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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Complexity in production systems is steadily growing– one of the drivers is the customer’s desire for personalization of products and services. 
Existing production management systems rely on deterministic functions. Given the diversity and varying influence of these functions, current 
methods reach their limits and may not meet future needs. 
We introduce new opportunities provided by replacing and complementing these functionalities with data analytics. With a focus on production 
management and data-driven analysis we offer a flexible method that extends existing Industrie 4.0 technologies for several application areas 
(e.g., logistics, inventory management). 
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1. Introduction 

Production is entering the era of personalization. Aided by 
innovative technologies (like additive manufacturing) many 
possibilities are arising. Nevertheless, the biggest impulse 
comes from the customer side [1]. This means that 
manufacturing systems are, like never before, under a constant 
pressure to improve their performance and flexibility. In 
addition, there is a need for solutions that are ready to be 
implemented within the next few years. 

In this context of growing complexity the following 
question arises: how can production systems be able to meet 
their logistic objectives while dealing with a completely 
unknown demand (in quantity and kind)? 

In this paper, the specific problem of production 
management, as an area greatly affected by the increasing 
complexity (enforced by need for personalized products), is 
first explored. Then the proposed solution, the usage of data 
analytics as a way of dealing with this complexity, is 

introduced. Lastly, Industrie 4.0 is presented as the possible 
structure to implement it. 

2. Complexity as a driver for data analytics 

In recent years, scientists and entrepreneurs became aware 
that they need to abandon the idea of manufacturing systems 
being able to remain mostly unchanged, making only sporadic 
small adjustments. Instead, they need to adapt to steadily 
changing and not always clear environments. They started to 
consider the “complexity” of such systems. 

In this context, complexity is defined as having four 
dimension: variety (the number of elements), heterogeneity 
(how different the elements are and the number of such 
differences), dynamic (how fast the conditions of the 
environment change), and opacity (the understanding of the 
elements, situations, and their relations; as well as their 
visibility) [2]. One example of a complex production system 
would be an enterprise with a large number of different 
products, providing a large supply chain (with many partners 
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and low visibility of the specific requirements) and a fast 
development of new products.  

It can be clearly seen, how the personalized production, 
with the possibility of the customer freely changing one or 
more features of products, has a great influence in increasing 
the complexity of production systems. 

Different approaches exist to deal with complexity. Some 
focus on reducing and avoiding it. The focus of Fraunhofer 
IPA (and the one taken in this paper) is that the existence of 
complexity is not something that can be prevented. Two main 
reasons exists: 

 It is not possible for an enterprise to fully control its 
complexity.  

 A balance must exist between the internal complexity (i.e. 
variety of products, supply channels, etc.) and the external 
complexity (i.e. distribution of costumers, expected 
functionalities, etc.). 

 
It then becomes clear that complexity is not something that 

can be eliminated. Doing so would mean facing the risk of not 
being able to adapt to the market development. On the other 
hand, the ability to correctly deal with complexity would then 
represent an opportunity [3]. Because of this, enterprises 
should try to “manage” complexity (i.e. create systems that 
are able to deal with the personalized demand in time and 
form) in order to profit from it.  

Nevertheless, the complexity analysis is challenging. It 
essentially consists on finding the relations between factors 
(characteristics of complexity) using large amounts of data. In 
addition to every situation in each enterprise being different, 
the systems are continuously changing. Simple approaches, 
which rely on model-driven techniques, are unable to provide 
the required level of response [1].  

2.1. Data analytics as an approach for complexity 

In the area of information technologies, the necessity to 
analyze the ever growing amount of data led to the creation of 
the term Big Data. Many definitions exits, but the one chosen 
for the approach in this paper is that from Gartner: “Big Data 
is high-volume, high-velocity and/or high-variety information 
assets that demand cost-effective, innovative forms of 
information processing that enable enhanced insight, decision 
making, and process automation” [4]. 

This definition handles Big Data as a mostly technical 
issue. But Big Data is at the same time a problem and an 
opportunity. This is the first similarity between complexity 
and Big Data. The second similarity lies on the challenges of 
Big Data and the ones of complexity analysis. 

In order to deal with the problems (and opportunities) 
presented by Big Data, existing methods of data analytics 
were adapted to approach its three main characteristics: 
velocity, variety and volume (the 3 Vs). This means, that such 
methods need to deal with a great amount of fast changing 
data in different formats and from different sources. 

The correspondence with the dimensions of complexity in 
production systems can, therefore, easily be found: velocity in 

Big Data corresponds to dynamic in complexity, variety in 
Big Data corresponds to heterogeneity in complexity, and 
volume in Big Data corresponds to variety in complexity. The 
concept of variety differs in Big Data and complexity.  

The focus of data analytics, supported mainly by data 
mining and in part by machine learning, is to understand the 
underlying situation by processing the available data (data-
driven approach). Or, in other words, to deal with the existing 
opacity (lack of visibility of the situation) by analyzing data. 
Then, the correspondence with the dimension of complexity 
of the same name is clear [5]. 

It is also important to refer to “available” data, because 
normally only a part of the data describing a situation can be 
found, accessed, and believed to be reliable. This is also true 
for production systems where both, internal (own production) 
and external (supply-chain) data, can be missing (i.e. lack of 
sensors, interfaces, etc.) or be false (i.e. production order 
confirmation being made out of time, rejected parts not being 
registered, etc.). These analyses must, therefore, be able to 
recognize patterns without having the whole picture, even 
when dealing with false input.  

This problem is described in Big Data by means of an 
additional V: veracity. The correspondence with the opacity 
dimension of complexity becomes apparent, as false 
information affects the understanding of a situation and the 
corresponding decision making process negatively [6].  

To the four considered Vs one more can be added: value. 
This V, understood as the degree to which an enterprise can 
profit from the data, also correlates to the expected benefit of 
managing complexity. In both cases, how to measure this 
potential gain is a challenge of its own [2]. 

It is then clear, how, due to the similarities between both 
challenges (Big Data and complexity), methods of data 
analytics can be applied to manage complexity in production 
systems. 

2.2. The logistic target dimensions 

Moreover, dealing with complexity in manufacturing 
systems also means improving the production logistics. How 
well this area works is measured by the logistic target 
dimensions: date compliance, lead time, performance, 
inventory, and costs [7]. 

These target dimensions compete constantly with each 
other [8]. For example, improving the date compliance may 
cause the costs to increase. That is why no simple 
mathematical optimization is possible [9]. The importance of 
each dimension depends on the particular situation and the 
interests of each organisation (i.e. prioritization of delivery 
dates). 

Therefore, a coordination of the target dimensions is 
required. This is a difficult problem that occupies providers of 
PPCSs (production planning and control systems) and APSs 
(advanced planning systems) in their development of planning 
functionalities [10]. Such methods usually try to ponder the 
weight of each target dimension and, based on the expected 
progress of the production, deliver the best possible planning 
solution (local optimum). 
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With the additional increase in complexity, it can only be 
expected that the conventional methods and algorithms reach 
their limit. Data-driven analysis will, therefore, be necessary 
to deliver an adequate response, mainly be making use of its 
prediction capabilities, as explained in the next section. 

3. Production management functions and the application 
of analytical methods 

Much has been said and published in the last few years 
about data analytics and production. Some have proposed 
cloud-based approaches [11], a concept currently in 
development by automation giants like Bosch and Siemens. 
Nevertheless, these solutions fail in three aspects: 

 
1. Further developments of IoT platforms mostly only 

cover solutions for specific use-cases (i.e. analyzing 
the performance of a machine). The problem isn’t 
approached in an integrative way. 
 

2. Logistic aspects of the production still aren’t 
approached and, as a consequence of point 1, they 
can’t be correctly approached. 

 
3. Many solutions focus on creating the connection to the 

data sources, relegating the content of the problem 
itself to a secondary plane. 

 
Data-based solutions for the area of production logistics 

must, therefore, consider the different existing functionalities 
and the way they interact. These are illustrated in Fig. 1. 
 

Fig. 1. Functionalities of PPCSs [12]. 

3.1. Current approaches and their limitations 

A variety of methods have been developed to be used in 
the different areas of PPCS. Some can be simple, as the ones 
used in the production control to monitor that values are 
between determined limits. Some, on the other hand, are more 
complex. The area of production planning applies mainly 

formulas for the calculation of deterministic trends (some of 
them relying on stochastic models). 

For example, working with the prediction of regular 
material requirements (times and quantities) leads to three 
types of formulas [13]: 

 For constant requirements (i.e. regression). 

 For requirements with some kind of trend (i.e. exponential 
smoothing). 

 For requirements characterized by seasonality (i.e. Holt-
Winters method). 
 
The subsequent material requirements calculation (part of 

the disposition process) is a mere mathematical calculation 
aided by the usage of Gozinto graphs to model the relations 
between material requirements (primary and secondary 
requirements). 

In problems of scheduling, a number of methods can be 
used for the batch size calculation. Some of them are DLSP 
(Discrete Lotsizing and Scheduling Problem), CSLP 
(Continuous Setup Lotsizing Problem) and GLSP (General 
Lotsizing and Scheduling Problem). They differ in the 
importance assigned to the setup time. 

Similarly solved is the issue of calculation of purchase 
order quantities, with methods like UMSOQP (Uncapacitated 
Multi-Supplier Order Quantity Problem). 

As stated in chapter 2.2, formulas used in the problem of 
order scheduling (capacity and sequence planning) usually use 
a weighted consideration of the constrains involved (which 
represent the logistic target dimensions). These can be further 
complemented with the application of simulation models 
(specially in APSs [14]). 

Nevertheless, these approaches have clear limits. 
When working in scenarios with big insecurities (for 

example, with totally unknown material requirements or with 
a fluctuating production flow), these formulas tend to try to 
increase the stochastic component. But this approach ends 
mainly in trying to calculate security buffers (in time and 
material). Such a take on the matter wouldn’t be applicable in 
the personalized production, manufacturing unknown product 
variants while being unable to increase the production costs. 

Furthermore, such formulas are limited in the number of 
elements they can consider. Either because the increase in 
their complexity would have a negative effect on their 
accuracy, or because too many variables would cause a 
counterproductive effect (a problem known as the curse of 
dimensionality) [15]. 

The usage of data analytics (based mainly on data mining 
and machine learning) to replace current formulas is then 
necessary to be able to work under production conditions of 
great complexity. 

There are four types to be considered: Descriptive, 
Diagnostic, Predictive, Prescriptive [16].  

Systems where the evaluation of the results is still mainly 
human will probably rely on descriptive and diagnostic 
analytics (used to understand a situation). They may also be 
used to assist in areas related to production, like quality and 



 Eduardo Colangelo et al. / Procedia CIRP 72 (2018) 191–196 193
2 Author name / Procedia CIRP 00 (2018) 000–000 

and low visibility of the specific requirements) and a fast 
development of new products.  

It can be clearly seen, how the personalized production, 
with the possibility of the customer freely changing one or 
more features of products, has a great influence in increasing 
the complexity of production systems. 

Different approaches exist to deal with complexity. Some 
focus on reducing and avoiding it. The focus of Fraunhofer 
IPA (and the one taken in this paper) is that the existence of 
complexity is not something that can be prevented. Two main 
reasons exists: 

 It is not possible for an enterprise to fully control its 
complexity.  

 A balance must exist between the internal complexity (i.e. 
variety of products, supply channels, etc.) and the external 
complexity (i.e. distribution of costumers, expected 
functionalities, etc.). 

 
It then becomes clear that complexity is not something that 

can be eliminated. Doing so would mean facing the risk of not 
being able to adapt to the market development. On the other 
hand, the ability to correctly deal with complexity would then 
represent an opportunity [3]. Because of this, enterprises 
should try to “manage” complexity (i.e. create systems that 
are able to deal with the personalized demand in time and 
form) in order to profit from it.  

Nevertheless, the complexity analysis is challenging. It 
essentially consists on finding the relations between factors 
(characteristics of complexity) using large amounts of data. In 
addition to every situation in each enterprise being different, 
the systems are continuously changing. Simple approaches, 
which rely on model-driven techniques, are unable to provide 
the required level of response [1].  

2.1. Data analytics as an approach for complexity 

In the area of information technologies, the necessity to 
analyze the ever growing amount of data led to the creation of 
the term Big Data. Many definitions exits, but the one chosen 
for the approach in this paper is that from Gartner: “Big Data 
is high-volume, high-velocity and/or high-variety information 
assets that demand cost-effective, innovative forms of 
information processing that enable enhanced insight, decision 
making, and process automation” [4]. 

This definition handles Big Data as a mostly technical 
issue. But Big Data is at the same time a problem and an 
opportunity. This is the first similarity between complexity 
and Big Data. The second similarity lies on the challenges of 
Big Data and the ones of complexity analysis. 

In order to deal with the problems (and opportunities) 
presented by Big Data, existing methods of data analytics 
were adapted to approach its three main characteristics: 
velocity, variety and volume (the 3 Vs). This means, that such 
methods need to deal with a great amount of fast changing 
data in different formats and from different sources. 

The correspondence with the dimensions of complexity in 
production systems can, therefore, easily be found: velocity in 

Big Data corresponds to dynamic in complexity, variety in 
Big Data corresponds to heterogeneity in complexity, and 
volume in Big Data corresponds to variety in complexity. The 
concept of variety differs in Big Data and complexity.  

The focus of data analytics, supported mainly by data 
mining and in part by machine learning, is to understand the 
underlying situation by processing the available data (data-
driven approach). Or, in other words, to deal with the existing 
opacity (lack of visibility of the situation) by analyzing data. 
Then, the correspondence with the dimension of complexity 
of the same name is clear [5]. 

It is also important to refer to “available” data, because 
normally only a part of the data describing a situation can be 
found, accessed, and believed to be reliable. This is also true 
for production systems where both, internal (own production) 
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confirmation being made out of time, rejected parts not being 
registered, etc.). These analyses must, therefore, be able to 
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These target dimensions compete constantly with each 
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cause the costs to increase. That is why no simple 
mathematical optimization is possible [9]. The importance of 
each dimension depends on the particular situation and the 
interests of each organisation (i.e. prioritization of delivery 
dates). 
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maintenance. Most of the work in last few years has been 
concentrated on this approach (i.e. production monitoring 
with business intelligence tools).  

The usage of prescriptive and predictive analytics results 
more complex, as it requires an integrative vision (using 
domain knowledge) in order to create analytical solutions that 
take into account relevant and related factors (i.e. within order 
monitoring, the production times and the quality issues). 

3.2. Towards prediction-driven services 

As it can be seen in Fig. 1, while the control area is 
responsible for the order monitoring and small operative 
tasks; the main objective is the production planning, the 
creation of the production plan and its continuous adaptation. 
From the constitutive functions (program planning, quality 
Planning, scheduling and capacity planning) it can be derived 
that “planning” relies on predictions. They have to be 
performed based on the relations between many factors 
existing in a complex environment (unknown independent 
demands, availability of machines, availability of material, 
production times, etc.). 

It is, for example, the case of the lead time calculation. 
This is composed by: processing time, setup time, waiting 
time, and transport time [7]. Each component is determined 
by many factors (most of them unrelated to each other). The 
prediction of the value is a problem which may even have to 
be divided in several sub-problems each using a different 
prediction model depending on the situation.  

Planning systems in which this prediction models are fully 
integrated to the functionalities are the ultimate objective. For 
example: the sequence planning can be assisted by a 
prediction model of the production progress. This, in turn, can 
make use of the corresponding lead time prediction model for 
each personalized product.  

Therefore, the relation between different functionalities 
(and their corresponding prediction models) also plays an 
important role. 

This approach would also mean completely switching from 
a deterministic planning based on a known and foreseeable 
demand to a stochastic one, what allows working with 
unknown future requirements. Prediction models would allow 
to work not only with undefined working parameters (a big 
issue in personalized products), but also with the unknown 
effects in the whole working environments and manufacturing 
systems (i.e. the interaction between work stations). The 
coupling with prescriptive models complements the planning 
task by making the required decisions (i.e. when an order 
should be scheduled). Even the control tasks, normally 
focused on a shorter time horizon, can be covered with the 
usage of these models (i.e. monitoring the progress of a 
production order and triggering a planning task if necessary, 
what usually takes places within one work shift). 

An improvement in the logistic target dimensions can be 
achieved, but a risk in the prediction exists. This can be 
reduced by using models with an appropriate accuracy (using 
the correct data in their creation) and by carefully choosing 
the areas and products where predictions are applied. Also, 
such model should be able to learn and improve itself.   

The application of descriptive and diagnostic analytics in 
this area is also possible. On one side, as a way of 
complementing prediction models (i.e. by clustering of 
materials according to production parameters) and, on the 
other, as a support for remaining operative functions (i.e. 
diagnostic for analysis of quality issues and redesign of 
products or processes).  

4. Challenges of data analytics 

Though promising, the usage of data analytics is not 
without problems. Two main challenges are faced when 
applying data analytics to manufacturing systems: 

 Data quality: Approximately between 70 and 80% of the 
effort employed to implement data analytics goes into the 
preparation of the data to be analyzed [17]. The data 
preparation also implies the usage of data analytics (i.e. 
classification for determination of missing values) [18]. 

 Additionally to data preparation, development, and 
implementation costs of data analytics are also 
considerable, even for relatively small projects [19,20]. 
Furthermore, data analytics projects are always a discovery 
process and, therefore, require going back and forth 
between the steps [21].  
 
One key aspect is the usage of domain knowledge. As it 

can be seen in the Fig. 2, there are two approaches to create 
analytics: model-driven (top-down) and data-driven (bottom-
up). The first one is mainly based on using domain knowledge 
(known relations between factors and existing models), but is 
less flexible. The second one tries to determine relations by 
looking at the data (classical machine learning approach), it 
allows the discovery of unknown behaviors, but the lack of 
domain knowledge makes it a long and costly process. 

Fig. 2. Approaches for data analysis. 

Of course, this division is not black and white, and both 
approaches profit from each other (i.e. by confirming the 
application of known models with machine learning). Domain 
knowledge helps reduce the effort and costs of analysis and 
data preparation in both approaches. Though it may hinder the 
flexibility, this depends on the way it is applied. 
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5. The structure of  Industrie 4.0 

The idea behind Industrie 4.0 is to create a new way of 
connection between the physical production environment 
through cyber-physical production systems, also known as 
CPPSs and the “intelligence” (the applications) that should 
control it. 

Fig. 3. The Industrie 4.0 structure [22]. 

Fig. 3 provides an overview of the main elements of 
Industrie 4.0. The upper level (the cyber domain) is based on 
the services approach. Here, every application is created, 
provided, used, and integrated as service. Services are both, 
functionalities that can work on their own and pieces of 
complex processes [23]. The platforms provide the basis 
through which these services can communicate with each 
other and with the physical domain. 

In our case, the lower level (the physical domain) is where 
most of the data is to be found. The rest of the data comes 
from the processing results of each service. 

The Industrie 4.0 structure can greatly assist the proposed 
approach [16]. The usage of data analytics as services (or 
microservices) provides: 
 
 An easier way to integrate them with the functionalities 

of manufacturing systems. For example: a MES 
(manufacturing execution system) responsible for the 
sequence planning of the production can easily invoke the 
services responsible for the prediction of lead time. 
Moreover, because more functionalities of manufacturing 
systems are available as services, their integration with 
the data analytics services is both easier and more 
transparent. This helps reduce the implementation costs. 
 

 A cost reduction through the way services are provided 
(also enabling new business models, like pay-per-use). 
The underlying Industrie 4.0 structure also helps reduce 
implementation costs (i.e. connection to data sources). 
 

 An easier transfer of domain knowledge, as this will be 
embedded in the data analytics services and the way they 
are combined. This reduces the effort and costs involved 
in selecting an adequate analytical model (as a befitting 
one may already be available, requiring only minimal 
adjustments). 

 
 An improvement of the data quality by eliminating the 

problem of schema integration (and thus reducing the 
preprocessing effort). As each component and application 

must have an appropriate interface for the connection to 
the platform layer, the formalization of the data models is 
forced. 

 
 The possibility to flexibly integrate additional services 

for data cleansing (i.e. based on data analytics, 
ontologies, fuzzy-logic, etc.).  

 
The Industrie 4.0 structure also provides the functionalities 

for data administration required by PPCSs. The connection to 
CPPSs can aid the order monitoring as a way to easily gather 
data [24]. 

6. Current applications 

The Application Center Industrie 4.0 of Fraunhofer IPA 
provides an environment for developing and testing concepts 
and solutions of Industrie 4.0. One of the focuses is the 
creation of integrated systems that are able to deal with the 
requirements of the personalized production. 

In this context, the proposed data analytics as services were 
introduced to complement and substitute several components 
of a production planning system for a prototypical 
manufacture of a personalized product. The utilized 
production systems consist mainly of machines for additive 
manufacturing (3D printers) and assembly stations. 

Fig. 4. Structure of demonstrator “Analytics Apps” and examples of 
analytical services. 

A platform was created to allocate the developed analytical 
services, allowing the user to choose from a list of pre-
configured analytical models (developed for production 
management applications) and implement them as services.  It 
also enables the connection to both the data sources and the 
users of the performed analysis (ERP and MES). In contrast to 
this approach, available solutions on the market would require 
the realization of the connection work separately, not to 
mention the specific creation of the analytical models (as 
usually only the algorithms are distributed). 
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maintenance. Most of the work in last few years has been 
concentrated on this approach (i.e. production monitoring 
with business intelligence tools).  

The usage of prescriptive and predictive analytics results 
more complex, as it requires an integrative vision (using 
domain knowledge) in order to create analytical solutions that 
take into account relevant and related factors (i.e. within order 
monitoring, the production times and the quality issues). 

3.2. Towards prediction-driven services 

As it can be seen in Fig. 1, while the control area is 
responsible for the order monitoring and small operative 
tasks; the main objective is the production planning, the 
creation of the production plan and its continuous adaptation. 
From the constitutive functions (program planning, quality 
Planning, scheduling and capacity planning) it can be derived 
that “planning” relies on predictions. They have to be 
performed based on the relations between many factors 
existing in a complex environment (unknown independent 
demands, availability of machines, availability of material, 
production times, etc.). 

It is, for example, the case of the lead time calculation. 
This is composed by: processing time, setup time, waiting 
time, and transport time [7]. Each component is determined 
by many factors (most of them unrelated to each other). The 
prediction of the value is a problem which may even have to 
be divided in several sub-problems each using a different 
prediction model depending on the situation.  

Planning systems in which this prediction models are fully 
integrated to the functionalities are the ultimate objective. For 
example: the sequence planning can be assisted by a 
prediction model of the production progress. This, in turn, can 
make use of the corresponding lead time prediction model for 
each personalized product.  

Therefore, the relation between different functionalities 
(and their corresponding prediction models) also plays an 
important role. 

This approach would also mean completely switching from 
a deterministic planning based on a known and foreseeable 
demand to a stochastic one, what allows working with 
unknown future requirements. Prediction models would allow 
to work not only with undefined working parameters (a big 
issue in personalized products), but also with the unknown 
effects in the whole working environments and manufacturing 
systems (i.e. the interaction between work stations). The 
coupling with prescriptive models complements the planning 
task by making the required decisions (i.e. when an order 
should be scheduled). Even the control tasks, normally 
focused on a shorter time horizon, can be covered with the 
usage of these models (i.e. monitoring the progress of a 
production order and triggering a planning task if necessary, 
what usually takes places within one work shift). 

An improvement in the logistic target dimensions can be 
achieved, but a risk in the prediction exists. This can be 
reduced by using models with an appropriate accuracy (using 
the correct data in their creation) and by carefully choosing 
the areas and products where predictions are applied. Also, 
such model should be able to learn and improve itself.   

The application of descriptive and diagnostic analytics in 
this area is also possible. On one side, as a way of 
complementing prediction models (i.e. by clustering of 
materials according to production parameters) and, on the 
other, as a support for remaining operative functions (i.e. 
diagnostic for analysis of quality issues and redesign of 
products or processes).  
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preparation also implies the usage of data analytics (i.e. 
classification for determination of missing values) [18]. 

 Additionally to data preparation, development, and 
implementation costs of data analytics are also 
considerable, even for relatively small projects [19,20]. 
Furthermore, data analytics projects are always a discovery 
process and, therefore, require going back and forth 
between the steps [21].  
 
One key aspect is the usage of domain knowledge. As it 

can be seen in the Fig. 2, there are two approaches to create 
analytics: model-driven (top-down) and data-driven (bottom-
up). The first one is mainly based on using domain knowledge 
(known relations between factors and existing models), but is 
less flexible. The second one tries to determine relations by 
looking at the data (classical machine learning approach), it 
allows the discovery of unknown behaviors, but the lack of 
domain knowledge makes it a long and costly process. 
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Of course, this division is not black and white, and both 
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application of known models with machine learning). Domain 
knowledge helps reduce the effort and costs of analysis and 
data preparation in both approaches. Though it may hinder the 
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mention the specific creation of the analytical models (as 
usually only the algorithms are distributed). 
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As it can be seen in Fig. 4, analytical services implemented 
within this demonstrator (called “Analytics Apps”) allow, for 
example, the realization of material requirements forecasts 
(supporting the ERP), and the prediction of processing times 
based on past product configurations (supporting the MES). 
Both are done using models generated with the support vector 
machine method. These services are in turn complemented by 
a clustering service using the k-means algorithm. This creates 
groups of materials based on product and production features. 
Additionally to the ERP and MES, the used product 
configurator constitutes also a data source.  

Other elements, like visualizations and a marketplace to 
distribute the analytical services, were also considered. 

Benefits in the areas of application of the analytical 
services have already been observed (for example, very 
accurate prediction of processing times using few parameters, 
like machine type, volume and material). As it is an ongoing 
project, the effects are still being measured. 

7. Conclusions and further work 

As it can be seen, data analytics offer an adequate approach 
to overcome the problems of manufacturing systems that will 
arise with the increase in the level of complexity. Their 
application in areas which up until now haven’t been 
sufficiently or correctly addressed (i.e. production logistic) 
show a lot of potential. 

Industrie 4.0 provides both the required structure and the 
information backbone necessary for the proposed approach, 
especially as a way to integrate the developed solutions. As 
data analytics become more frequent in manufacturing 
environments, their integration in every aspect of production 
(to the user and the data sources) should be as easy and 
transparent as possible.  

Risks exist, as the accuracy of the predictions performed is 
associated to the quality of the model used. The application of 
domain knowledge, the usage of abundant “good” data, and 
the constant improvement of the models (through self-
learning), are ways to improve the accuracy and reduce risks. 

Projects of Fraunhofer IPA, like the ongoing Application 
Center Industrie 4.0 and related ones, intend to explore and 
further develop this approach. 
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