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Abstract 

With the development of renewable energy sources in Germany the use of biogas for electricity 

and heat production has rapidly expanded since the year 2000. This expansion has been encour-

aged by several Federal governmental incentives and in particular by the electricity Feed-In-Tar-

iffs introduced in the Renewable Energy Sources Act (EEG). Agricultural plants valorizing en-

ergy crops now constitute almost 80% of total biogas installations. However volatile energy crops 

and electricity prices, combined with continuously evolving framework conditions, are a source 

of uncertainty for German plant operators. In this context, investment decision making for biogas 

plant projects is a difficult task that requires the development of decision support tools.  

In order to provide an assistance to plant operators two models are developed in this work. The 

first one deals with the analysis of the current electricity production from biogas in Germany 

(simulation model) and the second one with mid-term developments up to the year 2030 (optimi-

zation model).  

The simulation model is based on a process modelling approach which calibrates and simulates 

reference biogas plant types by considering a variable and differentiated biomass input. The anal-

ysis concerns the three major installation types in Germany valorizing energy crops, biowaste and 

manure. An integrated economic evaluation tool leads to the identification of the most profitable 

biogas plant sizes taking into account various subsidy schemes. Under EEG 2014 a paradigm shift 

is observed. Small-scale manure and large-scale biowaste plants appear as the most profitable 

installations whereas agricultural plants are no longer profitable mainly due to the cut in the sub-

sidy for energy crops implemented in 2014.  

The optimization model based on a plant operator perspective aims to determine the economically 

optimal capacity development for the three main installation types at the Federal State level and 

under various scenarios. The results highlight the influence of regional biomass potentials, reve-

nues and electricity production costs as well as plant flexibilization and decommissioning. Future 

capacity expansion should mainly concern small-scale manure plants and biowaste installations 

rather than agricultural plants which, on the contrary, should undergo only modest development. 

Based on the model results recommendations for plant operators and policy-makers are formu-

lated. Maintaining current subsidy levels for biowaste and small-scale manure installations ap-

pears necessary in order to ensure the profitable and sustainable development of German biogas 

plants. Strategy planning and flexible plant operation as well as the increased valorization of res-

idues in agricultural plants represent key challenges. An improved mobilization of biowaste po-

tentials combined with better heat valorization would contribute to the creation of local and cir-

cular bio-economies in line with the planned national energy transition. The transferability of the 

methodological framework used in this work to other countries and bioenergy pathways is further 

analysed. A model implementation is possible especially in countries showing stable legal frame-

work conditions for bioenergy (e.g. Feed-In-Tariffs) and benefiting from lessons learned and best 

practices from past projects.  
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1 Introduction  

1.1 Motivation 

Climate protection, sustainable energy supply, natural resource preservation as well as the 

satisfaction of a constantly increasing energy demand currently represent key challenges 

worldwide. The substitution of limited fossil resources combined with the improvement of energy 

efficiency and energy savings appear vital. In this context, Germany has embarked upon an energy 

transition (so called “Energiewende”) which has been described as “the most important growth 

and modernization for the German society” [1]. Nature and environmental protection as well as 

global climate change, the finite character of fossil resources and the need for a secure and 

profitable energy supply are the main drivers of this transition. In this context renewable energies 

have an important role to play in the future energy system. Among all renewable energy carriers 

bioenergy is often defined as a “multi-talent” [2]. Bioenergy can deliver a significant share in the 

production of renewable electricity, heat, cold and liquid biofuels. It greatly contributes to security 

of supply, climate protection, and a demand-oriented electricity production. Bioenergy leads 

further to the establishment of circular and sustainable bio-economies with new job creation 

especially in remote areas [3].  

 

Another advantage of bioenergy in comparison with other energy carriers lies in its local 

character. The German energy supply is strongly dependent on energy carriers mostly imported 

from countries where supply is unstable and characterized by high energy price volatility. 

According to the German Energy Balance Association (AGEB). Germany imports 100% of its 

uranium resources used for nuclear energy, 96% of its natural gas, and 78% of its hard coal [4]. 

Only lignite and renewable energy sources stem from national energy carriers. A possibility for 

Germany to increase its energy security is thus to use local and inland biomass potentials and to 

diversify its energy carrier mix. The rational use of biomass potentials and especially residues can 

thus ensure a long-term and sustainable security of supply. In the field of climate protection, 

bioenergy strongly contributes to greenhouse gas reduction when compared with fossil energy. In 

comparison to other renewable energies in the heat sector, bioenergy shows the highest mitigation 

contribution with about 31.2 million t of avoided greenhouse gases [5].  

 

Among the portfolio of available bioenergy technologies in 2014, the electricity and heat produc-

tion from biogas with Combined Heat and Power systems (CHPs) remains in a dominant position. 

It represents about 72.3% of the German electricity production from biomass, which was esti-

mated at about 38.17 TWhel in the framework of the Renewable Energy Sources Act [6]. A sup-

plementary amount of 14.12 TWhel has to be added and corresponds to the total electricity pro-

duction from biogas by other technologies than CHP (e.g. gas turbines or Stirling engines) [6]. 

The total electricity production from biomass in Germany can thus be estimated at about 52 TWhel 

at the end of 2014. In the electricity sector, biogas flexibility of use and storability makes it a 

suitable complement to fluctuating energy sources like wind or sun in the electricity sector. This 

is the case especially in biogas plants using Otto or Diesel gas engines. In these plants the em-

ployed gas engines can be easily started or shut-down in short time intervals in order to control 
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the power [7]. Flexibility can also be obtained by expanding the gas engines capacity and the gas 

storage volume [8].  

 

Since the year 2000, the German biogas sector expanded rapidly so that the current installed ca-

pacity in this country accounts for around half of the European total [9], [10]. This capacity de-

velopment has been supported by several Federal governmental incentives and in particular by 

the Renewable Energy Sources Act (EEG) with the help of electricity Feed-In-Tariffs (FIT). How-

ever the German biogas sector had to cope with major structural changes in 2014. The Renewable 

Energy Sources Act 2014, proposed by the Federal Government and starting on the 1st of August 

2014, represents a paradigm shift for German biogas plants. Indeed a major cut in subsidies at-

tributed to biogas plants was proposed by the legislator in particular for agricultural plants valor-

izing energy crops. For this plant type the specific subsidies dedicated to energy crops valorization  

have been removed [11]. This subsidies cut has been carried out for two main reasons. The first 

one is linked to high end-user electricity prices, especially for residential customers. In the resi-

dential sector the electricity price including taxes increased from 14 ct/kWhel in year 2000 up to 

29 ct/kWhel in 2014 [12]. By giving priority to the development of more economical renewable 

energy conversion technologies, like wind energy or photovoltaic, the Federal Government in-

tends to lower electricity bills for end-customers. With average electricity production costs at 

about 18 ct/kWhel for agricultural plants, biogas belongs to the most expansive renewable energy 

conversion technologies [13], [14].  

 

Another reason for this cut concerns the competition in the past between the energy and food 

value chains regarding biomass resources and surface area. In the past fifteen years priority was 

given to the valorization of energy crops due to their high energy content and their high hectare 

yields in comparison with other feedstocks. This led to the exclusive cultivation of certain agri-

cultural plants, so called monocultures, like maize silage or rape. In addition fertilizers and pesti-

cides were intensively used for yield improvements. These aspects negatively impacted the agri-

cultural sector and generated ecological risks (degradation of humus balance and biodiversity, 

risks of soil erosion, reduction of the ground-water formation, landscape modifications, loss of 

ecologically valuable surface areas). The subsidies for biogas plants valorizing energy crops cre-

ated tensions on maize and wheat markets and have led to a “food versus fuel” debate. A conse-

quence of this induced competition was a generally poor public acceptance of biogas in Germany 

[15].  

 

In addition to frequently evolving subsidy mechanisms, plant operators have to cope with major 

uncertainties concerning mid-term electricity prices, energy crop costs development and biowaste 

valorization revenues. Decision support tools based on modelling approaches represent a valuable 

assistance in order to minimize these uncertainties and to maximize profitability. A first issue for 

plant operators concerns the identification of the most profitable installation sizes and types under 

current framework conditions. Another problem is related to the forecast of future plant capacity 

development and electricity production from biogas. The objective of German biogas plant oper-

ators is to run and maintain reliable and profitable installations over their whole lifetime, which 

generally corresponds to 20 years (EEG subsidy time period). For this a model-based forecast of 

future costs and revenue development is required so that the operators can minimize the risks in 

particular linked to the previously mentioned uncertainties. On this basis an economically optimal 
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development plan of future biogas plant capacity could be foreseen on a mid-term horizon (up to 

2030). The model-based assessment of current and future electricity production from biogas 

would then provide an economic foresight to German plant operators and contribute to substantial 

profitability improvements.    

1.2 Objectives and overview 

This work has the objective to provide an economic analysis of the current and future electricity 

production from biogas in Germany. It focuses on the analysis of onsite electricity and heat pro-

duction with Combined Heat and Power systems (CHPs).  It was realized between the years 2010 

and 2016 and takes into account the legal frameworks of the 2012 and 2014 versions of the Re-

newable Energy Sources Act (EEG 2012 and EEG 2014). The recent EEG 2017 framework en-

acted in January 2017 is therefore only marginally considered. The outcomes of the economic 

analysis should provide insights for German plant operators into economically optimal electricity 

production from biogas both on short-term and mid-term horizons. For this purpose, two main 

research questions have to be answered. The first one concerns the identification of the most 

profitable biogas plant sizes1 and types2 under the economic frameworks of EEG 2012 and EEG 

2014. Which installation types and sizes should be built under these framework conditions in 

order to lead to the highest profitability for German biogas plant operators? 

 

The second research question concerns future developments regarding new built biogas plant ca-

pacity on a mid-term time horizon, i.e. up to the year 2030. Which future capacity developments 

can be foreseen up to the year 2030 at the Federal State level in order to ensure maximal operating 

profits for German biogas plant operators? In order to provide answers to these two fundamental 

research questions the present thesis is structured as follows.   

 

Chapter 2 aims to provide background aspects regarding the main bioenergy and biogas conver-

sion pathways. In particular a complete biogas supply chain is assessed, from the biomass feed-

stock management up to biogas valorization. 

 

Chapter 3 has the objective to analyse the current situation of biogas in Europe and in Germany 

regarding the valorized biomass feedstocks and potentials, the installed capacity, the legal frame-

work conditions and subsidy schemes. A literature review aims to provide an overview of existing 

studies related to the economic analysis of current and future electricity production from biogas 

in Germany. Based on this assessment, the scientific contribution of the present work is further 

highlighted. 

 

                                                           
1 The biogas plant size is defined by the installed electric power of the Combined Heat and Power engines (CHP 

engines) transforming the biogas produced into heat and electricity. 
2 The biogas plant type is linked to the feedstock valorized, e.g. energy and/or manure employed in mono- or co-

digestion plants or communal and/or household biowaste used in biowaste plants. 
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Chapter 4 deals with the elaboration of a simulation model which aims to calibrate and simulate 

reference biogas plant types by considering a variable and differentiated biomass input. The re-

sults of the simulation enable an economic analysis of current electricity production from biogas 

which is further described in chapter 7.   

 

In chapter 5 a regional linear optimization model is developed. It aims to forecast the optimal 

economic development of future installed biogas plant capacities by considering various scenarios 

and frameworks at the level of each German Federal State and up to the year 2030. 

 

Chapter 6 has for objective to define the system boundaries related to both of the simulation and 

optimization models and to describe the methodology for determining all required model input 

data. Three biogas plant types are considered and valorize energy crops with manure (EM plant)3, 

as well as energy crops (E plant) and biowaste (B plant). For each plant type the main model input 

data refers to the existing capacity, to current and future available biomass potentials as well as 

to current and future costs and revenues. Chapter 6 ends with an analysis of the main input data 

uncertainties that impact the model results.  

 

Chapter 7 presents and analyses the results of the simulation model. The model outcomes provide 

an answer to the first research question dealing with the identification of the most economically 

attractive plant types and sizes under current legal framework conditions. The profitability crite-

rion refers to the determined specific operating profits4. The most profitable plant sizes can be 

identified for each plant type and the corresponding costs and revenue structures are then ana-

lysed. In a further step sensitivity analyses of the specific operating profits are performed for each 

of the most profitable plant sizes. These analyses aim to identify and quantify the main profita-

bility drivers in each case. In addition to the economic analysis, a technical assessment of the 

most profitable plant sizes is carried out by determining biological and global energetic efficien-

cies. The methodology employed is further discussed, the results are validated and a comparison 

with the EEG 2017 framework for plants smaller than 150 kWel is carried out. The model out-

comes lead further to the formulation of strategy and policy recommendations concerning current 

electricity production from biogas in Germany. 

 

In chapter 8 the results of the optimization model are presented and analysed in the framework of 

a base scenario. The model outcomes provide an answer to the second research question dealing 

with the forecast of future capacity for electricity production from biogas up to 2030, at the Fed-

eral States level and under various legal frameworks. A further scenario aims to quantify the 

impact of fundamental drivers on future capacity development. A comparison with a capacity 

development forecast done under the new EEG 2017 framework is further carried out. The model 

results analysis enables the formulation of strategy and policy recommendations concerning fu-

ture electricity production from biogas in Germany. 

                                                           
3 This plant type is divided into two sub-categories: plant sizes from 0 to 75 kWel using mono-digestion of 

manure and larger plant sizes employing co-digestion of energy crops with manure. 
4 For a given plant the specific operating profit (in ct/kWhel) is defined as the difference between specific 

revenues and specific electricity production costs. Taxes (e.g. value added, property, income, corporate and 

trade taxes) and levies are not considered in the present work.  
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The main interactions between the model input data, the simulation and the optimization models 

are represented in Figure 1.1. Three main plant types are defined corresponding to the valorization 

of energy crops in mono-digestion plants, to the co-digestion of energy crops and manure as well 

as to biowaste fermentation. In a given plant type, the simulation model aims to determine the 

most profitable plant sizes showing the highest specific operating profit. For this a variable bio-

mass input mass flow mi (in t/a) is considered and leads in each simulation step to the determina-

tion of the installed electric power pi (in kWel). In section 4.3.3 a technical correlation involving 

49 biomass input mass flow steps and 49 electric power outputs is obtained over the whole electric 

capacity bandwidth [0:20,000 kWel].  

Based on these correlations an economic evaluation follows involving specific costs and revenue 

data from plant operators, from the literature and from EEG 2012 and EEG 2014 subsidy schemes 

(chapter 7). The combination of these costs and revenue data (in ct/kWhel or in €/t) with the pre-

vious technical correlations leads to the determination of economic correlations (section 7.1). 

These correlations represent the evolution of specific costs and revenues (in ct/kWhel) as a func-

tion of the electric power. Based on these results the evolution of specific operating profit as a 

function of the electric power can be determined and the most profitable plant sizes can then be 

identified in each installation type (section 7.2). For these most profitable plant sizes, sensitivity 

analyses and technical assessments are further carried out (sections 7.4 and 7.5).  

In the framework of the optimization model, the previous costs and revenues correlations are 

firstly regionalized with the help of energy crop costs determined in each Federal State for the 

base years 2013 and 2015 (section 6.6.1). These regional costs as well as other costs and revenues 

positions are then forecasted up to the year 2030 (section 6.7). In addition, biomass potentials for 

electricity production are annually calculated and forecasted up to the year 2030 in each Federal 

State (section 6.4). Existing capacity for the base years 2012 and 2014 are then determined with 

the help of a dedicated biogas plant database (section 6.3).  

With the help of these input data the optimization model aims to maximize the total operating 

profit year on year up to 2030, over the 49 plant sizes pi and in all Federal States ri (section 5.3). 

Two main constraints apply and correspond to capacity development limitations by regional bio-

mass potentials as well as to annual capacity expansion caps set in the framework of EEG 2012 

and EEG 2014. In each Federal State and year on year a development plan for plant capacity and 

electricity production from biogas is obtained up to 2030 (section 8.1). Further scenarios quantify 

then the impact of shocks related to energy crop costs, EPEX electricity price and biowaste fee 

revenues on future developments (section 8.2).  
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Fig. 1.1 Interactions between input data and the simulation and optimization models (author’s 

own representation) 

Chapter 9 evaluates the transferability of the developed modelling approaches in Germany to 

other countries and other bioenergy pathways. Biomethane injection in France, biomass district 

heating in Finland as well as bioethanol production for transport in Brazil and the valorization of 

jatropha into biodiesel in Indonesia are analysed. For each conversion route and in each country 

the current situation and lessons learned are described. In a further step the main barriers and 

challenges for a future model implementation are identified.  

The thesis ends with summary, conclusions and outlook in chapter 10. Recommendations and 

further challenges concerning current and future German electricity production from biogas are 

outlined.     
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2 Background aspects regarding bioenergy and biogas 

In this chapter the main bioenergy conversion pathways valorizing biomass for energetic purpose 

are firstly described based on literature data in section 2.1. A focus is then set in section 2.2 on 

the biochemical conversion of biomass feedstock into biogas. A complete biogas supply chain is 

described starting from the biomass feedstock management up to the biogas production process 

and further valorization into electricity, heat or gaseous biofuels (sections 2.2.1, 2.2.2 and 2.2.4). 

The technological options available for the digestate treatment and valorization as fertilizer are 

also described in section 2.2.3.      

2.1 An overview of bioenergy conversion pathways 

The term “biomass” refers to energy crops (e.g. miscanthus or maize silage), residues (e.g. straw 

or agricultural residues), byproducts (e.g. manure or industry residual wood) and waste (e.g. sew-

age sludge or household biowaste). Bioenergy is defined as the conversion of these resources into 

renewable electricity, heat or fuel [16]. 

The conversion of biomass into solid, gaseous and liquid fuels and into heat and/or electricity can 

be realized through various processes (see Figure 2.1). Basically, one should distinguish between 

the thermochemical, physical-chemical and biochemical conversion processes which will be fur-

ther described in details. 

 

Fig. 2.1 Main bioenergy conversion pathways (author’s own representation according to [16]) 
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2.1.1 Thermochemical conversion 

2.1.1.1 Biomass combustion 

The direct valorization of biomass feedstock in combustion plants represents the major techno-

logical pathway for bioenergy worldwide. This valorization can be realized in domestic small 

plants (e.g. wood stoves, tiled stoves, wood pellets and wood chips plants) but also in cogenera-

tion plants. A quasi-complete oxidation of the solid biofuels occurs during the combustion pro-

cess. Biomass is converted into thermal energy as well as into ash contained in combustion by-

products. The main solid biomasses employed correspond to woody biomass, e.g. residual forest 

wood, straw or to energy crops. The heat generated by the combustion reaction can be used for 

water heating in local or district heat networks or in ORC-plants (Organic Rankine Cycle plants) 

for electricity production [17]. It can also be valorized in steam production processes, e.g. in steam 

boilers for the supply of an industrial area. A last possibility consists in producing electricity with 

the help of steam turbines. The hot exhaust gas issued from the combustion can be further used 

by gas turbines or Stirling processes. The main existing combustion technologies can be classified 

according to the type of contact between the solid fuel and the combustion air. One should distin-

guish between fixed beds, fluidized and dust combustion processes. 

In the fixed bed combustion process the solid biofuel slowly moves following combustion air and 

without leaving the fixed bed. Fixed beds are used in underfeed or in grate combustion processes. 

Solid biomasses characterized by fine-grains and low-ash-content are employed in the case of an 

underfeed combustion. Possible fuels are pellets, cereal grains, barks or wood chips. Usually this 

combustion process concerns a rated thermal input lower than 6 MWth. Grate combustion pro-

cesses are more suited to woody combustion plants with larger rated thermal input. Grate com-

bustion plants can be divided according to their forms into push, reciprocating, travelling, vibra-

tion and roller grates. All these grate types use fuels with different particle sizes, water contents 

and mixtures and can easily resist to slaggings. The flue gases produced are characterized by a 

low dust content.      

In fluidized bed combustion processes the inflow velocity and the flow force impacting the fuel 

particles increase strongly. During this combustion process the fuel particles are suspended in a 

bed of ash, sand or limestone. Jets of air provide the necessary oxygen for the combustion process. 

One should distinguish between stationary and circulating fluidized bed combustion processes. 

The relatively low combustion temperatures (800 to 900 °C) avoid the presence of slaggings and 

of nitrogen oxides. Stationary bed combustion processes are mainly characterized by a rated ther-

mal input between 10 and 20 MWth. Circulating bed combustion processes are operated starting 

from 30 MWth and are subjected to a higher flow velocity than in the case of stationary processes. 

This leads to a better control of the solid fuel combustion process with high ash-content. A large 

range of biomasses including finely chipped wood or barks can be employed in fluidized bed 

combustion processes.     

A dust combustion occurs if all fuel particles are conveyed together with the gas flow. These 

combustion systems are suited for the valorization of very fine and dry fuels with 15 to 20% water 

content (e.g. chips, sawdust and other fine-grained wood residues). Dust combustion processes 
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are employed starting from a rated thermal input of 200 kWth. However they appear to be unprof-

itable in most cases due to a high level of specific investment-related and operating costs [18].    

2.1.1.2 Biomass gasification 

Similarly to combustion, gasification belongs to thermochemical conversion processes and leads 

to the production of a synthetic gas (so called “syngas”), ashes and tar. Syngas mainly contains 

hydrogen, carbon monoxide and carbon dioxide. Gasification processes can be autothermal or 

allothermal according to the heat production process. In an autothermal process the required ther-

mal energy is produced by a partial oxidation of the employed biofuel. In an allothermal process 

an external heat source is employed e.g. from heat carrier materials such as water vapor or heat 

exchangers. The syngas issued from autothermal gasification processes shows a gross calorific 

value between 3 and 6 MJ/Nm3 whereas syngas from allothermal processes are characterized by 

higher gross calorific values between 10 and 15 MJ/Nm3 [19]. The produced syngas can be further 

transformed into heat and/or electricity e.g. in cogeneration processes. It can also lead to the pro-

duction of liquid or gaseous biofuels (e.g. Synthetic Natural Gas bio-SNG, methanol or Fischer-

Tropsch-Diesel). The syngas quality depends on the gas composition, on the share of organic 

components and on the particle content. In the case of bio-SNG production a gas cleaning process 

is necessary in order to meet the required technical specifications for an injection into the grid. 

Gasification processes display some advantages in comparison to combustion technologies. 

Firstly higher electric efficiencies can be reached especially in the case of small to mid-scale 

installations. Secondly the possible storage and transport of bio-SNG issued from syngas cleaning 

processes offers more valorization pathways than with a direct combustion [20]. However the 

production and use of bio-SNG currently remains at the research and development stages and the 

industrial scale is not yet reached.     

Gasification processes concern fixed bed, fluidized and entrained-flow gasifiers. The gasifier 

types are defined according to the type of contact occurring between the gasification medium and 

the valorized biomass. Other criteria relate to the heat supply type (autothermal or allothermal), 

the employed gasification medium (air, oxygen, water vapor) and the pressure ratio in the gasifi-

cation reactor [21]. 

Fixed bed gasifiers can be divided into co-current and counter-current gasifiers. The first one is 

the most frequently used technology due to the fact that tars can be easily cleft by the hot gases. 

Co-current gasifiers refer to plants with about 2 MWth rated thermal input whereas counter-current 

gasifiers are used in larger plants (about 10 MWth). Both of these gasifier types can be further 

combined e.g. in a double combustion gasifier. 

Fluidized gasifiers can be split into circulating and stationary gasifiers, depending on the gas ve-

locity. The fuel particles move at high velocity flow rates under high temperatures between 700 

and 900 °C, which leads to a low tar-content in the gasifier. Fluidized gasifiers are mainly em-

ployed for rated power thermal input between 10 and 100 MWth. The combination of several 

fluidized gasifiers is also possible, e.g. in two-bed circulating technologies, and increases the syn-

gas quality.          

Finally, entrained-flow gasifiers valorize solid biomasses in the form of dry pulverized solids, 

atomized liquid fuel or fuel slurry in the presence of oxygen (much less frequent: air) mostly in 
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co-current flow. The gasification reactions take place in a dense cloud of very fine particles under 

temperatures between 1,200 and 2,000 °C. This type of gasifier is used for high rated thermal 

output, superior to 100 MWth, mainly for coal gasification and more rarely for biomass [22]. 

2.1.1.3 Biomass pyrolysis 

The pyrolysis of biomass feedstock consists of the thermal deconstruction of chemical compo-

nents under an absence of oxygen. This process is defined as allothermal as the required thermal 

energy for the components deconstruction is exogenous to the system. An overview of all availa-

ble pyrolysis processes is given by [23]. The products of the pyrolysis process consist of a solid 

char, liquids like bio-oils, tar or pyroligneous liquors and a biogenic gas (syngas). Table 2.1 pro-

vides the products composition according to different pyrolysis processes. 

Table 2.1 Process conditions and products composition according to various pyrolysis processes 

[23] 

Pyrolysis mode Process conditions Mass share 

of liquid (%) 

Mass share 

of char (%) 

Mass share 

of gas (%) 

 

 

Fast 

Temperature at about 500 °C 

 

Very short hot vapour residence time at 

about 1 s 

 

Short solids retention time 

 

 

 

75 

 

 

 

12 

 

 

 

 

13 

 

 

Intermediate 

Temperature at about 500 °C 

 

Short hot vapour residence time be-

tween 10 and 30 s 

 

Moderate solids residence time 

 

 

50 in two 

phases 

 

 

25 

 

 

25 

 

 

Slow 

Temperature at about 400 °C 

 

Long hydraulic residence time 

 

Very long solids residence time 

 

 

 

35 

 

 

 

35 

 

 

 

30 

 

The objective of a fast pyrolysis is to maximize the share of liquids in the reaction products. For 

this, very high heating rates are employed. The highest yields are provided by clean wood which 

delivers about 75% of the dry biomass mass input. Charcoal represents about 10 to 15% of the 

mass products and retains in particular all the alkali metals. The main commercially employed 

reactors for the fast pyrolysis process are linked to fluid beds, spouted fluid beds, transported 

beds, rotating cones and ablative reactors. Fast pyrolysis processes are mainly used for materials 

pre-treatment and densification and as a source of biofuels or chemicals. They are also used in 

the processing of by-products or residues in lignocellulosic bio-refineries. The use of fast pyrol-

ysis for biomass pre-treatment aims to substantially increase biomass density through the produc-

tion of bio-oils (density at about 1,200 kg/m3). Bio-oils produced by fast pyrolysis processes can 

be valorized into heat and/or electricity with the help of boilers, engines or turbines. Another 
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possibility consists of substituting phenolics in wood resin with bio-oils. The use of bio-oils as 

liquid biofuels represents a sustainable alternative to fossil liquid fuels. Biofuels can be directly 

produced from bio-oils with the help of catalytic upgrading of liquid or vapour. An indirect path-

way consists of gasifying bio-oils and processing them using a hydrocarbon or an alcohol synthe-

sis [23]. The intermediate pyrolysis can process more difficult biomass feedstock than the fast 

one. This especially concerns materials subject to handling, feeding and/or transport problems. 

Charcoal represents in this case about 25% of the mass products and is made of small size parti-

cles. The liquid products can be divided into the organic phase which can be used in engines and 

the aqueous phase. The gas products can for their part be valorized in engines. 

Slow pyrolysis can occur under indirect or direct heating with air addition. It mainly applies to 

pre-sorted and processed organic waste with an optimal particle size of 1 to 2 mm and having a 

moisture content lower than 10%5. Slow pyrolysis processes are traditionally used in order to 

obtain solid fuels for cooking and also for the metallurgy and silicon industries in Brazil and 

Australia [23]. A recent application concerns the production of biochar as a fertilizer in order to 

increase soil fertility and agricultural productivity. A further advantage of biochar is that it con-

tributes to climate change mitigation through carbon sequestration [24]. 

2.1.2 Physical-chemical conversion 

2.1.2.1 Pressing / Extraction 

Pressing and extraction process is used to produce fuel oils from biomass. The biomasses em-

ployed are rape and sun flower seeds, peanuts and corn which contain fatty or oily components. 

These crops are only cultivated in certain regions and are difficult to grow so that their potentials 

are very limited. The production of vegetable oils from biomass can be realized by pressing, sim-

ple extraction or a combination of both processes. A one- or two-stage pressing operation aims at 

separating the oil from the oil seeds. An oil cake containing 4 to 10% oil is produced and can be 

used e.g. as a cattle feed material [25]. The extraction process is realized by using a solvent ap-

plied to large-scale units. The extraction products correspond to a saturated solvent containing oil 

and an oil-free extraction residue also saturated with the solvent. In a further step the solvent is 

removed from the two product streams by heating and then reused in a recycling loop. The use of 

a solvent enables the extraction of a much higher share of oil than in the case of the simple press-

ing process. 

The combination of pressing with extraction leads to a maximization of vegetable oil production 

and profitability. The oils produced generally contain between 0.5 and 6% of oil-free solid resi-

dues which have to be removed. For this, filtration and sedimentation processes are used and are 

followed by a refining step. This refining step is performed through de-acidification, de-colouring 

and steaming. It aims to remove unwanted substances like fatty acids, wax, heavy metals or pes-

ticides. The vegetable oil produced can be directly used as a liquid biofuel especially in rural areas 

for decentralized electrification [25]. However the combustion of vegetable oils lowers engine 

lifetime and generates supplementary maintenance requirements and costs.  

                                                           
5 A low feedstock moisture content ensures a high heat transfer rate. 
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2.1.2.2 Esterification 

Another valorization possibility consists of converting the vegetable oils into a fatty acid methyl 

ester (FAME) which can be used in conventional diesel engines as an environmentally-friendly 

substitute for diesel. For this purpose an esterification process is required. The vegetable oil reacts 

with methanol under the presence of a catalyst, generally NaOH. This mixture is pumped through 

a vertical pipe at a low velocity which removes the glycerine. After the removal of the remaining 

methanol, the liquid is cleaned by a multistage washing process [25]. The FAME produced can 

be also used as a liquid biofuel (biodiesel). 

2.1.3 Biochemical conversion 

2.1.3.1 Alcoholic fermentation 

Alcoholic fermentation is defined as the conversion of sugar C6H12O6 by yeast into ethanol 

C2H5OH, carbon dioxide CO2 and low temperature heat used for micro-organism growth. The 

fermentation reaction occurs under anaerobic conditions. After the fermentation the yeast is re-

moved from the slurry and then recycled. The main sources of sugar are starch, celluloses as well 

as sugar cane and sugar beet. The ethanol produced has to be further refined in order to obtain a 

pure liquid biofuel [25]. The slurry issued from the fermentation process contains between 8 and 

10% alcohol, water and residues derived from the sugar-containing or starch material. In order to 

purify the slurry a crude alcohol column is used for distillation or rectification. The products 

obtained are an alcohol-water-mixture containing more than 80% alcohol and a secondary slurry 

with no alcohol content.  

This slurry can be further used as a feedstock for biogas production or as a fertilizer. Several 

distillation and rectification steps are necessary in order to reach an alcohol-water-mixture with a 

maximal ethanol content of 96%. For a use in an engine an ethanol content of 99.9% has to be 

achieved. For this an absolutation step is necessary. An expident is added to the alcohol-water 

mixture in order to produce an alcohol-chemical mixture as well as a water-chemical. The chem-

ical is then removed and can be further reused. The final product has an ethanol content satisfying 

the specifications for use as fuel in a combustion engine. The engines employed must be adapted 

to ethanol as its combustion behaviour is different from gasoline. Ethanol is generally mixed with 

compressed natural gas (CNG) to a maximum rate of 10% in order to meet engine and distribution 

networks specifications [25].  

2.1.3.2 Aerobic decomposition 

The aerobic biomass decomposition process corresponds to the transformation of organic waste 

into compost in the presence of oxygen. More precisely compost represents a humus-like product 

obtained under controlled conditions. Composting operators firstly break down large waste parti-

cles e.g. through grinding or chopping. After this physical pre-treatment a colonization phase of 

the organic material by microbes occurs in the presence of oxygen. The composting process then 

starts and is initiated by mesophilic microorganisms at temperatures between 30°C and 40 °C 

[26]. In a further step and for higher temperatures thermophilic microorganisms are active. Most 

of the microbes involved in the composting process are already located in the organic waste. 
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Additional soil microbes such as bacteria, fungi or protozoa are introduced when the waste are 

mixed. Carbon compounds are used by the bacteria then transformed into CO2 and released.  

The reaming oxygen in the compost is continuously consumed by microorganisms. A strong tem-

perature increase takes place in the compost material from 55 °C to 65 °C within 24 to 72 hours 

[26]. The compost temperature then remains constant at 65 °C for several weeks which charac-

terizes the active phase. The active phase represents the most intensive decomposition phase and 

continues up to full transformation of the nutrient- and energy-containing materials. Then during 

the curing phase the microbial activity decreases and the temperature falls. The length of this 

phase6 can increase if the compost remains in an unfinished state. This can happen e.g. if the 

compost contains too little oxygen, an inadequate moisture content, a high level of organic acids 

or has extreme pH values. Ideal conditions for an optimal composting process correspond to tem-

peratures in the range of 55°C to 65°C, pH values going from 6.5 to 8 and moisture mass contents 

of 50 to 60% [26]. The optimal C:N ratio7 should vary between 25:1 and 35:1 and the available 

O2 concentrations remain higher than 10% [26]. Finally feedstock particle sizes smaller than 25 

mm also contribute to an optimal composting process [26].     

2.1.3.3 Anaerobic digestion 

The anaerobic digestion process can be defined as the microbial degradation of organic substances 

in an oxygen-free environment (anaerobic). It occurs naturally e.g. in moors or in the bellies of 

ruminants and also in controlled reactors (fermenters). The products of the anaerobic digestion 

process are a methane-rich gas and a digestate further valorizable as a fertilizer. A detailed process 

overview is given in section 2.2 which deals with the complete description of a biogas supply 

chain. 

2.2 Description of a complete biogas supply chain 

The biological production and conversion of biogas into electric and thermal energy can be di-

vided into four main steps as described in Figure 2.2: biomass feedstock management (biomass 

harvesting, transport, delivery and storage, biomass pre-treatment, on-site conveying and load-

ing), biogas and digestate production, biogas management (storage, treatment and valorization) 

and finally digestate management (storage, treatment and valorization). 

 

 

 

                                                           
6 The curing phase length can vary widely between one to four months in most of the commercial processes 

[26].  
7 Among the many elements required for microbial decomposition, C and N appear as the most critical [26]. 
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Fig. 2.2 Main process steps involved in the operation of a biogas plant (author’s own representa-

tion according to [27]) 

2.2.1 Biomass feedstock management 

2.2.1.1 Biomass harvesting, transport, delivery and storage 

Logistic aspects can considerably impact the profitability of a biogas plant especially in the case 

of the valorization of large biomass feedstock amounts. The logistic chain of a biogas plant can 

be basically divided into four sequential steps. 

 

The harvesting of energy crops or the collection of biowaste represents the starting point of a 

biomass logistic chain for biogas applications. The energy crops mainly harvested are maize si-

lage, grass silage, cereal silage and cereal grains. The harvesting yields for maize silage are 

strongly dependent on the cultivation location and the environmental conditions and can vary in 

Germany between 35 tDry-Matter/ha up to 65 tDry-Matter/ha [28]. The entire maize plant is chopped 

during the harvesting step and loaded in bunker silos. The Dry-Matter content (DM-content) must 

remain between 28% and 36% in order to avoid leachates and energy losses and to limit the lignin 

share in the feedstock [28]. After the storage in bunker silos the reduced maize plant components 

are compressed with the help of wheel loaders and covered with a hermetic film for approxi-

mately12 weeks (ensilage phase). They are then transported to the biogas plant. Chaff is the most 

widespread harvesting technique for grass silage. The DM-content of grass silage can theoreti-

cally vary between 25 and 50%. In the case of further valorization in biogas plants the value of 

35% should not be overrun [29]. For higher DM-contents the high lignin- and fibre-contents can 

affect the feedstock degradability and thereby lower the methane yield. Most of the cereal cate-

gories are suited for the production of cereal silage but rye and triticale are generally used. The 
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harvesting process is similar to that for maize silage with a chopping and ensilage step. The har-

vesting phase should ideally take place at the beginning of the dough stage. At this time point the 

harvesting yields reach their highest values. The harvesting yields of cereal silage can vary be-

tween 7.5 and 15 tDM/ha and the DM-content remains between 30 and 35% [29]. Cereal grains 

display high methane yields due to their high level of degradability. The methane yields can be 

further maximized by a preliminary shredding step. Cereal grains can be also used in the food 

industry, as livestock feed or for alcohol production. Seven classes of cereal grains exist: wheat, 

barley, rye, oat, corn, sorghum and rice. 

 

Household biowaste is collected by citizens in household bins separately from green waste. Im-

portant optimization potentials remain in the separate sorting of biowaste and green waste in spite 

of a good level of interest and acceptability by the German population. According to [30] about 

44 million of citizens in Germany were not using bins for biowaste sorting at the end of the year 

2012, which represents about 65% of the population. The European Union’s waste framework 

directive and the §11 of the Waste Management Act 2012 defined an obligation for all waste 

producers and for waste management authorities in Germany to collect biowaste separately start-

ing from the 1st of January 2015 [31], [32]. This measure aims to enable a more sustainable 

biowaste valorization especially in biogas plants. At the end of the year 2012 a global potential 

of about 4.2 million t kitchen biowaste and 4.7 million t green waste in households was estimated 

[33]. In [33] it is further assumed that 60% of kitchen biowaste and 25% of green waste potentials 

could be valorized into biogas. Thereby a total potential of 3.7 million t for biowaste plus green 

waste feedstock was estimated to be available for biogas applications.  

 

Beside the improvement of biowaste and green waste collection, the substrate composition also 

plays an important role for the optimization of the feedstock logistic chain. The biowaste compo-

sition fluctuates during the year and depends on the consumption habits of each citizen. An infor-

mation and sensitization campaign to encourage sorting of the waste produced is extremely im-

portant. Another key-aspect concerns the detection of impurities in the collected biowaste. These 

impurities if not adequately removed could inhibit biogas production e.g. by generating over-

acidification or scum build-up in the fermenters. 

 

The harvested energy crops and manure are transported to the biogas plant location by using ag-

ricultural vehicles. Agricultural vehicles are generally tractors with two tipping trailers or with a 

tank trailer. In the case of biowaste transport closed collection trucks are mainly employed. The 

transport distance and the amount of transported biomass feedstock logically increase with the 

plant size. After the transport step the feedstock mass is quantified during the feedstock delivery 

process which takes on the site location of the biogas plant. This step also applies to co-substrates 

that do not belong to the agricultural farm and whose quality and quantity should be drastically 

controlled. After the biomass feedstock delivery the storage step follows. The biomass feedstocks 

should be stored in a closed building equipped with an exhaust air purification system. Finally 

some legal requirements apply to the storage of feedstocks that are submitted to hygienisation 

criteria like biowaste. For example, critical feedstocks must be stored separately from the harm-

less ones and legal immission control requirements must be respected [34]. 
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2.2.1.2 Biomass pre-treatment, on-site conveying and loading 

The biomass feedstock pre-treatment step aims to reduce process perturbations and to improve 

the fermentability so as to meet feedstock hygienisation criteria. The pre-treatment of liquid sub-

strates is limited to a solid phase separation where the non-degradable solid materials like sand or 

solid biomass are removed. Liquid substrates containing fine or dissolved components can be 

directly valorized in the fermenter without any supplementary pre-treatment. 

 

The pre-treatment of solid substrates can be very complex depending on the feedstock type and 

on the biogas production process employed. The steps involved can be sorting, impurities re-

moval, shredding, mashing or hygienisation. Sorting and impurities removal processes are mainly 

used for heterogenic materials like biowaste. The separation of non-organic materials such as 

stones, glass or eggshells improves the quality of solid substrates and protects plant equipment 

from premature deterioration. Impurities removal consists of several sequential steps.  First rough 

impurities are removed using visual controls. Automated devices like metal separators and star-

screens are then employed and remove ferrous particles as well as other impurities. Sorting and 

impurities removal phases improve the digestate quality and lead to humus-rich fertilizers and 

composts8. The shredding step increases the feedstock surface and improves feedstock degrada-

bility and methane production. Shredders, mills or screws with cutting systems can be to this end 

employed. During the mashing step, solid substrates are transformed into a pumpable feedstock 

due to a water-content increase. The mashing process generally takes place in a preliminary tank 

directly located before the fermenter loading unit. In this process, manure, pressed liquid digestate 

or even fresh water can be employed as possible liquids.  

 

A feedstock hygienisation step is only legally required for certain epidemic or phytologic critical 

substrates like biowaste. Hygienisation can be carried out before or after the fermentation process. 

Plant operators must fulfil several legal requirements regarding the valorized feedstock and the 

digestate. Firstly the requirements of the EU-Hygiene Ordinance (Nr. 1774) or the Biowaste Or-

dinance must be respected [36], [37]. The EU-Hygiene Ordinance mainly concerns the valoriza-

tion of animal effluents (e.g. manure) whereas the Biowaste Ordinance applies to kitchen and 

household biowaste and to organic waste [38]. The EU-Hygiene Ordinance classifies the feed-

stock into three classes of risks and simultaneously defines the conditions for their valorization 

into biogas. Several conditions are defined and concern hygienization, installation security and 

control as well as cleaning and disinfection processes. The valorization of feedstocks belonging 

to the risk class I (highest risk class) is not allowed as these feedstocks can contain BSE9-suspi-

cious materials [39], [40]. Biogas plants valorizing biowaste should meet the requirements of the 

Biowaste Ordinance. In principle, all listed biowaste plants in Appendix 1 of the Biowaste Ordi-

nance can be transformed into biogas if epidemiologic and phytohygienic treatment conditions 

are respected [41]. These conditions are limited to the feedstock pre-treatment phase and to the 

digestate treatment. They are set up according to Nr. 2.1 of Annex 2 of the Biowaste Ordinance 

and concern both mesophilic and thermophilic anaerobic digestion processes (see Table 2.2) [42]. 

                                                           
8 Since EEG 2012 a post-composting unit for the raw digestate combined with a valorization as compost is 

compulsory in the case of biowaste plants [35]. 
9 Bovine Spongiform Encephalopathy is commonly referred to as “mad cow disease”. 
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Table 2.2 Process conditions according to epidemiologic and phytohygienic criteria for biowaste 

plants [42] 

Process type Mass flow 

Category 

Treatment 

Process 

Treatment process 

temperature 

Treatment period 

Mesophilic fermentation Raw input 

feedstock 

Pasteurization 

plant 

At least 70°C At least 1 hour 

Digestate 

Thermophilic fermentation 

(with 20 days                          

minimal residence time) 

Raw input 

feedstock 

Heating plant At least 50°C At least 24 hours 

  

The onsite supply of biomass to fermenters consists of the conveying and the loading steps. Sev-

eral conveying and loading technologies can be used according to biomass feedstock quality 

(pumpable or stackable). Electric pumps are used to transport pumpable feedstock like manure to 

the fermenters. Various technologies are available, e.g. centrifugal pumps or positive displace-

ment pumps depending on the valorized feedstock type [43]. The pumpable feedstock conveyed 

is stored and homogenized in a closed dump. The dump can be further used to mix, shred and 

liquefy stackable co-substrates that cannot be directly loaded into the fermenter [40]. The con-

veying step for stackable feedstock is carried out automatically. For this, scrapers, pusher plates, 

connecting rods and screw conveyors are mainly used and can horizontally convey most of the 

stackable feedstock. These devices are however not suited to loading processes. Screw conveyors 

can transport stackable, cleaned and shredded feedstock in all directions [43]. The loading pro-

cesses can be divided into direct and indirect loading. In the case of an indirect loading the stack-

able feedstocks are firstly brought to the dump and mixed with pumpable substrates. Direct load-

ing offers the possibility to treat the stackable feedstock independently from pumpable substrates. 

The DM-content and consequently the biogas productivity are generally increased if stackable 

and pumpable feedstocks are loaded separately.  

2.2.2 Biogas production process 

2.2.2.1 Biogas formation 

In biogas plants the anaerobic digestion process occurs in fermenters under controlled biological, 

thermal and physicochemical conditions. The gas mixture released (biogas) consists of methane, 

carbon dioxide and a variety of trace gases. Gas composition is variable and depends on the val-

orized feedstock as well as on the fermentation processes employed. Table 2.3 shows an average 

composition of biogas.   

 

Table 2.3 Average biogas composition (author’s own representation according to [44]) 

Component Percentage concentration 

Methane (CH4) 45 to 75 Vol.-% 

Carbon dioxide (CO2) 25 to 55 Vol.-% 

Water (H2O) 2 to 7 Vol.-% (20-40 °C) 

Hydrogen sulphide (H2S) 20 to 20,000 ppm (2 Vol.-%) 

Nitrogen (N2) < 5 Vol.-% 

Oxygen (O2) < 3 Vol.-% 

Hydrogen (H2) < 1 Vol.-% 
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The biogas formation step can be divided into four phases, as described below. The organic matter 

is degraded by various interdependent groups of bacteria. The organic raw material has a complex 

structure of proteins, carbohydrates and fats. This structure is decomposed during the first phase 

of the degradation process, i.e. the hydrolysis phase, into simple organic components like amino 

acids, fatty acids and sugars. The hydrolytic bacteria involved in this process use a variety of 

enzymes, e.g. cellulases, amylases and proteases, in order to build monomers. These intermediary 

products are then transformed into short-chain organic acids like propionic and butyric acids and 

into carbon dioxide, alcohols, and hydrogen. For this, acid-forming bacteria are employed during 

the acidogenesis phase. The anaerobic bacteria require oxygen and are the basis for further anaer-

obic methane formation. The acetic acid formation, i.e. acetogenesis phase, represents the third 

phase of the biogas formation process. The organic acids and alcohols built are further trans-

formed into acetic acids and hydrogen under the action of bacteria. Another possible reaction 

corresponds to the conversion of hydrogen and carbon dioxide into acetic acid [45]. The methane 

formation, i.e. methanogenesis phase, can be carried out following two pathways. Methane can 

be built through the separation of acetic acid according to following equation (Eq. 2.1). 

𝐶𝐻3𝐶𝑂𝑂 + 𝐻+ →  𝐶𝐻4 + 𝐶𝑂2                     (2.1) 

The second possibility is the transformation of hydrogen and carbon dioxide into methane and 

water (Eq. 2.2). 

𝐶𝑂2 + 4𝐻2 →  𝐶𝐻4 + 2𝐻2𝑂                      (2.2) 

Kaltschmitt identified that about 70% of the biogas production is derived from the separation of 

acetic acid (Eq. 2.1) and only about 30% from the reaction between carbon dioxide and hydrogen 

(Eq. 2.2) [43]. On the other hand in [40] and [46] biogas produced by agricultural plants mostly 

results from the oxidation of carbon through the reaction between carbon dioxide and hydrogen. 

The four phases of the biogas formation process take place simultaneously and without physical 

separation. The term “single-phase process” is employed e.g. for agricultural plants. The term 

“two-phase processes” characterizes a separation of the hydrolysis and the acidogenesis from the 

acidogenesis and methane formation. This last process is never employed in practice mainly due 

to its unprofitability. The living conditions of methane bacteria10 are clearly improved by the 

phase separation into two reactors. This increases the biogas yields but generates higher costs due 

to the construction, operation and maintenance of a supplementary reactor dedicated to acidogen-

esis and methane formation [40]. 

2.2.2.2 Characterization of biogas fermentation process 

In Table 2.4 the main criteria used to characterize biogas formation processes are detailed. They 

concern the feedstock DM-content, the loading method and the process temperature and enable a 

differentiation of all available fermentation processes [47]. 

 

 

                                                           
10 The microorganisms involved have different and specific requirements regarding their living environ-

ment (e.g. pH-values, temperature, nutrient supply). 
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Table 2.4 Employed criteria for the characterization of different biogas processes (author’s own 

representation according to [47]) 

 

Criteria Differentiation factors 

Feedstock DM-content - Wet fermentation 

- Dry fermentation 

Feedstock loading method - Discontinuous (batch-process) 

- Quasi-continuous 

- Continuous 

Process temperature - Psychrophilic 

- Mesophilic 

- Thermophilic 

 

The feedstock DM-content has a decisive influence on the choice of wet or dry fermentation pro-

cesses. A wet fermentation process is generally characterized by an organic pumpable material 

and by a DM-content lower than 12%. A dry fermentation concerns feedstock with a DM-content 

generally higher than 20% and containing a watertight and stackable organic matter. Nevertheless 

an exact delimitation between the two above mentioned processes does not exist in practice [48], 

[49]. The loading step corresponds to the fermenter supply with the microorganisms contained in 

the raw biomass feedstock. In principle one can distinguish between continuous, quasi-continuous 

and discontinuous loading concepts. Continuous and quasi-continuous loadings characterize a 

fermenter supply with at least one charge of raw feedstock. In practice the repeated loading of the 

fermenter with small charges is the best concept. A permanent fermentation process takes place 

and leads to relatively homogenous biogas production. Most of the biogas plants are operated 

according to this principle which is continuous flow process. The term “continuous flow” refers 

to a loading situation where the same feedstock amount is present in the fermenter input as in the 

fermenter output [40]. The discontinuous process, also named as batch process, relates to a single 

feedstock loading during which the fermenter is entirely filled. The anaerobic digestion process 

takes then place during a determined residence time. The digester is subsequently emptied and 

filled again with new raw material feedstock.  

 

A further criterion concerns the fermenter temperature which remains in psychrophilic, meso-

philic or thermophilic domains. The psychrophilic domain is defined by a fermentation tempera-

ture lower than 30°C and is characterized by very slow organic substance degradation and by low 

biogas production. Currently no practical applications exist in this temperature domain for biogas 

plants. Most of the existing biogas plants are operated in the mesophilic temperature domain be-

tween 37°C and 42°C which represents a suitable temperature bandwidth for a stable process and 

an optimal biogas production. A thermophilic process temperature mainly concerns biomass feed-

stock hygienisation processes that remain between 50 and 60 °C. If the temperature level is main-

tained during more than 24 hours then the epidemic and phytosanitary requirements for biowaste 

are fulfilled [50]. A high degradation rate and a low viscosity are reached at this temperature level 

which favours biogas production. However the requirements in terms of process control are higher 

[50]. Figure 2.3 describes the currently existing fermentation processes classified according to the 

loading method and feedstock consistency (dry or wet). The dry fermenter technologies most 
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employed, i.e. the horizontal plug-flow fermenters, are operated under a continuous dry fermen-

tation process (grey-marked in Figure 2.3). Most of the wet fermenter technologies are also oper-

ated under quasi-continuous processes and generally employ single-phase continuous flow fer-

menters (grey-marked in Figure 2.3).  

 

 
 

Fig. 2.3 Classification of available fermentation processes (author’s own representation according 

to [47]) 

 

Wet fermentation is the most widespread process worldwide. In Germany, about 89% of existing 

biogas plants are operated according to this principle [51]. In practice wet fermentation generally 

uses single-phase continuous flow processes. These processes are mainly characterized by a con-

tinuous fermenter loading. More precisely the fermenter is supplied daily with raw biomass feed-

stock in small charges. Simultaneously, the same feedstock amount is drained from the fermenter 

into the digestate container. During the design phase of a continuous single phase and fully-mixed 

fermenter it is however not possible to estimate an exact residence time as a part of the raw feed-

stock can immediately leave the reactor [40]. Horizontal plug-flow fermentation technologies are 

used for dry fermentation processes and initially come from communal biowaste treatment. Now-

adays they can also be applied to the valorization of energy crops.  This technology uses horizontal 

fermenters which can contain several cross-mixers equipped with paddles or slowly-moving axial 

agitators. The biomass substrates circulate along the length of the quasi-continuous plug-flow 

fermenters. A part of the digestate can be recycled into the fermenter in order to be used as inoc-

ulating material for the raw biomass feedstock input. A plug-flow fermenter is generally charac-

terized by a thermophilic fermentation temperature at about 55 °C and a residence time of 20 to 

28 days [52], [53]. 
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2.2.3 Digestate treatment  

During the fermentation process a digestate of biologically degraded material is formed. The di-

gestate properties can be estimated by biomass input feedstock analysis and by the fermentation 

process. The digestate issued from the fermentation process is then conveyed to a storage tank. 

Since the year 2012 this storage tank, defined as a post-fermenter, has to be covered in order to 

avoid gas releases. The tank volume must be calculated in order to enable a minimal storage 

period of 180 days. The digestate displays a high fertilizing value due to high nitrogen, phospho-

rus and potassium contents. It can be valorized directly on soils or further treated e.g. through a 

solid-liquid phase separation. Digestate storage tanks are mostly designed for the storage of fer-

mented manure storage. The digestate treatment consists in solid/liquid phase separation which 

offers the best valorization possibilities. The separated liquids can be reused in mashing processes 

applied to the raw biomass feedstock or valorized as liquid fertilizer. The solid digestate can be 

further treated using composting units in order to obtain a valuable compost. Screw separators are 

the main technology employed and apply to feedstock with a DM-content between 10 and 30%. 

Screening belts and centrifuges can also be employed [54]. The composting process involves the 

biological treatment of light valorizable organic materials which can be degraded by bacteria and 

fungi. Fertilizers and humus are then produced in the presence of air (aerobic treatment). This 

process is generally employed as a down-stream step following the biowaste fermentation. Sev-

eral composting processes exist in Germany and can be divided into windrow composting, box 

composting, line composting or “brikollare composting”. These various composting processes are 

characterized by different designs, ventilation systems and by different intensive decomposition 

periods. Digestate mass flows greater than 10,000 t/a must only be exclusively treated by encap-

sulated composting processes in order to respect legal immissions control requirements applied 

to biowaste installations. In this case box composting and windrow composting processes appear 

to be the most suited technologies for the digestate treatment. Both of these processes minimize 

odours and are equipped with a closed intensive decomposition unit and a full exhaust and forced-

ventilation system. Box composting processes produce a fresh compost11 with a rotting degree of 

II to III and can be further treated into a finished compost by a post-rotting process [56]. Windrow 

composting systems are fully encapsulated with principal and post-rotting processes and directly 

produce a finished compost with a rotting degree of IV to V.      

2.2.4 Biogas valorization 

Biogas can be transformed into power and heat through a combustion process in Combined Heat 

and Power systems (CHPs). Another possibility is to upgrade biogas to biomethane which can 

then be fed into the natural gas grid. Independently of these two valorization routes, biogas must 

be first cleaned and buffered.   

                                                           
11 Fresh and finished composts are defined according to the RAL quality insurance (German institute for quality insur-

ance and labelling). A fresh compost is hygienized and has a rotting degree of II or III. This corresponds to an intensive 

decomposition process. A finished compost refers to a hygienized and biologically stabilized compost with a rotting 

degree of IV or V [55]. 
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2.2.4.1 Biogas buffering and cleaning 

A buffer storage corresponding to at least 25% of the daily biogas production must be installed in 

order to avoid strong variations in the production levels. These gas storage units can be divided 

into low-, medium- or high-pressure storage units. In practice low pressure storage unit is the 

most common technology used. A gas storage unit is made of foils and can be directly installed 

at the gas hood on the fermenter (integrated storage), as a foil cushion in buildings or stored in 

the open air (external storage). The buffered biogas must be cleaned using desulphurization pro-

cesses. Biogas drying is realized by a cooling process and the desulphurization is carried out e.g. 

with the help of active coal filters containing potassium carbonate. The combination of these two 

processes aims at protecting for instance CHP gas engines, from a high wear rate as well as from 

corrosion [57]. 

2.2.4.2 Biogas valorization in Combined Heat and Power systems 

The cleaned biogas can be further valorized (e.g. in CHP gas engines) for simultaneous electricity 

and heat production. According to [58] about 77% of the engines employed for biogas combustion 

are gas-Otto-engines. The electricity produced is then fed into the grid and directly sold on the 

electricity market and/or subsided in the framework of Feed-In-Tariffs (FITs) defined by the Re-

newable Energy Sources Act (EEG). The heat produced can be recycled to the biogas plant for 

fermenter heating among other uses. Supplementary external heat sinks have to be found in order 

to improve plant efficiency and its profitability. External heat sinks are generally social buildings, 

stalls, drying processes or district heating networks [59]. 

2.2.4.3 Biogas valorization through biomethane injection 

Biogas upgrading processes represent a suitable alternative to onsite electricity production espe-

cially if not enough heat sinks are located near the plant. The upgraded biogas, biomethane, can 

be fed into the natural gas grid and decentrally valorized in cogeneration plants or used as a gas-

eous biofuel. The biogas upgrading process must be carried out according to DVGW worksheets 

G260 and G262 [60], [61]. The first step of the biogas upgrading process is water removal. The 

biogas output volume flow contains saturated water vapour which can potentially generate con-

densation in the gas pipelines and lead to corrosion. Water removal can be carried out by com-

pression, cooling or absorption using glycol solutions. Adsorption processes employing SIO2 or 

activated carbons represent another possibility. Hydrogen sulphide (H2S) is formed during the 

microbiological reduction of sulphur and must also be removed. The objective is to decrease H2S 

concentration in the biogas produced. For this purpose a precipitation reaction can be directly 

created in the digester by adding Fe2+or Fe3+. This eliminates the iron sulphide from the produced 

biogas. Another possibility is adsorbing H2S using activated carbon in the presence of oxygen and 

water which leads to sulphur production. The H2S removal process can also be achieved by a 

chemical absorption employing sodium hydroxide (NaOH), by washing or by treating biogas by 

an iron oxide-coated support material. H2S can be removed from biogas by employing biological 

treatments involving microorganisms such as Thiobacillus and Sulfolobus. These treatments are 

carried out in the presence of oxygen and inside the digester [62]. 
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In the second step of biogas upgrading oxygen and nitrogen must be separated from the biogas 

stream. This removal is carried out by adsorption processes involving activated carbons, molec-

ular sieves or membranes. In a subsequent step ammonia, siloxanes and particulates are removed. 

Ammonia is eliminated by using drying processes. In the case of siloxanes cooling, absorption, 

adsorption or activated carbon processes are used. Finally particulates, which can cause mechan-

ical wear in gas engines, are removed using mechanical filters [63]. The central step of biogas 

upgrading processes is the removal of CO2 from the crude biogas. This can be carried out by 

means of various technologies (e.g. Pressure Swing Adsorption, water scrubbing, organic physi-

cal or chemical scrubbing, membranes, cryogenic upgrading). A detailed description and com-

parison of all CO2-removal processes employed can be found in [64]. Before injection into the 

grid the cleaned biogas has to be conditioned in order to meet the combustion characteristics of 

natural gas (e.g. gross calorific value and Wobbe index). This conditioning step is generally real-

ized using liquid gases and potentially by adding air (in L-gas grid areas). Odorization according 

to the DVGW G280-1 worksheet and a pressure increase up to 16 bar12 are then carried out before 

the final injection. Biomethane injection stations are equipped with measurement technologies in 

order to monitor limit values for different parameters according to DVGW worksheets G260 and 

G262. For example biomethane volume, composition and gross calorific values must be estimated 

using process gas chromatographs and combustion calorimeters [65]. 

2.3 Summary 

In this chapter an overview of all available bioenergy conversion pathways has been given with 

a focus on the biochemical conversion of biomass into biogas. Due to the variety of resources and 

valorization pathways bioenergy can be considered as the most versatile energy conversion tech-

nology. The anaerobic digestion of biomass feedstock can further lead to a flexible and demand-

oriented electricity from biogas. It enables the production of renewable heat and digestate which 

can be further valorized as a fertilizer. These two products generate local markets and facilitate 

the implementation of circular economy with sustainable job creation. This added-value contrib-

utes to a decentralization of the German electricity system in line with the objective of the German 

energy transition. In the next chapter the past and current situation of biogas in Europe and more 

particularly in Germany is analysed with a focus on legal aspects. A literature review provides 

then an assessment of studies dealing with current and future electricity production from biogas 

in Germany. 

 

                                                           
12 Corresponds to the natural gas grid pressure level. 



26 

 

3 Situation of biogas in Europe and in Germany 

In this chapter the situation of biogas in Europe and Germany is described regarding past devel-

opments and current situation (sections 3.1 and 3.2). In section 3.3 the legal framework for bio-

energy and biogas in Germany is assessed. In particular the Renewable Energy Sources Act is 

presented as an important subsidy scheme for the electricity production from biogas. A literature 

review follows in section 3.4. Its objective is to describe all main existing studies related to the 

analysis of current and future electricity production from biogas in Germany. In addition a review 

of existing biomass potentials studies for biogas applications is realized. Based on these assess-

ments the scientific contribution and added-value of this thesis is emphasized by pointing out the 

knowledge gap filled by the present work. This chapter ends with a summary in section 3.5.     

3.1 Biogas situation in Europe 

By the end of 2015 about 15,391 biogas plants were installed in Europe and represented a total 

installed capacity of about 8.73 GWel [10], [66], [67]. Germany is the undisputed leader of the 

European biogas market with about 8,861 existing plants for a total installed electric capacity of 

approximatively 4 GWel [10], [66] (Figure 3.1). 

 

 
Fig. 3.1 Biogas plants number repartition in Europe at the end of the year 2015 [10], [66] 

There are strong discrepancies in biomass feedstock use between countries [68] (Figure 3.2). For 

example in Germany and in Italy energy crops and agricultural residues represent the majority of 
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the valorized biomass types, whereas in the United Kingdom (UK) and in Sweden mostly sewage 

sludge and industrial waste are employed. In France biomass feedstocks are equally divided be-

tween agricultural residues, industrial waste, waste from agro-food industry and households (cat-

egory “other”). These substrates together represent more than 90% of the total mix. With less than 

3% mass share, energy crops (catch crops) play only a minor role in the French biogas industry. 

 

Fig. 3.2 Biomass feedstock mix used in 2015 for biogas production in various European countries 

(in % mass) [68] 

An assessment of future biomass feedstock potentials is carried out with the help of the Biomass 

Policies toolkit [69]. The total European biomass potential dedicated to biogas production is esti-

mated at more than 400 million t by 2020. The main potentials would still be in Germany, France, 

Italy, Spain and UK amounting to more than 265 million t. Future potentials would be mainly 

dominated by manure (about 279 million t) and by organic waste (about 100 million t). Potentials 

for energy crops and agricultural residues would appear to be limited at only 21.75 million t (Fig-

ure 3.3).  
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Fig. 3.3. Biomass feedstock potentials in all European countries by 2020 [69] 

 

The support schemes currently involved in each European country are shown in Table A.1 of the 

Appendix [70]. The most common support schemes are Feed-In-Tariffs and national subsidies 

(existing in 14 countries). Premium mechanisms like the market premium model in Germany have 

been developing strongly in the past five years and are currently employed in 9 European 

countries. Incentives for research and development programs are only existing in 3 countries.

 

The environmental benefits of biogas in Europe are further pointed out. According to the 

European Biogas Association, biogas plants achieved in 2015 about 33.5 million t of greenhouse 

gas (GHG) savings in Europe. These savings relate to the heat, power and transport sectors (12.5 

million t), to the avoided emissions from manure digestion in the case of agricultural plants (10.5 

million t) and to carbon sequestration13 (10.5 million t) [71]. The total European GHG savings 

should increase to 230 million t GHG by 2030, which shows the mid-term environmental benefits 

potentially generated by the European biogas sector [71]. The European Commission (DG of 

Energy) mentioned that biogas production in Europe could be doubled by 2020 and highlighted 

in particular the relevance of biogas in circular economies and sustainable farming systems [72]. 

The necessary development of “the best regulation” frameworks was pointed out by Mr. Katainen, 

Vice-President of the European Commission. This would thereby “enable the creation of better 

business models and business opportunities” [72].

                                                           
13 Carbon sequestration occurs in soils through organic carbon building-up. 
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3.2 Past developments and current situation for biogas in Germany  

Since the year 2000 the Renewable Energy Sources Act (EEG) has encouraged the development 

of German biogas plants. The corresponding subsidy schemes based on FIT have given a major 

impetus to the biogas plants expansion. As shown in Figure 3.4 the different versions of the EEG 

for the years 2000, 2004, 2009, 2012 and 2014 have led to a continuous development of the biogas 

sector over the past fifteen years [10]. The first version of the EEG in 2000 was characterized by 

the introduction of plant type and capacity dependent Feed-In-Tariffs. In the 2004 version of the 

EEG a specific bonus dedicated to the valorization of energy crops into biogas was introduced in 

order to enable the development of agricultural biogas plants. In 2009 a supplementary bonus 

linked to manure valorization was set which has accelerated the expansion of agricultural co-

digestion plants. The EEG 2012 introduced the possibility for plant operators to directly market 

the electricity produced according to demand and price. For this a market and a flexibility pre-

mium were defined [73]. The following version of the EEG, which came into force in August 

2014, reinforced the market integration objective for biogas. The main objective of the EEG 2014 

is to continuously and cost-efficiently increase the share of renewable energy sources in the gross 

electricity demand [74]. The target to be reached is for about 40% of German gross electricity 

demand to be met for renewable energy sources by 2025 and about 55% by 2035 [74]. As men-

tioned in the EEG 2014 the support schemes for German renewable electricity should focus on 

the least cost intensive technologies [74]. With an electricity production cost of about 18 ct/kWhel, 

biogas belongs to the most expensive renewable electricity sources [13], [14]. This is mainly due 

to high energy crop costs, which represent more than half of total electricity production costs [75]. 

By removing the subsidies for energy crops valorization, the EEG 2014 clearly intends to slow-

down the development of agricultural plants. This also aims to avoid competition with the food 

value chain in terms of surface area and resources.  

Fig. 3.4 Historical development for German biogas plants [10] 
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About 614 TWhel electricity have been produced annually in Germany by the end of 2014 [76].  

Renewable energy sources have, with 26.2%, the main share in the total German electricity gen-

eration before brown coal and hard coal. Nuclear energy has a share of about 15.8%. This share 

will continue to decrease following the decommissioning plan for nuclear reactors which was 

decided in Germany after the Fukushima disaster in 2011. Natural gas and fuel oil currently play 

a secondary role in the electricity mix with production shares lower than 10% [76]. German re-

newable electricity production - about 160.9 TWhel by 2014 - is mainly driven by wind energy 

and bioenergy with respective shares at about 34.8% and 30.6%. Photovoltaics follows with a 

share of approximatively 21.7% whereas hydropower supplies 12.8% of the total renewable elec-

tricity production. With a share of 0.1% geothermal energy plays only a marginal role [76].                                                                                                                                                            

Electricity generation from biomass, considered under the EEG legal framework, can be estimated 

at about 38.16 TWhel
14 (Figure 3.5). It is mainly driven by biogas with about 72.3% of the total 

production mix [77].  

 

Fig. 3.5 German electricity production from biomass in 2014 under the EEG framework [77] 

 

Finally Figures 3.6 and 3.7 provide information regarding the main feedstocks employed in 

German biogas plants. With about 52% and 43% respectively energy crops and manure represent 

the main biomass types used in Germany for biogas production. Biowaste and agro-industrial 

residues play a minor role with shares lower than 4% [78]. The valorization of energy crops into 

biogas is principally driven by maize silage with a share of 73% in the total energy crops feedstock 

mix. The remaining 27% are made up of grass silage (12%), cereal silage (7%) and miscellaneous 

energy crops (cereal grains, sugar beet, catch crop, miscellaneous crops) [79]. 

 

                                                           
14 A supplementary amount of 14.12 TWhel has to be added and corresponds to the total electricity produc-

tion from biogas by other technologies than CHP (e.g. gas turbines or Stirling engines) [6]. 
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Fig. 3.6 Main feedstocks employed in German biogas plants at the end of 2014 [78] 

 

 

Fig. 3.7 Main energy crops employed in German biogas plants at the end of 2014 [79] 

3.3 Legal framework for renewable energies and biogas in Germany 

Continuous investments in renewable technologies and infrastructure are necessary in order to 

achieve a more sustainable energy supply. This requires a stable political and legal framework in 

order to facilitate the development of new markets from the local up to the national levels. Up to 

now the financial support schemes for renewable energies have successfully contributed to the 

emergence of new technologies and new markets in the past fifteen years. A further integration 

of renewable energies in national and international energy markets remains however necessary in 

order to simultaneously reach the environmental objectives set for Germany and slow down the 

energy price increases for end-customers. In the following, the main laws and regulations con-

cerning renewable energies and biogas in Germany are described. 
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3.3.1 Energy Economics Law (EnWG)  

The Energy Economics Law concerns the heat, electricity and gas supply in Germany. It came 

into force on July 13th 2005 and was updated on August 29th 2016. The objective of the EnWG is 

based on the so called “target triangle”. The EnWG defines targets for economic efficiency, se-

curity of supply and environmental compatibility regarding the supply of heat, electricity and gas 

in Germany [80], [81].  

 

The Energy Economics Law defines in particular the rights and duties between energy suppliers 

and consumers and encourages the liberalization of the German electricity market. One of the key 

tasks of this law is the unbundling of discrimination, cross-subsidization and other distortions of 

competition in the field of network operation. To achieve this, the energy economic functions like 

production, sale and storage should be separated from network operation, i.e. transmission and 

distribution. Another important task of the EnWG is to regulate network operation. This is done 

by defining network operator missions and the conditions for network connection and access. 

Under this framework, all gas and electricity consumers can benefit from standardized access to 

energy supply networks and the collected network charges must be approved by the regulatory 

authority [82]. 

3.3.2 Renewable Energy Heat Act (EEWärmeG) 

The Renewable Energies Heat Act (EEWärmeG) came into force on January 1st 2009 and deals 

with the use of renewable energies in new residential and non-residential buildings. According to 

the EEWärmeG, a certain share of the end energy heat consumption has to be covered by renew-

able energies. A share of 14% by 2020 is set as an objective [83]. The heat energy consumption 

relates to heating, hot water production and cooling. Further objectives concern the limited use of 

fossil resources, an independence from energy imports as well as the continuous development of 

innovative heating technologies. The share of energy consumption that should be covered by the 

building owners is specifically defined for different technologies. For example solar collectors 

must cover at least 15% of the heat/cold energy consumption. If solid biofuels, geothermal or 

environmental heat are used then 50% of the demand must be satisfied. Finally if biomethane is 

used for heating then it must represent at least 30% of heat energy consumption [84]. 

 

Numerous renewable energy technologies can be used in order to meet these objectives: solar 

energy, solid biomass combustion (e.g. wood pellets, wood chips, biogas in micro-CHPs, biogenic 

oils in boilers), geothermal energy or environmental heat combined with efficient heat pumps 

[85]. No obligations linked to the EEWärmeG are foreseen for existing buildings. Nevertheless 

alternative measures can be applied but are not compulsory. For example the use of cogeneration, 

insulation measures or heat from local heating network can be considered as substitution measures 

or combined with the above mentioned technologies [86].  

3.3.3 Renewable Heat Law (EWärmeG) 

The Renewable Heat Law is a Federal law applied in the state of Baden-Württemberg. It came 

into force in 2008 and was updated in July 2015 [87]. In the framework of the EWärmeG the 
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owners of existing buildings15 are obliged to use renewable energies if they modify their heating 

systems [88]. A difference is further made between residential and non-residential buildings. Ac-

cording to the EWärmeG, 15% of the heating energy demand has to be covered by renewable 

energies. Possible renewable heating technologies are solar thermal energy, wood based central 

heating, heat pumps, biogenic oils and biogas. Similarly to the EEWärmeG alternative measures, 

such as thermal insulation, cogeneration, connection to heating networks or photovoltaic plants 

can be applied.    

3.3.4 Cogeneration Act (KWKG) 

The new version of the Cogeneration Act came into force by the end of 2015 and aims to increase 

the net electricity production of cogeneration plants (CHP-plants) up to 110 TWhel by 2020 and 

120 TWhel by 2025 [89]. By the end of the year 2014, CHP-plants have produced electricity at a 

level of 97.6 TWhel which is already close to the objective set for the year 2020 [90]. The new 

version of the Cogeneration Act is then characterized by a very moderate expansion strategy. The 

new Cogeneration Act regulates the use and subsidies linked to the electricity produced by exist-

ing, new modernised and repowered cogeneration plants employing lignite, hard coal, solid waste, 

waste heat, biomass, gaseous or liquid fuels. It further defines the modalities of the supplements 

payments by the Transmission System Operators (TSO) for the expansion of heat and cold net-

works and storage. The level of these supplements as well as the associated modalities are further 

described in [91]. Bioenergy conversion plants including biogas installations can be financially 

supported under the Renewable Energy Sources Act (EEG) or the KWKG subsidy scheme. A 

double subsidy combining both of these incentives is therefore not allowed. 

3.3.5 Biomass Electricity Sustainability Regulation (BioSt-NachV) 

The biomass electricity sustainability regulation (BioSt-NachV) was enacted on July 23rd 2009 

and applies to liquid biofuels used to produce electricity according to the Renewable Energy 

Sources Act [92]. The BioSt-NachV defines sustainability criteria linked to biomass cultivation 

and treatment mainly for rapeseed oil, soya oil and palm oil. The main criteria concern the pro-

tection of natural living spaces, sustainable cultivation of agricultural surface areas and the pro-

tection of surface areas of high natural value (e.g. forests, nature reserve or surface areas with 

high biological diversity). The liquid biofuels valorized should show a GHG-mitigation potential 

superior to 35% (60% by 2018). These sustainability criteria are a pre-requisite that must be dis-

played by plant operators before they can obtain the EEG subsidies and the sustainability certifi-

cates for the used biofuels [92]. 

3.3.6 Renewable Energy Sources Act (EEG) 

3.3.6.1 Past developments and time schedule 

In the last fifteen years the Renewable Energy Sources Act (EEG) has mainly contributed to the 

expansion of renewable energies in Germany in the electricity sector. Targets of at least 35% 

                                                           
15 Buildings constructed before the 1st of January 2009 
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renewable energies in the German gross electricity demand up to the years 2020 and at least 50% 

up to the year 2030 are defined by the German Federal Government [93]. These objectives should 

contribute to reach the renewable energies share set by the European Union for the year 2020 in 

the national end-energy demand16. In 1991 and under the “Electricity Feed-In Law”, which was 

the precursor of the EEG, the share of renewable energies in German gross electricity demand 

was only 3.1% [95]. On April 1st 2000, the first version of EEG came into effect. Since this date, 

the share of wind- and solar energy, hydropower, biomass and geothermal energy has increased 

from 6.2% to about 31.6% in year 2015 [95]. The EEG contains some basic principles, which 

were defined in the first version of the year 2000 and which ensure a certain investment security 

for investors and plants operators. The grid operators must connect new plants to their electricity 

transport network. Simultaneously to the grid connection, the plants receive a feed-in priority as 

well as fixed Feed-In-Tariffs (FIT) for the electricity produced with a horizon of the next twenty 

years from the year of commissioning. In addition to these basic principles the EEG is regularly 

amended in order to follow current market conditions. Since the year 2009, numerous evolutions 

have been proposed by the German Federal Government in order to financially support the devel-

opment of biogas. Figure 3.8 shows the time schedule used for the setting up of the different 

subsidy mechanisms. These mechanisms are further analysed from sections 3.3.6.4 to 3.3.6.7. 

Fig. 3.8 Time schedule for the setting up of the different subsidy mechanisms supporting biogas 

in Germany (author’s own representation according to [96], [11], [35]) 

3.3.6.2 Main objective of the Renewable Energy Sources Act 

The main objective of the EEG is to continuously and cost-efficiently increase the share of re-

newable energy sources in the gross electricity demand [74]. This development should focus on 

the support of the most cost-efficient technologies, in order to cope with the problem of renewable 

                                                           
16 In [94] a 18% share of national end-energy demand must be met by renewable energies in Germany by the year 2020. 
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energy levy. The renewable energy levy corresponds to the difference between the costs generated 

by the subsidy support for renewable electricity production and the revenues generated by the 

electricity produced [97]. The level of this levy is set by the four main German power transmission 

network operators, which have a mission to administer and manage the account in which the 

subsidies are registered. The transmission network operators must publish each year on the 15th 

October the amount of the renewable energy levy. This levy is paid by the industrial and private 

final consumers and appears on their electricity bill. For the year 2017 the highest historical value 

was reached at about 6.88 ct/kWhel for household consumers [98]. The EEG aims to inhibit the 

strong cost progression of the renewable energy levy by limiting the development of the most 

expensive renewable energy conversion technologies. In particular in the field of electricity pro-

duction from biomass a maximal increase of installed capacity of about 100 MWel per year is 

defined in the framework of the EEG 2014 [99]. 

3.3.6.3 Definitions related to biogas plants under the EEG framework 

3.3.6.3.1 Technical requirements 

                                                                                                                                                                                          

Existing biogas plants which were built before the 1st of August 2014 must respect following 

technical measures. The plant operators are obliged to install a supplementary gas valorization 

infrastructure (e.g. gas flare) in order to avoid free emissions due to biogas production. In the case 

of biogas upgrading to natural gas quality, the plant operators must respect a maximal threshold 

value of 0.2% methane emissions in the atmosphere.   

According to the EEG 2014 framework biogas plants with an installed electric power greater than 

100 kWel must be equipped with technical remote-control devices that enable plants operators to 

reduce the electrical output and avoid network overloads. At least one of the post-digesters has to 

be gas-proofed and must show a minimal hydraulic residence time of 150 days. A supplementary 

gas valorization infrastructure also has to be installed in order to prevent a high release of biogas 

into the atmosphere [100]. Biogas plants valorizing exclusively manure are free from the obliga-

tion of covering the post-digester and of respecting the minimal residence time [100]. 

3.3.6.3.2 Installation terminology 

                                                                                                                                                                                  

In § 3 Nr. 1 of the EEG 2009 the definition of a biogas plant is given and refers to the totality of 

all functional and technical components dedicated to electricity production from biogas (e.g. 

CHP, fermenter, gas storage, digestate storage tank, biomass feedstock pre-treatment unit) [101]. 

This broad definition is further considered in this work and it is also assumed that several CHP 

units connected to the same biogas production plant (anaerobic digester) are seen as a single plant. 

3.3.6.4 Feed-In-Tariffs for biogas plants 

3.3.6.4.1 Example of a remuneration system according to EEG 2014 

                                                                                                                                                                        

The main changes regarding subsidy levels in the framework of EEG 2014 concern agricultural 

plants. For these plants the subsidies related to the valorization of energy crops have been sup-

pressed and only the electric power dependent base subsidies have been kept, which leads to major 
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simplifications. The subsidies for biowaste plants and small-scale manure plants remain approx-

imatively at the same level as for EEG 2012.  

The subsidy structure represented in Table 3.1 is applicable to plants which were commissioned 

before the 31st of July 2015. Starting from the 1st of August 2015 EEG-subsidies are decreasing 

by 0.5% per quarter of each year [102]. 

Table 3.1 Remuneration system for electricity generation from biogas following EEG 2014 [102] 

Average annual capacity (kWel) 

Remuneration for plants valorizing       

energy crops according to the                        

definition of the Biomass Ordinance 

(ct/kWhel) 

Remuneration for 

biowaste plants17 

(ct/kWhel) 

≤ 75: with only use of manure 23.7318  

15.26 

 

≤ 150 13.66 

≤ 500 11.78 

≤ 5,000 10.55 

13.38 ≤ 20,000 5.85 

  

In the context of EEG 2014 direct electricity marketing is compulsory for plants larger than 500 

kWel that were commissioned before December 31st 2015. Installations smaller than 500 kWel 

benefit from FIT. In the case of an installation commissioning after January 1st 2016 the FIT 

mechanism only concerns plants with an installed power smaller than 100 kWel.19. 

3.3.6.4.2 Miscellaneous categories for small-scale manure and biowaste plants 

                                                                                                                                                                                       

In the new subsidies structure manure plants up to 75 kWel installed electric power fall into a 

miscellaneous category. In this category a subsidy of 23.73 ct/kWhel is attributed (see Table. 3.1). 

This subsidy cannot be combined with other revenues and is only attributed if at least 80% of 

manure per year is valorized in the biogas plants. According to the Annex 3 Nr.9, 11-15 of the 

Biomass Act manure consists of the following feedstock: horse, cow, sheep, pig and goat manure 

[105].  

In order to receive subsidies biowaste plants should use at least 90% of the following three bio-

waste types coming from [105]: 

                                                           
17 With at least 90% biowaste mass amount according to the Annex 1 of the Biowaste Ordinance [103] 
18 For small manure plants: at least 80% of the manure must be valorized in the digester [104]. 
19 Plants with an installed power greater than 100 kWel and thus involved in electricity direct marketing 

only receive subsidies for 50% of the corresponding assigned power. The remaining 50% capacity generates 

revenues based on the monthly average EPEX SPOT electricity price [104]. 
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• Biologic degradable biowaste like garden or landscape conservation waste 

• Mixed municipal solid waste like separated biowaste from private households (in particular 

biowaste container) 

• Vegetal market biowaste  

In the case of biowaste plants rotting process equipment must be installed after the fermenters in 

order to treat the solid digestate [102]. Finally, the technical requirements for post-digesters de-

scribed in section 3.3.6.3.1 must be satisfied.  

3.3.6.5 Electricity direct marketing 

Since EEG 2012 every biogas plant operator in Germany has the possibility to directly self-market 

the electricity produced in the framework of the so called “market premium” [73]. In addition to 

the revenues from the sale of the electricity German biogas plant operators receive a supplement 

i.e. the “market premium”. The market premium corresponds to the difference between the plant 

specific EEG-subsidies and the revenues from electricity sales on the Exchange market (average 

EPEX values of the hourly contracts passed on the EPEX Spot EEX bourse). The market premium 

is determined for each past calendar-month as follows [106] (Eq. 3.1): 

𝑀𝑃 = 𝐹𝐼𝑇 − 𝑀𝐴𝐸𝑃𝐸𝑋                (3.1) 

With: 

MP: Market premium; FIT: plant specific EEG-subsidies; MAEPEX: monthly average values of the 

hourly contracts passed on the EPEX Spot EX bourse  

In the middle of the year 2015, the direct electricity marketing model concerned a total biogas 

plant capacity of about 2,650 MWel which corresponds to about 66% of the total installed capacity 

at this time point (4,018 MWel) [107]. 

In addition to the market premium and in the context of EEG 2012 a “premium for the delivery 

of supplementary installed capacity for a demand-oriented electricity production”, the so called 

“flexibility premium”, has been defined [108]. This premium was intended to facilitate invest-

ments in larger gas storage units and supplementary CHP capacity. The objective is to reach a 

more demand-oriented and flexible electricity production from biogas. Contrary to the classical 

period of 20 years, under which EEG-subsidies are guaranteed, the flexibility premium is valid 

for a period of 10 years. In order to benefit from this premium the biogas plant operators must 

firstly directly market the electricity produced in the context of the market premium model and 

secondly prove that a supplementary and permanently available biogas reserve is installed.  

The supplementary CHP capacity can be defined as the difference between the installed power 

Pinst and the rated power PRat for the corresponding year. The value of the flexibility premium (FP) 

is defined according to Eq. 3.2 and expressed in ct/kWhel for the electricity fed into the grid [109]. 

𝐹𝑃 =
(𝑃𝑖𝑛𝑠𝑡 − (𝑓𝐶𝑜𝑟 × 𝑃𝑅𝑎𝑡)) × 𝐶𝐶 × 100

𝑃𝑅𝑎𝑡 × 8,760
               (3.2) 
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The rated power PRat is multiplied by a correction factor fCor of 1.1 for biogas and 1.6 for bio-

methane representing the real load. The Capacity Component CC is set at 130 €/kWel of supple-

mentary electric power, according to [110]. In the new framework of EEG 2014 the flexibility 

premium has been replaced by a flexibility supplement of 40 €/kWel for new built plants larger 

than 100 kWel and commissioned after the 1st of August 2014 [111]. In July 2015 the flexibility 

regime concerned about 2,692 plants with a total cumulated capacity of 1,519 MWel [107]. 

3.3.6.6 Tendering procedure 

In the context of the Renewable Energy Sources Act 2017, which came into force on January 1st 

2017, tendering procedure mechanisms include an auction system [112]. This mechanism aims to 

provide an impetus for the future development of bioenergy plants in Germany especially in line 

with the grid expansion. Another objective is to improve the economic competitiveness of bioen-

ergy in order to facilitate in particular its integration into the German electricity system. In the 

planned auction process the best placed bioenergy plants thus receive a payment linked to the 

power that they can deliver. New built bioenergy installations smaller than 150 kWel are excluded 

from the tendering procedure and will thus receive the Feed-In-Tariffs [112]. All existing plants 

including plants smaller than 150 kWel can take part in the tendering procedure and be financially 

supported for 10 years if the electricity is produced under a flexibility regime [112]. The German 

Federal Ministry aims to support the most cost-efficient bioenergy technologies and the auction 

mechanism is consequently designed to support plants showing the lowest annual electricity bid 

price. New plants offering electricity bid prices higher than a value of 14.88 ct/kWhel are auto-

matically excluded from the auction system20 [112]. In this new mechanism installations showing 

the lowest electricity bid price receive an EEG subsidies level relative to their plant size. From 

2017 to 2019, a total installed capacity of 150 MWel per year is thus involved in this tendering 

procedure. This maximal allocable capacity will further increase to 200 MWel per year from 2020 

to 2022 [112].  

3.3.6.7 Critical analysis of the past and current subsidy mechanisms for biogas in Germany 

Since the year 2000 the Feed-In-Tariffs defined in the framework of the Renewable Energy 

Sources Act have provided a major impetus for the development of biogas plants in Germany. In 

particular the energy crops and manure bonuses, defined in EEG 2004 and EEG 2009, have con-

tributed to a strong development of agricultural biogas installations and especially co-digestion 

plants. In the context of EEG 2014 the Federal Government has enacted a cut for the subsidies 

related to an energy crops valorization into biogas. This has for effect to threaten the profitability 

of agricultural installations and to limit future developments to biowaste and small-scale manure 

plants. Pros and cons concerning this decision are pointed out in Figure 3.9. The shift towards a 

subsidy support scheme mainly dedicated to plants based on waste and residues will lead to a 

more ecological electricity production from biogas in the forthcoming years. Manure and bio-

waste installations generally show a lower greenhouse gas potential than the agricultural plants 

as well as lower GHG-mitigation costs [113]. The energetic use of biowaste and manure does not 

impact the food value chain and thus contributes to a better acceptance for biogas in Germany. 

On the contrary the past valorization of energy crops in order to produce biogas has led to a “food 

versus fuel” debate and to public criticisms [114]. Small scale manure and biowaste plants often 

                                                           
20 This price amounts to 16.9 ct/kWhel for existing plants which can also participate in the tendering procedure. 
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shows higher specific investments and higher electricity production costs than energy crops in-

stallations [115], [116]. Consequently trade-offs had to be found between the environmental ben-

efits induced by biowaste and small scale manure plants and the economic performance related 

to energy crops-based installations. By operating a cut on the energy crops subsidies the Federal 

Government clearly intend to slow-down future capacity development and to move towards a 

more environmentally friendly electricity production from biogas. 

Fig. 3.9 Pros and cons characterizing energy crops-based versus biowaste and small-scale manure 

plants (author’s own representation) 

Economic optimization possibilities remain however for biogas plant operators and represent new 

challenges. By enabling the electricity direct marketing the EEG 2012 generates financial uncer-

tainties for plant operators regarding the EPEX price level reached for the sold electricity. The 

new auction mechanism enacted by the EEG 2017 encourages plant operators to improve the 

techno-economic efficiency of their installation and strengthens the relevance of plant flexibility. 

However the selection process defined in the tendering procedure could tend to favour systemat-

ically the same bioenergy conversion pathway, i.e. the one offering the lowest electricity bid price. 

Biogas plants have then to be competitive enough in comparison to other bioenergy technologies 

in order to continue to benefit from the EEG subsidy framework. Therefore the new EEG 2017 

mechanism is a source of opportunities but also of risks for the future German biogas market.  

Energy crops-based plants
Biowaste and small-scale manure

plants

CONS

- Show the highest specific investment                                                                          
- Show the highest electricity 
production costs

PROS

- Show the lowest greenhouse gas  
mitigation costs

- Avoid "food versus fuel" debate

CONS

-Show the highest greenhouse gas 
mitigation costs                                                             
- Lead to "food versus fuel" debate

PROS                                                         
- Show the lowest specific investment

- Show the lowest electricity      
production costs
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3.4 Literature review regarding techno-economic aspects of current and future 

electricity production from biogas in Germany 

In this section a review of existing studies dealing with the economic analysis of current and 

future electricity production from biogas in Germany is carried out. Three main assessment cate-

gories can be distinguished. The first one concerns the economic evaluation of existing biogas 

plants. The evaluation is often carried out by comparing specific electricity production costs (in 

ct/kWhel) from various biogas supply chains. The second category deals with the estimation and 

forecast of technical biomass potentials for biogas applications. A last assessment category refers 

to the economic analysis of future mid-term developments for biogas plants up to the year 2030. 

Based on this review the added-value of the present thesis is emphasized from a methodological 

point of view as well as regarding the scientific content. 

3.4.1 Economic assessment of existing biogas plants 

The economic assessment of existing biogas plants in Germany has been pursued in many recent 

studies. Most of these studies lead to the estimation of specific electricity production costs from 

biogas in ct/kWhel. The specific electricity production costs correspond to the total annual costs 

divided by the electricity amount annually fed into the power grid. Total annual costs can be split 

into annual operating costs and investment-related costs. Annual operating costs correspond to 

expenses related to the operation of a business, a device, a component, a piece of equipment or a 

facility. They include personnel costs, biomass feedstock, process utilities, maintenance, biomass 

transport, electricity consumption and digestate treatment costs. Investment-related costs consist 

of depreciation, interests and insurance costs. Numerous evaluations of specific electricity pro-

ductions costs for both biowaste and agricultural biogas supply chains have been carried out in 

the past ten years. In [117] the case of a mesophilic wet fermentation plant valorizing 7,500 t/a 

biowaste with an installed power of about 312 kWel is analysed. Total capital investment and 

specific electricity production costs are estimated at about 5.84 € million and 48 ct/ kWhel respec-

tively. In [118] a systematic analysis of a 500 kWel biowaste plant employing 15,000 t/a biowaste 

is carried out. Total capital investment amounts there 6.34 € million and specific electricity pro-

duction costs are estimated at about 47.24 ct/kWhel. The economic situation of a 1 MWel biowaste 

plant is also assessed and leads to total capital investment of about 12.28 € million and to specific 

electricity production costs of 42.71 ct/kWhel [118].  

 

In [119] the economic assessment focuses on co-digestion plants employing biowaste with ma-

nure. The co-digestion of 11000 t/a biowaste with 11,000 t/a manure is thus characterized by an 

installed electric power of 600 kWel. Total capital investment is determined to be about 5.7 € 

million and specific electricity production costs about 39 ct/kWhel. In [120] continuous and dis-

continuous dry fermentation processes are economically assessed for the valorization of 18,000 

of t/a biowaste. In the case of a continuous process total specific annual costs including digestate 

composting amount to 82 €/t, which corresponds to specific electricity production costs of about 

32.8 ct/kWhel
21 [120]. In the case of discontinuous dry fermentation processes and for the same 

                                                           
21 It is further assumed that one t of biowaste corresponds here to 250 kWhel in the case of continuous dry fermentation 

processes [120]. 
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amount of valorized biowaste, total specific annual costs including digestate composting amount 

to 71 €/t, which leads to specific electricity production costs of about 31.6 ct/kWhel
22

. In [75] a 

760 kWel biogas plant is considered which employs 15,000 t/a biowaste in co-digestion with 

41,000 t/a sewage sludge to produce heat and electricity in two CHP gas engines of 380 kWel. For 

this plant, specific electricity production costs have been determined to be about 34.6 ct/kWhel. 

Finally the u.e.c Berlin carried out an economic evaluation of three biogas plants located in the 

Federal State of Schleswig-Holstein [121]. The results of this last economic assessment are set 

out in Table 3.2. 

 

Table 3.2 Results of an economic evaluation for three biowaste plants located in the Federal State 

of Schleswig-Holstein [121] 

 

 Valorized                    

biowaste 

amount (t/a) 

Process Installed 

electric 

power 

(kWel) 

Specific operating 

costs including                      

digestate                        

composting (€/t) 

Specific       

investment 

related 

costs (€/t) 

Electricity 

production 

costs 

(ct/kWhel) 

Biogas 

plant 1 

20,000 Dry                           

continuous 

fermentation 

625 63 32 38 

Biogas 

plant 2 

30,000 1000 61.6 30 34.4 

Biogas 

plant 3 

50,000 1800 61 29 31.25 

   

An evaluation of specific electricity production costs for biogas from agricultural plants is also 

realized. In [75] the profitability a 500 kWel agricultural plant employing 9,160 t/a energy crops 

is assessed and provides specific electricity production costs of about 18.8 ct/kWhel. In [119] a 

first agricultural co-digestion plant with an installed electric power of 150 kWel and valorizing 

2,000 t/a maize silage and 8,000 t/a manure had specific electricity production costs of about 22 

ct/kWhel. A second agricultural installation with an installed electric power of 300 kWel trans-

forming 8,000 t/a maize silage and 2,000 t/a manure into biogas has specific electricity production 

costs of about 20 ct/kWhel. In [122] a 250 kWel agricultural biogas plant mainly based on maize 

silage shows specific electricity production costs of about 18.5 ct/kWhel.  

 

In [123] two biogas plants respectively with 500 kWel and 1,000 kWel installed power are eco-

nomically assessed. Both of the two plants valorize 60% maize silage, 30% silage grains and 10% 

manure in co-digestion processes. The 500 kWel plant size has specific electricity production costs 

at about 18.7 ct/kWhel compared with 16.5 ct/kWhel for the 1,000 kWel plant size. In [124] the 

profitability of five agricultural biogas installations is assessed. A small-scale manure plant with 

75 kWel valorizing about 11,100 t/a manure shows specific electricity production costs of about 

21.4 ct/kWhel. The profitability analysis of a 150 kWel plant valorizing exclusively maize silage 

gives specific electricity production costs of about 26.23 ct/kWhel. A third plant with the same 

installed capacity employing 70% maize silage and 30% manure in co-digestion has specific elec-

                                                           
22 Under the assumption that 1 ton of biowaste corresponds to 225 kWhel for discontinuous dry fermentation processes 

according to [120]. 



42 

 

tricity production costs of about 24.98 ct/kWhel. Finally the two last plants have an electric ca-

pacity of 500 kWel and valorize maize silage in mono- and in co-digestion with manure. In this 

case specific electricity production costs amount to about 20.6 ct/kWhel and 23.3 ct/kWhel. Figure 

3.10 sums up and compares all the previously mentioned electricity production costs both for 

biowaste and agricultural plants. 

 

 
 

Fig. 3.10 Literature values for specific electricity production costs relative to biowaste and agri-

cultural biogas plants in Germany (own representation according to [75], [117], [118], [119], 

[120], [121], [122], [123], [124]) 

 

The results in Figure 3.10 show that the specific electricity production costs for agricultural plants 

are systematically lower than those for biowaste plants. Table 3.3 shows the positions involved 

in the electricity production costs of a biowaste and an agricultural plant of comparable size [75]. 

It appears that the investment-related costs are higher in the case of biowaste plants than for ag-

ricultural installations. This is mainly due to cost-intensive biowaste pre-treatments like hydroly-

sis, pasteurization or hygienisation. These process steps are not required for agricultural plants 

where the substrates can be directly fed into the digesters. The biowaste pre-treatment operations 

also require supplementary manpower which impacts the personnel costs level. The digestate is-

sued from the biowaste valorization has to be treated whereas no treatment is necessary for agri-

cultural plants (direct valorization on the soils of the farmer’s exploitation). All these factors ex-

plain then the visible gap in Figure 3.10 concerning the specific electricity production cost levels 

for these two plant types. 
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Table 3.3 Decomposition of the specific electricity production costs (in ct/kWhel) for a biowaste 

and an agricultural biogas plants [75] 

 

 760 kWel biowaste plant 500 kWel agricultural plant 

Investment-related costs 14.3 6.1 

Electricity consumption costs 0.7 0.7 

Maintenance costs 2.8 0.2 

Personnel costs 5 0.5 

Biomass transport costs 2.8 3.2 

Biomass feedstock costs 0 7.8 

Digestate treatment costs 5.5 0 

Process utilities costs 3.5 0.3 

Specific electricity production 

costs (ct/kWhel) 

34.6 18.8 

 

A further assessment concerns the economic analysis of real biogas plants based on data provided 

by plant operators. In the framework of its biogas measurement program II in 2010 the FNR 

(Fachagentur Nachwachsende Rohstoffe e.V.) compared 55 existing biogas plants [125]. The eco-

nomic analysis has been made using the electricity production costs as the main evaluation crite-

rion. The results show that about 90% of the installations show electricity production costs located 

between 10 and 20 ct/kWhel (Figure 3.11). These values are in line with the results of the previous 

economic evaluation realized for agricultural plants in Figure 3.10. 

 

Fig. 3.11 Electricity production costs from the biogas measurement program II [125] 
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In [126] an investment decision tool for agricultural biogas plants in Greece is described and 

employs other economic evaluation criteria than the specific electricity production costs. Based 

on mass and energy balances the electric and thermal outputs are determined for a fixed biomass 

input mix corresponding to 20,000 t/a manure, 10,000 t/a wheat straw and 20,000 t/a glycerol. 

The corresponding installed electric power amounts 5,324 kWel. Plant operator data and author’s 

own assumptions lead to the estimation of the total capital investment and the total operating 

costs. Revenues are derived from the electricity, heat and compost sales as well as from the waste 

valorization fees. An annuity method leads to key economic indicators regarding the economic 

performance of the plant. An Internal Rate of Return of about 13.4%, a Net Present Value of about 

2.3 € million and a Pay-Back Period of 8.76 years are determined.  

                                                                   

Regarding methodological aspects one should distinguish between discrete and continuous eco-

nomic assessments. Discrete assessments refer to single economic evaluations of given plant sizes 

whereas continuous assessments deal with an economic analysis over the whole plant capacity 

bandwidth e.g. [0:10,000 kWel]. In [75], [117], [118], [119], [120], [121], [122], [123], [124], 

[125], [126] a business full-cost accounting method is employed for assessing the profitability of 

single biogas plants. All operating and investment-related cost positions involved are determined 

individually and their sum gives an estimation of specific electricity productions costs (in 

ct/kWhel) or leads to the calculation of Internal Rate of Return and Net Present Value in [126]. In 

each case a single plant type with a given installed electric power is economically analysed so 

that only discrete assessments are carried out. Currently no continuous profitability assessments 

of German biogas plants exist.                          

 

Three research works deal with the determination of most profitable biogas plant sizes in other 

European countries under a continuous assessment. In [127] the most cost-effective size of agri-

cultural biogas plants in Austria is identified. The term “cost-effective” relates to the plant sizes 

showing the lowest costs of electricity production from biogas in ct/kWhel. The plant type as-

sessed valorizes maize silage in a mono-digestion process. The electricity production costs are 

determined based on the annual costs and on the amount of electricity produced annually. Annual 

costs are divided into investment-related, maize silage, personnel, maintenance, transport and in-

surance costs. Electricity production costs are continuously calculated for plant sizes varying from 

25 to 2,000 kWel in increments of 25 kWel. For this, specific correlations linking each cost position 

to the installed power are obtained from surveys and literature data. The most cost-effective plant 

size is estimated at about 875 kWel assuming a maize silage availability rate of 10%. For an avail-

ability rate of 20% the most cost-effective size would remain at about 1,150 kWel. The effect of 

several key-parameters like maize silage costs and availability, investment-related costs and feed-

stock transport costs is quantified with the help of a sensitivity analysis. The calculations also 

demonstrate the influence of political regulations and subsidy schemes on the plant profitability. 

For this purpose revenues from the sales of electricity are integrated into the calculations and 

remain between 10.3 ct/kWhel for large scale plants23 and 16.5 ct/kWhel for small scale plants24. 

According to the author only small plants with a size of 100 kWel or 250 kWel can cover their 

electricity production costs through the sales of electricity. 

                                                           
23 In the case of biogas plant sizes greater than 1,000 kWel 

24 In the case of biogas plant sizes up to 100 kWel 
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In [128] an analysis of the most profitable size for manure co-digestion plants in the South of Italy 

is performed with the help of an investment decision tool. Based on mass and energy balances the 

plant electric power is expressed as a function of the biomass input mass flow. In a second step 

electricity production costs and revenues25 as well as the projects Net Present Value and Internal 

Rate of Return are determined for five plant sizes all along the capacity bandwidth                              

[50:1,000 kWel]. Sensitivity analysis on the electricity production costs and on the Internal Rate 

of Return are also realized. The main profitability drivers are the plant location, the manure 

transport costs, the operating costs and finally the effect of co-digestion with other feedstock (en-

ergy crops, biowaste). The highest Internal Rate of Return is reached at about 22.9% for a 250 

kWel plan size.  

The analysis carried out in [127] focuses exclusively on agricultural installations and does not 

cover the whole Austrian biogas plant park. It also considers electricity sale as the unique source 

of revenues and therefore does not take into account the heat and digestate sale. The work men-

tioned in [128] focuses only on the economic analysis of small scale manure plants in the Italian 

province of Bari and does not integrate other plant types such as biowaste plants or plants valor-

izing agricultural residues. The present thesis aims to estimate the most profitable plant sizes with 

the help of a simulation model. Similarly to [128] the mass and energy balances realized in the 

process simulation lead to the determination of correlations between electric power and the bio-

mass input mass flow. The combination of these correlations with economic input data enables 

the identification of the most profitable plant sizes. In comparison to other existing studies in 

Europe, the simulation model developed represents the most exhaustive analysis leading to the 

identification of the most profitable biogas plant sizes under various subsidy schemes. It not only 

focuses on a single plant type but also considers the whole biogas plant park portfolio. It further 

integrates all potential revenue sources and is not limited to revenues from electricity sale. At the 

scale of Germany this model delivers a unique contribution in comparison to other existing dis-

crete economic evaluations. It provides a continuous economic assessment of the main existing 

plant types over the whole capacity bandwidth [0:10,000 kWel]. The simulation model developed 

in this thesis thus gives valuable assistance to biogas plant operators especially during the feasi-

bility analysis of a new project. It helps them to identify which plant sizes and types appear as the 

most economically attractive under various legal frameworks.  

The added-value of the developed simulation model, further described in section 4, is to provide 

a systematized and continuous economic assessment of German biogas plants. The profitability 

of different biogas type plants is assessed by considering a variable and differentiated biomass 

input. This leads, for a given plant type, to the identification of the most profitable plant sizes 

over the full capacity bandwidth [0:10,000 kWel]. The specific operating profit is selected as the 

profitability criterion. Table 3.4 classifies the previous economic analyses according to their dis-

crete or continuous character. 

 

 

                                                           
25 Revenues from the electricity sale are notably derived from the Italian Feed-In-Tariffs for biogas plants. 
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Table 3.4 Discrete versus continuous economic analysis of biogas plants 

  Discrete economic evaluation  Continuous evaluation 

  

Electricity                     

production costs 

calculations 

Specific 

operating profit 

calculations 

NPV, IRR 

calculations 

Electricity                              

production costs 

calculations  

Specific operating 

profit, NPV or        

IRR calculations 

[75], [117], 

[118], [120], 

[121], [122], 

[123], [124], 

[125]:                     

German plants           

[119]:                      

German plants           

[126]:                    

Greek plants          

[127]:                      

Austrian plants           

[128]:                     

Italian plants           

This work: 

German plants           

 

3.4.2 Biomass potentials assessment 

The estimation of biomass potentials for the future valorizable surface areas into electricity from 

biogas appears as a key-issue. It represents the basis for an estimation of future biogas plant ca-

pacity developments. This section aims to describe reference studies assessing current and future 

biomass potentials for biogas production in Germany. The study “Global analysis and estimation 

of the biomass area utilization potential” from the university of Hohenheim [129] is first analysed. 

This publication delivers a systematic analysis of surface area use, agricultural production, popu-

lation and food demand. The objective is to estimate current and future potentials for bioenergy 

and food under different sustainability scenarios. A competition in surface use for food, animal 

feed, nature protection, settlement area and transport is taken into account. The methodology for 

the potential estimation concerning “non-food applications” is based on the simulation model 

GAPP (“Global Agrar Production-Potential”), which is applied to 148 countries. In order to esti-

mate further developments, time series for the 20 last years are created and used for regression 

calculations.  

In a further step the study estimates the surface area which is not dedicated to energetic applica-

tions. Technical potentials can thereby be determined. The global potential for Germany is calcu-

lated under the assumptions that the country first meets its food self-sufficiency rate and that 

supplementary potentials can be used for bioenergy applications. The global potential is corrected 

for agricultural export quantities in order to take into account the contribution to worldwide food 

security. Additional potentials come from agricultural over-production and from potentials for 
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fallow land. In addition to the reference scenario, three scenarios consider alimentary behaviour, 

productivity, expansion of bioenergy surface areas and the degree of surface utilization. In the 

reference scenario Germany shows a supplementary national area potential of about 2.26 million 

ha dedicated to “Non-Food-Production”. This supplementary potential can be divided into fallow 

land (0.5 million ha) and about 1.8 million ha of arable land. The potential for energy crops is 

estimated at about 1.97 million ha which leads to a total potential area of about 4.23 million ha 

by 2012. For the year 2020 a global potential area of 6.15 million ha is calculated. By 2030 and 

by 2050, 7.46 million ha and 9.87 million ha are estimated.  

The German biomass research centre carried out a potential analysis relative to energy crops, 

forestry and organic waste residue at the Federal State level for the years 2008 and 2020 [130]. 

In this study technical potentials for several organic biomass fractions dedicated to energetic uti-

lization are calculated. The potentials for energy crops are determined based on statistical data 

relative to cultivable areas, field crops, hectare yields and nature protection areas. The potentials 

are allocated according to the different utilization pathways for energy crops. Assumptions are 

made concerning the individual share of field crops involved in an energetic utilization. The tech-

nical biomass potential for energy crops in Germany amounts thus to 169 PJ for the year 2008. 

The calculations for the year 2020 are based on assumptions from [129]. The energetic potentials 

for animal effluents are determined for pigs, cattle and poultry. The input data is relative to the 

specific energy amount per animal category given several assumptions concerning livestock 

breeding. A technical potential of about 69.3 PJ is estimated for animal effluents by the year 2020. 

The quantification of the biowaste potentials is realized according to [131]. An average annual 

biowaste amount of about 100 kg per habitant is first taken into account. It is further assumed that 

the biowaste amounts are fully valorized into anaerobic digesters. A global potential for biowaste 

of about 24.1 PJ is calculated for the year 2020. A regional analysis shows that the potentials are 

mainly located in the Federal States of Bayern, Baden-Württemberg and Lower-Saxony.  

In [132] an assessment of technical potentials for biogas is carried out for the year 2013. The 

biomass feedstocks are divided into four categories: energy crops (e.g. maize silage and wheat), 

animal effluents (e.g. pig and cattle manure), industrial and agricultural residues (e.g. material for 

landscape conservation, marsh) and finally municipal residues (e.g. biowaste). The potential cal-

culations were realized at the level of each Federal State and the results are shown in Figure 3.12. 
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Fig. 3.12 Technical biogas potentials for the main biomass feedstock types valorized in German 

biogas plants at the Federal State level [132] 

In light of the results in Figure 3.12, it can be mentioned that the biogas potentials are dominated 

by energy crops which represent 70% of the total. The 30% remaining are mainly made of animal 

effluents. Three Federal States, Bavaria, Lower Saxony and North Rhine-Westphalia, represent 

more than 50% of the technical total biogas potentials. The study mentioned in [132] represents 

the only existing analysis dedicated to regional potentials for biogas substrates. It has been further 

used for the determination of biomass potentials input data for the optimization model (section 

6.4.1). 

3.4.3 Model-based analysis of future electricity production from biogas in Germany 

The economic analysis of future electricity production from biogas in Germany can be carried out 

following different technology aggregation levels (Figure 3.13). 
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Fig. 3.13 Aggregation levels of main available energy conversion technologies (author’s own 

representation) 

Future developments for biogas plants can be assessed by considering interactions with all avail-

able technologies of the German electricity system including conventional and renewable energy 

conversion plants. In [133] a model-based analysis of the future role of renewable energy sources 

in European electricity supply is realized. The development of both renewable and conventional 

electricity production technologies is analysed up to the year 2030. The assessment is realized 

under several scenarios and is based on a linear regional optimization model. The model objective 

function minimizes all system expenditures necessary to fulfil exogenously given electricity de-

mand profiles. The approach considered is then systemic and involves the whole European elec-

tricity system. Technical, economic and environmental constraints are also taken into account and 

refers e.g. to capacity restrictions, plant availability limitations, load variation and CO2 trading 

equations. The model results deliver insights regarding future renewable electricity production 

and installed capacity in each European country and for each energy carrier. In the case of biogas 

in Germany the results are aggregated so that no distinction is made between plants valorizing 

energy crops, biowaste and/or manure. The results are moreover not visible at the level of the 

German Federal States.   

The research work in [134] aims to determine how a flexible biogas plants park should behave 

from the perspective of the whole German electricity system in 2030. This work provides answers 

regarding the potential changes to be operated in the base-load electricity production in order to 

lower the overall system costs. Interactions with conventional energy sources are considered and 

a flexible biogas plants park leads by 2030 to a reduction of the electric power from fossil plants 

dedicated to residual load coverage. This model focuses on the interactions of the future electricity 

production from biogas with other renewable and conventional electricity sources by considering 

a demand-oriented and systemic approach. It does not however highlight regional developments 
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for differentiated biogas plant types, technologies and sizes. It considers further the flexibilization 

option more from a system perspective than from the plant operator point of view.  

Another aggregation level concerns analysis carried out within the bioenergy system. In the 

framework of this assessment future developments for biogas plants are impacted by interactions 

with other bioenergy technologies. 

In [122] a systemic analysis of all available bioenergy conversion routes is carried out. All bio-

energy conversion options are put into competition under the perspective of an energy supply cost 

minimization. The linear optimization model TIMES (The Integrated Markal-Efom System) is 

employed. The model analysis aims to determine technology options leading to a sustainable de-

velopment of bioenergy up to the year 2030 under economic, technical and environmental criteria.     

In its “Milestone 2030” report, the German biomass research centre delivers a comprehensive 

model-based analysis of the future bioenergy mix up to the year 2030 [135]. The employed Bio-

energy Simulation Model (BENSIM) aims to model future competition between the main availa-

ble bioenergy technologies. The assessment takes into account in particular the satisfaction of a 

certain demand level in the heat, electricity and transport sectors [135]. The model input data 

refers to investment-related and operating costs, to revenues for heat, electricity and to co-prod-

ucts including GHG-emissions and digestate. The starting point of the BENSIM model is the 

determination of existing bioenergy plant capacity. In a second step current and future available 

biomass potentials are estimated. The costs of production for the end products -heat, electricity 

and biofuels- are then determined. In the case of biogas the production costs are linked to the 

bioelectricity produced through Combined Heat and Power systems (CHPs). The potentially new 

built biogas plants are then sorted by the solver according to their electricity costs of production 

level. Plants showing the lowest electricity production costs are built until enough biomass po-

tentials remain. The BENSIM model offers then the possibility to carry out a complete simulation 

of the future German bioenergy system by considering interactions between the different available 

technologies. However, in the case of the BENSIM model, the evolution of the German biogas 

plant capacity is currently not regionalized and no differentiation between agricultural, biowaste 

and manure-based installations is done. The model results related to biogas show that an electric-

ity production of about 11.8 TWhel would be reached by 203026. In particular the legal restrictions 

of the Renewable Energy Sources Act and a decommissioning plan starting from 2020 for plants 

older than 20 years strongly impact future developments [135]. 

A last possible aggregation level relates to assessments done within the biogas system. In this 

case future developments are analysed by considering interactions between several biogas plant 

types and sizes but without integrating other energy conversion technologies. The perspective is 

the one of a biogas plant operator having the objective of maximizing installations profit over 

their whole life time. The model approach is resource oriented and driven by the development of 

future biomass potentials as well as by the evolution of future costs and revenues for biogas plant 

operators. Currently no models related to the analysis of future electricity production from biogas 

based on this approach exist.      

                                                           
26 Assuming a CHP-electric efficiency of 38% 
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The German biomass research centre published in 2016 a background paper dealing with the 

evolution of biogas plants up to the year 2030 in each German Federal State [136]. The capacity 

forecasts have been carried out by solely considering the effects on a plant decommissioning 

phase starting from 2020. From this time point biogas plants older than 20 years will not receive 

subsidies from the Renewable Energy Sources Act anymore which leads to massive unprofitabil-

ity and then to capacity decommissioning. Thereby about 1.8 GWel installed electric power could 

remain by 2030. This paper highlights the need for further subsidies for existing biogas plants. 

However it does not integrate the development of supplementary capacity and does not consider 

the future flexibilization of existing and new built installations.  

In [137] a forecast for the development of the future electricity production from biogas under 

continuation of the EEG 2014 framework is carried out. In this assessment a biogas plant decom-

missioning is also taken into account starting from 2020. A capacity increase of 100 MWel per 

year is systematically assumed according to the expansion cap defined in the EEG 2014. By the 

end of 2030 a total cumulated installed capacity of 1,700 MWel is foreseen [137]. The forecasts 

published in [136] and [137] solely integrate already planned events, namely capacity expansion 

caps under the EEG 2014 framework and plants decommissioning starting from 2020. They can-

not thus be seen as complex model-based assessments.   

Table 3.5 proposes a classification of the different approaches employed up to now for the anal-

ysis of future electricity production from biogas in Germany. By considering future regional de-

velopments from the plant operator perspective this thesis delivers a unique contribution. It pro-

vides new insights regarding future developments in each Federal state for different biogas plant 

types, sizes and under various framework conditions. It complements all past analysis which were 

relying on a (bio)-energy systemic approach. 

Table 3.5 Modelling approaches for the analysis of future electricity production from biogas in 

Germany 

  Evaluation at the German national level 

Evaluation               

at the regional 

Federal states 

level Total costs    

minimization 

Total profit                        

maximization 

  

From the  

energy 

 system           

perspective 

From the 

 bioenergy  

system             

perspective 

From the 

plant           

operators 

 Perspective 

From the  

plant  

operators 

 perspective 

[133]             

[134]       

[122]             

[135]             

[136]             

[137]             

This  

Work             
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3.5 Summary 

In this chapter the current situation and legal framework conditions for biogas in Germany have 

been described highlighting the central role of the EEG subsidy schemes for the electricity pro-

duced. In the framework of a literature review existing studies regarding the analysis of current 

and future electricity production from biogas have been assessed. Especially the content and 

methodology applied in these studies have been described in detail and the scientific contribution 

of the present work has been emphasized. The two models proposed in this thesis intend thus to 

bridge a knowledge gap between existing studies. The simulation model aims to provide a con-

tinuous economic evaluation of biogas plant sizes in Germany under variable and differentiated 

biomass input. This continuous profitability analysis currently does not exist and complements 

all existing discrete evaluations already carried out for German biogas plants. The optimization 

model characterizes the evolution of German biogas plant capacity at the Federal State level and 

from a plant operator’s perspective up to the year 2030. It further takes into account different 

plant types and subsidy frameworks. This modelling perspective aims to deliver new insights for 

future electricity production from biogas in comparison to past assessments which are based on a 

systemic approach. 
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4 A simulation model for the analysis of current electricity 

production from biogas in Germany 

Increasing energy crop costs and frequently changing subsidy schemes strongly impact the devel-

opment of German biogas plants. These evolving framework conditions are the source of com-

plexity and the economic analysis of biogas installations thus appears to be a difficult task for 

plant operators. In this context simulation models are a suitable tool for optimal plant design and 

operation. In particular one of the key-problem that can arise when planning a biogas plant con-

cerns the determination of the most profitable plant size to be built. Biogas plant operators aim to 

build, operate and maintain plant sizes giving a maximal operating profit. Biogas plant sizes are 

defined by the installed electric capacity in kWel and intuitively increase with the valorized bio-

mass input mass flow. The plant revenues in ct/kWhel are generally lower for large scale installa-

tions than for small ones mainly due to size effects. The electricity production costs (in ct/kWhel) 

also remain generally lower for large scale plants than for small scale installations. Consequently, 

the determination of the most profitable plant sizes is complex and requires the use of decision 

support tools. This chapter has thus the objective to describe the simulation model developed for 

the economic analysis of currently existing biogas plants. 

In section 4.1 a general introduction to simulation models is presented highlighting their scope, 

the system boundaries and level of detail. Currently existing simulation software and programs 

applied to process engineering are briefly described and categorized according to the type of prob-

lem that they intend to solve. The objectives and general methodology related to the simulation 

model developed are then presented in section 4.2. In section 4.3 the simulation model built with 

the help of the software SuperPro Designer and the different methodological steps are described. 

A first step consists of calibrating the biogas plant and is then followed by a process simulation 

under a variable and differentiated biomass input mass flow. This simulation step delivers corre-

lations between the installed electric power and the valorized biomass mass flow. These correla-

tions provide the basis for a further economic analysis presented in chapter 7.    

4.1 General introduction to simulation models 

Models should assist the decision process of various stakeholders using knowledge-based and 

systematic methods [138]. The general objective of the models has to be defined in an initial step. 

Especially the level of detail, the scope and system boundaries are of crucial importance. Possible 

assessments can be covered by highly aggregated models on the global economy up to models of 

single plants or processes. The models linked to the global economy are set up to answer com-

pletely different research questions than the more technical models on the process level. The sim-

ulation models correspond to the highlighted model classes in Figure 4.1. Input data from higher 

aggregation levels, such as feedstock costs characterizing bioenergy carriers, are taken into ac-

count. Similarly data from more disaggregated levels such as process parameters are also consid-

ered.                                     
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Fig. 4.1 Scope, system boundaries and level of detail [138] 

Due to the scope and diversity of questions it is clear that one single method or one model cannot 

answer all research questions. There is no “single” model of a biomass supply chain, and thus 

there is no “best” methodological approach. Modelling tools are generally developed for quite 

specific types of systems (e.g. static/dynamic). These modelling platforms consider the require-

ments of specific users, e.g. from a mechanical engineering, chemical engineering or economic 

point of view. A brief description of current simulation software and programs is shown in Table 

4.1. 

Table 4.1 Current simulation languages and software (author’s own representation) 

Type of model Description Examples 

Problem-oriented-lan-

guage 

Suited to solve simulation problems but with a 

high complexity 

PASCAL, C++, JAVA 

Simulation-language Similar to high level languages SIMULA 

Specific simulation 

systems language 

Databases are available for specific models with 

specific field applications. The problem is de-

scribed through an interactive graphic interface or 

through a script language. 

ASPEN PLUS, ASPEN DYNAM-

ICS, ASPEN CUSTOM MODEL-

LER (ACM), IPSEPro, PROSIM, 

SuperPro Designer, … 

Parameterized simula-

tion system 

The simulation tool is only suited for a restricted 

type of structures. Some model parameters can be 

modified and parameterized. 

All the above-mentioned tools cou-

pled with additional applications 
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4.2 Objectives and general methodology 

This section aims to describe the main objectives and methodology relative to the analysis of 

current electricity production from biogas in Germany. For this purpose a simulation model, de-

veloped with the help of the software Super Pro Designer, is described and applies to three refer-

ence biogas plant types. These plant types correspond to the valorization of energy crops and 

manure in co-digestion process (EM plants27), of energy crops (E plants) and biowaste (B plants) 

in mono-digestion. The main objective of this simulation model is to identify most profitable plant 

sizes under a variable and differentiated biomass feedstock input mass flow. The preliminary task 

is to model all the involved conversion processes (biomass pre-treatment, biogas production, di-

gestate treatment as well as heat and electricity production) under a fixed biomass input mass 

flow. The anaerobic digester is modelled and calibrated by specifying a digester volume, a resi-

dence time as well as by defining the biochemical reactions occurring in the reactor. Stoichiome-

try and methane formation rates are further determined and described in section 4.3.2.4.  

Once the whole biogas plant is calibrated a simulation of the plant’s energetic behaviour is carried 

out assuming a variable biomass input mass flow mi. For each variation step i the corresponding 

biogas output volumetric flow Yi and further the electric power Pel,i. are determined. These tech-

nical correlations represent the basis for a further economic evaluation integrating costs and rev-

enues input data and leading to the determination of specific operating profits in each simulation 

step. The results are further represented in the form of characteristic “specific operating profit 

versus installed electric power” diagrams (see section 7.2) which leads to the identification of the 

most profitable plant sizes. The economic analysis is carried out in chapter 7 by considering for 

each plant type two different electricity subsidy schemes namely EEG 2012 and EEG 2014. A 

costs versus revenues assessment for the most profitable plant sizes combined with a sensitivity 

analysis aims to identify the main profitability drivers for each plant type. The most profitable 

plant sizes are technically assessed by determining global plant energetic efficiencies. Based on 

the model results strategic recommendations for policy makers and plant operators are finally 

formulated.  

Figure 4.2 sets out the main methodological steps employed in the framework of the simulation 

model. 

 

 

                                                           
27 EM plant sizes between 0 and 75 kWel correspond to installations valorizing exclusively manure in mono-

digestion processes. For larger sizes the co-digestion of manure with various energy crops is assessed (see 

section 6.2.1). 
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Fig. 4.2 Main methodological steps employed for the analysis of current electricity production 

from biogas in Germany (own representation) 

4.3 Process simulation with the help of SuperPro Designer 

4.3.1 Description of the simulation software SuperPro Designer 

The software chosen for the process simulation is SuperPro Designer, which is a modular type 

computer program and allows steady state calculations. This software offers the possibility to 

design biogas plants in particular by modelling anaerobic digesters. An integrated solver controls 

all parts of the simulation such as input and output data, flow chart analysis and model iterations.  

Databases store the main physical and chemical properties of approximately 370 chemical spe-

cies. To achieve a flowsheet simulation with SuperPro Designer several steps are required. It is 

firstly necessary to specify the type of operation involved in the process (batch or continuous). 

Then the process flow chart can be modelled by choosing the equipment parts involved (process 

icons). In order to initialize the process, the operating conditions and design parameters28 have to 

be specified for each equipment and for each input flow (plant calibration). In the following the 

modelling assumptions concerning each process step of the biogas installations are described. 

 

                                                           
28 Design parameters concern e.g. the equipment size, temperature, pressure, input mass flow, volume, 

power or recycling loops. 
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4.3.2 Biogas plant calibration 

4.3.2.1 Biomass feedstock characterization 

In the present simulation model the biomass elementary composition is defined according to 

[139]. The substrate to be valorized is thus defined as “biomass” and represented by a generic 

chemical formula CH1.8O0.5N0.2.  

4.3.2.2 Biomass transport, delivery and storage 

The energy crops management step starts with the transport from the cultivation area to the biogas 

plant location. The transport of energy crops and/or manure is carried out with the help of agri-

cultural trucks. The transported energy crops are then stored in bunker silos where the ensilage 

process takes place. During this process, the energy crops are subject to a mass loss specified at 

about 12% according to [140]. Manure is mixed with energy crops in order to obtain a mash. In 

the case of biowaste, the transport takes place from the biowaste collection point to the biogas 

plant location and is carried out with the help of trucks. The biowaste is further loaded in a storage 

tank before the pre-treatment step. 

4.3.2.3 Biomass pre-treatment and loading 

In the case of energy crops and/or manure valorization, the mixed biomass feedstock (mash) is 

pre-heated before entering into the digester. The process temperature has a decisive influence on 

the degradation efficiency and on the biogas quality. In the case of agricultural plants the mixed 

solid is heated at a temperature of 38 °C specified in SuperPro Designer interface and correspond-

ing to a mesophilic process temperature. A screw conveyer is used to bring the solid biomass to 

the blending storage tank. The blending tank is modelled as a vessel with an agitator to simulate 

the biomass storage for a certain period here assumed as 10 h. Some heat-transfer operation units 

(heat exchangers) are then necessary to warm up the substrate to the mesophilic digestion tem-

perature. The biowaste pre-treatment starts with the shredding step and is followed by the sepa-

ration of metal and impurities. These pre-treatment steps generate a global biowaste mass loss 

specified at 8% of the transported biowaste mass [141].  

After this operation the biowaste mass flow is mixed with water during a hydrolysis reaction. The 

hydrolysed biowaste mash is further pre-heated to a specified temperature of at least 70°C. This 

aims in particular to satisfy the epidemiologic and phytohygienic criteria related to biowaste in-

stallations (see Table 2.2). The pre-heated biowaste feedstock is finally loaded into the fermenter 

where the anaerobic digestion process can start. 

4.3.2.4 Biogas production process modelling 

The objective of this section is to describe the model that has been developed with the help of 

SuperPro Designer in relation to the biogas production process. Biogas is produced by the fer-

mentation of biomass feedstock under the action of bacteria. The biomass residence time in the 

fermenters is given by Eq. 4.1.                       

                                                               
0V

VW

=                                                                       (4.1) 
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With: 

 VW: fermenter working volume in m3  

0V : input material volumetric flow entering the digester (in m3/h) 

The anaerobic digester is modelled as a well-mixed reactor [142]. Several models in the literature 

exist and aim to mathematically describe anaerobic digestion processes. A general and extensive 

review of these models can be found in [143]. In the case of this work a simplified model, the 

Buswell model, characterizing the biogas formation from anaerobic digestion processes has been 

used (Eqs. 4.2, 4.3 and 4.4) [144].  

                       OyHSNOHC snohc 2+ → 2234 )( COxcSsHnNHxCH −+++
     (4.2) 

 

with:                                            )2324(8/1 snohcx −−−+=                                          (4.3)                                                                                                       

  

and                                              )3324(4/1 snohcy ++−−=                                          (4.4)
 

 

In the present work, the substrate is CH1.8O0.5N0.2 and is further transformed into methane, carbon 

dioxide and ammonia through Eq. 4.5 which represents the simplified biogas formation equation. 

 

                                   
32422.05.08.1 2.047.053.045.0 NHCOCHOHNOCH ++→+         (4.5) 

 

It is further assumed that the biomass fermentation reaction follows a first order kinetic reaction. 

According to this kinetic reaction the volumetric methane flow rate 
4CHY  (in m3/h) can be ex-

pressed through Eq. 4.6. 

 

                                          W

CH

Biomass

CH

Biomass
CH VkY =

44

4 






                                                      (4.6) 

 

With:  

 

 -     k: methane formation rate to be determined (in h-1) 

- Biomass : biomass density in input of fermenter (in kg/m3) 

- 
4CH : methane density (in kg/m3)  

-  Vw:: working volume (in m3) 

- 
4CH : stoichiometric coefficient for CH4 in Eq. 4.5 

-  Biomass : stoichiometric coefficient for the biomass in Eq. 4.5 
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Furthermore 
4CHY  can be expressed as a function of the biomass feedstock specific methane yields 

mentioned in the German Biomass Ordinance (Eq. 4.7) [145]: 

 

                                                   BiomassCH mY = 
4

                                                           (4.7) 

 

With:   

- Biomassm : feedstock input mass flow (in kg/h)                                                                                                          

-   :  feedstock specific methane yield mentioned in the German Biomass Ordinance                                               

(in m3
Methane / kg Substrate) 

 

By combining Eq. 4.6 and Eq. 4.7, the methane formation rate k can be expressed as a function 

of the biomass input mass flow (Eq. 4.8). 

                                           Biomass

BiomassBiomassW

CHCH
m

V
k 




=





.

44

                                                  (4.8)                                                                 

 

Eq. 4.8 can be further simplified by introducing the residence time defined in Eq. 4.1 (Eq. 4.9): 

                                               

Biomass

CHCH
k








= 44                                                                                          (4.9) 

                                                                                                                                                                              

The methane formation rate can be finally determined for each plant type by using following 

numerical values (Table 4.2). 

Table 4.2 Numerical values of the employed parameters for the determination of the methane 

formation rates k 

Constant Definition Numeric values 

Biomass  
Stoichiometric coefficient for the biomass in Eq. 4.5 (-)          1.0 

4CH  
Stoichiometric coefficient for CH4 in Eq. 4.5 (-) 0.53 

4CH  
Methane density (kg.m-3) 0.72 [146] 

 

  

Biomass feedstock input specific methane yield (m3/kg)29  EM plant: 0.0916 

E plant: 0.1085 

B plant: 0.0738 

  Residence time in anaerobic digester (h) Agricultural plants: 1,920                      

(i.e. 80 days) [147] 

Biowaste plants: 600                

(i.e. 25 days) [148] 

                                                           
29 The values for each plant type have been determined based on the specific methane yields mentioned in 

Table 6.1. 
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In each plant type, the numerical values of the methane formation rates are mentioned in Table 

A.2 of the Appendix and are specified in SuperPro Designer interface. This aims to calibrate the 

fermenters according to the specific methane yields mentioned in Table 6.1.  

The annual biogas production Yi can finally be estimated, assuming a fixed methane content   

in the biogas produced (Eq. 4.10). For each feedstock, the  value is specified according to the 

methane contents mentioned in Table 6.1. 

                                                                  iY =


4CHY

                                                               (4.10) 

4.3.2.5 Modelling of the heat and electricity production from biogas 

After the anaerobic digestion process, the biogas mass flow amount Yi is burned in a Combined-

Heat and Power system (CHPs). The CHPs is represented here by a single stage gas turbine be-

cause SuperPro Designer offers no straightforward possibility to model a gas engine. The gas 

turbine system is made of a centrifugal gas compressor coupled to a gas expansion unit and in 

between a combustion chamber. Biogas is mixed and burnt in the combustion chamber simulta-

neously with air. The air volume flow stream enters the combustion chamber at a temperature of 

90 °C and under a pressure of 50 bar. The temperature inside the combustion chamber is                          

1,200 °C [149]. The methane combustion reaction with oxygen is defined by Eq. 4.11:       

                                                    CH4 + 2O2 → CO2 + 2H2O                                                      (4.11) 

The reaction enthalpy for methane equals to -55,643 kJ/kg and corresponds to an exothermal 

reaction. Finally the model of the gas turbine has been adapted to that of a CHP gas engine by 

considering the electric and thermal efficiencies mentioned in [150]. 

4.3.2.6 Modelling of the digestate treatment unit 

In the case of agricultural plants the digestate issued from the fermentation is assumed to be di-

rectly used on soil as fertilizer so that no treatment process is required. The digestate produced by 

the biowaste fermentation is treated by a decanter centrifuge in order to obtain a solid digestate 

mass representing 50% of the raw digestate according to [141]. The solid digestate is further 

valorized in a post-rotting process in order to obtain a solid compost mass flow which represents 

30% of the biowaste input mass flow [141]. 

4.3.3 Process simulation 

After the biogas plant calibration the next step consists of determining the evolution of the electric 

power Pel,i (output variable) as a  function of the biomass feedstock mass flow im ,0
  (input varia-

ble). Figure 4.3 represents the different mass and energy flows that characterize each simulation 

step i. Detailed flowsheet examples issued from SuperPro Designer interface and related to the 

modelling each of the plant type are further mentioned in Figures A.1, A.2, A.3 and A.4 of the 

Appendix.  
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Fig. 4.3 Schematic representation of the mass and energy flows in each simulation step i  

In each simulation step i, the installed electric power ielP ,  can be expressed as a function of the 

biomass feedstock mass flow im ,0
  according to Eq. 4.12: 

                                                
i

iCHPElCHg

iel m
OH

H
P ,0

,,,

,
4 


=


                                            (4.12) 

With: 

-  :  feedstock specific methane yield mentioned in the German Biomass Ordinance (m3/t)                                          

- 
4,CHgH ; Methane gross calorific value set at 9.97 kWh/m3 according to [151] 

-  iCHPEl ,, : CHP electric efficiency set as a function of the installed electric power ielP ,  according 

to a correlation derived from [150] 

- im ,0
 : biomass feedstock mass flow (t/a) 

- OH: plant operating hours (h)  

By combining Eq. 4.9 and 4.12 a more detailed correlation between Pel and im ,0
  is obtained and 

involves all specified parameters under Super Pro Designer interface (Eq. 4.13):  

                                        i

CHCH

iCHPElCHgBiomass

iel m
OH

Hk
P ,0

,,,

,

44

4 



=




                                       (4.13) 
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The linear relation obtained between ielP ,  and im ,0
  according to Eq. 4.13 is represented in Figure 

4.4 in the case of the co-digestion of energy crops with manure (EM plant30).  

 

Fig. 4.4 Correlation between the CHP-electric power and the biomass input mass flow 

4.4 Summary 

Due to the frequently evolving legal framework conditions as well as to volatile energy crops and 

electricity prices, the economic assessment of biogas plants represents a difficult task for biogas 

companies and plant operators. In particular challenges remain in the identification of the most 

economically attractive plant sizes. Simulation models offer a suitable tool for estimating the 

profitability for various plant sizes and types. For a given plant type, the objective is to identify 

the most profitable plant sizes by assuming a variable and differentiated annual biomass input 

mass flow. In this chapter a model aiming at the operative simulation of the three main biogas 

plant types valorizing energy crops, biowaste and manure is presented. For this the process sim-

ulation software SuperPro Designer is employed. The simulation variable corresponds to the an-

nual biomass input mass flow. All main steps of the biogas supply chain going from the biomass 

feedstock transport up to heat, electricity and digestate production are modelled. The anaerobic 

digesters are calibrated according to specific biogas yields defined by the German Biomass Ordi-

nance. As a result of the simulation, correlations between the installed electric power (output 

variable) and the annual biomass input mass flow are thereby derived for each of the three plant 

types. These correlations represent the basis for a further economic analysis realized in chapter 7.  

                                                           
30 The two further correlations characterizing E and B type plants can be found in Figures A.5 and A.6 of 

the Appendix. 
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5 An optimization model for the analysis of future electricity 

production from biogas in Germany 

An unstable economic context characterizes the German biogas industry with in particular volatile 

energy crops and electricity prices as well as frequently evolving framework conditions. For this 

reason the analysis of future electricity production from biogas as well as the forecasting of mid-

term capacity developments are of considerable assistance to biogas plant operators. Due to their 

recurrent use in the framework of the energy system analysis, optimization models represent a 

well-adapted solution for assessing the evolution of the future German biogas system. The objec-

tive of these models is to provide plant operators and decision-makers valuable insights regarding 

future developments for biogas in Germany. Optimization models should further contribute to 

identifying and quantifying the main economic drivers. In this chapter an optimization model 

developed in the programming language GAMS (General Algebraic Modeling System) is pre-

sented and has the objective to analyse the evolution of future capacity and electricity production 

from biogas in Germany. A general introduction to optimization models applied in particular to 

energy system analysis is first carried out in section 5.1. In section 5.2 the general methodology 

employed for the analysis of future electricity production from biogas in Germany is detailed. 

This analysis is based on a regional linear mixed-integer optimization model which is described 

in section 5.3. This model aims at maximizing the total profit over all plant sizes, the whole time 

period and all Federal States combined. It further provides a forecast of regional capacity and 

electricity production at the Federal State level analysed in chapter 8.    

5.1 A general introduction to optimization models 

Decision- and policy-makers have to cope more and more with complex issues regarding the de-

sign of current and future energy policy at different levels (municipality, regional, national or 

international). Optimization models can assist them in shaping future energy systems in an opti-

mal way that corresponds to the best alternatives given technical, economic and environmental 

constraints. Optimization models are used in almost all areas of decision-making, notably engi-

neering design, and financial portfolio selection. In the formulation of the optimization problem, 

an objective function should be specified as a mathematical function involving certain variables 

and potentially involving several constraints. In the context of an energy system analysis four 

main categories of optimization models can be distinguished according to [152]: linear, non-lin-

ear, mixed integer linear or stochastic.  

Linear optimization models correspond to the case where the objective function and all the con-

straints are linear functions of independent variables. If one of these functions is non-linear, then 

the optimization is considered as non-linear. If at least one of the independent variables of the 

linear optimization problem is linked to integer values then the optimization problem is consid-

ered as a mixed integer linear problem (MILP). Stochastic programming represents a valuable 

approach for modelling optimization problems that involve uncertainties. More precisely stochas-

tic optimization models try to find robust solutions able to cope with a group of uncertain param-

eter values [153]. Most of the energy system models are linked to linear optimization models 

involving an objective function for cost minimization or profit maximization [154]. The main 
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objective of energy system models is to establish an optimal energy supply structure given certain 

framework conditions. The energy system analysis should provide support to decision-makers in 

the field of energy policy and research. The scale of the system being considered can be global, 

national, regional or even a single household [155]. It can concern the development of a single 

technology (e.g. a biogas plant) or a portfolio of all available technologies (e.g. all existing re-

newable energy conversion technologies) in the context of technical, environmental and/or eco-

nomic framework conditions. In the next section the objective and general methodology for the 

analysis of future German biogas plants development based on an optimization model is de-

scribed.  

5.2  General objective and methodology 

The main objective of German biogas plant operators is to run and maintain reliable and profitable 

installations over their whole lifetime, which generally corresponds to 20 years (EEG subsidy 

time period). For this a robust forecast of future costs and revenue development is required so that 

the operators can maximize their plant operating profit. The general model objective is thereby to 

identify which biogas plant types and sizes appear to be the most economically attractive for plant 

operators on a mid-term horizon (i.e. up to 2030).  

In addition, the regionalized model results should show in which Federal States future capacity 

developments occur considering different EEG subsidy schemes. For this a resource-oriented ap-

proach is required that takes into account the current and future technical biomass total potentials. 

A regional model is thereby developed up to the year 2030 at the German Federal State level. 

Three reference plant types representing the large majority of installed German plants are ana-

lysed. The anaerobic digestion of either energy crops or biowaste, or the co-digestion of energy 

crops and manure characterize these plant types. Both of the subsidy schemes related to EEG 

2012 and EEG 2014 are taken into account in the calculations in the framework of explorative 

scenarios. These scenarios assess the future development of German biogas plants assuming that 

the legal frameworks EEG 2012 or EEG 2014 remain unchanged over the whole time period i.e. 

up to 2030. Finally the model results are analysed and evaluated in terms of policy recommenda-

tions and strategic outcomes. Figure 5.1 summarizes the general methodology employed for the 

analysis of future electricity production from biogas in Germany. 
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Fig. 5.1 Main methodological steps employed for the analysis of future electricity production 

from biogas in Germany (author’s own representation) 

In the model input data determination phase the currently existing biogas plant31 capacity is first 

estimated for each Federal State and installation type. For this purpose a biogas plant database is 

built. In addition, literature data concerning existing biomass potentials at the Federal State level 

is used. In a second step investment-related costs, operating costs including in particular regional 

energy crop costs and revenues are calculated based on literature and plant operator’s data. This 

techno-economic data, described in chapter 6, feeds the model core structure developed in the 

programming language GAMS, which contains an objective function and model constraints. The 

objective function aims to maximize the total operating profit by plant type, for all Federal States 

aggregated, over the whole time period and all plant sizes. A first constraint corresponds to the 

limitation of future capacity expansion by regional biomass potentials dedicated to electricity 

production from biogas. A second constraint concerns the limitation of the electric capacity that 

could be built for each plant type, in a given year for all Federal States combined (capacity ex-

pansion cap defined by the EEG legal frameworks). The model results thereby provide an eco-

nomically optimal development plan of new built biogas capacity up to the year 2030, seen from 

the plant operator point of view. In addition to this analysis the sensitivity of future capacity de-

velopments to a strong variation of three main market drivers for biogas plants in Germany is 

assessed. The main profitability drivers firstly correspond to energy crop costs, and to revenues 

                                                           
31  In § 3 Nr. 1 of the EEG 2009, the definition of a biogas plant is given and refers to the totality of all functional and 

technical components dedicated to the electricity production from biogas (e.g. CHP, fermenter, gas storage, digestate 

storage tank, biomass feedstock pre-treatment unit) [101]. This broad definition is further taken into account in this 

work and it is also assumed that that several CHP units connected to the same biogas production plant (anaerobic 

digester) have to be seen as a single plant. 
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derived from the EPEX-Peak electricity sale received by plant operators in the framework of the 

electricity direct marketing. The third driver concerns the biowaste fee revenues which are linked 

to the valorization of biowaste into biogas and further into renewable energy. 

5.3 Objective and structure of the optimization model 

In order to realize a forecast of new built biogas plants for electricity production up to the year 

2030 at the German Federal State level a mixed-integer linear optimization model is developed. 

The objective is to determine in each Federal State and for three separated biogas plant types (EM, 

E and B) a development plan of new built electric capacities (in MWel). An objective function is 

firstly defined in Eq. 5.1 and represents the core of the optimization model. This objective func-

tion corresponds to the maximization of the total operating profit (in €) over the whole period, for 

all plant sizes and all Federal States combined. This aims to ensure an economically optimal de-

velopment for German biogas plants up to the year 2030. The objective function contains the 

annual specific revenues rtirev ,,  and electricity production costs rtiepc ,,  (in ct/kWhel) that are 

determined year on year up to 2030 for each plant size and in each Federal State (see sections 6.6 

and 6.7). Plant annual operating hours OH are set as a constant and corresponding to 8,000 h/a in 

base-load operation (see Section 6.2.2.). A variable rtiX ,,  is defined and corresponds to existing 

capacities (kWel) for a given plant size i, in year t and in the Federal State r. A discount rate t

of 6% per year is applied to all specific costs and revenue flows up to 2030, for each plant size 

and in each Federal State. 
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In addition to the objective function Eq. 5.2 models the recursive capacity evolution from year          

t-1 to year t and integrates a capacity expansion variable 
Exp

rtiX ,,  as well as a decommissioning 

parameter 
Decom

rtiX ,, for plants older than 20 years. This equation allows the solver to build new 

capacities year on year in selected Federal States. 

                                        rtiX ,, = rtiX ,1, − +
Exp

rtiX ,, - 
Decom

rtiX ,, rti ,,                                           (5.2)    

Additional constraint equations concern the annual limitation for each plant type and in each Fed-

eral State of future capacity expansion by biomass potentials dedicated to electricity production 

from biogas At,r (Eq. 5.3). This ensures that no capacity can be further built if the corresponding 

biomass potentials are not sufficient. 
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A second constraint models the annual capacity expansion cap defined in the framework of the 

EEG 2012 and EEG 2014 (Eq. 5.4). This capacity expansion limitation ensures that not all the 
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plant sizes are built in the first year of the time period due to a full valorization of biomass poten-

tials. 

                                                  
t

r i

Exp

rti WX 
= =

16

1

49

1

,,
     t                                                             (5.4)    

Under the EEG 2012 framework the annual capacity expansion cap has been set for each plant 

type following an historical growth rate of 6% for the years 2012 to 201432 according to [156], 

[157] and [158]. In the context of the EEG 2014, the Federal Government defined an annual 

capacity expansion cap of 100 MWel in order to better drive and control future capacity develop-

ments [159]. In the present work this annual capacity expansion limit has been equally distributed 

between biowaste plants and agricultural plants. Finally Eq. 5.5 ensures a mixed-integer capacity 

expansion for all the buildable capacity unit sizes P in each year and region r. In each plant size 

i, year t and region r, a mixed-integer variable y is employed and represents the number of new 

built plants. 

                                                 irtirti PyX = ,,,,  rti ,,                                                   (5.5)      

5.4 Summary 

The use of optimization models appears as well adapted to the analysis of various energy systems 

of different aggregation levels and scopes. In the framework of this thesis the energy system con-

sidered concerns the whole German biogas plant park. The objective of the regional optimization 

model developed is to provide a forecast for the evolution of future plant capacity as well as for 

future electricity production from biogas up to the year 2030. For this an objective function is 

defined aiming at maximizing the total profit over all plant sizes, the whole time period and all 

Federal States combined. Several constraints such as the limitation of future capacity expansion 

by biomass potentials and by caps defined under the EEG legal framework are also specified. The 

modelling approach is then resource-based meaning that the evolution - and the limitations - of 

future biomass potentials impacts the development of biogas plant capacities. Furthermore the 

model assumes that the biogas plant operator’s objective is to maximise profit over the installa-

tion’s life time.    

 

                                                           
32 Years prior to 2012 have not been taken into account because there was a strong increase in German biogas plants 

development over that period. This strong expansion was mainly due to the very favourable legal framework for agri-

cultural plants employing energy crops and manure in the context of EEG 2006 and 2009. Since the year 2012, the 

Federal Government considers that the biogas sector is mature enough to be integrated into the German electricity 

market. This integration should be achieved with fewer subsidies and using new mechanisms like the market and the 

flexibility premium defined by the electricity direct marketing model. The EEG 2012 thus caused a slowdown in Ger-

man biogas plant development due to the introduction of these new mechanisms. It appears then more realistic to set 

an annual maximum capacity rate up to 2030, taking into account this paradigm shift and without considering the effect 

of the years before 2012. 
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6 Model input data determination 

This chapter aims to describe the input data that has been employed for both the simulation and 

the optimization models. In each model two separate assessments, under the EEG 2012 and the 

EEG 2014 legal frameworks, have been carried out. The model input data refers then to the base 

year 2013 for the assessment done under the EEG 2012 framework. In the case of an analysis 

under the EEG 2014 framework, the base year 2015 has been selected. In section 6.1 the system 

boundaries characterizing the analysed biogas plants are set. In section 6.2 an overview of all 

required input data including a general description of methodology is given. The underlying as-

sumptions and methodology for the determination of each data set are described in detail in sec-

tions 6.3 to 6.7. Technical input data consists of biomass properties, plant operation mode, exist-

ing biogas plant capacity as well as current and future biomass potentials for electricity production 

(sections 6.2, 6.3 and 6.4). Economic input data corresponds to the cost and revenue positions of 

a biogas plant project and is described in sections 6.5, 6.6, and 6.7. In section 6.8 an assessment 

of uncertainties and a plausibility check of the specified input data is carried out. This chapter 

ends with a summary (section 6.9). 

6.1 System boundaries 

Before performing an economic assessment of a biogas plant it is necessary to firstly define the 

system that has to be analysed. The system considered is represented in Figure 6.1 and corre-

sponds to the whole biogas supply chain from resource harvesting and transport up to electricity 

and heat production including digestate valorization.  

Fig. 6.1 System boundaries (author’s own representation) 
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The substrates are firstly harvested and cultivated in the case of energy crops or collected and 

stored in the case of biowaste and manure. The transportation stage of cultivated or collected 

biomass feedstocks to the biogas plant follows. On the plant site the biomass feedstocks can be 

mechanically or thermally pre-treated before the fermentation. After the anaerobic digestion pro-

cess the output streams (heat, electricity and digestate) leave the biogas plant. In the case of elec-

tricity the system boundaries are set at the transmission station so that the costs for transformers 

and cables are included in the economic evaluation. The heat produced does not all leave the 

biogas plant and can be reused for heating the anaerobic digesters or be valorized through external 

heat sinks.  

For agricultural plants it is assumed the raw digestate is used for free by farmers. For biowaste 

plants the solid digestate, treated by a compost operation unit, is systematically sold as compost. 

The transport of solid digestate to potential digestate sinks is not integrated into the system bound-

aries. Finally the acquisition step of the plant site location is also considered in the economic 

calculations and included in the investment for civil engineering. One should differentiate be-

tween an already existing property, a partially referenced property and a not yet reference prop-

erty. For the economic evaluation existing properties will be assumed and are supposed to be 

already equipped with connection to water, electricity, gas, district heating and be easily accessi-

ble (road access). In the next section the methodology for determining the techno-economic input 

data for both the simulation and optimization models is presented. 

6.2 Overview of the required input data for the simulation and the optimization 

models 

6.2.1 Substrate and process definition 

As mentioned in section 3.2 energy crops, manure and biowaste represent the main substrates 

employed in biogas plants by mono- or co-digestion plants. In particular the number of co-diges-

tion plants using energy crops and manure rapidly increased between the years 2000 and 2008 

[160]. Therefore three reference biogas plants valorizing these feedstock types are assessed in the 

present work.  

The first plant type (EM plant) corresponds to the valorization of energy crops with manure in 

co-digestion process as well as to the mono-digestion of manure. EM plants with an installed 

power smaller or equal to 75 kWel are assumed to exclusively valorize manure in mono-digestion 

processes. For an installed power greater than 75 kWel EM plants are assumed to use a biomass 

feedstock input mix containing 58% maize silage, 20% manure, 10% grass silage, 10% cereal 

silage and 2% cereal grains. E plants are characterized by an input mix of 58% maize silage, 20% 

grass silage, 20% cereal silage and 2% cereal grains. The valorized maize silage and cereal grains 

mass share are thus in line with the specific cap of 60% set for these feedstocks under EEG 2012 

[161]. Finally B plants exclusively valorize biowaste in mono-digestion processes. The energetic 

properties of all employed feedstocks are given in the Table 6.1. 
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Table 6.1 Assumed biomass feedstocks properties [145], [162], [163] 

Employed feedstocks Methane yield 

(m3
methane / t Feedstock) 

Methane content in 

biogas (in %) 

Biogas yield (m3
Biogas / t Feedstock) 

Maize silage 106 52 204 

Grass silage 100 53 189 

Cereal silage 103 53 194 

Cereal grains 320 54 593 

Manure 17 55 31 

Biowaste 73.8 60 123 

                                                                                                                                                                           

In the case of agricultural plant types, maize silage, grass silage, cereal silage and cereal grains 

are selected due to their high biogas yield and also due to their high degradability. As mentioned 

in [79], these biomass types also represent by the end of the year 2014 the most common energy 

crop feedstocks in German biogas plants. Animal effluents like pig manure are often located in 

the proximity of agricultural biogas plants and are assumed to be available for free. The valoriza-

tion of manure into biogas aims at reducing methane emissions and thus shows environmental 

benefits as described in [164]. In the present work biowaste feedstocks are assumed to come from 

German household kitchens and gardens and can be easily transformed into biogas by micro-

organisms through anaerobic digestion processes. Finally the digestate issued from the fermenta-

tion is assumed to be directly used on soil as fertilizer in the case of agricultural plants and treated 

to be further sold as a compost in the case of biowaste plants. 

6.2.2 Operator models, plant operating hours and flexibility 

In the present work the following operator models are considered respectively under the EEG 

2012 and EEG 2014 frameworks (Figure 6.2). 

Fig. 6.2 Considered operator models under EEG 2012 and EEG 2014 legal frameworks 
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According to a study from the German biomass research centre the average operating hours for 

biogas plants running in base-load in Germany has been estimated in 2014 at about 7,886 h/a 

[165]. This figure is derived from a questionnaire involving 567 biogas plants from which 284 

were in the power range 151-500 kWel and were operated for 8,033 h/a in base-load. In the present 

work the operating hours for base-load capacity have been systematically set at 8,000 h/a for all 

concerned plant sizes.  

The operating hours FlexOH for flexible capacity have been determined according to Eq. 6.1: 

LoadPartLoadBaseLoadFull EEE −−− +=  (6.1) 

With: 

LoadFullE − : Energy amount in full-load operating mode 

LoadBaseE − : Energy amount in base-load operating mode 

LoadPartE − : Energy amount in part-load operating mode 

Eq. 6.1 can be further expressed as follows (Eq. 6.2): 
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With: 

- loadBaseElP −, : Electric power in base-load operating mode 

- :,FlexibleElP  Flexible electric power in part-load operating mode 

- loadBaseCHP −, : Electric CHP efficiency in base-load operating mode 

- FlexibleCHP , : Electric efficiency for flexible CHP in part-load operating mode 

- FLH : full-load hours (8,760 h/a) 

- PLH : part-load hours for flexible capacity 

The part-load hours for flexible capacity PLH are derived from Eq. 6.2 (Eq. 6.3): 
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For a given plant size, the flexible CHP capacity has been set at 80% of base-load capacity which 

leads to simplifications in Eq. 6.4. In the analysis mentioned in [166] a doubling of the base-load 
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CHPs is taken into account in order to obtain flexible capacity. The conservative assumption of 

the present work should however be balanced against the fact that all considered existing and 

future new built plant involved in the electricity direct marketing are supposed to be systemati-

cally transformed into flexible capacities. 

FlexibleCHP

loadBaseCHP

FLH
PLH

,

,8.01


 −+

=  (6.4) 

As mentioned in Figure A.15 of the Appendix base-load and flexible CHP electric efficiencies 

are correlated to the CHP electric power [150]. More precisely the ratio 
FlexibleCHP

loadBaseCHP

,

,



 −
 remains 

constant at a value of 1.073 for all base-load and corresponding flexible electric CHP capacities. 

The annual full-load hours FLH are equal to 8,760 hours. Thereby constant annual operating 

hours for all new built flexible capacity have been estimated at about 4,713 h/a. The flexibilization 

of existing base-load CHPs requires supplementary flexible CHP gas engines but also new gas 

storage. The supplementary gas storage volume due to the flexibilization of existing CHP is sys-

tematically determined for each plant size by using the calculator of the Federal Office for Agri-

culture of Thuringia (TLL) [167]. An example calculation can be found in Table A.3 of the Ap-

pendix for a plant equipped with an existing CHP of 1,000 kWel and a gas storage with a volume 

of 4,000 m3.  

6.2.3 Techno-economic input data 

Beside data characterizing the biomass feedstocks and the plant operation mode, information re-

garding the estimation of existing plants, the determination of current and future biomass poten-

tials, annual costs and revenues for the biogas plants operation is necessary. For the simulation 

model all positions concerning revenues, operating and investment-related costs are estimated in 

each simulation step and lead to the calculation of specific operating profits. The simulations are 

performed in the framework of EEG 2012 and EEG 2014 respectively for the base years 2013 

and 2015.  

In the case of the simulation model the results are assessed nationally by considering an average 

value of the regional energy crop costs that has been determined in section 6.6.1.7. The revenues 

and costs that have been estimated in the simulation model also feed the optimization model for 

the base years 2013 and 2015. They are further forecasted up to the year 2030 with the help of 

annual evolution rates. Regional energy crop cost contributions (in ct/kWhel) are determined in 

each Federal State in section 6.6.1.9 and are further integrated in the optimization model. Thereby 

specific operating profits can be derived year on year for each plant type, size and region.  

The specification of the existing biogas plant capacity for the base years 2013 and 2015 also 

represents an important information that has to be fed into the optimization model. The determi-

nation of existing plants in each Federal State is a starting point for the estimation of future ca-

pacity development concerning the whole German biogas plant park. These developments are 

driven by the evolution of regional biomass electrical potentials up to the year 2030 specified for 
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each of the three reference plant types (EM, E and B). Figure 6.3 sums up the necessary input 

data for both the simulation and optimization models. 

Fig. 6.3 Classification of the required model input data 

6.2.4 General methodology for the model input data determination 

The methodology and the literature sources that have been employed for the determination of all 

technical and economic input data are summed up in Table 6.2. The model input data is deter-

mined on the basis of questionnaires sent to plant operators, according to published information 

or derived from methodological assumptions. In particular total capital investment has been esti-

mated by using the Multiplier Value Method (section 6.5.1) and energy crop costs have been 

quantified in each Federal State on the basis of regional biomass hectare yields (section 6.6.1). 
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Table 6.2 Literature sources and methodology employed for the models input data determination 

 Description Methodology employed / Data source 

Technical  

input data 

Biomass feedstock properties Literature data from [145], [161], [162], [163] 
 

Operating hours for flexible CHP Based on: 

- Specific plant operator models (section 6.2.2) 

- Calculation tool from the Federal Office for Agriculture 

  of Thuringia (TLL) [167]  

Supplementary gas storage volume 

Existing biogas plant capacity Biogas plant database (web-based research) 

Biomass potentials for electricity pro-

duction 

Potentials estimation and forecast based on literature data (section 

6.4)  

Economic 

input data 

Total capital investment Estimation based on literature data and according to the Multiplier 

Value Method (section 6.5)  

Additional investment  

(flexibilization) 

Based on: 

-Specific plant operator models (section 6.2.2) 

- Calculation tool from Federal Office for Agriculture of 

  Thuringia (TLL) [167] 

Energy crop costs Calculations are carried out at the Federal State level according to 

literature data and based on regional hectare yields (section 6.6.1). 

Biomass feedstock transport costs - Based on literature data (section 6.6.2) 

- Specific transport costs models are defined for biowaste               

        according to various collections zones (section 6.6.2.3) 

Electricity consumption costs  

 

 

Based on literature data (sections 6.6.3, 6.7.3., 6.7.4 and 6.7.5) 

Process utilities costs 

Digestate treatment costs 

Revenues from heat sale 

Revenues from digestate sale 

Revenues from biowaste valorization 

Personnel costs Derived from questionnaires sent to plant operators 

Maintenance costs  

Based on literature data (sections 6.6.3, 6.7.1 and 6.7.2) and on the 

defined plant operator models (sections 6.2.2) 

Revenues from electricity sale 

Flexibility premium and supplement 

 

In the next section, the methodology used to determine each input data set is described in detail. 

Firstly existing biogas plant capacity is estimated (section 6.3). In a second step current and future 

technical biomass potentials are evaluated and forecasted at the Federal State scale up to the year 

2030 (section 6.4). A final step focuses on the estimation and forecast of current and future reve-

nues and costs for each of the three plant types (sections 6.5, 6.6. and 6.7). 

6.3 Estimation of existing biogas plant capacity 

In order to evaluate future biogas capacity development up to the year 2030 a starting point is the 

estimation of the existing plants park at the Federal State scale and according to the three reference 

installation types. In a first step a database gathering 1,323 installations in Germany is built using 

a web-based research of German companies operating biogas plants. The database contains for 

each plant the feedstock type employed, namely energy crops, manure or biowaste in mono- or 

in co-digestion plants and the installed electric power. In a second step this database is statistically 
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evaluated according to the three plant types: the energy crops and manure plants (type “EM”33), 

the energy crops plants (type “E”33) and the biowaste plants (type “B”). The apportionment rates 

of existing capacities according to these three plant types are given in Table 6.3.  

In a third step the database is further discretized into 49 power ranges along the electric capacity 

bandwidth [0:20,000 kWel] as described in Figure 6.4. It appears that most of existing biogas 

plants in the database are located in the power range [100:500 kWel] followed by the range 

[500:1,000 kWel]. Plants smaller than 75 kWel and larger than 5,000 kWel currently play a mar-

ginal role in the capacity mix. This repartition is in line with the observed situation by the end of 

2012 [168].  

In a fourth step the plant typology and capacity repartition obtained for the 1,323 installations in 

the database are scaled-up to the whole German biogas plant park, which amounts to about 7,366 

installations for a total installed capacity of 3,091 MWel at the end of 2012 [156]. Finally a re-

gionalization of the installed capacity is carried out for each of the three plant types at the level 

of the German Federal States according to repartition keys derived from [156] and [157]. The 

regional plant repartition shows that more than half of German biogas plants are located in Lower-

Saxony, Bavaria and Baden-Württemberg. No plants dedicated to electricity production from bi-

ogas exist in the Federal States of Berlin, Hamburg and Bremen. 

Table 6.3 Estimated capacity repartition according to the three defined plants EM, E and B 

Plant type Employed feedstocks Plant capacity apportionment                          

rates (%) 

Energy crops and ma-

nure plant (type “EM”) 

Valorization of energy 

crops and manure in              

co-digestion 

60.39 

Energy crops plant               

(type “E”) 

Valorization of energy 

crops in mono-digestion 

33.14 

Biowaste plant (type 

“B”) 

Valorization of biowaste in 

mono-digestion 

6.47 

   

                                                           
33 Agricultural EM and E plant types also include the valorization of agricultural residues such as cereals 

straw, grain maize straw and harvest residues. 
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Fig. 6.4 Capacity repartition for the existing biogas plant types at the end of the year 2012 

In the framework of the optimization model it is systematically assumed that all existing plants 

impacted by electricity direct marketing are concerned by flexibilization. This applies to plants 

with a capacity larger than 750 kWel under EEG 2012 (year 2013) and superior to 100 kWel under 

EEG 2014 (year 2015). According to the biogas plant database about 733 MWel and 2,743 MWel 

existing capacities are then subject to flexibilization respectively under the EEG 2012 and EEG 

2014 operator models. Each of these capacities are then further split into base-load installations 

and plants that are already flexible, by using repartition rates derived from [169] and [170]34. 

Table 6.4 sums up the capacity repartition obtained under EEG 2012 and EEG 2014. 

Table 6.4 Existing capacity concerned by flexibilization under EEG 2012 and EEG 2014 operator 

models 

 EEG 2012 operator model 

(year 2013) 

EEG 2014 operator model 

(year 2015) 

Total existing capacity concerned by  

flexibilization (MWel) 

733 2,743 

Existing base-load capacity subject to further 

flexibilization (MWel) 

709 1,759 

Already existing flexible capacity (MWel) 24 984 

                                                                                                                                                                            

In the next section annual biomass potentials for energy crops, manure and biowaste dedicated to 

electricity production from biogas are determined for each Federal State up to the year 2030. 

                                                           
34 Under EEG 2012 the total capacity subject to flexibilization can be divided into 96.7% base-load installations and 

3.3% flexible plants. Under EEG 2014 base-load capacity represents 64.15% of the total capacity whereas 35.85% are 

linked to already existing flexible plants.  
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6.4 Estimation of current biomass potentials for electricity generation and evolution 

up to the year 2030 

6.4.1 Estimation of current biomass potentials for electricity generation 

The use of renewable energy carriers in order to deliver electric, thermal and chemical energy can 

be estimated with the help of potentials. In the literature the potentials are split into the theoretical, 

technical, economic and deducible one [48], [171]. The theoretical potential corresponds to the 

upper-boundary of energy delivery and describes the theoretical, physical usable energy supply 

which is available in a certain region and at a certain time point. It can be for example the global 

current energy contained in energy crops mass in Germany if the country is set as a physical 

boundary. Due to certain technical, structural, ecological, economic and administrative con-

straints, this theoretical potential can only be partially used. The technical potential represents the 

share of the theoretical potential which can be used given technical restrictions. The technical 

potential is often used as a key indicator for investment or political decisions in the field of re-

newable energies. The boundaries are set by the limitations of the employed technologies. Further 

potential limits are defined by geographical, ecological and legal framework conditions. There-

fore technical potentials can be defined depending on time and space. For example the efficiency 

of a conversion technology generally increases with time and the potentials depends on the exist-

ence, for instance, of natural protection zones. In the case of bioenergy the technical potential 

represents the possible contribution of a certain area at a certain time point to cover an energy 

requirement. As various biomass conversion technologies and various framework conditions can 

be applied to a certain area it is possible to obtain different potential value levels for the same 

area. 

The economic potential describes the part of the technical potential that can be used given eco-

nomic restrictions. A variety of parameters have an influence on this potential (e.g. depreciation, 

interest) which is then more time and space dependent than the technical potential. As there are 

numerous possibilities to ensure the profitability of a plant, several economic potentials exist. As 

economic restrictions are permanently evolving (e.g. costs of renewable electricity production, 

changes in tax system, CO2 certificate trading) it is not possible to determine the economic po-

tential exactly and precisely. Finally the deducible potential is a limitation of the economic po-

tential and is set by considering additional restrictions like production capacities, administrative 

limitations or pre-existing plants. The study published in [132] and described in section 3.4.2 

provides an analysis of technical biomass potentials for the main feedstock employed i.e. energy 

crops, biowaste and manure. This study has been used in the present work for the determination 

of potentials dedicated to electricity production from biogas. Technical biomass potentials are 

converted into potentials for electricity generation assuming an average CHP electric efficiency 

of 38% [132]. These potentials represent the maximal electricity amount produced by the valori-

zation of technical biomass potentials dedicated to biogas production. The potentials are ex-

pressed in TWhel and are used in a constraint equation in the optimization model (see Eq. 5.3). 

They ensure that no electric capacity can be further built if the corresponding biomass potentials 

are not sufficient. 
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In Germany and at the end of 2012 a total biomass potential of about 36.7 TWhel linked to onsite 

electricity generation from biogas was estimated according to [132]35. This potential is mainly 

located in the Federal States of Bavaria, Lower Saxony and North Rhine-Westphalia which con-

tain more than 20 TWhel. An allocation of this total potential to the three analysed plant types is 

carried out for the base year 2013 by using the repartition rates mentioned in Table 6.3 (see Figure 

A.7 in the Appendix). 

This gives a repartition of about 22.2 TWhel for the EM plants, about 12 TWhel for E plants and 

about 2.4 TWhel for B plants. The level of the currently used biomass potentials dedicated to 

electricity from biogas is also relevant. As mentioned in [172] about 90% of the available biomass 

potential linked to energy crops for biogas is already used. This figure amounts to 50% in the case 

of manure or biowaste valorization [172] which indicates that development perspectives for the 

energetic use of biogenic waste and agricultural effluents are remaining. On the opposite the val-

orization pathway related to energy crops conversion into bioelectricity is almost saturated which 

could lead to very limited developments in some Federal States.  

6.4.2 Evolution of biomass potentials for electricity generation up to 2030 

As the model intends to assess German electricity production from biogas up to the year 2030, an 

evaluation of future biomass potentials for the three plant types “Energy crops” (E), “Energy 

crops and manure” (EM) and “Biowaste” (B) is necessary. In the case of agricultural plants em-

ploying energy crops but also manure it is supposed that the future evolution of the biomass po-

tentials is mainly driven by the evolution of agricultural surface areas [173], [174]. More precisely 
the historical evolution of agricultural areas between 1992 and 2014 at the scale of the German 

Federal States stands for the basis of a forecast carried out up to the year 2030. A general decreas-

ing trend in the surface area evolution is observed, especially in the Federal States of Bavaria, 

Low-Saxony and North Rhine-Westphalia, where the potentials are mainly located. For biowaste 

plants it is assumed that future potential developments are correlated to the evolution of household 

biowaste amounts [175]. According to the German Witzenhausen Institute for Waste, Environ-

ment and Energy, a saturation of the use of waste from industry and commerce is already ob-

served. Thereby future developments concerning this biowaste category may be limited. On the 

contrary, potentials for household biowaste should expand strongly up to the year 2030 [175]. 

Table 6.5 provides an overview of the assumptions that have led to the determination of future 

biomass potentials for the years 2013, 2020 and 2030. The results of the potentials estimation and 

forecast at the Federal State level and for each of the three installation types are mentioned in 

Figures A.8 and A.9 in the Appendix.  

 

 

                                                           
35 In [132] a total potential of 99.4 TWh both relative to biogas and biomethane is mentioned. The assump-

tion of a global electric CHP-efficiency of 38% in all Federal States leads to a total electrical potential of 

37.8 TWhel. From this value 1.1 TWhel are linked to the decentralized electricity production from bio-

methane and must be subtracted in order to obtain the total electrical potential dedicated to biogas.    
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Table 6.5 Employed assumptions for the determination of current and future biomass potentials 

 2013 (base year) 2020 2030 

Evolution of total agricultural areas in Germany (million ha) [173] 18.48 17.8 16.78 

Evolution of cattle and pig numbers (million) in Germany [174] 36 36 36 

Evolution of household biowaste amount (million t) [175] 4.5 7 8.3 

6.5 Specific investment-related costs 

The required economic data for both the simulation and optimization models are the specific rev-

enues and specific costs of electricity production for each plant type (in ct/kWhel). They are de-

termined year on year and all Federal States combined. Specific annual costs of electricity pro-

duction epc can be split into specific investment-related costs cinv and the specific operating costs 

cop (Eq. 6.5) [176]. 

                                         opinv ccepc +=                                                                     (6.5) 

In the following, the methodology and assumptions used to estimate the different cost positions 

for cinv and cop is described. 

The specific investment-related costs are fixed costs derived from the total capital investment TCI 

in the biogas plant. Investment-related costs consist of depreciation, imputed interest and insur-

ance costs. They are proportionally linked to the total capital investment [177]. Depreciations D 

are assumed to be linear over the lifetime t of the investment - 20 years for buildings and 10 years 

for technical components - and are determined according to Eq. 6.6. 

                                           
t

TCI
D =                                                                           (6.6) 

Imputed interest is derived from the total capital investment TCI and from the rate of interest j36 

according to Eq. 6.7 and assuming a residual value equal to zero. 

                                                           j
TCI

Int =
2

                                                                    (6.7)                                                                                                                                                                            

Finally insurance costs are estimated at 0.5% from the total capital investment according to [178], 

[179]. In the next section the methodology employed for the estimation of the total capital invest-

ment is described in detail.  

                                                           
36 A rate of interest of 6% is assumed according to [75]. 
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6.5.1 Total capital investment estimation 

The starting point for the total capital investment estimation is to collect equipment acquisition 

costs from questionnaires sent to German biogas plant operators. Acquisition costs can be divided 

into expenditure for plants and machines and also include indirect expenditure for construction 

and engineering. More precisely acquisition costs for plants are incurred by fermenters37, feed-

stock and digestate storage tanks. Acquisition costs for machines apply to CHP, feedstock deliv-

ery technology and process equipment for digestate treatment. Figure 6.5 mentions the acquisition 

costs that have been considered for typical sizes of each plant type E, EM and B. 

 

Fig. 6.5 Acquisition costs structure for typical E, EM and B biogas plant sizes 

The total capital investment corresponds to the fixed employed capital covering all equipment 

and auxiliaries related to the biogas plant. In the literature numerous methodologies lead to the 

estimation of the total capital investment. These methods include the Chilton method, the Holland 

method, and the Miller method [182], [183]. In this work the Peters and Timmerhaus method, 

also known as the Multiplier Values Method, has been selected [184]. The Multiplier Values 

Method is being more and more employed in scientific contributions, e.g. regarding the evaluation 

of bio-refineries or Biomass-to-Liquid processes [185], [186]. This method has been selected as 

it relies on the previously determined acquisition costs. In the Multiplier Values Method, the total 

                                                           
37 The correlations linking fermenters acquisition costs as a function of the fermenter’s volume and also as 

a function of the installed electric power are given in Figures A.10 and A.11 in the Appendix [105], [167], 

[180], [181].    
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capital investment TCI is assumed to be proportional to the sum of previously estimated acquisi-

tion costs ACi according to Eq. 6.8. The proportionality coefficient M is equal to the sum of mul-

tipliers values relative to all investment positions: investments for equipment, installation, piping, 

instrumentation, insulation, electrical facilities, buildings, infrastructures and technical utilities. 

                                    
=

=
n

i

iACMTCI
1

                                                                    (6.8) 

In order to characterize anaerobic digestion processes the selected multipliers are set out in Table 

6.6 and are based on the values bandwidth for microbial systems according to [187]. 

Table 6.6 Employed multipliers values for the total capital investment estimation 

Investment                     

position 

Description of the investment position E and EM 

plants 

B plants 

Total equipment                                      

acquisition costs 

Selling price from commercial tenders including indirect 

costs (construction overhead and engineering) 

 

1 

 

1 

Installation Costs for the physical installation of an equipment at the bi-

ogas plant location 

0.2 0.2 

Piping Pipes for steam, cooling and digestate                            0.3 0.3 

Instrumentation Measurement, process control, automation and metrology 0.1 0.1 

Insulation Costs for building insulation and painting 0.01 0.01 

Electrical                   

facilities 

Electric systems, lighting, grid connection 0.1 0.1 

Building Buildings associated with the biogas plant. Incorporates 

non-electrical building services as well as safety items. 

0.15 0.25 

Infrastructure Roads, parking, pathways 0.05 0.15 

Technical               

utilities 

External, process-oriented facilities required for the proper 

operation of a process facility (steam, water and electricity) 

0.01 0.4 

Total multiplier 

value M 

Sum of the multipliers values for the above-mentioned po-

sitions 

1.92 2.51 

 

By applying the above multipliers to the acquisition costs mentioned in Figure 6.5 correlations 

linking the specific investments (in €/kWel) to the installed electric power (in kWel) can be derived 

and are represented in Figure 6.6 exemplary for EM and B type plants. For small-scale manure 

plants with an installed capacity lower than 75 kWel the following correlation between the specific 



82 

 

investment tsManurePlanSI  and the installed electric power elP  has been applied based on the val-

ues of [116]38 (Eq. 6.9): 

                                               
392.0

0334,3
−

= eltsManurePlan PSI                                                      (6.9) 

A gap in the specific investment is observed in Figure 6.6 when moving from 75 kWel to               

100 kWel, due to a technological change for plants larger than 75 kWel. Starting from 100 kWel, 

manure is valorized with energy crops in co-digestion plants which requires another fermenter 

type (dry fermentation) and generates higher specific investment than in the case of small-scale 

manure plants (wet fermentation). 

 

Fig. 6.6 Specific investment for agricultural and biowaste plants (EM and B plants) as a function 

of the installed electric power 

For comparison [147] mentions similar specific investment values for both biowaste and agricul-

tural plants. Agricultural plants remain clearly less capital intensive than biowaste plants mainly 

due to the high level of investment in the biowaste pre-treatment process39 and in the anaerobic 

digester technology40. 

                                                           
38 In [116], a 30 kWel small scale manure plant shows a specific investment of 8,000 €/kWel, whereas                                

6,560 €/kWel are related to a 50 kWel plant and 5,587 €/kWel correspond to a 75 kWel one. 
39 Biowaste pre-treatment processes generally correspond to hygienisation, hydrolysis or pasteurization. 
40 The anaerobic digesters for biowaste plants often employ a dry fermentation process which is more ex-

pensive than the wet technology used in agricultural plants. 
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6.5.2 Additional investment 

Additional investment applies to flexible electricity production from biogas. It principally con-

cerns the employed supplementary flexible CHPs and the new gas storage equipment. The spe-

cific investment in new CHPs can be expressed as a function of the installed electric power ac-

cording to the correlation mentioned in [150]. Figure A.12 of the Appendix provides a correlation 

linking the investment in new gas storages to the storage working volume according to [188]. The 

total investment-related costs linked to the flexibilization of a 1,000 kWel plant are exemplarily 

estimated in Tables A.3 and A.4 of the Appendix. 

6.6 Specific operating costs 

The annual specific operating costs apply to energy crop costs, transport costs, personnel, energy 

and process utilities costs, maintenance and digestate treatment costs. In the following sections 

the methodology and assumptions employed for each of these specific cost positions are described 

in detail. In particular the methodology employed for the determination and the forecast of re-

gional energy crop costs in each Federal State is presented in detail in section 6.6.1.  

6.6.1 Energy crop costs estimation and forecast 

6.6.1.1 General employed methodology 

As mentioned in [189] the energy crop price paid by the biogas plant operators at the gate of their 

installation is set in the framework of supply contracts with local farmers. The first aspect to 

define in a supply contract is the biomass amount delivered. For each variety of energy crops the 

form of the delivered biomass as cultivable areas (ha), fresh mass (t FM) or silage should be 

specified. The margin between minimum and maximum Dry-Matter contents should be as small 

as possible in order to avoid fluctuations in feedstock quality. The second point concerns the place 

where the biomass should be delivered. Logistical aspects are thereby defined. For example it has 

to be clearly mentioned if the biomass should be harvested and transported to the plant or if the 

biomass is delivered under the form of silage. In the case of a silage delivery the farmer has to 

financially bear silage losses (minimum 10%). Another point concerns the biomass quality. The 

main parameters are here linked to biomass yields (in t/ha), methane yields (in m3/t) and to ferti-

lizer values (N- P- K- fractions).  

A central information in biomass supply contracts concerns the contracting period. From the farm-

ers perspective a short-term contract of five years has to be preferred in order to protect them from 

short-term high energy crop price volatility [190]. Biogas plant operators try to realize long-term 

contracts of about 10 years in order to maximize the financial security level of the project. The 

defined substrate prices are in most cases correlated to the development of other resource prices 

like for instance oil prices. On the farmer’s side, the costs of production of energy crops can be 

divided into various positions like seed costs, costs for crop protection, costs for fertilizer, variable 

and fixed machine costs, harvesting costs, fixed and variable storage costs, hail insurance costs, 

personnel costs, buildings and land rent costs.  
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Regarding the biogas plant profitability analysis the cost contribution of energy crops represents 

more than the half of the electricity production costs from biogas and is a key parameter in the 

implementation of a biogas plant project [147]. Four types of agricultural feedstocks are consid-

ered in the present work and represent more than 90% of the energy crops valorized into biogas 

in Germany: maize silage, grass silage, cereal grains and cereal silage [79]. As the energy crop 

costs are set locally in the framework of the above-mentioned supply contracts a regionalization 

of national energy crop costs is necessary. This aspect is strengthened by the fact that regional 

technical parameters (e.g. specific hectare yields) are also involved in energy crop costs calcula-

tions. In the following the methodology used to estimate regional energy crop costs at the Federal 

State level is presented. The objective is to determine the contribution of regional energy crop 

feedstock costs riostsFeedstockCC ,,2013,  in the total electricity production costs for the base year 2013. 

For this purpose the following sequential steps have been followed and are described in detail:  

▪ Estimation of regional mass flows for each feedstock type and in each Federal State  

▪ Regional maize silage costs calculations by using regional mass flows and hectare 

yields derived from national costs data 

▪ Regional grass silage costs calculations based on national hay costs, on reference values 

for nutrient and dry matter contents and on regional mass flows and hectare yields  

▪ Regional cereals grain costs estimation derived from national costs for wheat, triticale 

and rye and from regional mass flows and hectare yields  

▪ Regional cereals silage costs calculation derived from national cereals grain costs, from 

specific methane yields and from regional mass flows and hectare yields 

▪ Estimation of the regional energy crop costs for the base year 2013  

▪ Estimation of the electrical yields i  linked to feedstock organic dry matter and me-

thane content in biogas, to reference methane yields and to average CHP efficiencies  

▪ Estimation of the energy crop costs contribution into the electricity production costs 

from biogas in each Federal State and for each plant type in the base year 2013 

6.6.1.2 Estimation of regional mass flows for each feedstock type and in each region 

In a first step the calculation of each regional energy crops mass flow Mi,,r is carried out by mul-

tiplying in each Federal State the regional surface area Si,r dedicated to each energy crops feed-

stock for biogas production (in ha) by regional hectare yields (in t/ha) following Eq. 6.10. 

                                                            ririri SM ,,, =                                                                           (6.10) 

The regional hectare yields for maize silage and rapeseed are derived from average historical 

values covering the year 2006 to 2010 [191] and are mentioned in Tables A.5 and A.6 of the 

Appendix. The regional hectare yields for grass silage correspond to average values for roughage 

in the years 2010 and 2011 [192] and can be found in the Table A.7 of Appendix. The term 

roughage covers meadows and pastures, legumes for whole plant harvest (e.g. clovers) and grass 

cultivation on arable land. The regional hectare yields for cereal grains mentioned in the Table 

ri,
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A.8 of the Appendix are linked to average values for rye, winter cereals, winter wheat and triti-

cale41 between the years 2006 and 2010 [191]. The regional hectare yields for cereal silage are 

derived from the values for cereal grains (Table A.9 of the Appendix). An average corn-straw 

ratio of 1:1.2 and a DM-content of 87% for cereal grains and 33% for cereal silage are assumed 

[193]. The regional surface area riS , is then determined for each energy crops feedstock type. 

The estimation (e.g. for maize silage) is based on the regional agricultural surface area for energy 

crops42 SEC,r, on the previously determined regional hectare yields ri,  and on the share   of 

each feedstock in the total national energy crops mass issued from [194] (Eq. 6.11). 
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The calculated regional surface area riS ,  for each energy crops feedstock type is set out in Table 

A.10 of the Appendix. 

Regional manure mass flows MManure,r  employed in the EM plant type are further determined. In 

the present case it is assumed that the valorized manure is exclusively produced by cattles.                    

According to German Federal Statistical Office about 12.7 million cattles are identified at the end 

of the year 2013 and can be split into milk cows (4.3 million) and remaining cattle (8.4 million). 

According to [195], [196], [162] an average specific manure production rate QMilk cow is estimated 

at about 19.8 m3 of manure per milk cow which leads to a milk cow manure mass at about 85.4 

million t. A single remaining cattle produces about 8.3 m3 manure (QRemaining cattles) which implies 

a manure mass dedicated to the remaining cattle of about 69.5 million t [197], [198], [162].  

The total manure mass produced by German cattle amounts thus to about 154.9 million t. Accord-

ing to [199] about 33.2 million t cattle manure are dedicated to biogas plants which leads to a 

valorization factor w of 21.4% applied to each Federal State. In each Federal State r the existing 

milk cows and remaining cattles amount, NMilk-cows,r and NRemaining-cattles,r, is estimated based on his-

torical  data for the year 2010 from [197], [198]. The results are mentioned in Table A.11 of the 

Appendix. The total manure mass flow MManure,r in each Federal State can be therefore estimated 

according to Eq. 6.12 and the regional values are mentioned in Table A.12 in the Appendix. 

wQNQNM rcattlesmainingrcattlesmainingrcowsMilkrcowsMilkrManure += −−−− )( ,Re,Re,,,                  (6.12) 

 

 

                                                           
41 Triticale is a hybrid with wheat as the female partner and rye as the male partner. 
42 The regional agricultural surface area for energy crops is based on values from the biogas plant database 

described in Section 6.3. 
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6.6.1.3 Maize silage costs calculation 

Regional maize silage costs have been determined following an equilibrium price method. The 

farmer’s objective is to sell a certain amount of maize silage to biogas plant operators at an 

equilibrium price covering at least the variable maize silage costs of production and the profit 

loss due alternative non-cultivated crops. According to [200] the non-cultivated crops, which 

have been replaced by maize silage cultivation for biogas production mainly correspond to 

rapeseed. The maize silage costs for plant operators are thus determined according to Eq. 6.13.  

 

                                                                                                                                                                                                                                   
Maize silage costs                         Net profit loss due to the rapeseed non-cultivation                     Variable maize silage costs  

              (6.13) 

With: 

-  
tMaizec /€)( : Maize silage costs in €/t 

- 
tRapeseedc /€)( : Winter rapeseed costs in €/t 

- 
haRapeseedc /€)var(

  
: Winter rapeseed variable costs in €/ha 

- 
haMaizec /€)var(

 
: Maize silage cultivation costs in €/ha 

- 
hatMaize /)( : Maize silage hectare yields in t/ha 

- 
hatRapeseed /)(  

: Winter rapeseed hectares yield in t/ha 

The variable costs for maize silage and winter rapeseed in €/ha have been determined based on 

data from [201]. According to [201] the average costs for winter rapeseed per Dry-Matter feed-

stock mass amounts 297 €/tDM. The hectare yields  (in t/ha) for maize silage are estimated in 

each Federal State based on the historical values observed from the year 2006 to 2010 [191].  

6.6.1.4 Grass silage costs calculation 

The costs for grass silage are derived from the ones for hay (average values for 2010, 2011 and 

2012, according to [202]) and from reference values for nutrients and Dry-Matter contents 

issued from [193] (Eq. 6.14). 

                                       

HayHay

GrassGrass
tHaytGrass

NDM

NDM
Cc




= /€/€ )()(                                            (6.14) 

With:                                                                                                                                                                      

- 
tGrassc /€)( : Grass silage costs in €/t  

- tHayC /€)( : Hay producer costs in €/t       



hahahatthatt MaizecRapeseedcRapeseedRapeseedcMaizeMaizec /€/€//€//€ )var()var()()()()( +−= 
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- : Grass silage dry matter content in % 

- : Hay dry matter content in % 

- : Nutrients content in grass silage in MJ/kgDM 

- : Nutrients content in hay in MJ/kgDM 

6.6.1.5 Cereal grains costs calculation 

Regional costs for cereal grains corresponds to average costs of wheat, triticale and rye. They 

have been provided by the Agricultural Market Information society (AMI) and concern the years 

2009/2010, 2010/2011 and 2011/2012 [202].  

6.6.1.6 Cereal silage costs calculation 

Regional costs for cereal silage are derived from cereal grains costs and from average feedstock 

methane specific yields [162], [203] (Eq. 6.15). 

                                 
GrainsCereal

CH

CH

SilageCereal c
GrainsCerealV

SilageCerealV
c −− 

−

−
=

)(

)(

4

4




                                 (6.15) 

With: 

- SilageCerealc − : Cereal silage costs in €/t 

- GrainsCerealc − : Cereal grains costs in €/t      

- )(
4

SilageCerealVCH − : specific methane yield for cereal silage in m3
methane/tCereal silage, oDM 

-  )(
4

GrainsCerealVCH − :  specific methane yield for cereal grains in m3
methane/tCereal-Grains, oDM 

6.6.1.7 Estimation of the energy crop costs for the base year 2013 

The previous energy crop costs have been determined at the Federal State level for the year 2012. 

As the economic evaluation starts in 2013, an estimation of these costs has to also be realized for 

the base year 2013. The regional energy crop costs have thus been calculated according to Eq. 

6.16 and the results are mentioned in Table A.13 of the Appendix. 

                               
moyi

ri

nationaliri
c

c
cc

,,2012

,,2012

,,2013,,2013 =                                     (6.16) 

With:                                                                                                                                                                          

- ric ,,2013 : regional specific costs for each feedstock i to be determined for the base year 2013 in 

each Federal State r (€/t) 

GrassDM

HayDM

GrassN

HayN
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- nationalic ,,2013 : national specific costs for each feedstock i determined for the base year 2013 ac-

cording to [204] (€/t) 

- ric ,,2012 : regional specific costs for each feedstock i determined for the base year 2012 in each 

Federal State r (€/t)43 

- moyic ,,2012 : for each feedstock type, average value over all Federal State of the previously deter-

mined regional feedstock costs for the base year 2012 (€/t) 

6.6.1.8 Estimation of electrical yields  

In a further step the contribution of energy crop costs to the total electricity production costs 

should be determined. Therefore the above mentioned energy crop costs expressed in €/t should 

be converted into ct/kWhel with the help of feedstock specific electrical yields in kWhel/t. For each 

of the energy crops feedstock the electrical yield in kWhel/t is defined according to Eq. 6.17: 

                           
CHPMethanegMethaneiBiogasiiii eHLoDMDM −= ,,)1(              (6.17) 

With: 

- : Dry-Matter content in feedstock i (%)44 

- : Organic Dry-Matter content in feedstock i (%)44 

- : storage losses for feedstock i (%) [196] 

- : biogas yield for feedstock i ( )44 

- Methane : CH4 content in the biogas produced from the valorization of feedstock i (%)44 

- MethanegH , : methane gross calorific value (kWh/m3)45 

- : average CHP electric efficiency (%)46                                                                          

The corresponding values of feedstock electrical yields   are thus mentioned in Table A.14 of 

the Appendix. 

                                                           
43 Determined in sections 6.6.1.3 to 6.6.1.6 
44 The corresponding numerical values for each feedstock are given in [162]. 
45 The methane gross calorific heating value is to 9.97 kWh/m3 according to [151]. 
46 An average CHP electric efficiency of 38% is assumed for the electrical yields determination. 
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6.6.1.9 Estimation of the energy crop costs contribution in the total electricity production costs 

from biogas            

Following the general methodology and the assumptions made in the previous sections the con-

tribution of the different energy crop costs to the total electricity production costs from biogas is 

estimated for the base year 2013. This contribution riostsFeedstockCC ,,2013,   can be expressed in each 

Federal State r as following (Eq. 6.18): 

                                            
= =

=
4

1

,,2013,,2013
16
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,,2013,
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i i
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r

riostsFeedstockC

p
C




                           (6.18) 

With: 

- riostsFeedstockCC ,,2013, : contribution of the feedstock costs in the electricity production 

costs from biogas in the Federal State r (in ct/kWhel) 

- i: feedstock type 

- ri , : regional electric share of feedstock i (%)47 

- rip ,,2013 : regional specific costs for each feedstock i the base year 2013 in each Fed-

eral State r (in €/t) 

- : electrical yields for feedstock i (in kWhel/t) 

For each of the two agricultural biogas plants E an EM and in each Federal State r the numerical 

values of the energy crop costs contribution in the electricity production costs are set out in Fig-

ures A.13 and A.14 of the Appendix. In the case of E plant type, the energy crop costs contribution 

varies from 7.03 ct/kWhel in the Federal State of Bavaria up to 10.88 ct/kWhel in Brandenburg. 

The average energy crop costs contribution is estimated at about 9.01 ct/kWhel for the base year 

2013. The co-digestion of energy crops with manure in EM plants has the effect of lowering the 

costs contribution of energy crops in the electricity production costs as manure is available for 

free. In this case the average energy crop costs contribution for the year 2013 amounts about              

7.94 ct/kWhel. The lowest costs contribution is observed in Bavaria with 6.35 ct/kWhel and reaches 

its maximum in the Federal State of Brandenburg with 9.79 ct/kWhel. 

6.6.1.10 Energy crop costs forecast up to the year 2030 

Forecasts for the previously determined energy crop costs contribution (in ct/kWhel) up to the year 

2030 are then established for each Federal State. The high volatility relative to seed price leads to 

unpredictability in the energy crop costs forecasts [190]. In the forthcoming years a progressive 

introduction of agricultural residues in German biogas plants should occur. Simultaneously the 

                                                           

47 The regional electric share ri , for energy crops feedstock i is defined as the ratio between the electricity flow 

amount Ei,r linked to a feedstock i in a region r and the total electricity amount for all energy crops in a region r. 

i
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future energy crops demand for biogas should slow-down mainly due to the subsidy cut related 

to energy crops valorization decided in the framework of EEG 2014. Agricultural residues are 

available for free on the site of the biogas plant and do not require transport costs. Their future 

increased use should reduce the volatility of energy crop costs. Considering all these aspects an 

energy crop costs stability48 up to the year 2030 is assumed in the framework of a base scenario 

and in all Federal States. In addition to the analysis in the base scenario, energy crop costs shocks 

are carried out in the framework of a further scenario. More precisely an energy crop costs in-

crease of +10% per year between 2020 and 2025 is considered (section 8.2). 

6.6.2 Biomass feedstock transport costs 

6.6.2.1 Energy crops transport costs 

Biomass feedstock transport costs are influenced by three main parameters: the biomass type and 

feedstock physicochemical properties, the transport distance and the biomass collection radius. In 

a first step the biomass collection radius in km is defined for each of the feedstock types. In [205] 

a correlation between the total usable surface area for energy crops (ha) and the collection radius 

(km) from the biogas plant is provided and represented in Figure 6.7. 

 

Fig. 6.7 Usable surface area as a function of the transport distance [205] 

                                                           
48 This cost stability does not integrate the annual discount rate of 6% applied to all cost flows up to the year 2030. 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0 1 2 3 4 5 6 7 8 9 10 11 12 km

ha



91 

 

Table 6.7 provides specific feedstock hectare yields and a typical feedstock mass repartition for 

1 ha agricultural surface area. By combining this information with the results of Figure 6.7 a 

correlation between the usable feedstock mass and the transport distance can be established for 

each energy crops type (Figure 6.8).                                                                                                                                      

Table 6.7 Specific hectare yields and mass repartition of energy crops for 1 ha surface area  

 Hectare yields                        

(tFeedstock FM / ha) [79] 

Mass repartition                                                

according to [79] 

Maize silage 50 73% 

Grass silage 33 12% 

Cereal silage  40 7% 

Cereal grains 5,5 2% 

Sugar beet, catch crop and miscellaneous 

agricultural feedstocks 

65 (not taken into account 

in the calculations)  

7% (not taken into account in 

the calculations) 

 

 

Fig. 6.8 Usable mass amount for energy crops as a function of the collection radius [79], [205] 

In a second step and according to [206], [207], [208] specific transport costs in €/t can be esti-

mated as a function of the energy crops collection radius in km (Figure 6.9). 
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Fig. 6.9 Specific biomass transport costs for energy crops as a function of the collection radius 

[206], [207], [208] 

Only a single public study deals with the estimation of transport costs functions applied to grass 

silage for biogas in Germany [208]. In this study transport costs for maize silage have also been 

analysed and remain clearly lower than the transport costs for grass silage. This thus confirms the 

gap observed in Figure 6.9. For a given farm this study provides, assuming a transport distance 

of 5 km, grass silage costs of about 1.72 €/t and maize silage costs of about 1.02 €/t. The main 

driver explaining this difference seems to be linked to fixed costs. Biomass transport costs are 

made of variable machine costs, fixed costs and personnel costs. Total fixed costs can be split into 

fixed costs for machines and equipment and fixed costs for storage buildings. Fixed costs for 

storage buildings are similar for maize silage and for grass silage due to them having approxi-

mately the same feedstock density. The costs discrepancy can therefore be explained by the high 

investment in machines and equipment linked to grass silage. For grass silage specific annual 

depreciations of about 87.29 €/ha are already mentioned for the machines and equipment with 

79.66 €/ha for tractors and 7.63 €/ha for rotary mowers [209]. In the case of maize silage the total 

fixed costs amount to 82.45 €/ha [210] which is lower than depreciations for machines and equip-

ment relative to grass silage. The combination of the two correlations set out in Figures 6.8 and 

6.9 finally provides for each feedstock type specific biomass transport costs (in €/t) as a function 

of the transported mass amount in t (Figure 6.10). 
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Fig. 6.10 Specific biomass transport costs for energy crops as a function of the transported energy 

crops mass amount 

6.6.2.2 Manure transport costs 

As stated in section 6.6.1.2, about 12.7 million cattle and about 158,000 cattle farms were identi-

fied in Germany at the end of 2013 [211]. This corresponds to about 80 cattle per farm. Further-

more the total manure mass produced by German cattle was estimated at about 154.9 million t in 

section 6.6.1.2. The cattle manure mass amount per km49 is further determined in Table 6.8. The 

calculations are based on the total surface area of Germany, which is 357,000 km2, and take into 

account a manure valorization factor of about 68% [212], [213]. 

Table 6.8 Assumptions relative to cattle manure feedstock in Germany 

Number of cattle farms in Germany at the end of 2013 [211] 158,000 

Germany’s surface area (km2) [212] 357,000 

Number of cattle farms per km2 in Germany 0.442 

Total manure mass produced by German cattle at the end of 2013 

(million t) 

154.9 

Manure valorization factor (%) [213] 68 

Cattle manure mass amount per km in Germany (t/km) 522.9 

                                                           
49 The collection radius r (in km) is linked to the surface area S (in km2) by Eq. 6.19: 

2rS =   (6.19) 
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Furthermore Figure 6.11 represents the manure transport costs as a function of the collection ra-

dius assuming a manure density of 1 kg/m3 [214], [215]. 

 

Fig. 6.11 Specific manure transport costs as a function of the collection radius [214], [215] 

As shown in Table 6.8, about 522.9 t of manure per km are assumed as specific manure mass 

amount in Germany. This value is further combined with the results of Figure 6.11. This leads to 

the determination of specific manure transport costs as a function of the manure amount trans-

ported (Figure 6.12). 

 

Fig. 6.12 Specific manure transport costs as a function of the feedstock mass amount 
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6.6.2.3 Biowaste transport costs 

In the case of biowaste four concentric zones are firstly defined according to various collection 

radiuses in km (Figure 6.13 and Table 6.9). In each zone population density (a1 to a4), biowaste 

per habitant amount (b1 to b4) and the maximal biowaste amount per zone (m1,max to m4,max) are 

determined (Figure 6.13 and Table 6.9).  

The population density in each zone is determined based on literature data in [216]. For each 

zone the biowaste per habitant amount is issued from a study published by the State Office for 

the Environment, Measurements and Nature Conservation of the Federal State of Baden-Würt-

temberg (LUBW) [217].   

The maximal biowaste amount contained in each zone is determined according to following equa-

tions system S1: 
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Fig. 6.13 Biowaste collection zones (author’s own representation) 

In order to estimate the biowaste transport costs two functions are defined in Table 6.9 according 

to [218]. A first cost function covers the zone 1 (from 0 km to 10 km) and refers to the biowaste 

collection in close range and in the urban area. A second function is applied for zones 2, 3 and 4 

and corresponds to a transport distance greater than 10 km in peri-urban and rural areas. Table 
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6.9 sums up the input data that have been assumed in order to estimate the biowaste transport 

costs. 

Table 6.9 Collection radius, maximal amount per inhabitant and specific transport costs for bio-

waste 

 Biowaste 

collection  

radius (km) 

Population                    

density (a1 to a4)  

in hab/km2 [216] 

 

 

Annually                  

produced                  

biowaste mass per 

inhabitant                   

(b1 to b4) in 

kg/hab [217] 

Calculated                     

maximal biowaste 

amount per zone50 

(m1,max to m4,max) 

in t 

Specific biowaste 

transport costs C (€/t) 

as a function of the 

collection radius r 

(km) 

Zone 1 0 to 10 1500 167 78,697 5.14.0 += rC               

(6.20) [218] 

Zone 2 10 to 30 300 107 80,676  

5.18.0 += rC  

(6.21) [218] 

Zone 3 30 to 60 150 92.5 117,692 

Zone 4   60 to 120 75 63 160,315 

 

In a zone i and based on the collection zones represented in Figure 6.12 the biowaste collection 

radius ri can be expressed as a function of the transported biowaste amounts mi,k according to the 

following equations system (S2): 
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By using the numerical values of Table 6.9 in each equation of (S2), correlation functions between 

the collection radius ri in each zone i and the collected biowaste amount mi,k are obtained and 

represented in Figure 6.14. 

                                                           
50 In a zone i the maximal biowaste amount mi,max is determined based on the maximal biowaste collection 

radius ri,max, on the population density ai and on the annually produced biowaste amount per inhabitant bi 

according to Eq. 6.22: iiii barm = 2

max,max,                                                                                 (6.22) 
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Fig. 6.14 Biowaste collection radius as a function of the biowaste mass amount 

Finally by combining the results of Figure 6.14 with the costs functions of Eqs. 6.20 and 6.21 

specific biowaste transport costs (in €/t) can be expressed as a function of the collected biowaste 

amount (in t) (Figure 6.15). 
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Fig. 6.15 Biowaste transport costs as a function of the biowaste mass amount 

6.6.3 Other operating costs 

Other annual operating costs concern electricity consumption, process utilities, personnel, mainte-

nance and digestate treatment costs. In order to estimate these costs positions the following as-

sumptions have been made and are derived from literature sources and from biogas plant operator 

data (Table 6.10). 
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Table 6.10 Main assumptions related to electricity consumption, process utilities, personnel, 

maintenance and digestate treatment specific costs  

 E Plant type  EM Plant type B Plant type 

Specific electricity              

consumption costs 

Electricity price: 15.11 ct/kWhel in year 2013 and 15.23 ct/kWhel in year 2015 [12]                                    

Electricity own requirement rates in 2013:  [219]                                                                                                                

- 0 to 75 kWel: 10%                                                                                                                   

- 75 to 150 kWel: 6.9%                                                                                                                

- 150 to 500 kWel: 7.2%                                                                                                          

- 500 to 1,000 kWel: 7.9%                                                                                                                                                                              

- More than 1,000 kWel: 8.7%                                                                                

Specific process utilities 

costs 

10,000 €/a [75] 1.2 €/t for impurities elimination. Impurities 

correspond to 2% of the biowaste mass input 

which is valorized at 60 €/t [220]  

Specific personnel costs 

 

Data from biogas plant operators:                                                                                                                                               

Cost of 1 Full Time Employee (FTE): 30,000 €/a. 

1 FTE employed from 0 to 750 kWel and 2 FTEs from 750 to 1,000 kWel                                                                   

From 1,000 to 6,000 kWel: 1 supplementary FTE every 500 kWel                                                              

From 6,000 to 10,000 kWel: 1 supplementary FTE every 1,000 kWel                                                     

From 10,000 to 20,000 kWel: 2 supplementary FTEs every 1,000 kWel 

Specific maintenance costs 

 

Maintenance costs for existing and new CHPs in ct/kWhel as a function of electric 

power (Eq. 6.23) [150]:  C= 17.053.P-0.4782 (6.23)                                                                     

The maximal unit size of one CHP equals to 2,000 kWel (see Figure A.16 in the 

Appendix).  

Specific digestate                   

treatment                                           

costs 

0 €/t: digestate directly valorized 

on soils as a fertilizer by the farmer 

for its own exploitation. 

44,6 €/t biowaste input [121] 

                                                                                                                                                                                                                

In a further step Table 6.11 sums up the assumed annual evolution rate for each costs position up 

to the year 2030. The annual evolution for electricity consumption, process utilities, maintenance 

and digestate treatment costs is assumed to follow an average inflation rate set at 1% per year. 

According to [221] an average evolution rate of +3.6% concerning German salaries has been 

observed between the years 2015 and 2016. Technicians and workers are the most employed per-

sonnel category in biogas plants companies. For this reason a lower evolution rate at about 2% 

has been assumed in the model as a conservative assumption for personnel costs. Investment-

related costs are assumed to remain constant from a year to another. Biogas plants are supposed 

to represent a mature and established technology in Germany which is not subject to disruptive 

innovations. Finally all biomass feedstock related costs, i.e. energy crop purchase and transport 

costs have been assumed as constant from a year to another. This costs stability is firstly explained 

by the progressive introduction of agricultural residues – available for free – in German biogas 

plants. Another aspect concerns the slow-down of the energy crops demand in the biogas sector 

due to the subsidy cut for energy crops valorization in the framework of the EEG 2014. Both of 

these aspects should thereby tend to stabilize future energy crop costs for biogas plants in Ger-

many. 
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Table 6.11 Assumed annual evolution rates for each costs position up to the year 2030 

Costs positions Annual evolution of to the year 2030 

Electricity consumption costs  +1% per year 

Utilities process costs +1% per year 

Personnel costs  +2% per year 

Maintenance costs +1% per year 

Digestate treatment costs +1% per year 

Investment-related costs Assumed as constant up to 2030 

Energy crop costs Assumed as constant up to 2030 (base scenario) 

Biomass transport costs Assumed as constant up to 2030 

6.7 Revenues estimation and forecast 

Revenues for the operation of German biogas plants are issued from the sale of the electricity fed 

into the grid, from the valorizable heat sale issued from biogas combustion in CHPs, from the sale 

of the digestate as a fertilizer or compost and from the biowaste valorization into biogas. 

6.7.1 Revenues from electricity sale 

Based on the two operator models described in Figure 6.2 in section 6.2.2 following revenues are 

defined for the electricity sale (Table 6.12). 

Table 6.12 Operator models for the calculation of electricity revenues  

Model type Model description 

     

Model A according to EEG 2012 

FIT without electricity direct marketing up to an installed power of 750 kWel  

Electricity direct marketing with market AND flexibility premium for an in-

stalled power larger than 750 kWel 

     

 

Model B according to EEG 2014 

FIT without electricity direct marketing up to an installed power of 100 kWel 

For installations with an installed capacity larger than 100 kWel, the electric-

ity sale revenues can be split into: 

       -  A subsided part linked to 50% of the installed capacity 

       -  The 50% remaining capacity obtain revenues corresponding to the 

electricity sales price at the monthly average EPEX SPOT electricity price 

 

Furthermore a flexibility supplement at 40 €/kWel aims to cover the invest-

ments in supplementary CHPs and gas storages. 
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Revenues from the FIT are assumed to decrease by 2% per year. In the case of the direct marketing 

model it is assumed that plant operators sell the electricity produced at a price corresponding to 

the yearly average of monthly EPEX electricity prices in Peak time. According to [12] the average 

EPEX-Peak electricity price was 43.13 €/MWhel for the year 2013 and 35.09 €/MWhel for 2015. 

The evolution of these annual prices up to 2030 is based on a forecast from EWI Prognos and 

GWS published in 2014 [222]. The monthly average EPEX-Base electricity prices used for the 

calculation of the market premium are derived from the BDEW51 annual report [12]. Average 

prices have been considered for the years 2013 and 2015 and amounted to 37.78 and 31.68 

€/MWhel respectively. 

6.7.2 Flexibility premium and supplement 

The assumptions employed for the calculation of the flexibility premium in the context of EEG 

2012 are mentioned in Table A.3 and A.4 of the Appendix. As a result a constant value of                    

1.13 ct/kWhel for each plant size over the electric capacity bandwidth [0:20,000 kWel] is obtained. 

Under EEG 2014 framework the flexibility supplement amounts 40 €/kWel which corresponds to 

about 0.85 ct/kWhel. 

6.7.3 Revenues from heat sale 

Beside electricity, heat represents another useful product of biogas combustion. It can be valor-

ized in local heat sinks and in order to cover the plant’s own thermal requirements. Taking into 

account monitoring reports published by the German biomass research centre, external heat utili-

zation rates to external heat sinks at levels of 56% and 57% are assumed respectively for the years 

2012 and 2014 [223], [224]. The thermal own requirements rates set out in Table 6.13 are also 

taken into account [225], [226]. 

Table 6.13 Thermal own requirements rates for the years 2013 and 2015 [225], [226] 

 Year 2013 Year 2015 

0 to 70 kWel 57% 52.1% 

71 to 150 kWel 36.4% 42.3% 

151 to 500 kWel 25% 27.3% 

501 to 1,000 kWel 23.9% 24% 

More than 1,000 kWel 16.9% 18.4% 

                                                                                                                                                                                         

Regarding economic aspects, the Working Group for Heat and Heating Economics published a 

price comparison for district heating in Germany. In 2011, the average district heating price in 

Germany was estimated at about 7.6 ct/kWhth [227]. In [119] revenues for external heat sale and 

                                                           
51 German Association of Energy and Water Industries 



102 

 

use of 5 ct/kWhth were assumed. In the present work and for all biogas plants analysed, a value 

of 4 ct/kWhth
52 is taken into account as conservative assumption. Assuming a future development 

of the market for renewable heat in Germany an annual increase of 2% per year up to 2030 has 

been further considered for the revenue from the external heat sale. 

6.7.4 Revenues from digestate sale 

Digestates can represent another source of revenues for biogas plant operators through the sale as 

fertilizer in the case of agricultural plants or as a compost for a biowaste plant. In the case of 

agricultural plants, no revenues related to the digestate sale are taken into account, as the diges-

tate is supposed to be directly valorized by the farmer on his own land. For biowaste plants, rev-

enues linked to the compost sold mainly depend on N-, P- and K- contents and prices and can 

vary strongly from one Federal State to another. In [228], an average compost price of 6 €/t for 

N- P- and K- is given for the area of Westfalen-Lippe, located in the Federal State of North Rhine-

Westphalia. As no study mentioning regional compost prices currently exists, this value of 6 €/t 

is applied to all the Federal States. Finally an annual increase of 1% per year for the revenues 

from the digestate sale has been assumed up to 2030. 

6.7.5 Revenues from biowaste valorization 

Plant operators can receive, in addition to the electricity, heat and digestate revenues, municipal 

fee revenues for the valorization of biowaste into biogas. These fee revenues should in principle 

cover the costs associated with the digestate composting process, which follows the anaerobic 

digestion. The level of these revenues is very heterogeneous and can vary between 20 and 100 €/t 

[229]. It often remains confidential information, which is rarely published by plant operators. 

These specific revenues are moreover not directly linked to the plant location so that a regionali-

zation at the Federal State level is currently not possible. Considering all these uncertainties fac-

tors an average fee revenue level of 60 €/t for the valorization of biowaste is assumed for all 

Federal States. Revenues for biowaste valorization are also assumed to increase by 2% per year 

up to 2030. This can be justified by a supposed increasing valorization of biowaste in biogas 

plants in the future. 

6.8 Model input data uncertainties and plausibility 

The main objective of model assumptions is to approximate as accurately as possible the eco-

nomic and physical reality of the planning, construction, operation and maintenance of a biogas 

plant. Therefore potential uncertainties concerning the employed numerical assumptions should 

be pointed out. A strong input data uncertainty can considerably impact the profitability calcula-

tions as well as further strategic decisions on a mid-term horizon. In this section a review of all 

                                                           
52 The average revenue from heat sale is mentioned in ct/kWhth and must be converted into the specific 

electric functional unit in ct/kWhel. For this, mathematical functions linking thermal and electric yields to 

the electric capacities are determined according to values mentioned in Figure A.15 of the Appendix [150].   
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the technical and economic uncertainties affecting biogas plants in Germany is carried out. Plau-

sibility checks further ensure that the specified model input data is in line with reality. 

Technical uncertainties apply to biomass feedstock parameters, operating hours for base-load and 

flexible CHPs, to the supplementary gas storage volume as well as to the existing biogas plant 

capacity and to biomass potentials for electricity production. Biomass feedstock parameters such 

as the methane yields and the methane content in the biogas produced are derived from standard 

literature data which limits data uncertainties. In the case of agricultural plants (E and EM) the 

feedstock shares in the biomass input mix have been set taking into account the maize silage and 

cereal grains cap introduced under EEG 2012 framework (60% maximal mass share in the total 

input mix). The defined apportionment of feedstock mass is considered as representative enough 

of standard agricultural biogas projects. Nevertheless in practice the feedstock mass share can 

vary from one type of plant to another. In particular feedstock availability plays a major role in 

the input mix.  

The assumed base-load hours, i.e. 8,000 h/a, appear to be quite representative of real plants [165]. 

The calculated operating hours for flexible capacity are however subject to uncertainty. In the 

present work the systematic approach of flexibility leads to a bias in the economic evaluation. In 

practice every single plant has its own operation and flexibility strategy. In this work most prof-

itable plant sizes are thus determined under ceteris paribus conditions applied to flexibility. This 

enables a systemic assessment of all plant sizes and types.      

Technical uncertainties linked to the estimation of current and future biomass potentials for elec-

tricity production at a regional scale are pointed out. These potentials are derived from a single 

literature source according to [132]. This source represents the only study quantifying, for each 

feedstock, regional technical biomass potentials dedicated to electricity production from biogas 

in Germany. Ideally a comparison with other assessments –if available - could have reduced the 

uncertainty level for this parameter.  

A plant and size typology for existing biogas capacities has been determined on the basis of a data 

base containing 1,323 plants which is a representative sample of the whole plant park (about 8,900 

plants by 2015). In this sample the capacity and plant distribution obtained has then been scaled 

up to the level of the whole biogas plant park, which appears as a suitable approach. The uncer-

tainty level concerning the existing biogas plant portfolio remains then relatively low. 

Economic uncertainties are linked to the estimation of electricity production costs and revenues 

in each biogas plant type and size. From the costs side, the first uncertainty concerns the calcula-

tion of regional energy crop costs. In the calculations, national average biomass feedstock costs 

have been first determined according to [204], [230] and further regionalized with the help of 

regional hectare yields and regional mass flows. These two last parameters have been established 

by a literature review and should thus only be seen as standardized values. Further parameters 

such as local soil quality, weather conditions, nutrient cycles, intensity of use of pesticides and 

cultivation techniques employed also have an impact on the hectare yields level. They could not 

however be assessed in the present work due to a lack of available regional data. 
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Furthermore no study currently exists dealing with the systematic estimation of regional feedstock 

costs for maize silage, grass silage, cereal silage and cereal grains involved in German biogas 

plants. Methodological own assumptions have thus been made in order to determine each feed-

stock cost at a regional level (e.g. assumptions concerning the maize silage costs as a function of 

rapeseed costs or the relation between costs for cereal grains and cereal silage). 

Moreover effects of the international agricultural commodities markets are not taken into account 

which can lead to uncertainties. Indeed the seed prices, for instance for corn and wheat, are set at 

the MATIF Commodities Exchange in Paris and represent a major driver for the energy crop costs 

paid by the biogas plant operator at the gate of anaerobic digesters. The high volatility of these 

prices leads to unpredictability in the energy crop costs forecasts. Regional energy crop costs have 

been assumed to remain stable up to the year 2030. This costs stability is firstly explained by the 

progressive introduction of agricultural residues – available for free – in German biogas plants. 

Another aspect concerns the assumed slow-down of energy crops demand in the biogas sector 

due to the subsidy cut for energy crops valorization in the framework of EEG 2014. Both of these 

aspects should therefore tend to stabilize future energy crop costs for biogas plants in Germany. 

The determined regional energy crop costs contribution for EM and E plant type remain in a cost 

bandwidth going from 6.35 to 10.87 ct/kWhel (see section 6.6.1.9). Real data from the biogas 

measurement program II shows in Figure 3.11 that most of the electricity productions costs for 

agricultural plants vary between 15 and 20 ct/kWhel. The cost bandwidth for energy crops is then 

in line with real data as the energy crops cost generally represent between 40 and 60% of the total 

electricity production costs [231]. This validates the plausibility of the determined values for the 

regional energy crop costs contribution.            

The second uncertainty concerns the estimation of plant specific investment and especially the 

assumed Multiplier Values. These values are derived from [187] and apply to microbial systems 

which represent a suitable modelling for biogas plants. Nevertheless the multipliers determined 

correspond to an average of bandwidth values and can only be seen as approximations. A valida-

tion of the specific investment calculated is however possible based on a discrete evaluation of 

single biogas plants. In [232] several specific investments for biowaste and agricultural plants are 

mentioned. A biowaste plant located in Wicker and with an installed electric power of 1,300 kWel 

is characterized by a total capital investment of about 16.4 € million which corresponds to a spe-

cific investment at about 12,600 €/kWel. Similarly the biowaste plant in Alzey-Worms valorizes 

household kitchen biowaste and shows specific total investment of about 13,900 €/kWel for a 900 

kWel installed capacity. In [117] specific investment of about 18,700 €/kWel is found for a 312 

kWel installation and in [118] a 1 MWel plant shows specific investment at about 12,280 €/kWel. 

These specific investment values are in line with the correlation specified for biowaste plants in 

the simulation and optimization models (Figure 6.16). However a larger data sample would be 

necessary in order to fully validate the estimated investment for biowaste plants. Only a few stud-

ies concerning the economic assessment of biowaste installations are available in the literature 

and data from plant operators is rarely published.  
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Fig. 6.16 Specific investment for biowaste plants according to model input data and to data from 

existing plants [117], [118], [232] 

The specific acquisition costs for agricultural plants can be compared to real values provided by 

German plant operators for 55 installations in the framework of the “Biogas Measurement Pro-

gram II” [125]. The specific acquisition costs involved in the model data for agricultural biogas 

plants are in line with the values derived from the “Biogas Measurement Program II” (Figure 

6.17). 
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Fig. 6.17 Specific acquisition costs for agricultural EM plants53 according to model input data and 

to data from existing plants [125] 

Additional investment-related costs result from investment in supplementary CHPs and gas stor-

ages. These costs are determined using correlations issued from [150] and [188]. Another uncer-

tainty on the costs side concerns those for digestate treatment in biowaste plants. An average value 

of 44.6 €/t has been used according to [121] but in reality this cost position can vary between 20 

and 80 €/t. In order to quantify the impact of this volatility on plant profitability a sensitivity 

analysis has been realized in section 7.4.3 and includes the digestate treatment costs as one of the 

main profitability drivers. The correlations relative to biomass transport costs as a function of 

transport distance are drawn from literature data and can be found in [206], [207], [208], [215] 

and [218], which validates their plausibility and reduces the level of data uncertainty. 

Costs for process utilities (use of water or anti-foam) are drawn from plant operator data and 

estimated as constant at about 10,000 €/a for all plant sizes and all plant types [75]. This simpli-

fication generates data uncertainty but has a low impact on plant profitability as the share of pro-

cess utilities costs in total electricity production costs is not significant. Personnel costs have been 

set according to plant operator data at a unitary FTE cost of 30,000 €/a. The number of FTE 

employed is further directly correlated to the plant capacity range. In practice it also depends on 

the fermentation and digestate treatment process complexity and is difficult to generalise. For this 

reason the correlation between personnel costs and plant size involves uncertainties.   

Maintenance costs for CHP are estimated as a function of the total installed electric power ac-

cording to the correlation of ASUE mentioned in [150]. The number of maintained CHP units as 

a function of installed power is specified in Figure A.16 of the Appendix (own assumptions). A 

                                                           
53 Explanations justifying the visible gap observed in the acquisition costs when moving from 75 kWel to 

100 kWe are available in section 6.5.1. 
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CHP unit size of 2,000 kWel is assumed over the whole plant capacity bandwidth [0:20,000 kWel]. 

In practice a systematization and generalization of maintained CHP unit numbers as a function of 

total installed power appears to be difficult as it varies between plant operators. Thereby the cor-

relation linking maintenance costs to installed electric power is subject to uncertainty. Finally 

electricity consumption costs are determined on the basis of electricity own requirement rates 

[219]. The values assumed for electricity prices are 15.11 ct/kWhel for 2013 and 15.23 ct/kWhel 

for year 2015 according to [12]. Therefore the specified input data regarding this cost position 

appears plausible and is subject to a low level of uncertainty. 

In the present work it has been assumed that plant operators involved in the direct marketing 

model sell the produced electricity at a price corresponding to the yearly average of monthly 

EPEX electricity prices in Peak time. For the base year 2013, a price of 43.13 €/MWhel has been 

taken into account and corresponds to the yearly average of all monthly EPEX electricity prices 

observed in peak time [12]. Similarly for the year 2015 the average EPEX price for the electricity 

sold is about 35.09 €/MWh in Peak time [12]. For comparison in [233], the revenue structure of 

500 kWel agricultural plant is detailed under the EEG 2014 framework. The electricity direct mar-

keting model is considered there and three levels for the EPEX electricity price are assumed: 40, 

50 and 60 €/MWhel. The EPEX price for the electricity sold thus represents a major uncertainty. 

The impact of this uncertainty is however quantified with the help of a sensitivity analysis in 

section 7.4. The calculation of the flexibility premium and supplement has been done according 

to the legal definitions of EEG 2012 and EEG 2014, which minimizes the uncertainty level for 

this revenue position. Eq. 3.2 has been used for the plants evaluated under EEG 2012 whereas 40 

€/kWel is assumed according to EEG 2014 framework. 

Another uncertainty concerns the level of municipal fee revenues for biowaste valorization into 

biogas. Only few assessments are available in the literature for this revenue position, which can 

vary between 0 and 120 €/t. An average value of 60 €/t has been assumed for all the calculations. 

The influence of this uncertainty has been further quantified using a sensitivity analysis realized 

for biowaste plants in section 7.4.3. Revenues from digestate sale are subject to a low uncertainty 

level as they have been derived from literature data in [228]. A last economic uncertainty concerns 

the valorization of the heat produced by the CHPs on the biogas plant location site. The revenues 

for heat sale considerably influence plant profitability and depend on the presence of local heat 

network infrastructures as well as on potential sinks (e.g. buildings located in the proximity of the 

plant). The revenues specified for heat sale are however in line with values from literature study 

according to [119]. In sections 7.4.2 and 7.4.3 a sensitivity analysis realized for E and B plants 

integrates the impact of a strong variation of heat sale revenues on the specific operating profit. 

This quantifies the degree of uncertainty for this revenue position. All required techno-economic 

data is summed up in Table 6.14 according to its uncertainty level54. The sensitivity analysis re-

alized in section 7.4 quantifies the major uncertainties impacting plant profitability. 

 

                                                           
54 In Table 6.14 the green colour corresponds to data with very low uncertainty level, whereas data with a 

more important uncertainty level are marked in orange. This classification aims to characterize the degree 

of uncertainty for all techno-economic input data. 
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Table 6.14 Uncertainty levels for all models input data  

  Uncertainty 

level 

Comment 

Technical 

Uncertainties 

Biomass feedstock properties  The uncertainty level results here from 

the systematic approach followed in 

this work. In practice plant specific         

operation strategies involving specific 

technical parameters should be consid-

ered. 

 

Operating hours for flexible CHP  

Supplementary CHP size and gas 

storage volume 
 

Existing biogas plant capacity   

Biomass potentials for electricity 

production 
 The potentials have been derived from 

[132]. This source represents the only 

study quantifying, for each feedstock, 

regional technical biomass potentials 

dedicated to electricity production from 

biogas in Germany. Ideally a compari-

son with other assessments - if available 

- could have reduced the uncertainty 

level for this parameter. 

Economic 

Uncertainties 

Total capital investment  The impact of this uncertainty on                   

profitability is quantified by a sensitivity 

analysis in section 7.4. 

Additional investment 

(flexibilization) 
  

Energy crop costs  The impact of this uncertainty on                      

profitability is quantified by a sensitivity 

analysis in section 7.4. 
Biomass feedstock transport costs   

Electricity consumption costs   

Process utilities costs   

Personnel costs   

Maintenance costs  The impact of these uncertainties on 

profitability is quantified by a sensitivity 

analysis in section 7.4. 
Digestate treatment costs  

Revenues from electricity sale  

Flexibility premium and             

flexibility supplement 
  

Revenues from heat sale  The impact of these uncertainties on 

profitability is quantified by a sensitivity 

analysis in section 7.4. 
Revenues from biowaste 

Valorization 
 

Revenues from digestate sale   

 

Further uncertainties which are not involved in the input data perimeter should be pointed out. 

The first one relates to the legal frameworks that have been analysed. A continuation of the EEG 

2012 and EEG 2014 legal frameworks up to the year 2030 has been taken into account in the 

optimization model in order to carry out the forecasts. In practice new legal frameworks will be 

enacted in the next ten years and then impact the development of biogas in Germany. Another 

uncertainty concerns the effects of potential disruptive innovations notably related to fermenters 
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and to CHPs. Disruptive innovations could lead to an increase of plant efficiencies and to major 

electricity production costs decrease. These effects have not been integrated in the present work. 

It has been assumed that existing technologies for biogas production and valorization are well-

established and mature so that they will not be displaced by new technologies.  

6.9 Summary 

This chapter describes the methodology and assumptions used for determining the input data for 

both the simulation and optimization models. In a first step the existing German biogas plant park 

has been estimated by the end of the year 2012. A discretization of the existing capacities into 

three plant types (EM, E and B) and 49 plant sizes has been realized. The second step of the model 

input data determination concerns the estimation of current and future potentials for electricity 

generation relative to each of the three above mentioned plant types. Existing potentials have been 

evaluated at the Federal State level and for each plant type on the basis of literature data. Future 

potentials for agricultural plants are directly correlated to the evolution of agricultural surface 

areas whereas future biowaste potentials are closely linked to the evolution of household biowaste 

mass amounts. Data related to existing biogas plant capacity is used by the optimization model 

which is described in chapter 5. In a further step costs and revenues input data is determined. 

Costs data is divided into investment-related costs and operating costs. The determined invest-

ment-related costs in ct/kWhel consist of depreciations55, imputed interests and insurance costs. 

Operating costs can be split into various positions and are expressed in €/t or in ct/kWhel depend-

ing if the cost position is linked to a mass or to an energy flow. Operating costs positions concern 

regional energy crop costs56, biomass feedstock transport costs, as well as energy, process utilities, 

personnel, maintenance and digestate treatment costs. Revenues accrue from electricity, heat and 

digestate sales as well as from biowaste valorization. In the case of electricity sales two plant 

operator models are taken into account according to FIT subsidies from the EEG or following the 

electricity direct marketing model. Revenue assumptions for heat and digestate sales and for bio-

waste valorization are taken from literature data. In section 6.8 all uncertainties regarding model 

input data are pointed out. The main technical uncertainties concern the biomass feedstock prop-

erties, operating hours for flexible CHP, as well as supplementary CHP size and gas storage vol-

ume. Cost uncertainties mainly apply to investment-related, energy crop and digestate treatment 

costs. Revenue uncertainties mainly concern the EPEX price level for the electricity sold in the 

framework of the direct marketing model. Other revenue uncertainties are related to income from 

heat sales and biowaste valorization. The impact of the main cost and revenue uncertainties on 

plant profitability is further quantified using a sensitivity analysis in section 7.4.  

                                                           
55 Depreciations have been linearly derived from the total capital investment over the whole investment        

lifetime. The total capital investment was estimated with the help of the Multiplier Values Method and 

relates to all main equipment acquisition costs.  
56 A dedicated methodology for estimating regional energy crop costs in each Federal State was developed 

and is presented in section 6.6.1. 
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7 Model-based analysis of current electricity production from 

biogas in Germany  

The objective of this chapter is to present and analyse the results of the simulation model con-

cerning current electricity production from biogas in Germany. The simulation model aims to 

identify the most profitable biogas plant sizes under various legal frameworks. These installations 

correspond to the plants showing the highest specific operating profit determined under a variable 

and differentiated biomass input mass flow. In section 7.1 correlations linking the electricity pro-

duction costs and revenues to the installed electric power are established. They result from the 

combination of technical correlations obtained by the process simulation model in chapter 4 with 

the economic input data specified in chapter 6. In a further step correlations involving specific 

operating profits as a function of the installed electric power are then derived in section 7.2 under 

the legal frameworks of the EEG 2012 and EEG 2014. In each case the most profitable plant sizes 

are identified. The costs and revenues structure of these plant sizes is then assessed in section 7.3. 

A further sensitivity analysis realized in section 7.4 aims to identify and quantify the main prof-

itability drivers. In section 7.5 a technical assessment of the most profitable plant sizes is carried 

out and has for objective to determine for each installation biological and global energetic effi-

ciencies all along the biogas supply chain. A discussion of the methodology and results follows 

in section 7.6 emphasizing pros and cons of the simulation model employed. Based on the model 

results policy recommendations and strategic outcomes are then formulated for biogas plant op-

erators and decision-makers in section 7.7. Chapter 7 ends with a summary in section 7.8.  

7.1 Costs and revenues functions 

The economic model input data described in chapter 6 is combined with the correlations derived 

from the process simulation in chapter 4. This provides costs and revenues functions linking each 

specific cost and revenues position, expressed in ct/kWhel, to the electric installed power in kWel 

(Figures 7.1 and 7.2). The results are shown for EM plants and analysed in the following. The 

results for E and B plants are mentioned in Figures A.17, A.18, A.19, A.20, A.21 and A.22 of the 

Appendix. Regarding the investment-related costs a first domain going from 0 to 75 kWel can be 

defined and corresponds to small installations valorizing manure in mono-digestion processes. A 

gap in the specific investment-related costs is observed when moving from 75 kWel to 100 kWel, 

due to a technological change for plants larger than 75 kWel. Starting from 100 kWel, manure is 

therefore valorized with energy crops in co-digestion plants which requires another fermenter 

type and generates higher specific investment57. Due to scale effect, a strong decrease of the spe-

cific investment-related costs occurs from 100 to 1,000 kWel. Starting from about 2,000 kWel, a 

stabilization is observed mainly due to the fact that supplementary fermenters and CHPs are re-

quired58. Specific maintenance costs for both base-load and flexible CHPs decrease for plant sizes 

up to 2,000 kWel. For larger sizes costs stabilize as supplementary CHP gas engines are employed. 

                                                           
57 For more information see the evolution of the specific investment in Figure 6.6. 
58 The maximal unit size for one CHP is set in the present work at 2,000 kWel. 
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The evolution of specific personnel costs is characterized by size effects in each of the power 

ranges [0:75 kWel] and [100:20,000 kWel]. In the power range [0:75 kWel] personnel costs corre-

spond to 4% of the total capital investment according to [234]. Additional costs for laboratory 

analyses at 1,000 €/a are further considered [234].  

In the case of EEG 2014 flexibilization costs of 40 €/kWel apply starting from an installed capacity 

of 150 kWel. These costs remain constant up to 20,000 kWel at a value of about 1.13 ct/kWhel. No 

biomass feedstock costs are related to small scale manure plants inferior to 75 kWel as no energy 

crops and only manure is valorized into biogas. Average energy crop costs of about 7.07 ct/kWhel 

are taken into account starting from 100 kWel
59 and remain stable all along the capacity bandwidth. 

Energy crop costs are then supposed to not be linked to the plant size but rather to the plant 

location, i.e. to the Federal States. This regionalization is further integrated in the optimization 

model developed at the Federal State level. 

Fig. 7.1 Specific annual costs for EM plants as a function of the electric power for the base year 

2015 and under EEG 2014 

The specific revenues for electricity sale can be divided into the EEG-subsidies, the EPEX 

monthly average and the EPEX-Peak electricity sale price accrued from electricity direct market-

ing. Their evolution is represented in Figure 7.2. For small-scale manure plants with an installed 

power between 0 and 75 kWel no direct electricity marketing model is considered. Plant operators 

thus receive a constant revenue level of 23.53 ct/kWhel for the produced electricity according to 

[106]. For plants larger than 75 kWel the subsidy cut for energy crops and manure applies. This 

                                                           
59 This energy crop costs value represents the average of all regional energy crop costs determined for the 

base year 2015 for EM plants (see section 6.6.1.9). 
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explains the strong variation for the specific electricity sale revenues visible on Figure 7.2. The 

electricity direct marketing model applies starting from 100 kWel with an EPEX-Peak electricity 

price at about 43.13 €/MWhel and a monthly average EPEX-Base electricity price at about 31.68 

€/MWhel [12]. Specific revenues from heat sale slightly increase with the plant size. Thermal 

own-requirements decrease with the plant size which implies an increase of the valorization rate 

for the produced heat and consequently of the specific heat sale revenues. Specific revenues for 

digestate sale are assumed to remain stable at 6 €/t according to [228]. The conversion of this 

value in ct/kWhel implies a slight revenues decrease as the plant size increases. This is justified 

by an increase in plant electric efficiency with plant size [150]. Finally the flexibility supplement 

amounts to 40 €/kWel for plants larger than 150 kWel and remains stable as the operating hours of 

flexible installations stays constant at about 4,713 h/a.      

 

Fig. 7.2 Specific annual revenues for EM plants as a function of the electric power for the base 

year 2015 and under EEG 2014 

The evolution of total specific revenues and total specific electricity production costs is repre-

sented in Figure 7.3. This leads to the identification of profitability and unprofitability domains60. 

“Break-even points” are determined in cases where specific revenues are equal to the electricity 

production costs. The results of Figure 7.3 show that for EM plants specific electricity production 

costs remain higher than the specific revenues starting from 75 kWel. No profitable operation for 

the EM plants is possible above this capacity size. 

                                                           
60 A profitability domain corresponds to the case where specific revenues are higher than specific electricity production 

costs. An unprofitability domain refers to the case where specific electricity production costs are higher than revenues. 
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Fig. 7.3 Specific electricity production costs and revenues for EM plants as a function of the 

electric power for the base year 2015 and under EEG 2014 

7.2 Identification of most profitable plant sizes 

Based on the previously described input data and methodology, the model results are presented 

under EEG 2012 and EEG 2014 frameworks. In each case the evolution of the specific operating 

profit as a function of the installed electric power is shown. Most profitable plant sizes can be 

identified and correspond to the highest specific operating profit values. The costs and revenues 

structure for the most profitable plant sizes is then assessed. In addition sensitivity analyses quan-

tify in each case the impact of the main fundamental drivers on biogas plants profitability. 

7.2.1 Results under the EEG 2012 framework 

The results under the EEG 2012 framework are illustrated in Figure 7.4. Small-scale manure 

plants, with an installed electric power lower than 75 kWel, appear there as the most profitable 

option. This plant type shows the highest specific operating profit at about 10.85 ct/kWhel. For 

plant sizes up to 900 kWel the co-digestion of energy crops with manure systematically leads to 

the highest profitability. Starting from 900 kWel biowaste plants turn out to be the most econom-

ically attractive option. A maximal specific operating profit at about 9.29 ct/kWhel for a 3,000 

kWel installation is thereby reached. Finally the valorization of energy crops in mono-digestion 

plants remains the least profitable alternative. The operating profits are in that case less than 4 

ct/kWhel and become negative above 7 MWel of installed electric power.  
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Fig. 7.4 Plant specific operating profit as a function of the electric power for the base year 2013 

and under EEG 2012 

7.2.2 Results under the EEG 2014 framework 

Under EEG 2014 energy crops and manure co-digestion plants display the highest specific oper-

ating profits up to an installed power of 550 kWel (Figure 7.5). For larger capacities biowaste 

plants become the most profitable installation type. A maximal specific operating profit at about 

6.54 ct/kWhel for a 3,000 kWel plant is reached in this case. Manure plants, smaller than 75 kWel, 

do remain the most economically attractive installation type with a corresponding maximal oper-

ating profit of about 8.95 ct/kWhel. Agricultural plants larger than 75 kWel using energy crops 

with manure in co-digestion or employing energy crops in mono-digestion processes are then 

analysed. These plants appear as unprofitable over the whole capacity bandwidth, i.e. from 0 to 

20,000 kWel. This unprofitability mainly results from the energy crops subsidy cut which was 

defined in the framework of EEG 2014.   
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Fig. 7.5 Plant specific operating profit as a function of the electric power for the base year 2015 

and under EEG 2014 

As a result of the simulation model following most profitable plant types and sizes can be identi-

fied (see Table 7.1). 

Table 7.1 Most profitable plant types and sizes under EEG 2012 and EEG 2014 frameworks 

 Plant type Most profitable size (kWel) Corresponding specific 

operating profit (ct/kWhel) 

 

EEG 2012 

Plant B 3,000 9.29 

Plant EM 75 (small manure plants) 10.85 

Plant E 900 4.01 

 

EEG 2014 

Plant B 3,000 6.54 

Plant EM 75 (small manure plants) 8.95 

Plant E 2,000 -0.97 

 

From EEG 2012 to EEG 2014 a profit loss of -2.75 ct/kWhel is observed for the most profitable 

B plant size. This is mainly due to lower electricity sale revenues observed in the year 2015 than 

in 2013. A drastic profitability loss of -4.98 ct/kWhel is observed from the EEG 2012 to EEG 2014 

for E plants due to the energy crops subsidy cut enacted by the German Federal Government. 

Finally a slight profitability loss of -1.9 ct/kWhel between the two EEG versions applies to small 

manure plants characterized by a size of 75 kWel. This installation type remains however profita-

ble with a specific operating profit close to 9 ct/kWhel under EEG 2014. The results show that the 

EEG 2014 framework is generally less economically favourable than the version of 2012.  
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7.3 Costs and revenues structure 

The most profitable plant sizes for each installation type are economically assessed in the frame-

work of a costs versus revenues analysis. For a given plant type and size all specific costs and 

revenues positions involved are detailed and compared with each other. This enables the identifi-

cation of major costs and revenues drivers impacting the plant profitability. The results are shown 

below for each plant type exemplarily under the EEG 2014 legal framework. 

7.3.1 Energy crops and manure plants 

Under EEG 2014, the most profitable capacity size for EM plants is 75 kWel. Investment-related 

costs are in that case the main driver in the total electricity production costs with a contribution 

at about 7.2 ct/kWhel (Figure 7.6). The other main costs positions are personnel, electricity con-

sumption and CHP maintenance costs. These costs positions have been estimated at about 3 

ct/kWhel, 2.67 ct/kWhel and 1.96 ct/kWhel respectively on the basis of the correlations in Figure 

7.1. Costs for utilities only play a minor role with a contribution lower than 1 ct/kWhel. About 

96% of the total revenues comes from electricity sale and is estimated at about 23.53 ct/kWhel. 

The other revenue position corresponds to heat sale estimated at about 0.88 ct/kWhel. Total elec-

tricity production costs for the most profitable EM plant size amount to 15.47 ct/kWhel and the 

corresponding specific operating profit is determined at a value of 8.95 ct/kWhel.  

Fig. 7.6 Costs versus revenues for the most profitable EM plant size under EEG 2014 
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7.3.2 Energy crops plants 

In the case of energy crops mono-digestion the main costs positions are represented by the 

biomass feedstock costs (8.05 ct/kWhel) and by the investment-related costs (3.93 ct/kWhel) 

(Figure 7.7). The costs for utilities, personnel, maintenance, biomass transport and the costs for 

flexible electricity production only play a minor role in the economic balance. From the revenues 

side the main contributors are the electricity sale with about 10.62 ct/kWhel and the heat sale 

generating a specific revenue of 2.25 ct/kWhel. Revenues for digestate sale and from the flexibility 

supplement have a low influence on the plant profitability. The electricity production costs for 

the most profitable plant size are estimated at about 16.19 ct/kWhel. A corresponding negative 

specific operating profit is therefore observed at a level of -0.97 ct/kWhel.  

 

Fig. 7.7 Costs versus revenues for the most profitable E plant size under EEG 2014 
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are mainly driven by the digestate treatment costs (11.89 ct/kWhel) and by the investment-related 

costs (8.54 ct/kWhel). The costs positions for maintenance, process utilities, electricity consump-

tion, personnel, biomass transport and for flexible electricity production only play a minor role. 

The main revenues positions concern the fee revenue for biowaste valorization into biogas (17.62 
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ct/kWhel) and electricity sale (10.6 ct/kWhel). Revenues from compost and heat sale and from the 

flexibility premium only have a small influence on the plant profitability. The electricity produc-

tion costs for the most profitable biowaste plant size amount approximatively to 25.64 ct/kWhel. 

A corresponding specific operating profit of about 6.54 ct/kWhel is determined. 

 

Fig. 7.8 Costs versus revenues for the most profitable B plant size under EEG 2014 

7.4 Sensitivity analysis 

A sensitivity analysis aims to quantify the impact of a variation of the main cost and revenue 

drivers on biogas plant profitability. The results are represented for each plant type in Figures 7.9, 

7.10 and 7.11. The specific operating profit values are represented on the ordinate-axis as a func-

tion of the variation rate of main profitability drivers on the abscissa-axis (in %). 

7.4.1 Sensitivity analysis for energy crops and manure plants 

The impacts of a variation of main profitability drivers on EM plant profitability are visible in 

Figure 7.9. The revenues from the electricity sale and the investment-related costs have the high-

est influence. For example a decrease of about -20% of the revenues for the electricity sale leads 

to a profitability loss of about 4.8 ct/kWhel. An increase of 40% of the investment-related costs 

leads to a profitability loss of almost 3 ct/kWhel. 
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Fig. 7.9 Sensitivity analysis for the most profitable EM plant size under EEG 2014 

7.4.2 Sensitivity analysis for energy crops plants 

For the most profitable E plant size an increase of about 30% of the EPEX-Peak electricity price 

leads to a profitable situation. Similarly a decrease of -13% of the energy crop costs generates a 

positive specific operating profit. Finally if the investment-related costs decrease by about -20%, 

then the E plant becomes profitable (Figure 7.10). 

 

Fig. 7.10 Sensitivity analysis for the most profitable E plant size under EEG 2014 
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7.4.3 Sensitivity analysis for biowaste plants 

The profitability of biowaste plants is mainly driven by revenues for biowaste valorization, by the 

investment-related costs and by digestate treatment costs. A decrease of about 38% in the reve-

nues for biowaste valorization would lead to unprofitability. If the investment-related costs are 

lowered by about -40% then the biowaste plant benefits from a specific operating profit increase 

of about 3.4 ct/kWhel. Finally an increase of about 55% of the digestate treatment costs would 

create an unprofitable situation (Figure 7.11). 

 

Fig. 7.11 Sensitivity analysis for the most profitable B plant size under EEG 2014 

7.5 Technical assessment 

The aim of this section is to assess the energetic efficiency of the most profitable biogas plant 

sizes that have been previously analysed. In the planning and design phases of a biogas installation 

project the plant energetic efficiency calculation appears to be an important step. It enables the 

identification of energetically optimal plant concepts. For this the biological efficiency, related to 

the anaerobic digesters, and the fuel efficiency have to be determined. The chemical energy 

amounts contained in the biomass feedstock and in biogas are first estimated. This estimation is 

based on feedstock lower heating values drawn from literature data and on the input and output 

mass and volume flows from the simulation model. The biological efficiency, characterizing the 

energetic efficiency of the anaerobic digestion process, is then determined following Eq. 7.1. 
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With: 

- ChemBiogasE : chemical energy contained in the produced biogas (kWh) 

- ockChemFeedstE : chemical energy contained in the biomass feedstock (kWh) 

- BiogasV : annual biogas output volume flow (in m3/a) 

- BiogasgH , : biogas gross calorific value (in kWh/m3) 

- Feedstockm : annual biomass feedstock input (in t/a) 

- FeedstocklH , : biomass feedstock lower heating value (in kWh/t) 

 

In the case of the most profitable EM plant size employing about 10,270 t/a of manure in mono-

digestion the biogas produced amounts about 0.32 million m3/a and a biogas gross calorific value 

of 5.48 kWh/m3 61 is assumed. The lower heating value for manure is estimated at about 0.72 

MJ/kg according to [235] on the basis of 70.3% moisture content. For the most profitable biowaste 

plant size, about 9.19 million m3 biogas is produced annually from the fermentation of 74,750 t/a 

of biowaste and the biogas gross calorific value amounts in that case to 5.98 kWh/m3 biogas. The 

biowaste lower heating value is estimated at about 5 MJ/kg i.e. 1,389 kWh/t [236]. At the gate of 

the fermenter about 35,421 t agricultural feedstock are transformed annually into 7.78 million m3 

biogas in the most profitable E plant size. The biogas gross calorific value amounts there to 5.28 

kWh/m3 and the energy crops lower heating has been estimated at about 6.61 MJ/kg62, i.e. 1,836 

kWh/t. 

 

The fuel efficiency in then given by Eq. 7.2: 

 

Biogaschem

usefulownelbrutto

Fuel
E

QREl

,

, +−
=                                                                                                   (7.2)                                                                                                               

With:  

 

- ElGross: Gross electricity amount (kWhel) 

- Rel,own: electrical own-requirements (kWhel) 

- Quseful: useful CHP-heat (kWhth) 

- EChem,Biogas: chemical energy contained in the burned biogas (kWh) 

 

The following electric and thermal efficiencies, and external heat use rates are further assumed 

for the most profitable sizes according to [150], [224], [226] (Table 7.2). 

 

 

                                                           
61 The biogas gross calorific value is derived from the one of natural gas (9.97 kWh/m3) and from the methane content 

in biogas. The methane content assumed for each feedstock can be found in Table 6.1. 
62 The fermenter input mix of the most profitable E plant size is made up of 20,544 t/a maize silage, 7,084 t/a grass 

silage, 7,084 t/a cereal silage and 708 t/a cereal grains. The energy crops lower heating values correspond to 6.7 MJ/kg 

for maize silage [237], 6.1 MJ/kg for grass silage [238], 6.2 MJ/kg for cereal silage [239] and 13.1 MJ/kg for cereal 

grains [240]. 
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Table 7.2 Assumed electric and thermal efficiencies and external heat use rates [150], [224], 

[226]  

 

Plant 

Type 

Most               

profitable 

plant size 

Electric CHP                      

efficiencies63 

Thermal CHP                    

efficiencies 

Electric own 

Requirements 

Thermal own                      

requirements 

Rate for       

external 

heat use  

EM 75 kWel 34.47% 51.76% 6.1% 42.3% 57% 

B 3,000 kWel Existing: 42.4% 

New flexible: 39.47% 

41% 7.1% 18.4% 57% 

E 2,000 kWel Existing: 42.69% 

New flexible: 39.75% 

40.65% 7.1% 18.4% 57% 

 

The gross electricity amount is determined for base-load existing CHPs with 8,000 full-load hours 

per year and for the new flexible CHPs running about 4,713 h/a64. The useful heat corresponds to 

the share of the produced heat which is finally used by external heat sinks (and not for plant own 

requirements). 

 

The global efficiency of each plant can be thus derived from Eq. 7.3: 

 

                                                         =Global .Biol Fuel                                                                      (7.3) 

 

Table 7.3 sums up the results from the energetic assessment for the most profitable plant sizes. 

 

Table 7.3 Results from the energetic assessment of agricultural and biowaste plants 

 

Plant 

type 

Input 

feedstock 

mass (t/a) 

Biogas                  

volume flow 

(million m3/a) 

Electricity and useful 

heat amount 

Plant 

size 

(kWel) 

Biological 

efficiency 

(%) 

Fuel            

efficiency 

(%) 

Global plant             

energetic      

efficiency    

(%) 

EM  10,270 0.32 Gross electricity                           

production:0.6 GWhel 

Useful heat amount: 

0.29 GWhth 

 

75 

 

85.4 

 

49.4 

 

42.2 

B 74,750 9.19 Gross electricity                      

production: 

23.34 GWhel 

Useful heat amount:  

10.59 GWhth 

 

3,000 

 

52.9 

 

58.7 

 

31 

E 35,421 7.78 Gross electricity           

production: 

15.56 GWhel 

Useful heat amount:  

7 GWhth 

 

2,000 

 

63.2 

 

52.2 

 

32.9 

 

                                                           
63 Electric CHP-efficiencies for most profitable plant sizes have been determined based on the values set out in Figure 

A.15 in the Appendix for both existing base-load and new flexible capacities. 
64 Flexible CHP are assumed to run at 4,713 h/a according to the value given in Table A.3 in the Appendix. 
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The results of Table 7.3 related to the technical assessment of most profitable plant sizes indicates 

that small scale manure installations are the most energetically efficient plants. These outcomes 

should be however considered with caution as the energetic plant concept can strongly vary from 

an installation to another (e.g. regarding heat valorization strategies or energy own requirements). 

For comparison in [241] a 500 kWel biogas plant valorizing maize silage and wheat shows a global 

energetic efficiency of about 39%. In [242] a 760 kWel plant using biowaste with sewage sludge 

has a global energetic efficiency of about 32%. Finally in [243] a 250 kWel agricultural plant 

employing maize in mono-digestion has a global energetic efficiency estimated at about 20%. 

7.6 Discussion of methodology and results 

7.6.1 Methodology 

The objective of the simulation model is to identify the most profitable biogas plant sizes under a 

variable and differentiated biomass feedstock input. In order to achieve this an economic assess-

ment coupled to a process simulation is carried out. After a calibration step of all components of 

the biogas plant a simulation of plant profitability is realized under a variation of the biomass 

input mass flow. This enables the identification of plant sizes showing the highest specific oper-

ating profit values (defined as the most profitable plant sizes). This simulative approach has pros 

and cons which are analysed in detail in the following.   

Positive aspects concerning the methodology employed are firstly linked to fermenter calibration. 

Before launching the simulations, fermenters were calibrated by specifying methane formation 

rates for each plant type in the SuperPro Designer interface. These rates lead to specific biogas 

yields in line with the values defined in the German Biomass Ordinance and used in order to 

determine the EEG subsidies. Consequently the underlying model for biogas production corre-

sponds to the economic reality defined by the German Biomass Ordinance. A second aspect con-

cerns the choice of the simulation variable represented by the biomass input mass flow. Biomass 

input mass flows are generally the main entry parameter for a basic biogas plant design. They 

have a direct influence on the biogas plant size and consequently on the installation profitability. 

They represent thus an adequate simulation variable in order to identify most profitable biogas 

plant sizes. The economic assessment was carried out by considering specific operating profits as 

a profitability indicator. Specific operating profits represent a valuable economic indicator for 

analysing the profitability of a biogas plant on a given year. They can then easily lead to the 

identification of the most economically attractive installations. Complementarily to the economic 

assessment a sensitivity analysis was carried out and clearly identifies and quantifies the main 

profitability drivers in each plant type. The performed sensitivity analysis assesses the robustness 

of the plant profitability and represents then a valuable approach for integrating input data uncer-

tainties in the economic evaluation.  

Disadvantages linked to the employed simulation model should however be pointed out. A first 

aspect refers to the biogas production modelling which is in reality not only dependent on bio-

chemical reactions and kinetics occurring in the anaerobic digester. The impact of process inhi-

bitions, such as over-acidification or scum build-up, should also be taken into account. These 

aspects are however specific to each digester and cannot be systematized in the present work. The 
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process simulation is further done under steady state, i.e. not time dependent. A subsequent work 

could consist of modelling the anaerobic digestion process under dynamic and time-dependent 

conditions. Process regulation systems and the temporal evolution of the bacteria community in-

side the fermenter could thus be integrated into the simulation model. Existing models of anaer-

obic digestion processes, such as the Anaerobic Digester Model 1, could be further implemented 

into the present process simulation [244]. This would enable the estimation of the biogas yield as 

a function of substrate elementary composition and milieu conditions. For this purpose the spec-

ified reaction kinetic constants should however be validated by biological experiments for in-

stance. 

The results of the simulation model enable a systemic economic assessment of three different 

biogas plant types under a variable biomass input mass flow. However this systematization must 

be carried out with caution as each single plant is defined in practice by a specific operation plan. 

Strictly speaking each single existing plant in Germany should be economically evaluated. This 

would confirm or invalidate the correlations determined here between the specific operating profit 

and plant sizes. Nevertheless access to information regarding the specific operating profit of ex-

isting German biogas plants remains very difficult. A high level of confidentiality is observed 

among German biogas plant operators who generally will not deliver economic information. The 

calculations have been further realized under ceteris paribus conditions. From a simulation step 

to another certain specific costs and revenues have been assumed as constant. These positions 

concern the specific energy crop costs and the specific fee revenues for biowaste valorization 

(expressed in €/t). Specific energy crop costs vary from one Federal State to another but are not 

correlated to biogas plant size or to valorized biomass amount in the present model. Specific 

biowaste fee revenues are fixed at a constant level of 60 €/t for each plant size and in all Federal 

States. In practice, these ceteris paribus conditions do not apply as each single biogas plant is 

characterized by own specific energy crop costs and by own biowaste fee revenues dependent on 

local market conditions. Another aspect concerns the EPEX-Peak electricity price level that has 

been used in the case of electricity direct marketing. For the year 2013 it is assumed that the plant 

operators sell the electricity produced for 43.13 €/MWhel [12]. A sales price of about 35.09 

€/MWhel is further assumed for the year 2015 [12]. In practice the EPEX prices level for the sold 

electricity is depending on plant operator’s strategy and cannot be systematized. This is the source 

of a data uncertainty which is taken into account in a sensitivity analysis realized in section 7.4. 

Figure 7.12 sums up the pros and cons regarding the methodology employed for the analysis of 

current electricity production from biogas in Germany. 
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Fig. 7.12 Pros and cons regarding the methodology employed for the analysis of current electricity 

production from biogas in Germany 

7.6.2 Validation and critique of results  

A validation of the model results can be carried out by comparing the observed specific operating 

values with literature data. From 0 to 75 kWel small scale manure plants appear as the most prof-

itable installation type both under EEG 2012 and EEG 2014 framework. According to model 

results a 75 kWel manure plant displays a specific operating profit of about 8.89 ct/ kWhel under 

EEG 2014 framework. This high profitability level is in line with literature data. A specific oper-

ating profit of about 9.5 ct/kWhel is estimated in [116] which is close to the model results. For 

small-scale to mid-scale plant sizes going from 75 to 800 kWel, agricultural plants appear as the 

most profitable option. In particular EM plants employing energy crops and manure are the most 

economically attractive which highlights the economic benefits of co-digestion. These results are 

in accordance with the observed past development of biogas in Germany.  

The political willingness has been to strongly develop agricultural co-digestion plants through the 

energy crops and manure bonuses included in the subsidies up to EEG 2012. For plant sizes up to 

800 kWel the specific operating profits observed are coherent with the literature data. In [245] 

specific operating profits for agricultural and biowaste plant types are determined under EEG 

2009 and for the year 2010. The specific operating profit of a 300 kWel agricultural co-digestion 

plant valorizing energy crops and manure amounts there to about 4 ct/kWhel. In the present work 

EM plants with a size of 300 kWel show a specific operating profit of about 1.5 ct/kWhel under the 

EEG 2012 framework. The difference observed between the two values can be explained by an 
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important energy crop costs increase between the year 2010 and the year 2013. In [246] a maize 

silage cost of 25 €/t is assumed whereas a much higher cost at 35.9 €/t is considered in the present 

work for the year 2013.  

For plant sizes larger than 550 kWel biowaste valorization appears to be the most profitable option. 

No literature study mentioning specific operating profits for mid-scale to large-scale biowaste 

plants currently exists. In particular a difficulty remains concerning the estimation of total reve-

nues for large scale biowaste plants which are mainly driven by revenues from the biowaste val-

orization into biogas. This last information is often kept confidential by biowaste plant operators. 

Nevertheless the observed profitability can be justified by analysing the main costs and revenues 

positions given the valorized biowaste amount. Contrary to agricultural plants biowaste installa-

tions benefit from a fee revenue for the feedstock valorization into biogas.  

The biowaste mass amount also generates costs for the treatment of the produced digestate. As 

shown by the sensitivity analysis in section 7.4.3 the revenues from the biowaste valorization and 

the digestate treatment costs represent the main plant profitability drivers. In the model calcula-

tions 60 €/t was assumed for the biowaste valorization revenues whereas 44.6 €/t should be taken 

into account for the digestate treatment costs. Revenues for biowaste valorization are then higher 

than digestate treatment costs which implies that profitability increases with the plant size. The 

results reveal however a profitability decrease starting from 3,000 kWel plant sizes. This can be 

explained by major biowaste transport costs increase as mentioned in Figure A.20 of the Appen-

dix. In the case of large scale biowaste plants the effects of the costs for biowaste transport and 

for the digestate treatment are then stronger than the effect of the biowaste valorization revenues.  

The economic analysis of EEG 2014 plants smaller than 150 kWel can be compared to that done 

for EEG 2017. Indeed under EEG 2017, biogas plants with capacity smaller than 150 kWel are 

not involved in the tendering procedure [112]. These plant sizes benefit from Feed-In-Tariffs up 

to 100 kWel and then from the electricity direct marketing model up to 150 kWel. Figure 7.13 

compares the revenue levels from electricity sales for each of the three plant types under both 

EEG 2014 and EEG 2017. In all plant types a very slight decrease is observed between EEG 2014 

and EEG 2017. Just as under EEG 2014, the EEG 2017 framework offers economically attractive 

framework conditions for plant sizes smaller than 75 kWel valorizing manure in mono-digestion. 

On the other hand, the economic situation still remains unprofitable for plants smaller than 150 

kWel using energy crops and/or biowaste. 
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Fig 7.13 Comparison of revenues from the electricity sale in each plant type under EEG 2014 and 

EEG 2017 subsidy schemes for installations smaller than 150 kWel 

In summary the model results for agricultural biogas plants in Germany appear to be plausible 

under both past and present legal framework conditions. In the case of biowaste plants the trend 

observed corresponds to economic reality. The profitability of biowaste plants is favorably influ-

enced by biowaste mass flow increases up to a certain critical point65. For biowaste mass flows 

larger than this amount profitability decreases due to strongly increasing transport costs. For 

plants smaller than 150 kWel the new EEG 2017 legal framework has only a very slight negative 

impact on profitability compared with the results observed under EEG 2014.  

The model results should of course not be used as a substitute for detailed profitability assessment 

considering in particular real data and taking into account plant specific operation concepts. 

7.7 Model outcomes evaluation 

7.7.1 Policy recommendations 

In light of the model results policy recommendations can be formulated for decision-makers as 

well as for local and national authorities. A first recommendation concerns revenue for biowaste 

plants. The results of the present work show that biowaste plants with installed power inferior to 

550 kWel are still unprofitable. In order to contribute to the development of small decentralized 

                                                           
65 This critical biowaste mass flow is estimated at about 81,250 t/a for a 3,000 kWel plant size.  
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biowaste installations, revenue for biowaste plants should be increased. The construction and op-

eration of small decentralized biowaste plants can improve the sustainability and acceptability of 

biogas in Germany66. A possibility for a revenue augmentation would consist in increasing the 

revenues related to biowaste valorization at the gate of the biowaste plants. These specific fee 

revenues, expressed in €/t, are paid by municipalities to biogas plant operators. The fee revenues 

level should at least cover the costs for the digestate treatment in composting units. In the present 

work fee revenues at about 60 €/t have been used in all calculations. An increase of this value 

would generate a profitable situation for small to mid-scale biowaste plants. For this a better im-

plication of municipal stakeholders involved in biowaste plants projects is necessary. Local and 

decentralized biowaste valorization strategies should thereby be developed in order to contribute 

to the creation of a circular bio-economy. 

The subsidies cut applied to energy crops in the framework of EEG 2014 slows down the devel-

opment of agricultural plants. More precisely all agricultural plants larger than 75 kWel appear to 

be unprofitable under the EEG 2014 framework. The profitability of agricultural plants could be 

further improved if agricultural residues were valorized (e.g. from wheat straw or corn). These 

residues are available for free and are directly located on the site of the biogas plant so that no or 

limited transport costs would appear in the economic balance. A recommendation would be thus 

to develop agricultural plants based on residues. This would also avoid “food versus fuel” com-

petition. 

The last policy recommendation concerns small scale manure plants with installed electric power 

lower than 75 kWel. The conservation in the framework of EEG 2017 of the subsidy level for 

these plants appears as a positive aspect and must be maintained in the future. According to the 

results of the simulation model the most profitable biogas plants are of this installation type with 

a size of 75 kWel. This plant category only valorizes manure in mono-digestion processes so that 

no competition with the food supply chain occurs. Environmental benefits are further generated 

due to manure anaerobic digestion [164]. Therefore the future development of small scale manure 

plants should continue to be politically fostered and encouraged.  

7.7.2 Strategic outcomes 

Some other considerations apart from the effectiveness of German energy policy measures can be 

formulated. They concern the strategical planning, operation and maintenance of biogas plants. 

The planning phase of a biogas plant must take into account the presence of heat sinks in the 

proximity of the construction site. The heat produced by CHP-units is not systematically valorized 

which leads to process inefficiency and to an unprofitable economic balance. In particular bio-

waste plants should be preferentially built in semi-urban or urban areas in the proximity of im-

portant heat sinks like municipal buildings, schools or swimming pools. Agricultural plants, gen-

erally located in rural area, should be connected if possible to heat networks in order to distribute 

the heat produced to remote heat sinks.  

                                                           
66 The valorization of biowaste into biogas does not compete with critical pathways such as the food value chain. A 

“food versus fuel” debate can therefore be avoided which is not the case for agricultural plants. Moreover biowaste 

installations generally show a lower greenhouse gas potential than the agricultural plants [164]. 
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The identification of optimal marketing channels for the digestate produced, e.g. through sale as 

fertilizer or compost, generates supplementary revenues. For this, sustainable and robust local 

value chains should be established in particular in the context of circular bio-economies. A third 

aspect concerns the flexible and strategic operation of biogas plants. Adequate feedstock and gas 

storage management could lead to the operation of “smart” biogas plants. In these plants a storage 

tank for the biomass input feedstock would allow the production of biogas according to heat and 

electricity demand and price. Similarly the storage of the biogas produced enables the operation 

of flexible and demand-oriented CHP units. This would allow plant operators to burn the biogas 

produced in the CHP-unit in order to produce electricity in times of high prices. The implemen-

tation of adequate flexibilization strategies would then lead to a maximization of the revenues 

from electricity sale.   

On the costs side a major aspect concerns the definition of successful biomass feedstock purchase 

strategies especially for agricultural plants employing energy crops. As mentioned in [75] energy 

crop costs contribute to more than half of the electricity production costs and represent a major 

profitability driver for agricultural biogas plants. The high volatility characterizing, among others, 

wheat and maize silage prices is a source of uncertainty for biogas plant operators. Hedging strat-

egies have to be applied in order to minimize the risks level. The negotiation of feedstock delivery 

contracts between farmers and plant operators should therefore integrate this price volatility [189]. 

Maintenance and personnel costs could be minimized through mutualisation effects. For example 

in the case of agricultural plants personnel and maintenance costs can be drastically reduced if 

the farmer operates and maintains his biogas plant himself. This can be the case for small-scale 

manure plants but more rarely for larger installations. Due to the complexity of operating of a 

biogas plant these synergy effects are however not systematic and farmers must often rely on 

external companies. Therefore training courses and continuing education programs should be of-

fered to farmers for instance in the field of process engineering, microbiology or energy econom-

ics. This would increase their autonomy and further reduce the operating costs of their biogas 

installations. In the case of biowaste plants mutualisation effects can also occur if a fermenter is 

added on the site of an existing composting unit. The personnel employed on the composting plant 

site could then be used for the operation and the maintenance of the supplementary biogas plant. 

This would contribute to reduce personnel costs. Optimization of the plant energy consumption 

coupled with strategic purchase of the required electricity could further significantly lower the 

energy costs and thus improve the plant’s economic balance.  

Optimization of the biomass logistic supply chain especially regarding transport costs minimiza-

tion further reduces variable costs. In order to minimize transport costs the numbers of tractors 

employed e.g. in agricultural plants, and the maximal collection radius should be carefully de-

fined. In agricultural plants a maximum collection radius of 20 km is generally assumed. Larger 

distances lead to a strong increase of specific transport costs which impacts plant profitability. 

Similarly biowaste plant operators should properly define the maximal collection radius of the 

feedstock employed. Usually biowaste collection and transport only occurs in urban or peri-urban 

areas with distances up to 120 km from the plant location site.  

A last aspect concerns process microbiological inhibitions like scum formation or over-acidifica-

tion which can occur in anaerobic digesters. They have a negative impact on the biogas production 
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and also on the plant’s economic balance. In [247] these inhibitions have generated a loss of about 

3 ct/kWhel on the specific operating profit for a 760 kWel biowaste plant. The use of anti-foam 

and a good understanding of microbiological processes can limit inhibitions and thus maximize 

biogas production. 

7.8 Summary 

The economic model input data detailed in section 6 leads to correlations between the cost/reve-

nues and the installed electric power for each of the three assessed plant types (section 7.1). The 

results analysed in section 7.2 reveal a paradigm shift concerning the profitability of agricultural 

biogas plants type. These installations are assessed as profitable under EEG 2012 and show pos-

itive specific operating profits on the capacity bandwidth [250:7,500 kWel]. Under the EEG 2014 

framework all agricultural plant sizes larger than 75 kWel show negative operative profits and are 

thus identified as non-profitable. This can be explained by the subsidy cut applied to energy crops 

valorization under this legal framework.   

Biowaste plants are the most profitable option under EEG 2014 for plant sizes starting from 550 

kWel. Small-scale manure plants with an installed power of 75 kWel represent the most attractive 

option with specific operating profits higher than 8 ct/kWhel in both EEG 2012 and EEG 2014 

legal frameworks. Most profitable plant sizes are further identified in each plant type. For example 

under the EEG 2014 framework the most profitable biowaste plant size relates to installations 

with an electric power of 3,000 kWel. The costs and revenues structure of the most profitable sizes 

is analysed in section 7.3 and completed by a sensitivity analysis in section 7.4. In the case of the 

agricultural EM type plants, the main profitability drivers are the EPEX-Peak electricity price and 

the energy crop and investment-related costs. The profitability of biowaste plants is mainly influ-

enced by revenues from biowaste valorization, by investment-related costs and by digestate treat-

ment costs. A technical assessment of the most profitable biogas plant sizes is realized in section 

7.5 in addition to the economic analysis. Biological and global energetic efficiencies are deter-

mined all along the biogas supply chain. The results show that small-scale manure plants display 

the highest global energetic efficiency due to a high biological efficiency superior to 85%. On the 

contrary the low biological efficiencies characterizing energy crops and biowaste mono-digestion 

plants lead to lower global energetic efficiencies. The methodology and results of the simulation 

model are then discussed in section 7.6. Pros and cons are highlighted concerning the modelling 

approach and a plausibility control validates the obtained results which are in line with current 

policy for biogas in Germany. The model results lead then to the formulation of policy recom-

mendations and strategic outcomes in section 7.7. Increasing valorization fee revenues for small 

to mid-scale biowaste installations would facilitate the development of decentralized biowaste 

plants and further generate local circular bio-economies. A fostered development of manure-

based installations would contribute to more sustainable electricity production from biogas as 

these plant types offer economic but also environmental benefits. Operating costs minimization 

and revenue maximization measures are further presented as strategic outcomes for plant opera-

tors.            
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8 Model-based analysis of future electricity production from 

biogas in Germany 

The objective of this chapter is to analyse the results of the optimization model relative to the 

evolution of future biogas capacity and electricity production from biogas up to the year 2030 in 

Germany. In section 8.1 the results are presented in the framework of a base scenario character-

ized by the model input data described in chapter 6. The mid-term evolution of electric capacity 

and electricity production are first shown at the Federal State level for all plant types aggregated. 

In a second step the new built capacity and the number of new built plants for each installation 

type are presented. Further scenarios are assessed in section 8.2. They quantify the impact of a 

strong variation of three main profitability drivers, i.e. the EPEX-Peak electricity price, energy 

crop costs and biowaste valorization revenues on future capacity developments. The methodology 

employed and results are then discussed in section 8.3. Finally the model results are used to for-

mulate policy recommendations and strategy outcomes for plant operators and policy-makers in 

section 8.4. Chapter 8 ends with a summary in section 8.5.   

8.1 Model results analysis in base scenario 

In the results presentation, the biogas plant capacities are divided into new built and existing base-

load capacities distributed over the Federal States (coloured bars), as well as into existing and 

new built flexible capacities (black dotted bars). Base-load existing and new built capacities cor-

respond to biogas plants running 8,000 hours per year with a constant and non-flexible electricity 

production. Flexible existing and new built capacities aim at a demand-oriented electricity pro-

duction from biogas and are running about 4,713 hours per year in part-load (see Table A.3 in the 

Appendix). According to the operator models defined in Figure 6.2 flexibility applies to capacity 

larger than 750 kWel under EEG 2012. In the case of the EEG 2014 framework flexibility concerns 

plants having a capacity larger than 100 kWel. 

8.1.1 Results at the Federal State level 

As shown in Figure 8.1 and under the EEG 2012 framework, base-load capacity should continu-

ously increase, starting from about 3,832 MWel at the end of 2016 up to about 4,211 MWel in 2020 

(see the coloured bars). The main capacity developments should take place in the Federal States 

of Lower-Saxony and North Rhine-Westphalia. Starting from 2020 a general decrease for base-

load capacity is observed mainly due to the decommissioning plan for biogas plants older than 20 

years. These plants are thereby not subsidised by the EEG framework anymore, which leads to 

unprofitability. The global decommissioning plan would concern a total capacity of about 2,319 

MWel at the end of 2030. Finally a global capacity of about 3,771 MWel is observed by 2030 of 

which 2,015 MWel concerns base-load installed capacity, 708 MWel arise from the flexibilization 

of existing capacities in the year 2012 and 1,047 MWel relate to the flexibilization of new built 

capacity (see the black dotted bars in Figure 8.1). At the end of the year 2030 the installations 

should mainly be located in Lower-Saxony and North Rhine-Westphalia with respective capacity 

of about 486 MWel and 369 MWel.   
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Under EEG 2014 and as shown in Figure 8.1, base-load capacity should slightly increase from 

about 3,664 MWel at the end of 2016 up to about 3,830 MWel in 2020, especially in the Federal 

States of Lower-Saxony and North Rhine-Westphalia (see the coloured bars). Starting from the 

year 2020 a generalized base-load capacity decrease is observed in all Federal States mainly due 

to the decommissioning process of biogas plants older than 20 years. At the end of 2030 a total 

electric capacity of about 3,966 MWel is observed. From this amount 1,905 MWel come from 

base-load installed capacity, 1,759 MWel are derived from the flexibilization of existing capacity 

in the year 2014 and finally 302 MWel are issued the development of new built flexible capacity 

(black dotted bars in Figure 8.1).  

 

Fig. 8.1 Regional total capacity evolution up to 2030 under EEG 2012 and EEG 2014 

The evolution of electricity production from biogas in each Federal State is represented in Figure 

8.2. By 2030, about 16.55 TWhel should be produced under EEG 2012 and about 18.13 TWhel 

under EEG 2014. 
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Fig. 8.2 Regional total evolution of electricity production from biogas up to 2030 under EEG 

2012 and EEG 2014 

8.1.2 Results for energy crops and manure plants 

Under the EEG 2012 framework, base-load installations with 8,000 full-load hours per year and 

valorizing energy crops and manure are expected to develop continuously up to the year 2020 

(Figure 8.3). The main capacity expansion occurs in North Rhine-Westphalia, Lower-Saxony and 

Bavaria. A capacity expansion is viable in these Federal States as sufficient biomass potentials 

remain available and the specific operating profits observed are among the highest. At the end of 

2020 the cumulated base-load capacity expansion reaches about 705 MWel (coloured bars). After 

this time, there is no further capacity expansion because the total biomass potentials of all the 

Federal States are fully utilised. By 2030 a total new built capacity of about 1,271 MWel including 

supplementary flexible capacity (black dotted bar) is observed. 
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Fig. 8.3 Regional cumulated new built capacities for EM plants up to 2030 

In addition to regional capacity expansion, Table 8.1 shows the number of the main new built 

base-load plants by plant unit size. 

Table 8.1 Number of new built EM base-load plants according to their unit size under EEG 2012 

Plant unit size Number of new built plants up to 2030  

< 75 kWel 13 

900 kWel 706 

1,000 kWel 69 

 

New built capacity mainly concerns 900 kWel plants as they show the highest specific operating 

profit values. As they are larger than 750 kWel these plants can be operated under the electricity 
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direct marketing model which appears to be economically more attractive to plant operators than 

the Feed-In-Tariff model relating to plants smaller than 750 kWel.  

Under the EEG 2014 legal framework a total cumulated new built capacity for EM plants of about 

611 MWel, including new built base-load and new flexible CHPs, is reached by 2030 (Figure 8.3). 

About 1,271 MWel are reached under the EEG 2012 subsidy scheme. The much lower value ob-

served under EEG 2014 is mainly explained by the cuts in the energy crops subsidies, which came 

into effect on the 1st of August 2014, and drastically reduced agricultural plant specific operating 

profits. Another explanation is related to the new built flexible capacity which is clearly higher 

under the EEG 2012 than under the EEG 2014 framework. Table 8.1 shows that under EEG 2012 

most of the new built plants are larger than 750 kWel and can thus benefit from flexibilization 

according to the operator model defined in section 6.2.2. As mentioned in Table 8.2 most of the 

new built installations under EEG 2014 are base-load manure plants with a size of 75 kWel. Fol-

lowing the operator model defined under EEG 2014 these base-load capacities do not benefit from 

flexibilization. This explains then the much lower new built flexible capacity observed under EEG 

2014 than under EEG 2012. A further analysis of the observed results shows that the main capac-

ity developments under EEG 2014 should take place in the Federal States of North Rhine-West-

phalia, Hesse and Mecklenburg-West-Pomerania which display the highest specific operating 

profit values for EM plants. A slow-down in capacity development occurs starting from 2024, 

mainly due to biomass potentials depletion but also due to plant unprofitability in several regions. 

A clear paradigm shift is also observed in terms of unit sizes for the newly built plants. The cut 

of the energy crops subsidy, applied in 2014, strongly lowers the number of new built plants using 

energy crops. In contrast to the EEG 2012 framework, a major increase of the number of new 

built small manure plants – not affected by the subsidy cut – is foreseen (Table 8.2).  

Table 8.2 Number of new built EM base-load plants according to their unit size under EEG 2014 

Plant size Number of new built plants up to 2030  

50 kWel 2 

70 kWel 2 

75 kWel 5,065 

2,000 kWel 45 

3,800 kWel 10 

                                                                                                                                                                            

At the end of the year 2030 electricity production from new built EM plants is estimated at about 

5.65 TWhel under the EEG 2012 framework and at about 4.06 TWhel under EEG 2014 (Figure 

8.4). 
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Fig. 8.4 Regional electricity production linked to new built EM plants up to 2030 

8.1.3 Results for biowaste plants 

The results are firstly analysed under the EEG 2012 framework. By the end of 2030, the total 

cumulated new built capacities for biowaste plants amount to about 389 MWel of which 216 MWel 

are base-load CHPs (coloured bars) and 173 MWel flexible capacities (black dotted bar). The 

major capacity expansions occur in Bavaria, North Rhine-Westphalia and Low-Saxony. Only 

large scale 3,000 kWel biowaste plants are newly built and the commissioning of 72 new plants is 

predicted over the whole period. 
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Fig. 8.5  Regional cumulated new built capacities for B plants up to 2030  

The results of Figure 8.5 reveal a stronger global capacity development under the EEG 2014 

framework than under the EEG 2012 version, with cumulated new built capacity of about 448 

MWel being reached by 2030. This stronger evolution is mainly explained by a larger annual 

capacity expansion limit, increased to 50 MWel in 2014 from 12 MWel in the year 2012. Table 8.3 

shows the new built B plant numbers observed at the end of 2030 under EEG 2014. New built 

biowaste capacity should therefore focus on the development of mid to large-scale installations 

and especially 3,000 kWel unit sizes. 

Table 8.3 Number of new built B base-load plants according to their unit size under EEG 2014 

Plant unit size Number of new built plants up to 2030  

400 to 700 kWel 19 

800 to 1,800 kWel 20 

2,000 kWel to 2,800 kWel 29 of which 23 corresponding to the 2,000 kWel-size 

3,000 to 3,400 kWel 50 of which 46 corresponding to the 3,000 kWel-size 
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Finally, the total electricity production related to new built B plants amounts to about 1.54 TWhel 

in the case of the EEG 2012 framework and 1.99 TWhel by 2030 under the EEG 2014 framework 

(Figure 8.6). 

 

Fig. 8.6 Regional electricity production linked to the new built B plants up to 2030 

8.1.4 Results for energy crops plants 

As mentioned in Figure 8.7, the evolution of new built mono-digestion plants employing energy 

crops (E plants) under the EEG 2012 framework stops after 2020 as the biomass potential limits 

are already reached. Cumulated new built capacity of about 696 MWel are reached by 2030 split 

into about 387 MWel for base-load capacities and 309 MWel for flexible plants.  
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Fig. 8.7 Regional cumulated new built capacities for E plants up to 2030 under EEG 2012 

The new built base-load capacities result from the commissioning of 424 new plants mainly with 

900 kWel unit sizes (Table 8.4). 

Table 8.4 Number of new built E base-load plants according to their unit size under EEG 2012 

Plant size Number of new built plants up to 2030  

700 kWel 3 

900 kWel 366 

1,000 kWel 55 

                                                                                                                                                                                               

Concerning the electricity production, a total cumulated amount of about 3.1 TWhel would be 

reached by the end of 2030, as shown in Figure 8.8. 
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Fig. 8.8 Regional electricity production linked to new built E plants under EEG 2012 

Finally, no capacity expansion occurs under the EEG 2014 framework for E plants, due to 

unprofitability. In each Federal State, a negative specific operating profit is observed for all years 

and all plant sizes, mainly due to the energy crops subsidies cut enacted in August 2014. 

8.2 Results under other scenarios 

A sensitivity analysis realized in [147] shows that the energy crop costs, the revenues from the 

sales of electricity and from biowaste valorization are the main drivers of German biogas plant’s 

profitability. The temporal evolution of these three key-drivers is characterized by major uncer-

tainties, in particular due to price volatility67. It is therefore the aim of this section to take into 

account these uncertainty levels in the framework of a scenario analysis. In addition to the base 

scenario, further scenarios are assessed, firstly considering energy crop costs shocks. The high 

volatility observed in the biomass commodities markets can strongly impact regional biogas plant 

developments. A simulation of an energy crop costs increase of +10% per year over the period 

2020-2025 and in all Federal States generates a substantial decrease of the cumulated new built 

base-load EM plant capacity over the same period (Figure 8.9). After the end of the shock, i.e. by 

the year 2025, the cumulated new built capacity progressively recovers to the values observed in 

the base scenario. 

                                                           
67 In the case of the electricity sold volatility applies in particular to the EPEX-Peak spot prices which are set hourly 

on the European Power Exchange in Paris. In the case of energy crops volatility concerns feedstock prices which are 

set on the MATIF Commodity Stock Exchange in Paris. Revenues from biowaste valorization can vary strongly from 

a plant to another between 20 and 100 €/t [229]. 
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Fig. 8.9 Capacity evolution for new built EM plants in the base scenario and under an energy crop 

costs shock 

Under the electricity direct marketing model, German biogas plant operators receive, in addition 

to the market premium, revenues for electricity sold on the European Power Exchange (EPEX-

wholesale price). It is assumed that the operators sell the electricity produced in Peak time char-

acterized by a high electricity demand. In the base scenario represented by the green line in Figure 

8.10, the EPEX-Peak wholesale electricity price follows a forecast up to the year 2030 made in 

2014 by EWI Prognos and GWS [222]. A wholesale electricity price of 6.7 ct/kWhel is thus 

reached by 2030. The red line in Figure 8.10 corresponds then to the price forecast in a “high 

scenario” with an EPEX-Peak electricity price increase of +30% per year applied during the pe-

riod 2020-2025. This increase can be justified by future necessary investment in the replacement 

of existing production plants especially for conventional energy conversion technologies [248]. 
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Fig 8.10 Assumed EPEX-Peak electricity price developments according to several scenarios 

In reaction to the applied electricity price shock it appears in the “high scenario” e.g. for EM 

installations that expansion is globally shifted in the direction of larger capacity unit sizes (blue 

bars). The electricity direct marketing model also tends to be more favourable to large scale plants 

characterized by a high electricity output (size effect). Figure 8.11 compares the results for the 

main newly built capacities, 75 kWel and 2,000 kWel, for EM installations under the “high sce-

nario” with the results in the “base scenario” in the context of EEG 2014. A strong electricity 

price increase thus encourages the development of 2,000 kWel plants in comparison to the base 

scenario.  

 

Fig. 8.11 Capacity development of the main new built EM plants under EEG 2014 with and with-

out consideration of electricity price shock 
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The last modelled shock concerns biowaste valorization fee revenues. A biowaste valorization 

revenue decrease of -20% per year is applied from 2020 to 2025 in comparison with the base 

scenario. It models a potential market breakdown for biowaste dedicated to biogas production in 

Germany. In reaction to the applied shock a capacity expansion freeze is observed from 2020 to 

2025. After that the new built capacity increases again and reaches the value observed by 2030 in 

the base scenario (Figure 8.12). Future development of biowaste plants is then highly sensitive to 

the evolution of biowaste valorization fee revenues.  

 

Fig. 8.12 Capacity evolution for new built B plants in the base scenario and under a biowaste 

valorization revenue shock 

8.3 Discussion of methodology and results 

8.3.1 Methodology 

The optimization model developed enables a forecast of future capacity expansion and electricity 

production from biogas in Germany up to the year 2030. For this an objective function aims at 

maximizing the total operating profit over all plant sizes, the whole time period and all Federal 

States combined. The developments are limited by constraints applied to biomass potentials and 

also concerning the annual capacity expansion caps defined in the EEG legal framework. As with 

the simulation model pros and cons linked to the employed methodology are highlighted in the 

following. 

Positive aspects firstly concern the type of model approach that has been selected. The objective 

of biogas companies is to maximize the total operating profit related to the installations that they 

operate over their whole life-time i.e. generally 20 years. Therefore the use of an optimization 

model appears to be suitable for forecasting the development of future German biogas plants. In 

the framework of this model the total German biogas plant park is analysed and the objective 
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function aims at maximizing the total operating profit linked to this plant portfolio. Another pos-

itive aspect concerns the integration of physical and legal constraints in the developed model. For 

each plant type EM, E and B, regional biomass potentials limitations have been defined as con-

straints. This ensures that no further capacity can be built if the corresponding biomass potentials 

are insufficient. If all biomass potentials are fully employed in a given year and region no further 

capacity expansion occurs in the following years. Another constraint concerns the capacity ex-

pansion caps defined in the EEG legal framework. This capacity expansion limitation ensures that 

not all the plant sizes are built in the first year of the time period due to a full valorization of 

biomass potentials. Both of these two constraints aim thus at better representing the physical and 

legal reality for the future development of German biogas plants. Complementary assessments 

are carried out in the framework of “shock scenarios”. These scenarios provide valuable infor-

mation for plant operators as they quantify the impact of major profitability drivers on future 

capacity developments. Potential opportunities and threats for the German market can thus be 

identified. These mainly concern the development of energy crop and electricity prices as well as 

the evolution of biowaste valorization revenues.   

Disadvantages of the modelling approach should also be pointed out. For a given plant type (E, 

EM or B), the solver selects every year, and for each region the plant sizes that could be built in 

order to maximize total operating profit by the end of 2030 over all Federal States. The annual 

specific operating profit represents the main driver for the selection or non-selection of a plant 

size to be built in a given region and year and of a given plant type. Plants showing a negative 

specific operating profit are systematically not built. This approach corresponds to that of a plant 

operator whose objective is to maximize the total operating profit of their installations. However 

it does not take into account the investor perspective. By calculating internal rates of return (IRR), 

the profitability of the investment in the different biogas plant types could have been estimated. 

Especially if the IRR remains over a defined Weighted Average Capital Cost (WACC) then the 

investment is profitable. An example of a WACC value has been published concerning KTG 

Agrar which is one of the leading biogas production companies in Germany. In [249] a WACC 

value of 4.5% is given by the end of the year 2015. Further analysis would then estimate the IRR 

level for each plant type, over all plant sizes and all Federal States combined. Comparing the 

resultant IRR level with the WACC value of 4.5% previously mentioned would indicate if the 

investment was profitable or not. However this requires long-term cash flow forecasts. For exam-

ple the decision to commission a plant or not e.g. in 2028 would imply having a cash-flow forecast 

for the next 20 years. This means that the specific revenues and electricity production costs would 

have to be estimated up to the year 2048 which leads to data uncertainty.                                                           

Another disadvantage concerns the modelling approach which focuses solely on the biogas sector 

and does not integrate other electricity production options (renewable or conventional). The in-

teractions of biogas with other electricity sources impacts the electricity wholesale price and thus 

the revenues from the plant operator side. In the framework of this thesis a simplified assumption 

has been made concerning the EPEX-Peak electricity price. This price level has been initially set 

according to the average of monthly values observed in 2013 for the assessment under the EEG 

2012 framework. Under the EEG 2014 framework the average of monthly values for the year 

2015 has been assumed. In a further step a forecast of these two prices has been carried out ac-

cording to the study of [222]. Two reference studies, mentioned in section 3.4.3, deal with the 

integration of biogas into the electricity system and consider an interaction with other electricity 
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sources [133], [134]. However they do not highlight regional developments for biogas in Germany 

and make no differentiation between agricultural, biowaste and manure-based plants. The present 

resource-oriented model follows a different approach based on the plant operator perspective. It 

provides insights concerning the evolution of the future whole biogas plant park portfolio accord-

ing to various plant types and plant sizes. Therefore the optimization model developed represents 

an adequate complement to other existing studies based on a (bio)-energy system approach. Fig-

ure 8.13 sums up the “Pros” and “Cons” regarding the methodology employed for the analysis of 

future electricity production from biogas in Germany. 

 

Fig. 8.13 Pros and cons regarding the methodology employed for the analysis of future electricity 

production from biogas in Germany (author’s own representation) 

8.3.2 Validation and critique of results 

A synthesis of the previous results shows that the future development of German biogas plants is 

dependent on five fundamental drivers. The first is that maximal biomass potentials are reached 

in some Federal States before 2030 and thus prevent further capacity evolution. In particular, 

agricultural plants valorizing energy crops in mono-digestion processes are subjected to a capacity 

expansion freeze starting from 2020 under the EEG 2012 framework. Biowaste plants are not 

concerned by this phenomenon as 50% of the existing biowaste potentials are still unused.  

The second key driver is plant economics. Revenues derived from the two EEG subsidy schemes 

and from biowaste valorization as well regionalized energy crop costs play an important role in 

plant profitability analysis. Furthermore the price level of the electricity sold directly (EPEX-Peak 

wholesale electricity price) also has a major influence on capacity development. Plants selling the 

electricity produced at a very high price tend to be the best positioned for capacity expansion. 

From the costs side plant capacity expansions most likely occur in Federal States with the lowest 

energy crop costs. 

Pros Cons

SHOCKS SCENARIO                                                                                                          

SHOCK SCENARIOS

- Scenarios quantifying the impact of specific strategies
for the electricity sale, flexibility and feedstock
purchase have not been considered.

MODELLING APPROACH

- The optimization model does not takes into account
the investors perspective.

- The modelling approach solely focuses on the biogas
sector and does not integrate other electricity sources.

SHOCK SCENARIOS

- Quantify the impact of main profitability
drivers on future capacity developments.

- Provide plausible assessments
complementarily to  the base scenario.  

MODELLING APPROACH

- Optimizing approach in line with plant 
operators objective (profit maximization)

- Integration of realistic physical as well as 
legal constraints in the developed model
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The third driving force of capacity development is the annual capacity expansion limit defined by 

the two legal frameworks. As no capacity expansion cap was legally introduced in the framework 

of EEG 2012 a limit has been set for each of the three plant types derived from historical data. 

The capacity developments occurring under EEG 2014 are controlled by the legislator through an 

annual fixed cap of 100 MWel for all biogas plant types. This discrepancy in the expansion cap 

values between the two EEG versions can partially explain the observed differences in the capac-

ity evolution for each plant type.  

Flexibilization conditions represent another key driver. The flexibilization conditions for new 

built capacity have been defined according to the two operator models described in section 6.2.2. 

Most of the new built capacity is larger than 750 kWel under EEG 2012, which leads to a high 

level of flexibilization. On the contrary the observed evolution of new built capacity under the 

EEG 2014 framework is characterized by a low level of flexibilization. Indeed the major capacity 

expansion concerns there small scale manure plants operated in base-load. 

The last driver, namely the decommissioning of German biogas plants older than 20 years, has 

been taken into account starting from 2020. This plant decommissioning dramatically impacts 

mid-term capacity development as most of the currently existing German biogas plants were built 

between the years 2000 and 2010. However the possibility for existing plants to benefit from a 

subsidy scheme extension will be taken into account in the EEG 2017 legal framework. It would 

thus be prudent to consider that existing plants older than 20 years might not be systematically 

decommissioned.  

A validation of results is possible by taking into account the four comparison criteria shown in 

Table 8.5. 

Table 8.5 Considered comparison criteria for the model results validation  

Comparison criteria Questions to be answered 

Ex-post comparison for the years 2015 and 2016 

regarding new build capacity under EEG 2014: 

model results versus real data 

Are the model results plausible when compared with 

real data and current trends for biogas in Germany? 

Comparison of the optimization model results with 

the simulation model outcomes 

Are the most frequent new built plant sizes plausible 

in regard with the most profitable sizes as deter-

mined in the simulation model? 

Comparison with other studies analysing the future 

electricity production from biogas in Germany 

Are the optimization model results plausible when 

compared with existing studies? 

Comparison with future capacity developments 

under the new EEG 2017 framework 

What are the changes for future capacity develop-

ment induced by the new EEG 2017 framework and 

considering various scenarios? 

 

The first comparison criterion concerns the total new built capacity in the years 2015 and 2016 

under the EEG 2014 framework. The model results are compared ex-post with real data derived 

from annual statistics published by the German Biogas Association [250] (Table 8.6). 
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Table 8.6 Total new built capacity in 2015 and 2016: real data versus model results 

 EEG 2014: years 2015 and 2016 

 Real data Model results Relative gap (%) 

Total new-built 

capacity (MWel) 

279 [250] 275 -1,4% 

 

The total new-built capacity from the model results has thus been very slightly under-estimated 

in comparison to real data (-1.4%). Table 8.7 shows the capacity expansion provided by the model 

results for each plant type and during the first two years under each legal framework. 

Table 8.7 Model results relative to past capacity expansion under EEG 2012 and EEG 2014 

 Capacity expansion in 2013 and in 

2014 (EEG 2012 framework) 

Capacity expansion in 2015 and 2016 

(EEG 2014 framework) 

EM plant 403 100 

E plant 220 0 

B plant 43 175 

 

Under the EEG 2012 framework the capacity expansion delivered by the model results in the 

years 2013 and 2014 is in line with the observed national policy at that time. The development of 

agricultural plants is strongly encouraged especially through the manure and energy crops subsi-

dies. Biowaste plants are only subject to a moderate development. The model results observed 

between 2015 and 2016 under the EEG 2014 framework reveal a paradigm shift which is in ac-

cordance with the reality. Under this subsidy scheme the development of biowaste plants appears 

to be favored in comparison to the agricultural plants. This is in line with current national trend 

for biogas in the framework of EEG 2014. As mentioned in [251] the future development of bio-

gas plants should mainly focus on biowaste and manure installations. 

A comparison is then made between the results of the simulation and the optimization models. 

More precisely Table 8.8 compares the most profitable plant sizes determined in the simulation 

model for the base year 2013 and 2015 with the most frequent new built plants sizes under EEG 

2012 and EEG 2014 prospective scenarios in the optimization model. 

Table 8.8 Comparison of the most profitable plant sizes from the simulation model with the most 

frequent new built plant sizes from the optimization model 

 EEG 2012 EEG 2014 

 Most profitable 

plant size 

Most frequent new 

built plant size 

Most profitable 

plant size 

Most frequent new 

built plant size 

EM 

plant 

75 kWel 

 

 

 

900 kWel 

 

 

75 kWel 

 

75 kWel 

 

E plant 900 kWel 900 kWel 2,000 kWel N/A 

B plant 3,000 kWel 3,000 kWel 3,000 kWel 3,000 kWel 
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Under EEG 2012, the most profitable size for EM plants as determined by the simulation model 

is 75 kWel (specific profit at about 10.85 ct/kWhel) followed by 900 kWel (5.63 ct/kWhel specific 

operating profit). However the 75 kWel plant size is not the most frequent new built capacity in 

the optimization model. Over the period 2013 to 2030, installations with a capacity of 900 kWel 

dominate. This can be explained by the fact that the simulation model only considers one year for 

the economic evaluation (2013), whereas 18 years are taken into account in the optimization 

model. Over this 18 years period the evolution of the operating profit is more favorable to 900 

kWel plants than to 75 kWel installations. As the optimization model aims to maximize the total 

plant operating profit (in €) over the whole period, the number of new built 900 kWel plants is 

consequently higher than the 75 kWel installations. In the case of E plants, 900 kWel capacity is 

the most profitable size and also the most built capacity in both the simulation and optimization 

models. Finally 3,000 kWel B plants are the most profitable and the most frequent new built in-

stallations in both models. 

Under EEG 2014, 75 kWel represents the most profitable and the most frequent new built size for 

EM plants. According to the simulation model, a plant capacity of 2,000 kWel shows the highest 

specific operating profit among all E installations. This specific operating profit however remains 

negative (- 0.97 ct/kWhel) which explains why no E plant capacity is built over the whole period. 

Similarly to EEG 2012, B plants with a capacity of 3,000 kWel are the most profitable size as 

determined by the simulation model. They also represent the most frequent new built capacity in 

the optimization model. The results of the optimization model concerning the size of new built 

capacity are then in line with the outcomes of the simulation model.  

In a further step, the optimization model results are compared to other existing studies, which 

have been presented in section 3.4.3. These studies also assess the development of future electric-

ity production from biogas up to the year 2030 (Figure 8.14). As shown in Figure 8.14 the amount 

of electricity produced by the end of 2030 is in line with the assessments drawn from [135], [136]. 

The values mentioned in the “Min scenario” in [134] remain clearly above the forecasts carried 

in this work68. This difference is explained by the fact that this study does not take into account a 

plant capacity decommissioning starting from 2020. The decommissioning concerns plants older 

than 20 years in 2020 and represent a global capacity of 2,319 MWel. Assuming 8,000 h/a oper-

ating hours for these plants, a total electricity production of 18.55 TWhel has to be removed from 

the previous “Min scenario”. Thereby about 11.95 TWhel is determined given the capacity de-

commissioning occurring by 2020. This value is in line with the forecasts obtained from the pre-

sent work under the EEG 2012 and EEG 2014 frameworks (Figure 8.14).  

                                                           
68 This scenario corresponds to an agricultural surface area dedicated to biogas of about 0.78 million ha by 

2020 and 0.96 million ha by 2030. In this scenario it is further assumed that 75% of the potentials dedicated 

to manure and biowaste are valorized into biogas. 
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Fig. 8.14 Comparison of results from various studies regarding future electricity production from 

biogas in Germany (author’s own representation). 

The optimization model results appear as qualitatively and quantitatively plausible both on short-

term and long-term horizons. The results observed on a short-term horizon for the years 2013 to 

2016 are in accordance with ex-post real data and with the outcomes from the simulation model. 

The model results concerning electricity production by the end of 2030 are in line with existing 

forecast studies. 

In a last step, the base-load capacity forecasts produced by the optimization model are compared 

to future developments under the EEG 2017 subsidy scheme. In the framework of EEG 2017 

maximal annual capacity expansion caps of 150 MWel over the period 2017-2019 and of 200 

MWel from 2020 to 2022 are defined [112]. It is also assumed that the 200 MWel yearly expansion 

caps are maintained after the year 2022 and up to the year 2030. The capacity expansion caps 

correspond to the maximal yearly allocable capacity for bioenergy technologies during tendering 

procedures. Thereby three scenarios are considered for the capacity forecasts under EEG 2017. 

In the “Low scenario”, it is assumed that only 10% of the allocable capacity is won by biogas 

technologies up to the year 2030. In the “Mid scenario”, it is assumed that half of the maximal 

allocable capacity is attributed to biogas technologies. Finally in the “High scenario” the maximal 
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allocable capacity is assumed to be attributed to biogas technologies. The forecasts under the EEG 

2017 framework are then compared to the model results under the EEG 2012 and EEG 2014 

frameworks. The new built plants capacity is evaluated over the period 2017-2030 in each of the 

three subsidy schemes. The results are shown in Figure 8.15 for the years 2020, 2025 and 2030. 

 

Fig. 8.15 Evolution of total new built capacity under EEG 2012, EEG 2014 and EEG 2017 legal 

frameworks  

In the “High” and “Mid” scenarios the capacity expansion forecasts carried out under EEG 2017 

appear as more favorable than the optimization model forecasts realized under EEG 2014. A 

break-even point is also determined. It represents the critical capacity share which has to be at-

tributed to biogas technologies under EEG 2017 tendering procedures in order to reach a plant 

capacity at least equal to the capacity forecast under the EEG 2014 framework by 2030. Therefore 

if 29.4% of the yearly allocable capacity is attributed to biogas technologies, then the forecasted 

capacity by 2030 would remain at the same level under EEG 2017 as under the EEG 2014 frame-

work.    

8.4 Model outcomes evaluation 

8.4.1 Policy recommendations 

The results of the optimization model emphasize the role and impact of different subsidy schemes, 

namely EEG 2012 and EEG 2014, on future capacity development. Under the EEG 2014 frame-

work and according to the optimization model results, the future capacity developments up to the 

year 2030 would mainly concern small-scale manure plants and large-scale biowaste installations, 
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which is in line with the objectives of the Federal Government [251]. For these installations a 

future capacity expansion contributes to a maximization of the total operating profit for German 

biogas plant operators. The German biogas sector will thus face a paradigm shift with the increase 

of biowaste and small-scale manure installations. On the other hand the results show that agricul-

tural installations should not undergo any major future developments. Contrary to agricultural 

plants, biowaste and manure installations are not concerned by the “food versus fuel” debate. This 

should lead to an increase in the public acceptance of biogas in the forthcoming years. Consider-

ing all these aspects a first policy recommendation consists in encouraging the valorization of 

manure and biowaste in biogas plants by maintaining the current corresponding level of subsidies 

on a mid-term horizon. 

Furthermore the development of flexible biogas plants valorizing biogas into heat and electricity 

according to demand level has to be strengthened. The possibility of producing flexible electricity 

provides a new function for the biogas industry which can be seen as a system service in addition 

to fluctuating photovoltaic and wind energy sources. According to EEG 2014 framework this 

flexibility is not applicable to small scale plants with an installed power lower than 100 kWel. The 

model results under the EEG 2014 framework show however that a major development of manure 

plant sizes smaller than 75 kWel would lead to a maximal total profit by the year 2030. A possible 

way to accelerate the development of flexible biogas plants would be thus to enlarge the flexibil-

ization conditions to all plant sizes including small scale manure plants.  

8.4.2 Strategic outcomes 

The future evolution of the German biogas market should be characterized by the development 

of small-scale manure and biowaste installations. These plants should therefore be given prefer-

ence at the project planning stage by German biogas companies especially if significant develop-

ment possibilities for new heat sinks or digestate sales are identified.  

The results of the simulated shocks concerning the EPEX electricity price, energy crop costs and 

biowaste valorization revenues show that the future biogas capacity development is dependent on 

externalities linked to the electricity, feedstock commodities and biowaste markets. These could 

be a source of both threats and opportunities. Therefore mastering the financial risks related to 

these uncertainties remains a key challenge for biogas plant operators. International agricultural 

commodity markets generate uncertainties in profitability forecasts, due to high price volatility 

(see section 6.6.1.1). In the present work regional energy crop costs have been assumed to remain 

stable up to the year 2030 due to a potential future increase of agricultural residues use in German 

biogas plants. A future challenge for plant operators will be the valorization of these residues 

which would stabilize energy crop costs and further reduce electricity production costs. 

Another aspect concerns the biomass potentials mobilization and valorization. Biomass potentials 

represent an important driver for future biogas plants, whose locations are usually determined by 

resource availability and access. According to [172] the total potential dedicated to energy crops 

is estimated at about 69 TWh (primary energy). About 90% of this potential is currently used by 

the existing biogas plants which shows that further development is possible but limited. An in-

tensification of the cultivation of the German agricultural surface area as well as the improvement 

of regional hectare yields could slightly increase biomass potentials for energy crops. In [172] an 
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increase of 500,000 ha in the cultivable surface area could lead to supplementary potentials of 

about 17 TWh (primary energy). In the case of biowaste plants a potential of about 6 TWh is 

estimated of which 3 TWh are currently used [172]. About half of existing potentials for biowaste 

are currently not valorized. An increase of biowaste production in households combined with an 

improvement in biowaste sorting habits and a redirection of most of the sorted mass flows to 

anaerobic digestion would improve the potentials mobilization and valorization. The existing po-

tential for manure is estimated at about 22 TWh of which 11 are currently used [172]. Thus about 

50% of the existing potentials related to manure are currently not valorized in biogas plants and 

are simply spread on the farmers land. According to the European Biogas Association an im-

proved integration of biogas plants in agricultural farms could make them more sustainable and 

economically competitive especially in the framework of local circular economies [72]. A new 

type of farm management should emerge and be generalized in which farmers fully integrate bi-

ogas solutions as an opportunity to valorize manure and agricultural residues into an environmen-

tally friendly digestate with a high N- P- and K-content. The systematization of agricultural resi-

dues and manure valorization into biogas would thereby improve the humus balance of the soil 

and create local digestate markets as well as cooperative networks between neighbouring farms. 

Finally, alternatives for German biogas plant operators should be developed in case plants turn 

out to be unprofitable. These alternatives could consist in a shift towards more economically at-

tractive markets than heat and electricity. For example the biomethane market for gaseous biofuel 

applications could represent a possible post-EEG option especially if stronger financial incentives 

for (bio)-CNG car stations and vehicles are developed by the German Federal Government. A last 

option for German biogas plant operators would be to export their expertise and technologies to 

other European countries where biogas and biomethane are growing continuously (e.g. Sweden, 

France and Italy). 

8.5 Summary 

This chapter analyses possible future developments for German biogas plant capacities as well as 

for the electricity production from biogas up to 2030. For this purpose a regional optimization 

model is employed and future developments are assessed under the EEG 2012 and EEG 2014 

legal frameworks. The base scenario characterized by an energy crop costs stability shows that 

the EEG 2012 framework -if maintained- would have fostered the development of agricultural 

plants, especially co-digestion plants valorizing energy crops and manure (see section 8.1). The 

EEG 2014 framework stops the expansion of energy crops mono-digestion plants, which will no 

longer be built as they are unprofitable. The German biogas market will thus face a paradigm shift 

and move towards the increase of biowaste and small-scale manure plants. Plant flexibilization 

options have further a major impact on future capacity developments. Additional scenarios ana-

lyse the impact of shocks concerning energy crop costs, the EPEX-Peak electricity price and the 

biowaste revenues on future capacity development (see section 8.2). A strong variation of these 

fundamental drivers impacts future developments. A discussion in section 8.3 emphasizes pros 

and cons regarding the methodology employed and confirms the plausibility of the results gained. 

The observed evolutions for the new built capacities between the years 2013 and 2016 are in line 

with past and current national biogas policy. Based on the model results policy recommendations 

and strategic outcomes linked to future electricity production from biogas are derived (see section 
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8.4). The development of biowaste and residues-based plants as well as small manure installations 

should be politically fostered as they lead to a maximization of the total profit up to the year 2030 

and over all Federal States. The volatility characterizing energy crop costs, EPEX-Peak electricity 

price and biowaste valorization revenues is a source of opportunities but also of risks for the future 

development of German biogas plants. Biogas plant operators then will face new challenges and 

must be able to master the risks and opportunities linked to the volatile evolution of these main 

profitability drivers.     
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9 Transferability of the developed methodology 

The objective of this chapter is to analyse the transferability of the developed methodology to 

different contexts beyond Germany. This is done by analysing four case studies in several coun-

tries. The considered countries involve other pathways than the electricity production from bio-

gas. The main available bioenergy conversion routes, like e.g. bioethanol in the transport sector 

or woody biomass combustion for renewable heat production, are then covered (Figure 9.1). The 

first case study deals with biomethane injection in France, the second with district heating from 

biomass combustion in Finland, the third with bioethanol production in Brazil and the last one 

with biodiesel production from jatropha in Indonesia. In each case study the current situation as 

well as the lessons learned are assessed. In a further step the transferability of the developed 

methodology for biogas in Germany to these countries is discussed in order to identify future 

drivers and challenges.    

                              

Fig. 9.1 Considered case studies and bioenergy conversion pathways  

9.1 Biomethane injection in France 

9.1.1 Current situation and lessons learned 

The first injection of biomethane into French natural gas grids occurred in August 2013. Since 

this time the French biomethane market has continuously grown and by the end of the year 2016 

about 26 biomethane plants were running [253]. The French energy transition law enacted on 

August 17th 2015 has defined a national target for biomethane which must cover 10% of total gas 

consumption by 2030 [254]. A decree adopted on April 26th 2016 sets mid-term objectives for 

biomethane injected into the gas grids of 1.7 TWh/a by 2018 and 6 to 8 TWh/a by 2023 [255]. 

Specific targets are also defined for biomethane as a transport fuel for vehicles with 20% of Nat-

ural Gas Vehicles consumption to be reached by 2030 [255]. 

In France biomethane projects can be divided into five categories. The first corresponds to auton-

omous agricultural projects with biomethane plants valorizing agricultural materials from a group 
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of farmers. Territorial agricultural projects are generally linked to co-digestion plants using more 

than 50% of input feedstock from agricultural farms and the rest from territorial waste (e.g. bio-

waste or sewage sludge from wastewater treatment plants). The third category valorizes house-

hold waste and biowaste. Fourthly sewage sludge fermentation projects involve urban and indus-

trial wastewater treatment plants in which sludge is transformed into biomethane through 

anaerobic digestion. The last category, i.e. the territorial industrial projects, gathers partners from 

various sectors like agriculture, industry and waste treatment. Figure 9.2 highlights the share of 

the different project categories in total biomethane installed capacity (in TWh/a). By the end of 

2016 about 0.41 TWh/a capacity was installed on the French territory [254]. Household waste 

and biowaste installations as well as autonomous and territorial agricultural plants represent the 

major share in the total installed capacity (about 25% each).  

 

Fig. 9.2 Biomethane project typology in France 

The potentials for the different biomass feedstock valorization into biomethane are far from being 

depleted. According to [256], a biomass potential of about 56 TWh dedicated to biogas production 

could be reached by 2030 and would be mainly dominated by crop residues and by livestock 

effluents liked slurry and manure. This corresponds to a total raw biomass feedstock amount of 

about 130 million t. From this potential the French Environment and Energy Management Agency 

(ADEME) has estimated in its “Biomethane 2030 roadmap” that about 30 TWh could be dedi-

cated to biomethane injection at about 1,400 sites [257].  

Past development of biomethane injection projects have been supported mainly by Feed-In-Tar-

iffs which the French Government implemented in 2011 [258]. Biomethane producers benefit 

from a guaranteed Feed-In-Tariff for 15 years. The Feed-In-Tariffs level remains between 46 and 

139 €/MWh depending on maximum biomethane feed-in capacity (in Nm3/h) and on the valorized 

biomass feedstock type. A base tariff is complemented by a feedstock premium for the valoriza-

tion of sewage sludge, agri-food and agricultural waste, municipal and household biowaste or 

landfill gas. Complementarily to Feed-In-Tariffs, calls for tenders have been set in 2016 in order 

to further support the development of biomethane injection projects [259]. Other revenue sources 

are heat and digestate sale as well as subsidies from the ADEME. For this last revenue category 

a subsidy rate, expressed in percentage of the total capital investment, is attributed to plant oper-

ators. An analysis of the profitability for past biomethane injection projects was published in 2015 

[260]. For the sample of projects considered the subsidy rates varied between 10 and 15% of the 

total capital investment, which is much lower than for biogas projects for electricity production. 

25%
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14%

11%
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The average Internal Rate of Return of past biomethane injection projects was located between 6 

and 13%, which represents a satisfactory profitability level.      

Beside the biomethane produced by anaerobic digestion, the production of renewable gas using 

thermo-chemical processes has benefited from significant research efforts in the past years. With 

the help of combined pyrolysis and gasification processes a synthetic natural gas (syngas) is ob-

tained from the valorization of lignocellulosic biomass and/or solid recovered fuels. The syngas 

can be further upgraded to natural gas quality and then injected into the gas grids. The injected 

gas, also called 2nd generation biomethane, is seen as a promising driver for the achievement of 

the 2030 target which specifies that 10% of total demand should be met by renewable gas by 2030 

[254]. A first demonstration project named GAYA is currently operating [261]. It aims to quantify 

production yields as well as to evaluate the economic and environmental relevance of 2nd gener-

ation biomethane production in France. Based on this analysis an industrialization phase involv-

ing new pyro-gasification projects is expected by 2020. Adequate financial support schemes ap-

pear crucial, however, in order to ensure the profitable development of future projects. 

9.1.2 Methodology transferability: drivers and challenges for a future model implementation  

The French biomethane market has been growing strongly in the past five years. These develop-

ments have been driven by specific Feed-In-Tariffs dependent on project size and on the valorized 

biomass feedstock. Research questions concerning the identification of the most profitable bio-

methane plant sizes and types as well as forecasts of future French biomethane injection appear 

as important but have currently not been answered. The methodology used for the analysis of 

current and future electricity production from biogas in Germany appears to be transferable to the 

case of biomethane injection and electricity production from biogas in France. The model input 

data regarding existing biomethane plants as well as biomass potentials for biomethane produc-

tion is available in [256]. Economic analyses from existing projects are already published in [260]. 

Revenues from the biomethane Feed-In-Tariffs can be estimated with the help of a calculation 

tool developed by the French Club Biogaz [262]. In addition, specific revenues from digestate 

sale and/or biowaste valorization remain similar to those considered in Germany for biogas. The 

results gained from the simulation model could deliver strategic information for plant operators 

and policy-makers regarding the most economically attractive biomethane installations given cur-

rent legal framework conditions. The optimization model outcomes could provide valuable indi-

cations regarding mid-term developments, e.g. up to the year 2030, for injected biomethane quan-

tities. Future developments could then be compared to the legally defined mid-terms objectives 

for French biomethane injection. This could lead to strategic recommendations and facilitate the 

national energy transition. 

The transferability of the model results to other renewable gas valorization routes than 1st gener-

ation biomethane is more difficult. Biomass gasification and pyrolysis aiming to produce 2nd gen-

eration biomethane are still at the research stage. The demonstration platform project GAYA will 

provide the first techno-economic data concerning the production and valorization of thermo-

chemical biomethane. However technological and economic optimizations still remain to be 

made. In particular a next objective consists in minimizing the costs of biomethane production 

through the identification of the most efficient gasification and syngas upgrading technologies. 

Optimization of biomass logistics and supply is also needed especially for large plants sizes. In 
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this case an important amount of biomass (superior to 100,000 t/a) is required and has to be trans-

ported which significantly increases biomethane production costs. Other challenges concern the 

biomass feedstock quality. Biomass quality characterized by the low heating value as well as by 

moisture content have an important impact on plant’s profitability [263]. The valorization and 

sale of by-products such as charcoal, oil or black carbon would further improve plant profitability 

[264]. Finally the future definition and implementation of adequate support schemes, e.g. Feed-

In-Tariffs or call for tenders, appears as a fundamental driver for the development of the 2nd gen-

eration biomethane pathway.       

9.2 Biomass combustion for district heating in Finland 

9.2.1 Current situation and lessons learned 

Following the objective of the European Commission, a target of 38% in the energy demand has 

been set for renewable energy sources in Finland by the year 2020 [265]. This represents about 

127 TWh (35 TWh for heating, 52 TWh the industry sector, 35 TWh for electricity and 5 TWh in 

the transport sector). Finland has already reached the objective set by the European Commission 

as the national renewable energy production was estimated at more than 130 TWh by 2016 [266].  

District heating represents the main driver of the total Finish heating market with a share of almost 

50% [267]. More than half of house buildings and offices are connected to district heating systems 

which meet 90% of building heat demand [267]. More than 400 medium and large-scale plants – 

mainly CHP – are valorizing biomass in combustion or co-combustion processes using peat or 

coal [267].  

Among all existing national initiatives for the promotion of biomass district heating, the project 

of North Karelia69 provides best practices for future project implementations in Finland or in other 

Baltic states [268]. The project objective is to plan, build and operate a wood chip district heating 

plant in order to create local jobs and to lower the dependence on external (fossil) energy sources. 

The total annual energy consumption in North Karelia is about 10 TWh including electricity, 

heating and transport [268]. With a consumption share of 49.2% wood energy represents by far 

the main renewable energy source in the region, followed by fossil fuels (24.1%), hydropower 

(9.3%) electricity import (8.9%), peat (6.9%), heat pumps (1.3%) and other bioenergy feedstock 

(0.4%) [268]. Renewable energy represents about two-thirds of the primary energy consumption 

of North Karelia and is mainly drawn from woody biomass (81%) [268].  

The North Karelia region has been a forerunner in renewable energy in recent years. In 2013 a 

new bio refinery simultaneously producing bio-oil, heat and electricity was opened in Joensuu 

                                                           
69 The North Karelia region is located in the east of Finland at about 300 km from Russian boarder. Forestry 

and forest-based bioenergy represent an important economic driver there. Woody biomass represents about 

50% of the local primary energy consumption and the local renewable energy sector employs about 1,300 

persons each year.  
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[268]. About 50,000 t of bio-oil is produced yearly meeting the heating requirements of 10,000 

households and this new plant has led to the creation of 65 new local jobs [268]. 

A Climate and Energy Program has been developed for North Karelia with defined targets to be 

reached by 2020 [268]. This program focuses on the sectors of energy (supply and consumption), 

transport, infrastructure, land use planning, construction, waste management, agriculture and for-

estry. As North Karelia is the most advanced region in Finland for the use and production of 

renewable heat, it has been selected as a demonstration region in order to establish best practices 

and to benefit from lessons learned.  

For this, two surveys of plant operators have been carried out. Workshops have been organized 

in Joenssu, Koli and Valtimo. The results and experience gained have been transferred and applied 

to the municipality of Masku and to the counties of Pirkanmaa and Pohjois-Savo [268]. The main 

barriers for the profitable development of district heating projects have been identified and are 

the poor viability and low availability of funding as well as a lack of knowledge of subsidies, 

legal framework conditions, accounting and taxes [268]. The storage of wood and cooperation 

between manufacturers were not considered as problematic. From the plant operator side, chal-

lenges remain in the use of best available technologies needed to improve wood chip quality 

[268]. Clarification of the legal processes related to heat and electricity sale for small scale CHP-

plants is also needed. High level of investments required at the beginning of the operation and the 

low price of energy in Finland could represent additional barriers for future project development 

[268].  

9.2.2 Methodology transferability: drivers and challenges for a future model implementation  

The recent developments for biomass district heating plants in Finland are very encouraging and 

will have to be fostered. In particular the identification of the most profitable biomass heating 

plant sizes would facilitate the implementation of new installations. A possible approach would 

be to assess the profitability of CHP district heating plants according to variable biomass feed-

stock mass flow and type (e.g. wood chips and fuel wood). The simulation model developed for 

biogas in Germany could be then applied to Finnish biomass district heating plants. Best practices 

transfer from existing projects or local implementation approaches, such as those in the region of 

North Karelia, is necessary in order to gather input data concerning the costs of heat and/or elec-

tricity production. On the revenues side a main barrier to future model implementation concerns 

the subsidy level for the heat and electricity produced. The subsidy level has decreased over the 

last few years so that the visibility and profitability of future projects remains uncertain. CHP 

district heating plants currently benefit from Feed-In-Tariffs but only for a period of 12 years 

which is shorter than is the case of Germany (20-years period). Plant operators receive a fixed 

subsidy at 50 €/MWh for the heat produced which has a major influence on plant profitability. 

Data uncertainties for the biomass input feedstock also remain especially concerning resource 

price and quality. The implementation of a regional optimization model for the analysis of future 

district heat production from biomass in Finland is currently not feasible. A regionalization of the 

required techno-economic data does not exist which limits future model developments at a re-

gional scale. This also applies to currently available and future regional biomass potentials which 

have not been evaluated. The land use competition between bioenergy and wood industry should 

be taken into account for future regional biomass mass flows and potentials estimation.  
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Future challenges consist in the valorization of small-scale wood in young forests in order to reach 

the target of 25 TWh by 2020 for forest chip use. This remains a difficult task because working 

in young forests is less profitable than in clear cuttings. The main barriers to a profitable biomass 

harvesting in young forests are the small tree sizes, logistic aspects and difficult forest hauling. 

Furthermore, future development and policies for Finish biomass heating plants must not lead to 

a competition of use with the wood processing industry. Priority has then to be given to the val-

orization of residues like woodchip, barks or sawdust.  

In conclusion the transferability of the model-based approach used for biogas in Germany to dis-

trict heating in Finland appears as difficult as regional data are missing. An aggregated evaluation 

at the national level remains however possible, especially by relying on past projects such as in 

the North Karelia region and assuming future legal framework stability. Mid-term forecasts for 

the development of future district heating plants based on woody biomass combustion would as-

sist plant operators and policy makers with further project implementation. This would contribute 

to attaining national energy and environmental targets and to the creation of local added-value.     

9.3 Bioethanol for transportation in Brazil 

9.3.1 Current situation and lessons learned  

With about 28 billion liters of ethanol produced in 2016 Brazil is the second largest producing 

country behind the United States and also the largest sugarcane ethanol producer worldwide 

[269]. Past governmental initiatives such as PROALCOOL, the National Plan for Agroenergy 

and the Plan for Supporting Innovation in the Sugar-Energy and Sugar-Chemistry sectors have 

led to continuous development of the Brazilian bioethanol sector [270]. Research work has pro-

vided major impetuses for improvements in bioethanol production both at the agricultural and 

industrial scales. Sugarcane productivity has doubled since the 1960s due to research efforts in 

genetic breeding [270]. Technological innovations, e.g. in vinasse treatment or in the field of 

process energy efficiency, have accelerated industrial developments and were always supported 

by governmental incentives. Another main driver for bioethanol growth in Brazil was the intro-

duction of flex-fuel engines in the early 2000s [271]. Due to different energy content, bioethanol 

and gasoline cannot be perfectly substituted from each other and the price of bioethanol has to 

remain under 70% that of gasoline in order to be competitive for consumers [271].  

In order to meet the strongly increasing demand for bioethanol at both national and international 

levels in the forthcoming years, Brazil has to expand the sugarcane area harvested for both bio-

ethanol and sugar production70. Bioethanol production should increase in a sustainable way in 

order to minimize competition regarding land use. According to [272] land-use change and envi-

ronmental problems could occur as a result of future sugarcane production especially in Cerrado 

areas (e.g. Goias and Mato Grosso). The increase of sugarcane production applies to area subject 

to environmental restrictions like the Pantanal and Amazon regions of the Paraguay River basin. 

Consequently the Brazilian Government decided in 2009 to set up and to monitor a sugarcane 

                                                           
70 This area expansion would be caused by a stagnation of the sugarcane yields, as no new feedstock variety 

are currently developed [272]. 
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agroecological zoning system so as to regulate land adaptation for sugarcane in these regions 

[272]. 

The bioethanol production in Brazil raises a “food versus fuel” debate. The conversion of sugar 

cane into bioethanol potentially impacts land-use and food security as it valorizes an edible crop 

into fuel. These impacts - and their significance – have been assessed in [273] based on a regional 

simulation model. A multi-period computable general equilibrium model (CGE) of Brazil has 

been developed. It follows a bottom-up regional representation of 15 aggregated Brazilian regions 

and involves 38 sectors, 10 household types and labor grades. It is further combined to a land use 

change (LUC) model which tracks land use evolution in each region. In particular land-use change 

results from various parameters such as an increase of non-land inputs, a greater use of dedicated 

crop land and a conversion of pasture and unused lands to crop land. Model results show that the 

sugarcane production will be concentrated in regions characterized by a productivity increase. In 

order to reach the 2022 bioethanol target only 0.07 million ha new land and only 0.02% additional 

deforestation rates are necessary. An increase of bioethanol production would further have a very 

limited impact on food security [273].  

If the past development of bioethanol in Brazil can be considered as a success, important techno-

logical bottlenecks still remain [272]. The innovation and technology transfer from research in-

stitutes to companies is relatively low and in particular the 2nd generation of bioethanol biofuels71 

is still at an early stage of development [272]. The future development of Brazilian bioethanol as 

a global commodity is dependent on the implementation of dedicated policies and regulations. 

This would encourage companies to invest in innovation and research and development programs. 

Only then will innovative biofuels have a chance to emerge.     

9.3.2 Methodology transferability: drivers and challenges for a future model implementation 

In order to analyse the conditions for a future emergence of 2nd generation bioethanol, robust 

evaluation and forecast of production costs are necessary. In [275] an outlook for bioethanol pro-

duction costs in Brazil up to 2030 is given. It includes first and second generation of bioethanol, 

that last one being produced from elephant grass or eucalyptus. In 2016 the production costs for 

bioethanol from elephant grass and eucalyptus were estimated at about 870 and 810 $/m3 respec-

tively [275]. A production costs decrease of up to 750 $/m3 for elephant grass and 710 $/m3 for 

eucalyptus is foreseen by 2030 [275]. This major cost reduction would be achieved essentially by 

improving the biomass yields and process efficiencies [275].  The current situation for bioethanol 

in Brazil can be assessed with the help of a process simulation model. The model would lead to 

the identification of the most cost-effective bioethanol plant sizes and types assuming variable 

and differentiated biomass input.   

Optimized second-generation bioethanol from eucalyptus could lead to competitive production 

costs compared with first generation biofuels. To this aim cost minimization coupled with process 

simulation represent promising and applicable modelling approaches. The profit maximization 

model employed in Germany for biogas remains however not transferable to Brazilian bioethanol. 

                                                           
71 The 2nd generation bioethanol results from the conversion of lignocellulosic and starchy materials in 

fermentable sugars that are able to be further processed into a sustainable biofuel [274]. 



161 

 

No subsidies directly to plant sizes and types are employed for bioethanol in Brazil, which limits 

the optimization model to a cost minimizing approach. A forecast of regional bioethanol produc-

tion costs72 and regional biomass potentials combined with the estimation of existing bioethanol 

plants would provide the main input data for an optimization model. The model objective would 

consist in minimizing the total bioethanol production costs for all Brazilian regions and plant sizes 

up to 2030. The model outcomes would provide valuable information for research institutions, 

policy and decision-makers concerning the most promising regions73 and strategies for the devel-

opment of 2nd generation bioethanol. In [275] future challenges to be overcome by the Brazilian 

bioethanol industry are highlighted. Crop improvement, supply chain optimization as well as the 

integration of socio-economic impacts - including the “food versus fuel” debate - are pointed out. 

The future development of bioethanol supply chains in Brazil has to integrate sustainability cri-

teria and thus requires integrated approaches. 

9.4 Biodiesel production from jatropha in Indonesia 

9.4.1 Current situation and lessons learned 

By 2016, total Indonesian fuel consumption in the transport sector was estimated at about 70 

billion liters [276]. It was mainly dominated by gasoline and diesel representing 47% and 46% of 

total national consumption respectively [276].  Since 2005 continuous development of biodiesel74 

in Indonesian fuel consumption has been observed. The biodiesel blend rate increased from 0.2% 

in 2009 to 10.2% in 2016 [276]. First generation biofuels produced from starch, sugar, animal fats 

or vegetable oil as well as crude palm oil were initially developed in Indonesia in order to reduce 

oil imports and carbon emissions. The National Medium-Term Development Plan RPJMN75 has 

the objective of producing between 4.3 and 10 million liters of biodiesel and 0.34 and 0.93 million 

liters of bioethanol by 2019 [279]. A target share of 25% biodiesel in the global diesel fuels by 

2019 has been set and a mandatory biodiesel rate of 20% was imposed in 2016 [279]. The Indo-

nesian biofuels industry is principally dominated by palm oil. This development has been sup-

ported in the past by the imposition of export levies of at about 50$ a ton for palm oil and 30$ for 

processed products [279]. The funds raised by these levies were reused to subsidize biodiesel 

production and to launch new research and development programs. 

The growth of the Indonesian palm oil industry, however, incurred high environmental and social 

costs [279]. Increasing local palm oil production caused a massive land clearing of most of the 

                                                           
72 A possible way to obtain regional bioethanol production costs in Brazil would be to evaluate and to integrate regional 

biomass feedstock costs in the optimization model. 
73 In [275] the adjoining regions of Sao Paulo are identified as economically attractive for a future bioethanol produc-

tion. 
74 Biodiesel is a chemically modified alternative fuel which can be used in diesel engines. It can be derived from 

vegetable oils and animal fats, soybean, cottonseed, groundnut, sunflower, rapeseed, sesame, palm oil, coconut, linseed, 

castor, camelina, hemp, olive, jatropha, corn, tallow, lard, poultry and rendered fats, used frying oil [277]. 
75 The RPJMN objective is to encourage “sustainable growth, increasing value added of natural resources with the 

sustainable approach, increasing quality of the environment, disaster mitigation and tackling climate change”. It con-

cerns in particular the reduction of greenhouse gas emission in the forestry and peat lands, agriculture, energy and 

transportation, industrial and waste sectors. A specific target 26 % is set by 2019, in line with the National Action Plan 

for Greenhouse Gas Emission Reduction (RAN – GRK) [278].  
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carbon-dense forests and rising greenhouse gas emissions. Further environmental problems were 

biodiversity losses in forest areas as well as pollution due to combustion in palm oil plantations 

[279]. Social conflicts over land use frequently arise between local population and industrial palm 

oil corporations. An alternative to palm oil valorization consists in producing biodiesel from 

jatropha curcas. The use of jatropha curcas as a biodiesel source was first promoted in 2005 by 

the Indonesian government. The objective was to lower the effects of increasing world crude oil 

prices by developing jatropha-based biodiesel.  

The advantages and disadvantages of jatropha curcas are summed up in Table 9.1. In spite of its 

non-edible character and its low labour and nutrient requirements, jatropha curcas also has dis-

advantages which jeopardize profitable valorization into biodiesel.  

 

Table 9.1 Advantages and disadvantages of jatropha curcas [280], [281], [282], [283] 

 

Advantages Disadvantages 

Non-edible plant which does not compete with 

the food supply chain when used for biodiesel 

production. 

 

Can be used as a hedge against soil erosion and 

desertification.  

 

Can be grown on degraded poor soils in semi-

arid conditions. 

 

Has low nutrient requirements and requires lim-

ited labour input (perennial crop).  

 

Seed cakes contain nitrogen and can thus be used 

as organic fertilizer. 

 

Jatropha has medicinal properties. 

Jatropha generally takes four to five 

years to reach maturity 

  

The seed cakes cannot be used as animal 

feed. 

 

There is a risk of land use competition 

with food crops if the plantations are cul-

tivated on arable soils 

 

Only limited agronomic data concerning 

the plant are available (yield and produc-

tion costs uncertainty, unknown environ-

mental impacts). 

 

The toxicity of jatropha extracts from 

fruit, seed, oil, roots, latex, bark, and leaf 

is well-established. 

 

 

In [284] an economic assessment of jatropha biodiesel projects has been carried out and further 

highlights poor profitability levels. This is mainly explained by low hectare yields, high produc-

tion costs, limited seed availability and decreasing fossil fuels price. According to [285], jatropha 

yields vary from 0.1 to 1 t/ha which is very low in comparison to other biomass feedstocks. High 

maintenance, labor and transport costs also generate high production costs. According to [285] a 

possible way to reach profitability could consist in using Clean Development Mechanisms (CDM) 

in order to finance the projects. Taking into account these revenue sources a profitable situation 

can only be reached from a jatropha yield of about 2.5 t/ha [285]. This critical yield can currently 

not be achieved in Indonesia so that farmers would tend to cultivate more productive crops. In 

addition Indonesian jatropha oil and seed sectors suffered from a lack of a consistent national 

market strategy. Jatropha was mainly supported by governmental incentives without stimulating 

biodiesel demand. Farmers were then unable to sell their harvests and production [286]. 
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Due to its non-competition with the food value chain the cultivation of jatropha curcas on de-

graded soils at first sight represents a potentially interesting option for biodiesel production espe-

cially in remote areas. However, numerous research and development projects have been 

launched in recent years and have produced, unfortunately, disappointing and negative results. A 

lack of theoretical and scientific knowledge regarding the crop cultivation, low commercial avail-

ability, poor profitability and insufficient yields have induced major failures but also led to the 

identification of new challenges described in the next section.   

9.4.2 Methodology transferability: drivers and challenges for a future model implementation  

A lack of reliable techno-economic data combined with the unprofitability of past jatropha pro-

jects in Indonesia renders the transfer of the methodology applied to biogas in Germany very 

difficult. Nevertheless a possible modelling approach would consist, if data were available, in 

coupling agroeconomic models with integrated economic evaluation tools. Such models have al-

ready been developed for biogas in Germany [287]. A first step would be to determine the condi-

tions leading to maximal biodiesel production yields from jatropha. An improvement of the oil 

extraction methods as well as the implementation of suitable enzymes could improve productiv-

ity. Transesterification and thermal cracking processes, mostly used for the conversion of jatropha 

crude oil into biodiesel, have still to be optimized by using environmentally friendly catalysts 

with high conversion efficiencies. The crop properties could further be modified with the help of 

biotechnological applications (plant breeding). The work on the jatropha genome is still at the 

early stage and remains far behind that of other agricultural crops. An optimized valorization of 

by-products such as seed cake and glycerin would have positive impacts on the process economic 

balance and its sustainability. The increase of the recovery rate for the glycerin derived from the 

transesterification process as well as the detoxification of seed cake are in particular key issues. 

All these optimization measures would contribute to minimize the production costs of jatropha-

based biodiesel. Given these production costs an economic evaluation tool could be developed. 

This would lead to the determination of the critical revenue level needed for project profitability. 

The Clean Development Mechanism as well as incomes from seed cake sale as an organic ferti-

lizer represent possible revenues sources. Recommendations for government and policy makers 

could then be formulated highlighting in particular the local benefits created by jatropha biodiesel.  

9.5 Summary 

The model transferability towards other valorization pathways than biogas in Germany has been 

assessed in several case studies and leads to heterogeneous conclusions. The biomethane injection 

in France is strongly developing and is mainly driven by a stable legal framework corresponding 

to Feed-In-Tariffs. First techno-economic assessments and data are already published and current 

as well as future biomass potentials have been clearly identified. This creates suited conditions 

for a model transfer from the German biogas experience to French biomethane injection. A sim-

ulation model would help plant operators to identify most profitable biomethane plant capacity 

under a variable biomass feedstock input. The optimization model would lead to a forecast of 

future biomethane injection capacity. Future developments could be then compared to the defined 

national objective for biomethane under various scenarios.  



164 

 

Biomass district heating plays a major role in the Finish renewable energy system. Best practice 

exchanges already exist, e.g. in the North Karelia region. However an instability related to the 

employed Feed-In-Tariffs as well as the lack of regional data for biomass feedstock prices and 

potentials render the model transferability at the regional scale difficult. Future challenges consist 

in developing new projects in young and small-scale forests. This would contribute to reach de-

fined national targets for wood chip energetic valorization. 

Bioethanol production in Brazil can be considered as a “success story” since 1960 so that currently 

biofuels represent about 20% of the national transportation fuel demand. These developments 

have been supported by governmental initiatives (e.g. the PROALCOOL program) and by con-

tinuous research and development efforts. Future challenges for the Brazilian bioethanol industry 

remain in the expansion of the sugarcane area harvested for bioethanol. This expansion should 

respect sustainability criteria and minimize the competition regarding land-use change. A further 

challenge concerns the future industrial development of 2nd generation bioethanol. Brazilian lig-

nocellulosic bioethanol still remains at the research stage. In order to expand it up to an industrial 

scale a cost minimization approach is necessary. To this aim optimization models minimizing the 

total bioethanol production costs over all Brazilian regions could be employed. They would pro-

vide insights about future bioethanol plant developments under optimal economic conditions. 

The conversion of jatropha curcas into biodiesel in Indonesia at first sight represents a promising 

technological solution for the production of biodiesel as a sustainable biofuel. Jatropha is a non-

edible plant which can be cultivated on degraded lands so that no competition with the food value 

chain occurs. Nevertheless low yield and profitability levels as well as a lack of scientific and 

agroeconomic data render the model transferability from biogas in Germany to jatropha in Indo-

nesia very difficult.     

In conclusion the transferability of the developed methodological framework from Germany to 

other countries and bioenergy pathways is depending on several key-factors. A stable subsidy 

framework, e.g. Feed-In-Tariffs, as well as a robust production costs forecast are systematically 

required. The evaluation of biomass potentials at the regional scale is further necessary for the 

implementation of regional optimization models. This would contribute to estimate mid-term de-

velopment for each considered bioenergy pathway under various scenarios. Furthermore the im-

plementation of the models and methodology used in Germany to other countries has to take into 

account sustainability criteria. This includes in particular the assessment of socio-economic im-

pacts as well as a reduced competition between food and fuel and/or between energy and material 

use.      
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10 Summary, conclusions and outlook 

10.1 Summary 

In this thesis, a model-based framework is developed for the assessment of current and future 

electricity production from biogas in Germany. It provides answers to two main research ques-

tions. The first one concerns the identification of the most profitable biogas plant sizes and types 

under different legal frameworks of the Renewable Energy Sources Act (EEG 2012 and EEG 

2014). Which installation types and sizes should be built under these framework conditions in 

order to lead to the highest profitability for German biogas plant operators? The second research 

question concerns future developments regarding new built biogas plant capacity on a mid-term 

time horizon, i.e. up to the year 2030. Which future capacity developments can be foreseen up to 

the year 2030 at the Federal State level in order to ensure maximal operating profits for German 

biogas plant operators?   

The modelling concept corresponds to the perspective of biogas plant operators with the objective 

of a profit maximization. The objective is to provide an economic foresight for operators both on 

short and mid-terms. Model input data concern biomass feedstock characteristics, plant operation 

mode, existing biogas capacity, current and future biomass potentials as well as all costs and 

revenues positions. The data is derived from literature sources, from questionnaires sent to plant 

operators and also results from own methodology. In particular, the total capital investment is 

estimated for each plant size and type by using the Multiplier Values Method. A methodology is 

also developed for the evaluation of energy crop costs at the Federal State level based on regional 

hectare yields. A simulation model leads to the identification of the most profitable plant sizes for 

the three major installation types in Germany employing energy crops and manure in co-digestion 

(EM plant) and biowaste and energy crops in mono-digestion processes (B and E plants). The 

model developed is based on a process simulation tool which enables the economic assessment 

of the three plant types under a variable biomass input mass flow. The results are analysed under 

the EEG 2012 and EEG 2014 legal frameworks dedicated to electricity production from biogas 

in Germany. For small-scale plant sizes below to 75 kWel the results show that manure plant types 

appear as the most profitable installation type due to high electricity sale revenues (e.g. 23.53 

ct/kWhel in 2014). Starting from 550 kWel, biowaste plants represent the most economically at-

tractive option under EEG 2014. Furthermore all agricultural plant sizes turn out to be unprofita-

ble under the EEG 2014 framework. This is essentially due to the subsidies cut applied to energy 

crops. In addition to the economic assessment, sensitivity analyses are realized for the most prof-

itable plant sizes. They quantify the impact of the main drivers on plants profitability. Energy 

crop and investment-related costs, electricity sale price as well as revenues from the biowaste 

valorization represent the main factors influencing plant profitability. Their evolution can gener-

ate risks but also opportunities for plant operators. A technical assessment leads to the estimation 

of energetic efficiencies for the most profitable plant sizes over the whole supply chain. The most 

profitable plant sizes identified in the simulation model appear as plausible with regard to the 

legal framework conditions of EEG 2014 which is favorable to small manure plants and large-

scale biowaste installations. For plants smaller than 150 kWel an economic comparison with the 

new EEG 2017 is realized. This new legal framework only has a very slight negative impact on 

the profitability in comparison with the results observed under EEG 2014.  
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In a further step, future capacity expansion and electricity production from biogas are estimated 

up to the year 2030 with the help of a regional optimization model. The model’s objective is to 

maximize the total operating profit over all plant sizes, the whole time period and all Federal 

States combined. This aims to provide information regarding future mid-term developments for 

biogas in Germany from a plant operator perspective. Several constraints apply concerning bio-

mass potential limitations as well as annual capacity expansion caps. A “base scenario” is defined 

on the basis of the costs and revenues data employed in the previous simulation model. A meth-

odology for determining energy crop costs at the Federal State level is developed and leads to a 

regionalization of the optimization model. These data sets are completed by the evaluation of the 

existing biogas plant park in each Federal State according to the three reference plant types. Cur-

rent and future regional biomass potentials for electricity production are further estimated based 

on literature data. 

The results show that the EEG 2012 framework – if maintained – would have strengthened the 

development of agricultural plants and especially co-digestion plants valorizing energy crops and 

manure. The EEG 2014 framework stops the initially expected development of energy crops 

mono-digestion plants which will not be built anymore as they are unprofitable (negative specific 

operating profit for all plant sizes in all regions and over the whole time period). At the end of 

2030 and under the EEG 2014 framework, an installed electric power of about 4 GWel should be 

reached over all Federal States. This total capacity is split into 1.94 GWel linked to base-load 

capacities and 2.06 GWel related to existing and new built flexible capacities. Further scenarios 

quantify the robustness of the optimization model in reaction to shocks applied to revenues from 

the annual average EPEX-Peak electricity sale, to the energy crop costs and to biowaste valoriza-

tion revenues between the years 2020 and 2025. A strong EPEX-Peak electricity price increase 

favors the development of large scale plants and limits the expansion of small-scale manure in-

stallations. A strong energy crop costs increase generates unprofitability in several Federal States 

which limits future capacity developments. An important decrease of biowaste valorization reve-

nues freezes future capacity expansion. The results linked to these “shock scenarios” represent 

precious information for policy-makers and plant operators as they contribute to quantify the po-

tential threats and opportunities for the future German biogas market on a mid-term horizon. A 

forecast comparison with existing studies as well as with the recently enacted EEG 2017 legal 

framework is further realized.   

The transferability of the developed methodological framework towards other countries and other 

bioenergy conversion pathways is then evaluated. Both the simulation and optimization models 

could be implemented in France where the biomethane injection into the natural gas grid is 

strongly developing. A robust legal framework combined with available regional data offer ade-

quate conditions for a future model integration. The combustion of woody biomass for district 

heating in Finland is a subsidized and mature bioenergy conversion technology. It plays a major 

role in the national heat demand and already benefits from best practices exchange issued from 

projects in the eastern region. The simulation model developed for the analysis of current elec-

tricity production from biogas in Germany is applicable to Finnish biomass district heating plants. 

It would lead to the identification of most profitable plant sizes and types under current legal 

framework conditions. Unavailable regional data especially regarding biomass potentials, prices 
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and quality renders the optimization model transfer at the regional scale difficult. An implemen-

tation at the national Finnish level remains however possible. The transferability of the method-

ology to the liquid biofuel sector has been further examined through the cases of bioethanol in 

Brazil and biodiesel production from jatropha in Indonesia. On the basis of existing economic 

studies and projects, a simulative approach as well as an optimization model minimizing the total 

Brazilian bioethanol production costs up to the year 2030 are implementable. Future develop-

ments for bioethanol in Brazil should however take into account environmental and social aspects 

in particular concerning greenhouse gas balance, impacts on biodiversity, water and air, as well 

as regarding the “food versus fuel” debate. The valorization of jatropha into biodiesel in Indonesia 

represents at the first sight a promising pathway for biofuels production, as jatropha does not 

compete with food value chain. However the low production yields currently observed in Indo-

nesia and a lack of reliable data do not provide suitable conditions for a future model transfer. 

Technical process improvements are required in order to reach profitable yields and the imple-

mentation of Clean Development Mechanisms (CDM) would represent possible financing options 

for future projects. In all case studies a robust forecast of productions costs and revenues as well 

as stable legal frameworks and regional data are prerequisites for a further model implementation. 

10.2 Conclusions  

Several conclusions and recommendations can be formulated in relation to the analysis of current 

and future electricity production from biogas in Germany. Currently only discrete economic anal-

yses of individual German biogas plants exist. The added-value of the simulation model devel-

oped is thus to enable a continuous profitability assessment under variable biomass input and 

taking into consideration different legal frameworks (versions 2012 and 2014 of the Renewable 

Energy Sources Act). The simulative approach further provides indications regarding the most 

profitable biogas plant sizes to be built under various legal frameworks. The identification of the 

most profitable plant sizes combined with the quantification of the main profitability drivers 

through a sensitivity analysis provides a useful assistance to plant operators. It enables more stra-

tegic installation design taking into account existing legal frameworks for biogas in Germany. 

The simulation model thus gives valuable insights for plant operators wishing to operate their 

installation in the most profitable way.     

The optimization model developed delivers strategic outcomes concerning the evolution of future 

regional developments for biogas plants in Germany. The modelling approach is considered from 

the plant operator perspective and represents an added-value in comparison with other existing 

studies. These assessments are based on a systemic approach and do not quantify the regional 

evolution of various biogas plant types and sizes. The model results show that the German biogas 

market will thus face a paradigm shift and move to strong development of small-scale manure 

plants and large scale biowaste plants. The development of these plant types and sizes should lead 

to the highest profitability from the plant operator perspective. This forthcoming shift into the 

development of waste and residues-based plants should clear the main acceptance problems which 

have raised in the past years for biogas in Germany [15]. Acceptance problems in Germany con-

cern notably the “food versus fuel” debate and in particular the increasing use of maize silage for 

biogas production. In addition citizens are potentially concerned by the commissioning of new 

biogas plants close to their housings. They fear negative impacts due to biogas like increasing 
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road traffic or odour emissions [15]. The model results further show that a generalized decom-

missioning will occur starting from 2020 for plants older than 20 years. This aspect must be bal-

anced by a continuously improved integration of biogas into the German electricity market. Ac-

cording to the model results, about 50% of the electricity from biogas will be produced in 2030 

by flexible plants based on the direct electricity marketing model. The simulation and optimiza-

tion models deliver insights for plant operators regarding the current and future electricity pro-

duction from biogas in Germany. Based on these outcomes, recommendations are addressed.  

A first recommendation consists in improving the economic balance for small to mid-scale bio-

waste plants which are not profitable under the EEG 2014 framework. A future development of 

this installations type would establish local circular bio-economies and decentralized markets 

both for biowaste and for the produced digestate. A better involvement of local actors in biowaste 

plant projects should be encouraged and could lead to an increase of the municipal fee revenues 

dedicated to biowaste valorization in biogas plants. 

A second recommendation concerns the need for developing biogas plants based on agricultural 

residues. Residues are generally available for free and do not compete with the food value chain. 

This development would provide new perspectives especially for agricultural biogas plants whose 

profitability was strongly impacted by the energy crops and manure subsidy cut under the EEG 

2014 framework.  

A third recommendation is related to the development of small-scale manure biogas plants. The 

subsidy level linked to this plant type has to be maintained in order to ensure a continuous valor-

ization of manure potentials of which only 50% are used by 2013 [172]. A new generation of 

local farming systems could thus emerge and contribute to the integration of biogas plants into 

small farming systems. This would contribute to a revitalization of the rural economy and facili-

tate the German energy transition by new job creation.  

Another recommendation concerns the flexibilization degree of existing and new built plants 

which has to be improved by enlarging the flexibilization possibility to all plant sizes including 

small scale manure plants. The flexibilization of future biogas plant should thus be fostered, es-

pecially regarding the set objective of 80% renewable energy sources in the national gross elec-

tricity consumption by 2050 [93]. This ambitious target implies a strong increase of fluctuating 

electricity sources like wind power or photovoltaics and thereby the need of flexible biogas plants 

in order to stabilize the electricity grid [288].   

The methodological framework applied to the case of biogas in Germany is further transferable 

to other countries and to other conversion pathways under certain conditions. Robust and stable 

framework conditions involving e.g. Feed-In-Tariffs as well as consistent regional data for bio-

mass potentials and prices are required. Lessons learned and best practices from past projects 

would further lead to substantial profitability improvements. For example the developed method-

ology and models could be used for the analysis of the biomethane injection in France and the 

biomass district heating in Finland. This would contribute to reach specific targets for bioenergy 

and to facilitate the national energy transition in these countries.   
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10.3 Outlook 

Future challenges and research needs for biogas in Germany are remaining and should be pointed 

out. In the context of volatile biomass feedstock and electricity prices, biogas plant operators must 

be able to understand and master the financial risks impacting the profitability of their installa-

tions. The models results show that the current economic balance as well as the future develop-

ment of German biogas plants are highly sensitive to this volatility. The acquisition of new com-

petencies and deep knowledge in the field of energy economics, commodities and electricity 

markets could thus help plant operators to strategically manage their installations.  

The identification of model regions for biogas in Germany represents a strategic aspect for the 

European biogas sector. As Germany is by far the European biogas leader, best practices can be 

gathered and transferred to other European countries. The results of the optimization model show 

in particular that Lower-Saxony and North Rhine-Westphalia will be leading the future German 

biogas market and represent respectively about 25% and 15% of the total base-load biogas plant 

capacities at the end of 2030. These two “flagship regions” could be the seat of research and 

innovation projects. Innovative business models, applied to both agricultural and biowaste plants, 

could thereby be developed. In particular a first challenge remains in a better approach to flexi-

bility from the feedstock side as well as from the gas storage side. Further research needs to be 

carried out on the optimization and strategic planning of biomass input loading and/or gas storage. 

Complementarily to gas storage, another possibility would be to operate flexible biogas plants by 

loading the biomass feedstock input and producing biogas only during high electricity price hours. 

For this a digitalization of existing and future biogas plants is necessary. This can be achieved by 

information and communication technologies (ICT) with an access to online data monitoring e.g. 

regarding process parameters or EPEX electricity prices [289]. In [290] the operation of flexible 

biogas plants following the electricity demand and price is described. The biomass loading step 

and the gas storage are strategically combined in order to maximize plant flexibility. A case study 

highlights cooperative approaches and strategies that have been experimented for a pool of flexi-

ble biogas plants in Switzerland. All flexible biogas plants in the pool are connected to a central-

ized control and regulation system. This control system synchronizes the operation of all con-

nected biogas plants. This enables economically optimal and demand-driven electricity 

production occurring in peak times and linked to a high price level. In addition, modelling ap-

proaches such as an agent-based simulation of single decentralized biogas plants represent further 

research needs. These models would enable the simulation of interactions between individual 

installations belonging to a pool of flexible biogas plants. Flexibility options could be simulated 

according to biomass feedstock price and availability or depending on EPEX electricity price 

level. This would deliver insights regarding the optimal integration of flexible biogas plants into 

the German electricity system.   

Another challenge is to increase the collection, mobilization and valorization rates of biowaste 

potentials for biogas plants. A separate collection of biowaste in households is compulsory ac-

cording to the Waste Management Act 2012. However, continuous optimization measures must 

be applied at the household level in order to improve the biowaste collection rates. According to 

[291] these optimization measures can be divided into three major steps. The first step concerns 

the evaluation of the connection rate of a given municipality or a district to biowaste bins. Streets, 

districts or areas showing low connection rates should thereby be identified. In a second step a 
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biowaste sorting analysis has to be performed in the settlement areas characterized by low con-

nection rates. The content of biowaste bins must be qualitatively and quantitatively assessed. Fur-

ther research work in this area would consist in deploying questionnaires in various German mu-

nicipalities in order to better characterize biowaste management habits. This would lead to the 

formulation of concrete optimization measures for a more sustainable biowaste use. 

A further aspect concerns synergies and mutualisation effects to be found between biowaste fer-

mentation and composting pathways. Household biowaste can be divided into green waste and 

kitchen biowaste which can generate biogas by fermentation but also a humus rich fertilizer 

through an aerobic composting process. According to [292] and [293] about 300 composting 

plants and 113 biowaste fermentation plants were operated in Germany at the end of 2014. Com-

posting plants essentially valorize woody green waste with a high lignin-content. Fermentation 

processes employ easily degradable feedstock with a low lignin-content. The competition of use 

between these two valorization routes therefore remains limited. In [294] an economic and envi-

ronmental comparison of biowaste composting and biowaste fermentation processes is carried 

out. Fermentation processes tend to show a better greenhouse gas and energy balance than com-

posting technologies but are generally characterized by higher investment and operating costs. 

Current trends consist in finding complementary solutions between composting and fermentation 

processes, which should be combined and not opposed. As mentioned in [292], about 80 com-

bined plants exist in Germany and employ both composting and fermentation processes on the 

same installation site. This hybrid plant model creates synergy effects especially if high fee reve-

nues for biowaste valorization or high heat sale revenues are reached. In the future continuous 

development of this combined installations type must be politically encouraged. An optimal allo-

cation of the household biowaste mass flows between composting and fermentation plants repre-

sents another important issue for the German biogas industry. For this, optimal logistic channels 

should be defined and the collection process of the biowaste should be coordinated and managed 

from centralized control platforms. To this aim further research work have to focus on the model-

based assessment of logistic supply chains dedicated to biowaste valorization. This would con-

tribute to identify optimal logistical pathways and to minimize transport costs as well as environ-

mental impacts.   

Biogas plants are more and more involved in local approaches dedicated to autonomous energy 

supply. In Germany the “Bioenergiedorf” concept has been developed in several villages like in 

Jühnde [295]. In this village a decentralized energy supply is deployed and includes citizen par-

ticipation. A biogas plant valorizing energy crops and manure in co-digestion, as well as a wood 

chip heating plant connected to a local heating network fully satisfy the local energy demand. A 

research project dealing with the profitability analysis of a flexible biogas plant has been launched 

there and highlights the importance of local heat valorization in the plant profitability. The Euro-

pean Institute for Energy Research (EIFER) also analysed the “Bioenergiedorf” concept in six 

villages located in Germany and in France [296]. In each village a case study has been developed. 

In a first step, biomass potentials and the energy consumption have been spatialized. Sociological, 

environmental as well as economic studies have been further carried out. This led to the elabora-

tion of scenarios for local authorities, based on local data and dedicated to a local valorization of 

biomass resources. Most of the developed concepts had a positive impact on the heat production 
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costs in comparison with a “Business as usual” scenario. Local pollutant emissions could be sig-

nificantly reduced (especially CO2, SO2 and fine particles), e.g. by replacing the fuel oil energetic 

use by woody biomass or by implementing more efficient energy conversion systems (e.g. micro-

cogeneration). Further research work is required in order to enlarge the “Bioenergiedorf” ap-

proach to new villages and to identify the main barriers and drivers for a future implementation. 

A last challenge concerns the increase of the biogas contribution to the German heat transition76. 

At the end of the year 2015 the German heat mix was dominated by fossil energy sources with a 

share of 86.8% and 12% were related to bioenergy sources (the remaining 1.2% correspond to 

geothermal and solar thermal energy sources) [297]. The realization of the German heat transition 

is thereby deeply linked to the development of bioenergy sources. Solid biomass, mainly used in 

combustion or gasification process, shows the highest share in the renewable heat mix with ap-

proximatively 74.6% followed by biogas, sewer gas and landfill gas with about 12% [298]. An 

optimized valorization of the heat produced by biogas plants would therefore significantly con-

tribute to reaching the objective of the German heat transition. However planning uncertainty for 

a future increase of heat valorization remains [299]. This is especially the case for a plant opera-

tion after the 20 years EEG subsidy period. The development of renewable district heating net-

works connected to existing and future biogas plants would increase the valorization rate of the 

heat produced. A diversification of heat sinks (e.g. valorization in hospitals, schools, buildings 

for wood and cereals drying) and optimized heating contracting could further improve plants 

profitability [299]. Seasonal heat storage could thereby easily store the heat produced and feed it 

into district heating networks during high thermal demand time [300]. Further research work has 

to focus on the spatialization of heat sinks close to biogas plants, e.g. by using Geographical 

Information Systems (GIS). This would then facilitate the acquisition of supplementary heat sinks 

and also increase the contribution of biogas to the German renewable heat transition.   

 

 

 

 

 

 

 

                                                           
76 In the context of the German heat transition a share of 14% of renewable energy sources of the heat demand has to 

be reached by 2020 [87]. 
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A. Appendix 

Tables 

Table A.1. Current support schemes for the electricity production from biogas in each European country [70] 

  FIT Premium Tariff Tenders Quota system Net metering Investment grants Subsidy Loan Tax regulation R&D Grid connection Other N/A 

Austria                           

Belgium                           

Bulgaria                           

Republic of Cyprus                           

Czech Republic                           

Germany                           

Denmark                           

Estonia                           

Greece                           

Spain                           

Finland                           

France                           

Croatia                           

Hungary                           

Ireland                           

Italy                           

Latvia                           

Luxembourg                           

Lithuania                           

Malta                           

Netherlands                           

Poland                           

Portugal                           

Romania                           

Sweden                           

Slovenia                           

Slovakia                           

United Kingdom                           
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Table A.2 Numerical values of the methane formation rate for each plant type 

 
Specified values for methane formation rate k (d-1) 

Agricultural plant EM 0.00044 

Agricultural plant E 0.00052 

Biowaste plants B 0.00113 

 

Table A.3 Technical input data for the estimation of the flexibility premium  

 
Unit Value 

Existing base-load biogas plant   

Initial installed electric power (input data) [kWel] 1,000 

Electric efficiency of the initially installed CHP (input data) [%] 42.62 (see Figure A.15) 

Full-load hours of the initially installed CHP (input data) [h] 8,000 (own author’s assumption) 

Electricity amount fed into the grid and linked to the initially                      

installed CHP (calculated) 

[kWhel] 8,000,000 

Methane concentration in biogas (input data) % 52 [162] 

Biogas volume flow for the initially installed CHP (calculated) [m3/h] 453 

Daily gas production in base-load (calculated) [m³] 10,862 

Existing effective gas storage volume (input data) [m3] 4,000 (own author’s assumption) 

Plant upgrading: flexibilization  
  

Installed electric power for the supplementary flexible CHP (input 

data) 

[kWel] 800 

Electric efficiency for the supplementary flexible CHP (input data) [%] 39.7 (see Figure A.15) 

Biogas volume flow for supplementary CHP in part-load                      

(calculated) 

[m³/h] 391 

Global plant 
  

Total installed electric power (calculated) [kWel] 1,800 

Installed electric power linked to part-load for flexible CHP (input 

data) 

[kWel] 800 

Full-load hours of the global flexible plant (calculated) [h] 4,713 

 

Table A.4 Estimation of the flexibilization costs and flexibility premium 

  Unit Value 

Supplementary flexible electric CHP power (input data) [kWel] 800 

Investment for supplementary flexible CHP (calculated according to [150]) [€] 347,931 

Specific investment-related costs for supplementary flexible CHP (calculated) [ct/kWhel] 0.71 

Gas storage expansion: supplementary required volume (calculated) [m³] 32 

Investment for gas storage (calculated as a function of storage volume based on [188]) [€] 15,572 

Specific costs for gas storage (in ct/kWhel) linked to the initially installed CHP running 

8000 h per year (calculated). 

[ct/kWhel] 0.02 

Flexibility premium under the EEG 2012 framework (calculated according to Eq. 3.2)  [ct/kWhel] 1.13 
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Table A.5 Regional hectare yields for maize silage [191] 

  Hectare yields maize silage (t/ha) 

Baden-Württemberg 46.22 

Bavaria 50.04 

Brandenburg 31.24 

Hesse 49.41 

Mecklenburg-Western Pomerania 34.50 

Lower Saxony 44.86 

North Rhine-Westphalia 46.64 

Rhineland-Palatinate 45.97 

Saarland 44.23 

Saxony 40.07 

Saxony-Anhalt 36.29 

Schleswig-Holstein 36.65 

Thuringia 41.43 

                                                                                                                                                                                           

Table A.6 Regional hectare yields for rapeseed [191] 

  Hectare yields rapeseed (t/ha) 

Baden-Württemberg 39 

Bavaria 34 

Brandenburg 37 

Hesse 40 

Mecklenburg-Western Pomerania 33 

Lower Saxony 40 

North Rhine-Westphalia 40 

Rhineland-Palatinate 39 

Saarland 37 

Saxony 39 

Saxony-Anhalt 41 

Schleswig-Holstein 43 

Thuringia 38 
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Table A.7 Regional hectare yields for grass silage [192] 

 
Hectare yields grass silage (t/ha) 

Baden-Württemberg 16.57 

Bavaria 21.14 

Brandenburg 14.14 

Hesse 14.86 

Mecklenburg-Western Pomerania 12.57 

Lower Saxony 23 

North Rhine-Westphalia 17.86 

Rhineland-Palatinate 15.14 

Saarland 16.43 

Saxony 19.86 

Saxony-Anhalt 13.71 

Schleswig-Holstein 21.71 

Thuringia 18.71 

 

Table A.8 Regional hectare yields for cereal grain [191] 

 
Hectare yields cereal grain (t/ha) 

Baden-Württemberg 6.55 

Bavaria 6.01 

Brandenburg 4.86 

Hesse 6.66 

Mecklenburg-Western Pomerania 5.74 

Lower Saxony 6.56 

North Rhine-Westphalia 6.78 

Rhineland-Palatinate 6.33 

Saarland 6.03 

Saxony 5.64 

Saxony-Anhalt 5.86 

Schleswig-Holstein 7.07 

Thuringia 6.38 
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Table A.9 Regional hectare yields for cereal silage [191], [193] 

 
Hectare yields cereal silage (t/ha) 

Baden-Württemberg 37.11 

Bavaria 34.07 

Brandenburg 27.56 

Hesse 37.75 

Mecklenburg-Western Pomerania 32.50 

Lower Saxony 37.20 

North Rhine-Westphalia 38.42 

Rhineland-Palatinate 35.85 

Saarland 34.19 

Saxony 31.96 

Saxony-Anhalt 33.21 

Schleswig-Holstein 40.07 

Thuringia 36.16 

 

Table A.10 Regional surface area for each energy crops type 

 
Maize silage 

(ha) 

Grass silage 

(ha) 

Cereal silage 

(ha) 

Cereal grain 

(ha) 

Baden-Württemberg 98,523 30,822 7,760 14,979 

Bavaria 283,284 62,987 25,352 48,935 

Brandenburg 64,540 19,806 6,196 11,961 

Hesse 22,356 6,854 1,714 3,309 

Mecklenburg-Western 

Pomerania 

71,638 16,480 6,665 12,866 

Lower Saxony 324,419 79,957 28,329 54,681 

North Rhine-Westphalia 81,314 29,537 7,638 14,744 

Rhineland-Palatinate 17,855 6,768 1,734 3,347 

Saarland 1,404 418 126 244 

Saxony 35,621 10,744 2,888 5,575 

Saxony-Anhalt 55,437 10,664 3,762 7,261 

Schleswig-Holstein 99,511 31,634 9,195 17,749 

Thuringia 43,136 10,886 3,668 7,079 
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Table A.11 Number of existing milk cows and remaining cattle at the end of the year 2012 [197], 

[198] 

 
Number of milk cows Number of remaining cattle 

Baden-Württemberg 353,715 661,271 

Bavaria 1,244,456 2,111,455 

Brandenburg 160,303 394,189 

Hesse 149,180 314,472 

Mecklenburg-Western Pomerania 171,573 372,585 

Lower Saxony 769,283 1,715,346 

North Rhine-Westphalia 392,466 988,357 

Rhineland-Palatinate 118,501 250,379 

Saarland 14,255 36,116 

Saxony 187,011 302,033 

Saxony-Anhalt 123,562 213,294 

Schleswig-Holstein 364,240 772,932 

Thuringia 111,478 224,895 

 

Table A.12 Regional manure mass flows 

 
Manure mass flows (t) 

Baden-Württemberg 12,624,361 

Bavaria 42,587,596 

Brandenburg 6,524,606 

Hesse 5,626,776 

Mecklenburg-Western Pomerania 6,564,118 

Lower Saxony 29,812,244 

North Rhine-Westphalia 16,171,861 

Rhineland-Palatinate 4,474,541 

Saarland 589,235 

Saxony 6,270,098 

Saxony-Anhalt 4,259,527 

Schleswig-Holstein 13,781,874 

Thuringia 4,118,872 
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Table A.13 Regional energy crop costs for the base year 2013 

 
Maize silage costs 

year 2013 (€/t) 

Grass silage costs 

year 2013 (€/t) 

Cereal silage costs 

year 2013 (€/t) 

Cereal grain costs 

year 2013 (€/t) 

Baden-Württemberg 31.70 27.69 33.22 182.87 

Bavaria 25.23 24.23 33.32 187.59 

Brandenburg 44.94 29.77 33.27 187.48 

Hesse 30.35 28.73 33.51 186.94 

Mecklenburg-Western 

Pomerania 

36.03 27.14 31.40 186.55 

Lower Saxony 34.02 29.56 37.28 204.74 

North Rhine-Westphalia 32.47 31.63 33.90 186.75 

Rhineland-Palatinate 31.61 30.11 33.33 185.69 

Saarland 31.65 30.11 32.90 184.85 

Saxony 36.27 25.64 33.10 187.50 

Saxony-Anhalt 42.16 27.64 33.90 189.20 

Schleswig-Holstein 44.77 29.81 34.75 190.83 

Thuringia 34.62 32.93 33.54 189 

 

Table A.14 Feedstock specific electric yields 

 
Specific electric yield in kWhel/t 

Maize silage 401.45 

Grass silage 333.96 

Cereal silage 343.45 

Cereal grains 1,068.02 
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Fig. A.1 Example of a technical flowsheet for a 2,000 kWel EM plant 
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Fig. A.2 Example of a technical flowsheet for a 75 kWel small manure EM plant 
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Fig. A.3 Example of a technical flowsheet for a 2,000 kWel E plant 
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Fig. A.4 Example of a technical flowsheet for a 3,000 kWel B plant 
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Fig. A.5 Electric power as a function of the biomass input mass flow (E plant) 

 

 

Fig. A.6 Electric power as a function of the biomass input mass flow (B plant) 
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Fig. A.7 Allocated biomass potentials for electricity production at the end of the year 2012 in 

each Federal State 

 

Fig. A.8 Evolution of biomass potentials for E and EM plants up to the year 2030 at the Federal 

State level 
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Fig. A.9 Evolution of biomass potentials for B plants up to the year 2030 at the Federal State level 

 

Fig. A.10 Specific acquisition costs for fermenter as a function of the fermenter working volume 

(EM plants) 
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Fig. A.11 Specific acquisition costs for fermenter as a function of the installed electric power 

(EM plants) 

 

Fig. A.12 Capital investment for gas storage as a function of the storage volume [188] 
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Fig. A.13 Energy crop cost contribution in the total electricity production costs for E plants and 

in each Federal State (year 2013) 

 

Fig. A.14 Energy crop cost contribution in the total electricity production costs for EM plants and 

in each Federal State (year 2013) 
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Fig. A.15 Thermal and electric CHPs efficiency for base-load CHPs and supplementary flexible 

CHPs as a function of the installed electric power [150] 

 

Fig. A.16 Number of CHP gas engines as a function of the installed electric power 
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Fig. A.17 Specific annual costs for E plants as a function of the electric power for the base year 

2015 

 

Fig. A.18 Specific annual revenues for E plants as a function of the electric power for the base 

year 2015 and under the EEG 2014 framework 
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Fig. A.19 Specific electricity production costs and revenues for E plants as a function of the 

electric power for the base year 2015 and under the EEG 2014 framework. 

 

Fig. A.20 Specific annual costs for B plants as a function of the electric power for the base year 

2015 
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Fig. A.21 Specific annual revenues for B plants as a function of the electric power for the base 

year 2015 and under the EEG 2014 framework 

 

Fig. A.22 Specific electricity production costs and revenues for B plants as a function of the 

electric power for the base year 2015 and under the EEG 2014 framework 
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B. Abbreviations 

    ADEME: French Environment and Energy Management Agency  

    BioSt-NachV:  Biomass Electricity Sustainability Regulation  

    CC: capacity component 

    CDM: Clean Development Mechanism 

 

    CHP: Combined Heat and Power systems  

    CNG: Compressed Natural Gas  

    DM: Dry Matter  

    DVGW: German Technical and Scientific Association for Gas and Water 

    EBase-Load: Energy amount in base-load operating mode 

    EFull-Load: Energy amount in full-load operating mode 

    EPart-Load: Energy amount in part-load operating mode 

 

    EEG: Renewable Energy Sources Act                                                                                                                                                                                               

    EEWärmeG: Renewable Energy Heat Act  

    EEX: European Energy Exchange 

    EIFER: European Institute for Energy Research  

 

    EnWG: Energy Economics Law  

    EPEX: European Power Exchange  

    EWärmeG: Renewable Heat Law  

    EWI: Institute of Energy Economics  

    FAME: Fatty acid methyl ester  

    Fcor: correction factor  

    FIT: Feed-In-Tariffs 

    FLH: full-load hours 

 

    FM: fresh mass 

    FNR: Fachagentur Nachwachsende Rohstoffe e.V. 

 

    FP: flexibility premium  

    FTE: full-time equivalent  

    GAMS: General Algebraic Modeling System  

    GHG: greenhouse gas 

    ICT: information and communication technologies 

 

    IRR: Internal Rate of Return  

    IWES: Institute for Wind Energy and Energy System Technology  

    KWKG: Cogeneration Act  

    MAEPEX: Monthly average value of the hourly contracts passed on the EPEX Spot bourse  

    MATIF: Marché à Terme International de France  

    MILP: Mixed-integer linear programming  

    MP: Market Premium  

    NPV: Net Present Value  

    oDM: organic Dry-Matter  

    OH: operating hours 

    OHFlex: operating hours for flexible plants 

 

    ORC; Organic Rankine Cycle  
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    PEl,Base-load: electric power in base-load operating mode 

      PEl,Flexible: flexible electric power in part-load operating mode 

    Pinst: installed power  

    Prat: rated power  

    PLH: part-load hours for flexible capacity 

    RAL: German institute for Quality insurance and labelling 

    RPJMN: National Medium-Term Development Plan 

 

    SNG: synthetic natural gas 

    TLL: Federal Office for Agriculture of Thuringia 

 

    TSO: Transmission System Operator  

    WACC: Weighted Average Cost of Capital 

    :, LoadBaseCHP − electric CHP efficiency in base-load operating mode 

    :,FlexibleCHP electric efficiency for flexible CHP in part-load operating mode 
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