization described here assumes that fields can be assumed to form instantaneously.
If their speed of propagation has to be considered, this requires a full backlog of the bunch
configurations. There exists a multi-threaded code implementing this [Ter+15], however,
as the bunch shape does not significantly change in the time scales defined by Eq. (2.19),
the approximation is in order. The general algorithm, this work is based on, was derived
in plasma physics [CK76], and first applied to particle accelerators by [WE00].

8.1.1. Time Steps

Single particle motion under the Hamiltonian H can be described by a nonlinear map M
with

r′ = M(t2|t1)(r), (8.1)
meaning that a trajectory passing through r at time t1 passes through r′ at time t2. To
solve this equation, a naive implementation would use the finite difference method. This
approach, however, is very challenging when it comes to the numerical stability. Because of
this understanding, [WE00] followed another approach that explicitly exploits conservation
of probability for their VFPS. For a trajectory starting at r at time 0 evolving to r′ at
time t and volume element dr evolving to dr′, conservation of probability requires that

ψ(r′, t)dr′ = ψ(r, 0)dr (8.2)

is fulfilled. Additionally, time evolution in Hamiltonian systems is volume-preserving (or
symplectic), meaning that dr′ = dr. It follows that

ψ(r, t) = ψ(M(0|t)(r), 0). (8.3)

51
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Assuming that the collective force keeps constant for small time intervals ∆t, it can be
considered as an external force [WE00], so that

ψ(r, t+ ∆t) ≈ ψ(M(t|t+ ∆t)ψ(t)(r), t), (8.4)

where M(t|t+ ∆t))ψ(t) is a map that varies as ψ evolves in time. Furthermore,

Mψ(t) = Kψ(t) ◦ S, (8.5)

where the dependency on ψ(t) is in K, and the S is constant. For better readability, the
subscript ψ(t) will be omitted in the following. In the solution of the Vlasov Equation
[Eq. (3.3)], S is a rotation map describing the synchrotron motion and K describes the
kick due to the collective effects [Eq. (3.5)]. The remaining Fokker-Planck terms can be
approximated, e.g. using a finite difference method, yielding the map D. Details on the
actual implementation of D are discussed in Sec. 9.2.2.

Following the assumptions, the rotation map S has the largest effect. Consequently, the
numerical parameter describing the discretization of time is given as the number steps
per synchrotron period Nθ. To describe K, the wake potential (see Sec. sec: calculating
the wake potential) has to be considered. When Z(s) ≡ 0 ∀s with By(s) 6= B0, one can
approximate an accelerator by an iso-magnetic ring with bending radius R0 and scale time
and frequencies accordingly1. This approach, however, comes to problems when straight
sections play a role – e.g. because of the resistive wall impedance. In that case, an averaged
wake potential is used.

8.1.2. The Grid Coordinates

When solving the equations of motion for systems of a multitude of particles, in principle
there are two possibilities to reduce the amount of needed computing time to a manageable
amount: The first one is to reduce the number of particles, the second one is to approximate
the particle distribution as a continuum ψ which is then expressed at a number of sampling
points. Notice that also the other quantity, e.g. ψ(q, p), is (implicitly) discretized by storing
it digitally (see Sec. 9.1).

Following the approach of [WE00], ψ it is discretized on a grid. For the boundary conditions,
a minimum and a maximum coordinate are defined, where the charge distribution may be
assumed to be ψ(q, p) ≈ 0. For practical reasons the new coordinate system’s origin is no
longer q = p = 0 but q = qmin, p = pmin. With ∆p, the granularity of the grid in energy
direction, the transformation between the coordinate systems is defined to be

yr := (p− pmin)/∆p, (8.6)

and accordingly for xr. So the generalized coordinates q, p ∈ R become the grid coordinates
xr, yr ∈ R≥0. The grid, however, only stores function values ψ(xr, yr) for the integer parts
of the grid coordinates. To emphasize that fact

x := bxrc, y := byrc (x, y ∈ N) (8.7)

will be used, where a point is guaranteed to be covered by the grid. For complete mapping
and especially for interpolation also the fractional part is needed. It will be denoted
{x} := xr − x, and accordingly for {y}.

1In Inovesa the parameter R can be set to R < 0 to explicitly state that an iso-magnetic ring is
simulated.
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-1,1 4,0 4 -0.5,1 4,1 9 0,1 4,2 14 0.5,1 4,3 19 1,1 4,4 24
-1,0.5 3,0 3 -0.5,0.5 3,1 8 0,0.5 3,2 13 0.5,0.5 3,3 18 1,0.5 3,4 23
-1,0 2,0 2 -0.5,0 2,1 7 0,0 2,2 12 0.5,0 2,3 17 1,0 2,4 22

-1,-0.5 1,0 1 -0.5,-0.5 1,1 6 0,-0.5 1,2 11 0.5,-0.5 1,3 16 1,-0.5 1,4 21
-1,-1 0,0 0 -0.5,-1 0,1 5 0,-1 0,2 10 0.5,-1 0,3 15 1,-1 0,4 20

Figure 8.1.: An example grid of Nx = Ny = 5 cells in each dimension spanning from
(q, p) = (−1,−1) to (q, p) = (1, 1). The the numbers inside the cell give the position in
the different coordinate systems. The first pair is q, p, the second pair is x, y, the last
number is n.

In total, the charge density in phase space is sampled at Nx ×Ny points, where Nx, Ny

is the number of grid cells in direction of location and energy, respectively. To speed up
computation, it is valuable to also define

n := Ny × x+ y. (8.8)
Doing so allows to rewrite maps M : ψt(N2) → ψt+∆t(N2) in a one dimensional form
MSM : ψt(N1) → ψt+∆t(N1), which depends only on n (see Fig. 8.1 for an example and
Sec. 8.2 for details).
When choosing a grid size (Nx and Ny), of course the size of the structures that have to be
simulated, plays a big role. Furthermore, to solve the VFPE, it has been assumed that
%(t) ≈ %(t + ∆t). To guarantee this, one can choose a grid size so that the maximum
displacement during one computation step is less then the distance of two grid points.
Assuming (q, p) = (0, 0) to be centered in the grid, the relations

Nx,y <
Ts
π∆t = Nθ

π
(8.9)

have to be fulfilled2. As at the edges of the grid ψ(q, p) ≈ 0, this equation does not have to
be strictly fulfilled (see Sec. 9.3.1 for benchmarks).

8.1.3. Interpolation
As the algorithm to solve the VFPE assumes small changes – often smaller then one grid
cell – interpolation is obviously needed. In fact, a straightforward rotation causes artifacts
even for big changes (an intuitive example is at [Tan08]). For interpolation we take into
account the surrounding data points of the point (xr, yr). In one dimension, interpolation
can be expressed as

ψ(xr) ≈ ψpi(xr) = ~ψ(x)T ~p({x}), (8.10)
where ~ψ(x) is a vector containing the particle density at the grid points surounding the
coordinate of interest, and ~p({x}) = (p0,n, p1,n, . . . , pn,n)T is a vector containing n + 1
interpolation coefficients, each a function of {x}.
In two dimension Eq. (8.10) becomes

ψ(xr, yr) ≈ ~pT (xr) Iψ(x, y) ~p(yr), (8.11)
where

Iψ(x, y) :=



. . .
...

...
... . .

.

· · · ψ(x− 1, y − 1) ψ(x− 1, y) ψ(x− 1, y + 1) · · ·
· · · ψ(x, y − 1) ψ(x, y) ψ(x, y + 1) · · ·
· · · ψ(x+ 1, y − 1) ψ(x+ 1, y) ψ(x+ 1, y + 1) · · ·

. .
. ...

...
...

. . .


, (8.12)

2For the outermost grid points, it is 1
!
> (∆x)max = tan

(
2π∆t
Ts

)
Ny

2 .
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is a matrix containing the particle density at the grid points surrounding the coordinate of
interest.
For the interpolation coefficients pν,n({m}), the Lagrange basis polynomials[Pre+07]

lν,n({m}) :=
n∏

k=06=ν

{m} −mk

mν −mk
(8.13)

have been chosen. The interpolation method is then called spline interpolation. For n = 1
the polynomial forms a linear interpolation. For n ≥ 2, not only the next neighbors are
taken into account. In 2D this method then interpolates using a total number of 9 or 16
points. This is then called biquadratic (n = 2) respectively bicubic (n = 3) interpolation.
Important properties are that ||~p|| = 1 and that the curves directly pass the values at the
grid points3. Lagrange basis polynomials are defined so that li(xj) = δij , which exactly
is the desired property. If it was different, even without a real change (∆q = ∆p = 0)
the interpolation would change the grid content. So Lagrange polynomials are used for
Eq. (8.10) for interpolation in Inovesa.
Another, option would be sinc interpolation which also fulfills the above mentioned re-
quirement but also guarantees the cardinal theorem of interpolation [Kot33]4 is adhered
to. This algorithm however, includes algorithms of at least O(N logN), whereas local
spline interpolation is only O(N). The increased performance of course comes at a cost:
As the Lagrange basis polynomials lν,n can be negative, interpolating may lead to non-
conservation of monotony or – in the picture of the Vlasov solver – even transform electrons
to positrons. Details of this problem, called overshooting, and possible solutions are
explained in Sec. 9.2.1.

8.1.4. Integration
Integration is especially needed to calculate the wake potential [see Eq. (3.9)]: The bunch
profile is obtained by the projection of the charge density in phase to the position axis
%(x) =

∫
ψ(x, yr) dyr.

If the function f(x) is a polynomial, the Newton-Cotes formula [Eq. (8.14a)] gives the
exact integral [Pre+07, p. 179]. This is not the case here, but the assumption that the
charge distribution may be locally approximated by Lagrange basis polynomials li,n, gives
a natural choice for the weights ωi [Eq. (8.13)]

b∫
a

f(x) dx ≈
n∑
i=0

f(xi)× ωi (8.14a)

=
n∑
i=0

f(xi)×
b∫
a

li,n dx, (8.14b)

that is consistent with the chosen interpolation scheme. Applied to N equally sized
sub-intervals, and choosing n = 3 yields the composite Simpson’s rule [Pre+07, Eq. 4.1.13]∫ b

a
f(x) dx = h

f(x0) + 2
3

N/2−1∑
k=1

f(x2k) + 4
3

N/2∑
k=1

f(x2k−1) + f(xN )

+O
( 1
N4

)
, (8.15)

with h = (b− a)/N and xk = a+ k× h. It is noteworthy that choosing n = 4 does not add
to the accuracy and that the alternating occurrence of 2/3 and 4/3 has no deeper meaning
but is an artifact of the building blocks using spline interpolation [Pre+07, p. 160].

3In contrast Bézier curves, another interpolation method not used here, do not reproduce the values at
all grind points.

4It is often referred to as the Nyquist–Shannon sampling theorem, but according to [Lük17] the first
theoretically exact formulation is found here.
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8.2. Source-Mapping

As discussed in Sec. 8.1.1, the map for each time step M : ψ(q, p, t) → ψ(q, p, t + ∆t) is
composed of a number maps for “rotation” (S), “kick” (K), “damping and diffusion” (D)

M = D ◦K ◦ S.

that are solved in individual simulation steps. The rotation comes from the the solution
of the two-dimensional harmonic oscillator part [Eq. (2.40)] of the VFPE [Eq. (3.4)]. The
kick models the effect of the wake treated as a perturbation to the harmonic oscillator (cf.
Chap. 3). The last step implements the RHS of Eq. (3.4). To reduce the number of needed
interpolations, implementations often combine rotation and kick into one step. However,
since every rotation step always does the same, it is worth putting some initial effort into
speeding up the rotation steps. As will be shown below, the gain of the optimization of the
rotation overweights the additional step – leading to a performance gain.

To do so, the direct implementation of each of these simulation steps is split into two sub-
steps. The information on the actual coordinates (q, p) is used by the first half simulation
step. So the original map

M : ψ(q, p, t)→ ψ(q, p, t+ ∆t), q, p ∈ R (8.16a)

becomes
MSM2D : ψ(x, y, t)→ ψ(x, y, t+ ∆t), x, y ∈ N (8.16b)

which will be called a ‘source map’ (SM). The name reflects the fact that the implementation
uses backward mapping5 to first evaluate which (xr(t), yr(t)) evolves to (x(t+∆t), y(t+∆t))
and then assembles all xi, yi that are required for the interpolation to approximate xr, yr.
This approach makes sure simplexity is conserved even when only grid coordinates x, y are
used. In contrast to previous implementations, the SM avoids re-computation by storing
all (constant) coefficients needed for the implementation. Further, using the definition in
Eq. (8.8), the original map can be rewritten in a one-dimensional form

MSM1D : ψ(n, t)→ ψ(n, t+ ∆t), n ∈ N. (8.16c)

This one-dimensional map – by construction – produces the same results as the single-step
implementation. Practically speaking, the source map expresses the information which
data of the current simulation step contributes to a grid point for the next simulation step
directly in terms of position in the computer’s memory. For many functions – such as
rotation – the SM looks the same for the whole runtime of the program. For that reason, it
only has to be computed once during a simulation run and can be kept for multiple usages.

In total, there are three implementation details that improve the computational performance:

• Caching of intermediate results (using SM),

• the reduction of the problem’s dimension (SM1D), and

• parallelization using OpenCL.

The implementation of the latter can be based on a previously created SM for the problem:
The SM formalism does not only allow to keep intermediate results, it also gives a handy
interface to implement arbitrary manipulators on the phase space. OpenCL has been
chosen because it can utilize not only multi-core CPUs but also graphic processors. OpenCL
advocates a data parallel approach that processes multiple data with one single instruction.

5Source can also be read as an abbreviation for ‘speicherorientiert und reduzierte Compterlast
ermöglichend’ – German for ‘memory-oriented and allowing reduced computational load’.
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Table 8.1.: Runtime of different implementations of the rotation on an Intel Core i5-4288U
with integrated GPU (used for OpenCL). “Rotation” stands for a direct implementation
of the rotation, SM2D implements a source map that still has two dimensions, SM1D
marks a source map that uses only one-dimensional indexes [see Eq. (8.8)]. For this test
case a binary32 grid of 512 px squared has been chosen. The time it takes to create
the SM with/without C++ compiler optimization (-O3/-O0) is in the order of 0.1 s/1 s.
(OpenCL code is always being optimized by the OpenCL compiler.)

-O0 -O3
Rotation 5m52s 33s
SM2D (seq.) 3m50s 32s
SM1D (seq.) 3m00s 25s
SM1D (par.) 0m03s 03s

So in contrast to other forms of parallelization, there is no need for parallel tasks (see
Chapter 7 for more details).

The results of a benchmark of the computational performance for the particular case
of rotation using cubic interpolation is shown in Table 8.1. It can be seen, that SM
brings a significant speedup for non compiler optimized binary code, but since it only
does simple tasks, it does not profit as much from compiler optimization as traditional
rotation does. In fact, a decent combination of compiler and processor does a lot of
automatic optimizations. However even in compiler optimized sequential operation, SM
clearly outperforms traditional rotation. Notice that parallelization harmonizes well with
the used quadratic interpolation: All four coefficients can be read in one 128 bit vector-read,
multiplication can be performed in four-wide vector units. In fact, a straightforward
implementation of quadratic interpolation would be slower. To achieve competitive speed,
padding bits would have to be introduced, to regain memory-alignment.

Results of a benchmark of the computational performance including the full three-step
map M are shown in Fig. 8.2. To allow vector-reads when applying the maps K and
S, the definition of n [Eq. (8.8)] is chosen in a way that n and n + 1 in most cases are
adjective in energy direction. In total, a non-optimized program takes days for a typical
simulation run. Using the method described above, Inovesa can reduce this to 20 minutes
when running on a customer grade graphics card. Comparing this to the 24 minutes the i7
CPU takes, shows that there is a lot more potential for optimization: Theoretically, the
R9-290 has 4850 GFlops [AMD17c] and should outperform the i7-5820 (317 GFlops) at
least one order of magnitude. Measuring the timings of the individual maps6 shows that
indeed the calculation is much faster on the GPU (e.g. 1µs vs. 62 µs for K). The typical
latency between the time the calculation is scheduled and the actual calculation on the
other hand can be in the order of a millisecond for the GPU (0.1ms for the CPU). In
another example (Late 2013 MacBook Pro featuring an Intel Core i5-4288U running on
MacOS Sierra), verifies these results: Here, when the CPU is used, 50% of the between
enqueuing the command to the computation pipeline and the end of the calculation is
spent for computation, but on the integrated GPU, this number drops to 10%. Notice that
the inverse of this time does not give the frequency commands are processed: Commands
do overlap in the pipeline. To completely evaluate this issue, full profiling would have to
be applied. However the timings combined with the total computational time already hint
that the pipeline is a lot less populated on the GPU (see Chap. 7).

6The actual values are very dependent on the driver.
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Figure 8.2.: Computational Performance Using Source-Mapping
Computational time needed by different hardware to perform one simulation run of 500
synchrotron periods, each consisting off 1000 steps, using a grid of 512 points per axis.
When running on the FX processor, a non-optimized program would take more that two
days.

8.3. Manhattan-Rotation
While rotation mathematically is a symplectic operation, the direct implementation (as
in [WE00], ‘standard rotation’) easily looses this property when an infinitesimal rotation is
performed. For example, the needed two-dimensional interpolation which involves N ×N
data points leads to interpolation coefficients l2ν,N ∝ {x}N−1 × {y}N−1 � 1. So the
algorithm is very vulnerable to numerical absorption. As an alternative, a symplectic
integrator [Wol14a] can be used that is area preserving also for truncated power series.
The symplectic map RS splits the rotation into a energy-dependent drift RD followed by a
location dependent RF kick RK

RS(x, y) = RK(x) ◦RD(y). (8.17)

Each requires a one-dimensional interpolation, involving N data points. The resulting
coefficients are l1ν,N ∝ {m}N−1 � l2ν,N . Since a point is rotated by moving on straight
lines in perpendicular directions, the term ‘Manhattan rotation’ was coined for this ap-
proach [Sch+17c].
Splitting the rotation into two maps also allows to model additional physical properties.
Recall (see Sec. 2.4) that the rotation is the solution to the linearized Hamiltonian with
ηc ≈ αc,0 and V = (V̂ 2 − U2

0 )1/2. Now, also higher orders of αc [see Eq. (2.28)] as well as
the shape of the RF bucket can be considered (cf. [Sch+18a]): The first are part of RD, the
latter of RK. As translations are always symplectic, the implementation can be directly
based on Eq. (8.1), for example

ψ(xr, y, t)→ ψ(x+ η′c(y), y, t+ ∆t), (8.18a)

where η′c(y) marks the full polynomial slip factor scaled to the grid coordinates. As

x+ η′c(y)
!
∈ N,

the source point is xr ∈ R and has to be evaluated by interpolation. The complete map
can be expressed as

RD :
Nx−1∑
i=0

ωi(η′c(y))ψ(xi, y, t)→ ψ(x, y, t+ ∆t), (8.18b)
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where the the interpolation coefficients ωi(η′c(y)) must satisfy

Nx−1∑
i=0

ωi(η′c(y)) = 1. (8.19)

8.4. Calculating the Wake Potential

To calculate the wake potential, needed for the kick map K, most VFPS codes [WE00;
Ven+05; Kle12; Kus12; Rou14] perform convolution in time domain [see Eq. (3.9a)]. Of
course, expressions for the impedance were derived based on the wake function, and there
are still cases where only a wake function is analytically known. In such cases it might be
favorable to work with the wake function. However, the computation of the convolution
“requires special care since it [the wake function] is sharply peaked in a region compared to
typical mesh cells in the Vlasov integration.” [Ven+05] This gives a first strong reason to
work in frequency domain [see Eq. (3.9b)]: The impedances presented in Section 3.2 are
all continuous and well defined for the whole range of interest. Furthermore, as %(q) != 0
at the borders of the used grid, working in frequency domain allows for zero-padding the
bunch profile. This increases the number of sampling points for the impedance and – for
the bunch profile – gives a computational cheap option equivalent to sinc interpolation of
the bunch spectrum. So the numerical accuracy of this step is also increased.

When it comes to the computational performance, fast Fourier transforms behave like
O(n logn), while straight-forward convolution is a more computational expensive [O(n2)]
algorithm. Further notice that common implementations of discrete real-to-complex Fourier
transforms like [FFTW16; clFFT16] only compute f̃(k < kmax/2) while f̃(k < 0) is ignored.
The real result would be Hermitian, meaning f̃(−k) = −f̃∗(k), but for the (Hermitian-
to-real) backward Fourier transform, this optimization is considered. This means the
impedance for negative frequencies does not have to be explicitly set and – more important
– speeds up the computation by a factor of two. Also, libraries like the ones mentioned
above already implement effective SIMD algorithms. In total, multiplication followed by
a Fourier transform very optimized. In fact, a fast implementation of the convolution
approach would also be implemented as a multiplication in Fourier space [Pre+07].

To obtain the kick map K from the wake potential, it has to be scaled after computation –
especially, when using a normalized charge with

∫
%dq = 1. To obtain the desired offset

in grid cells ∆y for one time step ∆t, the fraction of one revolution s/C = f0∆t and the
bunch charge Qb = Ib/f0 are needed. The factor y(1 eV) transforms eV to grid cells, and
dk/dq̃ = c/z(q = 1) takes into account that the Fourier transform is done in normalized
space. The combined scaling factor is

SE→y = s

C
×Qb ×

1
y(1 eV) ×

c

z(q = 1) = Ib∆t c
y(1 eV) z(q = 1) . (8.20)

From ∆y(x) = SE→y ×∆E(x), it can be continued analogue to Eq. (8.18).

8.5. Single-particle dynamics7

In the previous sections, the maps are seen in the spirit of Eq. (8.3) because this picture
offers the combination of computational efficiency and numerical stability. Performing the
calculations on the particle density ψ(x, y), however, comes with the drawback that it does
not allow to draw conclusions on the single particle dynamics. But there is a cost-efficient
solution: Recall that the original definition of a map – Eq. (8.1) – focused on exactly this:

7A more detailed description, also considering stochastic emission, can be found in [Sch+18a].
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A map describes the displacement of a particle between two points in time. So, when the
map is known, it is possible to also use it for particle tracking. As the maps are calculated
based on the charge density, it is even possible to use just a small number of representative
particles – without any loss of accuracy. In this context, it is useful to express r in terms
of xr and yr to be able to directly use the same source map as for the calculation of the
phase space [see Eq. (8.16b)].



9. Influences of Numerical Effects

“Einstein argued that there must be
simplified explanations of nature,
because God is not capricious or
arbitrary. No such faith comforts the
software engineer.”

Frederick P. Brooks

This chapter starts with a discussion of the relevance of the data type chosen for the
simulation and how it affects the accuracy of the result. But numerical inaccuracies
cannot only be caused by data types but also by the used algorithms. Section 9.2 shows
how artifacts can emerge from discretization, interpolation and other algorithms. First,
the principles are explained using extreme examples, later, their relevance is proved in
simulations of physical systems.

In Sec. 9.3, the numerical accuracy is benchmarked, testing how well it reproduces analyt-
ically known properties. The findings of these tests also have implications how starting
conditions for a simulation should be chosen if no static solution is available (Sec. 9.4).
At last, Sec. 9.5 gives an idea of how numerical effects can influence the found instability
threshold.

9.1. Explicit and Implicit Discretization

9.1.1. General Considerations

When doing numerical calculations there is always an implicit discretization when rational
numbers are expressed by digital data types. Section 8.1 described the (explicit) discretiza-
tion of space in a mathematical way, neglecting that function values of ψ(x, y) at the
sampling points are also (implicitly) discretized. When integer data types are used, this
implicit discretization is obvious: There are 2N possible numbers that can be represented,
where N is the number of bits the integer number is composed of. For 32 bits, this creates
a linear scale up to 232 ≈ 4× 109.

Arguing from this point of view, the approach of particle tracking can be seen to be very
similar: While for VFPS, the particle density at discrete points is stored, particle tracking
has to save the spacial position of every particle – which results in an implicit discretization
of space. In total, both representations have NP macro-particles (arguing with a fixed point
representation) jumping on a grid of size NG. The difference is, that NP � NG for VFPS,
and NG � NP for particle tracking1.

1 Based on this understanding, Inovesa uses the same maps that were implemented for charge density
tracking in the VFPS to track individual particles. As now NG, NP are both considerably small, the results
are are not considered in the simulation but meant for visualization purposes only.

60
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Usually the explicit discretization is much harsher than the implicit one, thus only this one
is considered as an approximation. However, being aware of implicit discretization, allows
to influence and make use of this step. Also be aware of the fact that explicit and implicit
discretization are independently chosen – thus the error contributions are not correlated.
So the overall error will be most likely dominated by the explicit discretization and will
not be significantly reduced by increasing the precision. Both discretization types will be
analyzed in the following.

9.1.2. Data Types

For the implicit discretization, the choice of the data type plays a crucial role. The size of
the data type is important as it gives the number of values that can be expressed.

Additionally, for floating points, the implementation becomes important. In modern
programming languages, the IEEE 754 [IEEE08] representation

wflt = (−1)s × bq × c with s, b, q, c ∈ N, (9.1)

is commonly used. The binary32 type (often referred to as single precision) has s ∈ {0, 1},
b = 2, −149 ≤ q ≤ +104, and 0 ≤ c ≤ b24 = 16777216. This type allows a total of about
2.5× 109 numbers between 0 and 1 to be represented: There are 224 possible coefficients to
2−149 < bq < 1. So these numbers are not equally distributed, but there are exponential
distributed clusters, each consisting of linearly distributed points.

In contrast, fixed point numbers are equally spaced. They can be described as [FPML09]

wfxp =
N−2∑
i=0

bi × 2i−f − bN−1 × 2N−1−f , (9.2)

where bi ∈ {0, 1}, f is the bit-count of the fractional part and N is the total width of the
data type (e.g. 32). For example, with N = 8 and f = 2, the range of this type is from
−32 to +31.75, and the fractional part can encode multiples of 2−2 = 0.25. There are
three advantages of using fixed point numbers. First, for almost any2 wi there is a wj ,
so that wi + wj = 1. This property of course helps to keep normalization. In principle,
fixed point arithmetics in combination with stochastic rounding (see Appendix B.3) could
completely avoid rounding errors. Second, the implementation is flexible, so f can be freely
chosen to allow more accuracy. For example N = 8 will also allow to have a range from
−2 to (2 − 2−6). This flexibility can even be used to temporarily increase the accuracy
for critical steps with low computational overhead. Third, fixed point math typically is
computationally cheaper than floating point maths.

9.1.3. Simple Example

The Gaussian distribution will serve as an example for explicit and implicit discretization.
For a grid, (explicit) sampling points have been chosen to be at multiples of ∆exp = 0.1.
The (usually) implicit sampling is set to 101 values ŷ in the range [0 : 1], following

(ŷ)lin = 0.01× n, , or (9.3a)
(ŷ)exp = exp(−0.01× n), (9.3b)

where n ∈ N, n ≤ 100 in both cases. This configuration leads to ∆exp > ∆imp. Usually one
would have ∆exp � ∆imp. To get an idea of the differences between expression of values in

2The only exception is bi = 0 ∀i 6= (N − 1), bN−1 = 1.



62 Dynamics of ultra-short electron bunch profiles

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Gaus
Exp.
Lin.

0 1 2 3 4

0.00

0.01

0.02

0.03

0.04 Exp.
Lin.

Figure 9.1.: Gaussian distribution sampled at multiples of 0.1
To give a feeling for implicit discretization, original values (black) are rounded down to the
next of 101 values, which are exponentially (red) respectively linearly (blue) distributed
[see Eq. (9.3)]. The points (“+”) are connected by lines obtained by local cubic spline
interpolation. On the left hand side, the actual curves are displayed. The right hand side
shows the mismatch of the sampled data to the analytic curve. The linearly distributed
values are advantageous near the maximum and have a smaller maximum absolute error,
whilst the exponentially distributed ones can still model the small changes at y ≈ 0. In
total, the maximum relative error is smaller for the exponentially distributed values.

fixed point and in floating point, every function value y is rounded down3 to the nearest
ŷ. The result is shown in Fig. 9.1. It also features local cubic interpolation between the
sampling points. Even though this simplified example ignores the variable coefficients,
which floating point data types usually have, it still gives an idea of the advantages and
disadvantages of the different kinds of data types: Fixed point values have a limited absolute
mismatch, so they show less relative mismatches for higher values. When the values become
small, on the other hand, of course accuracy is lost.

For both cases, linearly and exponentially distributed values, the relative mismatch ∆y(x) =
[y(x)− ŷ(x)]/y(x) grows to 100% as the Gaussian distribution vanishes. As a rule of thumb,
for values distributed over several magnitudes, expression as fixed point minimizes absolute
mismatches, floating points minimize relative mismatches.

9.2. Numerical Artifacts

9.2.1. Interpolation

Interpolation using negative weights [cf. Eq. (8.13)] has possible overshooting, which
results in “interpolated” values larger (or smaller) than all neighboring ones (see Fig. 9.2).
While this problem does not exist for sufficiently smooth surfaces, especially when it is
desired to simulate small structures the impact should be checked. The problem is because
the combination of small changes and local polynomial interpolation do not consider the
cardinal theorem of interpolation (cf. comment in Sec. 8.1.3).

As an example a test pattern consisting of four different quadrants is used: One is kept
empty, one is at the maximum value but contains a diagonal spoke at background level,
the third sector decreases linearly with one of the dimensions and the last one decreases

3This is the default for integer numbers and fixed point number implementations implemented using
them. IEEE 754 floating point numbers have a rounding-direction attribute. The different options are
presented in Appendix B.3.
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Figure 9.2.: An example function (black curve) has been sampled at the points marked in
gray. The colored curves give the result of he approximation using different interpolation
schemes. In the region 3 < x < 4 quadratic and cubic interpolation show an overshoot:
the interpolation result exceeds the value of the neighboring data points. This can be
cured using clamped interpolation as described Eq. (9.4).

in both dimensions when moving off the center. When this pattern undergoes a series
of infinitesimal rotations, the aforementioned artifacts evolve in a wave-like structure,
as can be seen in Fig. 9.3. A possible countermeasure could be a finer grid (more grid
points to describe a structure) combined with (a limited amount of) intentional blurring
to wash out sharp edges. The blurring can be seen as a cheap low pass filter and helps
to avoid the overshoots that also higher order polynomials show. In total, the minimum
resolvable structure would still be the same but the cardinal theorem of interpolation would
be adhered to. However, even though still relying on the computationally cheap [O(n)]
local spline interpolation, due to the increased number of grid points in all simulation
steps, in total this approach is time-consuming [O(n2)]. But there is an alternative to sinc
interpolation [O(n logn)] that can also be O(n): An interpolation function that preserves
monotony4. One solution of this type uses clamped interpolation. This simple technique
is used e.g. in real-time computer graphics and is for example part of OpenGL since its
initial release [OGL17] in 1991. Applying it, Eq. (8.10) becomes [Sch+17c]

ψclamp(xr) =


max[ψ(x), ψ(x+ 1)] if ψpi(xr) > max[ψ(x), ψ(x+ 1)],
min[ψ(x), ψ(x+ 1)] if ψpi(xr) < min[ψ(x), ψ(x+ 1)],
ψpi(xr) else.

(9.4)

This approach does not cure the principle problem of local spline interpolation but it
addresses the problem of overshoots at a relatively low cost.

To summarize, interpolation can introduce artifacts that form unphysical substructures5.
Possible counter-measures include using computationally more expensive algorithms. How-
ever, using clamping allows to suppress the shown type of artifacts still using an O(n)
algorithm.

4It may of course not act globally because non-monotonic substructures (the micro-bunches) shall be
simulated.

5The relevance of these self-amplifying and propagating structures for realistic physical cases will be
shown in Sec. 9.2.3.
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(a) Ideal result (b) Quadratic interpolation

(c) Cubic interpolation (d) Clamped cubic interpolation

Figure 9.3.: Comparison of different interpolation types applied while rotating a test
pattern by 127° in steps of 360°/4000 = 0.09° (using the standard rotation algorithm).
Ideal result for the rotated test pattern (a), result obtained using quadratic interpolation
(b), result obtained using cubic interpolation (c), and result obtained using clamped cubic
interpolation (d). Areas displayed in red are above or below the limits of the initial test
patterns – these values are clear interpolation artifacts.

9.2.2. Numerical Differentiation

To solve the Vlassov-Fokker-Planck-Equation’s damping and diffusion part [map D, right-
hand side of Eq. (3.4)], the first and second derivative of ψ are needed. The first numerical
derivative often is carried out as a difference quotient [Pre+07], either single-sided

∂f(x)
∂x

∣∣∣∣
x=x0

≈ f(x0 + ∆x)− f(x0)
∆x , (9.5a)

or two-sided

∂f(x)
∂x

∣∣∣∣
x=x0

≈ f(x0 + ∆x)− f(x0 −∆x)
2∆x . (9.5b)

As Eq. (9.5b) is the average of Eq. (9.5a) evaluated in both directions, it is intuitive that
the latter method yields the more stable results. However, even with the more advance
method, significant numerical artifacts come up, when it is applied a huge number of times
(see Fig. 9.4).

To solve this problem, one idea is to first use spline interpolation for a larger number of points
and then use the (known) analytical derivative at the position of interest. Starting with
the Lagrange polynomials [see Eqs. (8.10) and (8.13)] we find two well known expressions
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Figure 9.4.: Damping of a test pattern carried out in multiple time steps
All pictures have the same scale, white corresponds to 0, black to 1. The total integral
(“amount of dark”) should be is conserved. Between two images, damping using numerical
differentiation as shown in Eq. (9.5b) has been applied a 1000 times. On the right hand
side of each picture, the originally white areas have been colored red, to make numerical
artifacts more visible. They can be seen as a periodic white pattern emerging from the
gray area in the center.

[identical to Eq. (9.5)]

∂P1(x)
∂x

∣∣∣∣
x=x0

= f(x0 + ∆x)− f(x0)
∆x , (9.6a)

∂P2(x)
∂x

∣∣∣∣
x=x0

= f(x0 + ∆x)− f(x0 −∆x)
2∆x , (9.6b)

as well as higher orders

∂P3(x)
∂x

∣∣∣∣
x=x0

= −2f(x0 −∆x)− 3f(x0) + 6f(x0 + ∆x)− f(x0 + 2∆x)
6∆x . (9.6c)

Notice that this differentiation scheme uses four points and thus is also practical for SIMD
parallelization. Furthermore, there is no additional error added, as the method is equivalent
to local cubic spline interpolation which is applied anyways.

For the cases studied within the framework of this thesis, the approach discussed here
was sufficient – also when it comes to the avoidance of artificial structures. Examples
that have lower energy and thus slower damping (c.f. Sec 9.3.1), however, show bad
convergence or – when starting with theoretical prediction – even slow (numeric) drifts.
An alternative scheme to solve the Fokker-Planck term – using operator splitting – can be
found in [ZMM99]. It features unconditional numerical stability, so it does not require the
change between time steps to be within certain limits. Using a such a scheme for D should
allow to work with any damping time.

9.2.3. Example Studies featuring Physical Cases

The formation of substructures due to numerical artifacts voids any possible knowledge
that can be gained from the simulation. In principle, those artifacts can be circumvented
by the choice of a different combination of numerical parameters, e.g. a different grid size
or a different time step. However, this would require manual checks for artifacts to make
sure a combination of parameters remains stable for the specific physical conditions, e.g. an
increased grid size would in principle be prone to the same artifact with a (in physical units)
different period length. As an alternative, those numerical artifacts can be completely
suppressed by clamping [Eq. (9.4)].
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The first study presented here was first published in [Sch+17c]. It features two simulation
runs starting with the same current distribution, one run using cubic interpolation, the
second using quadratic interpolation. The complete set of simulation parameters is listed
in Table 9.1. For the simulation run that uses cubic interpolation, the distribution stays
in a relatively calm state with just little oscillation6. Note that this is not equilibrium:
As expected for the unshielded CSR case and a normalized current ξ > 0.5, it is σE >
σE,0 [SH02]. Also, there is an oscillation with f ≈ 2fs.

If there was no or little influence of the different interpolation schemes, one would expect
no difference between the two runs. However, as Fig. 9.5 depicts, this is not the case: The
energy spread simulated using quadratic interpolation rapidly increases to a higher value
after one synchrotron period (T = 1 Ts). On a longer time scale, it will damp down again,
and after that a new numerical instability might rise. If the aim is to find out whether
the simulated conditions are above the micro-bunching threshold these artifacts might not
matter – below the threshold the initial, numerical modulation should not be amplified.
However, we want to track the evolution of the charge distribution, and this numerical
artifact might be interpreted as an unphysical slow bursting frequency. So we have to avoid
numerical artifacts as they occur in the run using quadratic interpolation (cf. Fig. 9.5(c)):
The period length of the ripples is exactly two grid cells, and they continue to exist even
to a position where they create negative charge densities. In this particular case, the
instability is clearly triggered by numerical artifacts (overshoots) of the interpolation.

Another example can be found in Fig 9.6. It shows a charge modulation in the phase space
similar to the one expected in physical cases (cf. Sec. 10.2.1) but with an amplitude in the
order of magnitude of the numerical accuracy. As they do not grow to the same extent they
would during the instability, in this work, they are referred to as sub-critical substructures.
The set current in the example is Ib = 186.66µA which is slightly below the micro-bunching
instability threshold current for the used simulation settings Ith = 190µA (see Fig. 10.10(e)).
The structures are presumably triggered by the occurrence of the numerical noise best
visible near q = 0 in Fig. 9.6(d). These small spikes have the amplitude of the numerical
accuracy of the binary32 data type (see Sec. 9.1.2) that is approximately 7 decimal digits,
and thus (in absolute numbers) lower near the maximum of the charge distribution. When
clamping is used, the bigger structures (at q ≈ ±2) sometimes do not appear. In these
cases, it seems to suppress the growth of the numeric noise from the implicit discretization.

It has to be noted, that although clamping often suppresses the formation of probably
unphysical substructures, it is not a universal remedy but also introduces new problems.

Table 9.1.: Parameters for an example run to check for numerical artifacts.
For the given set no artifacts were observed. Changing to quadratic interpolation however,
triggered the occurrence of (non-physical) structures with a period length of two grid
cells (see Fig. 9.5).

Parameter Value
Grid points per axis 256
Steps per Ts 4000
Rotation method Manhattan
Interpolation method cubic
Impedance model free space
Normalized current (ξ) 0.516
Damping time 200 Ts

6That state was used as the starting distribution.
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Figure 9.5.: Self-amplifying interpolation artifacts
Evolution of the bunch profile (a), and energy spread (b) over time, as well as example
bunch profiles (c) at the points in time marked by the disks. For the case where cubic
interpolation is used [(b), solid black line], the energy spread stays at σδ ≈ 1.01σδ,0. When
using quadratic interpolation [(b), dashed blue line], an increase in energy spread can
be observed at T = 1 Ts. The bunch profiles in (a) and (c) reveal that this increase is a
numerical artifact: The bunch profiles computed during the initial increase of the energy
spread show large ripples with a period length of two grid cells. The earlier and later
profiles do not show such structures. This implies that the increase of energy spread is
driven by a numerical instability. (The bottom row was first published in [Sch+16].)
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(a) Phase Space
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(b) Profile at E = 0
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(c) Modulation
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(d) Modulation at E = 0

Figure 9.6.: Suspected amplification of quantization noise
On top of the distribution in phase space (a), there is a small modulation (c). For both,
contour lines are added to the color-code to guide the eye. How the volatile part forms
on the otherwise static distribution will be discussed in Chapter 10, here the focus is on a
numerical problem. To get a better impression, (b) and (d) show slices at E = E0. In
(d) at z ≈ 0 there is discretization noise arising from sampling the largest values of the
peak region (cf. Sec 9.1.2). The shape of these sub-critical substructures at z = ±2σz,0 is
the same as for physical substructures (cf. Sec. 10.2.1), in this particular case, however,
they are presumably triggered by the occurrence of the numerical noise. This view is
supported by the fact that the set current Ib = 186.66µA < Ith = 190µA, where Ith
is the micro-bunching instability threshold current for the used simulation settings, as
deduced in Sec. 10.3.
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Clamping adds a switch to be sure no numerical substructures of the a length of 2∆q
are formed due to interpolation. This comes at two possible costs: As will be shown in
Sec. 9.4.2, also physical structures might be suppressed. Second and probably worse, there
are also examples where clamping introduces unphysical substructures below the instability
threshold (e.g. in Sec. 9.5).

9.3. Benchmark Scenarios
In this section, it will be checked how well analytically known behavior is reproduced by the
simulation. It will be shown that the unperturbed problem converges almost independently
from the chosen data types but that there are differences dependent on the chosen explicit
discretization and the used algorithms (Sec. 9.3.1). Also, the long-term stability will be
checked (Sec. 9.3.2) by testing the conservation of probability.

9.3.1. Convergence of Unperturbed VFPE
For stable beam conditions, the energy is distributed Gaussian with σp(t) ≡ 1. This
equilibrium of damping and diffusion is independent from the starting conditions, thus
every simulation of a stable beam should converge to this case. To be able to also check
the temporal evolution, the collective impedance can be set to Z = 0, so that the damping
time τd is reproduced without any change due to collective effects7.
Figure 9.7 shows how an initial disturbance is damped in an unperturbed case with
τd = 10 Ts. An initial displacement leads to a coherent synchrotron oscillation following

µz(t) = cos(z(t = 0)× exp(−t/τd)). (9.7)
An initially increased energy spread8 decreases asymptotically to σE,0. Notice that the
time constant is halved [Wol14b, Eq. (120)]

σE(t) = σE(t = 0)× exp(−2t/τd) + σE,0 × [1− exp(−2t/τd)] (9.8)
= σE,0 + ∆σE × exp(−2t/τd) (9.9)

for this second order moment: It reduces with the incoherent synchrotron motion of particles
that also have radiation excitation [San69, p. 120]. As the energy spread allows to obtain
both, the damping time as well as the asymptotic behavior (here σE,0) in just one fit, there
is no need for an initial displacement.
In a first study, the data type is varied. The types include binary64 (bin64), binary32
(bin32) as floating point [see Eq. (9.1)] data types9 as well as various fixed type data types
that are named using the number of bits of the fractional part [e.g. fix29, see Eq. (9.2)].
As stated in Sec. 9.1.2, the explicit discretization overweights the implicit one: Figure 9.8
confirms that there is no noticeable difference coming from the used data type. For
example, the mismatch between binary32 and binary64 is in the order of 10−7, which is
the difference in the numerical accuracy. Also, for the other data types, increasing the
accuracy does not bring the results closer to the analytical one but to another (see also
Appendix C.2). Only, when decreasing the accuracy to a 29 bit fixed point data type, a
significant change can be observed at t ≈ 20 Ts: In this case, the numerical accuracy does
not seem to be sufficient to model the physical system properly and the trend starts to
visibly deviate from the theoretical curve. As libraries for mathematical function, such
as [clFFT16; FFTW16; Bst17a] are only available for floating point data types, and as the
choice of the data type does only play a secondary role for the result, binary32 is chosen
as the default.

7For the study varying the data type, it is also important that K is implemented based on a DFT and
the used libraries only work with floating point data types.

8Because Z = 0, the bunch length would follow the same curve as the energy spread.
9The type binary16 was not evaluated because at the time of writing it is not supported by many

platforms.
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Figure 9.7.: In equilibrium, the amplitude of the coherent synchrotron motion (bunch
position, oscillating blue line) as well as the energy spread σE damp exponentially. The
blue envelope follows z(t = 0)× exp(−t/τd), while it is ∆σE(t = 0) exp(−2t/τd) + σE,0
for the energy spread.

In the second series of benchmark runs, the grid size Nx, Ny, the size of the time step
∆t, and the damping time βd are varied. Furthermore, standard and Manhattan rotation
are compared. The results are displayed in Fig. 9.9. The quality of the rotation and the
interpolation used in the map R is dependent mostly on the rotation angle. If the number of
steps for one full rotation becomes too large, the influence of numerical absorption [Lop+18]
rises: For example with linear interpolation [Eq. (8.13) with n = 1] the factor 1 − {m}
is susceptible to absorption. This means f = (1 − {m}) + {m} will be computed to be
f < 1. In that case the content of f(bmc will be underrepresented while the content of
f(bmc+ 1) will be overrepresented. For higher order interpolation techniques the problem
is even more severe, since {m}2 � {m} appears. This is one reason why the Manhattan
rotation performs better compared to standard rotation.

For the stability of the map D (see Sec. 9.2.2) the change in energy in one time step is
the key parameter. It is directly proportional to βd, and it can be clearly seen that the
slowest damping (βd = 0.001) is the most difficult one. The grid size – as long as it is
sufficiently large – does not seem to have much of an influence. It seems as if fast damping
can compensate for the inaccuracies introduced by a coarse grid, but there is no gain visible
due to finer grids.

For the examples studied in Chap. 10, it is always βd < 0.002, so convergent settings can
be found for those cases. To achieve short run times combined with good convergence,
typically a combination of Nx = Ny = 256, Manhattan rotation, and Nθ = 500 was chosen.

Of course, the numerically reproduced bunch shape does also have an effect on the simulated
bunch spectrum and thus on the instability threshold. Such influences will be discussed in
Sec. 9.5.

9.3.2. Conservation of Probability

The algorithm discussed in Chap. 8 was designed to explicitly fulfill Eq. (8.2) and thus
conservation of probability10. In other words, the integral over the grid should be a constant
in time

∂ [
∫∫
ψ(q, p, t) dqdp]

∂t
≡ 0. (9.10)

If all outer grid points held ψ(x, y) = 0 there is no problem due to rotations and translations
but in fact it is just ψ(x, y) ≈ 0. If the grid models a sufficiently large area of the phase

10In this context, one may as well call it conservation of charge.
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Figure 9.8.: Exponential damping of the energy spread σE as a function of time for
different data types, where bin marks (binary) floating point types and fix marks fixed
point types (cf. Sec. 9.1.2). There is an initial offset as well as a jitter due to quantization
noise in the test pattern that has been read in from a 16 bit PNG file. Even with
this problematic starting conditions, after T = 60 Ts, all data types have converged to
σq = σp ≈ 1. Note that all simulation curves are almost perfectly overlapping. Except for
fix29 (at T ≈ 20 Ts), there is no noticeable difference coming from the used data type
visible in (a). The difference from the analytic result is emphasized in (b). Here also
small differences in the asymptotic behavior of σE,s become visible. However, in most
examples the offset from the analytic value is not significantly dependent the chosen data
type, so it must be due to the explicit discretization and the used algorithms.
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Figure 9.9.: Reconstructed damping time (τd,s, upper two rows) and natural energy
spread (σE,0,s, lower two rows) for simulation runs with different grid and time step
sizes. The set damping time is τd = 50 Ts (βd = 0.02) for the left column, τd = 500 Ts
(βd = 0.002) for the middle one (results for both first published in [Sch+17c]), and
τd = 1000 Ts (βd = 0.001) for the right one. It can be seen that slow damping is
numerically more challenging, and that – independently from the numerical settings –
Manhattan rotation is more robust in reconstructing the set values.
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space, for
∫∫
ψ(q, p) dq dp the relative error is very small. Typically a quadratic grid of

12 σz,0 and 12 σE,0 is a good choice, so

qmax − qmin = pmax − pmin = 12. (9.11)

When bunch lengthening [see Eq. (3.24)] becomes too strong, of course bigger maximums
and minimums have to be chosen. It is common practice to choose the coordinates so that
q = p = 0 has an explicit grid point (nearly) at the center of the grid, meaning

q(x = dNx/2e) = p(y = dNy/2e) = 0. (9.12)

But as the bunch can become asymmetric due to <(Z), it can be a good idea to reflect
this in the grid, by choosing

|qmax| ≷ |qmin| for αc ≷ 0. (9.13)

Typically Eq. (9.10) gives a good indicator11 when the coordinate system has to be adjusted.

It has to be kept in mind that absorption errors are most severe in the center of the phase
space, where usually the maximum of ψ(q, p) is located: Here, {m} in Eq. (8.13) is smallest
for the rotation map R. Also notice that the order of magnitude of the absorption error in
the worst case can be many orders of magnitude bigger than the accuracy of the chosen
data type. For example for binary64 the accuracy is < 10−15 but the absorption error can
be > 10−8 (cf. Sec. 9.1.2). Over- and undershoots (as well as clamping) do also lead to
numerical gains or losses. So even when the grid is chosen large enough, for long simulation
runs, numerical changes can accumulate to a significant value – practically ad infinitum.
To fix this loss of normalization, a renormalization can be applied from time to time. A
simplistic method implements

ψ̂(n) = ψ(n)∫∫
ψ(q, p, t) dqdp (9.14a)

as

ψ̂(n) ≈ ψ(n)
Nx×Ny∑
i=1

ψ(i)
, (9.14b)

where ψ̂ marks the renormalized charge density. As the normalized bunch profile % is
computed in every time step, it is also possible to use it for the computation

ψ̂(n) ≈ ψ(n)
Nx∑
i=1

%(i)
. (9.14c)

This approach ignores the more elaborated methods of integration presented in Sec. 8.1.4
for

∫
dq, but follows them for

∫
dp. It is used to obtain the results shown in Fig. 9.10.

This approach seems to be sufficient here – especially for the dynamics well above the
threshold – the numerical effects should be negligible. On the other hand, when nonlinear
effects come into play, even small changes and the perturbation due to the renormalization
might become significant and influence the instability threshold. As Sec. 9.5 shows, this is
typically not the case.

11Inovesa prints the value 1−Q/Q0, which consequently should be approximately zero.
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(a) Change of average bunch length due to renormalization

(b) Simulated bunch length over time

Figure 9.10.: In a simulation run, the integrated charge is normalized and should always
be 1. However, due to numerical effects the charge can drift off this value. As a benchmark
1500 synchrotron periods each modeled in 1000 time steps on a grid of 256× 256 points
are simulated for β = 0.002. (To guide the eye, the data points are connected.) In this
test case, without renormalization a numerical equilibrium is found with an integrated
charge of 1.00234 and a length of 1.0012 σz,0. This can get more severe, when improper
starting conditions drive part of the charge out of the space spanned by the grid. To
overcome this problem, renormalization may be applied. The difference between set
and reconstructed bunch length for different frequencies of renormalization is shown in
(a). It can be seen that the simulated bunch size becomes smaller and the difference to
the analytical value bigger, the more often it is renormalized. The time domain signal
for four example numbers of renormalizations per synchrotron period (b) shows a slight
numerical fluctuation due to the renormalization. It is worth noting that the numerical
equilibrium is disturbed by the renormalization, and thus even though the curves look
smoother for more frequent renormalization, it is just a trade-off between amplitude and
frequency. Notice that the deviation is relatively small for all shown settings. In fact, loss
of normalization becomes severe for long simulation times (this will be visible in Sec. 9.5).
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9.4. Starting Conditions to Simulate Unstable Beams

Under stable beam conditions, there is an equilibrium and the energy distribution can be
described by a Gaussian function with σp = 1. To obtain the bunch profile, the Haïssinski
equation [Eq. (3.19)] can be solved12. To describe the dynamics of the micro-bunching
instability above the threshold current, often (e.g. [WE00; BCS10; Kle12]) the Haïssinski
solution right at the threshold is taken for the initialization of ψ(q, p). This, however, is
not always a good choice.

9.4.1. Well above Instability Threshold

If the dynamics of the micro-bunching instability well above the threshold current is of
interest, the non-equilibrium charge distributions have little similarities to the ones in
equilibrium. Furthermore, there is no simple function describing any physical state of a
possible charge distribution ψ(t0). One simply has to start with a distribution that might
be physically unreachable and give it time to converge to a possible ψ(t). In fact, well above
the instability threshold, any distribution will reach the physical state of the instability. So,
alternatively, to the Haïssinski distribution, one can – for example – start the simulation
with a Gaussian distribution that is broader than the expected charge distribution. It will
damp down until the (unstable) physical conditions are reached. This initial conditions
show good convergence compared to narrower distributions: The latter can lead to the
formation of unphysical structures that might remain for a long time. If available, it is a
good idea to start with a charge distribution obtained by a simulation run with similar
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Figure 9.11.: Evolution of the RMS energy spread over a time of 500 synchrotron periods
for I = 1.5 mA. The width of the line is caused by high frequency oscillations. For the
starting distributions the Haïssinski solution (equilibrium at I = 675µA), a Gaussian
distribution with σp = σq = 1.5, and distribution that happens to be the last of the
previous run (“adiabatic”, I = 1.54 mA) were used. Note that the Haïssinski distribution
is immediately blown up and becomes larger than the Gaussian distribution, and that
the high frequency oscillation is systematically higher until T ≈ 300 Ts. (First published
in [Sch+17c].)

12No VFPS is needed in such cases.
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Figure 9.12.: Even when numerical and physical settings are the same, depending on
the starting-conditions two simulation runs may converge to different states. In the above
example, the red curve represents a simulation run that clearly ends up in a state that
describes “regular bursting”: The width is due to rapid oscillation (see Sec. 10.2.1 for
details). The blue curve on the other hand is in a meta-stable result state with only small
oscillation.

physical settings. Such distributions are especially given when a whole range of parameters
is scanned, e.g. to investigate the current-dependent changes of the dynamics.

In Fig. 9.11 the evolution of the energy spread over 500 synchrotron periods is shown for
three different starting distributions at I = 1.5 mA. When using the final distribution of
a previous run with slightly higher current (here I = 1.54 mA), the simulation converges
quasi instantaneously. As shown, the Haïssinski distribution is immediately blown up and
becomes larger than the Gaussian distribution that has been set to be larger than the
expected distribution. Also in the beginning (t < 300 Ts) the oscillation is systematically
enlarged.13

9.4.2. Near the Instability Threshold

Near the instability threshold, the situation is different: The closer the physical state
comes to stable conditions the longer it will take an arbitrary charge distribution to
converge. Furthermore, small numerical inaccuracies gain more weight. Figure 9.12 shows
two simulation runs for the same physical and numerical settings – both initialized with
different starting distributions ψ1,2(t0) with σz(ψ1(t0)) < σz(ψ2(t0)). For ψ1, the bunch
length first grows, then shows some transitional jitter and finally settles in a state with
strictly periodic oscillations (“regular bursting”, see Sec. 10.2.1). For ψ2, the bunch length
shrinks with decreasing length fluctuation and settles in a state of constant length. As
Fig. 9.13 shows, this state of constant length is an artifact.

13Paragraph first published in [Sch+17c].



Chapter 9. Influences of Numerical Effects 77

Figure 9.13.: A simulation run that has converged to a meta-stable state can be
triggered to switch the state by introducing a (temporary) change. Here, the same
starting conditions are used as for the blue curve in Fig. 9.12. This time, after 500
synchrotron periods, clamping is tuned off, and after another 500 synchrotron periods
again back on. In the end, the simulation is in the same stat as the red curve in Fig. 9.12.

In the given example, the substructures that are characteristic to the physical state are not
formed when starting with ψ2. The reason is, that clamping (see Sec. 9.2.1) may not only
suppresses the growth of (unphysical) numerical substructures but also the formation of ones
that are physically correct. In the simulation run displayed in Fig. 9.13, the substructures
are generated by temporarily turning the clamping off. As soon as the substructures are
present, they persist even with activated clamping.

In total, convergence is more delicate under these – almost stable – conditions. How this
can effect the determination of the instability threshold will be discussed in the next section.

9.5. Error Estimation for Bursting Thresholds

The example shown in Sec. 9.4.2, would lead to an overestimation of the bursting threshold.
Figure 9.6, on the other hand, shows substructures in the order of magnitude of the
numerical accuracy even below the instability threshold. So, when the threshold estimation
is based on the presence of substructures, the bursting instability threshold current can as
well be underestimated.

Typically, the threshold is determined based on the fluctuation of the CSR σCSR, on a
spectrogram of the same quantity, or on the average energy spread 〈σE〉. All three are
displayed in Fig. 9.14 for different simulation runs with the same physical but different
combinations of numerical settings. The default settings are Nx = Ny = 256, θ = 1/500,
50 renormalizations per synchrotron period, no clamping, cubic interpolation and 8-fold
padding which results in 8×Nx = 2048 sampling points for the impedance14.

On a linear scale, the sub-critical substructures mentioned in Sec. 9.2.3 are too small to
be visible when compared to an unstable beam. The results using the frequencies of the
fluctuation of the CSR power do not differ from the ones obtained using σCSR or 〈σE〉.
Note that – because of their logarithmic power axis – some of these plots show track of
the sub-critical substructures. In these cases, the determined threshold will be dependent
on the chosen scale when sloppily arguing based on the spectrograms. In the example
shown here, the most severe differences are created by clamping: In the current range of
the instability threshold and below, it introduces significant sub-critical substructures that

14The padding is equivalent to sinc interpolation of the form factor, so these points yield 8-fold frequency
resolution.
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(a) Comparison of simulation runs

(b) Default settings (c) No renormalization

(d) Small time steps (e) Clamping

(f) No padding (g) Quadratic interpolation

Figure 9.14.: Bursting Threshold obtained with Different Numerical Settings
In (a) values are computed at multiples of 0.1 µA, lines are to guide the eye. The curves
obtained using cubic and quadratic interpolation overlap almost perfectly. Smaller energy
spread as well as the “fluctuation” baseline visible without renormalization, are artifacts
due to the loss of charge (which is 0.1%). What remains is a slightly higher current
when the curves start to rise. The default settings are a grid size 0f 256, a step size of
θ = 1/500, renormalization, no clamping, cubic interpolation (IP=4), and zero-padding
of the bunch profile to be able to sample the impedance with 2048. Changing the step
size to θ = 1/4000, introduces numerical jitter and effects σE but not the thresholds.
Here, clamping, obviously introduces severe artifacts, whereas a decreased accuracy when
sampling the impedance (256 instead of 2048 points) shifts the dynamics to lower current
values but does not introduce other differences. For the power fluctuation spectrograms,
the results are as well very comparable. The fs/2 lines in (c) seem to be artifacts. Also,
it shows track of the sub-critical substructures. In this cases, the threshold might be
underestimated – especially when not considering the logarithmic power axis.
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express in all three methods. These structures are probably caused by the magnitude of
the needed renormalization (0.1% in 25 Ts). Doing no renormalization leads to a small
(0.1% in 150 Ts) loss of charge which is visible in two artifacts: a smaller energy spread as
well as a the “fluctuation” baseline. The drift does not influence the spectrogram by the
same extent, however, the current axis becomes erroneous and a slightly higher threshold
is determined. At last, the decreased accuracy when sampling the impedance shifts the
dynamics to lower current values but does not introduce other differences.

In the study presented here, the spread of most results is in the range of 0.1µA. Situation
is worse, for example when charge normalization is lost or numeric fluctuation is introduced,
e.g. by a combination of clamping and renormalization. In such cases results can deviate
by up to 4 µA, but in total, the instability threshold obtained by simulation is pretty
robust against numerical influences. When considering the difficulty of the representation
of damping and diffusion, the method might be less accurate in simulating dynamics with
higher βd or where the exact damping time becomes more important.



10. Simulation of the Longitudinal
Phase-Space

“A good simulation, be it a religious
myth or scientific theory, gives us a
sense of mastery over experience.”

Heinz R. Pagels

In this chapter, first, quasi-static or averaged influences of the self-interaction due to CSR
emission are described (Sec. 10.1). These effects are present for stable beam conditions but
also when the micro-bunching instability rises. Section 10.2 shows how bursting CSR and
the underlying beam dynamics look like in ideal-typical cases. Afterwards (Sec. 10.3) gives
some brief examples how the dynamics can be influenced by adding additional impedances.
Section 10.4 gives a deeper look into the frequency dependence of the CSR spectrum and its
fluctuation. The chapter is closed (Sec. 10.5) with an analysis of the microscopic dynamics
(e.g. single-particle movement) and tries to build an intuitively accessible explanation how
these lead to the formation of the micro-structures.

10.1. Current-Dependent, Static Phenomena

The phenomena presented in this section already start in the regime of the potential well
distortion (see Sec. 3.3.1). The displayed results for bunch deformation (Sec. 10.1.1) and
the tune spread (Sec. 10.1.2), are chosen so that only small time-dependent changes are
visible. For the examples for bunch lengthening (Sec. 10.1.3) and synchrotron radiation
(Sec. 10.1.4), however, the instability threshold is crossed to an extent, that this is no longer
true. Here, only an example with significant fluctuation is shown, the dynamics will be
discussed in Sec. 10.2.

10.1.1. Bunch Deformation

The longitudinal bunch profile changes with current – even when the beam does not show
any time-dependent fluctuation or instability. As introduced in Sec. 3.2, for example a
purely resistive impedance makes the bunch lean forward, while an inductive impedance
lengthens it in a symmetrical manner.

For an accelerator dominated by the CSR impedance, the effect is biggest when shielding
is low (cf. Sec. 3.2.4). As the vacuum chamber has a fixed height, this means that short
bunches will be effected more. For them, the potential well becomes very asymmetric –
leading to a shark fin shape bunch profile. An example (fs,0 = 7.7 kHz, VRF = 1.5 MV) for
bunch shapes in the deformed potential well is displayed in Fig. 10.1. It is clearly visible
that the bunch leans forward for higher currents, slowly deviating it from a nearly Gaussian

80
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Figure 10.1.: Example Deformed Bunch Profiles
The bunch is leaning forward due to the potential well distortion. For I = 100µA, is is
already unstable, but the modulation is too small to be seen here. The shape does not
only depend on the current, but also on the impedance and the natural bunch length.

distribution at I = 5µA to a distribution with a quite flat top at I = 100µA. The profile
at I = 100µA already has some almost invisible, time-varying micro-structures. The others
are all static cases without time-varying components. So instead of using a full featured
VFPS simulation – as done here, they also could have been calculated using the Haïssinski
equation [Eq. (3.19)].

The bunch deformation is intuitively understandable when looking at the path of the
individual particles in the longitudinal phase space. Before discussing this in detail in the
next section, a purely resistive impedance may serve as a first example: It leads to energy
losses, and due to synchrotron motion, more particles will aggregate in the front of the
bunch.

10.1.2. Shift and Spread of the Synchrotron Tune

The contribution of wake fields adds to the accelerating voltage leading to a deformed
potential well. Radiation damping and drifts in dispersive sections on the other hand
remain unchanged. In total, the synchrotron motion deviates from its originally symmetric
path1. Fig. 10.2 illustrates these perturbed paths for example particles (cf. Sec. 8.5) in the
phase space for two different beam currents (fs,0 = 7.2 kHz, VRF = 1.4 MV).

First, it has to be noticed that the position of the synchronous particle (the one that does
not move) shifts to the bunch head2. This is a result of the coherent phase shift (see
Sec. 2.4): The increased energy loss due to the real part of the (CSR) impedance has to be
compensated by the higher accelerating voltage that is found at the new synchronous phase.
The position of the synchronous particle should not be mixed up with the average position
of all particles – the center of mass or bunch position. The bunch position gives the average
energy loss but when the energy losses are position dependent, there is a relevant difference.
Notice that ∣∣∣∣∂E(−|φ|)

∂t

∣∣∣∣ < ∣∣∣∣∂E(|φ|)
∂t

∣∣∣∣ , (10.1)

where φ = 0 marks the synchronous phase [Eq. (2.32)]. This fact results in an asymmetric

1In this thesis only α0 is considered and the coordinate system is normalized so that the unperturbed
motion would follow a cycle.

2For αc < 0, the movement is to the bunch tail.
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(a) Phase Space at 5 µA
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(b) Wake Potential at 5 µA
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(c) Phase Space at 50 µA
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(d) Wake Potential at 50 µA

Figure 10.2.: Particle Movement in the Longitudinal Phase Space
(a) and (c) display charge densities in the phase space, the arrows represent the movement
of example particles in 20 time intervals of ∆t = Ts,0/20, each. (b), (d) show the
corresponding wake potential. As both currents are below the bursting threshold (62µA,
according to BBT), average quantities are constant in time. Notice that energy changes
faster ahead of the synchronous phase, where also less charge can be found. The inverted
time difference the particles need for one round-trip is referred to as the tune spread, the
difference from fs,0 is called (incoherent) tune shift.

bunch shape where more particles are trailing the synchronous particle than leading it
0∫

−∞

%(φ) dφ >
∞∫
0

%(φ) dφ. (10.2)

Center of mass and the synchronous phase are compared in Fig. 10.3. In this plot (fs,0 =
7.2 kHz, VRF = 1.4 MV) the situation under unstable conditions is not shown to circumvent
situations where ∂V/∂t 6≡ 0, so also ∂φ/∂t 6≡ 0. Furthermore, the intuitive definition of
a single synchronous phase becomes ill defined when there is more than one minimum of
VWake(t). In that case, there will be more than one synchronous phase.
For stable beam conditions it can been used that the average synchrotron motion 〈J〉 is
slower for particles located where the particle density is high. So the synchronous phase
can be identified with the peak of the charge distribution. Be ~r(t) = (q(t), p(t))T the path
of a particle, so

ψ(~r1) > ψ(~r1)⇒ 〈J(~r1)〉 < 〈J(~r2)〉. (10.3)
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Figure 10.3.: Synchronous Phase Compared to Bunch Position
The bunch position (dashed red) is defined by the center of mass of the electrons, while
the synchronous phase (solid blue) was determined as the minimum of the total potential
well including both, V̂ and VWake. The band gives the size of the grid cell that contains
the synchronous phase position. The quantities follow a similar trend but differ by about
a of factor of ten. This fact can be explained by the asymmetry of the charge distribution
(see Figs. 10.1 and 10.2).

Meaning the charge density is higher where particles with a lower average instantaneous
synchrotron motion are passing through. This relation is pretty intuitive as particles will
aggregate where J ≈ 0 but move away from those locations where J is bigger.

The 〈J〉 can be expressed in terms of (incoherent) synchrotron frequencies fs,i, e.g. by
looking at the time it takes an electron for one rotation in phase space3. As in most cases
fs,i 6= fs,0, this phenomenon is called the (incoherent) tune shift4. The fact that fs,i is not
a single frequency but position dependent, is referred to as tune spread. Note that the
potential well moves alongside with the bunch, so the shift of the coherent synchrotron
frequency fs,c which describes the motion of the bunch as a whole is a higher order
phenomenon. Besides deformation, the tune shift can also manifest in a changed bunch
length. For example, fs,i < fs,0 corresponds to bunch lengthening.

10.1.3. Growing Bunch Length and Energy Spread

While the potential well distortion alone deforms the bunch profile and thus also changes
the bunch length, the energy spread stays constant as long as there is a stable equilibrium.
Only when an instability (here: micro-bunching) rises, also the energy spread increases. In
fact, this has been used as the indicator for microwave instabilities for both, experimental
and simulation data (for example [BOZ05; BCS10]). When the beam dynamics are faster
than the synchrotron motion, damping can no longer compensate the coupling between
position and energy.

The energy spread as well as the bunch length for two examples (fs,0 = 7.7 kHz, VRF =
1.5 MV and fs,0 = 5.76 kHz, VRF = 1.3 MV) are shown in Fig. 10.4. For both, at lowest
currents, the constant energy spread is visible. Also, under unstable conditions, the cor-
relation between bunch length and energy spread can clearly be seen. Especially note
that 10.4(b) shows important differences from the behavior in 10.4(a): First, there is an
additional instability for 0.02 mA < I < 0.035 mA. This weak micro bunching instability

3In this thesis, the fs,i are deduced as the inverse of twice the time it takes an electron to cross p = 0.
4To be exact, the word tune refers to the corresponding frequency divided by frev.
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(a) fs,0 = 7.7 kHz, VRF = 1.5 MV
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(b) fs,0 = 5.76 kHz, VRF = 1.3 MV

Figure 10.4.: Current-dependency of Bunch Length and Energy Spread
Left is the bunch length (RMS), right the corresponding energy spread. The evolution
shown in (a) looks comparable to the one at 0.04 mA < I < 0.08 mA for the case (b). In
the latter, the peak at low currents can be attributed to an additional weak instability
(see text) that does not occur for (a).

(WMB)5 has been predicted in [BCS10], first experimental evidence is in [Mül+13]. More
detailed studies have been performed both experimentally [Bro+16a] as well as numer-
ically [Kus17]. This instability does not occur for the other case. For higher currents,
first the beam becomes stable again, before another instability rises. Until I ≈ 0.08 mA,
again the behavior is similar to the one in 10.4(a). At I ≈ 0.09 mA, there is another clear
difference: The average bunch length and energy spread first instantly goes up and down
afterwards. These steps are accompanied by a significant rise in the upper limit of both
quantities while the lower limit follows a monotonic curve that just has a varying growth
rate. This phenomenon is connected to a slower frequency of the sawtooth bursting as it
will be explained in Sec. 10.2.2. The changing growth rate at I ≈ 0.25 mA in 10.4(a) might
be a less intense variant of the change.

The growth of the of the average bunch length above the instability threshold can be
estimated as a power law. Using Eq. (3.24), also bunch lengthening has been utilized to
determine the bursting threshold. (The author did this in [Sch13; Sch+13]). This approach
is justified as long as the exponent in the power law is known – for example because it
is constant over the whole spectrum. Measurements [Cai11; Mül+12] suggested that the
bunch lengthening is dominated by the effect of the unshielded CSR impedance, meaning
σz ∝ I3/7.

In Fig. 10.5, the RMS and FWHM bunch length are shown for simulations using fs,0 =
7.7 kHz and VRF = 1.5 MV. The double-logarithmic representation, suggests that the
bunch length follows a power law. However, due to bunch deformation, the exponent is
different for FWHM and RMS. Another result is, that in the case displayed here, σz 6∝ I3/7,

5Also referred to as short bunch length bursting (SBB).
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Figure 10.5.: Scaling of the Bunch Length with Current
Lengthening of RMS σz (left) and FWHM l (right) bunch length with current. The
central dark blue lines mark the arithmetic mean, they are enclosed by a 1σ fluctuation
band and the total range of the fluctuation. The error is to small to be visible. The
dashed red lines display possible parameterizations for 0.1 mA < I < 1 mA.

but rather σz ∝ I3/8 for the RMS and l ∝ I1/3 for the FWHM6.

To summarize, both bunch length and energy spread fluctuate due to the micro-bunching
instabilty. At the same time, also the averages of these quantities rise. While the energy
spread is constant for stable conditions, this is not the case for the bunch length. So the
when it comes to the average values, an increased energy spread can be seen as a reliable
indicator for the micro-bunching instability while bunch lengthening can only give an
estimate.

10.1.4. Synchrotron Radiation

Because of the changing form factor, bunch deformation directly influences the emission of
coherent synchrotron radiation. Here, it is studied based on the example using fs,0 = 7.7 kHz
and VRF = 1.5 MV. The results are displayed in Fig 10.6. It is visible, that the peak
of almost full coherence (%̃(f) ≈ 1 for the form factor) at very low frequencies becomes
narrower (less bandwidth) but higher (more spectral power) due to bunch lengthening
with increasing current. The position of the peak also moves to slightly lower frequencies.
Already the static deformation due to the potential well also enhances radiation a higher
frequency range (I > 20µA, f > 150 GHz). The rise of emission in the higher frequency
range (f > 800 GHz) happens as a sudden change at I ≈ 75µA. Sec. 10.2.1 will show, that
it is caused by the appearance of micro-structures sitting on top of the bunch profile.

As introduced in Sec. 3.3.2, another consequence of the micro-bunching instability is the
fluctuation of the emitted CSR. From the perspective of a synchrotron light source, this has
negative as well as positive consequences: If stable emission is needed on a pulse-to-pulse
basis, this fluctuation might be a problem. (As Secs. 10.2, 10.4 will show, the fluctuation
amplitude can differ depending on the emitted frequency.) On the other hand, experiments
relying on (coherent) emission at high frequencies can make use of the amplification –
especially when only the average power is of interest. Average as well as minimum and
maximum CSR power and the average fluctuation (1σ fluctuation band) are displayed in
Fig 10.7.

From Eq. (2.22) it follows that PCSR ∝∼ F (I)× I2. To quantify the increase of the emitted
power, here the form factor will be taken to be almost constant F (I) ≈ F (I+ ∆I) for small
current changes ∆I to find the exponent b(I) in the parameterization PCSR = k(I)× Ib(I).
It can be computed to be

b(I) = ln [P (I)/P (I + ∆I)]
ln [I/(I + ∆I)] , (10.4)

6When uncertainty of a measurement is high, it might not be possible to reject l ∝ I3/7.
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Figure 10.6.: Averaged CSR Spectrum
Both spectrograms show the averaged spectral CSR power of an electron bunch with
fs,0 = 7.7 kHz and VRF = 1.5 MV. The left-hand side is a zoom-in with an adjusted color
range, also the choice of the contour lines was changed. In the lower frequency range
mainly changes due to bunch deformation in the potential well are visible. The peak
position (f ≈ 70 GHz) is caused by the shielding: Emission of lower frequency radiation
is suppressed by the height of the beam pipe. There are two effects that define the
current-dependent differences: Bunch lengthening reduces the maximum frequency of full
coherence, and bunch deformation introduces higher frequencies. At around I ≈ 75µA,
also in the higher frequency range (f > 800 GHz), CSR starts to become visible. This is
due to the formation of substructures that are shorter then the (now modulated) charge
distribution.

and is shown in the right hand side of Fig 10.7. It can be seen that the CSR emission grows
more than linear but at a decreasing relative growth rate until the threshold. (The absolute
growth rate increases until the threshold.) Above the instability threshold, the average
integrated emission grows less then linear. Notice that this is the emission integrated over
the whole frequency range, in isolated frequency bands the trends may be different (cf.
Sec. 10.4).

10.2. Dynamics of Typical CSR Bursts

In Sec. 10.1.4, current-dependent changes of the CSR have been discussed. It has been
shown that due to the micro-bunching instability, there are changes in the average power,
its fluctuation as well as in the spectrum. Here, the dynamics of the fluctuations are studied
in time-domain. A burst is the increase in CSR emission during a time interval where the
emission of CSR peaks. It might be seen as time between two minimums of the emission,
this however is not a fixed definition, as sometimes two bursts can overlap.

Depending on bunch current and machine settings, different types of burst can be observed.
They vary in length, shape and amplitude. Current ranges that always show the same or
very similar kinds of bursts, are called bursting regimes. In the following, two examples
featuring very different characteristics are shown.

10.2.1. Regular Bursting Regime

In the “regular” regime, the substructures in phase space are quasi-static: They grow
while moving from the back to the front of the bunch and shrink while moving into
the other direction. The result is that bunch length and energy spread fluctuate a bit
when the extrema are at the bunch front or back. The whole dynamics are dominated
by one distinct frequency, the regular bursting frequency fb. Also the CSR power is
fluctuating with that frequency, and so are the small changes in the overall shape: As there
is no low-frequency component in the fluctuation, the pattern of substructures in phase
space has a nearly constant amplitude, so also its coherent emission is fluctuating with a
relatively low amplitude (see also Appendix C.3). As the regular bursting regime is the
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(a) CSR power over bunch current
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Figure 10.7.: Integrated CSR Power and its Fluctuation
From Eq. (2.22) it follows that PCSR ∝ F (I) × I2. Above the bursting threshold [(a),
I ≈ 70µA], the growths rate of the CSR Power drops. This is because the changes in the
form factor overweight the current change. But also in the stable region, the changing
form factor plays a vital role. The green points in (b) gives the variable exponent b(I) in
the parameterization PCSR = k(I)× Ib(I) of the CSR power. Until the threshold b > 1, so
the slope is increasing up to that point; above the threshold b < 1, so the further increase
of the power is less than linear. For corresponding bunch profiles, see Fig. 10.1, for bunch
length and energy spread, see Fig. 10.4(a).

only one not featuring low-frequency oscillations, it is sometimes even referred to as “stable
CSR” [Bar+15].

For a deeper analysis, it is convenient to express the bunch profile % as [Bol17]

%(τ, t) = 〈%(τ, t)〉+ ζ(τ, t) (10.5a)
= 〈%〉(τ) + ζ(τ, t), (10.5b)

where 〈%〉 marks the average bunch profile and ζ the instantaneous modulation. For the
form factor follows

F (f, t) =|%̃(f, t)|2 (10.6a)

=
∣∣∣〈̃%〉(f) + ζ̃(f, t)

∣∣∣2 (10.6b)

=
∣∣∣〈̃%〉(f)

∣∣∣2︸ ︷︷ ︸
static

+
∣∣∣ζ̃(f, t)

∣∣∣2︸ ︷︷ ︸
modulation

+ 2
[
<
(
〈̃%〉(f)

)
<
(
ζ̃(f, t)

)
+ =

(
〈̃%〉(f)

)
=
(
ζ̃(f, t)

)]
︸ ︷︷ ︸

mixed

. (10.6c)

The first term, labeled “static”, comes from the average bunch profile, the second term from
the modulation. The “mixed” term plays a role where the volatile modulation spectrum
and the static spectrum from the average profile overlap. Notice that because 〈ζ(τ)〉 ≡ 0,
also 〈ζ(f)〉 ≡ 0. This means that in the average CSR spectrum the mixed term vanishes.
But as 〈|ζ|〉 ≥ 0, there will always be a contribution from a non-zero modulation. In total,

〈F 〉(f) =
∣∣∣〈̃%〉(f)

∣∣∣2 +
〈∣∣∣ζ̃(f, t)

∣∣∣2〉 . (10.7)

However, as for the regular bursting 〈%〉(τ)� |ζ(τ)|, the average spectrum is (over a wide
frequency range) dominated by the static contribution and the integrated power is almost
identical to the one of the spectrum of the average bunch profile (cf. Appendix C.3).
For the same reason, when there is spectral overlap, the mixed term can easily dominate
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(c) Average CSR Spectrum
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(d) Modulations (difference from average) at t = 0.64 Ts
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(e) Modulations (difference from average) at t = 0.68 Ts
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(f) Modulations (difference from average) at t = 0.80 Ts

Figure 10.8.: The “regular” bursting regime is characterized by fast bursts with a
constant period that is shorter than Ts [cf. (a)]. In the given example, the modulations
are small in comparison to the average charge distribution (b). The average CSR spectrum
is displayed in (c). To make the changes visible, (d) to (f) show instantaneous differences
from the average values (“modulations”), at the points in time marked by black lines in
(a). The situation at the lowest integrated CSR Power is displayed in (d). With respect
to (a), in (e) the structures in the phase space are rotated a bit, in (f) the maximums and
minimums change positions. The increase in the integrated CSR power can be identified
with the changes just above 100GHz. As the modulation is always present, its inverted
length is mostly part of the average spectrum [cf. Eq (10.7)]. It is noteworthy that a
narrow-band radiation detector e.g. at 70GHz would measure a different phase for the
CSR bursts: This frequency peaks in (d) and is below average in (f).



Chapter 10. Simulation of the Longitudinal Phase-Space 89

the modulation term in the power fluctuation. The longest kind of modulation typically
manifests as bunch length fluctuation.

An example series of bursts with fs,0 = 28.130 kHz, VRF = 1.048 MV, I = 605µA in an
iso-magnetic ring7 with frev = 8.582 MHz (R = 5.5597 m) is displayed in Fig. 10.8. It
shows the described behavior, especially the fluctuation of the integrated CSR power is
anti-correlated with the bunch length. Narrow band detectors, however, might measure a
different phase: In the given example, the emission at 70GHz and 105GHz is anti-correlated
[see right panels in Figs. 10.8(d), (e), (f)]. Although not yet explicitly mentioned there,
the same can be found in experimental data (e.g. in [Ste+17b]). Notice that the actual
shape of the CSR spectrum depends on the impedance and especially the position of the
peak is determined by shielding. Further notice that phase and paraphase appear in the
linear charge density modulation [see Fig. 10.8 (d) and (f)]. These modulations obviously
have the same form factor, so the difference in the total CSR spectrum is (only) due to the
mixed term in Eq. (10.6). In the case, where the modulation has a fixed amplitude and a
time-varying phase, it is even possible that∣∣∣ζ̃(f, t)

∣∣∣2 =
〈∣∣∣ζ̃(f, t)

∣∣∣2〉 ∀ t, (10.8)

which means that there is no time-varying contribution to the CSR spectrum from the
modulation term. In the displayed example, this is not the case. The same should be true
for all CSR impedances: The real part of the CSR impedance introduces an asymmetry
also for the substructures. Figure 10.8 showed that phase and paraphase are present; the
charge profiles in between, however, differ not only in phase but also in magnitude. So
Eq. (10.8) is not fulfilled, and – even if the mixed term vanished –

∂F (f, t)
∂t

6≡ 0. (10.9)

An analysis of the frequency-dependence of the fluctuation including an outlook on remaining
options on how to get stable CSR from substructures of an electron bunch is given in
Sec. 10.4.

10.2.2. Sawtooth Bursting Regime

The “sawtooth” bursting regime was first observed in the SLAC damping rings [Kre+93].
Here at high beam intensities the bunch length started to oscillate in a sawtooth like
pattern. With changing current, there might even be different shapes of sawteeth.

An example for a typical bursting cycle is shown in Fig. 10.9. It was simulated for KARA
settings with fs = 7.7 kHz, VRF = 1.5 MV, and I = 735µA. The cycle starts when the
bunch length is decreasing. As for the regular bursts, this leads to an increasing CSR power.
For the sawtooth bursting regime, however, the relation 〈%〉(τ)� |ζ(τ)| is no longer valid.
So, although the fluctuation of the bunch length is very significant, the power fluctuation is
not dominated by this process. Instead, the fact that the amplitude of the substructures (in
phase space) varies becomes very important. Between the bursts the amplitude decreases.
Depending on the time span between the burst, the substructures might almost vanish.

While the bunch length is still decreasing, substructures again start to grow. They do so
until their potential well blows up the bunch. In the process, also the substructures become
more filamented. Those complex structures then emit more CSR at higher frequencies,
leading to the maximum in the integrated CSR power. Now, these structures start to vanish,
leading to a relatively smooth, blown-up electron bunch. It will damp until the effect of

7The settings correspond to fs,0 = 8.9 kHz and I = 191µA for KARA.
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(a) Typical “sawtooth” signal
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(b) Zoom into first burst shown in (a)

−5 0 5
Position (σz, 0)

−5.0

−2.5

0.0

2.5

5.0

En
er
gy

 D
ev

ia
tio

n 
(σ

E,
0)

0
1
2
3
4
5
6
7

Ch
ar
ge

 D
en

sit
y 
(p
C/
σ z

,0
/σ

E,
0)

−10 0 10
Long. Position (ps)

0

10

20

30

40

Ch
ar
ge

 D
en

sit
y 
(p
C/
σ z

,0
)

101 102 103
Frequency (GHz)

10−4
10−3
10−2
10−1
100
101

Sp
ec
tra

l P
ow

er
 (m

W
/G
Hz

)

(c) Situation at t = 12.5 Ts
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(d) Situation at t = 18.4 Ts
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(e) Situation at t = 21.5 Ts

Figure 10.9.: The “sawtooth” bursting regime is dominated by big fluctuations of bunch
length and CSR power. A typical time-domain signal is shown in (a). The zoom-in (b)
shows black lines at the times where more details are presented. In the beginning (c), the
charge distribution is rather smooth. The position axis has the same range but different
units are given to ease the comparison to the synchrotron radiation spectrum. With
time, the bunch profile is slowly shortened due to synchrotron radiation damping, leading
to increased radiation in the low-frequency region [cf. peak at 40 GHz in (c) and (d)].
At the onset of a burst (d), prominent structures form, increasing the spectrum in the
mid-frequency range (150 GHz). Afterwards (e), the charge distribution almost explodes,
also a multitude of fine structures forms. The increased length leads to less radiation in
the low-frequency range, but the fine structure increases coherent amplification for the
highest displayed frequencies. However, the wake-field cannot sustain the substructures.
As a consequence, the charge density starts to damp again – until it becomes small enough
to start a new cycle.
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the instability-driving frequencies is high enough to trigger the formation of substructures
in a new bursting cycle. For the given example, the damping time is a bit more than half
τd, since the driving force of the wake potential is always present8.

It is noteworthy that there is something like a critical length, at which the substructures
grow again. This lengths can be estimated by Eq. (3.24) or Eq. (3.27). As it increases with
current, it effectively leads to a lengthening of the average bunch length. To be specific,
it is not a fixed length but rather has to do with the bunch spectrum which might still
feature remains of the substructures from the last burst. The seed of the new cycle is hard
to predict even in this classical model neglecting the random nature of quantum particles.
Thus, the process has components that can be considered deterministic chaos. Also, as the
potential well acts in energy direction but is caused by a bunch profile along the position
axis, a lag is introduced due to the synchrotron motion: The energy spread might still
shrink due to radiation damping although the charge density being rotated by a fraction of
a synchrotron period is already compressed enough to trigger a new blow-up due to the
potential well. An example of experimental data showing this temporal mismatch between
the rise of the energy spread and the CSR can be found in [Keh+17a].

10.3. Contribution of Additional Impedances

The effect of additional impedances is studied just briefly by adding the additional
impedances (collimator and resistive wall) as introduced in Sec. 3.2 directly to the CSR
impedance ZPP . As before, shielding is modeled by parallel plates with a distance of
g = 32 mm. This treatment of course introduces qualitative inaccuracies, e.g. the resistive
wall for straight sections is not handled separately without CSR, and even the collimator is
not localized but handled as an average contribution once around the ring. This approach
is justified, as one synchrotron period is long compared to one revolution.

Since the focus of this thesis is on bursting CSR, in the cases relevant here, CSR impedance
will always be most important. For any additional impedances, they typically are almost
negligible compared to ZPP, so that over a wide frequency range ∑Zi ≈ ZPP, where the
Zi are the impedances including ZPP. This relation implies that the additional impedances
might influence the beam conditions but will not totally change it. Hence, a qualitative
study is done to get a general idea of the influences of the different additional impedances9.

The resistive wall impedance describes a round (r = 16 mm) pipe, made of aluminum
(σc = 3.77×107 S and µr = 1+2.1×10−5). The collimator is taken to be infinitesimally short
with an inner radius of rColl = 2 mm. The outer radius is the same as for the beam pipe.
Even though this collimator radius might be unrealistically small, it is ZColl(f) & ZPP(f)
only where the shielding suppresses a large fraction of the CSR (f . 74 GHz).

As the collimator is modeled to have a purely resistive impedance, its effect is that the
bunch is leaning forward a bit further. This lengthens the bunch but also enhances the
higher frequency components in the form factor. The resistive wall impedance has a resistive
and a capacitive (so: shortening) component. Applying only ZRW, makes the bunch lean
forward and, for the chosen parameter set, in total also slightly lengthens it. One example
for inductive impedances would be ferrite rings. They are discussed e.g. in [Ng06, p. 71]
as a possibility to lengthen a bunch and thus suppress microwave instabilities. As this
approach would currently counteract the goal to produce CSR, it is not considered here.
Notice that for any possible bunch deformation, enhancing one frequency typically means
suppression of other frequencies. The reason for this is that the form factor is normalized∫
%̃(f) df =

√
2π.

8The length damps twice as fast as the single particle position.
9There exist studies including more elaborated impedance models. Those studies focus on the instability

threshold (e.g. [Ban16]).
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(a) Shielded CSR Only, 191 µA
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(b) Added Resistive Wall, 193 µA

(c) Added Collimator, 188 µA
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(d) Added Both, 190 µA

(e) Bursting Thresholds (f) Bursting Frequencies

Figure 10.10.: (a) to (d) show the substructures on the charge distribution slightly
above the micro-bunching threshold for different impedances added to the parallel plates
CSR model. The amplitude of the structures is the most significant difference. To keep it
at a level that still allows to see the similarities, individual currents but similar phases
have been chosen for the different impedances. This different modulation is linked to the
power fluctuation (e) at the chosen current. The lines connect the CSR power fluctuation
for simulation runs performed for integer value µA currents. The collimator impedance
lowers the micro-bunching threshold, whereas the resistive wall has the opposite effect.
In the spectrum of the bursts (f), the collimator influences the first occurring bursting
frequency to a higher value, the resistive wall does not seem to have a significant effect.
The frequencies can differ despite identically shaped substructures, as the impedances
also introduce a synchrotron tune shift.
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Results of the four simulation runs (CSR impedance only, CSR impedance plus resistive
wall, CSR impedance plus collimator, and CSR impedance plus resistive wall and collimator)
are displayed in Fig. 10.10. As expected, the overall structure stays almost unchanged
for all cases, only the amount of charge forming the substructure is changed10. This
modified modulation-strength correlates with a shift in the instability threshold. For
the collimator impedance, for example, it is an increase in modulation-strength and the
instability threshold moved to lower currents. Although the effect of only the resistive wall
impedance would deform the bunch in a way that the form factor would be enhanced at
high frequencies – something that should benefit the rise of the instability – it accomplishes
the opposite.

A possible explanation is found in the shape of the impedance. While the collimator
impedance is just constant, the resistive wall impedance is ZRW ∝

√
f . This shifts

prominent features of the total impedance Z = ZPP + ZRW like the zero-crossing of the
imaginary part or the peak of the real part to higher frequencies. Thus the resonance
frequency (band) of the total impedance should also move to higher frequencies. To quantify
and in the end possibly verify this explanation, more detailed studies of the impedances
have to be undertaken.

Experimental studies using a scraper show a comparable result to the simulation including
the collimator for the shift of the bursting frequency (see Sec. 11.2). For a full comparison,
Appendix C.4 gives spectrograms for the cases studied here, and also the average CSR
power.

10.4. Wavelength Dependency of CSR Power Fluctuation

In Sec. 10.2.1, it has been shown that it is mathematically possible to have non time-varying
emission from a beam that has substructures. The required conditions are a fixed amplitude
of the form factor of the substructures and a vanishing mixed term in Eq. (10.6). The
latter can be the case when substructures are very short when compared to the shape of the
average bunch profile. As only the regular bursting has persistent substructures that do not
vary even on millisecond timescales, it is conditions closest to the described CSR emission
from short substructures. However, as the modulation is asymmetric11, they do not only
change in phase but also in amplitude. Thus the emitted power for single frequencies is
not constant, but shows a small oscillation.

It might be possible to counter-act the asymmetry caused by the real part of the impedance,
and by that to minimize the power fluctuation. Possibilities to achieve this include
modification of the higher orders of the momentum compaction factor αc, modulation of
the accelerating voltage VRF , and usage of additional impedances. This step, on the other
hand, will also counter-act the formation of the substructures. Still, there might be an
optimal point for the desired conditions. A deeper, more systematic analysis of impedances
and how they influence the bunch shape will be in [Sch18b]. For this thesis, the search for
such conditions is beyond scope, for experiments using synchrotron radiation, however, it
might be sufficient to have limited fluctuation in the emitted CSR only for a specific range
of wavelengths.

Figure 10.11 shows example bunch profiles in the regular bursting regime, as well as
emitted CSR spectra12. The comparison shows a similar trend for all for all three examples.
For example, it is possible to distinguish areas where static, modulation and the mixed
term dominate the form factor. Another common feature is the existence of a side-
peak at f ≈ 100 GHz. There is a link to the PP CSR impedance which is =[ZPP (f <

10To be precise, there are also slight differences that can be explained by a different phase of the rotation.
11This lies in the very nature of the mechanism that creates them, see Sec. 10.5.2.
12For temporal evolution see Sec. 10.2.1.
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(a) fs,0 = 7.7 kHz, VRF = 1.5 MV, σz,0 = 2.28 ps
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(b) fs,0 = 8.9 kHz, VRF = 1.048 MV, σz,0 = 3.78 ps
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(c) fs,0 = 14 kHz, VRF = 1.396 MV, σz,0 = 4.46 ps

Figure 10.11.: Average bunch profile right at the micro-bunching threshold and an
example modulation in the regular bursting (left), as well as CSR spectrum (right) for
different possible machine settings. CSR below the bursting threshold is displayed in
black and in the regular bursting regime in blue and red. As the regular bursting regime
spans a smaller current range for those settings, the current values picked for (b) are closer
to each other. For bursting CSR, bands are drawn between the minimum and maximum
emission. The average CSR increases with current; but as fluctuation also increases,
the minimum instantaneous values can decrease. The amplitude of the fluctuation of
CSR emission is also dependent on the emitted wavelength. In (a), for constant current
bursting CSR emission above 800GHz stays in the same order of magnitude but still
oscillates by up to a factor of four. Also note that the shorter natural bunch length seems
to increase not only the static CSR emission but also the substructure induced emission
at high frequencies. The (almost static) side-peak at f ≈ 100 GHz might be linked to the
structure PP CSR impedance (it is also present in the form factor, cf. Appendix C.3).
Values below 10−10 mW/GHz can be considered a numerical noise floor.
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Figure 10.12.: CSR Fluctuation Averaging Out
The two adjacent frequency bands (colored lines) have been chosen in a way so that
their emitted CSR power shows similarly shaped bursts with almost identical fluctuation
amplitude with a relative phase of π. So for their sum (black curve), the amplitude of
the oscillation is much smaller. (fs,0 = 7.7 kHz, VRF = 1.5 MV, I = 80µA)

100 GHz)] < 0 Ω < =[ZPP (f > 100 GHz)], and seems to cause a peak in the form-factor
(cf. Appendix C.3). When it comes to the emitted spectrum, the local maximum at
<[ZPP (f ≈ 140 GHz)] slightly shifts this peak in the form factor. In all three examples,
the emission at low frequencies is relatively stable. Notice that – in absolute values – the
power fluctuation in this frequency range still dominates the overall power fluctuation [cf.
Fig. 10.8, which corresponds to profile and blue curve in 10.11(b), and Appendix C.5].
For higher frequencies, the relative power fluctuation increases. The average bunch profile
does not change to an extent that can explain the minimum power – which is orders of
magnitude below the value for stable emission. So, these fluctuations can be attributed to
the mixed term in Eq. (10.6). This term can have a negative sign and decrease the emitted
CSR. In total, the amplitude of the power fluctuation is dependent on the frequency but
there is no constant emission due to the substructures observed at any frequency.

Alternatively, a spectral range can be chosen so that the integrated power is still (almost)
constant

∂

 f2∫
f1

P (f, t) df

/∂t ≈ 0 (10.10)

for well chosen f1, f2. An example is shown in Fig. 10.12. Here, the emitted CSR power in
two adjacent frequency bands shows similarly shaped bursts with almost identical amplitude
that are phase shifted by π. The emitted power in the combined frequency range is still
oscillating – but with a much smaller amplitude and a doubled frequency. Using a detector
with a sensitivity that is different for different wavelength, it is probably possible to find
settings where the total measured power is constant.

In an experimental setup, a radiation detector usually has a fixed range of sensitivity. It is
almost certain that this specific range is not perfectly matched to the range of minimized
power fluctuation just by chance. So the minimal fluctuation in the measured power will not
be zero. Still, local minimums with σP (I) > 0 are to be expected because of averaging out
power oscillations with different phasis. This fact has to be kept in mind when analyzing
data. Such a behavior for the standard deviation detected CSR signal has already been
seen, e.g. in [Bro14, Fig. 5.6]. When just seeing the data, one tempts to explain these
findings by the shift spectral range that is fluctuating most. As seen here, situation is not
that simple. Without further information, none of the two reasons can be excluded.

For the total power signal in a given frequency range, averaging out of different signs
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of course cannot happen. Consequently, one should also consider this information to
understand what is the reason for oscillation minimums. An example showing a curve
comparable13 to the ones for the standard deviation referenced here, can be found in [Jud13,
Fig. 5.16 (a)]. Local minimums of the average power showing just a slight decrease – found
in measurement and simulation – are presented in [Ste+17a]. In [Fei+11], there are no
local extrema.

The difference between a total oscillation minimum and a minimum just of the integrated
signal can also be identified in the bursting spectrogram: When the effect is due to the
frequency-shift of the mixed term, the main bursting frequency only undergoes its default
current-dependent frequency-shift. In the example given in Fig. 10.12, for a small current
range the dominant frequency is a higher harmonic of that main bursting frequency. Also
notice that the 1σ band in Fig. 10.4(a) (f1 = 0, f2 =∞) does not show clear local minimums
and maximums at all. This implies that the choice of the frequency range is circuital for
the shape of σP (I).

10.5. Further Interpretation of the Results

10.5.1. Fast Bursting Frequencies

The fast bursting frequency which is visible during regular bursting is tightly connected to
the substructures on the bunch profile. As they rotate in phase space, they can trigger
modulations of the emitted light intensity with a multiple of fs. This link is pretty intuitive
and [Pod99] already attributed substructures to the eigenmodes of synchrotron motion. In
this thesis, the link was already mentioned shortly after introduction of the eigenmodes in
Sec. 3.3.2.

When there is no significant potential well distortion, [Rou+14a] predict the relation

ϕ = 2πfs,0
fb

(10.11)

for the angle between two substructures. When there are substructures all around the
center of the rotation, this is equivalent to

fb = m× fs,0, m ∈ N. (10.12)

They attribute deviating observations to a changing shape of the structure during the
rotation. In this view, the structures are material: They (and the particles they are
made of) follow the synchrotron motion. When potential well distortion plays a role, the
changes could then be expressed by the incoherent tune spread. The tune spread also is of
importance for the WMB, which is dependent on a small incoherent tune spread and thus
can be Landau-damped easily [BCS10].

Figure 10.13 images the charge modulation at different points in time and paths of example
particles. Unlike to the case of the static potential well distortion in Sec. 10.1.2, ψ(q, p) is no
longer constant in time. For 10.13(a), and 10.13(b), the settings describing the accelerator
are the same (fs,0 = 5756 Hz, VRF = 1.3 MV), but the beam current differs (I = 30µA vs.
I = 45µA). For the first, two substructures can be observed that do one full rotation in
tm ≈ 1.15 Ts.

In the same time, the fastest example particle also did one full revolution, the slowest
particle, however, only did 90% (0.77fs,0 . fs,i . 0.87fs,0). The bursting frequency is
fb = 9670± 10 Hz, which makes fb/fs,0 = 1.680. For the second, one full rotation of the

13The author, however, attributes the local minimums to detector saturation.
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(a) f05864, WMB

(b) f05864, Regular

(c) f05493, Regular

Figure 10.13.: Movement of substructures in phase space here is compared to the path
of example particles (black). The point in time picked for the right column is chosen so
that the sub-structures are identical to their initial configuration. In (a) structures and
all particles have almost the same frequency, 1.15 Ts makes approximately one revolution
for both, structures and particles. In (b) the outer structures move with about fs,0, the
inner ones with a lower frequency: At 1.05 Ts, the modulation is identical to the initial
one. However, the outer structures did one full revolution but the inner structures just
did two thirds. The latter in between also formed a structure similar to the small, central
isle at 0 Ts. The inner particles stay in their minimum for the whole displayed time, while
the outermost particles lag behind their structure. Also in (c) structures and particles
move with different frequencies. At 1.35 Ts, all particles are inside the minimum which
previously hosted the second particle from the left.
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m = 2 structures takes tm ≈ 1 Ts, but in the center there are m = 3 structures which again
are at their starting position at tm ≈ 1.5 Ts. Here, it is fb/fs,0 = 1.895 (fb = 10910±10 Hz).
For the example particles, it is 0.65fs,0 . fs,i . 0.85fs,0. So, the outer structures rotate
faster than the individual particles.

The example displayed in Fig. 10.13(c) was simulated using fs,0 = 7.2 kHz, VRF = 1.396 MV,
and I = 70 mA, here m = 3 structures are visible with a rotation period of t ≈ 1.3 Ts. With
a fast bursting frequency of fb = 16150±50 Hz, fb/fs,0 = 2.243, and 0.6fs,0 . fs,i . 0.85fs,0
Another example, corresponding to fs,0 = 8.9 kHz, VRF = 1.048 MV was already shown
in Fig. 10.8. There, it is fb/fs,0 = 3.395, with m = 4 structures at a rotation period of
tm ≈ 1.2 Ts, and in the center m = 5 structures with a rotation period of tm ≈ 1.46 Ts.

Table 10.1.: Overview of frequencies (all in kHz) of unperturbed synchrotron motion
fs,0, of spread of example perturbed incoherent synchrotron motion fs,i, of bursting CSR
fb, and rotation of the substructures fm = 1/tm. (The accuracy of the frequencies is
0.01× fs,0.)

m fs,0 fs,i fb fm

f05864, WMB 2 5.8 4.4 : 5.0 9.7 5.0
f05864, reg 2 3.7 : 4.9 10.9 5.8

3 3.8
f05993, reg 3 7.2 4.3 : 6.1 16.2 5.5
f05135, reg 4 8.9 6.0 : 8.2 30.0 7.4

5 6.1

These examples (put together in Table 10.1) suggest that in regular bursting and WMB14,
the relation expressed in Eq. (10.12) should be modified to

fb = m× fm (10.13)

with fm = 1/tm ≤ fs,0. The difference cannot be explained solely by the incoherent tune
shift, as in many cases there is not just one angle but the number of substructures in the
center of the phase space may be different from the number further outside. One should
also note that the substructures move with distinct frequencies, whereas the tune spread of
the individual particles results in a continuous frequency band. However, even if not strictly
proportional, with increasing number of substructures also the ratio fb/fs,0 increases.

An explanation could be that the impedance drives a constant modulation length (or a
range of lengths) that can resonate with the synchrotron motion eigenmodes. Key to
this understanding is the zero-crossing of the imaginary part or the CSR impedance ZPP
(cf. Sec 3.2.4): Short structures sample the inductive part of the impedance, and thus
become longer, while the opposite is true for long structures. When the bunch is longer (e.g.
because of fs,0 ∝ σz,0), higher modes are excited. Due to tune shift and tune spread, also
the single frequency fs,0 becomes a frequency band. So there are no discrete steps between
the particle’s oscillation modes. Also note that the example particles do not co-propagate
with the substructures but can move with a different 〈J(~r)〉. So the structures are not
material but are formed by the equilibrium of a dynamic process, as described in the next
section.

14Brief checks showed Eq. (10.11) works best during the bunch-shrinking phase of the sawtooth bursting
cycle.
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10.5.2. Growth and Decay of Substructures

One of the results of the previous section is, that there is not only a tune-spread (cf.
Sec. 10.1.2) but particles and substructures take different times for one full revolution in
phase space. Here, an approach is undertaken to link the local minimums of the charge
distribution to the areas where J is small, and vice versa. This description does not exclude
a mixture of azimuthal and radial eigenmodes of the synchrotron oscillation (see Sec. 3.3.2)
but might be more intuitive than a purely mathematical description.

To study this processes including the mode mixing, a possibility would be to transform the
coordinates using a non-linear scale that shadows the average potential well distortion in
the position coordinate. Doing so would make the substructures as well as the bunch shape
more symmetric, so that in equilibrium cases the paths of the particles will again be round.
Another option is to go into a rotating, non-linear reference frame where 〈J〉(q, p) ≡ 0, so
that only the time-varying part of the local instantaneous synchrotron motion is non-zero.
The substructures in phase space and their formation also show noteworthy similarities
to the formation of the spiral arms of galaxies that can be explained by a density wave
theory [LS64]. As the potential well only acts along the energy axis of the phase space
but gravitational forces in a disk act in two (spacial) directions, the theory is not directly
applicable. The similarity, however, hints to the possibility to find a suitable explanation
for the micro-bunching in the field of fluid dynamics, where also the density wave theory
originates.

Here, the coordinate system is still normalized using the unperturbed case. Still, it can
be made plausible that the substructures are reproducing themselves when moving to the
bunch head, and that the substructures form because of the accumulation of particles where
J is smaller. For the static case and the overall charge distribution, Eq. (10.3) already stated
that particles accumulate in regions with small J . Here, the situation is no longer static.
∂J(q, p, t)/∂t 6≡ 0, and the forming substructures are constantly moving. Figure 10.14
shows substructures in the phase space, simulated for fs,0 = 7.2 kHz, VRF = 1.396 MV,
and I = 70 mA at two different points in time. For this example, as well as for all other
studied substructures, it can be observed that the substructures have greater local charge
density when they are at the bunch head. This implies that they are growing when moving
from the bunch tail to the head and shrinking when moving into the other direction15. To
simplify the discussion, deviating from the original definition in Eq. (3.1) the synchronous
phase including CSR is now defined to be q = 0, so the motion is again centered

〈J〉(0, 0) != 0, (10.14a)

and particles with negative energy offset move to the bunch front and vice versa

sign[∂q(p)/∂t] = − sign(p). (10.14b)

First, it can be seen that the modulation of the longitudinal profile is mostly due to
the substructures at sign(q) = sign(p). The substructures in the quadrants sign(q) =
− sign(p) are almost parallel to the position axis and thus do not contribute much. Further,
Figs. 10.14(b) and 10.14(d), show that the modulation of the wake potential due to the
modulation of the bunch profile typically have the same sign. For q < 0, this means that
areas of low charge density lose less energy per time (lower J), areas of high charge density
loose more (higher J). In q < 0, p < 0 the modulation of the wake and of the charge density
co-propagate, meaning that particles will accumulate. For q < 0, p > 0 the movement of

15Notice that all examples have αc > 0, so particles with negative energy deviation move to the bunch
front and vice versa, sign(∂z(E)/∂t) = − sign(E). For αc < 0, many of the following arguments reverse.



100 Dynamics of ultra-short electron bunch profiles

(a) Charge Modulation at t = 2.5 Ts
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(b) Wake Modulation at t = 2.5 Ts

(c) Charge Modulation at t = 2.6 Ts
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(d) Wake Modulation at t = 2.6 Ts

Figure 10.14.: Formation of Substructures in the Longitudinal Phase Space
In contrast to the original definition in Eq. (3.1), here, the coordinate system has been
shifted so that p = q = 0 for the synchronous particle (center of rotation) in the perturbed
case. Substructures in the lower energy half of the phase-space are parallel to the energy
axis, while in the upper half they are parallel to the spatial axis. So the lower energy
substructures contribute dominantly to the charge modulation [black in (b), (d)]. This
results in the wake potential (blue, divided by 50 to match the scale) being modulated the
same way (red). When wake modulation and wake point into opposing directions, particles
will accumulate because of the slow-down. When this wake modulation is co-propagated
by a charge modulation, the substructure self-amplifies.
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the substructures is opposing the movement of the wake-modulation. As they are oriented
along the energy axis, the structures wash out. In the bunch front (q > 0), the total
energy gain due to the static wake modulation results in a higher instantaneous synchrotron
motion which is very directed (∂p/∂t > ∂q/∂t). So although the structures are principally
damped, they can survive these quadrants. In fact,∣∣∣∣∂p (−|q|)

∂t

∣∣∣∣ < ∣∣∣∣∂p (|q|)
∂t

∣∣∣∣ , (10.15)

to an extent that electrons reside at the bunch tail 50% longer than in the bunch head, so the
density of the substructures decreases (and afterwards increases) mostly in the quadrants
q < 0. Also note that the wake modulation slightly lags behind the charge modulation,
thus the amplifying effect is also (partly) behind the structure. This configuration seems to
counter-act the movement of the substructures, making them slower than the synchrotron
motion.

The given qualitative investigation can already make plausible how the substructures in
phase space reproduce. The explanation also solves the argumentative problem that the
substructures rotate at discrete frequencies but the individual electrons have a continuous
tune-spread. It does so by drawing a self-consistent picture that uses and the fact that the
structures propagate with a frequency that is different from the synchrotron frequency of
the individual electrons.



11. Explicit Comparison of Simulation
and Measurement

“The dream has no way at all of
expressing the alternative ‘either . . . or’.
It usually takes up the two options into
one context as if they had equal rights.”

Sigmund Freud

To verify the credibility of the model used in the previous chapter, this chapter shortly
compares example measurement results to simulation data. As the simulation method
is robust against changing numerical parameters (see Chap. 9), the most error-prone
part is to find the correct physical parameters for the simulation. The comparison will
start with detailed views and gradually broaden the scope to more expressible quantities:
First (Sec. 11.1), the bursting threshold is considered. From an abstract point of view,
it boils down all accelerator properties like the beam optics, the particle energy, and the
total impedance to just one parameter, the instability threshold current Ith. Section 11.2
investigates how well a modification of the geometric impedance is matched using a simple
model. When only the change is considered, this benchmark can be seen as a differential
method, reducing the influence of the other accelerator properties. The third comparison
(Sec. 11.3) looks at bursting spectrograms. Those again contain information on the whole
beam dynamics, but in contrast to the bursting threshold alone, they are very feature-rich,
so they also allow to argue whether there is a qualitative agreement. At last (Sec. 11.4), the
current-dependent bunch lengthening is looked at. This quantity is less complex but very
well studied and easily measured. It allows to argue qualitatively as well as quantitatively.

11.1. Bursting Thresholds

As shown in Sec. 9.5, the numerical method is very robust when it comes to the prediction
of the instability threshold. However, obtaining the physical parameters for a comparison
with an experiment is not a simple task. Figure 11.1 shows measurement data taken at
constant machine settings compared to two simulation runs that were both performed
based on two unperturbed synchrotron frequencies fs,0 measured in the same time period
as the CSR data was taken: 8.9 kHz and 9.4 kHz (see also Appendix C.6). It is evident
that this significant difference also has a big impact on the threshold determined by the
simulation. The simulated instability thresholds of Ith,8.9 ≈ 190µA and Ith,9.5 ≈ 215µA
frame the experimental value of Ith,exp ≈ 205µA. This calls for a systematic study that is
not bound to results of single simulations or experiments.

To be more robust against this kind of statistical influences, the comparison should include
a model that allows to average the high-uncertainty measurement values. As introduced in
Sec. 3.3.2, [BCS10] introduced a scaling law for the instability threshold [Eq. (3.27)]. It was
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Figure 11.1.: CSR Power Fluctuation: Measurement and Simulation
Simulation A was performed using a value for fs,0 that was obtained at 2mA using beam
position monitors (8.9 kHz), for Simulation B the value was obtained from a CSR power
spectrogram (9.4 kHz at 0.19mA). The curves have been scaled vertically to match the
measurement data. Except for the baseline in the measurement, the shapes agree very
well. However, the different synchrotron frequency of course leads to different bursting
thresholds. (Measurement data courtesy of Miriam Brosi.)

derived based on simulation data using the same impedance model utilized in this thesis.
When comparing experimentally obtained bursting thresholds to this prediction, an excellent
agreement is found [Bro+16b]. The differences especially include that measurements show
a slightly lower instability threshold current. This might be explained by contributions of
additional impedances, as studied in Sec. 10.3. The influence of noise on the accelerating
voltage, on the other hand, can be considered as rather low [Sch18a]. A test of an example
impedance will be in the next section. In general, the simple model already does a good
job.

11.2. Influence of a Geometrical Impedance

In Sec. 10.3, the influence of impedances has been studied that were added to ZPP, the
latter being the impedance describing the self-interaction due to CSR. To benchmark
the according predictions of the simulation, it would be handy if also the impedance of
the accelerator could be varied. However, most impedances are naturally constant and
cannot be changed. For example, the discussed resistivity of the vacuum pipe (resistive
wall impedance), might be influenced by changing the material’s temperature, but this
is typically not foreseen to do so. There is one relevant exception: The scraper, a pair
of metal rods that can be moved close to the beam. Historically, the scraper has been
introduced to reduce the beam current, but also influences on the beam dynamics have
been investigated (e.g. [KST03; Mül+04; Jud13]). The same authors already suggested to
use the collimator impedance for an estimated description of the scraper.

As the scraper can be moved in and out, a series of measurements giving sufficient statistics
is experimentally easier to obtain for the bursting spectrum (cf. Fig. 10.10(f)) then the
bursting threshold (cf. e.g. Fig. 10.10(e)). Figure 11.2 shows such a measurement. As
in the simulation, the influence of the scraper shifts the fast bursting frequency to higher
frequencies1. When the scraper is removed, the frequency is restored.

In Sec. 10.3, the fast bursting frequency was changed by fb,Coll/fb,0 ≈ 31.2 kHz/30.4 kHz =
2.6%, in the measurement presented here, the effect is much smaller (fb,Coll/fb,0 ≈

1It should be noted that in his experiment, [Jud13, Sec. 8.1.4] sees a shift in the opposite direction.
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Figure 11.2.: The spectrogram shows the fast bursting frequency fb for a number of
data sets with decreasing current (lower current for higher dataset number). Datasets
with the scraper moved in are highlighted in lighter color. Under the influence of a scraper
fb, moves to higher frequencies. This is expected when approximating the scraper by a
collimator (see Sec. 10.3), as suggested by e.g. [KST03; Mül+04; Jud13]. (Plot courtesy
of Miriam Brosi.)

14.4 kHz/14.3 kHz = 0.6%). One factor probably is a different distance from the beam, with
a simulated collimator opening of a radius of rColl = 2 mm, whereas the scraper opening
was rscraper ≈ 2.75 mm. However, already [KST03] found the measured wake losses to be
smaller than predicted by the used collimator model. In total, the model of the geometric
impedance can give a qualitative estimate. For quantitative studies, a more refined model
is needed.

11.3. Bursting Spectrogram

Due to the almost random nature of the seed of a burst2 no burst looks exactly like the
other in time domain (see Sec. 10.2.2). This makes it hard to directly compare the actual
dynamics. The situation is different in the spectral domain: Here, structures become clear
and easy to distinguish. Making use of this, bursting spectrograms are a standard tool when
analyzing CSR data (see Sec. 4.2). As such spectrograms include information of the whole
dynamics seen in the CSR emission, they are sometimes seen as a “fingerprint” [Jud13] for
settings and impedance of the accelerator. Of course, as for the instability threshold, which
can also be seen as a feature of the spectrogram, it is not trivial to correctly determine
all physical parameters to have a simulation with exactly the same conditions as present
in the experiment. However, the rich set of multiple features allows for better qualitative
comparisons.

In Fig. 11.3 for the simulation the same parameters were used as for Simulation B in Sec. 11.1.
There are slight differences in the resulting spectrogram, but the general structure matches
quite well: The instability threshold can be identified with the point the isolated single
frequency at f ≈ 35 kHz starts to rise. The second harmonic of this feature is stronger in the

2Notice that the model does not include random processes. Considering the huge number of possible
states, it may be considered deterministic chaos.
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Figure 11.3.: Example for a measured (left) and a simulated (right) bursting spectrogram.
Considering the smplicity of the model, the differences e.g. in the threshold current and in
the frequencies are rather small. The general structure of the spectrograms matches well:
There is an isolated finger pointing down (at f ≈ 35 kHz) with the fingertip marking the
instability threshold at (I ≈ 0.21 mA). Fluctuations in the frequency range f < 10 kHz
start for slightly higher currents. Because of them, also the finger broadens into a frequency
comb. For the highest currents displayed here, there is a regime showing broad lines at
multiples of approximately fs,0. (First published in [Sch+17c].)

simulation. At about 0.24mA fluctuations in the frequency range f < 10 kHz start to occur.
They also cause a broadening of the “finger”. Where the low frequency is very narrow,
they become visible as a frequency comb in the whole spectrum. For the highest currents
displayed here, there is a regime showing broad lines at multiples of fs,0. Considering the
simplicity of the model, there are surprisingly detailed similarities. The slight differences
between the spectrograms will be mostly due to a mismatch of physical parameters such as
fs,0 and τd between simulation and measurement. For example, notice the differences in
the lower frequencies that do also result in different occurrences of frequency combs. This
hints that probably the damping time was assumed to low.

11.4. Bunch Lengthening

At storage rings, the bunch length is a well studied quantity (e.g. [CG90; Qin+01; Hil+11])
with pretty accessible diagnostics [Cha+13]. If σz(I, t) ≡ 〈σz〉(I), the scaling law in
Eq. (3.24) might hold. In the micro-bunching instability studied here, however, it can start
to oscillate to an extent that governs the whole dynamics. Moreover, experimentally, the
FWHM is advantageous over the RMS (see e.g. Sec. 4.1). To reflect this, instantaneous
values for the FWHM bunch length l(I, t) are put into a histogram (see Fig. 11.4) instead of
looking at 〈σz〉(I). This way also allows to compare more information, like the amplitude
of the length oscillation.

It can be seen that the development of bunch lengths with current matches quite well
between measurement and simulation. In the simulation, the bunches at highest currents
(1mA) are about 2 ps shorter, but at 0.2mA, there is a slight discrepancy (0.5 ps) into the
opposite direction. Also, the level of the fluctuation shows just small deviations: Due to
noise on the measurement setup, the length does not reach one constant value even for
smallest currents. For higher currents, on the measurement data, there is a small asymmetry
in the distribution. This is because in the streak camera measurement the bunch profile
is averaged over typically 500µs. So, faster fluctuation (and possible short-time changes)
cannot be resolved. Another error source again lies in the choice of simulation parameters.
One that was not named before is the calibration of the accelerating voltage, so that V̂ is
over-estimated in the simulation and the simulated bunch lengths are thus shorter than
the measured ones.

In total, the differences can be considered to be small. The model, which describes the
electrons as a rigid line charge circulating between infinitely large parallel plates with no
resistivity, reproduces bunch lengthening at KARA very well.
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(a) Streak Camera Measurement
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(b) Simulation using Inovesa

Figure 11.4.: Distributions of Measured and Simulated Bunch Lengths
(a) shows a histogram of bunch length measurement results, the data is identical to the one
in Fig. 6.2, (b) displays simulation results in a comparable fashion. It is visible that the
development of the bunch length matches quite well between measurement and simulation.
The main difference is the level of the fluctuation at low currents: In the simulation, the
length reaches a constant value, whereas this is not the case for the measurement. Besides
noise on the measurement setup, there is also a data-evaluation artifact that influences
the distribution especially for higher currents. In the streak camera measurement the
bunch profile is averaged over typically 500µs. This means, that faster fluctuation cannot
be resolved. As a result, the measured distribution of bunch lengths has an asymmetry
which is not expected from the simulation. The mismatch in the bunch length at highest
currents displayed here is probably due to a slight mitsmatch between the real acelerating
voltage and the one used for the simulation.



12. Implications and Outlook

“There is more to reality than meets a
normal eye.”

Willem Rebergen

This chapter reviews the insights gained in Chapter 10 from a perspective that is more the
one of an experimentalist. It makes explicit how some of the findings have to be considered
in measurements of the phase shift (Sec. 12.1) and the bursting threshold (Sec. 12.2).
Further, it summarizes the possibilities to influence the bursting and hints how they can
probably be evolved (Sec 12.3). At last, it suggests methods to verify the numerical result
that the substructures in the phase space are not material but rather created as a dynamic
equilibrium (Sec. 12.4).

12.1. Radiation Losses and Phase Shift1

Measuring the energy in pulsed light is a challenge because of the lacking availability of
properly calibrated detectors [Ste+17a]. This becomes even more severe when the spectrum
has a wide frequency range spanning several orders of magnitude. However, at a synchrotron
light source, there is potential to indirectly measure the energy loss by determining the
energy hat is regained due to V̂ .

An absolute phase information is hard to obtain, but phase differences are easily measured.
In fact, it is common practice to track the shift of the coherent phase (e.g. [PS98; RBT11;
Che+17]). This way, the so called loss factor

k(N) = 1
2π

∫ ∞
−∞
<[Z (ω)] |ρ̃ (ω) |2dω (12.1)

is determined, a measure how increasing charge increases the total losses. There are two
common approximations: For small phase variations φ� 1, it is sin(Ψ)−sin(Ψ0) ≈ φ cos Ψ0,
yielding [RBT11]

k(N) = ∆〈φ〉(N)
eN

V̂ . (12.2)

Also, when ∂ρ/∂Q = 0, k(N) is constant and φ ∝ N , as in [PS98]. Notice that dependent
on the shape of Z, k(N) can also be constant with changing ρ(Q).

Recall that the synchronous phase Ψz,0, unlike 〈Ψ〉 as used here, is defined to be the
phase of the particle that gains exactly the energy it loses [Eq. (2.32)]. Based on the
definition, in Sec. 10.1.2 it was shown that the synchronous phase is not equivalent to the
average particles position of a deformed bunch. In fact, phase shift and deformation are

1The thoughts presented in this section were a motivation for [Sch+18b], which contains some of them.
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coupled: Only when <(Z) 6≡ 0 – which also introduces an asymmetry – a changing bunch
population can modify W0. Following this particle-centered definition of the synchronous
phase, however, introduces two counter-intuitive features: As the distortion of the potential
well – which is equivalent to the position-dependent losses – moves along with the electron
bunch, under synchrotron oscillation the synchronous phase is not at a fixed location. Also,
there might be more than one synchronous phase in a micro-bunched beam.

To summarize, changes in the average energy emitted per electron can be measured by
tracking the shift of the center of mass position of an electron bunch. As the emission
typically depends on the particles position in the bunch, this is not the synchronous
phase as defined for a single particle. If it was possible to get a reference point the phase
measurement would further allow absolute power measurements. Experimentally, this
might be challenging, however, it is probably easier than calibrating detectors for the whole
range of emitted frequencies.

12.2. Methods to Determine the Micro-Bunching Threshold

There are various strategies to experimentally determine the bursting threshold. The
methods include the observation of practically all phenomenons discussed in Chap. 10.
This section reviews those methods, also commenting on the possible influence of available
detectors2.

A first method, that does not require fast detectors, is to measure the average synchrotron
radiation level. In [Jud13], the description reads that there is a quadratic increase with the
current below the micro-bunching threshold, with a further increase at higher current due
to the substructures. This observation, however, highly depends on the spectral sensitivity
of the used detector. With a flat detector response, the integrated radiation level should
see great influences of bunch deformation in the potential well distortion also before the
instability threshold. The example in Sec. 10.1.4, showed a growth rate below the threshold
that was not quadratic but still more than linear. Above the threshold, however, the
synchrotron radiation power per electron even decreased. Thus it may be disputed whether
a measurement of the average radiation level is a good indicator for the micro-bunching
instability threshold: It might happen that there is no observable change at all.

The situation is different when explicitly using a narrow band (or short-wavelength) detector.
Such a detector can be chosen to be sensitive at wavelengths of the size of the substructures
but might not be influenced by the change of the average bunch shape (cf. Fig. 10.6). If
the sensitivity curve is not flat the results might be biased by the occurrence of different
substructures or by remaining visibility of the bunch deformation, but in total, the emerge
of short-wavelengths components in the emitted CSR should be a very reliable indicator.

Alternatively, the evolution of the total loss rate might be determined by observing the
coherent phase shift. As 〈Ψ〉 ∝ P/I, Fig. 10.7 suggests, there should be a turning-point
at the micro-bunching threshold. This feature, however, has not been identified in any
measurement, yet. One reason is that the total impedance budget can be dominated by
other sources then CSR [Sch+18b].

When fast detectors are available, also the fluctuation of the CSR signal can be considered.
In early experiments, this has been done by looking at time-domain traces [Byr+02], but it
it is also possible to use the standard deviation (examples in [Sch+13; Bro+15]). The idea
behind is that a stable beam should also emit a stable synchrotron radiation. In a real
accelerator, the detected intensity is influenced by motion of the radiation source point.

2This section might be seen as a revisit to [Sch+13; Sch13], now with a broader knowledge also on the
theoretical background.
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For example, a slight RF phase jitter introduces a coherent synchrotron oscillation which
leads to a 1× fs,c or 2× fs,c modulation of the detected signal. The latter is the case if for
example the amplitude but not the sign of the sinusoidal motion is of importance. As this
method allows to select the frequencies of interest after the measurement, this problem can
be overcome. Choosing a narrow band of CSR signal fluctuation frequencies can also reduce
the noise. This elaborated version has been first used by [Bro14; Bro+16b]. Recalling
that the relative power fluctuation in the regular bursting regime is very dependent on
the wavelength of the emitted light, the shape of the fluctuation curve is of course very
dependent on the detector: As shown in Sec. 10.4, narrow-band detectors possibly show
a different evolution of the power fluctuation. Also notice that it is the possible that the
power fluctuation for the chosen range of photon wavelengths is insignificant. However,
the situation with an averaged-out power fluctuation (see Fig. 10.12) can be considered an
edge-case.

Often, the spectrum of the CSR signal fluctuation (bursting spectrogram) is taken as an
indicator. To produce this, requires fast detector to be sensitive to fluctuations with time
constants t < 1/(N × fs,0) (see Sec. 4.2). A slower detector would not see the regular
bursting regime. In the bursting spectrogram, the “finger pointing down” marking the
regular bursting with the bursting threshold at the fingertip is a very prominent feature
that is easily identified. However, in the spectrogram, it is hard to name an exact criterion
where the instability begins. So, decision based on the integrated power fluctuation in a
certain frequency range – as discussed above – seems to be more accurate.

Instead of the coherent radiation, also the charge distribution can be investigated. Sec. 6.2
has shown that a direct measurement of substructures is possible. But for a threshold
determination, it should be considered that – as for fluctuation of bunch length and energy
spread – those structures are just starting to emerge and thus are very small at the
threshold. It sounds to be more promising to quantify the size of these structures to be
able to extrapolate from larger modulations. To handle the amounts of acquired data
when continuously recording, T. Boltz started exploring the possibilities of unsupervised
machine learning to allow automatic classification of the substructures. The results gained
from Inovesa simulations show that this is possible if the signal to noise ratio is good
enough [Bol17].

Another approach pins down the increase of energy spread (see Sec. 10.1.3). This method
is again well tested. Measurements for example can be performed indirectly using the
transverse bunch size in a dispersive section [Kre+93]. There might also be other effects
that lead to a transverse beam-blowup, but in principle this method should be quite robust.
An example measurement for KARA is found in [Keh+17a]. Especially for simulations (e.g.
in [BCS10]), the increase of energy spread at the bursting threshold is a good indicator.

Analogue to the increase of the energy spread, it sounds possible to view the bunch
lengthening. This approach has been followed, e.g. in [Jud13; Sch+13]. It is less reliable
because of the potential well distortion, so that there is no constant level before the threshold.
Also, the lengthening during the instability depends on the part of the impedance that is
sampled. This can be simple, if the impedance is e.g. governed by unshielded emission of
CSR, but this assumption usually cannot be done. In total, bunch lengthening is not a
precise indicator but it can give an estimate.

Fluctuation of the bunch length was the first sign of the micro-bunching instability [Kre+93;
Pod99]. For example in [Sch+13], it was also tried to use it to determine the micro-bunching
threshold. However, the fluctuation is typically very small at the threshold, but strong in
the sawtooth regime (cf. Sec. 10.2.2). Section 10.2.1 showed, that the fluctuating bunch
length is strongly connected to the fluctuation of the emitted CSR. So it (and analogously
the fluctuation of the energy spread) should in principle be usable as an indicator. The
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method still will be less sensitive than using the fluctuating emission of CSR, as the latter
is a non-linear effect that enhances the visibility of small length-fluctuations.

12.3. Influencing the Bursting CSR

As shown in Section 10.3 the strength of the structures as well as the bursting threshold can
be influenced by additional impedances. For short bunches, however, it is hard not to be
dominated by the effect of the shielded CSR impedance. It would be worth to investigate,
whether a narrow-band impedance could form substructures that then self-amplify due
to their own CSR. This approach is currently being explored by P. Schreiber using
Inovesa [Sch18b]. Another option would be to influence the formation of the substructures
by the incoherent synchrotron tunes (see Section 10.1.2). Especially the WMB is very
sensitive in this regard [BCS10]. As it does not introduce bunch lengthening to the same
amount as other bursting does (see Section 10.1.3), it still allows full coherence for lower
frequency emission than other types of bursting. To influence the tune, the options include
higher orders of αc, a stronger accelerating voltage non-linearities, and introduction of
additional impedances. The first option would need tuning of the beam optics using
sextupole magnets, the second option might be realized using an additional cavity, the last
one would require manipulating the beam pipe but can be evaluated using a scraper.

12.4. Verification of Non-Material Charge Modulation

To experimentally verify the finding that the charge-modulation in the longitudinal phase
space is not material but formed in a dynamic process, one possibility would be to measure
the tune spread. This information then has to be combined with other data showing
discrete frequencies of the substructures.

The direct way is to reconstruct the phase space. A method, called phase space tomography,
aims to record the changing bunch profile for a period of time. From these projections, the
two-dimensional phase space might be reconstructed. However, at this point knowledge of
the rotation speed of the structures in phase space is required – which should be a result
rather than prior knowledge. Also, the substructures should not deform too much during
the measurement which is actually not given. As a last point, different structures can have
rotation speeds even if they are present at the same point in time (cf. Tab. 10.1). Still,
under certain circumstances, it might be valid to assume the forming substructures to
be static. The first example is regular bursting. Because the high degree of (temporal)
symmetry a short period of time already holds complete information. Secondly, in WMB,
it takes the substructures many synchrotron periods to form, so they are almost static.
However, for WMB, the low bunch charge adds another experimental challenge. The
optimized EO setup (Chap. 5) can be seen as a first step to realize this method.

Another option would be to image the full phase space at a certain time, using a transverse
deflecting structure [EFK00]. The advantage of this approach is that it does not require
static substructures. The method, however, is destructive. So two bunches need to be
under exactly the same conditions to record two phase spaces that only differ by a fraction
of a synchrotron period.



13. Summary

At synchrotron light sources, electron bunches are compressed so that the electrons irradiate
coherently for frequencies up to the THz range. For low beam currents and thus low electron
densities, the bunch shape is constant in time. In the lower limit it is Gaussian, but typically
there is a deformation, called Haïssinski distribution. Above a threshold current, the CSR
emission can heavily influence the beam dynamics: It leads to the formation of self-
amplifying substructures on the electron bunches. On the one hand, these micro-bunches
allow for coherent emission at even shorter wavelength, increasing the radiation level in
the region of interest. On the other hand, the self-amplification can lead to unsteady
conditions, where the synchrotron radiation is emitted in so-called “bursts”. Also, the
overall bunch-shape is lengthened due to the micro-bunching. In order to overcome the
limitations implied by this phenomenon, to fully exploit its potential, and to possibly
control it, a deeper understanding of the processes is needed. Until now, the dynamics
cannot be described analytically. To directly observe the evolution of the bunch profile, a
sensitive single-shot turn-by-turn method is needed. At the moment, near-field EOSD is
the technique that can best match these requirements. The only setup of this kind that is
installed at a storage ring can be found at KARA. To simulate the micro-bunching, it is a
well established method to numerically solve the Vlasov-Fokker-Planck equation.

This thesis attacks the topic from two sides: by optimizing the measurement setup and the
algorithms used for simulation. In the framework of this thesis, I designed and installed a
new in-vacuum component for near-field EOSD measurements. It minimizes the effect of
wake-fields that previously limited the usage of the system while at the same time doubling
the signal-to-noise ratio. Furthermore, the setup has been equipped with a turn-by-turn
readout system called KALYPSO. It was developed in joint collaboration between KIT, PSI,
DESY and the University of Łódź, in order to build a spectrometer with MHz repetition
rates.

As there is no analytic description nor a closed formulation, one has to rely on simulations
to predict the measurement results. In the second half of my thesis, I focused on this part.
I did systematic numerical studies of the micro-bunching instability. Before, mostly short
periods of time were modeled – often with only a single set of parameters. These systematic
studies became possible because I adapted (Chap. 8) the well tested algorithms to make
use of general-purpose multi-parallel computing devices (such as graphic processors) for
desktop computers. These optimizations lead to a speedup of about a factor of 150 when
compared to a non-optimized implementation. Additionally, I added a user interface so
that the tool can be used by a wider community.

In particular, I performed studies of the current-dependent changes (Sec. 10.1) as well as an
in-depth analysis of two different “bursting regimes” (Sec. 10.2), explaining the underlying
mechanisms. In the “regular” bursting regime, there are quasi-static substructures that
grow when moving to the bunch head and shrink on their way back. In the “sawtooth”
regime, structures form, self-amplify and then lead to a blow-up of the bunch. This
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mechanism leads to a strong fluctuation in the emitted radiation, the “bursts”. Also, I
present the first systematic numerical studies of the influence of additional impedances on
the spatio-temporal dynamics (Sec. 10.3) – previously only the change in the instability
threshold was determined. Furthermore, I investigated which frequency ranges contribute
to the overall fluctuation of the emitted power. I found that it is possible that these
fluctuations have opposing signs for different frequency ranges (Sec. 10.4). When choosing a
fitting frequency range for detection, this could lead to a method to obtain stable coherent
synchrotron radiation from an unstable beam.

To understand the nature of the substructures, I introduced a novel simulation scheme
that combines the Vlasov-Fokker-Planck solver with particle tracking. It allows efficient
computation of the whole phase space, yet yields information on single particle dynamics.
This method lead me to the insight that modulations in the phase space are not material
but form as an equilibrium in a dynamic process (Sec. 10.5). For the new findings, I made
suggestions how future experimental work can use or verify them (Chap. 12). On this road,
my design of an optimized in-vacuum part for electro-optical measurements (Chap. 5) will
probably play a significant role.

The view on the “sawtooth bursting regime” gained by the simulation algorithm could
already be verified: Using KALYPSO, for the first time the temporal evolution of substruc-
tures in near-field could be measured not only for the beginning burst but for several bursting
cycles (Sec. 6.4). My work was already continued and expanded by several complementary
Bachelor and Master thesis. Based on simulation data, T. Boltz used unsupervised machine
learning to automatically find different categories of bunch profiles [Bol17] and also checked
the requirements to do the same for measurement data recorded using KALYPSO. Follow-
ing the long-term goal to design impedances for an explicit purpose, P. Schreiber started
systematic studies of the longitudinal beam dynamics for multiple impedances [Sch18b].
The influence of physical noise in the form of phase jitter and a varying amplitude of the
accelerating voltage was investigated by J. Schestag [Sch18a]. As expected, he triggered a
coherent synchrotron oscillation, and found out that the noise does not significantly effect
the instability threshold.

To summarize, significant improvements were achieved for both, measurement and simulation
of longitudinal electron bunch profiles. On the measurement side, now turn-by-turn single-
shot measurements are possible with increased signal-to-noise ratio and strongly reduced
influence of interfering wake-fields. Especially after 2 ns, where a consecutive bunch in a
multi-bunch environment would be located, the remaining wake field could be reduced
to background level. On the simulation side, the speedup and the improved numerical
stability helped to perform extensive studies. Also thanks to the combination of the
Vlasov-Fokker-Planck solver with particle tracking, these studies gave new insights into the
dynamics of the micro-bunching.
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A. Complete Lists of Used Simulation Settings

To maintain a balance between feature richness and comparability of scenarios, simulation
parameters have been chosen to correspond to a total number of four different machine
settings. These setting are named using a so-called fill number and listed in Tab. A.1.

f4623: Figs. 10.1, 10.5, 10.4(a), 10.6, 10.7, 10.9, 10.11(a), 10.12

f5135: Figs. 10.8, 10.10, 10.11(b)

f5493: Figs. 10.2, 10.13(c), 10.14, (with modified fs,0:) 10.11(c)

f5864: Figs. 10.4(b), 10.3 10.13(a) 10.13(b)

The fill number can also be used to identify the machine shift at KARA where measurements
were carried out with the same parameters. The simulation results are available at [f4623;
f5135; f5493; f5864].

Table A.1.: Simulation settings used for the results obtained in this thesis.

Quantity Unit f4623 f5135 f5493 f5864
VRF MV 1.5 1.048 1.396 1.3
fs,0 (KARA) kHz 7.7 (8.9) 7.2 (≈ 5.76)
fs,0 (set) kHz 7.7 28.130 7.2 (n/A)
E0 GeV 1.285 1.285 1.285 1.285
σδ 10−6 470 470 470 470
R m 5.559 5.559 5.559
fc GHz 23 23 23 23
τd ms 10.4 3.353 10.4 10.4
frev MHz 2.71579 8.582 2.71579 2.71579
g mm 32 32 32 32
α0 10−6 151.6
h 1 184 58.21 184 184

B. Mathematical Definitions and Discussions

B.1. Airy and Bessel Functions

Mathematical function were used according to the definition in the “Boost” library for
C++. The Bessel functions read [Bst17c]

Jv(z) :=
(
z

2

)v ∞∑
k=0

(
−z2/4

)k
k! Γ(v + k + 1) , (B.1)
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and [Bst17d]

Iv(z) :=
(
z

2

)v ∞∑
k=0

(
z2/4

)k
k! Γ(v + k + 1) (B.2)

Kv(z) := π

2
I−v(z)− Iv(z)

sin(vπ) (B.3)

for the modified Bessel functions. The Airy functions are [Bst17a]

Ai(z) :=


√
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, (B.4)

and [Bst17b]

Bi(z) :=
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(
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. (B.5)

B.2. Fourier Transforms

As the aforementioned mathematical functions, also the definition of the Fourier transform
was chosen to be consistent with the used software implementation. In [FFTW16; clFFT16]
the “forward” Fourier transform is defined to be

f̃(ω) =
∫
f(t)e−iωtdt. (B.6)

The direction is important, as also the real-to-complex Fourier transform is of the forward
type. As unnormalized transforms are performed in the implementation, the sign in the
exponent is the only difference to a backward transform. The transform from a (complex)
Hermitian function to a real function is of the backwards type. Of course, the Fourier
transform has to be normalized at some point. To do so, here, the factor of 1/(2π) is
applied to the backward transform

f(t) = 1
2π

∫
f̃(ω)eiωtdω. (B.7)

This is definition is in agreement to the choice in [Kha06].

It should be noted that this is not the only possible definition. In [Ng06] the direction with
the negative exponent is called the “inverse” Fourier transform. Arguing from [Ng06, p. 16]
the naming is in agreement, as the inverse FT is used for complex to real transformations.
However, the sign in the exponent differs. For example in [Ng02, p. 1-13]

W ′(z) = 1
2π

∫
Z‖(ω)e−iωz/vdω, (B.8)

a Hermitian to real (“backward” or “inverse”) transform has a negative sign in the exponent.
Effectively, the only difference is a flipped sign in the imaginary part of the result, so this
does not result in a physical difference.
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B.3. Rounding

As they are working with discrete numbers (defined by the number of bits), computers
have to implement some sort of rounding. For example, division often has a remainder. A
commonly known case is that the remainder is discarded in integer division

5/4 = 1
7/4 = 1.

This behavior adds a bias to the average result. To avoid this, one usually would round,
so 7/4 = 2.) As the remainder 0.5 is as close to 1 as to 0, often special attention is taken
for these kinds of values, called ties. (Otherwise there still would be a small bias.) IEEE
754 floating point representations offer unbiased rounding: It is guaranteed that rounding
random numbers do not bias the average. To achieve this, there are different possibilities
that can be chosen using a so called rounding-direction attribute [IEEE08, p. 16]. The
default (roundTiesToEven) is to round ties to the next number with an even least significant
digit. Other options for binary formats are to always round upward, downwards or towards
zero. These three options are not unbiased anymore. Another possibility to implement
unbiased rounding would be to randomly round upwards or downwards if there is a tie.
However, this approach is not foreseen in the IEEE standard.

To have no bias even when the same rounding is performed a multitude of times, the
above treatments offer no solution. In such cases, stochastic rounding [Cai+18] could
be performed: The decision to round up or down has to be random not only for ties.
Introducing the random number 0 ≤ p < 1, stochastic rounding can be described as

A/B = bA/Bc+
{

0 if p ≥ (A mod B)/B
1 if p < (A mod B)/B.

(B.9)

This leads to a situation where – on average – the result is correct.

C. Complementary Data

C.1. Prediction of EOS v2 wake

As stated in Sec. 5.2, the result of an EO measurement is dependent on the (changing)
bunch current, and the exact laser path through the EO crystal. The path is dependent on
the alignment of and cannot be determined by measurement in the installed setup. So, for
the simulation of the EOS v1 wake, the path set in the simulation has been varied until a
satisfactory agreement to the measurement was obtained. For EOS v2, this manual fitting
was not performed. Instead, the shape of the wake field was only predicted for a rather
pessimistic alignment. Figure C.1 adds this prediction to the data already displayed in
Fig. 5.10. Notice that all of the points that can explain mismatches that have been named
in Sec. 5.2 are also valid here:

• The CAD model of the EO arm is simplified with respect to the original geometry.

• The position where the laser passes the crystal is not known. Further, for EOS v2, it
has not been fitted.

• The small angle between incoming and outgoing direction of the laser has been
neglected.

• For the simulation, a Gaussian bunch shape and a constant bunch length have been
assumed.

Considering all these, the agreement between the simulation result for EOS v2 and the
measurement still can be considered to be reasonably good.
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Figure C.1.: Simulated EOS v2 wake-field compared to measurements
The result is dependent on the (changing) bunch current, and the exact laser path through
the EO crystal (c.f. Sec. 5.2). For the prediction of the EOS v2 wake field, simulation
parameters were used that provided reasonably good agreement for EOS v1. This might
explain why in some parts the simulation is more similar to EOS v1 than to EOS v2.

C.2. Implicit Discretization: Differences in Convergence

One topic of Chapter 9 was the effect of the choice of the data type. It has been stated that
it can be seen as an implicit discretization (see Sec. 9.1). In most cases, it is overweighted
by the explicit discretization. This statement was verified by benchmarking it simulating
the convergence for the case of the unperturbed VFPE in Sec. 9.3.1: When the numeric
accuracy of the chosen data type is high enough, the simulation converges to an almost
common value that is dominated by other parameters. Still, there are small differences
between the possible data types. They are displayed in Fig. C.2.

The mismatch between binary32 and binary64 is in the order of 10−7, which is the
difference in the numerical accuracy. For the other data types, it is similar: With increased
accuracy the results become more similar (up to 10−11 for fix59) – but do not converge
closer to the analytic result. When decreasing the accuracy to a 29 bit fixed point data
type, a significant change can be observed: The difference has a maximum at t ≈ 20 Ts. At
t ≈ 42 Ts, the curves cross. All simulations have converged at latest at t = 90 Ts. From
that point on the values do not change anymore.

C.3. Contributions to the Form Factor

The form-factor can be expressed as the sum of the form-factor of the average bunch profile
(static term), the form-factor of the modulation (modulation term), and a mixed term
[c.f. Eq. (10.6)]. An example is visualized in Fig. C.3. The static term always starts at
F (f = 0) = 1, which means that there is full coherence for low frequencies. The peak at
f = 100 GHz is not due to substructures but comes from a static bunch deformation. It can
be linked to the PP CSR impedance which is =[ZPP (f < 100 GHz)] < 0 Ω < =[ZPP (f >
100 GHz)]. So – neglecting the real part – structures emitting at 100GHz remain unchanged,
but longer structures are lengthened and shorter structures are shortened. In the frequency
range f > 400 GHz, the contribution from the modulation term dominates the total form
factor. The mixed term shows several magnitudes of fluctuation in the whole frequency
range. So, where its average contribution is larger than the one of the average modulation
term, also the fluctuation is dominated by the mixed term. This is especially the case at
f ≈ 100 GHz, where also the main modulations of the spectra were visible in Fig. 10.8.
Also notice that the mixed term can be negative. This is especially visible because of the
two dips in the minimum form factor at f ≈ 400 GHz: They are several orders of magnitude
lower than the static and the modulation term.
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Figure C.2.: Convergence based on Data Type
For a better comparison of the influence of the data type, here the result of the binary64
simulation run has been subtracted as the reference dataset. When the simulation has
converged after t = 90 Ts, most displayed data types except for the 34 and the 29 bit
point ones (fix34 and fix29) have a result closer to the one obtained using binary64
then to the analytic result. Also notice that the fixed point results in this logarithmic
representations move mostly parallel, the analytic and the floating point results on the
other hand show a slight qualitative difference.
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Figure C.3.: The form-factor (black) is the sum of the “static term” (dotted red), the
“modulation term” (blue) and the mixed term (magenta). Lines mark average values,
the bands give the full range from minimum to maximum. Notice that the static term
is constant, so it has no band. The total form-factor can be below the static and the
modulation term, as the mixed term can be negative, here only the magnitude is displayed.
(See text for more explanation.)
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C.4. Contribution of Additional Impedances

In Sec. 10.3, the influence of additional impedances that are added to ZPP (Eq. (3.15)) was
discussed. Figure C.4 shows complementary spectrograms to the data.

(a) Shielded CSR Only (b) Added Resistive Wall

(c) Added Collimator (d) Added Both

(e) Average CSR Power (f) CSR Power Fluctuation

Figure C.4.: The plot of the CSR power function (f) was already shown in Fig. 10.10.
The rise from 0mW provides the easiest and most reliable measure for the micro-bunching
instability threshold current. In (e) the average CSR power is shown. It is reduced
due to the additional impedances as it adds a further contribution to the potential well
distortion. At higher currents, the low frequency (sawtooth) bursting shows significant
differences. Those also result in different frequency combs. Notice that also below the
bursting threshold, a frequency component close to fr = 30 kHz can be observed – but
with a very low intensity. These can be linked to structures in the order of magnitude of
the numerical resolution (see Fig 9.6). They do also add a non-zero CSR power fluctuation
below the instability threshold.
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C.5. Fluctuation of the CSR Spectrum

In Sec. 10.4, the wavelength dependence of the CSR power fluctuation was discussed. It
included an example case where the total fluctuation was minimized by choosing a specific
sensitivity range for the radiation (see Fig. 10.12). Figure C.5 shows the same data in time
domain and including the information over the full spectral range.

(a) (b)

Figure C.5.: (a) is identical to Fig. 10.11(a). As the average bunch profile does only
change slightly in the displayed current range, the most of the differences can be attributed
to the substructures, with the spectrum for I = 70µA being the one without. (b) shows
the relative deviation from the average CSR spectrum for the example of 80mA over
time. Maximums and minimums are cropped, the extreme values are +730% and -100%.
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C.6. Difficulty to Obtain the Synchrotron Frequency

In Chap. 11, it has been stated that one issue when comparing simulation results to
measurement data is to choose the correct unperturbed synchrotron frequency for the
simulation that corresponds to the measurement. Figure C.6 gives example measurement
results to confirm this claim.
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Figure C.6.: Difficulty to Obtain the Synchrotron Frequency
The upper panel shows the synchrotron frequency as it is automatically obtained by the
accelerator controls over time. Values are saved to the database every time a change is
detected. At early times, the bunch current is highest, later it decreases. It can be seen
that in the first hour, the value drifts by as much as 500Hz and that it fluctuates by with
an amplitude of about 100Hz. This fluctuation is fastest for the highest currents. The
lower four panels show CSR spectrograms for four example currents. Two of them show
very distinct 50Hz lines, which hints that the reason for the fluctuation might be found
in unstable power supplies. The shift of the coherent tune, however, cannot be explained
within the used model. (Plots courtesy of M. Brosi.)
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D. Inovesa Quick Reference

Inovesa is implemented as a non-interactive command line tool. For every simulation
parameter there is a preset value that can be overwritten using a key value style config
file (text format). Parameters that are given using command line parameters have priority
over the two other values (if set).

The simulation results are written to a file that can be defined using the option --output.
This can either be a file name ending on .h5 – to save the computed information to a
HDF5 [HDF516] container – or a file name ending on .png – to save the final phase space
of the simulation to a greyscale PNG [PNG16] file. When no output file is set, a HDF5
file is created that is named using the current UNIX timestamp, to not save the results,
use --output /dev/null. Additionally there is an optional graphical live-view (parameter
--gui) that shows the phase space currently being simulated as well as the corresponding
bunch profile, wake potential and emitted CSR.

D.1. Program Information

help print help message

copyright print copyright information

version print version string

D.2. General Program Parameters

cldev OpenCL device to use
−1: lists available devices
0: do not use OpenCL

config name of a configuration file

ForceOpenGLVersion use specific version of OpenGL for displaying data

gui show phase space view

output name of file to safe results, might be:
HDF5 file (‘.hdf5’, ‘.h5’)
greyscale PNG (‘.png’)
‘/dev/null’ to explicitly state no read-in

SavePhaseSpace save full phase space to HDF5

SaveSourceMap save every outstep’s source map to HDF5 file

tracking file containing starting positions (grid points) of particles to be tracked

verbose print information more detailed

D.3. Numerical Parameters for Simulation

steps simulation steps for one synchrotron period

outstep save results every n simulation steps

padding factor for zero padding of bunch profile when FFT is performed

RoundPadding Always do zero padding up to 2 to the power of N

PhaseSpaceSize size of phase space

PhaseSpaceShiftX shift grid center by X grid points
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PhaseSpaceShiftY shift grid center by Y grid points

RenormalizeCharge might be:
> 0: renormalize charge every n-th simulation step
= 0: do just one initial renormalization
< 0: no renormalization

RotationType used implementation for rotation
0: standard rotation without source map
1: standard rotation with source map
2: Manhattan rotation

GridSize number of grid points per dimension

rotations simulated time in number of synchrotron periods

derivation number of grid points to be used to numerically find derivative

InterpolationPoints number of grid points to be used for interpolation

InterpolateClamped restrict result of interpolation to the values of the neighboring grid
points

D.4. Physical Parameters for Simulation

alpha0 linear momentum compaction factor (1)

alpha1 quadratic momentum compaction factor (1)

alpha2 cubic momentum compaction factor (1)

SynchrotronFrequency Synchrotron frequency (Hz),
will overwrite alpha0

RevolutionFrequency revolution frequency (Hz)

DampingTime damping time (s)

HarmonicNumber harmonic number (1)

InitialDistFile might be:
Inovesa result file (‘.hdf5’, ‘.h5’)
quadratic greyscale PNG (‘.png’)
text file (‘.txt’) containing particle coordinates
‘/dev/null’ to explicitly state no read-in

InitialDistStep Select step of HDF5 file for initial distribution

InitialDistZoom Magnification for generation of initial distribution

BunchCurrent ring current due to a single bunch (A)

BendingRadius Bending radius of accelerator (m)
negative: calculate from RevolutionFrequency

BeamEnergy beam energy (eV)

BeamEnergySpread natural energy spread (relative)

VaccuumGap full height of vacuum chamber (m)
< 0: free space CSR impedance
= 0: no CSR impedance
> 0: parallel plates CSR impedance
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UseCSR Switch to turn off CSR for VacuumGap 6= 0

CollimatorRadius Radius of collimator opening (m)
≤ 0: no collimator

WallConductivity Conductivity of the vacuum pipe (S/m)
≤ 0: perfect conductor

WallSusceptibility Magnetic susceptibility of the vacuum pipe (1)
< −1 : −1

CutoffFreq beamline cutoff frequency (Hz)

AcceleratingVoltage accelerating voltage (V)
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E. List of Symbols

D dispersion (magnet optics function) 5
E0 energy of the reference particle 4
E energy 3
J instantaneous synchrotron motion 17
K map describing the kick due to a collective force (‘kick

map’) 52
L0 circumference of a circular accelerator 4
Nθ number of time steps per Ts,0 52
Q charge 3
R bending radius 5
S map describing the synchrotron motion (‘rotation

map’) 52
T0 revolution time 4
W0 per-turn radiation losses of the synchronous particle

8
Z0 vacuum impedance 15
αc momentum compaction factor 9
βd inverted damping time (in units of Ts,0) 13
β ratio of the velocity to the speed of light 3
δ relative momentum deviation 4
ηc slip factor 9
γ Lorentz factor 4
V̂ amplitude of accelerating voltage 10
µ0 magnetic constant 15
ψ charge density in longitudinal phase space (normalized

charge) 12
τd longitudinal damping time 8
τ relative arrival time (τ = z/c) 4
θ dimensionless time in multiples of the synchrotron

period length 12
ε0 electric constant 7
% longitudinal bunch profile (normalized charge) 7
~B magnetic field 3
~E electric field 3
~FL Lorentz force 3
~p momentum (of a particle) 4
~v velocity 3
{x} grid coordinate of space (fractional part) 52
{y} grid coordinate of momentum (fractional part) 52
c speed of light 3
fRF frequency of accelerating voltage (typically in the RF

range) 4
fb (dominant) bursting frequency 86
fc cutoff frequency (beam line cutoff) 9
frev revolution frequency 4
fs,0 synchrotron frequency 11
g gap (full height) in PP CSR impedance 16
h harmonic number 4
i imaginary unit, i =

√
−1 7

m rest mass of a particle 4
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n grid coordinate represented as relative position in
memory 53

p dimensionless coordinate of momentum space 12
q dimensionless coordinate of spacial space 12
xr grid coordinate of space 52
x grid coordinate of space (integer part) 52
yr grid coordinate of momentum 52
y grid coordinate of momentum (integer part) 52
z physical coordinate of longitudinal space 4

F. Acronyms

ALU arithmetic logic unit
ANKA Ångströmquelle Karlsruhe

BBT bunched beam theory

CAD computer aided design
CSR coherent synchrotron radiation
CU control unit

DC originally direct current, but also used for signals with
no time-varying component

DESY Deutsches Elektronen-Synchrotron

EO electro-optical
EOS electro-optical sampling (using multiple laser pulses)
EOSD electro-optical spectral decoding (using one chirped

laser pulse)

FEL free-electron laser
FWHM full width half maximum

GOTTHARD gain optimizing microstrip system with analog
readout

HEB hot electron bolometer

ISR incoherent synchrotron radiation

KALYPSO Karlsruhe linear array detector for MHz-repetition
rate spectroscopy

KAPTURE Karlsruhe pulse taking and ultra-fast readout
electronics

KARA Karlsruhe Research Accelerator
KIT Karlsruhe Institute of Technology

MIMD multiple instruction streams, multiple data streams
MISD multiple instruction streams, single data stream

NSLS National Synchrotron Light Source Vacuum
Ultraviolet ring
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PSI Paul Scherrer Institute
PU processing unit

RMS root mean square; often used synonym to standard
deviation, when the position of the average is (defined
to be) zero

SBB short bunch length bursting
SIMD single instruction stream, multiple data streams
SISD single instruction stream, single data stream
SLC Stanford Linear Collider

VFPE Vlasov-Fokker-Planck equation
VFPS Vlasov-Fokker-Planck solver

WMB weak micro bunching instability
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