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Abstract 

Uranium is the main element present in spent nuclear fuel and accordingly contributes with the 

largest mass inventory to the nuclear waste. In spite of uranium being a relatively minor 

contributor to the overall radiological dose of the waste, it is certainly required to have an 

accurate knowledge on the solution chemistry and solubility phenomena of this key element. 

Uranium is also a redox-sensitive actinide, and accordingly its chemical behavior is strongly 

dependent on the redox boundary conditions of the system. Disposal of spent fuel in deep 

geological formations such as crystalline/granite, clay and rock salt is the option favored by 

international consensus. Water intrusion is a possible scenario that needs to be accounted for in 

the context of the long-term Safety Assessment of these repositories. The composition of the 

pore water contacting the waste will largely vary depending upon host-rock, backfill and other 

technical barriers, as well as the waste itself. Although a vast number of studies have previously 

investigated the solution chemistry of uranium, a number of key uncertainties remain. These 

affect to redox behavior, solid phases controlling solubility and hydrolysis, especially in the 

alkaline to hyperalkaline pH conditions of relevance in the context of nuclear waste disposal.  

U(IV) and U(VI) are the most stable oxidation states of uranium controlling its solution 

chemistry and solubility within the stability field of water and in the absence of strong 

complexing ligands. The study of this redox couple in the alkaline reducing conditions relevant 

in certain concepts for waste disposal (e.g. cementitious) is challenged by the further 

stabilization of U(VI) in the hyperalkaline pH-region, and the high sensitivity of U(IV) towards 

oxidation in the presence of traces of oxygen. Accordingly, an adequate knowledge of uranium 

redox chemistry in the aqueous and solid phases under geochemical boundary conditions (pH, 

pe, ionic strength, etc.) relevant in the context of nuclear waste disposal is important for a correct 

assessment of the long-term safety. For this reason, the redox chemistry of uranium in the 

presence of various reducing chemical systems in dilute to concentrated NaCl solutions is 

investigated in acidic to hyperalkaline pH conditions, and the results summarized in Chapter 

3 of this PhD thesis. The kinetics of the reduction of U(VI) to U(IV), as well as the effect of the 

type and concentration of the reducing system are investigated by systematic measurements of 

the pHm (with pHm = –log [H+] in molal units), pe and U concentrations until attaining 

equilibrium conditions. Complete reduction of U(VI) to U(IV) is observed in most of the cases 

within the boundary conditions (pe + pHm) ≤ 4, although reduction kinetics are strongly 

impacted by [U(VI)]0, pHm, type and concentration of the reducing system and NaCl 

concentration. In (oversaturated) alkaline NaCl systems, solubility data and XANES indicate 
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that the reduction proceeds via fast precipitation of Na2U2O7⋅H2O(cr), which slowly transforms 

into a UO2(am, hyd) solid phase. In less favourable conditions, the completion of this process 

required ≈ 635 days. These results also preclude the predominance of the U(IV) anionic 

hydrolysis species U(OH)5
– and U(OH)6

2– below pHm ≈ 14.5, previously reported in the 

literature. Experimental data obtained within this PhD thesis indicate that previous observations 

reported in the literature can be possibly explained by insufficient equilibration time. 

Furthermore, this study confirms the key role of U(IV) in controlling the solubility and solution 

chemistry of uranium in reducing, alkaline systems.  

Very reducing conditions are expected to develop after the closure of underground repositories 

for nuclear waste disposal due to the anoxic corrosion of steel and iron components. As 

demonstrated in Chapter 3, U(IV) is expected to control the solubility and aqueous speciation 

of uranium under these very reducing conditions over a broad range of pH and background 

electrolyte concentrations. In spite of this, key uncertainties still affect the solution chemistry 

of U(IV), in particular with regard to the properties of the oxo-hydroxide/s solid phases forming, 

the aqueous speciation in alkaline to hyperalkaline pH conditions, as well as the formation and 

stability of U(IV) “intrinsic colloids”. In this context, Chapter 4 of this PhD thesis focuses on 

the investigation of the solubility and hydrolysis of U(IV) in reducing, dilute to 

concentrated NaCl, MgCl2 and CaCl2 solutions. A very thorough solid phase characterization 

including XRD, SEM-EDS, quantitative chemical analysis, EXAFS and TG-DTA confirms that 

a (nano-)crystalline phase, UO2⋅H2O(ncr), is responsible for the control of the solubility of 

U(IV) in the investigated conditions. The systematic investigation of the solubility of this solid 

phase in dilute to concentrated, acidic to hyperalkaline pHm conditions allows deriving 

comprehensive chemical, thermodynamic and SIT activity models for the system U4+–Na+–

Mg2+–Ca2+–H+–Cl––OH––H2O(l). The investigation of supernatant solutions in solubility 

experiments without the use of phase separation methods gives also insight on the colloidal 

fraction in “equilibrium” with UO2⋅H2O(cr). Although a systematically increased uranium 

concentration (ca. 2–3 log10-units) is observed with respect to 10 kD ultrafiltered samples, a 

clear trend to decreasing [U]aq with longer equilibration times is also indicated in solubility 

experiments within t ≤ 200 days. Hence, the contribution of U(IV) “intrinsic colloids” to the 

solubility is evident in all salt systems investigated in this work, but the long-term stability of 

such species remains unclear. 

Uranium is mostly found as U(VI) under mildly reducing to oxidizing conditions. In the close 

vicinity of spent nuclear fuel surfaces, radiolysis effects can also promote the formation of 
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U(VI) even in the presence of H2(g). Under alkaline pH conditions and in the absence of 

complexing ligands (e.g. carbonate, phosphate, silicate), the solubility of U(VI) is expectedly 

controlled by M–U(VI)–OH uranate solid phases (with M = Na, K, Ca, among others). In 

contrast to Ca- and Na-uranates, very little is known on the solubility of K–U(VI)–OH phases 

in spite of the abundance of K+ in many types of groundwaters and, in particular, the key role 

of this alkali ion in cementitious systems. In this context, Chapter 5 of this PhD is dedicated to 

the study of U(VI) solubility in alkaline, dilute to concentrated KCl solutions. 

Comprehensive solubility experiments with systematic variation of pHm and ionic strength, in 

combination with an extensive solid phase characterization (XRD, SEM–EDS, quantitative 

chemical analysis, TG-DTA) resulted in thermodynamic and activity models for the system 

UO2
2+–K+–Na+–H+–Cl––OH––H2O(l). Sensitivity analysis conducted using this updated 

thermodynamic model confirms that K- and Na-uranates (K2U2O7⋅1.5H2O(cr) and 

Na2U2O7⋅H2O(cr), respectively) are responsible of controlling the solubility of U(VI) under 

boundary conditions defined by cementitious systems. The absence of these solid phases in the 

corresponding thermodynamic databases leads to a very large overestimation (2–6 log10-units), 

depending upon pHm and alkali concentration) of U concentration in the underlined conditions. 

This work provides improved fundamental understanding of uranium solution chemistry, 

including redox processes, solubility phenomena and hydrolysis of both +IV and +VI redox 

states. Thermodynamic constants derived in the standard state and (SIT) ion interaction 

coefficients obtained can be implemented in thermodynamic databases and used in geochemical 

calculations under a variety of boundary conditions. This covers dilute to concentrated salt 

systems, thus allowing thermodynamic calculations under conditions representative of the 

different host-rocks foreseen for repositories for nuclear waste disposal, from crystalline and 

clay to salt-rock.  
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1 Introduction 

 

1.1 Background of the work  

 

Radioactive waste is generated in a number of anthropogenic activities, including production 

of nuclear energy, medical applications, nuclear research or production / dismantling of nuclear 

weapons, among others. Radioactive waste contains highly toxic radioactive elements including 

long-lived isotopes, which need to be handled very carefully and disposed of safely to isolate 

from humans and the environment for a very long time. With regard to radioactive waste 

generated in the context of nuclear energy production, uranium (235U and 238U), plutonium and 

minor actinides (239Pu, 237Np, 241Am, etc.) generated by neutron capture of 238U, as well as 

fission (99Tc, 79Se, 135Cs, 129I, etc.) and activation products (14C, 36Cl, 59Ni, etc.) deserve special 

attention.  

The internationally favored option for the disposal of radioactive waste involves the use of deep 

underground repositories, which are designed in deep underground geological formations 

especially crystalline, clay and rock salt. Different geological formations feature different 

properties with regard to heat conductivity and resistance, permeability, strength, deformation, 

dissolution and absorption behaviour, etc., which are thoroughly evaluated in the context of 

nuclear waste disposal. Crystalline formations are characterized by their stability, low heat 

sensitivity and very low solubility. However, they are prone to become fractured which may 

facilitate the transport of radionuclides [1]. The known favorable properties of argillaceous rock 

(clay, claystone) for hosting repositories are in particular the very low permeability, low 

solubility and high sorption capacity. On the other hand, underground repositories in clay 

formations require additional reinforcement during the construction phase [1]. Rock salt is 

highly impermeable to gases and liquids, has very high heat conductivity and visco-plastic 

properties that enable underground cavities to seal up. Nevertheless, it expectedly shows lower 

intrinsic retention capacities due to weaker sorption properties*.  

The concept of multi-barrier systems is usually considered in the context of nuclear waste 

disposal to minimize the potential radionuclide release and mobilization into the biosphere. The 

first barrier is the fuel itself, which is sealed by corrosion-resistant metallic cladding (Zircaloy 

                                                 
* Sorption on rock salt is usually considered negligible, although recent studies at KIT–INE have shown that strong 
sorption on other minerals can also be observed in highly saline environments. 
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or stainless steel) materials. The spent nuclear fuel is placed in the waste canister made from 

iron inserted stainless steel or copper. The canisters are encased by engineered barriers with 

very significant properties like mechanical stability, high sorption capacity, etc. depending on 

the host-rock formation and type of waste. The geological formation where the repository is 

constructed is considered as the final barrier preventing the mobilization of the radionuclides 

into the biosphere. 

Water intrusion is one of the scenarios that are considered in the Safety Assessment of 

repositories for radioactive waste disposal. This scenario can lead to aqueous systems 

interacting with the waste. The composition of such aqueous systems is highly dependent on 

the geochemical boundary conditions, and is mostly given by the groundwater and host rock 

formation, technical barriers and construction materials (e.g. cement), the canister and the waste 

itself. This imposes a variety of boundary conditions, which range from dilute systems (in 

granite and most repository concepts in clay) to concentrated brines (I > 5 mol∙kg-1, containing 

mainly Na+, Mg2+, K+, Cl- and SO4
2- and lower concentrations of Ca2+, HCO3

-, F- and Br-) as 

those expected in salt-rock-based repositories [2-5]. Note that although the composition of 

granitoids and argillities pore waters are usually characterized by low ionic strength (I < 0.1 

mol∙kg-1), formation waters with intermediate ionic strengths are also found in some 

sedimentary bedrocks such as Canadian Shield [6] and Cretaceous argillites in Northern 

Germany [7]. Cementitious materials are used for the stabilization of the waste (especially for 

low- and intermediate level wastes), for the construction of vaults containing the waste (in some 

concepts also for high-level waste) and for general construction purposes. In the early 

degradation phase of cement (stage I), K2O and Na2O dissolve buffering the pH at ≈ 13.3, setting 

also relatively high concentrations of Na and K (0.1 – 0.2 M). In the degradation stage II and 

after washing out the alkali content of cement, portlandite (Ca(OH)2) buffers the porewater 

composition at pH ≈ 12.5 and [Ca]tot ≈ 20 mM. The non-congruent dissolution of calcium 

silicate hydrates (C-S-H phases) with Ca:Si ratio 0.8 – 1.5 controls the porewater composition 

of cement in the degradation stage III, buffering the pH within 10 ≤ pH ≤ 12.5 [8-11].  

Reducing conditions are expected to develop after the closure of the repository due to the anoxic 

corrosion of iron and steel components present in the repository and consequent generation of 

hydrogen. Such reducing conditions can importantly affect the chemical behavior of redox-

sensitive radionuclides, which accordingly needs to be thoroughly evaluated. The corrosion of 

metallic Fe results in the formation of secondary phases such as magnetite and green-rust, which 
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can actively participate in redox phenomena but offer also surfaces potentially participating in 

the sorption / retention of radionuclides. 

 

1.2 Basic knowledge and aquatic chemistry of uranium 

 

1.2.1 Fundamental chemistry of uranium 

 

Uranium was discovered in 1789 by the German chemist Martin Heinrich Klaproth who named 

this element after the planet “Uranus” [12]. At the beginning, the only significant use of uranium 

was to color the glasses and ceramics. In 1896, Henri Becquerel noticed a penetrating radiation 

emitted by a uranium salt, K2UO2(SO4)2(s). In 1939, Otto Hahn and Fritz Strassmann 

discovered the nuclear fission of uranium with the support of Lise Meitner [13]. The use of 

nuclear power began in 1942 with the first self-sustaining nuclear chain reaction of natural 

uranium in the first nuclear reactor, “Chicago Pile-1”, which was assembled at University of 

Chicago by the team lead by Enrico Fermi [14].  

Uranium (Z= 92) is the heaviest natural element present on earth with an electronic 

configuration of [Rn] 5f36d17s2. In the periodic table, it is located in the actinides series (An), 

between protactinium (Pa) and plutonium (Pu). The most abundant uranium mineral is uraninite 

(UO2). However, a large number of other uranium minerals are known resulting from the 

interaction with other metal cations and inorganic ligands depending on the geological 

environment (e.g. autunite Ca(UO2)2∙10-12H2O, clarkeite (Na,K)2-2x(Ca,Pb)xU2O7∙yH2O, 

saleeite, Mg(UO2)2(PO4)2∙8-10H2O, coffinite U(SiO4)1−x(OH)4x, among many others) [15]. In 

aqueous systems, uranium can be found in four oxidation states: U(III), U(IV), U(V), U(VI). 

+VI and +IV are known to be the most stable oxidation states of uranium. While U(III) and 

U(IV) can exist in acidic solutions as aquo-ions, U3+ and U4+, U(V) and U(VI) form the oxo-

cations UO2
+ and UO2

2+ due to the strong attraction of oxygen atoms by the highly charged 

hypothetical bare cations and formation of stable covalent bondings [16-18]. Although U(V) 

disproportionates rapidly to U(IV) and U(VI), it is stabilized in the presence of strong 

complexing ligands such as carbonate [19, 20] or some chelating ligands [21-24]. U(VI) is 

predominating under mildly reducing and oxidizing conditions. In the absence of other 

complexing ligands, its solubility is mostly controlled by UO3·2H2O(cr) and M–U(VI)–OH(s) 

solid phases with M = Na+, K+, Ca2+, under acidic and alkaline conditions, respectively. It 
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hydrolyses strongly forming polymeric species in acidic conditions where U(VI) shows 

enhanced solubility. Monomeric anionic hydrolysis species dominate in near-neutral to 

hyperalkaline pH conditions. U(IV) prevails under strongly reducing systems and forms 

sparingly soluble UO2(s), under weakly acidic to alkaline conditions. The aquo-ion U4+ is only 

stable in very acidic conditions and readily hydrolysis at pH ≥ 1. 

The solution chemistry of a given element is strongly dependent on its oxidation state. Uranium 

(and actinides in general) are hard Lewis acids that tend to interact strongly with hard Lewis 

bases such as hydroxide or carbonate. Accordingly, the magnitude of this ionic interaction is 

mostly affected by the charge of the metal cation (z). In the case of uranium and because of the 

actinyl moieties formed by U(V) and U(VI), the effective charge (Zeff) provides a more accurate 

representation of the complexation strength with a given ligand [18] (Zeff provided in brackets): 

U4+ (+4) > UO2
2+ (+3.2) > U3+ (+3) > UO2

+ (+2.3) 

For a given oxidation state of uranium, the strength of the complexes forming with different 

ligands can be qualitatively classified as [17]: 

PO4
3– > CO3

2– > OH– > SiO(OH)3
– > HPO4

2– > F– > SO4
2– > H2PO4

– > H3PO4 > NO3
– > Cl– 

Table 1.1 shows the ionic radii and the most common coordination numbers of hexavalent and 

tetravalent uranium complexes as summarized by Shannon [25]. 

Each metal complex or compound has a specific coordination chemistry depending on the 

number, type and arrangement of the ligands as well as the central metal atom properties. 

Therefore, coordination chemistry of uranium shows a great variety due to its several different 

oxidations states and the relatively large size of the respective cations, which allows 

accommodating a large number of ligands. Note however that the geometries of U(V) and U(VI) 

complexes / compounds are in most of the cases constricted by the linear actinyl moiety. Hence, 

U(VI) compounds usually show pentagonal [26, 27], hexagonal [28-30] and square bipyramidal 

[31-33] coordination geometries. Some uranates and oxides are known to have distorted 

octahedral or pentagonal pyramidal structures [34, 35]. The U4+ coordination geometries tend 

to be more variable due to its relatively large ionic radii and the less restricted coordination 

sphere. There are reported structures as octahedron [36], triangular dodecahedron [37], and 

pentagonal bipyramid [38] for U4+ compounds [35]. Note that Table 1.1 does not show some 

exceptional coordination numbers described in the literature (e.g. CN = 2 for U(VI) [25]).  
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Table 1.1 Coordination numbers and corresponding ionic radii reported in Shannon [25] for U(IV) and 

U(VI). 

Oxidation State Coordination Ionic Radii [Å] 

 

4 

VI 0.89 

VII 0.95 

VIII 1 

IX 1.05 

 

6 

VI 0.73 

VII 0.81 

VIII 0.86 

 

All isotopes of uranium are instable, and decay via emitting α particles. In the environment, 

uranium isotopes are present mainly as 238U (99.27 %, t1/2~ 4.47∙109 y), 235U (0.72 %, t1/2~ 

7.04∙108 y) and a very small amount of 234U (0.0054 %, t1/2~ 2.46∙105 y). The fissile 235U is 

generally used as nuclear fuel and, accordingly, uranium is a very relevant part of the so-called 

“nuclear fuel cycle”. Resulting from its contribution in different steps of the “nuclear fuel 

cycle”, uranium needs to be disposed of as one of the main components of high level waste 

(HLW, e.g. matrix in spent nuclear fuel), but also as a part of low- and intermediate wastes 

(L/ILW). Therefore, an accurate knowledge of the solution chemistry of uranium is of great 

importance for a correct, comprehensive assessment on the behaviour of the waste under 

repository-relevant conditions.  

 

1.2.2 Uranium redox chemistry 

 

1.2.2.1 Definition of redox equilibrium 

 

The mobility and migration behaviour of a radionuclide in a deep geological repository is 

strongly dependent on its solubility, aqueous speciation (including complexation) and sorption 

properties. In this frame, the oxidation state plays a very important role due to its direct impact 

on these three phenomena. Redox reactions are defined as electron transfer reactions between 

oxidized and reduced counterparts. The equilibrium reaction of a half-cell is generally defined 

as: 
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Ox + n e- ⇔ Red        (1.1) 

The Nernst equation is related to the reduction potential of an electrode (half-cell), explaining 

the correlation of the redox potential for a medium of interest (E), and the redox potential under 

standard conditions (Eº) according to the equation: 

E=E
°+ 

RT 

nF
ln(

aox

ared
)        (1.2) 

where n is number of electrons exchanged in the electrochemical reaction, R is universal gas 

constant, T is the temperature in Kelvin and F is the Faraday constant.  

The electrode potential is identified as redox potential and is quoted as Eh. Eh values refer to 

the standard hydrogen electrode (SHE) potential, which is used as reference on half-cell 

potential reactions and equals zero per definition. For a given system, the redox potential 

quantifies the tendency of the system to gain/lose electrons. The redox potential can be also 

defined as the negative logarithm of electron activity: 

pe =  − log ��         (1.3) 

The relationship between pe and Eh values is given in equations (1.4) and (1.5) (at T= 25ºC): 

�� = − ��
�� ln (��)        (1.4) 

pe =  16.9���V�         (1.5) 

The stability field of different redox species can be evaluated using systematized pH-Eh 

measurements of an aqueous system in combination with Pourbaix (predominance) diagrams. 

In such diagrams, the predominance area of different (redox) species are separated by (redox) 

borderlines calculated as 50:50% distribution between two species. These borderlines are 

calculated using equilibrium constants for the corresponding chemical reactions at standard 

state or in a given medium. The borders of water reduction and oxidation are also calculated 

and provided in Pourbaix diagram to constrain the region of interest / relevance in aqueous 

systems, although in specific cases experimentally measured redox potentials in aqueous 

system may overcome these upper and lower limits (for a given period of time).  

The reduction to H2(g) and oxidation to O2(g) define the lower and upper stability limits of 

water, respectively, according to the reactions: 

H� +  e! ⇔ 0.5H$(g)        (1.6) 

0.5 H$O(l) ⇔ 0.5O$(g) +  H� + e!     (1.7) 
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with the equilibrium constants: 

log &°(red) = 0.5 log )(H$(g)) + pH + pe = 0    (1.8) 

pH + pe = −0.5 log )(H$(g))      (1.9) 

and 

log&°(ox) = 0.25 log ),O$(g)- − 0.5log�. − pH − pe = −20.77 (1.10) 

pH + pe = 20.77 + 0.25 log ),O$(g)- − 0.5log�.   (1.11) 

where aw is the activity of water and P is the partial pressure. Since the P(H2(g)) = 1 bar and 

P(O2(g)) = 1 bar, the upper and lower limits of water are calculated from Eq (1.9)-(1.10) as (pe 

+ pH) = 0 and (pe + pH) = 20.77, respectively, at T= 25°C and I = 0.  

The “redox neutral line” [39] for redox-neutral solutions in the absence of reducing and 

oxidizing agents can be theoretically calculated as: 

H$O(l) ⇔ H$(g) +  0.5O$(g)      (1.12) 

log&° = log),H$(g)- +  0.5 log ),O$(g)- = −41.55   (1.13) 

with hypothetical partial pressures of log P(H2(g)) = –27.6 and log P(O2(g)) = –27.9 equivalent 

to (pe + pH) = 13.8. This definition is analogous to a pH-neutral aqueous solution at pH = 7, 

with [H+] = [OH–] = 10–7 M (at I = 0, with pK°w = 14). The redox potentials of inert background 

solutions (NaCl, HCl, NaOH, etc.) under Ar atmosphere are usually close to this “redox neutral 

line” in pe-pH diagrams [39]. The redox neutral line is often included in the Pourbaix diagrams, 

providing insight on the oxidation / reducing character of a given system. 

 

1.2.2.2 Redox chemistry of uranium 

 

Considering the great impact of the oxidation state on the solution chemistry of the early 

actinides, the investigation of uranium redox chemistry is of high interest from the perspective 

of fundamental research, but also in view of the relevant role of uranium as matrix in most of 

the HLW to be directly disposed of in deep geological repositories.  

The thermochemical database (TDB) project of the Nuclear Energy Agency (NEA) [40, 41] 

provides the most extensive and accurate thermodynamic data selection available for uranium, 

which includes thermodynamic quantities of redox reactions, solubility phenomena, hydrolysis 
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and complexation. Figure 1.1 shows the Pourbaix diagrams of uranium calculated for I = 0.1 

M NaCl and [U]tot = 3∙10–5 M, a) indicating only aqueous species and b) including also solid 

phases. Calculations are performed using thermodynamic data reported in NEA-TDB [40, 41], 

complemented with data reported in Neck and Kim (2001) [42] and Altmaier et al. (2017) [43] 

for U(IV) and U(VI), respectively (see also Table 1.2 and 1.3). Both figures give a clear insight 

on the multifold and complex solution chemistry of uranium.  

  
Figure 1.1. Pourbaix diagrams of uranium calculated for I = 0.1 M NaCl and [U]tot= 3∙10–5 M 

considering a. only aqueous species of uranium, and b. including solid phases forming. Calculations 

are performed using thermodynamic data reported in NEA-TDB, Neck and Kim (2001) and Altmaier et 

al., 2017. Black lines correspond to the 50:50 distribution borderlines between different species. The 

dark cyan and grey dash lines indicate the borders of water oxidation, water reduction, and redox 

neutral line. Precipitation of UO3∙2H2O(cr), Na2U2O7∙H2O(cr) and UO2(am, hyd) is allowed in 

calculations in Figure a, accordingly resulting in the variation of [U]aq as a function of (pe + pHm). 

U(IV) has been scarcely investigated due to the difficulties in retaining the oxidation state 

(especially under hyperalkaline conditions), the formation of the sparingly soluble UO2(s)† 

phase limiting the application of many experimental techniques, as well as the strong impact of 

the solid phase properties (particle size, degree of hydration, surface alteration, crystallinity) on 

                                                 
† A generic notation for solids, (s), is used here. This accounts for the different degrees of crystallinity of the solids 
used in the solubility experiments, ranging from amorphous (am) to crystalline (cr) and very likely including 
colloidal phases (col). 
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solubility. Such challenges are likely behind the discrepant results reported in many of the 

solubility studies using UO2(s), especially under alkaline conditions [5, 42, 44-52]. 

The formation of anionic hydrolysis species of U(IV) (U(OH)5
– and U(OH)6

2–) at pH > 12 is 

reported in some studies [44-46, 52], due to the increase of [U] concentrations under alkaline 

conditions. On the other hand, a larger number of experimental studies support the 

predominance of U(OH)4(aq) from weakly acidic to hyperalkaline conditions [42, 47, 49, 53]. 

It appears thus unclear whether the increase in solubility in the former studies corresponds to 

the formation of anionic hydrolysis species of U(IV), or can be rather attributed to redox 

processes, e.g. oxidative dissolution of UO2(s). The NEA-TDB update book [41] disregarded 

the selection of tetravalent U(OH)5
– and U(OH)6

2–, but large uncertainties were assigned to 

thermodynamic quantities of U(OH)4(aq) due to the scattered data in the alkaline pH region. 

Indeed, partial oxidation in experiments with U(IV) has been reported in some cases due to the 

increasing trend of U concentration under alkaline conditions. This is in spite of the use of 

reducing systems in most of the studies, including H2(g), Na2S2O4, Zn, Fe(0), EuCl2, hydrazine, 

among others [47, 49, 51-56]. This behaviour is possibly related to the decreased stability field 

of U(IV) with increasing pH, as shown in Figure 1.1. 

The reduction of U(VI) to U(IV) requires a rearrangement of the primary coordination sphere 

in combination with the multielectron transfer between two structurally different moieties, see 

reactions (1.14) and (1.15) [18, 57-59]. Multielectron transfer processes are known to be 

affected by slow kinetics [60], which accordingly should be also expected for redox 

transformations between U(VI) and U(IV). 

 

UO2
2+ + 2e– + 4H+ ↔ U4+ + 2H2O(l)     (1.14) 

UO2(OH)4
2- + 2e– + 4H+ ↔ U(OH)4(aq) + 2H2O(l)   (1.15) 

 

Because of the presence of hydrogen expected under repository conditions as a result of the 

anoxic corrosion of iron, a number of studies were carried out to assess the reduction behaviour 

of U(VI) in the presence of carbonate and H2(g) [61, 62]. In these experiments, UO2(s) was 

either initially present, or introduced to the system containing U(VI) after at a given time. A 

decrease of the U(VI) concentration (≈ 8⋅10–6 M) was observed only when UO2(s) was present, 

thus supporting the partial reduction of U(VI) to U(IV). The authors concluded that the surface 

of UO2(s) was responsible of activating / catalysing the redox reaction, which did not occur in 

the presence of H2(g) but absence of this solid phase.  
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Several studies reported on U redox chemistry in the presence of iron-containing materials. 

Among others, the reduction of U(VI) to U(IV) in the presence of magnetite (Fe3O4) was widely 

investigated. This type of studies is motivated by the identification of magnetite as one of the 

main corrosion products of iron under reducing conditions [63-72]. Diverging observations 

were reported, including fast and complete reduction [69-71], partial reduction with slow 

kinetics [64, 65, 67, 73, 74], or even no reduction to U(IV) [63]. Such variation in the 

experimental results can be rationalized by the strong impact of several factors on the reducing 

capacity of Fe3O4, namely pH, composition of ionic media, presence of oxidants (e.g. traces of 

O2), initial concentration of uranium and the ratio Fe(II)/Fe(III) in magnetite (ideally 0.33) [68]. 

The reduction of U was also investigated in the presence of zero valent iron based upon its 

reducing properties (Fe(0) ⇔ Fe2+ + 2e–), which resulted in a reductive precipitation [75] or 

partial reduction [76, 77] to U(IV). Note that most of the studies have been performed under 

near-neutral pH-range, leaving aside the alkaline to hyperalkaline pH conditions of relevance 

in cementitious systems. 

 

1.2.3 Solubility and hydrolysis  

 

1.2.3.1 Solubility and hydrolysis reactions: definition and equilibrium constants 

 

For an adequate quantitative description of the solution chemistry of a given actinide system, it 

is necessary to derive thermodynamic constants related to solid-aqueous phase equilibria, 

complexation reactions and ion interaction processes that represent the actinide solubility and 

aqueous speciation of the given actinide. In general terms, the solubility of metal 

hydroxides/oxides are defined according to the dissolution equilibrium with a conditional 

solubility constant, K ′s,(x,y) in a selected medium (ionic strength) and a solubility constant, 

K°s,(x,y) at standard state (I = 0). When the dissolution equilibrium occurs between the solid and 

the bare, non-hydrolyzed cation of the metal (Mz+), the equilibrium constant is defined as K ′s,0 
at I > 0 and K°s,0 at I = 0. This solubility equilibrium can be described according to: 

M(OH)5 ∙ 7H$O(s) + 89� ⇌ ;<� + (8 + 7)9$=(l)    (1.16) 

with 

log ∗&′?,@=  log�M<�� − b log�H��       (1.17) 
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and 

log ∗&°?,@ = log ∗&′?,@ +   log γCDE + (8 + 7) log aG − b log γHE   (1.18) 

or 

M(OH)5 ∙ xH$O(s) ⇌ ;<� + 8 =9! + 7 9$=(I)     (1.19) 

with 

log &′?,@=  log�M<�� + b log�OH!�       (1.20) 

and 

log &°?,@ = log ∗&′?,@ +   log γCDE + 7 log aG + 8 log γJH   (1.21) 

In the absence of complexing ligands, hard Lewis acids such as actinides tend to react with 

water to accordingly form hydrolysis species. The formation reactions of hydrolysis species can 

be described involving the participation of H+/H2O(l) or OH–, and considering the reaction 

H2O(l) ⇔ H+ + OH– with pK°w = 14. The hydrolysis constants *β′(x,y) referring to formation 

constant in a given medium and *β°(x,y) to standard state conditions are defined by:  

7;<� + yH$O(l) ⇌ ;L(OH)M
(NO!M) + P9�      (1.22)  

with 

IQg∗R′(L,S) = IQgT;L(=9)S
(L<!S)U + P log�H�� − 7 log�M<��   (1.23) 

and 

IQg∗R°(L,S) = IQg∗R′(L,S) +  log γVW(JH)X
(YZX) + P log γHE     

−7 log γCDE − P log aG   (1.24) 

or 

7;<� + yOH!(l) ⇌ ;L(OH)M
(NO!M)       (1.25) 

with 

IQ[R′(L,S) = IQgT;L(=9)S
(L<!S)U − P log�OH!� − 7 log�M<��   (1.26) 

and 

IQ[R°(L,S) = IQ[R′(L,S) +  log γCW(JH)X
(YZX) − P log γJH − 7 log γCDE   (1.27) 

where γi is the activity coefficient of a species i and aw is the water activity. The value of                

K ′s,(x,y) / K°s,(x,y), namely the dissolution equilibrium between the solid and a hydrolyzed 

aqueous species of the metal can be calculated as the sum of the hydrolysis constant β ′(x,y) / 

β°(x,y) and the solubility constant K ′s,0 / K°s,0. 
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Conditional solubility constants, K ʹs,(x,y), are determined experimentally in a given medium. The 

extrapolation of log *K ʹs,(x,y) (or log K ʹs,(x,y)) to the standard state (I = 0) allows to derive the 

solubility constant log *Kºs,(x,y) (or log Kºs,(x,y)) whilst gaining insight in the ion interaction 

coefficients of the charged aqueous species prevailing in solution. Along this PhD thesis, the 

specific ion interaction theory (SIT) model is used for activity corrections (see section 1.2.3.2). 

SIT is also the model favored within the NEA-TDB project [41]. 

The trend (slope) followed by the solubility curve of a given metal cation with varying pH can 

be evaluated to gain insight on the stoichiometry of the prevailing equilibrium reaction. For 

example, according to reactions (1.28) and (1.30) corresponding to the equilibrium between a 

typical hexavalent actinide solid phase and hydrolysis species, a given number of H+ will be 

exchanged as a function of the aqueous speciation:  

\]=$(OH)$(s) + xH$O(l) ⇌ \]=$(OH)$�NN! + 79�    (1.28) 

 IQg^\]=$(=9)($�L)L! _ = −7 log�H�� + IQg∗&′(`,$�L)    (1.29) 

and 

\]=$(OH)$(s) + 79� ⇌ \]=$(OH)$!NN� + 7H$O(l)    (1.30) 

IQg^\]=$(=9)($!L)L� _ = 7 log�H�� +  IQg∗&′(`,$!L)     (1.31) 

Considering the Eq (1.29) and Eq (1.31), the experimental data (as measured An total 

concentration) is expected to follow a well-defined slope as a function of pH (y = mx + n, where 

y = IQg^\]=$(=9)($!L)L� _ and x = log�H��) if the following conditions are fulfilled: 

- thermodynamic equilibrium has been attained; 

- the solid remains unaltered along the investigated pH-range; 

- only one species prevails in the aqueous phase; 

- solubility experiments are performed under the principle of constant activity coefficients. 

If this principle is fulfilled, conditional equilibrium constants can be correctly described 

assuming only concentration terms and ignoring any activity coefficient. For this 

purpose, a constant (and sufficiently high) background electrolyte concentration must 

be used in the experiments. 
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If the four conditions above apply, the slope of the solubility curve corresponds to the number 

of exchanged protons in the solubility reaction. This is a necessary information for the definition 

of the chemical model defining a given aqueous system, and thus a key contribution in the 

development of correct thermodynamic and activity models. 

 

1.2.3.2 Activity models  

 

Activity models based on the Debye-Hückel theory are used for the recalculation of the 

thermodynamic data obtained in systems with I > 0 to the standard state (I = 0). The Debye-

Hückel term only accounts for electrostatic, non-specific long-range interactions between ions 

of opposite charge. On the other hand, short range, non-electrostatic interactions are important 

in the case of concentrated ionic media. The Debye-Hückel expression can be accordingly 

extended with ionic strength-dependent terms. Pitzer and SIT (specific ion interaction theory) 

two of the most commonly used methods for ionic strength corrections based on the extended 

Debye-Hückel theory. Pitzer is very accurate for highly concentrated systems and applicable to 

single and mixed electrolytes, at the cost of requiring many fitting / input parameters. The SIT 

method is favored in the present study and can be used for the correction of the ionic strength 

effects up to I = 3.5 m [78]. Recent studies have reported the successful application of SIT to 

very high concentrations of background electrolyte, e.g. concentrated MgCl2 and CaCl2 systems 

with Im ≈ 15 mol∙kg-1 [79-81], however this should be seen as an exception to the rule.  

 

SIT model  

The specific ion interaction theory [82] is the method adopted by the NEA–TDB [40, 41] for 

the correction of ion interaction processes and ionic strength effects for the systems at I > 0. 

The basic formulism in SIT considers: 

 

IQgγa = −ba$c + ∑ e(f, g, hi)jkk        (1.32) 

with 

c =  lmno
`�pqrmno

          (1.33) 

where zj is the charge of the ion j, D is the Debye-Hückel term, mk is the molality of the 

oppositely charged ion k, and ε(j, k, Im) is the specific ion interaction parameter. A and B in the 
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Debye-Hückel terms are temperature and pressure dependent constants, whereas aj is an ion 

size parameter for the hydrated ion j. At 25°C and 1 bar, the terms A and Baj have a value of 

0.509 kg0.5⋅mol–0.5 and 1.5 kg0.5⋅mol–0.5, respectively. The ionic strength is expressed as: 

h = 1/2 ∑ jt bt$         (1.34) 

The Debye-Hückel term in SIT accounts for electrostatic, non-specific long-range interactions 

that prevail in dilute systems. At higher concentrations of background electrolyte, the term 

∑ e(f, g, hi)jkk  represents short range, non-electrostatic interactions that consider also 

differences between ions of the same charge but different size. 

 

1.2.3.3 Solubility and hydrolysis of U(IV) in the absence of complexing ligands 

 

U(IV) is characterized by a low solubility and strong hydrolysis. Figure 1.2 exemplifies the 

solubility of UO2(am, hyd) (thick solid line in the figure) and underlying hydrolysis scheme 

(thin solid lines in the figure) calculated using thermodynamic data summarized in Table 1.2. 

Although most of the available experimental studies support the predominance of the neutral 

hydrolysis species U(OH)4(aq) from weakly acidic to hyperalkaline pH conditions, the 

formation of the anionic hydrolysis species U(OH)5
– and U(OH)6

2– (dashed lines in Figure 1.2) 

is also proposed in a number of studies. Note that the amphoteric character (formation of 

cationic and anionic hydrolysis species) has not been confirmed for any other An(IV). This 

section summarizes the main experimental and theoretical studies available in the literature 

dealing with U(IV) solubility and hydrolysis.  
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Figure 1.2. Solubility curve of UO2(am,hyd) and underlying hydrolysis scheme calculated at I = 0 using 

thermodynamic data available in the literature (see text) [41, 42]. Dashed lines correspond to U(OH)5
– 

and U(OH)6
2– species as calculated using thermodynamic data reported by Fujiwara et al. (2005) [52]. 

Intrinsic colloids are not considered.  

 

Kraus and Nelson (1950) [83] performed a spectroscopic study on the hydrolysis of U(IV) in 

acidic solutions. The authors reported that U4+ predominates in very acidic solutions (1 M 

HClO4), whereas UOH3+ was observed under less acidic conditions (~10-3 M HClO4). The 

hydrolysis constant of UOH3+ derived in this study (log *βº(1,1) = –0.54 ± 0.06) was later selected 

in the NEA-TDB [40, 41]  

Gayer and Leider (1957) [44] studied the solubility of U(IV) from undersaturation conditions. 

The authors used a freshly precipitated solid phase, U(OH)4(s), whose solubility was 

investigated under alkaline conditions (up to 0.63 M NaOH) in the absence of reducing systems. 

The increase in solubility observed with increasing NaOH concentration was interpreted as with 

the formation of the anionic species H3UO4
–. Galkin and Stepanov (1960) [45] performed 

undersaturation solubility experiments with U(OH)4(s) within a larger range of NaOH 

concentrations (up to 7.0 M) in order to confirm the accuracy of the results derived by Gayer 

and Leider [44]. Consistent solubility data were obtained to the previous ones [44] up to 1.0 M 

NaOH. At higher hydroxide concentrations, the authors observed a slight decrease in the 

concentration of uranium, which was attributed to the transformation of U(OH)4(s) into 

NaH3UIVO4(s). The solubility of UO2(s) was investigated by Tremaine et al. (1981) [46] at 
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different temperatures (25 – 300 ºC) under alkaline conditions set by LiOH. The experiments 

were performed in a flow system in the presence of H2(g) to prevent the oxidation of U(IV) to 

U(VI). A lower solubility limit (~ 10-7 M) was obtained at pH = 12.5 and T = 25 ºC compared 

to the solubility data reported by Gayer and Leider [44], even though Tremaine and co-workers 

determined by XPS analysis a surface composition of the solid phase controlling the solubility 

as U(VI)/U(IV) = 0.2. Above pH ≈ 12.5, the authors observed an increase of the solubility that 

was attributed to the formation of the anionic species U(OH)5
–.  

Ryan and Rai (1983) [47] performed an oversaturation solubility study with U(IV) in the 

alkaline pH range in the presence of Na2S2O4 and Zn as reducing systems. The reported 

solubility data was about 10–8 M, at least four orders of magnitude lower than the results 

determined by Gayer et al. [44]. Thus, no evidence on the formation of anionic hydrolysis 

species was obtained in this study. The solubility of amorphous and crystalline UO2(s) was 

studied by Bruno et al. (1986) [56] in NaClO4 solutions in the pH range 2 to 10. The measured 

solubility was approximately 10–4 M at 5.5 ≤ pH ≤ 10, as high as reported previously by Gayer 

and Leider [44] and Galkin and Stepanov [45]. The authors explained the difference between 

their results and those obtained by Ryan and Rai [47] with the differences in the crystallinity of 

the used solid phases. Parks and Pohl (1988) [49] investigated the solubility of UO2(cr) at 1.0 

≤ pH ≤ 10.4 in dilute NaCl solutions (up to 0.1 M), at elevated T (100–300 °C) and P (500 bar 

H2). The authors observed a steep decrease in the solubility with pH in very acidic solutions 

(pH < 2), whereas very low and pH-independent uranium concentrations (≈ 10–10 M) were 

measured at pH ≥ 2. No significant dependence of the solubility on the temperature was 

observed either. This solubility study supports again the predominance of the neutral 

U(OH)4(aq) in the pH-range investigated by the authors. Rai et al. (1990) [50] conducted 

oversaturation solubility experiments (starting from a U(IV) solution) in the presence of EuCl2 

and Fe powder to maintain the reducing conditions in a wide pH range (2 ≤ pH ≤ 12). A steep 

decrease of the solubility was observed under acidic to weakly acidic pH conditions, whereas 

low and pH-independent U(IV) solubility (~10-8 M) was observed in the alkaline pH range. An 

increasing trend of U solubility was observed for some samples in the alkaline pH range, which 

Rai and co-workers interpreted as the partial oxidation of U(IV) to U(VI). Yajima et al. [53] 

performed a series of undersaturation solubility experiments with UO2(cr), and compared the 

results with oversaturation experiments using a U(IV) stock solution. Experiments were 

performed in 0.1 M NaClO4 solutions at 2 ≤ pH ≤ 12. Na2S2O4 was used to retain uranium in 

the +IV redox state. Very similar uranium concentrations were measured in both approaches in 

the complete pH-range investigated. Significantly low solubility ([U]aq ≈ 10–9 M) was observed 
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under alkaline conditions. Based on their experimental observations, the authors derived a 

thermodynamic model including only U4+ and U(OH)4(aq) as aqueous species in equilibrium 

with UO2(s). Rai et al. (1997) [84] conducted undersaturation solubility experiments with 

freshly precipitated UO2(am,hyd) in dilute to concentrated NaCl and MgCl2 solutions at 1.5 ≤ 

pH ≤ 5.5. The authors used EuCl2 and Fe powder to retain uranium as +IV redox state. Based 

on their experimental data, Rai and co-workers reported thermodynamic and Pitzer activity 

models including only the hydrolysis species UOH3+ and U(OH)4(aq) in the hydrolysis scheme 

of U(IV). 

In 2001, Neck and Kim [42] published the most extensive thermodynamic data set on the 

solubility products and hydrolysis constants of An(IV) based on a critical review of the reported 

experimental studies. The authors evaluated the existing experimental UO2(s) solubility data in 

terms of differences in the solid phases (amorphous/crystalline and fresh/aged) and possible 

oxidation to U(VI). The solubility data under well-controlled reducing conditions [50, 53, 84] 

were selected by the authors at acidic and alkaline conditions. The selected data under weakly 

acidic to alkaline conditions indicate [U]aq = ~10–8 – 10–9 M according with the chemical 

equilibrium UO2·xH2O(s) ⇔ U(OH)4(aq) + (x–2) H2O(l) at pH > 5 independent of the age of 

the solid phase and the temperature. The chemical, thermodynamic and (SIT) activity models 

for U(IV) were derived including the hydrolysis species UOH3+, U(OH)2
2+, U(OH)3

+ and 

U(OH)4(aq). The authors based their selections in the available experimental data but also 

considering the systematics and consistency along the tetravalent actinide series. Furthermore, 

the authors proposed that the solubility of UO2(cr) in neutral to alkaline is controlled by an 

amorphous UO2(am, hyd) layer growing on the surface of UO2(cr), in contrast to the solubility 

control of UO2(cr) observed in acidic conditions.  

Fujiwara et al. (2003) [52] investigated the solubility and hydrolysis of U(IV) in a combined 

approach using solubility experiments and solvent extraction with TTA in acidic NaClO4 

solutions (0.1, 0.5 and 1.0 M). The equilibrium constants reported by the authors for UOH3+, 

U(OH)2
2+ and U(OH)3

+ are in line (within the uncertainties) with those selected in Neck et al. 

(2001). The same authors performed oversaturation solubility experiments with U(VI) in 

alkaline to hyper-alkaline pH conditions and using Na2S2O4 for the in-situ reduction to U(IV), 

which precipitated as UO2(am, hyd) [52]. The authors observed a steep increase of the solubility 

above –log [H+] ≈ 12, which was interpreted with the formation and predominance of anionic 

U(IV) hydrolysis species, namely U(OH)5
– and U(OH)6

2–. Based on their solubility data, the 
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authors reported the hydrolysis constants and SIT ion interaction parameters for the indicated 

anionic species. 

In 2010, Fellhauer et al. [79] investigated the hydrolysis of Np(IV) and Pu(IV) in dilute to 

concentrated CaCl2 solutions. Based on the steep increase of the solubility at pHm above ≈ 11, 

the authors reported the formation of the ternary complex Ca4[An(OH)8]4+ and determined the 

corresponding equilibrium constant and (SIT, Pitzer) ion interaction coefficients. Combining 

these data with the previous study by Altmaier and co-workers with Th(IV) [81, 85], the authors 

estimated the equilibrium constant for the complex Ca4[U(OH)8]4+ using linear free energy 

relationships (LFER).  

The formation and stability of the hyperstoichiometric phase UO2+x(s) has been investigated in 

a number of experimental studies, especially in the context of spent fuel corrosion under anoxic 

and oxic conditions [55, 86, 87]. The increase of the solubility and solubility rate with increasing 

x or oxygen diffusion was observed in most of the cases. Note that PuO2+x(s) has been reported 

to play a key role in the solubility and redox chemistry of Pu in the presence of traces of oxygen 

[39, 88-90].  

On the basis of the discussion above, the most critical points to account for with regard to the 

solubility of U(IV) can be summarized as follows: 

• The particle size/degree of the crystallinity in most of the solubility experiments with 

UO2(s) remains ill-defined. Particle size is expectedly related with ΔfG°m of the solid 

phase (and accordingly with its log *K°s,0) through the Schindler equation [91]. Such 

differences are qualitatively reflected in the literature with different nomenclature 

descriptions of the solid phase controlling the solubility, UO2(cr), UO2(am), UO2(am, 

hyd), etc.  

• Indeed, the number of hydration waters in UO2⋅xH2O(s) solid phases is rarely discussed 

in the literature. Although for a crystalline structure the number of hydration waters 

often has a minor impact on the stability of the solid phase (e.g. ΔrG°m / log *K°s,0), it is 

expectedly related to the particle size/degree of the crystallinity in amorphous phases. 

An accurate knowledge of this parameter can thus provide relevant information when 

dealing with amorphous phases. 

• A pH-dependency of the surface properties was proposed by Neck and Kim [42]. For 

crystalline phases, although UO2(cr) is effectively controlling the solubility in acidic 

conditions, experimental data tends to reach the solubility limit of UO2(am,hyd) under 
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neutral to alkaline conditions. Neck and Kim (and others later on) explained these 

observations with the formation of an amorphous layer on the crystalline solid. The 

amorphous solid phase would be then responsible of the solubility-control in the alkaline 

pH-region. 

• The amphoteric character of U(IV) involving the formation of anionic hydrolysis 

species under hyperalkaline pH conditions remains undefined. Controversial results 

indicating the predominance of either U(OH)4(aq) or U(OH)5
– / U(OH)6

2– in this pH 

range are available in the literature. 

 

1.2.3.4 Solubility and hydrolysis of U(VI) in the absence of complexing ligands 

 

In the absence of complexing ligands, the solubility of U(VI) is controlled by oxo-hydroxides 

compounds, whose stoichiometry mostly depends upon pH and background electrolyte 

concentration. Metaschoepite (UO3∙2H2O(cr)) is expected to control the solubility of U(VI) 

under acidic to near neutral pH range, whereas ternary M–U(VI)–OH solid phases form in 

alkaline solutions with M = Na+, K+ and Ca2+ [92-99]. A number of studies dealing with the 

solution chemistry of U(VI) under various conditions (temperature, background electrolyte, pH 

etc.) are available in the literature. Those studies were critically reviewed in the NEA-TDB [40, 

41, 100] providing a very comprehensive knowledge on the chemical thermodynamics of solid 

and aqueous uranium compounds and complexes. The equilibrium constants of U(VI) 

hydrolysis species are selected as (n,m) (as (UO2)n(OH)m
2n–m): (1,1), (1,2), (1,3), (1,4), (2,1), 

(2,2), (2,3), (3,4), (3,5), (3,7) and (4,7) in the updated book of the NEA-TDB, based on the 

experimental data up to 2002. Figure 1.3 shows the solubility of UO3⋅2H2O(cr) and 

Na2U2O7⋅H2O(cr), together with the underlying hydrolysis scheme as calculated for I = 0.1 M 

NaCl using currently accepted thermodynamic data. The main experimental and theoretical 

studies available in the literature dealing with U(VI) solubility and hydrolysis are summarized 

in the following. 



20 
 

 

Figure 1.3. Solubility of UO3⋅2H2O(cr) and Na2U2O7⋅H2O(cr) (thick red and blue lines, respectively), 

and underlying aqueous speciation (thin red / blue lines) calculated with thermodynamic data reported 

in Altmaier et al. [43]. Calculations performed for I = 0.1 M NaCl. Change in slope of the thin (n,m) 

lines at pHm ≈ 8 are caused by the change in the solubility-controlling phase (UO3⋅2H2O(cr) and 

Na2U2O7⋅H2O(cr)), and the different stoichiometry UO2
2+:”OH–“ in both solid phases (1:2 and 1:3, 

respectively).  

 

The solubility and hydrolysis of U(VI) in acidic systems has been extensively studied in the 

literature, possibly due to the relatively high concentrations of uranium retained in solution and 

the rather large number of experimental techniques available for its characterization. In 

combination with their own solubility and spectroscopic data in dilute to concentrated NaCl 

solutions, Altmaier et al. (2017) [43] critically reviewed the available data and proposed 

updated chemical, thermodynamic and (SIT) activity models for this system. On the other hand, 

the solubility and hydrolysis of U(VI) in near-neutral to hyperalkaline systems has been far less 

investigated. This is probably due to the relatively low concentration of uranium imposed by 

metaschoepite and ternary M-uranates in this pH-region. Consistent with previous findings 

reported in literature, Altmaier and co-workers reported a solubility control by 

Na2U2O7⋅H2O(cr) in alkaline NaCl solutions, with a solution chemistry dominated by the 

formation of the negatively charged species UO2(OH)3
– and UO2(OH)4

2–. The authors reported 

solubility and hydrolysis constants for the formation of this solid phase and aqueous species, 

and provided the SIT ion interaction coefficients for the corresponding ionic species.  
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In contrast to NaCl-systems, the solubility and hydrolysis of U(VI) in potassium-containing 

systems has been far less investigated. Yamazaki et al. [98] studied the solubility of U(VI) 

following both oversaturation (starting with UO2(NO3)2) and undersaturation approaches. 

Solubility samples were prepared in near-neutral to alkaline conditions at pH = 6.4 – 12.4, in a 

synthetic brine system representative of those in the WIPP repository site (1.71 M NaCl, 0.767 

M KCl and 1.44 M MgCl2, containing also 0.044 M Na2SO4, 0.011 M NaHCO3, 0.005 M NaBr 

and 0.015 M CaCl2). After attaining equilibrium conditions, the solid phases controlling the 

solubility were characterized as UO3∙2H2O(cr) and K2U2O7(cr) by XRD measurements at pH = 

8.4 and 10.4, respectively. Sandino and Grambow [99] investigated the solubility of 

compreignacite (K2U6O19∙11H2O) using two different initial solid phases: (i) compreignacite 

synthesized by reacting stoichiometric amounts of KOH with UO2(NO3)2 first at room 

temperature, then exposed to 60 °C for a month to accelerate the precipitation (run K1), and (ii) 

UO3∙2H2O(cr) (run K2). The experiments were performed in 1 m KCl solutions at 3 ≤ pH ≤ 6. 

After 3 months of contact time, the solid phases collected from both series were characterized 

as compreignacite by XRD and SEM–EDX. The solubility constants of compreignacite were 

determined as log*K°s,0= (38.19 ± 0.23) and log*K°s,0= (40.53 ± 0.21) from run K1 and run K2, 

respectively. The authors attributed the differences between the values to differences in 

crystallinity of the solid phases due to the use of different approaches for solid phase preparation 

(starting with compreignacite vs. solid phase transformation from UO3∙2H2O(cr)). The lower 

solubility constant (run K2), log *K°s,0 = (37.1 ± 0.5) was re-calculated and selected by NEA–

TDB [41]. Gorman-Lewis et al. [101] investigated the solubility of compreignacite (quoted by 

the authors as K2(UO2)6O4(H2O)7) under weakly acidic conditions at 4.3 ≤ pH ≤ 4.6. The 

starting material was synthesized by reacting UO2(CH3COO)2(H2O)2 and K2CO3 in a Teflon 

vial at pH = 5, at 373 K for 24 hours. The solid phase was characterized by using XRD, FT–IR, 

TGA and chemical analysis techniques before and after solubility experiments. The solid phase 

was identified as compreignacite, although a decrease in the degree of crystallinity was 

observed during the experiments. The authors derived the solubility product as log*K°s,0 = (40.5 

–1.4 / +0.2) in agreement with the value reported by Sandino and Grambow (1994) [99].  

Besides the solubility studies conducted at room temperature, a number of calorimetric studies 

dealing with ternary K–U–O(cr) phases synthesized at very high T are also available in the 

literature. O'Hare and Hoekstra [102] synthesized K2UO4(cr) by the reaction of U3O8 and 

K2CO3 at T = 1100 K and determined the standard enthalpy of formation ∆Hf°= –(1886.98 ± 

3.5) kJ∙mol–1 (original value reported in kcal∙mol–1) by calorimetric measurements. Cordfunke 

and Ouweltjes [103] determined the standard enthalpy of formation of KUO3(cr), which was 
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synthesized by reacting UO2 and a stoichiometric amount of K2UO4 at T = 1073 K in a solution 

containing H2SO4 and Ce(SO4)2. The authors reported ∆Hf°= –(1522.9 ± 1.6) kJ∙mol–1. Fuger 

[104] measured the standard enthalpy of formation of a K2U2O7(cr) phase obtained by 

stoichiometric reaction of uranium oxides and alkali metal (K) at high temperature, and reported 

∆Hf°= –(3250.7 ± 4.5) kJ∙mol–1.  

A very comprehensive investigation on the crystal structure of potassium uranate phases with 

K:U atomic ratios 2.0, 1.0, 0.5 and 0.286 (i.e. K2UO4, K2U2O7, K2U4O13 and K2U7O22 

compounds, respectively) was performed by Van Egmond and Cordfunke [105]. XRD 

diffractograms were collected for these solids during the continuous heating at T = 700 °C. The 

authors reported K2U4O13 as the only stable potassium uranate phase. Besides the identified 

U(VI) compounds, the authors reported also the formation of a U(V) uranate (KUO3) at low 

oxygen pressures. 

In spite of the data summarized above, no comprehensive study dealing with the solubility of 

U(VI) in alkaline KCl solutions is available so far. Based on the analogy with the Na-system, 

the formation of ternary compounds of the like K2U2O7⋅xH2O(cr) will expectedly be responsible 

of controlling the solubility in alkaline K-containing systems. Such phases may accordingly 

become relevant in cementitious systems (especially during the degradation stage I), where the 

porewater composition is buffered at hyperalkaline pH conditions and relatively high 

concentrations of potassium (≈ 0.2 M). 

 

1.3 Thermodynamic data selection of uranium 

 

Thermodynamic calculations performed in this work for uranium are mostly based on the NEA-

TDB thermodynamic selection [40, 41], which includes equilibrium constants for redox 

transformations, solubility, hydrolysis and complexation reactions. In some cases, this selection 

has been extended with available estimated data (note that NEA-TDB selection only accepts 

experimental data) or experimental data published after the NEA-TDB update book (released 

in 2003).  

In the case of U(IV), the NEA-TDB selection does only include the hydrolysis species UOH3+ 

and U(OH)4(aq). This selection is extended in this work with the very comprehensive study by 

Neck and Kim on the estimation of equilibrium constants for An(IV) hydrolysis species [42]. 

The authors developed two estimation methods, but only the second (method B in the original 
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publication) provided accurate estimates for all hydrolysis species. Estimation method (B) is a 

semi-empirical method (developed in a previous publication by the same authors [106]), which 

describes the inter-ligand electrostatic repulsion for the mononuclear complexation constants 

log βº(1,y) of a certain actinide with a given ligand. Based on combination of these estimation 

methods, available experimental data [50, 84] and expected trends along the An(IV) series, the 

authors derived a complete thermodynamic model for the hydrolysis of U(IV). The authors 

estimated also ion interaction coefficients of charged U(IV) hydrolysis species with chloride. 

These estimates were obtained by correlation between ion interaction coefficients available for 

Cl– and ClO4
–, as well as considering the known values of analogous tetravalent actinides with 

same charge. 

After the last update volume of NEA-TDB [41], Altmaier et al. [43] reported the equilibrium 

constants and ion interaction coefficients of the U(VI) solubility and hydrolysis species based 

on a very comprehensive experimental study in dilute to concentrated NaCl systems. The work 

by Altmaier and co-workers has been considered as main reference for thermodynamic 

calculations involving U(VI). 

The formation constants and ion interaction coefficients summarized in Table 1.2 and Table 1.3 

are used in this work for the thermodynamic calculations including Pourbaix and solubility 

diagrams. The data selection is mainly based on NEA-TDB [41], although extended for U(IV) 

and U(VI) using data reported by Neck et al. [42] and Altmaier et al. [43], respectively, as 

discussed above.  
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Table 1.2. Equilibrium constants for redox, solubility and hydrolysis reactions of uranium considered 

for thermodynamic calculations in the present study. 

Reaction log *K° Reference 

Redox   

U4+ + e- ↔ U3+ (9.353 ± 0.07) [41] 

UO2
2+

 + 4H+ + 2e- ↔ U4+ + 2H2O(l)  (9.04 ± 0.04) [41] 

UO2
2+ + e- ↔ UO2

+ (1.49 ± 0.02) [41] 

Solubility   

UO2(am, hyd) + 4H+ ↔U4+ + 4H2O(l) (1.50 ± 1.00) [41] 

UO3⋅2H2O(cr) + 2H+ ↔ UO2
2+ + 3H2O(l) (5.35 ± 0.13) [43] 

0.5 Na2U2O7⋅H2O(cr) + 3H+ ↔ Na+ + UO2
2+ + 2H2O(l) (12.20 ± 0.20) [43] 

1/6K2U6O19∙11H2O(cr) + 7/3H+ ↔ 1/3K+ + UO2
2+ + 3H2O(l) 

 

(6.7 ± 0.20) [41, 99] 

U(IV) hydrolysis   

U4+ + H2O(l) ↔ UOH3+ + H+ 

 

–(0.40 ± 0.20) 

–(0.54 ± 0.06) 

[41] 

[42] 

U4+ + 2H2O(l) ↔ U(OH)2
2+ + 2H+ –(1.10 ± 1.00) [42] 

U4+ + 3H2O(l) ↔ U(OH)3
+ + 3H+ –(4.70 ± 1.00) [42] 

U4+ + 4H2O(l) ↔ U(OH)4(aq) + 4H+ –(10.00 ± 1.40) [41, 42] 

U(VI) hydrolysis   

UO2
2+ + H2O(l) ↔ UO2OH+ + H+ –(5.25 ± 0.24) [41] 

UO2
2+ + 2H2O(l) ↔ UO2(OH)2(aq) + 2H+ –(12.15 ± 0.17) [41] 

UO2
2+ + 3H2O(l) ↔ UO2(OH)3

- +3H+ –(20.70 ± 0.42) [43] 

UO2
2+ + 4H2O(l) ↔ UO2(OH)4

2- +4H+ –(31.90 ± 0.33) [43] 

2UO2
2+ + H2O(l) ↔ (UO2)2OH3+ + H+ –(2.70 ± 1.00) [41] 

2UO2
2++ 2H2O(l) ↔ (UO2)2(OH)2

2++2H+ –(5.62 ± 0.06) [41] 

3UO2
2+ + 4H2O(l) ↔ (UO2)3(OH)4

2+ + 4H+ –(11.90 ± 0.30) [41] 

3UO2
2+ + 5H2O(l) ↔ (UO2)3(OH)5

+ + 4H+ –(15.55 ± 0.12) [41] 

3UO2
2++ 7H2O(l) ↔ (UO2)3(OH)7

- + 7H+ –(32.20 ± 0.80) [41] 

4UO2
2++ 7H2O(l) ↔ (UO2)4(OH)7

++ 7H+ –(21.90 ± 1.00) [41] 

Ternary Ca(II)–U(IV)–OH complexes   

4Ca2+ + U4+ + 8H2O(l) ↔ Ca4[U(OH)8]4+ + 8H+ –(58.7 ± 1.0) [79] 
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Table 1.3. SIT ion interaction coefficients (in kg·mol-1) of U(IV), U(V) and U(VI) aqua-ions and 

hydrolysis species in NaCl media at 25°C considered for activity corrections in the present study. 

 j ε(i,j) Reference 

U(III) species    

U3+ Cl– (0.18 ± 0.05)a [41] 

U(IV) species    

U4+ Cl– (0.36 ± 0.10) [42] 

UOH3+ Cl– (0.20 ± 0.10) [42] 

U(OH)2
2+ Cl– (0.10 ± 0.10) [42] 

U(OH)3
+ Cl– (0.05 ± 0.10) [42] 

Ca4[U(OH)8]4+ Cl- –(0.01 ± 0.10) [79, 85] 

U(OH)4(aq) Na+, Cl– 0b [107] 

U(V) species    

UO2
+ Cl– (0.09 ± 0.05)a [41] 

U(VI) species    

UO2
2+ Cl– (0.21 ± 0.02) [43] 

UO2(OH)+ Cl– (0.10 ± 0.10) [43] 

UO2(OH)2(aq) Na+, Cl– 0a [107] 

UO2(OH)3
– Na+ –(0.24 ± 0.09) [43] 

UO2(OH)4
2– Na+ (0.01 ± 0.04) [43] 

(UO2)2(OH)2
2+ Cl– (0.30 ± 0.06) [43] 

(UO2)3(OH)4
2+ Cl– –(0.07 ± 0.17) [43] 

(UO2)3(OH)5
+ Cl– (0.24 ± 0.15) [43] 

(UO2)3(OH)7
– Na+ –(0.24 ± 0.09) [43] 

(UO2)4(OH)7
+ Cl– (0.17 ± 0.18) [43] 

a. estimated considering ε(Mz+, Cl–) = 0.38⋅ε( Mz, ClO4
–); b. by definition in SIT. 
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1.4 Aim of the present work 

 

This PhD thesis aims at a comprehensive description of three main aspects of the solution 

chemistry of uranium, namely redox processes, solubility phenomena and hydrolysis. The study 

covers very acidic to hyperalkaline pH conditions, tackles oxidizing to very reducing chemical 

systems and extends from dilute to highly concentrated salt systems. Although the work is 

mostly intended to contribute to an improved fundamental understanding of these main aspects 

/ processes, some of the investigated systems cover boundary conditions of high relevance in 

different repository concepts for nuclear waste disposal, thus providing insight on the retention 

and potential migration behaviour of uranium under such conditions. The combination of 

fundamental research with an applied character is highlighted throughout the discussion of the 

three main chapters of the thesis. The main objectives of this work can be summarized as 

follows: 

I. The redox behaviour of U(VI/IV) is investigated in 0.1–5.0 M NaCl solutions in the 

presence of individual and mixed reducing chemical systems. Eh, pHm and uranium 

concentration were measured at periodic time intervals and evaluated using Pourbaix 

and solubility diagrams. Solid phase characterization (XANES) and aqueous speciation 

(XANES, solvent extraction) were also performed. This study targets the reduction 

process of U(VI) to U(IV), with focus on the kinetics and the role of U(VI) and U(IV) 

solid phases in the overall reduction process. Following the controversy in the literature 

on the existence of anionic hydrolysis species of U(IV), special attention is dedicated to 

assess the aqueous speciation under hyperalkaline conditions. As a general goal, this 

part of the PhD thesis aims at evaluating the reliability of (pe + pHm) measurements as 

input for an accurate characterization of U redox distribution under conditions relevant 

for nuclear waste disposal (Chapter 3).  

II. The solubility of U(IV) is investigated in dilute to concentrated NaCl, MgCl2 and CaCl2 

systems. Based on the knowledge gained in Chapter 3, Sn(II) is used to retain reducing 

conditions throughout the timeframe of the solubility experiments. Systematic pHm and 

uranium concentration measurements were complemented with solid phase 

characterization (XRD, XANES/EXAFS, SEM-EDS, TG-DTA and quantitative 

chemical analysis). The extensive solid phase characterization aims at providing a very 

accurate description of the UO2(am, hyd) solid phase controlling the solubility of U(IV) 
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in these conditions. The ultimate goal of this study is to derive complete chemical, 

thermodynamic and activity models for the system U4+–Na+–Mg2+–Ca2+–H+–Cl––OH–

–H2O(l). These models can be implemented in thermodynamic databases and 

geochemical calculations used in the Safety Case of nuclear waste repositories (Chapter 

4).  

III. The solubility of U(VI) is investigated in alkaline, dilute to concentrated KCl systems. 

Systematic measurements of pHm and uranium concentration are combined with a 

comprehensive solid phase characterization (XRD, XANES/EXAFS, SEM-EDS, TG-

DTA and quantitative chemical analysis). In combination with data available in 

literature, this study aims at deriving comprehensive chemical, thermodynamic and 

activity models for the system UO2
2+–K+–Na+–H+–Cl––OH––H2O(l). Special focus is 

given to the ternary K–U(VI)–OH(s) solid phases forming in alkaline conditions, and to 

assess the possible role of such phases in controlling the solubility of U(VI) in 

cementitious systems (Chapter 5). 
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2 Experimental 

 

2.1 Chemicals and analytical work 

 

2.1.1  Chemicals 

 

All solutions were prepared with ultrapure water purified with a Milli-Q-academic apparatus 

(Millipore Milli-Q Advantage A10 with Millipore Millipak® 40 0.22 μm; 18.2 MΩ⋅cm at 25°C, 

4 ppb TOC) and purged with Ar during 1 hour before use. All sample/solid preparation steps 

were carried out in an Ar-glove box (< 1 ppm O2) at T = (22 ± 2) ºC. The pH electrode was 

calibrated using pH standard buffer solutions (pH= 2-12) (Merck).  

 

Table 2.1. List of chemicals used in this study. 

Name Chemical formula 
Molar weight 

(g.mol-1) 
Provider 

1-phenyl-3-methyl-4-benzoyl-2-
pyrazolin-5-one (PMBP) C17H14N2O2 278.31 Fluka (≥99.0%) 

2-Amino-2-(hydroxymethyl)propan-
1,3-diol (TRIZMA, TRIS) 

C4H11NO3 121.14 Sigma-Aldrich (99.9%) 

Ammonium iron(II) sulfate 
hexahydrate 

(NH4)2Fe(SO4)2·6H2O 392.14 Sigma-Aldrich (99.8%) 

Ammonium hydroxide NH4OH 35.05 Sigma-Aldrich (30%) 

Calcium chloride -dihydrate CaCl2.2H2O 147.02 Merck (p.a.) 

Calcium hydroxide Ca(OH)2 74.10 Merck (p.a.) 

Iron powder Fe (10 μm) 55.85 Merck (99.5.) 

Ethanol (absolute) CH3CH2OH 46.07 VWR Chemicals (99.9%) 

Hydrochloric acid HCl 36.46 Merck Titrisol 

Magnesium chloride hexahydrate MgCl2·6H2O 203.30 Merck (p.a.) 

Magnesium hydroxide  Mg(OH)2 58.32 Merck 
2-(N-morpholino)ethanesulfonic acid 
(MES) 

C6H13NO4S 195.24 Sigma-Aldrich 

Nitric acid (65%) HNO3 63.01 Merck (suprapure) 
Merck (ultrapure) 

Potassium chloride KCl 74.55 Merck (EMSURE®) 

Potassium hydroxide KOH 56.11 Merck Titrisol 

Sodium chloride NaCl 58.44 Merck (p.a.) 

Sodium dithionite Na2S2O4 174.11 Merck (˃87%) 

Sodium hydroxide NaOH  Merck Titrisol 

Tin(II) chloride SnCl2 189.60 Sigma-Aldrich (98%) 

Titanium dioxide (rutile) TiO2 79.87 Merck (≥99.5%) 
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Table 2.1 summarizes the list of chemicals used in the experiments. Magnetite (α-Fe3O4(cr), 

60-120 nm) used in this work was prepared hydrothermally at KIT–INE following the protocol 

previously described in the literature [108]. 

 

2.1.2 238U 

 

A pure, nitrate-free 0.42 M 238UO2Cl2 stock solution was used to prepare samples in all 

experiments. For redox experiments (Chapter 3), a calculated amount of solution was directly 

added to pre-equilibrated matrix solutions aiming at an initial uranium concentration of     

3.0∙10–5 M and 4.2∙10–4 M. An aliquot of U(VI) stock solution was electrochemically reduced 

and precipitated as UO2(am, hyd) in reducing and alkaline conditions. The resulting solid was 

aged for 3 months and used in U(IV) undersaturation solubility experiments (see section 2.3.1 

and Chapter 4). The solid phase K2U2O7·xH2O(cr) was synthesized by slow addition of the 

nitrate-free U(VI) stock solution to a 2.43 M KCl + 0.07 M KOH solution (see section 2.4.1). 

The resulting potassium uranate was used in a series of undersaturation solubility experiments 

summarized in Chapter 5. 

 

2.1.3 pH measurements 

 

The pH was originally defined by Sørensen and Linderstørm as the negative logarithm of 

hydrogen concentration in molar units (–log [H+]) [109]. This definition was afterwards updated 

referring to the hydrogen ion activity, �HE, instead of concentration [110-112]: 

pH = − log(�HE) = log vwixE yo
xE

iz {| =      (2.1) 

where jHE  is the molal concentration of H+ and }i HE  is the corresponding molal activity 

coefficient. j@  is an arbitrary constants representing the standard amount of concentration 

equal to 1 mol·kg-1. Note that Eq (2.1) can also be used on the molar scale by considering the 

term w~xE y�
xE

~z {. In spite of the clear definition, the activity of H+ cannot be experimentally 

measured. Therefore, a consensual pH scale was introduced after international agreement in 
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order to measure and compare the acidity of dilute solutions with I ≤ 0.1 m. In this context, the 

International Union of Pure and Applied Chemistry (IUPAC) recommended the use of H+ 

sensitive electrodes (Harned cell) without junction potential as the primary method [112], to 

provide the absolute measurement of standard buffer solutions of certain pH values. The Harned 

cell is defined by: 

Pt | H2 | buffer S, Cl- | AgCl | Ag       (2.2) 

and contains standard buffers, S, and Cl– ions in the form of NaCl or KCl. The overall reaction 

occurring spontaneously in the cell is:  

1/2H2(g) + AgCl ⇔ Ag(s) + H+ +Cl–      (2.3) 

and the potential difference of the cell is given by the Nernst equation:  

� = �@ − ���
� ln10� log�(jHE}HE)(j��}��)�     (2.4) 

where E0 corresponds to the standard potential difference of the Ag/AgCl electrode, which is 

determined from the Harned cell containing pure HCl at a fixed molality as filling solution. The 

single-ion activity coefficient }��  cannot be quantified experimentally and it is therefore 

calculated using the Bates-Guggenheim convention as derived from the Debye-Hückel theory:  

IQ[}�� =  −\ h` $�  /(1 + �� h` $� )       (2.5) 

where A is the Debye-Hückel temperature-dependent constant, � is the ion size parameter (the 

distance of closest approach of the ions), �� is equal to 1.5 mol kg-1 at all temperatures in the 

range 5-50ºC, and I is the ionic strength of the buffer (h = 1/2 ∑ jt bt$). 

In addition to primary methods, the use of secondary methods including also a liquid junction 

contribution to the potential difference allows also the determination of pH. Absolute potential 

difference cannot be measured by secondary methods, but pH can be determined as long as a 

calibration with standard buffer solutions is performed prior to the measurement. The 

electrochemical cell used for the measurement consists of a H+ sensitive glass electrode and a 

reference electrode with a salt bridge. These two electrodes are combined in a single glass unit 

in order to avoid a separate external reference electrode and connected with a cable to a sensitive 

electrometer for the measurements of potential difference between these two electrodes. The 

potential of the electrode is defined as: 

E = Eo(REF) – Eo(GE) – EAS + RTln(10) /F log aH++ Ej      (2.6) 
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where Eº (REF) and Eº(GE) are the temperature dependent potential of reference and the glass 

electrode, respectively. RTln(10) /F is equal to 59.16 mV at 25ºC and corresponds to the Nernst 

slope which is used when the glass electrode is perfectly reversible to hydrogen ions. This is a 

good approximation for the measurement of solutions with pH < 12 using commercial glass 

electrodes. The asymmetry potential, EAS, is the potential difference of a symmetrical cell with 

identical solutions and reference electrodes on each side of the glass membrane. It depends on 

the internal and external hydrated ion exchange layers of the glass membrane. Ej is the liquid 

junction potential, which depends on the diffusion rates of anions and cations present in 

reference and sample solutions.  

The measured electron potentials (mV) of a standard buffer (S) of a known pH and the unknown 

sample (X) are expressed as:  

E(S) = E(REF) – E(GE) – EAS + RT ln (10) / F ∙ log aH+(S) + Ej(S)  (2.7) 

E(X) = E(REF) – E(GE) – EAS + RT ln (10) / F ∙ log aH+(X) + Ej(X)  (2.8) 

Therefore, since the Eº(REF), Eº(GE) and EAS do not change in the calibration and the 

measurement of sample, the unknown pH of the sample can be calculated using the difference 

between E(X) and E(S): 

pH(X) = pH(S) + [E(S) – E(X)] ∙F / RT ln (10) + [Ej(S) – Ej(X)]∙ F / RT ln (10) (2.9) 

The difference between the liquid junction potential contributions to both measurements is 

negligible at low and similar ionic strengths (I ≤ 0.1 m) [113]. 

 

2.1.3.1 pH measurements in saline solutions  

 

At high ionic strengths (I ≥ 0.1 m), the activity coefficient of H+ and liquid junction potential 

of the electrode are largely affected by ion interaction processes, and the use of pHm / pHc 

(concentration scale, in molal or molar units) instead of pH (activity scale) is required for the 

correct evaluation of unknown systems [114]:  

pHm = −log (jHE) and pHc = −log (�HE)      (2.10) 

Experimentally measured pH values (pHexp) include the combined contribution of the activity 

coefficient of H+ and the liquid junction potential of the electrode. Therefore, an empirical 

correction factor, Am/c is used to calculate pHm/c from the operational pHexp: 
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pH� = pH�N� + A� and pH� = pH�N� + A�     (2.11) 

Am/c values can be calculated according to: 

A� = log }HE� + ��
��
� ln10  and A� = log }HE� + ��

��
� ln10   (2.12) 

Am/c values depend upon salt type and concentration, and they can be empirically determined 

by measuring a set of reference sample solutions with different concentrations of background 

electrolyte and known H+ concentrations. 

 

2.1.4 pH measurements in this work  

 

In the present study, the hydrogen ion concentration (as pHexp) was measured using a ROSS 

combination pH electrode (Orion). The standard buffer solutions at pH = 2-12 were used for 

calibration prior to the measurements. pH adjustments were performed using HCl–NaCl–

NaOH, HCl–KCl–KOH, HCl–MgCl2 and HCl-CaCl2 solutions with ionic strength adjusted to 

the corresponding sample. Mg(OH)2(s) and Ca(OH)2(s) solid phases were also used to adjust 

the pH in the alkaline range in MgCl2 and CaCl2 systems, respectively. MES and TRIS (with 

total concentrations in the samples ranging from 5 to 25 mM) were used to buffer the pHm of 

selected samples at ≈ 6 and ≈ 8, respectively. The values of Am were taken from Altmaier et al. 

[85, 115] for NaCl, MgCl2 and CaCl2 systems, and from Baumann et al. [116] for KCl systems. 

Table 2.2 shows the Am values used within this work. In those systems with [H+] > 0.01 M or 

[OH-] > 0.01 M, pHm values were calculated from the initial [H+] and from the known hydroxide 

concentration and the conditional ion product (Kʹw) of water, respectively. In MgCl2 and CaCl2 

solutions, the maximum pHm values (pHmax) are fixed at ∼9 and ∼12, respectively, by the 

precipitation of Mg(OH)2(s) and Ca(OH)2(s) (or corresponding hydroxochlorides at Ca/Mg 

concentrations above ∼2 m) [115].  
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Table 2.2. Am values used in this study as reported in Altmaier et al. [85, 115] (NaCl, MgCl2 and CaCl2 

systems) and Baumann et al. [116] (KCl systems). 

Background electrolyte Am
a 

0.10 m NaCl 

0.51 m NaCl 

1.02 m NaCl 

5.61 m NaCl 

–0.08 

–0.01 

0.08 

0.90 

0.25 m MgCl2 

2.11 m MgCl2 

5.15 m MgCl2 

0.03 

0.95 

2.77 

0.25 m CaCl2 

2.11 m CaCl2 

5.25 m CaCl2 

–0.01 

0.83 

2.41 

0.10 m KCl –0.11 

0.51 m KCl –0.16 

1.04 m KCl –0.13 

3.26 m KCl 0.15 

4.50 m KCl 0.32 

a: ± 0.04 

 

2.1.5 Eh measurements 

 

Measurements of redox potential were performed with Pt combination electrodes with a 

Ag/AgCl reference system (Methrohm). The measured values in mV were converted to Eh 

versus the standard hydrogen electrode (SHE) using the correction for the potential of reference 

electrode according with the reaction AgCl(s) + e– ⇔ Ag(s) + Cl–: 

E = E°Ag/AgCl + 
�� �� (`@)

� ∙ log ���        (2.13) 

where E°Ag/AgCl = 0.2222 V and (RT / F) = 0.02569 V at T = 25 °C. Equation (2.13) results in E 

= 0.208 V for a 3.0 M KCl filling solution. The apparent electron activity (pe= –log ae-) was 

calculated using the relation between pe and Eh shown in Section 1.2.2.1 (pe = 16.9 Eh, with Eh 
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in [V]). All samples were measured under constant agitation for 5-15 min until stable Eh 

readings were obtained.  

 

2.1.6 Determination of total concentration and redox speciation of uranium in aqueous 
systems  

 

2.1.6.1 Inductively coupled plasma mass spectrometry (ICP-MS) 

 

The determination of the total uranium concentration in the aqueous phase of all investigated 

systems was performed using ICP-MS. This instrumental technique is the combination of a 

high-temperature ICP and a mass spectrometer. First, the elements are ionized by the 

inductively coupled plasma source, and then detected and quantified by the mass spectrometer. 

An aliquot of the aqueous sample is converted to an aerosol by a nebulizer, and subsequently 

injected in the plasma. The detection capability of ICP-MS is highly affected by the 

concentrated matrix solution of the sample due to the possible formation of salt crusts in the 

thin pipes used for the injection of samples and the cone of the plasma. Therefore, samples were 

accordingly diluted to a salt content below ≈ 50 ppm before the measurement.  

In selected samples with less concentrated NaCl (0.1 and 0.5 M NaCl), a μ-injection technique 

was used in order to quantify very low uranium concentrations. This technique allows the 

injection of a significantly lower sample volume, compared to the standard ICP-MS technique. 

This minimizes the risk of salt deposition, allows the injection of more concentrated samples 

and consequently decreases the detection limit.  

For sample preparation, an aliquot of the supernatant (50 to 800 μL) of each sample was 

centrifuged at 12000 g with 10 kD filters (2–3 nm cut-off Nanosep® centrifuge tubes, Pall Life 

Sciences) for 2-10 minutes to separate colloids or suspended particles. Then, the filtrate was 

diluted using 2% HNO3, depending on the salt and uranium concentration of the sample (1:100 

– 1:5000). Different detection limits, quantified as 3 times the standard deviation of repeated 

blank measurements (ranging between ≈ 10–6 and ≈ 10–11 M), were observed due to the dilution 

factors required for different concentrations of background electrolyte. Uranium concentrations 

determined in molar units were converted to molal units using the conversion factors reported 

in the NEA-TDB [40, 41].  
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2.1.6.2 Solvent extraction (SX) 

 

A solvent extraction approach was used to determine the oxidation state of U (+4 or +6), in the 

aqueous phase of samples containing [U] ≥ 10–5 M.  

After attaining equilibrium conditions (constant pHm, Eh and [U] measurements), 250 μL of the 

supernatant solution of selected samples were acidified with 250 μL of 2 M HCl after 

ultrafiltration with 10 kD filters. Afterwards, the acidified samples were contacted with 0.025 

M PMBP prepared in 500 μL xylene [117, 118]. The mixture was vigorously shaken for 3–5 

minutes and centrifuged at 12000 g for 5 minutes. The aqueous phase was carefully separated 

from the organic phase using thin tip Pasteur pipettes. Concentration of uranium in the aqueous 

phase was quantified by ICP-MS and attributed to presence of U(VI). PMBP is known to 

strongly complex An(IV) under acidic conditions [119], which are accordingly quantitatively 

extracted in the organic phase. 

 

2.1.7 Solid phase characterization 

 

Solid phase characterization of starting solid phases and selected solubility samples (after 

attaining equilibrium conditions) were performed using different methods as described in 

Sections 2.1.6.1 to 2.1.6.4.  

 

2.1.7.1 X-Ray diffraction 

 

An aliquot of the solid phase of each selected sample (~ 1 mg) was washed 5–6 times with 1 

mL ethanol to remove the salt content in the matrix solution. After the last cleaning step, the 

solid was re-suspended in ethanol and deposited on an XRD sample plate. The sample was dried 

under Ar atmosphere for a few minutes, and the sample holder was transferred outside the 

glovebox for the collection of the XRD diffractogram. XRD measurements were performed on 

a Bruker AXS D8 Advance X-Ray powder diffractometer at measurement angle 2θ = 5–100° 

with incremental steps of 0.02°-0.04° and a measurement time of 1.5-37 seconds per step. The 

collected diffractograms were compared to reference data reported in the Joint Committee on 

Powder Diffraction Standard (JCPDS, [120]). For those solid phases with well-defined / known 
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structures, XRD patterns were also used for the evaluation of the particle size using Rietveld 

analysis.  

 

2.1.7.2 Quantitative chemical analysis 

 

After XRD analysis, the solid deposited on the sample holder was dissolved in 1 mL of 2% 

HNO3. ICP-OES technique (inductively coupled plasma–optical emission spectroscopy, 

Perkin–Elmer 4300 DV) was used for the quantification of the concentrations of U, Na, Mg, Ca 

and K (depending upon the investigated salt system). This information was considered to 

identify the presence of impurities (sorbed cations, salt remains from insufficient washing of 

the solid) or, in the case of ternary K–U(VI)–OH compounds, to establish the ratio U:K in the 

solid phase controlling the solubility of uranium. 

 

2.1.7.3 Scanning electron microscopy with energy dispersive X-Ray spectroscopy (SEM-

EDS) 

 

A second fraction of the solid phase washed for XRD analysis was characterized by SEM-EDS 

(FEI Quanta 650 FEG equipped with Noran EDS unit). SEM images were considered for a 

qualitative assessment of particle size, crystallinity and morphology, whereas EDS provided 

additional insights on the atomic composition of the investigated solid phase. Note that EDS is 

a surface sensitive technique gathering information from the upper layer of the solid, whilst 

quantitative chemical analysis gives information on the bulk. Therefore, differences on the 

atomic ratios determined for a given solid phase may arise between both experimental 

techniques. 

 

2.1.7.4 Thermogravimetric-differential thermal analysis (TG-DTA) 

 

The number of hydration waters in the solid phases controlling the solubility of uranium was 

quantified by TG-DTA using a Netzsch STA 449C equipment. Solid phases collected from 

selected solubility samples were washed 5 times with ethanol to remove the matrix solution. 

The washed samples were transferred in tightly closed vials to the glovebox where TG-DTA 
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measurements were performed. Typically, 5–20 mg of uranium solid phase were used in the 

measurements. Samples were heated to T = 900 °C at a rate of 10 K min–1, and the number of 

hydration waters was calculated using the mass loss with respect to the original weight. 

 

2.1.8 X-ray absorption near edge structure (XANES) and extended X-Ray absorption 
fine structure (EXAFS) spectroscopy 

 

XANES and EXAFS measurements of selected solid and aqueous phases were recorded at the 

INE- and CAT-ACT beamlines at the KIT synchrotron source [121]. Measurements and data 

evaluation were carried with close supervision / indications by the beamline scientists.  

XANES was used to determine the oxidation state of uranium in selected aqueous / solid 

samples investigated in the redox study. XANES spectra of solid phases were collected at the 

INE-beamline, whereas the ACT-beamline (with a significantly higher flux of photons) was 

used for the characterization of dilute aqueous samples with [U]aq ≥ 3∙10–5 M. EXAFS was 

considered to gain structural information of the solid phases used in U(IV) solubility 

experiments. All EXAFS spectra were collected at the INE-beamline. 

 

2.1.8.1 Sample preparation 

 

Approximately 300 μL of a suspension (containing ca. 1 mg of solid) of the selected solubility 

samples were transferred to a 400 μL polyethylene vial and centrifuged at 4020g for 10 minutes 

under an Ar atmosphere. This approach resulted in a compacted solid at the bottom of the vial 

well-separated from the supernatant solution, which allowed the distinct measurement of 

aqueous phase, solid or both (depending upon investigated system, see Table 2.3). The vials 

were mounted inside the Ar-glovebox in a gas-tight cell with Kapton® (polyimide) film 

windows. The cell was transported to INE- or ACT-beamlines, and samples were measured 

under continuous flow of Ar gas within a few hours after preparation. Table 2.8 summarizes all 

reference and unknown samples investigated by XANES/EXAFS within this PhD thesis.  
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Table 2.3. References and unknown samples measured using XANES and EXAFS.  

Study Sample description Technique Beamline 

Redox 0.1 M NaCl, pHm = 10.9, 20 mM Sn(II) + 15 mg Fe(0) 

Solid 

 

XANES 

 

INE 

Redox 5.0 M NaCl, at pHm= 11.9, 20 mM Sn(II) 

Solid 

 

XANES 

 

INE 

Reference UO2(s, hyd) XANES INE 

Reference Na2U2O7·H2O(cr) XANES INE 

Redox 0.1 M NaCl, at pHm= 2.1, 20 mM Sn(II) 

Aqueous 

 

XANES 

 

ACT 

Reference U(IV) in 1.0 M HCl XANES ACT 

Reference U(VI) in 1.0 M HCl XANES ACT 

U(IV) solubility UO2(s, hyd), pHm= 12.1, 10 mM Na2S2O4 

“starting material” 

EXAFS INE 

U(IV) solubility UO2(s, hyd), 0.1 M NaCl, pHm= 8.5, 5 mM Sn(II) EXAFS INE 

 

2.1.8.2 XANES/EXAFS measurements 

 

Uranium LIII-edge (17166 eV) XANES/EXAFS spectra (5–8 replicates per sample) were 

collected at room temperature under a continuous flow of Ar. The INE-Beamline [122] is 

equipped with a Ge(422) double crystal monochromator (DCM) coupled with a collimating and 

a focusing Rh coated mirrors before and after the DCM, respectively. The beam spot size on 

the sample is below 1mm diameter. The DCM-crystals were detuned at 70% and the incident 

beam intensity was held constant by means of a piezo driven feedback system to the second 

crystal. The incident and transmitted beam intensities were measured by argon-filled ionization 

chambers. U LIII EXAFS signal was recorded in fluorescence mode using simultaneously 4-

elements and 1-element Silicon drift Vortex detectors. The ACT-Beamline [123] is equipped 

with a pair of Si(311) crystals in the double crystal monochromator (DCM, FMB Oxford, 

Oxford, United Kingdom). The monochromatic radiation delivered by the DCM is focused by 

an Rh-coated toroidal mirror into a spot-size below 1 mm diameter at the sample position. A 

five pixel LEGe solid state detector (Canberra, Olen, Belgium) is used for collecting U LIII 

fluorescence radiation. In both beamlines, the energy calibration was performed by assigning 

the energy of 17038 eV to the first inflection point of the K-edge absorption spectrum of the Y 

metal foil, recorded simultaneously in transmission geometry. 
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2.1.8.3 Data evaluation 

 

XANES/EXAFS data reduction and analysis were performed with the ATHENA/ARTEMIS 

programs of the Demeter 0.9.26 package following standard procedures [124]. 

 

2.2 Uranium redox experiments in the presence of reducing agents 

 

The redox behaviour of uranium was investigated in 0.1 and 5.0 M NaCl solutions in the 

presence of individual and mixed reducing chemical systems (2, 10 and 20 mM Sn(II), 20 mM 

Na2S2O4, 20 mM Sn(II) + 10 mg TiO2, 20 mM Sn(II) + 15 mg Fe(0), 20 mM Sn(II) + 10 mg 

Fe3O4). Experiments were performed covering a wide pH range, 2 ≤ pHm ≤ 14.5. In a first step, 

the inactive background solutions were equilibrated until attaining the targeted, stable pHm and 

Eh readings. A nitrate-free UO2Cl2 stock solution was added to the equilibrated background 

solutions to obtain initial uranium concentrations of 3.0⋅10–5 and 4.2⋅10–4 M, resulting in 40 

independent batch samples (see Table 2.3). The values of Eh, pHm and uranium concentration 

were monitored at periodic time intervals for up to 635 days. After attaining equilibrium 

conditions (assumed after constant Eh, pHm and [U]aq measurements), aqueous and solid phases 

of selected samples were characterized as described above. The initial experimental conditions 

before the addition of uranium are summarized in Table 2.4. 
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Table 2.4. Initial pHm and Eh values of uranium redox experiments in NaCl systems and presence of 

different reducing chemicals.  

Background electrolyte  0.1 M NaCl 5.0 M NaCl 

Reducing chemicals Initial U concentration (M) pHm
a Eh (mV)b pHm

a Eh (mV)b 

2 mM Sn(II) 4.2⋅10–4 12.9 -847   
10 mM Sn(II) 4.2⋅10–4 10.1 

 
-580   

10 mM Sn(II) 4.2⋅10–4 10.8 -629   
10 mM Sn(II) 4.2⋅10–4 12.1 -768   
10 mM Sn(II) 4.2⋅10–4 12.8 -939   
20 mM Sn(II) 3.0⋅10–5 11.8 -839   
20 mM Sn(II) 3.0⋅10–5 12.9 -895   
20 mM Sn(II) 3.0⋅10–5 2.1 

3.5 
-207 3.2 -253 

20 mM Sn(II) 3.0⋅10–5 3.6 -281 7.7 -603 
20 mM Sn(II) 3.0⋅10–5 6.0 -411 11.9 -817 
20 mM Sn(II) 3.0⋅10–5 8.1 -542 13.1 -896 
20 mM Sn(II) 3.0⋅10–5 9.5 -674 14.4 -998 
20 mM Sn(II) 3.0⋅10–5 10.9 -775   
20 mM Sn(II) 3.0⋅10–5 11.8 -841   
20 mM Sn(II) 3.0⋅10–5 12.9 -921   

20 mM Na2S2O4 3.0⋅10–5 12.1 -843   
20 mM Na2S2O4 3.0⋅10–5 12.9 -921   

20 mM Sn(II) + 10 mg TiO2 3.0⋅10–5 2.2 -220   
20 mM Sn(II) + 10 mg TiO2 3.0⋅10–5 3.6 -297   
20 mM Sn(II) + 10 mg TiO2 3.0⋅10–5 6.0 -433   
20 mM Sn(II) + 10 mg TiO2 3.0⋅10–5 8.1 -561   
20 mM Sn(II) + 10 mg TiO2 3.0⋅10–5 9.5 -647   
20 mM Sn(II) + 10 mg TiO2 3.0⋅10–5 10.9 -765   
20 mM Sn(II) + 10 mg TiO2 3.0⋅10–5 11.8 -835   
20 mM Sn(II) + 10 mg TiO2 3.0⋅10–5 12.9 -920   
20 mM Sn(II) + 15 mg Fe(0) 3.0⋅10–5 8.1 

 
-617   

20 mM Sn(II) + 15 mg Fe(0) 3.0⋅10–5 9.7 -715   
20 mM Sn(II) + 15 mg Fe(0) 3.0⋅10–5 10.9 -793   
20 mM Sn(II) + 15 mg Fe(0) 3.0⋅10–5 11.8 -851   
20 mM Sn(II) + 15 mg Fe(0) 3.0⋅10–5 12.9 -915   
20 mM Sn(II) + 10 mg Fe3O4 3.0⋅10–5 8.1 -693 

-7 
  

20 mM Sn(II) + 10 mg Fe3O4 3.0⋅10–5 9.6 -782   
20 mM Sn(II) + 10 mg Fe3O4 3.0⋅10–5 10.9 -856   
20 mM Sn(II) + 10 mg Fe3O4 3.0⋅10–5 11.8 -843   
20 mM Sn(II) + 10 mg Fe3O4 3.0⋅10–5 12.9 -921   

 a: ± 0.05; b: ± 30 mV 
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2.3 U(IV) solubility experiments  

 

2.3.1 U(IV) solid phase preparation  

 

A 0.1 M U(VI) stock solution was prepared in 1.0 M HCl and transferred to a glass vessel with 

a magnetic stirrer, a Pt-working electrode and two galvanic cells (filled with 1.0 M HCl) 

containing the Pt-counter electrode (Metrohm) and the Ag/AgCl reference electrode (Metrohm, 

filled with 3.0 M KCl). The redox potential was adjusted to –280 mV (with respect to the 

Ag/AgCl reference electrode) by using a potentiostat (Princenton Applied Research, Model 

362). In the first four hours of the electrolysis, the color of the solution converted slowly from 

yellow to pale green, which evolved to a dark green solution after t = 4 hours. The electrolysis 

process was terminated at t ≈ 10 hours after ensuring by UV-vis the redox purity of the resulting 

solution. Figure 2.1 shows the UV-vis data measured before, after 4 hours and after 10 hours of 

electrolysis. The figure shows that the contribution of U(VI) completely vanished after 10 h of 

electrolysis, and a U(IV) spectrum in excellent agreement with reference data reported by 

Cohen and Carnall [125] was collected. This was taken as a conclusive proof of the redox purity 

of the resulting U(IV) stock solution.  
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Figure 2.1. UV spectra before (yellow line), after 4 h (light green dash line) and 10 h (dark green line) 

of electrolysis of a 0.1 M U(VI) stock solution in 1.0 M HCl at a potential of –280 mV (vs. Ag/AgCl).   

 

The pH of the resulting U(IV) solution was shifted to pH ≈ 3 with 4 M NaOH. Afterwards, this 

solution was added drop by drop to a 10 mM Na2S2O4 solution at pH ≈ 12.5 in a Kautex bottle 

under gentle agitation. The pH value was monitored during the addition to control / avoid the 

shift towards less alkaline values, which are known to cause the disproportion of Na2S2O4
‡ [126, 

127]. Approximately 250 mg of U(IV) solid phase were precipitated with this approach. The 

resulting solid was aged during 3 months and characterized as summarized in Section 2.1.6 

before its use in the solubility experiments. 

 

2.3.2 Sample preparation 

 

The solubility of U(IV) was investigated from undersaturation conditions in 0.1 M HCl, 0.1-5.0 

M NaCl, 0.25-4.5 M MgCl2 and 0.25-4.5 M CaCl2 solutions at 1.0 ≤ pHm ≤ 14.5. Sn(II) solutions 

or suspensions as Sn(OH)2(s) (depending on the pHm) were prepared in the corresponding 

background electrolyte solutions (HCl, NaCl, MgCl2 and CaCl2), and added to each individual 

sample to achieve “5 mM” Sn(II). As discussed in Chapter 3 of this PhD thesis, the very 

reducing conditions set by Sn(II) stabilize uranium in the +IV redox state within the complete 

pH-range investigated. Before the addition of the U(IV) solid phase, the background electrolyte 

                                                 
‡ Na2S2O4 is known to disproportionate at pH≤ 11 [126-127]. 
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solutions containing Sn(II) were equilibrated during two weeks until attaining stable pH and Eh 

readings. The main experimental features of the samples prepared in HCl/NaCl, MgCl2 and 

CaCl2 systems are summarized in Table 2.5, Table 2.6 and Table 2.7, respectively. The pH of 

some of the samples was adjusted using small volumes of HCl and NaOH (of appropriate ionic 

strength), or otherwise with Mg(OH)2(s) or Ca(OH)2(s) (≈ 5 mg). Finally, 3-5 mg of U(IV) 

precipitate were added to each sample after washing 3 times with the corresponding pre-

equilibrated background electrolyte and added to 2-30 ml of matrix solution§. Most of the 

samples were stored in 50 mL screw-cap centrifuge vials (Nalgene™, Thermo Scientific), but 

5 mL screw-cap tubes were preferred for samples with small volumes. Uranium concentrations 

and pHm values were measured at regular time intervals from 6 to 605 days. After attaining 

equilibrium conditions, aqueous and solid phases of selected solubility samples were 

characterized as summarized in Sections 2.1.5 and 2.1.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
§ The final volume of the samples was chosen as a function of the expected concentration / solubility. Hence, the 
volume used in very acidic conditions was limited to 2-5 mL due to high solubility foreseen in these conditions.  
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Table 2.5. Composition of the solutions used in the preparation of U(IV) solubility samples in HCl and 

NaCl systems.  

Background solution composition pHm 

750 µL 0.1 M Sn(II) + 14.25 mL 0.1 M HCl  1.0 

750 µL 0.1 M Sn(II) + 5.25 mL 0.1 M NaCl + 9 mL 0.1 M HCl 1.2 

750 µL 0.1 M Sn(II) + 8.25 mL 0.1 M NaCl + 6 mL 0.1 M HCl 1.4 

2.8 mL 0.09 M Sn(II) + 47.2 mL 0.1 M NaCl  2.2 

2.8 mL 0.09 M Sn(II) + 47.2 mL 0.1 M NaCl  2.8 

2.8 mL 0.09 M Sn(II) + 47.2 mL 0.1 M NaCl  2.9 

2.8 mL 0.09 M Sn(II) + 47.2 mL 0.1 M NaCl  4.3 

2.8 mL 0.09 M Sn(II) + 46 mL 0.1 M NaCl + 1.2 mL 1.0 M MES 5.8 

2.8 mL 0.09 M Sn(II) + 47.0 mL 0.1 M NaCl + 200 μL 1.0 M TRIS 8.4 

2.8 mL 0.09 M Sn(II) + 47.2 mL 0.1 M NaCl + 60 µL 1.0 M NaOH 11.4 

2.8 mL 0.09 M Sn(II) + 42.7 mL 0.1 M NaCl + 4.5 mL 1.0 M NaOH 12.8 

750 µL 0.1 M Sn(II) + 11.25 mL 0.5 M NaCl + 3.0 mL 0.5 M HCl 1.1 

750 µL 0.1 M Sn(II) + 11.85 mL 0.5 M NaCl + 2.4 mL 0.5 M HCl 1.2 

750 µL 0.1 M Sn(II) + 12.45 mL 0.5 M NaCl + 1.8 µL 0.5 M HCl 1.3 

2.5 mL 0.1 M Sn(II) + 47.5 mL 0.5 M NaCl 1.9 

2.5 mL 0.1 M Sn(II) + 47.5 mL 0.5 M NaCl  2.7 

2.5 mL 0.1 M Sn(II) + 47.5 mL 0.5 M NaCl  2.9 

2.5 mL 0.1 M Sn(II) + 47.5 mL 0.5 M NaCl  4.0 

2.5 mL 0.1 M Sn(II) + 46.5 mL 0.5 M NaCl + 1.0 mL 1.0 M MES 5.8 

2.5 mL 0.1 M Sn(II) + 47.2 mL 0.5 M NaCl + 300 μL 1.0 M TRIS 8.2 

2.5 mL 0.1 M Sn(II) + 47.3 mL 0.5 M NaCl + 100 µL 0.5 M NaOH 10.9 

2.5 mL 0.1 M Sn(II) + 37.5 mL 0.5 M NaCl + 5 mL 0.5 M NaOH 12.9 

750 µL 0.1 M Sn(II) + 14.0 mL 2.0 M NaCl + 250 µL 2.0 M HCl 1.3 

750 µL 0.1 M Sn(II) + 14.15 mL 2.0 M NaCl + 150 µL 2.0 M HCl 1.5 

2.5 mL 0.1 M Sn(II) + 47.5 mL 2.0 M NaCl  1.9 

2.5 mL 0.1 M Sn(II) + 47.5 mL 2.0 M NaCl  2.7 

2.5 mL 0.1 M Sn(II) + 47.5 mL 2.0 M NaCl  2.9 

2.5 mL 0.1 M Sn(II) + 47.5 mL 2.0 M NaCl  4.0 

2.5 mL 0.1 M Sn(II) + 46.3 mL 2.0 M NaCl + 1.2 mL 1.0 M MES 5.8 

2.5 mL 0.1 M Sn(II) + 47.2 mL 2.0 M NaCl + 300 μL 1.0 M TRIS 8.2 

2.5 mL 0.1 M Sn(II) + 47.3 mL 2.0 M NaCl + 100 µL 1.0 M NaOH 10.9 

2.5 mL 0.1 M Sn(II) + 45.3 mL 2.0 M NaCl + 2.2 mL 2.0 M NaOH 12.8 

750 µL 0.09 M Sn(II) + 14.22 mL 5.0 M NaCl + 30 µL 1.0 M HCl 1.3 

750 µL 0.09 M Sn(II) + 14.25 mL 5.0 M NaCl  1.5 

2.8 mL 0.09 M Sn(II) + 47.2 mL 5.0 M NaCl  2.1 

2.8 mL 0.09 M Sn(II) + 47.2 mL 5.0 M NaCl  2.7 

2.8 mL 0.09 M Sn(II) + 47.2 mL 5.0 M NaCl  3.2 

2.8 mL 0.09 M Sn(II) + 47.2 mL 5.0 M NaCl  4.0 

2.8 mL 0.09 M Sn(II) + 46.0 mL 5.0 M NaCl + 1.2 mL 1.0 M MES 5.8 

2.8 mL 0.09 M Sn(II) + 47.0 mL 5.0 M NaCl + 300 μL 1.0 M TRIS 8.5 

2.8 mL 0.09 M Sn(II) + 47.2 mL + 25 µL 1.0 M NaOH 11.2 

2.8 mL 0.09 M Sn(II) + 47.0 mL 5.0 M NaCl + 200 μL 5.0 M NaOH 12.9 

2.8 mL 0.09 M Sn(II) + 47.2 mL 4.0 M NaCl/ 1.0 M NaOH 14.5 
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Table 2.6. Composition of the solutions used in the preparation of U(IV) solubility samples in MgCl2 

systems.  

Background solution composition pHm 

0.5 mL 0.1 M Sn(II) + 9 mL 0.25 M MgCl2 + 500 μL 1.0 M HCl 1.2 

0.5 mL 0.1 M Sn(II) + 9.25 mL 0.25 M MgCl2 + 250 μL 1.0 M HCl 1.5 

1 mL 0.1 M Sn(II) + 18.74 mL 0.25 M MgCl2 + 260 μL 1.0 M HCl 1.8 

1 mL 0.1 M Sn(II) + 18.84 mL 0.25 M MgCl2 + 160 μL 1.0 M HCl 2.0 

1 mL 0.1 M Sn(II) + 18.9 mL 0.25 M MgCl2 + 100 μL 1.0 M HCl 2.2 

1 mL 0.1 M Sn(II) + 18.95 mL 0.25 M MgCl2 + 50 μL 1.0 M HCl 2.5 

1 mL 0.1 M Sn(II) + 18.98 mL 0.25 M MgCl2 + 20 μL 1.0 M HCl 3.0 

1 mL 0.1 M Sn(II) + 19.0 mL 0.25 M MgCl2  3.7 

1 mL 0.1 M Sn(II) + 19.0 mL 0.25 M MgCl2 + Mg(OH)2(s) 5.9 

1 mL 0.1 M Sn(II) + 19.0 mL 0.25 M MgCl2/Mg(OH)2(s) 8.9 

0.5 mL 0.1 M Sn(II) + 9.4 mL 2.0 M MgCl2 + 100 μL 1.0 M HCl 1.3 

0.5 mL 0.1 M Sn(II) + 9.45 mL 2.0 M MgCl2 + 50 μL 1.0 M HCl 1.5 

1 mL 0.1 M Sn(II) + 18.95 mL 2.0 M MgCl2 + 50 μL 1.0 M HCl 1.8 

1 mL 0.1 M Sn(II) + 18.97 mL 2.0 M MgCl2 + 30 μL 1.0 M HCl 2.0 

1 mL 0.1 M Sn(II) + 18.98 mL 2.0 M MgCl2 + 20 μL 1.0 M HCl 2.3 

1 mL 0.1 M Sn(II) + 19.0 mL 2.0 M MgCl2  2.5 

1 mL 0.1 M Sn(II) + 19.0 mL 2.0 M MgCl2  3.0 

1 mL 0.1 M Sn(II) + 19.0 mL 2.0 M MgCl2  4.2 

1 mL 0.1 M Sn(II) + 19.0 mL 2.0 M MgCl2 + Mg(OH)2(s) 7.7 

1 mL 0.1 M Sn(II) + 19.0 mL 2.0 M MgCl2/Mg(OH)2(s) 8.9 

1 mL 0.1 M Sn(II) + 18.98 mL 4.5 M MgCl2 + 20 μL 1.0 M HCl 1.9 

1 mL 0.1 M Sn(II) + 19.0 mL 4.5 M MgCl2  2.1 

1 mL 0.1 M Sn(II) + 19.0 mL 4.5 M MgCl2 2.3 

1 mL 0.1 M Sn(II) + 19.0 mL 4.5 M MgCl2  2.4 

1 mL 0.1 M Sn(II) + 19.0 mL 4.5 M MgCl2 2.7 

1 mL 0.1 M Sn(II) + 19.0 mL 4.5 M MgCl2  3.2 

1 mL 0.1 M Sn(II) + 19.0 mL 4.5 M MgCl2 + Mg(OH)2(s) 7.1 

1 mL 0.1 M Sn(II) + 19.0 mL 4.5 M MgCl2/Mg(OH)2(s) 8.9 
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Table 2.7. Composition of the solutions used in the preparation of U(IV) solubility samples in CaCl2 

systems.  

Background solution composition pHm 

2.5 mL 0.1 M Sn(II) + 47.5 mL 0.25 M CaCl2 + Ca(OH)2(s) 9.0 

2.5 mL 0.1 M Sn(II) + 47.5 mL 0.25 M CaCl2 + Ca(OH)2(s) 11.2 

2.5 mL 0.1 M Sn(II) + 47.5 mL 0.25 M CaCl2 + Ca(OH)2(s) 11.0 

2.5 mL 0.1 M Sn(II) + 47.5 mL 0.25 M CaCl2/Ca(OH)2(s) 12.0 

2.5 mL 0.1 M Sn(II) + 47.5 mL 2.0 M CaCl2 + Ca(OH)2(s) 8.6 

2.5 mL 0.1 M Sn(II) + 47.5 mL 2.0 M CaCl2 + Ca(OH)2(s) 11.1 

2.5 mL 0.1 M Sn(II) + 47.5 mL 2.0 M CaCl2 + Ca(OH)2(s) 11.4 

2.5 mL 0.1 M Sn(II) + 47.5 mL 2.0 M CaCl2/Ca(OH)2(s) 11.9 

2.5 mL 0.1 M Sn(II) + 47.5 mL 4.5 M CaCl2 + Ca(OH)2(s) 9.1 

2.5 mL 0.1 M Sn(II) + 47.5 mL 4.5 M CaCl2 + Ca(OH)2(s) 10.8 

2.5 mL 0.1 M Sn(II) + 47.5 mL 4.5 M CaCl2 + Ca(OH)2(s) 11.5 

2.5 mL 0.1 M Sn(II) + 47.5 mL 4.5 M CaCl2/Ca(OH)2(s) 11.9 

 

2.4 U(VI) solubility experiments in KCl solutions 

 

2.4.1 U(VI) solid phase preparation  

 

The potassium uranate solid phase used in the solubility experiments was prepared by the slow 

addition of a nitrate-free 0.48 M UO2Cl2(aq) stock solution to a 2.43 M KCl + 0.07 M KOH 

solution under continuous agitation and pH monitoring. The precipitation and storage of the 

resulting solid was performed under Ar atmosphere. Approximately 300 mg of solid phase were 

obtained in this process. The resulting solid phase was aged for 2 months and then characterized 

using XRD, quantitative chemical analysis using ICP-MS, SEM-EDS and TG-DTA as 

described in Section 2.1.6. 

 

2.4.2 Sample preparation  

 

The solubility of potassium uranate was investigated from undersaturation conditions. 

Experiments were performed in 0.1, 0.5, 1.0, 3.0 and 4.0 M KCl solutions at 7.5 ≤ pHm ≤ 14.6. 

HCl-KCl and KCl-KOH solutions of appropriate ionic strength were used for pHm adjustments. 

Before the addition of the U(VI) solid phase, the background electrolyte solutions were 

equilibrated 2-3 weeks until attaining stable pHm readings. For each independent batch 

solubility sample, approximately 5 mg of U(VI) solid phase were washed 3-5 times with the 
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corresponding background solution and added to 20 mL of matrix solution in 50 mL screw-cap 

centrifuge vials (Nalgene™, Thermo Scientific). The pHm and uranium concentration were 

measured at regular time intervals from 6 to 250 days. After attaining equilibrium conditions, 

the solid phases of selected solubility samples were characterized as summarized in Section 

2.1.6. Table 2.8 shows the composition of the background solution and corresponding pHm 

values before the addition of potassium uranate. 
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Table 2.8. Composition of the background solutions used in the solubility experiments with potassium 

urinate in alkaline KCl systems.  

Background solution composition pHm 

50 mL 0.1 M KCl 8.2 

50 mL 0.1 M KCl 10.1 

50 mL 0.1 M KCl 10.9 

50 ml 0.9 M KCl / 0.01 M KOH 11.8 

50 mL 0.1 M KOH 12.8 

50 mL 0.5 M KCl  
 

7.9 
50 mL 0.5 M KCl 
 

8.7 

50 mL 0.5 M KCl 
 

10.1 

50 mL 0.5 M KCl 
 

11.3 

50 mL 0.48 M KCl / 0.02 M KOH 
 

11.9 

50 mL 0.35 M KCl / 0.15 M KOH 
 

12.9 

50 mL 1.0 M KCl  7.9 

50 mL 1.0 M KCl 8.4 

50 mL 1.0 M KCl 10.2 

50 mL 1.0 M KCl 11.2 

50 mL 0.985 M KCl / 0.015 M KOH 11.9 

50 mL 0.975 M KCl / 0.025 M KOH 12.2 

50 mL 0.95 M KCl / 0.05 M KOH 12.6 

50 mL 0.7 M KCl / 0.3 M KOH  13.3 

50 mL 3.0 M KCl 7.5 

50 mL 3.0 M KCl 7.9 

50 mL 3.0 M KCl 9.9 

50 mL 3.0 M KCl 10.9 

50 mL 2.995 M KCl / 0.005 M KOH 12.0 

50 mL 2.9 M KCl / 0.1 M KOH 13.3 

50 mL 2.0 M KCl / 1.0 M KOH 14.3 

50 mL 4.0 M KCl 7.6 

50 mL 4.0 M KCl 7.9 

50 mL 4.0 M KCl 9.6 

50 mL 4.0 M KCl 10.5 

50 mL 3.997 M KCl / 0.003 M KOH 11.9 

50 mL 3.975 M KCl / 0.025 M KOH 12.9 

50 mL 3.93 M KCl / 0.4 M KOH 13.3 

50 mL 3.6 M KCl / 0.1 M KOH 14.1 

50 mL 3.0 M KCl / 1.0 M KOH 14.6 
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3 Redox chemistry of uranium in reducing systems 

 

The redox chemistry of uranium was investigated in 0.1 and 5.0 M NaCl solutions with 2 ≤ pHm 

≤ 14.5. Individual (Sn(II), Na2S2O4) and mixed (Sn(II) + TiO2, Sn(II) + Fe(0) and Sn(II) + 

Fe3O4(cr)) reducing systems were used in order to follow the reduction kinetics and to evaluate 

the effect of surfaces on the reduction process. Data were evaluated by systematizing the 

experimentally measured Eh and pHm in Pourbaix diagrams and comparing the measured 

uranium concentration of each sample with the calculated U(IV) and U(VI) solubility for the 

investigated pHm and [NaCl] conditions. All the measurements were performed at regular time 

intervals from 9 to 635 days. Thermodynamic data selection summarized in Tables 1.2 and 1.3 

were used for the calculation of Pourbaix diagrams and solubility curves in Figures 3.1–3.7. 

Pourbaix diagrams are prepared with the code Medusa / Spana developed by Ignasi 

Puigdomènech [128]. The expected difference in solubility between U(IV) and U(VI) within 

the complete pHm-range investigated is taken as main criteria for the evaluation of U(VI) 

reduction. For selected samples, the oxidation state of uranium in the aqueous and solid phases 

was additionally investigated by solvent extraction and XANES techniques.   

 

3.1 Reduction of U(VI) in 0.1 and 5.0 M NaCl solutions using a Sn(II) 
redox buffer 

 

The redox behavior of U(VI/IV) was investigated at three Sn(II) concentrations (2, 10 and 20 

mM) starting with two different initial uranium concentrations (4.2·10–4 M and 3.0·10–5 M). 

Figure 3.1a shows the monitored Eh-pHm values in this system during the equilibration time 

(238 days). All experimental values are below the calculated U(VI/IV) redox borderline and 

confirm the strong reducing capacity of Sn(II) regardless of its concentration. Thus, the 

combination of Eh-pHm measurements and thermodynamic calculations in Pourbaix diagrams 

indicates that the reduction of U(VI) to U(IV) in Sn(II) systems is thermodynamically favored.  

Figure 3.1b shows the measured uranium concentration (after 10 kD ultrafiltration) in this 

system together with the solubility of U(VI) (UO3⋅2H2O(cr) and Na2U2O7⋅H2O(cr)) and U(IV) 

(UO2(am, hyd)) solid phases calculated for 0.1 M NaCl systems based on the selected 

thermodynamic data (Table 1.2 and 1.3). Measured uranium concentration in the samples with 

[U(VI)]0 = 3.0·10-5 M and [Sn(II)] = 20 mM showed the decrease of uranium concentration to 

10-8 - 10-9 M within 59 days of contact time. This concentration range is in excellent agreement 
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with the solubility expected for UO2(am, hyd), and clearly below (1 to 3 orders of magnitude, 

depending upon pHm) the solubility of Na2U2O7⋅H2O(cr). These observations strongly support 

the complete reduction of the initial U(VI) to U(IV). For the samples with [U(VI)]0 = 4.2·10–4 

M and [Sn(II)] = 10 mM, reduction started to occur after 59 days, and it is only complete after 

238 days. Very slow reduction was observed in the sample containing [U(VI)]0 = 4.2·10–4 M, 

[Sn(II)] = 2 mM and pHm = 12.8. In this case, the solubility control by Na2U2O7⋅H2O(cr) was 

clearly observed with the first drop in uranium concentration to [U] ≈ 10–5 M within 19 days. 

This concentration of uranium was retained even at t = 238 days, and only after 635 days 

uranium concentration decreased down to 10–8 – 10–9 M, corresponding to the complete 

reduction of U(VI) to U(IV). These results most probably indicate that Na2U2O7⋅H2O(cr) and 

UO2(am, hyd) solid phases co-exist for a long time until the solid phase transformation is 

completed. However, the solubility was controlled by the more soluble solid phase in such 

cases.  

Solubility data support that the complete reduction of U(VI) to U(IV) was achieved in all 

investigated systems, in good agreement with thermodynamic calculations and Eh-pHm 

measurements. It must be noted that reduction kinetics are strongly affected by [U(VI)]0, 

[Sn(II)] and pHm. The slowest reduction (t = 635 days) was observed in the sample containing 

the lowest [Sn(II)] (2 mM) and highest [U(VI)]0 (4.2·10–4 M) at pHm = 12.8, whereas the fastest 

reduction (t ≈ 59 days) was obtained for those samples with highest [Sn(II)] (20 mM) and lowest 

[U(VI)]0 (3.0·10–5 M) at 10 ≤ pHm ≤ 12. The slower kinetics especially under alkaline conditions 

can be explained with the decreasing stability field of U(IV), accordingly resulting in 

smaller ∆pe (as |peexp – peborderline|) with increasing pHm (see Figure 3.1b) [117, 129]. 
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Figure 3.1. a. Pourbaix diagram of uranium calculated for [U] = 3.0·10–5 M and 0.1 M NaCl (minor 

differences observed for calculations using 4.2·10–4 M). b. concentrations of uranium measured after 

10 kD ultrafiltration for 0.1 M NaCl systems with [Sn(II)] = 2, 10 and 20 mM, and [U(VI)]0 = 4.2·10–4 

and 3.0·10–5 M. Solid lines correspond to solubility curves of UO3∙2H2O(cr), Na2U2O7∙H2O(cr) and 

UO2(am, hyd). Dashed horizontal lines show the initial U(VI) concentrations in the experiments. 

Different shapes and colors of data points correspond to different concentrations of Sn(II) and uranium. 

The different filling of the data points refers to the different equilibration time. Precipitation of 

UO3∙2H2O(cr), Na2U2O7∙H2O(cr) and UO2(am, hyd) is allowed in calculations in Figure a, accordingly 

resulting in the variation of [U]aq as a function of (pe + pHm). 

 

Considering the results above, a set of samples were prepared in the presence of 20 mM Sn(II) 

with 3·10–5 M initial uranium concentration in 0.1 M NaCl solutions, but extending the pHm 

range to 2–13. Sn(II) provides strong reducing conditions (pe + pHm = 2 ± 1) within the 

complete pHm range as shown in Figure 3.2a, in excellent agreement with previous redox 

studies involving the use of this reducing system [129, 130]. In all cases, experimental (pe + 

pHm) values are in the predominance area of U(IV) in the complete pHm-range investigated.  

Figure 3.2b shows uranium concentrations measured from 9 days up to 177 days. A very 

significant decrease of [U] in agreement with the reduction of U(VI) to U(IV) was observed 

within t ≤ 177 days for those samples at pHm ≥ 4. A longer contact time (t = 574 days) was 

required to observe complete reduction in the sample at pHm = 5.9, possibly due to the closeness 

of its (pe + pHm) to the stability field of U(V) at this pHm. The reduction behaviour of the sample 

at pHm = 2.2 could not be interpreted by the solubility difference of U(VI) and U(IV) solid 
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phases since both solids are completely dissolved at this pH and [U]. Therefore, solvent 

extraction and XANES analysis are performed for this sample (see Section 3.5). The solubility 

behaviour of the data obtained within 2 ≤ pHm ≤ 12.8 is in excellent agreement with 

thermodynamic calculations performed for U(IV) based on the selected data (Table 1.2 and 

1.3). This observation is not only a strong evidence of the complete reduction of U(VI) to U(IV), 

but also hints towards the expected role of UO2(am, hyd) as solubility controlling solid phase 

in equilibrium with the hydrolysis species proposed by Neck and Kim [42].  

 

Figure 3.2. a. Pourbaix diagram of uranium calculated for [U] = 3.0·10–5 M and 0.1 M NaCl. b. 

concentrations of uranium measured after 10 kD ultrafiltration for 0.1 M NaCl systems with [Sn(II)] = 

20 mM, and [U(VI)]0 = 3.0·10–5 M. Solid lines correspond to solubility curves of UO3∙2H2O(cr), 

Na2U2O7∙H2O(cr) and UO2(am, hyd). Dashed horizontal line shows the initial U(VI) concentrations in 

the experiments. The different filling of the data points refers to the different equilibration time. 

Precipitation of UO3∙2H2O(cr), Na2U2O7∙H2O(cr) and UO2(am, hyd) is allowed in calculations in 

Figure a, accordingly resulting in the variation of [U]aq as a function of (pe + pHm). 

 

The redox behavior of U(VI/IV) was also investigated in 5.0 M NaCl in the presence of 20 mM 

Sn(II) with 3·10–5 M initial uranium concentration. Figures 3.3a and 3.3b show the Pourbaix 

and solubility diagrams calculated for I = 5.0 M NaCl. The Sn(II/IV) redox couple was impacted 

by ionic strength, showing slightly less reducing conditions (pe + pHm = 4 ± 1) in this system. 

A similar behaviour was reported for Sn(II) solutions in 5.0 M NaCl by Yalcintas et al. (2015) 
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[130]. In all samples, measured Eh values after 178 days were well within the predominance 

area of U(IV) species. Measured uranium concentrations after 178 days of contact time showed 

that all the samples in neutral to hyper-alkaline pH region are at the detection limit of ICP-MS 

(for this NaCl concentration). The slight decrease in uranium concentration observed at pHm ≈ 

4 is consistent with the reduction of U(VI) to U(IV) and a solubility-control by UO2(am, hyd). 

Solvent extraction performed to determine the oxidation state of U in this sample confirmed the 

predominance of U(IV) (see Table 4). The redox behaviour of uranium could not be 

conclusively evaluated in the samples at pHm = 7.6 and 11.9. The higher detection limit imposed 

by the concentrated salt system is indeed consistent (for this pHm-region) with a solubility 

control of either Na2U2O7·H2O(cr) or UO2(am, hyd). Although the reduction of U(VI) is 

expected considering that Eh values of both samples are within the stability field of U(IV), it 

cannot be concluded without further experimental evidences that 178 days are sufficient for the 

complete reduction to U(IV). Note for instance that up to 574 and 635 days were required in 

specific systems (see discussion above) to attain the complete reduction of U(VI) into U(IV). 

Additional insights on the sample at pHm = 11.9 are gained by XANES analysis as discussed in 

Section 3.5.2. The clear decrease of [U] observed at pHm = 13.2 and 14.5 is well below the 

solubility of Na2U2O7·H2O(cr), thus strongly supporting the complete reduction to U(IV). No 

evidence was found indicating the formation of anionic hydrolysis species (U(OH)5
– and 

U(OH)6
2–) reported previously, even at pHm = 14.5.  

 

 

 

 



56 
 

Figure 3.3. a. Pourbaix diagram of uranium calculated for [U] = 3.0·10–5 M and 5.0 M NaCl. b. 

concentrations of uranium measured after 10 kD ultrafiltration for 5.0 M NaCl systems with [Sn(II)] = 

20 mM, and [U(VI)]0 = 3.0·10–5 M. Solid lines correspond to solubility curves of UO3∙2H2O(cr), 

Na2U2O7∙H2O(cr) and UO2(am, hyd). Dashed horizontal line shows the initial U(VI) concentrations in 

the experiments. The different filling of the data points refers to the different equilibration time. 

Precipitation of UO3∙2H2O(cr), Na2U2O7∙H2O(cr) and UO2(am, hyd) is allowed in calculations in 

Figure a, accordingly resulting in the variation of [U]aq as a function of (pe + pHm). 

 

3.2 Reduction of U(VI) in 0.1 M NaCl solutions using a Na2S2O4 redox 
buffer 

 

The redox behavior of U(VI/IV) was investigated in the presence of 20 mM Na2S2O4 in 0.1 M 

NaCl solutions at pHm ≥ 12. Na2S2O4 (slowly) degrades at lower pHm-values, and accordingly 

this system was investigated only in hyperalkaline conditions [126, 127, 130]. Figure 3.4a 

shows that Na2S2O4 is a strong reducing system with pe values at the border of water reduction 

(pe + pHm ≈ 0), thus in the stability field of U(IV). A fast decrease of uranium concentration to 

the solubility limit of U(IV) (≈ 10–9 M) was observed within 9 days, indicating the complete 

reduction of U(VI). Fujiwara et al. (2005) [52] conducted similar U redox experiments in the 

presence of Na2S2O4, but using higher initial uranium concentration than the present work 

([U(VI)]0= 1⋅10–3 M). The authors observed relatively higher uranium concentration after 56 
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increasing pH. This observation was explained by the authors with the formation of U(OH)5
– 

and U(OH)6
2– species. Note that a very similar increase in uranium concentration under similar 

reducing conditions was interpreted by Ryan et al. (1983) [47] as the partial oxidation of U(IV) 

to U(VI). The concentrations of uranium measured in the present study under hyperalkaline 

conditions (≈ 10-9 M) agree very well with thermodynamic calculations for the solubility of 

UO2(am, hyd) in equilibrium with U(OH)4(aq) species, thus contradicting the formation of 

anionic U(IV) species within the investigated pHm-range.  

 

Figure 3.4. a. Pourbaix diagram of uranium calculated for [U] = 3.0·10–5 M and 0.1 M NaCl. Symbols 

represent experimentally measured Eh and pHm values in 0.1 M NaCl systems containing 20 mM 

Na2S2O4; b. red diamonds: concentrations of uranium measured in this work after 10 kD ultrafiltration 

for 0.1 M NaCl systems with [Na2S2O4] = 20 mM and [U(VI)]0 = 3.0·10–5 M; blue / green hexagon: 

solubility data reported in Fujiwara et al. [52] and Ryan et al. [47], respectively. Solid lines correspond 

to solubility curves of UO3⋅2H2O(cr), Na2U2O7⋅H2O(cr) and UO2(am, hyd). Dashed blue line 

corresponds to the solubility of UO2(am, hyd) at I = 0.5 M calculated including the formation of 

UIV(OH)5
– and UIV(OH)6

2– as reported by Fujiwara et al. [52]. Dashed horizontal line shows the initial 

U(VI) concentration in the experiments. The different filling of the data points refers to the different 

equilibration times. Precipitation of UO3∙2H2O(cr), Na2U2O7∙H2O(cr) and UO2(am, hyd) is allowed in 

calculations in Figure a, accordingly resulting in the variation of [U]aq as a function of (pe + pHm). 
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3.3 Reduction of U(VI) in 0.1 M NaCl solutions using a Sn(II) + TiO2 redox 
buffer 

 

Figure 3.5 shows the U(VI/IV) redox behavior in the presence of 20 mM Sn(II) and 10 mg TiO2 

in 0.1 M NaCl solutions with 2 ≤ pHm ≤ 12.8. The measured Eh values are in line with the values 

obtained in pure Sn(II) system, and are clearly situated in the stability field of U(IV). Figure 

3.5b indicates that the complete reduction takes place within 37 days in most of the investigated 

samples at pHm ≥ 4. This observation confirms significantly faster reduction kinetics than in 

pure Sn(II) system (Figure 3.3b). As in the case of pure Sn(II) system, slower reduction kinetics 

are observed at pHm ≈ 6. 

The discussion above highlights that despite the analogous (pe + pHm) values measured in Sn(II) 

and Sn(II) + TiO2 systems, the presence of TiO2 accelerates the reduction of U(VI) to U(IV). 

This behavior is consistent with the role of TiO2 in catalysing redox processes [131-133]. The 

formation of U(VI) surface complexes on TiO2, which facilitate the thermodynamically favored 

reduction to U(IV) is very well-known and supported by different spectroscopic methods in a 

number of studies [134-138].  
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Figure 3.5. a. Pourbaix diagram of uranium calculated for [U] = 3.0·10–5 M and 0.1 M NaCl. Symbols 

represent experimentally measured Eh and pHm values in 0.1 M NaCl systems containing 20 mM Sn(II) 

+ 10 mg TiO2; b. concentrations of uranium measured after 10 kD ultrafiltration for 0.1 M NaCl systems 

with [Sn(II)] = 20 mM + 10 mg TiO2 and [U(VI)]0 = 3.0·10–5 M. Solid lines correspond to solubility 

curves of UO3⋅2H2O(cr), Na2U2O7⋅H2O(cr) and UO2(am, hyd). Dashed horizontal line indicates the 

initial U(VI) concentration in the experiments. The different filling of the data points refers to the 

different equilibration times. Precipitation of UO3∙2H2O(cr), Na2U2O7∙H2O(cr) and UO2(am, hyd) is 

allowed in calculations in Figure a, accordingly resulting in the variation of [U]aq as a function of (pe 

+ pHm). 
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observed in Sn(II) systems, thus indicating that the redox potential is mostly controlled by Sn(II) 

rather than Fe(0) or Fe3O4.  

Total uranium concentrations measured at different equilibration times are shown in Figure 3.6b 

and Figure 3.7b for Sn(II) + Fe(0) and Sn(II) + Fe3O4 systems, respectively. Uranium 

concentration in the samples at pHm ≤ 10 decreased to the U(IV) solubility limit within 37 days, 

whereas slow kinetics (up to 574 days) were observed at pHm ≥ 11 in both Fe systems. Slower 

kinetics in the hyperalkaline pH region are possibly related with changes in the solid phase 

properties, solubility and aqueous speciation of Fe within the investigated conditions. Similar 

U(VI) redox experiments were performed by Rai et al. (1990) [50] in the presence of Fe(0) and 

are shown in Figure 3.6b. The data collected by the authors after 6 days of equilibration time 

are in a very good agreement with the data in the present study after 9 days. The authors reported 

the presence of U(VI) due to the incomplete reduction in the data at pH = 11.7, which is also 

consistent with the slow reduction kinetics observed in this study for these pHm conditions. 

González-Siso et al. (2015) [140] investigated the redox behavior of U(VI/IV) at pHm = 12.8 

with 3.0·10–5 M as initial uranium concentration and Sn(II) + Fe3O4 as reducing system. Data 

reported by the authors shows a slow decrease of the original uranium concentration agreeing 

well with the behaviour observed in the present work. The oxidation state of U in the solid phase 

was determined as +4 by XPS analysis, as it is expected in the present study based on measured 

redox potentials.  
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Figure 3.6. a. Pourbaix diagram of uranium calculated for [U] = 3.0·10–5 M and 0.1 M NaCl systems 

containing 20 mM Sn(II) + 15 mg Fe(0); b. concentrations of uranium measured after 10 kD 

ultrafiltration for 0.1 M NaCl systems with [Sn(II)] = 20 mM + 15 mg Fe(0) and [U(VI)]0 = 3.0·10–5 

M; black triangles: solubility of UO2(am, hyd) in Fe(0) systems as reported in Rai et al. (1990). Solid 

lines correspond to solubility curves of UO3⋅2H2O(cr), Na2U2O7⋅H2O(cr) and UO2(am, hyd). Dashed 

horizontal line shows the initial U(VI) concentration in the experiments. The different filling of the data 

points refers to the different equilibration times. Precipitation of UO3∙2H2O(cr), Na2U2O7∙H2O(cr) and 

UO2(am, hyd) is allowed in calculations in Figure a, accordingly resulting in the variation of [U]aq as 

a function of (pe + pHm).
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Figure 3.7. a. Pourbaix diagram of uranium calculated for [U] = 3.0·10–5 M and 0.1 M NaCl in 0.1 M 

NaCl systems containing 20 mM Sn(II) + 10 mg Fe3O4(cr); b. concentrations of uranium measured 

after 10 kD ultrafiltration for 0.1 M NaCl systems with [Sn(II)] = 20 mM + 10 mg Fe3O4(cr) and 

[U(VI)]0 = 3.0·10–5 M. Solid lines correspond to solubility curves of UO3⋅2H2O(cr), Na2U2O7⋅H2O(cr) 

and UO2(am, hyd). Dashed horizontal line indicates the initial U(VI) concentration in the experiments. 

The different filling of the data points refers to the different equilibration times. Precipitation of 

UO3∙2H2O(cr), Na2U2O7∙H2O(cr) and UO2(am, hyd) is allowed in calculations in Figure a, accordingly 

resulting in the variation of [U]aq as a function of (pe + pHm). 
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Pourbaix diagrams), the presence of U(IV) in solution (≥ 97%) after attaining equilibrium 

conditions was confirmed by solvent extraction in the three investigated samples.  

 

Table 3.1 Fraction of U(IV) in the aqueous phase of selected solubility samples in acidic, dilute to 

concentrated NaCl solutions, as quantified by solvent extraction after 10 kD ultrafiltration. 

Sample pHm
a Eh [mV]b U(IV) [%]c 

0.1 M NaCl, 20 mM Sn(II)  2.2 –284 98 % 

0.1 M NaCl, 20 mM Sn(II) + 10 mg TiO2 2.1 –357 97 % 

5.0 M NaCl, 20 mM Sn(II) 3.1 –288 99 % 

a. ± 0.05; b. ± 20 mV; c. ± 10%  

 

3.5.2 XANES analysis 

 

U-LIII-edge XANES spectra of selected aqueous (measured at CAT-ACT beamline) and solid 

samples (measured at INE-beamline) are shown in Figure 3.8a and Figure 3.8b. Table 3.2 

summarizes the edge positions of spectra together with the experimental conditions. Some 

significant differences were observed in the edge position (white line, WL) of solid and aqueous 

references for U(IV) and U(VI), arising from the use of different beamlines and impact of the 

difference between aqueous and solid moieties as previously discussed in the literature [141]. 

Accordingly, spectra collected of unknown aqueous / solid samples were compared to reference 

spectra of aqueous species/ solid compounds obtained at the same beamline.  

The XANES spectrum of the aqueous sample containing 20 mM Sn(II) in 0.1 M NaCl at pHm 

≈ 2 agrees very well with the reference spectrum of U(IV). The combination of this observation 

with Eh measurements, solubility behaviour and solvent extraction unequivocally confirms the 

complete reduction of U(VI) to U(IV) in this sample, in agreement with thermodynamic 

calculations.  

Solid phases of two solubility samples were investigated by XANES: (i) 0.1 M NaCl at pHm = 

10.9, with 20 mM Sn(II) + 15mg Fe(0), and (ii) 5.0 M NaCl at pHm = 11.9, with 20 mM Sn(II). 

Figure 3.7b shows that the edge position of the solid phase equilibrated in 0.1 M NaCl matches 

very well with the edge position of UO2(am, hyd) reference. However, a shift to higher energies 

(≈ +1.5 eV) compared to the U(IV) solid reference was observed in the solid phase equilibrated 

in 5.0 M NaCl. Although the predominance of U(IV) can be safely proposed based on the 
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absence of the typical shoulder of uranyl/uranate moieties, the shift in energy with respect to 

the U(IV) reference supports that a mixture of U(IV) and higher uranium oxidation states (U(V) 

and/or U(VI)) solid phases is present in the investigated sample. It is likely that the respective 

solid phase consists of a non-stoichiometric UO2+x (am, hyd) phase. This observation is 

consistent with the expected slow solid phase transformation of a rapidly precipitated 

Na2U2O7·H2O(cr) to UO2(am, hyd) (see further discussion in Section 3:1). XANES data under 

discussion were collected after 330 days of equilibration time, thus indicating that longer 

equilibration times are needed to achieve a complete reduction at this pHm in 5.0 M NaCl. Note 

however that the same equilibration time was sufficient to achieve a complete reduction of 

U(VI) to U(IV) in a 0.1 M NaCl solution at pHm = 10.9. This observation can be rationalized 

by considering the equilibrium reaction defining the transformation of Na2U2O7·H2O(cr) (first, 

fast precipitated U(VI) solid phase) to UO2(am, hyd) (end-member, U(IV) solid phase 

thermodynamically expected): 

 

0.5 Na2U2O7·H2O(cr) + 2e– + 3H+ ⇔ UO2(am, hyd) + Na+ + 2H2O(l)   (3.1) 

 

Reaction (3.1) shows that the transformation of Na2U2O7·H2O(cr) into UO2(am, hyd) is 

favoured at lower pHm, pe and [NaCl], thus providing a consistent picture with XANES data 

collected for samples in 0.1 M NaCl at pHm = 10.9 (complete reduction after t = 330 days) and 

5.0 M NaCl at pHm = 11.9 (incomplete reduction after t = 330 days). This observation supports 

again that redox transformations of U(VI) to U(IV) are strongly affected by kinetics. 
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Table 3.2 XANES results of selected aqueous and solid samples. Solid and aqueous, U(IV) and 

U(VI) references measured at INE- and ACT- Beamline, respectively.  

Sample pHm
a Eh

b [mV] Contact time [days] Edge position (eV) Beamline 

Solid phase 

Reference Na2U2O7⋅H2O(cr) 

Reference UO2(am, hyd) 

0.1 M NaCl, 20mM Sn(II) + Fe(0) 

 

≈ 12 

≈ 12 

10.9 

 

n. m. 

n. m. 

–798 

 

 

 

330 

 

17180.0 

17177.0 

17177.0 

 

INE 

INE 

INE 

5.0 M NaCl, 20mM Sn(II) 11.9 –799 330 17178.5 INE 

Aqueous phase 

Reference U(VI), 1.0 M HCl 

Reference U(IV), 1.0 M HCl,  

20 mM Sn(II) 

0.1 M NaCl, 20 mM Sn(II)  

 

≈ 0 

≈ 0 

 

2.2 

 

n. m. 

n. m. 

 

–284 

 

 

 

 

330 

 

17176.5 

17175.2 

 

17175.2 

 

ACT 

ACT 

 

ACT 

a. ± 0.05; b. ± 20 mV; n.m: not measured. 

Figure 3.8. U LIII XANES spectra collected for (a) aqueous sample in 0.1 M NaCl, 20 mM Sn(II) at pHm 

≈ 2; (b) uranium solid phases collected from solubility experiments in 0.1 M NaCl, 20 mM Sn(II) + 15 

mg Fe(0) at pHm ≈ 11 (green line), and in 5.0 M NaCl, 20 mM Sn(II) at pHm ≈ 12 (red line). Black and 

grey spectra in (a) and (b) correspond to U(VI) and U(IV) references, respectively.
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3.6 Discussion of kinetic aspects of U(VI) reduction to U(IV) and 
comparison with literature data 

 

Figure 3.9a shows the time evolution of log [U] in Sn(II) systems with different Sn(II) 

concentrations (2, 10 and 20 mM) and [U(VI)]0 (4.2·10–5 M and 3·10–5 M) at pHm ≈ 13. The 

fastest complete reduction of U(VI) to U(IV) (≈ 50 days) was obtained in the system containing 

the lowest [U(VI)]0 (3·10–5 M ) and highest [Sn(II)]. In the system with the highest [U(VI)]0 

(4.2·10–4 M) and lowest [Sn(II)] (2 mM), the complete reduction was achieved only after an 

equilibration time of ≈ 600 days. In all systems, a clear and fast decrease down to the solubility 

level controlled by the Na2U2O7∙H2O(cr) was observed after ≈ 20 days and ≈ 50 days in 20 mM 

and 2-10 mM Sn(II) systems, respectively. This confirms that the reduction of U(VI) to U(IV) 

from oversaturation conditions occurs in two steps: first, a fast precipitation of U(VI) solid 

phases and subsequently a slow transformation of this solid phase into UO2(am, hyd). 

 

 

 

 

 

 

 

 

 



67 
 

 
Figure 3.9. Evolution of [U] with time in reducing a. Sn(II) systems with [U(VI)]0 = 4.2·10–4 – 3·10–5 M 

and [Sn(II)] = 2 – 20 mM at pHm ≈ 13 b. Na2S2O4 systems at pHm ≈ 13, as determined in the present 

work (0.1 M NaCl) and reported by Fujiwara et al. [52] (0.5 M NaClO4–NaOH). Solid horizontal lines 

in the figure correspond to the solubility of Na2U2O7⋅H2O(cr) (dark red) for 0.5 M NaCl–NaOH and 

UO2(am, hyd) (purple) calculated at pHm = 13. Black line corresponds to the solubility of UO2(am, hyd) 

calculated including the formation of U(OH)5
– and U(OH)6

2– as reported in Fujiwara et al. (2005). 

Coloured area (in red / grey / purple) gives an indication of the uncertainty in the given solubility 

equilibria. Dashed horizontal lines indicate the initial U(VI) concentration in the experiments. 

 

Figure 3.9b shows the reduction of U(VI) in Na2S2O4 systems at pHm ≈ 13, as determined in 

the present work and reported in Fujiwara et al. [52]. The figure shows that a very fast decrease 

of [U]aq to ≈ 10–8.5 M was observed in the present work after 9 days, supporting a solubility 

control by UO2(am, hyd) in equilibrium with U(OH)4(aq). However, a significantly higher 

uranium concentration (≈ 10–6 M) was reported by Fujiwara and co-authors [52] after ≈ 50 days 

contact time. The authors interpreted this behaviour with the formation of U(OH)5
– and 

U(OH)6
2– species in equilibrium with UO2(am, hyd). Differences in some key parameters 

between both studies have probably lead to such different observations and conclusions. First 

of all, a significantly higher [U(VI)]0 was used in Fujiwara et al. [52] compared to the present 

work (1·10–3 M vs. 3·10–5 M). As it is shown in Figure 3.9a, a longer equilibration time of up 

to 635 days was needed for a complete reduction to U(IV) in the samples with higher initial 

U(VI) concentration (4.2∙10–4 M). The concentration of Na2S2O4 is another parameter that needs 

to be considered, but unfortunately the concentration used by the Fujiwara and co-authors was 
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not reported. Last but not least, the concentration of Na (as 0.5 M NaClO4–NaOH) was larger 

in Fujiwara et al. [52] than in the present work (0.1 M NaCl–NaOH). As elaborated above, all 

these differences are in line with slower reduction kinetics in the study by Fujiwara et al. [52], 

compared to the present work. Together with the shorter monitoring time (≈ 50 days, compared 

to 176 days in the present study), such differences strongly suggest that insufficient 

equilibration time was applied by Fujiwara and co-workers. Accordingly, the authors only 

observed the first step in the reduction process (e.g. fast precipitation of Na2U2O7·H2O(cr)) and 

missed the second, slower step involving the complete transformation of this U(VI) phase into 

UO2(am, hyd). The solubility data obtained in their system are most likely controlled by 

Na2U2O7·H2O(cr) considering the agreement of the measured [U] with the solubility calculated 

using log *Kʹs,(1,4) = –(19.05 ± 0.1) as reported by Altmaier et al. [52]. Furthermore, it must be 

noted that the data collected in the present work are in excellent agreement with the solubility 

data reported by Ryan and Rai (1983) (data not shown) with UO2(am, hyd) precipitated from a 

U(IV) stock solution treated in Na2S2O4 reducing system. 

 

The evolution of uranium concentration with time at pHm = 8 – 13 is shown in Figure 3.10 for 

all investigated reducing systems containing Sn(II): 20 mM Sn(II), 20 mM Sn(II) + 10 mg Fe(0), 

20 mM Sn(II) + 10 mg Fe3O4(cr) and Sn(II) + 10 mg TiO2. In the figures, solubility of U(VI) 

(as Na2U2O7⋅H2O(cr)) and U(IV) (as UO2(am, hyd)) are also included as calculated using 

thermodynamic data summarized in Tables 1.2 and 1.3. Besides the relatively faster reduction 

kinetics observed in TiO2 containing systems at pHm ≥ 12, no significant differences were 

observed for these systems. The two-step reduction in oversaturated solutions of U(VI) was 

clearly observed in almost all investigated systems, indicating a fast decrease of [U] to a 

concentration level defined by Na2U2O7⋅H2O(cr), followed by a slower decrease of 

concentration to [U] ≈ 10–8 – 10–9.5 M as solubility-limit of UO2(am, hyd). Such behaviour was 

more evident in the pHm-range 12–13 because of the larger differences in the solubility of U(IV) 

and U(VI), compared to lower pHm values.  
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Figure 3.10. Evolution of [U] with time in reducing systems in the presence of Sn(II), Sn(II) + TiO2, 

Sn(II) + Fe(0) and Sn(II) + Fe3O4(cr) at: a. pHm ≈ 8; b. pHm ≈ 10; c. pHm ≈ 11, d. pHm ≈ 12 and e. pHm 

≈ 12. Solid horizontal lines in the figures indicate the solubility of Na2U2O7⋅H2O(cr) (red) and UO2(am, 

hyd) (blue) at the related pHm. Coloured areas (in red / blue) correspond to the uncertainty of the 

calculated solubility. Dashed horizontal line indicate the initial U(VI) concentration in the experiments.
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The results obtained in the present work clearly disagree with a predominant role of anionic 

hydrolysis species in the solution chemistry of U(IV) under alkaline to hyperalkaline conditions, 

whilst highlighting the relevance of kinetics in the correct interpretation of redox processes in 

such systems. Furthermore, experimental evidences gained in this study support that UO2(am, 

hyd) is the solid phase controlling the solubility of U(IV) when approached from oversaturation 

conditions. 
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4 Solubility and hydrolysis of U(IV) in reducing, dilute to 
concentrated NaCl, MgCl2 and CaCl2 solutions 

 

U(IV) solubility and hydrolysis were investigated in 0.1, 0.5, 2.0 and 5.0 M NaCl-NaOH 

solutions at 1 ≤ pHm ≤ 14.5, in 0.25, 2.0 and 4.5 M MgCl2 solutions at 1 ≤ pHm ≤ 9, and in 0.25, 

2.0 and 4.5 M CaCl2 solutions at 9 ≤ pHm ≤ 12. Solubility was studied from undersaturation 

conditions using a well-characterized solid phase, UO2(s, hyd). Based on the knowledge gained 

in Chapter 3, reducing conditions were chemically controlled with Sn(II) (pe + pHm ≈ 2). 

Concentration of uranium and pHm values were monitored at regular time intervals for up to 

605 days. The UO2(s, hyd) “starting material” and solid phases recovered from selected 

solubility samples after attaining equilibrium conditions were characterized by XRD, SEM-

EDS, TG-DTA, quantitative chemical analysis and XANES/EXAFS analysis. Chemical, 

thermodynamic and (SIT) activity models were derived for the system U4+–Na+–Mg2+–Ca2+–

H+–Cl––OH––H2O(l) based on the newly generated experimental data, but taking also 

advantage of the previous thermodynamic data selection in the NEA-TDB and the 

comprehensive review and estimation work by Neck and Kim (2001). 

 

4.1 Solubility data of U(IV) in reducing, dilute to concentrated NaCl, 
MgCl2 and CaCl2 solutions  

 

4.1.1 Solubility data of U(IV) in reducing, dilute to concentrated NaCl solutions 

 

Figure 4.1 shows the concentration of U(IV) in equilibrium with UO2(s, hyd) as determined in 

0.1, 0.5, 2.0 and 5.0 M NaCl solutions. Under acidic conditions (pHm ≤ 5), a steep decrease in 

the solubility is observed with increasing pHm. Furthermore, a slight increase of the solubility 

takes place with increasing ionic strength. Figure 4.1 shows also experimental solubility data 

with UO2(am, hyd) as reported by Rai et al. (1997) [84], as well as the solubility curve of 

UO2(am, hyd) calculated using the thermodynamic model reported by Neck and Kim (2001) 

[42]. The trend in the solubility data determined in this work is in good agreement with 

solubility data reported by Rai et al. [84] and model calculations using thermodynamic data in 

Neck and Kim. (2001) [42], although uranium concentrations measured in the present work are 

approximately 2 orders of magnitude lower. Such discrepancies could be attributed to the 
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particle size of the solid phase used in different studies. The method used by Rai and co-workers 

and in the present work for the synthesis of UO2(s, hyd) is very similar. However, most of the 

data reported by the former authors were collected after equilibration times of 50 – 100 days. 

Only for a limited number of samples / systems, an additional, long-term sampling step was 

performed after 300 – 400 days. Indeed, a clear trend to decrease [U] with time can be observed 

in most of their NaCl systems. In this study, the freshly prepared UO2(s, hyd) was aged for 3 

months before starting the undersaturation solubility experiments. After preparation of the 

individual samples, these were equilibrated for up to 605 days in the corresponding matrix 

solutions. Such differences in the equilibration time may have resulted in differences in the 

particle size and, accordingly, in the solubility. A thorough discussion on the UO2(s, hyd) solid 

phase used in the present study and in Rai et al. (1997) [84] is provided in Section 4.2.1.  
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Figure 4.1. Experimental solubility data obtained in this work in a. 0.1 M, b. 0.5 M, c. 2.0 M and d. 5.0 M 

NaCl systems, in comparison with previously reported data by Rai et al. [84]. Solid lines corresponding to 

the solubility of UO2(am, hyd) solid phase calculated for each ionic strength by using the data reported by 

Neck and Kim (2001). Detection limits for μ-injection ICP-MS measurements in 0.1 and 0.5 M NaCl 

systems are shown as shadowed areas in light cyan and light red and correspond to detection limits from 

different measurements (calculated as 3σ of the blank).
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The detection of [U] at pHm ≥ 4 / 5 (depending upon ionic strength) is challenging due to the very 

low solubility and the strong dilution steps (100 to 5000 times) needed in the most concentrated 

NaCl systems. For this reason, μ-injection ICP-MS was used to achieve lower detection limits in 

0.1 and 0.5 M NaCl solutions (≈ 10–9 – 10–11 M, see Chapter 2). This technique could not be applied 

to 2.0 and 5.0 M NaCl as respective detection limits after appropriate dilution of the samples were 

too low.  

Figure 4.2 shows the experimental solubility data in dilute to concentrated NaCl solutions at pHm 

≥ 5 after 10 kD ultrafiltration (colored symbols) and without phase separation (clear supernatant, 

gray diamonds). Solubility data after 10 kD ultrafiltration could only be gained for 0.1 and 0.5 M 

NaCl systems, for which μ-injection ICP-MS was used. The largely scattered solubility data 

observed in this pHm-region is most likely caused by the formation / presence of U(IV) intrinsic 

colloids [39, 142], the very low U(IV) solubility and / or the sorption of neutral U(OH)4(aq) species 

in the filter. All uranium concentrations measured after 10 kD ultrafiltration in 2.0 and 5.0 M NaCl 

systems were below the detection limit of the standard ICP-MS. In 0.1 and 0.5 M NaCl systems, 

the experimentally measured [U]aq falls clearly below the solubility of UO2(am, hyd) calculated 

using the thermodynamic and activity models summarized in Table 1.2 and 1.3 of the Introduction. 

This finding is consistent with the observations obtained under acidic conditions, thus further 

supporting a solubility-control by a more crystalline solid phase. A pHm-independent behaviour of 

the solubility was observed at 5 ≤ pHm ≤ 13 (Figures 4.2 a and b). Assuming a solubility-control 

by UO2(s, hyd), this behaviour implies that the neutral species U(OH)4(aq) prevails in the aqueous 

phase in this pH region as described by equation (4.1).  

UO2(s, hyd) ⇔ U(OH)4(aq) + xH2O(l)       (4.1) 

Although the predominance of the anionic hydrolysis species U(OH)5
- and U(OH)6

2- was reported 

by some authors [44, 45, 52], the undersaturation solubility data obtained in this study allows 

precluding the formation of such species within the investigated pHm-range. This observation is in 

excellent agreement with the main conclusions derived in Chapter 3 from oversaturation 

experiments.  

Figure 4.2 shows also the concentration of uranium measured without phase separation. This 

dataset is 2–3 orders of magnitude higher in concentration than the solubility determined after 10 

kD ultrafiltration. Such discrepancy is likely due to the presence of U(IV) intrinsic colloids in the 
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investigated systems in alkaline pH conditions. Similar observations were reported for Th(IV) and 

Pu(IV) by Altmaier et al., (2004) [142] and Neck et al., (2007) [39], respectively. Note however 

that [U]aq measured in the supernatant solutions shows a moderate tendency to decrease with time 

(see Figure 4.3), at least for the systems 0.1, 0.5 and 2.0 M NaCl. At this point, it remains unclear 

whether such colloidal species become instable (i.e. aggregate) with time. 
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Figure 4.2. Experimental solubility data after 10 kD ultrafiltration and without phase separation obtained 

in this work for U(IV) in a. 0.1 M, b. 0.5 M, c. 2.0 M and d. 5.0 M NaCl systems. Detection limits for μ-

injection ICP-MS measurements are shown as shadowed areas in light cyan and light red in 0.1 and 0.5 M 

NaCl systems involving detection limits from different measurements (calculated as 3σ of the blank).
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Figure 4.3. Temporal evolution of the measured U concentration without phase separation in 0.1-5.0 M 

NaCl. Grey area shows the detection limits from different measurements in 0.1-5.0 M NaCl. Light blue 

area shows the uncertainty of the solubility of UO2(am, hyd).  

 

4.1.2 Solubility data of U(IV) in reducing, dilute to concentrated MgCl2 solutions 

 

Solubility data of U(IV) determined in 0.25, 2.0 and 4.5 M MgCl2 are shown in Figure 4.4, together 

with experimental solubility data reported by Rai et al. (1997) [84] in analogous MgCl2 solutions 

and with solubility curves calculated using thermodynamic and SIT activity models reported by 

Neck and Kim (2001) [106]. Note that ionic strength in 4.5 M MgCl2 systems (I = 13.5 M) is well 

beyond the generally accepted range of SIT, and thus calculations performed for this system must 

be considered as orientative.  
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Figure 4.4. Experimental solubility data obtained in this work for U(IV) in a. 0.25 M, b. 2.0 M and c. 4.5 

M MgCl2 systems, in comparison with solubility data reported by Rai et al. for analogous MgCl2 systems 

[84]. Solid lines corresponding to the solubility curve of UO2(am, hyd) calculated for each ionic strength 

using thermodynamic data reported by Neck and Kim (2001). Detection limits are shown as shadowed 

areas in light red, blue and green for 0.25 M, 2.0 and 4.5 M MgCl2 systems, respectively, involving different 

detection limits from different measurements (calculated as 3σ of the blank). 
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Under acidic conditions (pHm ≤ 4) and analogously to NaCl systems, a steep decrease in the 

solubility of U(IV) is observed with increasing pHm in all MgCl2 systems. The increase in MgCl2 

concentration results in a significant increase in the solubility (ca. 3 orders of magnitude from 0.25 

to 4.5 M MgCl2). Such a relevant increase in the solubility expectedly results from strong ion 

interaction processes. In contrast to NaCl systems, the solubility experiments of U(IV) in MgCl2 

systems show slow equilibration kinetics, especially in 2.0 and 4.5 M systems. For these two 

systems, thermodynamic equilibrium is very likely not attained even after t = 351 days. Solubility 

data in 0.25 M MgCl2 (Figure 4.4a) are virtually the same as in 0.5 M NaCl (Figure 4.1b), with the 

same chloride concentration but slightly lower ionic strength. This observation supports that the 

same solid phase is responsible for the control of U(IV) solubility in both salt systems, at least in 

dilute solutions. At pHm ≥ 3–4 (depending upon MgCl2 concentration), the concentration of 

uranium in equilibrium with UO2(s, hyd) drops below the detection limit of ICP–MS, and thus no 

information could be gained for this salt system and pHm-range. However, based on the results 

obtained in NaCl systems and data reported for the solubility of Th(IV) in MgCl2 systems [142], a 

solubility control by the pHm-independent solubility reaction UO2(s, hyd) ⇔ U(OH)4(aq) + 

xH2O(l) is expected. 

The solubility of UO2(am, hyd) calculated using thermodynamic and activity models reported by 

Neck and Kim (2001) [42] clearly overestimates (approximately by 2 orders of magnitude) the 

experimental solubility data determined in the present work. The differences between the current 

data and solubility data reported by Rai et al. in both NaCl and MgCl2 systems indicates the higher 

crystallinity degree (smaller particle size) of the solid phase used in the present study. 

 

4.1.3 Solubility data of U(IV) in reducing, dilute to concentrated CaCl2 solutions 

 

The solubility of U(IV) was additionally investigated in 0.25, 2.0 and 4.5 M CaCl2 solutions under 

alkaline conditions 9.5 ≤ pHm ≤ 12. Based on previous solubility studies with Th(IV), Pu(IV) and 

Np(IV) in alkaline CaCl2 solutions [79, 85], a solubility increase above pHm ≈ 11 for [CaCl2] ≥ 2.0 

M is expected as a result of the formation of ternary Ca-An(IV)-OH complexes. The solubility and 

hydrolysis constants log *Kºs,(4,1,8)= –(57.2 ± 1.4) and log*βº(4,1,8) = –(57.2 ± 1.4) were estimated for 

Ca4[U(OH)8]4+ by Fellhauer et al. [79] using linear free energy relationships (LFER). 
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Figure 4.5 shows experimental solubility data determined in this work together with the solubility 

curves calculated for each ionic strength using the thermodynamic and SIT activity models 

reported by Neck and Kim [42], including also the formation of the complex Ca4[U(OH)8]4+ as 

estimated by Fellhauer et al. [79]. Uranium concentrations below the detection limit are observed 

in all investigated CaCl2 systems under alkaline conditions. Based on the solubility curves 

calculated for UO2(am, hyd) and including the formation of the ternary complex Ca4[U(OH)8]4+, 

however, U(IV) solubility should be well above the current detection limit for [CaCl2] ≥ 2.0 M and 

pHm ≥ 11.5. On the other hand, this result is consistent with the systematically lower U(IV) 

solubility observed in the present study for NaCl and MgCl2 systems. Accordingly, these findings 

can neither confirm nor exclude the formation of ternary complexes Ca-U(IV)-OH. An extended 

discussion on this dataset is provided in Section 4.3.1. 

 
Figure 4.5. Experimental solubility data obtained in this work for U(IV) in CaCl2 systems. Solid lines 

corresponding to the solubility curve of UO2(am, hyd) calculated for each ionic strength using 

thermodynamic data reported by Neck and Kim (2001) [42] and Fellhauer et al. (2010) [79]. Dashed lines 

correspond to the detection limits of ICP-MS determined (as 3σ of the blank) for each CaCl2 concentration. 
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4.2 U(IV) solid phase characterization 

 

4.2.1 XRD, SEM-EDS, quantitative chemical analysis and TG-DTA 

 

The starting material and solid phases of selected solubility samples were investigated by XRD, 

SEM-EDS, quantitative chemical analysis and TG-DTA. The main outcome of this 

characterization is summarized in Table 4.1, together with the experimental conditions of the 

investigated samples. Additional characterization of selected samples using EXAFS is separately 

described in Section 4.2.2. 

 

Table 4.1. Experimental conditions of investigated samples and XRD, SEM-EDS, quantitative chemical 

analysis and TG-DTA results.  

Background 
electrolyte 

pHm 
XRD 
(2Θ) 

Na:U ratio 
SEM–EDS 

Na:U ratio 
Quantitative 

chem. analysis 

TG–DTA 
(number of 

H2O) 

“starting material” 12.1 28.4 0.30 0.17 1.0 

0.1 M NaCl 2.8 28.6 0.08 0.04 n.m. 

0.1 M NaCl 11.4 28.4 0.0 0.02 n.m. 

0.5 M NaCl 3.3 28.4 n.m. 0.0 n.m. 
0.5 M NaCl 11.1 28.4 n.m. 0.0 n.m. 
2.0 M NaCl 3.1 28.5 n.m. 0.0 n.m. 
2.0 M NaCl 11.3 28.6 n.m. 0.06 n.m. 
5.0 M NaCl 3.1 28.6 0.0 0.07 n.m. 
5.0 M NaCl 11.3 28.6 0.06 0.02 n.m. 
uncertainty ±0.05  ±0.1 ±0.03 ±0.5 

 

Figures 4.6a – 4.6c show the XRD diffractograms of the “starting material” and solid phases of 

selected solubility samples. In all cases, well-defined but broad XRD patterns are observed. This 

indicates that the solid phases investigated in this study are not amorphous, but rather hold a (nano-

)crystalline character. XRD pattern of the “starting material” (Figure 4.6a) are in excellent 

agreement with those reported for UO2(cr) [120]. The first and most intense peak in the XRD of 

the “starting material” is found at 2Θ = 28.4, which agrees very well with 2Θ = 28.2 (JCPDS file 

Nr. 73–2293) and 28.3 (JCPDS file Nr. 41-1422) reported for UO2(cr) [120]. No reflections are 

observed in the region 10° ≤ 2Θ ≤ 20°, where the first and most intense peak of relevant (layered) 
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U(VI) solid phases is observed, i.e. UO3·2H2O(cr) (2Θ = 12.0) or Na2U2O7·H2O(cr) (2Θ = 14.9) 

[143]. These results confirm the absence of any crystalline U(VI) phase in the “starting material”. 

Furthermore, Rietveld analysis of the XRD data indicates the average crystal size of (3 ± 1) nm.  

XRD of the solid phases equilibrated in 0.1, 0.5, 2.0 and 5.0 M NaCl solutions under acidic and 

alkaline conditions are shown in Figure 4.6b and 4.6c, respectively. Solid phases in both acidic and 

alkaline systems retain the same XRD patterns of the “starting material”, indicating that no phase 

transformation occurred in the course of the solubility experiment. On the other hand, some 

additional sharp features are observed in 0.1, 0.5 and 2.0 M NaCl solutions at pHm ≈ 3 and in 0.5, 

2.0 and 5.0 M NaCl systems at pHm ≈ 11. These sharp patterns match those of SnO(cr) (JCPDS 

file Nr. 72–1012) very well in both investigated pH conditions, as shown in detail in Figure 4.7. 

These observations are also in line with experimental results obtained in our research group using 

different radionuclides but with Sn(II) as reducing chemical, e.g. Tc [144] or Pu [145]. 
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Figure 4.6. XRD diffractograms of a. “starting material” and reference data for UO3∙2H2O(cr) and Na2U2O7∙H2O(cr) solid phases [43]; and of solid 

phases collected from selected solubility samples in NaCl systems b. in acidic pHm range and c. in alkaline pHm range. Green and blue diamonds 

indicate the main patterns and relative intensities of UO2(cr) reference material (PDF 41-1422 and 73-2293). 
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Figure 4.7. Comparison of XRD diffractograms of solid phases collected from selected solubility samples 

in NaCl systems a. in acidic pHm conditions and, b. in alkaline pHm conditions, with reference data 

available for SnO(cr) (JCPDS file Nr. 72–1012). 

 

Figure 4.8 shows the SEM image of the U(IV) “starting material”, where an aggregated solid phase 

composed of very small particles (in the nanoscale range) can be observed. EDS results 

summarized in Table 4.1 for this solid indicate the presence of a small fraction of Na in the solid, 

in good agreement with results obtained by quantitative chemical analysis (ICP–OES). This 

observation likely arises from the insufficient washing of Na2S2O4 (or its degradation products) 

present in the “starting material” suspension, although may also result from the sorption of Na on 

the surface of the solid phase and/or incorporation to the solid phases, as reported previously for 

Th(IV) hydrous oxide [146]. 
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Figure 4.8.   SEM image of the “starting material” at pHm= 12.1.  

 

SEM pictures of solid phases recovered from NaCl systems with Sn(II) as reducing chemical** 

show similar uranium aggregates as the “starting material” (Figure 4.9), but in this case together 

with additional, more crystalline structures (Figures 4.9 c and d). EDS analyses indicate that these 

crystalline compounds mostly contain Sn, in agreement with the XRD patterns obtained for these 

samples. Indeed, the platelet-like units observed in Figure 4.9c (sample equilibrated in 0.1 M NaCl 

at pHm= 2.8) show a great similarity with the SnO(cr) particles aged under acidic conditions as 

reported elsewhere [147]. Note that, in contrast to the “starting material” prepared and stored in 

Na2S2O4, no (or very small fraction of) Na is determined by EDS and quantitative chemical 

analysis in the solubility samples equilibrated in the presence of Sn(II). This observation supports 

that the Na-content identified in the “starting material” is likely resulting from the deposition of 

Na2S2O4 (or its degradation product) in the surface of the uranium solid, rather than from Na 

sorption or incorporation in the UO2 structure.  

 

 

 

                                                 
** Na2S2O4 was only used as reducing system in the U(IV) “starting material“. 



86 
 

  

  

Figure 4.9. SEM images of selected solid samples equilibrated in a. 0.1 M NaCl at pHm= 11.4; b. 5.0 M 

NaCl at pHm= 3.3; c. 0.1 M NaCl at pHm= 2.8; and d. 5.0 M NaCl at pHm= 11.3. 

 

Aliquots of the U(IV) “starting material” were collected after different equilibration times (30, 

365, 418 and 798 days) and characterized by TG-DTA in order to quantify the number of hydration 

waters present. Samples were washed 3-5 times with ethanol and dried under Ar atmosphere 

before the measurement. The weight loss in the four investigated samples indicated the presence 

of 0.9, 1.4, 0.8 and 1.0 water molecules, respectively. No clear trend in the number of hydration 

waters was observed with increasing equilibration time, and the unweighted average of all 

measurements (1.0 ± 0.5, with uncertainty calculated as 3 times the standard deviation) is taken as 

the water content in the investigated UO2(ncr, hyd) material.  
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Based on the combination of all solid characterization techniques, the solid phase used in this 

solubility study is identified as UO2∙H2O(ncr). To the best of the author’s knowledge, this is the 

most accurate characterization of “UO2(s)” used in solubility experiments at ambient temperature 

conditions. 

 

4.2.2 EXAFS 

 

EXAFS measurements were performed at the INE-beamline [122] at the KIT synchrotron light 

source. Reduction and fit of EXAFS data were performed using ATHENA/ARTEMIS programs 

of the Demeter 0.9.26 package [124]. Figure 4.9 shows the k2-weighted uranium LIII EXAFS data 

and corresponding Fourier transforms of the two investigated samples: (i) the “starting material” 

UO2∙H2O(ncr) in the presence of 20 mM Na2S2O4 (t = 293 days), and (ii) the solid phase 

UO2∙H2O(ncr) equilibrated in 0.1 M NaCl at pHm= 8.5 in the presence of 5 mM SnCl2 (t = 455 

days). Table 4.2 summarizes the structural parameters derived from the EXAFS fit: coordination 

numbers (N), distances (R), Debye-Waller factors (σ2) and energy shift parameter (ΔE0). The 

goodness of the fit is given in terms of the percentage misfit between data and theory (R-factor). 

Fits are performed in R-space simultaneously in k1-, k2- and k3-weighted data. The k- and R-ranges 

used for the fit are given in Table 4.2. The overall intensity factor (S0
2) was set to 0.65 in the fit.  
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Figure 4.10. U LIII–edge EXAFS results for UO2⋅H2O(ncr) “starting material” at pHm = 12.1 (left) and UO2⋅H2O(ncr) in 0.1 M NaCl at pHm = 8.5 (right). 

k2-weighted EXAFS spectra (upper panel) and Fourier Transform (lower panel); experimental data are depicted as solid lines, whereas fits are shown 

as circles and triangles (modulus and imaginary parts, respectively). Dashed lines correspond to the FT hanging windows used in the EXAFS fit. 
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Table 4.2. Structural parameters obtained from the EXAFS evaluation of UO2∙H2O(ncr) ”starting 

material” at pHm = 12.1 and UO2∙H2O(ncr) in 0.1 M NaCl at pHm = 8.5. 

 

Fit errors: CN: ± 20%, R: 0.01 Å, σ2: 0.001 Å2. 
*parameter fixed during the fit (coordination number from the UO2 crystal structure) 
 

EXAFS spectra and Fourier Transforms of the two investigated samples show great similarities 

(see Figure 4.10), denoting that the structure of the starting material UO2∙H2O(ncr) is mostly 

retained throughout the solubility experiments (up to t = 455 days). Fourier Transforms in 

Figure 4.10 show two well-defined shells at R–Δ ≈ 1.8 and 3.7 Å corresponding to the 

backscattering of O and U atoms, respectively. The prominent U-U backscattering at R–Δ ≈ 3.7 

Å observed in both samples supports the presence of a well-ordered, (nano-)crystalline solid 

phase. The good quality (signal-to-noise ratio) of the EXAFS data collected allowed the fit 

within 2.8 ≤ k (Å-1) ≤ 12.8 and 1.5 ≤ R (Å) ≤ 4.5. The fit was performed using as starting 

structure UO2(cr) as reported in [148], and included the shells U-O1 and U-U, but also a distant 

U-O2 shell. In order to limit the number of free parameters in the fit and avoid a too strong 

correlation between fit parameter, the coordination numbers of U-U and U-O2 shells were fixed 

to 12 and 24 as reported for the original UO2(cr) structure. 

Virtually the same distances U-O1 (RU-O1), U-U (RU-U) and U-O2 (RU-O2) were determined for 

the two solid phases investigated (Table 4.1), strongly supporting that both solid phases hold 

the same structure. Furthermore, the distances determined in this work for RU-O1= 2.33 Å and 

RU-U = 3.86 Å are in good agreement with data reported in the literature for UO2.00(cr), i.e. 

Cooper [148] (RU-O1 = 2.37 Å and RU-U = 3.87 Å) and Conradson et al. (2004) [149] (RU-O1= 

2.36 Å and RU-U = 3.87 Å). Conradson and co-workers [149] investigated also the impact of x 

in UO2+x(cr) (with x = 0.05, 0.08, 0.12, 0.17 and 0.20) in the original structural parameters of 

UO2.00(cr), and thus the comparison with experimental data determined in this work is of special 

relevance. Hence, these authors observed a clear increase in RU-O1 when going from UO2.00(cr) 

(RU-O1= 2.36 Å) to UO2.20(cr) (RU-O1= 2.42 Å). As indicated above, an invariant value of RU-O1 

Sample Eq. time 

(days) 

Path CN R(Å) σ
2 

(Å2) 

ΔE0 R-factor 

UO2∙H2O(ncr) “starting mat.”, pHm= 12.1 293  U-O1 6.5 2.33 0.007 -1.38 0.02 

R-space (1.4-4.5 Å)  U-U 12* 3.86 0.010   

k-Range (2.8-12.8 Å-1)  U-O2 24* 4.44 0.008   

UO2∙H2O(ncr), 0.1 M NaCl, pHm= 8.5 455 U-O1 8.0 2.33 0.010 -2.66 0.03 

R-space (1.4-4.5 Å)  U-U 12* 3.86 0.009   

k-Range (2.8-12.8 Å-1)  U-O2 24* 4.45 0.008   
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was determined in the present work for the two investigated samples (RU-O1= 2.36 Å), thus 

supporting the presence of a stoichiometric UO2 solid phase with x → 0 in both cases. 

Conradson et al. [149] observed also a significant impact of an increasing x in the U-U 

backscattering. Hence, the authors reported a decrease in the coordination number of U, from 

10.6 in UO2.00(cr) to 2.5 in UO2.20(cr), in both cases holding the same distance RU-U = 3.88 Å. 

Coordination numbers U-U were set constant in the present work (12), but the fit resulted in 

virtually the same RU-U and Debye-Waller factors for both investigated samples. This 

observation supports again the presence of an structure close to ideal UO2.00(cr) in the two solid 

phases characterized in the present work. It is also interesting to note the differences observed 

in CNO1 for the UO2∙H2O(ncr) samples investigated in this study. Hence, the solid phase 

equilibrated for a longer time (t = 455 days) shows CNO1 = 7.95, a value very close to the ideal 

CNO1 = 8 in UO2.00(cr). On the other hand, a slightly lower value, CNO1= 6.53, is determined 

for the solid phase aged 293 days. This observation possibly hints towards an increased order 

in the structure of UO2∙H2O(ncr) with increasing equilibration time. 

EXAFS results obtained in the present work complement and further extend the characterization 

of the solid phase achieved by XRD, SEM-EDS, quantitative chemical analysis and TG-DTA. 

Structural parameters derived from EXAFS data evaluation strongly support the presence of 

stoichiometric UO2.00∙H2O(ncr). Uranium is thus predominantly found as +IV, as expected on 

the basis of the very reducing conditions imposed by Sn(II) (pe + pHm ≈ 2) and in agreement 

with the low solubility observed within the complete pHm-range investigated. 

 

4.3 Chemical, thermodynamic and SIT activity models of the system U4+–
Na+–Mg2+–Ca2+–H+–OH––Cl––H2O(l) 

 

The chemical model of the system controlling the solubility of U(IV) in the absence of 

complexing ligands other than water is, a priori, well-defined and includes the solid phase 

UO2∙H2O(ncr) and the aqueous species UOH3+, U(OH)2
2+, U(OH)3

+ and U(OH)4(aq). 

Accordingly, data evaluation in this work is restricted to these hydrolysis species and the solid 

phase UO2∙H2O(ncr). Due to the large number of parameters controlling the solubility in the 

investigated systems (log *Kºs,0, log *βº(1,1), log *βº(1,2), log *βº(1,3), log *βº(1,4) and corresponding 

SIT coefficients for UOH3+, U(OH)2
2+ and U(OH)3

+), the following modelling approach is 

considered in the context of this PhD thesis. 
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The approach used is based on the fit of only three parameters, namely log *Kºs,0, log *βº(1,2) and 

log *βº(1,3). The values of log *βº(1,1), log *βº(1,4) are kept constant as selected in the NEA-TDB 

[41], whereas SIT coefficients of all charged species are either taken from NEA-TDB [41] or 

from the charge analogy reported in Neck and Kim (2001) [42].  

Five different datasets are considered for the fit of the three parameters indicated above: 0.1, 

0.5, 2.0, 5.0 M NaCl and 0.25 M MgCl2. Data collected so far in 2.0 and 4.5 M MgCl2 solutions 

are disregarded in the fit due to the absence of thermodynamic equilibrium within the 

considered timeframe (t ≤ 351 days, see Section 4.1.2). Because of the considerably larger 

number of experimental data points at pHm ≤ 5, a weighting factor of 4 has been given to the 

limited data collected in the near-neutral to hyperalkaline pHm-range using micro-injection 

ICP–MS (data only available for 0.1 and 0.5 M NaCl solutions). Additional measurements will 

be conducted after the completion of this PhD thesis to compensate the lack of experimental 

data in this pHm-region, and thus to avoid the use of any weighting scheme.  

The five datasets are simultaneously fitted by minimizing the function ∑((log [U]exp – log 

[U]calc)2)1/2. The value of [U]calc is the sum of [UOH3+], [U(OH)2
2+], [U(OH)3

+] and 

[U(OH)4(aq)], and can be calculated based on equations (4.1) – (4.4) and using equation (4.5):  

UO2·H2O(ncr)  + 4H+ ⇔ U4+ + 3H2O(l)       (4.1) 

&�,@⁰∗ = a��E a.� a�E�⁄          (4.2) 

and 

U4+ + nH2O(l) ⇔ U(OH)n
(4–n) + nH+        (4.3) 

R(`,�)⁰∗ = a�(��)��� a�E� a��E⁄ a.�       (4.4) 

with 

���~��� = &�,@ ⁰∗ γ�Em�E� a.!�( 1 +  ∑ R(`,�)⁰∗ γ�Em�E!� a.�)    (4.5) 

where ai = γi⋅mi, γi is the activity coefficient calculated by SIT as described in Section 1.2.2.5, 

and mi is the concentration in molal units. The outcome of this modelling exercise is 

summarized in Table 4.3, whereas Table 4.4 shows the SIT interaction coefficients used in the 

fit. As observed in the discussion of the experimental data, the value of log 
*Kºs,0{UO2∙H2O(ncr)} determined in this work is clearly lower than log *Kºs,0{UO2(am, hyd)} 

reported in Neck and Kim (2001) [42] and selected in the NEA–TDB [41]. This result reflects 

the differences in the observed solubility, and highlights the larger particle size of the solid 

phase used in the present solubility study. Note that the currently used solid phase was 
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equilibrated at T = 22 °C but for significantly longer time periods than in previous solubility 

studies. Accordingly, the value of log *Kºs,0{UO2∙H2O(ncr)} is possibly more representative of 

the U(IV) solubility expected under repository conditions, if such a oxy-hydroxide is formed as 

secondary phase. A different behaviour should be expected for UO2(cr) present in spent fuel. 

The fit of the experimental solubility data derived in this work results in a very similar log 
*βº(1,3) to the equilibrium constant estimated by Neck and Kim (2001). On the contrary, the fit 

results in a very low value of log *βº(1,2) indicating a negligible contribution of this species to 

the overall solubility. The incorporation of this species to the solubility calculation using the 

hydrolysis constant estimated by Neck and Kim (2001) [42] results in a significantly worse fit 

(quality parameter ∑((log [U]exp – log [U]calc)2)1/2) equal to 72, compared with 41 for the set of 

constants summarized in Table 4.3). The model together with the experimental data are shown 

in Figures 4.11 and 4.12 for 0.1-5.0 M NaCl and 0.25 M MgCl2 systems, respectively.  

 

Table 4.3. Equilibrium constants for U(IV) solubility and hydrolysis as determined in the present work 

and reported in the NEA–TDB [41], Neck and Kim (2001) [42] and Fellhauer et al. (2010) [79]  

 log *K° 
 [p.w.] NEA–TDB Neck and Kim Fellhauer et al. 
Solubility     

UO2·H2O(ncr) + 4H+ ⇔ U4+ + 4H2O(l) –(0.32 ± 0.60) (1.5 ± 1.0)a (1.5 ± 1.0)a  
Hydrolysis     
U4+ + H2O(l) ⇔ UOH3+ + H+ –(0.54 ± 0.06)b –(0.54 ± 0.06) –(0.40 ± 0.20)  
U4+ + 2H2O(l) ⇔ U(OH)2

2+ + 2H+ –(8.6 ± 0.5) – –(1.10 ± 1.00)  
U4+ + 3H2O(l) ⇔ U(OH)3

+ + 3H+ –(4.2 ± 0.5) – –(4.70 ± 1.00)  
U4+ + 4H2O(l) ⇔ U(OH)4(aq) + 4H+ –(10.0 ± 1.4)b –(10.0 ± 1.4) –(10.0 ± 1.4)  
Ternary Ca(II)–U(IV)–OH complexes     
4Ca2+ + U4+ + 8H2O(l) ⇔ Ca4[U(OH)8]4+ + 8H+ ≤ –58.4c   –(58.7 ± 1.0)d 

a. value reported for UO2(am, hyd); b. set constant in the fit. Value taken as reported in NEA–TDB; c. extrapolated to I = 0 
considering ε (Ca4�U(OH)8]4+, Cl–) = ε(Ca4�Th(OH)8]4+, Cl–) as reported in Altmaier et al. (2008) [85] and Fellhauer et al. 
(2010) [79] ; d. estimated from LFER. 
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Table 4.4. SIT interaction coefficients (in kg⋅mol–1) used in the present work for the modelling of U(IV) 

experimental solubility data in 0.1, 0.5, 2.0 and 5.0 M NaCl solutions. 

i j ε(i,j) Reference 

U(IV) species    
U4+ Cl– (0.36 ± 0.10) [42] 
U(OH)3+ Cl– (0.20 ± 0.10) [42] 
U(OH)2

2+ Cl– (0.10 ± 0.10) [42] 
U(OH)3

+ Cl– (0.05 ±0.10) [42] 
U(OH)4(aq) Na+, Cl– 0 a 
 Mg2+, Cl– 0 a 
 Ca2+, Cl– 0 a 
Ca4[U(OH)8]4+ Cl– –(0.01 ± 0.10)b [79, 85] 
a. by definition in SIT; b. in analogy to ε(Ca4�Th(OH)8]4+, Cl–) as reported in Altmaier et al. (2008) [85] and Fellhauer et 

al. (2010) [79] 
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Figure 4.11. Comparison of experimental U(IV) solubility data determined in 0.1 M, 0.5 M, 2.0 M and 

5.0 M NaCl solutions with solubility calculations using the thermodynamic model derived in the present 

work (see Tables 4.3 and 4.4) and activity model reported by Neck and Kim (2001) [42]. Detection 

limits for μ-injection ICP-MS measurements are shown as shadowed areas in light cyan and light red 

in 0.1 and 0.5 M NaCl systems involving detection limits from different measurements (calculated as 

3σ of the blank). Gray dashed lines show the detection limit of standard ICP-MS measurements.  
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Figure 4.12. Comparison of experimental U(IV) solubility data determined in 0.25 M MgCl2 solutions 

with solubility calculations using the thermodynamic model derived in the present work (see Table 4.3) 

and activity model reported by Neck and Kim (2001) [42]. Detection limit is shown as a light red area, 

involving several different detection limits from different standard ICP-MS measurements (calculated 

as 3σ of the blank). 

 
4.3.1 Application of the thermodynamic model derived to CaCl2 systems 

 

All solubility data determined in alkaline, dilute to concentrated CaCl2 systems resulted in 

concentrations of uranium below the detection limit of ICP–MS (for the given salt 

concentrations). The combination of the solubility and hydrolysis constants in Table 4.3 with 

log *β°(4,1,8) reported in Fellhauer et al. (2010) [79] results in the calculated solid lines in Figure 

4.13. In contrast to the solubility calculations using log *K°s,0 reported in Neck and Kim (2001) 

[42] (Figure 4.4), the updated thermodynamic model results in a calculated solubility below / 

at the detection limit of ICP–MS. Note that upper limits estimated in this work for                         

log *β ʹ (4,1,8)(I = 2.0 M CaCl2) and log *β ʹ (4,1,8)(I = 4.5 M CaCl2) based on the detection limits 

of ICP–MS for these salt concentrations are of the same order of the conditional equilibrium 

constants calculated with thermodynamic data reported in Fellhauer et al. (2010) [79]: 
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and 

log *β ʹ (4,1,8)(I = 2.0 M CaCl2) = –(61.53 ± 1.00) calculated from Fellhauer et al. (2010) [79] 

log *β ʹ (4,1,8)(I = 4.5 M CaCl2) = –(64.01 ± 1.00) calculated from Fellhauer et al. (2010) [79] 

The extrapolation to I = 0 of the upper limits determined in this work for log *β ʹ (4,1,8) in 2.0 and 

4.5 M CaCl2) can be performed considering ε(Ca4�U(OH)8]4+, Cl–) = ε(Ca4�Th(OH)8]4+, Cl–) = 

–(0.01 ± 0.10) kg⋅mol–1 [79, 85]. The resulting value, log *β °(4,1,8) ≤ –58.4, is not in 

contradiction with the estimate reported by Fellhauer and co-workers from LFER. A final 

experimental “proof-of-concept” confirming the existence of such ternary species of U(IV) is 

still missing. 

 
Figure 4.13. U(IV) solubility calculations in 0.25 M, 2.0 M and 4.5 M CaCl2 using thermodynamic and 

activity models summarized in Table 4.3 and Table 4.4, and including the formation of the ternary 

complex Ca4[U(OH)8]
4+ as estimated in Fellhauer et al. (2010) [79]. Symbols represent experimental 

solubility data determined in the present work, all of them at the detection limit of ICP–MS (dashed 

lines, calculated as 3σ of the blank). 
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systematic trends are expected in the solution chemistry of An(IV) (with An= Th, U, Np and 

Pu) due to their same charge but decreasing ionic radii (rTh4+ = 1.08 Å; rU4+ = 1.04 Å; rNp4+ = 

1.02 Å; rPu4+ = 1.01 Å) as reported in Neck and Kim (2001) [42]. Figure 4.14 shows the 

correlation of solubility constants with ionic radii for (a) log *K°s,0 and (b) log *K°s,(1,4), as 

selected in the NEA–TDB for Th(IV), U(IV), Np(IV) and Pu(IV) (NEA-TDB) [40, 41, 150] 

and determined experimentally in this work for U(IV). Figure 4.14a includes data reported for 

crystalline and amorphous phases. Figure 4.14b figure includes also values of log *K°s,(1,4) 

recently reported for Np(IV) by Fellhauer et al., (2014) [151] and Schepperle et al., (2016) 

[152].  

  

Figure 4.14. Comparison between the solubility constants available for An(IV): a. log K°s,0 as selected 

in the NEA-TDB for AnO2(am, hyd) and AnO2(cr), and determined experimentally in this work for 

UO2⋅H2O(ncr); b. log *K°s,(1,4) as selected in the NEA-TDB (Th, U, Np, Pu), reported in Fellhauer et al. 

(2014) [151] and Schepperle et al. (2015) [152] (Np) and determined experimentally in the present 

work (U). 

 

Figure 4.14a shows that log *K°s,0 determined in this work for UO2⋅H2O(ncr) is clearly below 

log *K°s,0{UO2(am, hyd)} selected in the NEA–TDB, but (as expected) several orders of 

magnitude greater than log *K°s,0{UO2(cr)}. The value of log *K°s,0{UO2⋅H2O(ncr)} is 

somehow out of the trend of log *K°s,0{AnO2(am, hyd)} for An = Th, Np and Pu, although this 

observation is likely related with the nanocrystalline character of the solid phase investigated 
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in the present work, with the consequent impact on the solubility. Similar conclusions can be 

extracted from Figure 4.14b for log *K°s,(1,4): the value determined in the present work is clearly 

lower than the one selected in the NEA–TDB for UO2(am, hyd). Note however that lower 

values of log *K°s,(1,4) were recently reported for Np(IV) by Fellhauer et al., (2014) [151] and 

Schepperle et al., (2015) [152] compared to the value currently selected in the NEA–TDB. 

Some considerations need to be accounted for when comparing the available solubility data: 

• The correlation of An(IV) equilibrium constants with the ionic radii of An4+ is straight 

forward for aqueous complexes, but includes additional parameters in the case of solid 

phases. This is especially true for amorphous compounds, where slight variations of the 

particle size can have a large impact on the solubility. In spite of the extensive work on 

the solubility of amorphous oxo-hydroxides of An(IV), the information available on the 

particle size of these solid phases is virtually inexistent. Very recently, Tasi et al. (2018) 

[145] provided insights into the particle size dependency of the solubility of a PuO2(ncr, 

hyd) solid phase (aged ca. 8 years) used in their experiments. Based on their XRD data 

(see Figure 4.15, compared to XRD collected in present work for UO2⋅H2O(ncr)), the 

authors reported an average crystal (domain) size of (4 ± 1) nm calculated using Rietveld 

refinement of their diffraction data. This value compares well with the average crystal 

(domain) size of (3 ± 1) nm determined in the present work for UO2⋅H2O(ncr). The 

absence of such information for other An(IV) solid phases / solubility studies hinders 

an adequate comparison of the available log *K°s,0 and log *K°s,(1,4) values. 
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Figure 4.15. Comparison of XRD diffractograms obtained in this work for UO2∙H2O(ncr) and reported 

by Tasi et al. (2018) [145] for PuO2(ncr, hyd).  

 

• Neck and Kim (2001) (among other authors) proposed that crystalline AnO2(cr) phases 

controlling the solubility in acidic conditions are covered by an amorphous layer in the 

alkaline pH conditions, which is therefore responsible of the solubility control in this 

pH-region. This interpretation is mostly based in indirect observations, i.e. change in 

the solubility behavior, from log *K°s,0{AnO2(cr)} in acidic conditions to                          

log *K°s,0{AnO2(am, hyd)} in alkaline systems. It is unclear, though, if such a 

mechanism applies to nanocrystalline solid phases as those investigated in the present 

work. Note that both XRD diffractograms and SEM pictures show very similar 

characteristics for U(IV) solid phases equilibrated in acidic and alkaline pH conditions 

(see Section 4.2.1). 
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237Np lies approximately at ≈ 10–9 M (depending upon equipment and dilution steps). 

This concentration is indeed in the same order of log *K°s,(1,4) selected in the NEA–TDB 

(–9 ± 1) for the equilibrium reaction: 

NpO2(am, hyd) ⇔ Np(OH)4(aq)       (4.6) 

log *K°s,(1,4) = log *K ʹs,(1,4) = log [Np(OH)4(aq)] = (–9 ± 1) 

However, using SF–ICP–MS, Fellhauer, Schepperle and co-workers were able to 

quantify lower neptunium concentrations characterizing the solubility of NpO2(am, hyd) 

in alkaline pH conditions (see Figure 4.14b). 

 

The dependency of the solubility constant (or rather ΔfG°m) of a given solid phase with the 

particle size can be quantitatively evaluated through the (adapted) Schindler equation [91]: 

ΔfG°m{AnO2(am/col)} = ΔfG°m{AnO2(cr)} + 2/3γS      (4.7) 

where S is the surface area per mole of solid (S = Mα / ρd) and γ is the mean free surface energy 

per unit of surface area: 

} =  �∆¢£o° (¤→ @)
$¦§ ∑ �¨©ª«

           (4.8) 

where M is the molecular weight of the solid, ρ is the density of the crystalline phase, d is the 

particle size (diameter), α the geometry factor (6, in spherical particles), NA is the Avogadro 

number and ri is the ionic radii. Figure 4.16 shows the application of this relationship to the 

cases of Th(IV) and Pu(IV) (based on data reported in [39, 150]), and for U(IV) using 

ΔfG°m{UO2(cr)} reported in the NEA–TDB as anchoring point in the calculation. Figure 4.16 

shows also ΔfG°m{UO2(ncr)} calculated from the value of log *K°s,0{UO2⋅H2O(ncr)} 

determined in this work from experimental solubility data, and using ΔfG°m{U4+} = –(529.860 

± 1.765) kJ⋅mol–1 and ΔfG°m{H2O(l)} = –(237.140 ± 0.041) kJ⋅mol–1 as reported in the NEA–

TDB. Note that in order to allow such exercise, ΔfG°m{UO2(ncr)} instead of 

ΔfG°m{UO2⋅H2O(ncr)} must be used in the comparison. In the same way, Neck and co-workers 

calculated ΔfG°m of Pu(IV) and Th(IV) hydrated amorphous / colloidal phases of unknown 

number of hydration waters using the general stoichiometry AnO2 [42]. Note further that, as 

already indicated in the NEA–TDB reviews [41], the contribution of structural water to the 

Gibbs energy of formation of a given solid phase is similar to that of the free liquid water. 
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Figure 4.16. Application of the Schindler equation to ThO2(cr/am/col), PuO2(cr/am/col) and 

UO2(ncr/cr) systems. ∆fG°m data for ThO2(cr) and ThO2(am) calculated from [10]. ∆fG°m data for 

PuO2(cr) and PuO2(am) calculated from [5]. ∆fG°m data for ThO2(col) and PuO2(col) as determined in 

Neck et al (2007). ∆fG°m data for UO2(cr) and UO2⋅H2O(ncr) as selected in [41] and calculated from 

experimental data determined in this work, respectively. 

 

The experimentally determined ∆fG°m for UO2(ncr) in the present study is in moderate 

agreement with the theoretical calculation obtained using the Schindler equation and data for 

UO2(cr) as reported in the NEA–TDB. To the best of the author’s knowledge, this is the first 

time that such approach is applied to U(IV), especially using experimentally determined values 

of particle size.  

This exercise provides relevant insights to understand the role of particle size in the solubility 

of tetravalent actinides, in this case U(IV). Because of the amorphous nature of the oxo-

hydroxide phases usually formed by tetravalent actinides, slight variations of the particle size 

as a result of aging and ripening can lead to very significant changes in the solubility and, 

consequently, in the concentration upper limits of these actinides in solution. A better 

understanding of these phenomena can contribute to a more accurate estimation of the source 
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term, and thus represents an important input to the Safety Case of repositories for radioactive 

waste. 
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5 Solubility and hydrolysis of U(VI) in alkaline, dilute to 
concentrated KCl solutions 

 

Undersaturation batch experiments were performed in order to investigate the solubility of 

U(VI) in 0.1, 0.5, 1.0, 3.0 and 4.0 M KCl solutions at 7.5 ≤ pHm ≤ 14.6. A potassium uranate 

solid phase was precipitated in alkaline conditions, aged for two months and characterized using 

several techniques before the preparation of the solubility samples. pHm values and uranium 

concentrations were measured regularly from 6 up to 250 days. Solid phases of selected 

solubility samples were characterized after attaining equilibrium conditions using XRD, SEM–

EDS, quantitative chemical analysis and TG–DTA. Chemical, thermodynamic and SIT activity 

models for the system UO2
2+–H+–K+–Na+–Cl––OH––H2O(l) were derived based on the newly 

generated solubility data in alkaline conditions, previous solubility studies in acidic KCl 

systems and U(VI) hydrolysis constants reported in Altmaier et al. (2017) [43]. 

 

5.1 U(VI) solubility in dilute to concentrated KCl–KOH solutions 

 

Uranium(VI) solubility data determined in 0.1, 0.5, 1.0, 3.0 and 4.0 M KCl–KOH solutions are 

shown in Figure 5.1 For comparative purposes, the figure includes also U(VI) solubility data 

reported by Altmaier et al. [43] in NaCl solutions of analogous ionic strength.  

An increase of the solubility following a well-defined slope of +1 was observed at pHm above 

≈ 11 in all KCl systems. This result is in excellent agreement with the solubility data reported 

by Altmaier and co-workers in NaCl solutions (empty triangles in Figure 5.1), although the 

overall U(VI) solubility in KCl systems is slightly lower for the same MCl concentration. A 

slope of +1 in a log [U] vs. pHm diagram indicates the release of one H+ in the equilibrium 

reaction between the solid phase and aqueous species predominating under hyperalkaline 

conditions. This is consistent with the solubility equilibrium (5.1): 

0.5 M2U2O7∙xH2O(cr) + yH2O(l) ⇔ UO2(OH)4
2– + H+ + M+    (5.1) 

with x + 2y = 5, and M = Li, Na, K, etc. 

Reaction (5.1) agrees also well with the the known aqueous speciation of U(VI) for these pHm 

conditions [40, 41, 43]. In this pHm-region, a decrease of approximately 1.5 orders of magnitude 

in the solubility was observed when increasing the concentration of KCl from 0.1 to 4.0 M. 

Such a behaviour reflects the impact of K+ concentration in the equilibrium reaction (5.1), but 

also accounts for ion interaction processes between the negatively charged species UO2(OH)4
2– 
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and K+. Similar observations were reported by Altmaier and co-workers for U(VI) in alkaline 

NaCl solutions [43].  

At pHm below ≈ 11, the solubility of U(VI) remains pHm-independent for all investigated KCl 

concentrations (Figure 5.1). This is in excellent agreement with analogous solubility 

experiments performed by Altmaier and co-authors in NaCl systems [43]. The observed trend 

is consistent with the equilibrium reaction (5.2): 

0.5 M2U2O7∙xH2O(cr) + yH2O(l) ⇔ UO2(OH)3
– + M+      (5.2) 

with x + 2y = 3, and M = Li, Na, K, etc. 

Experimental solubility data in this pHm-region show a large scattering of up to one order of 

magnitude, most likely as a result of the low concentration of uranium close to or at the 

detection limit. A similar behaviour was reported for the solubility of U(VI) in weakly alkaline, 

dilute to concentrated NaCl solutions [43, 153]. 
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Figure 5.1. Experimental solubility data of U(VI) obtained in this work in a. 0.1 M, b. 0.5 M, c. 1.0 M 

d. 3.0 M and e. 4.0 M KCl systems (colored symbols). Empty triangles show the solubility of U(VI) in 

dilute to concentrated NaCl solutions as reported in Altmaier et al. (2017) [43]. Dashed lines indicate 

a slope of +1. 
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5.2 Solid phase characterization  

 

Table 5.1 summarizes the main outcome of the solid phase characterization using XRD, SEM-

EDS, quantitative chemical analysis and DT-TGA. Figure 5.2 shows the diffraction patterns of 

the initial solid phase (“starting material”) and solid phases from selected solubility experiments 

at each ionic strength. Figure 5.2a compares the XRD pattern of the “starting material” with 

reference spectra of several U(VI) solid phases, namely UO3·2H2O(cr), Na2U2O7·H2O(cr), 

K2U6O19∙11H2O(cr), K2U4O13(cr), K2U2O7(cr) and K2UO4(cr) [43, 120]. Due to the less 

crystalline character of the solid phase synthesized at room temperature in the present work, the 

sharper peak observed at small angles was used as fingerprint for the identification of the U(VI) 

“starting material” [43, 105, 154-156]. Hence, the peak found at 2Θ = 13.1 is very different 

from the values reported for UO3·2H2O(cr) (2Θ = 12.0) or Na2U2O7·H2O(cr) (2Θ = 14.9) [43], 

and in moderate agreement with the value of 2Θ = 13.4 reported for K2U2O7(cr) (JCPDS file 

Nr. 29–1058). EDS and quantitative chemical analysis data summarized in Table 5.1 confirm a 

ratio K:U ≈ 1 in the “starting material”, further supporting that K2U2O7·xH2O(cr) was the solid 

phase used in the solubility experiments. 

Figures 5.2b and 5.2c show XRD diffractograms collected for U(VI) solid phases equilibrated 

in 0.1, 0.5, 1.0, 3.0 and 4.0 M KCl solutions at 7.7 ≤ pHm ≤ 10.3 and 12.9 ≤ pHm ≤ 13.3, 

respectively. The same XRD pattern as for the “starting material” are retained in all cases 

(except one, see below), indicating that no transformation of the solid phase occurred during 

the equilibration time in these systems regardless of the pHm and KCl concentration. A clear 

shift in the position of the first peak was observed for the solid phase equilibrated in 0.1 M KCl 

at pHm = 7.7 (2Θ ≈ 12.8, see Figure 5.2b), hinting towards a possible solid phase transformation 

occurring at this pHm and salt concentration. The shift of 2Θ values to lower angles is possibly 

related to a decrease in the K:U ratio of the solid phase, as deduced from the trend observed for 

the reference compounds K2U2O7(cr), K2U4O13(cr) and K2U6O19∙11H2O(cr) (see Table 5.1). A 

similar behaviour was previously reported for U(VI) and Np(VI) in NaCl systems [92, 153, 

157].  

In combination with XRD evidences, the ratio K:U ≈ 1 determined by EDS and quantitative 

chemical analysis for most of the solubility samples supports that the solid phase 

K2U2O7·xH2O(cr) was responsible of the solubility-control (see Table 5.1). The high K:U ratio 

(1.3) observed for the sample at pHm = 10.2 in 4.0 M KCl is most likely due to the insufficient 

washing steps for such high KCl concentration. 
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SEM images of selected solid phases equilibrated in 0.1, 0.5, 1.0, 3.0 and 4.0 M KCl at pHm≈ 

10 are shown in Figure 5.3. All images show solid phases with platelet–like structures of similar 

size. Results on TG-DTA analysis summarized in Table 5.1 indicate that the number of 

hydration waters in the investigated potassium uranate phase is (1.5 ± 0.3).  

Based on all experimental evidences collected, the solid phase investigated in this series of 

solubility experiments was identified as K2U2O7·1.5H2O(cr). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



108 
 

Table 5.1. Summary of the main results obtained in the solid phase characterization of the “starting 

material” and selected solubility samples equilibrated in KCl systems using XRD, SEM–EDS, 

quantitative chemical analysis (K:U ratio) and TG–DTA (number of hydration waters, x). Position of 

the first diffraction peak reported in the literature for some layered U(VI) structures is provided for 

comparison.  

Background electrolyte pHm
a 

XRD 
(2Θ) 

K:U ratio 
SEM–EDS 

K:U ratio 
Chemical analysis 

TG–DTA 
(number of hyd. H2O) 

2.5 M KCl 
“starting material” 

12.7 13.1 1.0 0.9 1.4 

0.1 M KCl 7.7 12.8 n.m. n.m. n.m. 

0.1 M KCl 9.9 13.1 1.0 0.9 1.3 

0.1 M KCl 12.9 13.2 n.m. 0.9 1.7 

0.5 M KCl 10.0 13.2 0.9 0.9 1.3 

0.5 M KCl 12.9 13.2 n.m. 0.9 1.7 

1.0 M KCl 9.8 13.1 1.0 0.9 1.3 

1.0 M KCl 13.3 13.2 n.m. 1.0 1.7 

3.0 M KCl 10.3 13.0 0.9 0.9 1.3 

3.0 M KCl 13.3 13.2 n.m. 1.0 1.7 

4.0 M KCl 10.2 13.0 1.0 1.3 1.3 

4.0 M KCl 13.2 13.1 n.m. 1.0 1.7 

averageb   (1.0 ± 0.1) (0.9 ± 0.1)c (1.5 ± 0.3) 

UO3⋅2H2O(cr) 
Altmaier et al. (2017) [43] 

 12.0    

Na2U2O7⋅H2O(cr) 
Altmaier et al. (2017) [43] 

 14.9    

K2UO4(cr) 
JCPDS file Nr. 72–2228 

[120] 

 13.5    

K2U2O7(cr) 
JCPDS file Nr. 29–1058 

[120] 

 13.4    

K2U4O13(cr) 
JCPDS file Nr. 29–1059 

[120] 

 12.6    

K2U6O19⋅11H2O(cr) 
JCPDS file Nr. 33–1049 

Nipruk et al. (2017) 
[120, 154] 

 11.9    

a. ± 0.05; b. uncertainty calculated as 2σ; c. results obtained in 4.0 M KCl at pHm = 10.2 disregarded for calculating average 
and uncertainty; n.m. = not measured. 
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Figure 5.2. XRD pattern of solid phases of selected solubility samples in dilute to concentrated KCl systems: a. comparison between “starting material” and XRD 

patterns reported by Altmaier et al. (2017) for Na2U2O7·H2O(cr) and UO3·2H2O(cr), and reference data reported in the JCPDS database [120] for 

K2U6O19∙11H2O(cr) (JCPDS file Nr. 33–1049), K2U4O13(cr) (JCPDS file Nr. 29–1059), K2U2O7(cr) (JCPDS file Nr. 29–1058) and K2UO4(cr) (JPDS file Nr. 72–

2228); b. comparison between “starting material” and solid phases at pHm = 7.7–10.3. Diffractograms of K2U2O7(cr) (JCPDS file Nr. 29–1058), K2U4O13(cr) 

(JCPDS file Nr. 29–1059) and K2U6O19∙11H2O(cr) (JCPDS file Nr. 33–1049) provided for comparison; c. comparison between “starting material” and solid 

phases recovered from solubility experiments at pHm=12.9–13.3 after t = 268 days. Diffractogram of K2U2O7(cr) (JCPDS file Nr. 29–1058) provided for 

comparison. 
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Figure 5.3. SEM images of K2U2O7·1.5H2O(cr) solid phases equilibrated at pHm ≈ 10 in a. 0.1 M KCl, 

b. 0.5 M KCl, c. 1.0 M KCl, d. 3.0 M KCl and e. 4.0 M KCl. 
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5.3 Chemical, thermodynamic and SIT activity models for the system 
UO2

2+–H+–K+–Na+–Cl––OH––H2O(l) 

 
Chemical models defining the solution chemistry of U(VI) in alkaline KCl systems were 

determined based on the slope analysis of the solubility data at pHm ≥ 11 and solid phase 

characterization. Thermodynamic and activity models were accordingly derived based on these 

chemical models and considering experimental solubility data summarized in Section 5.1.1. 

Conditional solubility constants log *K ′s,(1,4) were determined for 0.1–4.0 M systems, and           

log *K°s,(1,4) and ε(UO2(OH)4
2–, K+) were obtained following the SIT approach and considering 

ε(K+, Cl–), ε(H+, Cl–) and aw as reported in the NEA-TDB [41]. The value of                                     

log *K°s,0{0.5 K2U2O7·1.5H2O(cr)} was calculated using the combination of log *K°s,(1,4) with 

the hydrolysis constant, log *β°(1,4) reported in Altmaier et al. [43]. No modelling attempt was 

performed for the data collected at pHm ≤ 11, but these data were compared to the solubility 

calculated using log *K°s,0{0.5 K2U2O7·1.5H2O(cr)} derived in this study. Solubility data 

reported previously by Sandino and Grambow [99] for K2U6O19∙11H2O(cr) (compreignacite) 

solid phase were re-evaluated (Section 5.3.2) consistently with the current model for U(VI) 

speciation in the investigated systems (Section 5.3.3). In Section 5.3.4, the role of Na- and K-

uranates in controlling the solubility of U(VI) in alkaline, cementitious environments was 

investigated using the updated thermodynamic model for the system UO2
2+–H+–K+–Na+–Cl––

OH––H2O(l).   

 

5.3.1 Thermodynamic data derived using U(VI) solubility experiments in alkaline, 
dilute to concentrated KCl solutions 

 

The equilibrium reaction (5.3) is responsible for the solubility control of U(VI) at pHm ≥ 11, as 

determined considering the slope analaysis (slope of +1) and solid phase characterization 

(K2U2O7·1.5H2O(cr)):  

0.5 K2U2O7·1.5H2O(cr) + 1.75H2O(l) ⇔ UO2(OH)4
2– + H+ + K+    (5.3) 

The values of log *K ʹs,(1,4) and log *K°s,(1,4) can be accordingly defined as: 

log ∗&′?,(`,�) = log �UO$(OH)�$!� + log�H�� + log�K��    (5.4) 

log ∗&?,(`,�)® = log ∗&′?,(`,�) + log γ¯J«(JH)�« + log γHE     

+log γ°E − 1.75 log aG  (5.5) 
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Solubility data obtained in 0.1, 0.5, 1.0, 3.0 and 4.0 M KCl solutions with pHm ≥ 11 were 

evaluated separately in order to determine the corresponding conditional constants, log *K ʹs,(1,4). 

The resulting values of log *K ʹs,(1,4) were considered in a SIT-plot to derive log *K°s,(1,4) 

(intercept) and –∆ε (slope). The SIT interaction coefficient ε(UO2(OH)4
2–, K+) was calculated 

from –∆ε and using the values of ε(H+, Cl–) and ε(K+, Cl–) reported in the NEA-TDB [41]. The 

SIT-plot log ∗&′?,(`,�)  − 6D − 1.75 log aG vs. [KCl] is shown in Figure 5.3 together with the 

SIT-plot for the analogous solubility equilibrium in NaCl systems with Na2U2O7⋅H2O(cr) (with 

log ∗&′?,(`,�)  − 6D − 2log aG vs [NaCl]), as reported by Altmaier et al. (2017) [43]. 

 

Figure 5.4. SIT-plot for the solubility reactions 0.5 M2U2O7⋅xH2O(cr) + (2.5–0.5x) H2O(l) ⇔ 

UO2(OH)4
2– + H+ + M+ (with M = K and Na) using experimental log *K’s,(1,4) values determined in dilute 

to concentrated KCl (present work) and NaCl solutions [43]. 

 

The intercept and slope of the linear SIT regression result in log *K°s,(1,4) = –(19.90 ± 0.06) and –∆ε= –

(0.15 ± 0.04) kg∙mol–1 with –Δɛ = – [ɛ(UO2(OH)4
2–, K+) + ɛ(H+, Cl–) + ɛ(K+, Cl–)]), respectively. The 

SIT interaction coefficient for UO2(OH)4
2– with K+ is accordingly calculated as ɛ(UO2(OH)4

2–, K+) = 

(0.03 ± 0.04) kg∙mol–1. Based on their solubility data in alkaline NaCl systems, Altmaier and co-workers 

[43] reported ɛ(UO2(OH)4
2–, Na+) = (0.01 ± 0.04) kg∙mol–1, which is in excellent agreement with the 

value determined in the present work for KCl systems and highights the similar behaviour of U(VI) in 

both salt systems. 
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The solubility product log *K°s,0{0.5 K2U2O7·1.5H2O(cr)} according to reaction (5.6) was 

calculated considering log *K°s,(1,4) = –(19.90 ± 0.06) determined in the present work and log 
*β°(1,4) = –(31.9 ± 0.2) reported by Altmaier et al. [43]:  

0.5 K2U2O7·1.5H2O(cr) + 3H+ ⇔ UO2
2+ + K+ + 2.25H2O(l)   (5.6) 

The combination of log *K°s,(1,4) and log *β°(1,4) results in log *K°s,0{0.5 K2U2O7·1.5H2O(cr)} = 

log *K°s,(1,4) – log*β°(1,4) = (12.0 ± 0.2). Note that this value is in good agreement although 

slightly lower than log *K°s,0{0.5 Na2U2O7·H2O(cr)} = (12.2 ± 0.2) reported by Altmaier and 

co-authors for NaCl systems [43].  

Solubility data at pHm ≤ 11 were not used to derived any thermodynamic quantity. Instead, log 
*K°s,0{0.5 K2U2O7·1.5H2O(cr)} determined from solubility data at pHm ≥ 11 and hydrolysis 

constants reported by Altmaier et al. [43] were considered to reproduce the solubility of U(VI) 

in this pHm-region. Ion interaction coefficients for UO2(OH)3
– (13) and (UO2)3(OH)7

– (37) 

species (expected to prevail within 8 ≤ pHm ≤ 11) with K+ were taken as (UO2(OH)3
–, K+) = 

ɛ(UO2(OH)3
–, Na+) = –(0.24 ± 0.09) kg⋅mol–1 and ɛ((UO2)3(OH)7

–), K+) = ɛ((UO2)3(OH)7
–), 

Na+) = –(0.24 ± 0.09) kg⋅mol–1, considering the close similarities between ɛ(UO2(OH)4
2–, Na+) 

and ɛ(UO2(OH)4
2–, K+).  

 

5.3.2 Re-evaluation of log *K°s,0{1/6 K2U6O19∙11H2O(cr)} (compreignacite) in 1 m KCl 
reported in the literature 

 

Sandino and Grambow [99] and Gorman-Lewis and co-authors [101] previously investigated 

the solubility of compreignacite, K2U6O19∙11H2O(cr), in acidic KCl solutions conditions (3.5 ≤ 

pH ≤ 5). Solubility data reported by Gorman-Lewis et al. [101] are characterized by large 

variations in the ionic strength between different samples and by short equilibration times. 

Accordingly, only data reported by Sandino and Grambow were re-evaluated in the present 

work, consistently with hydrolysis constants and SIT interaction coefficients reported by 

Altmaier et al. [43] (see Table 5.2 and 5.3). The only unknown parameter required for the 

parametrization of the solubility data is log*K°s,0{1/6 K2U6O19∙11H2O(cr)} corresponding to the 

equilibrium reaction (5.5): 

1/6 K2U6O19∙11H2O(cr) + 7/3 H+ ⇔ UO2
2+ + 1/3 K+ + 3 H2O(l)   (5.5) 

with  
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log ∗&′?,@ = log �UO$$�� − ²
�  log�H�� + `

�  log�K��     (5.6) 

log ∗&?,@® = log ∗&′?,@ + log γ¯J««E − ²
�  log γHE     

+ `
�  log γ°E + 3 log aG   (5.7) 

The value of log *K°s,0{1/6 K2U6O19∙11H2O(cr)} was determined based upon two independent 

datasets (run K1 and K2), corresponding to a different preparation approach of the original 

K2U6O19∙11H2O(cr) solid phase. The use of the minimization function ∑((log [U]exp – log 

[U]calc)2)1/2) resulted in: 

log *K°s,0(run K1) = (6.0 ± 0.1) 

log *K°s,0(run K2) = (6.4 ± 0.1) 

The average of these two values, log *K°s,0{1/6 K2U6O19∙11H2O(cr)} = (6.2 ± 0.1) agrees within 

the uncertainties with the data selected in NEA-TDB [41] based on the same solubility dataset 

(log *K°s,0 = (6.18 ± 0.09), but it is now internally consistent with the hydrolysis constants and 

SIT interaction coefficients considered in the present work. Figure 5.5 shows the original 

experimental data reported in Sandino and Grambow [99] and the solubility curve of 

K2U6O19∙11H2O(cr) calculated using thermodynamic data selected in the present work.  

 
Figure 5.5. Solubility data of U(VI) in 1 m KCl solutions at 3 ≤ pHm ≤ 6 as reported by Sandino and 

Grambow (1994) [99] (runs K1 and K2 in the original publication, see discussion in text). Solid lines 

correspond to the solubility of K2U6O19∙11H2O(cr) (thick blue line) and underlying aqueous speciation 

(thin lines) calculated with the thermodynamic and SIT activity models summarized in Tables 5.2 and 

5.3. 
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5.3.3 Summary of the improved thermodynamic model for the system UO22+–H+–K+–
Na+–Cl––OH––H2O(l) 

 

Tables 5.2 and 5.3 summarize chemical, thermodynamic and SIT activity models for the system 

UO2
2+–H+–K+–Na+–Cl––OH––H2O(l), as derived in the present work and reported in the NEA-

TDB [41] and Altmaier et al. [43]. Solubility calculations using these thermodynamic data are 

compared in Figure 5.6 with experimental solubility data determined in this work in 0.1–4.0 M 

KCl solutions at 7 ≤ pHm ≤ 14.5. 
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Figure 5.6. Solubility of U(VI) in alkaline KCl solutions: a. 0.1 M; b. 0.5 M, c. 1.0 M, d. 3.0 M and e. 

4.0 M. Empty triangles correspond to the solubility of Na2U2O7∙H2O(cr) reported by Altmaier et al. [43] 

in 0.5, 2.64 and 5.61m NaCl systems. Lines are solubilities of UO3∙2H2O(cr), K2U6O19∙11H2O(cr) and 

K2U2O7∙1.5H2O(cr) calculated with thermodynamic and SIT activity models summarized in Tables 5.2 

and 5.3. 
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Figure 5.6 shows that the calculated solubility is in good agreement with the experimental data 

in most of the investigated cases. Solubility calculations support that K2U2O7∙1.5H2O(cr) is the 

solid phase controlling the solubility of U(VI) in KCl solutions with pHm ≥ 8 – 9 (depending 

upon KCl concentration). Below this pHm, thermodynamic calculations predict a solid phase 

transformation into K2U6O19∙11H2O(cr). This result is in line with results obtained by XRD (see 

Section 5.2), which hinted towards a solid phase transformation in the solubility sample 

equilibrated in 0.1 M KCl at pHm = 7.7. Although the collected XRD pattern did not perfectly 

match those of compreignecite, the position of the first peak clearly hinted to a solid phase 

transformation towards a uranate phase with K:U < 1.  

 

Table 5.2. Solubility and hydrolysis constants at I = 0 selected in the present work for the system 

UO2
2+–H+–K+–Na+–Cl––OH––H2O(l). 

Solid phases  log *K°s,0 References 

0.5K2U2O7·1.5H2O(cr) 
1/6K2U6O19∙11H2O(cr) 
0.5Na2U2O7·H2O(cr) 

 (12.0 ± 0.2) 
(6.2 ± 0.1) 

(12.2 ± 0.2) 

(p.w.) 
(p.w.), a 

[43] 
Hydrolysis species (xy) log *β°(x,y)  

UO2OH+ (11) –(5.25 ± 0.24) [41] 

UO2(OH)2(aq) (12) –(12.15 ± 0.17) [41] 

UO2(OH)3
– (13) –(20.7 ± 0.40) [43] 

UO2(OH)4
2– (14) –(31.9 ± 0.2) [43] 

(UO2)2(OH)2
2+ (22) –(5.62 ± 0.04) [41] 

(UO2)3(OH)4
2+ (34) –(11.9 ± 0.3) [41] 

(UO2)3(OH)5
+ (35) –(15.55 ± 0.12) [41] 

(UO2)3(OH)7
– (37) –(32.20 ± 0.80) [41] 

(UO2)4(OH)7
+ (47) –(21.9 ± 1.0) [41] 

a. re-evaluated in this work from experimental data reported in Sandino and Grambow (1994). 
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Table 5.3. SIT ion interaction coefficients for UO2
2+ and U(VI) hydrolysis species derived in the present 

work and reported in the literature for NaCl and KCl systems.  

U(VI) species                               SIT coefficients  

I  J ε(i,j) References 
UO2

2+ Cl– (0.21 ± 0.02) [82] 
UO2OH+ Cl– (0.10 ± 0.10) [43] 
(UO2)2(OH)2

2+ Cl– (0.30 ± 0.06) [43] 
(UO2)3(OH)4

2+ Cl– –(0.07 ± 0.17) [43] 
(UO2)3(OH)5

+ Cl– (0.24 ± 0.15) [43] 
(UO2)4(OH)7

+ Cl– (0.17 ± 0.18) [43] 
UO2(OH)3

– Na+ 
K+ 

–(0.24 ± 0.09) 
–(0.24 ± 0.09) 

[43] 
(p.w.), a 

UO2(OH)4
2– Na+ 

K+ 
(0.01 ± 0.04) 
(0.03 ± 0.04) 

[43] 
(p.w.) 

(UO2)3(OH)7
– Na+ 

K+ 
–(0.24 ± 0.09) 
–(0.24 ± 0.09) 

[43] 
(p.w.), a 

UO2(OH)2(aq) K+, Na+, Cl– 0 b 
a. set equal to the ion interaction coefficient of the same species with Na+; b. by definition in SIT. 

 

5.3.4 Role of ternary Na-U(VI)-OH and K-U(VI)-OH solid phases in cementitious 
systems  

 

The dissolution of Na2O and K2O within the degradation stage I of cement buffers the pH in 

the hyperalkaline region, whilst retaining rather high concentrations of Na+ and K+ (0.1–0.2 M) 

in solution [8, 9, 11, 158]. Mixed salt systems containing both NaCl and KCl in different 

concentrations are also expected in different concepts and scenarios of relevance in the context 

of nuclear waste disposal. In these conditions, the solid phases K2U2O7∙1.5H2O(cr) and / or 

Na2U2O7∙H2O(cr) may form, eventually controlling the solubility of U(VI) in such 

environments. Based on the thermodynamic and activity models summarized above, this 

section aims at evaluating the role of K2U2O7∙1.5H2O(cr) and Na2U2O7∙H2O(cr) solid phases in 

controlling the solubility of U(VI) in the systems:  

 

i. Solutions containing 0.1 m Na+ and 0.1 m K+ at pHm ≈ 13.2, representing the degradation 

phase I of cement in dilute porewater systems (Figure 5.6a) 

ii. Solutions containing 5.641 m Na+ + 0.614 m K+. This porewater composition was 

calculated by Bube et al. [4] as a simulation of cemented wastes in concentrated NaCl brine 

solutions††. 

                                                 
†† Salt concentrations reported in Bube et al. (2013) were decreased by 10% to avoid precipitation of saturated 
salts. 



119 
 

 

Figure 5.7 shows the solubility of U(VI) within 10 ≤ pHm ≤ 13.5 for the porewater composition 

described in (i) and (ii) and using thermodynamic data summarized in Tables 5.2 and 5.3. 

 

  

Figure 5.7. Solubility of UO3∙2H2O(cr), K2U2O7∙1.5H2O(cr) and Na2U2O7∙H2O(cr) at 10 ≤ pHm ≤ 13.5 

in a. 0.2 m KCl + 0.1 m NaCl solutions; b. 0.614 m KCl + 5.614 m NaCl solutions. Calculations 

performed using thermodynamic and activity models summarized in Tables 2 and 3. Vertical dashed 

line corresponding to the pHm of the original composition. 

 

Figure 5.7a shows that K2U2O7∙1.5H2O(cr) is expected to control the solubility of U(VI) in the 

dilute system, whereas the solubility of U(VI) in 5.614 m NaCl + 0.614 m is controlled by 

Na2U2O7·H2O(cr) due to the significantly higher concentration of Na+ compared to K+ (Figure 

5.7b). In both cases and for the same pHm-range, the calculated solubility of UO3⋅2H2O(cr) is 

several orders of magnitude higher. These results highlight that both ternary Na/K–U(VI)–OH 

solid phases must be accounted for a correct evaluation of U(VI) solubility in alkaline to 

hyperalkaline systems. Although only simple salt systems were investigated in this work and in 

Altmaier et al. (2017) (accordingly resulting in the formation of K2U2O7∙1.5H2O(cr) and 

Na2U2O7·H2O(cr)), the layered structure of such uranates phases is expected to accommodate 

both cations in mixed NaCl–KCl systems. The formation of mixed phases NaxK2–

xU2O7·xH2O(cr) should be possibly expected in these conditions. Based on the similarity of the 

solubility constants determined for the pure K2U2O7∙1.5H2O(cr) and Na2U2O7·H2O(cr) phases 

(log *K°s,0 = 12.0 ± 0.2 and 12.2 ± 0.2, respectively), log *K°s,0{NaxK2–xU2O7·xH2O(cr)} should 

be also expected to be of the same order. 
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This work contributes to close an important thermodynamic gap affecting the solution 

chemistry of U(VI) in the hyperalkaline pHm conditions representative of cementitious systems. 

The presented results highlight also the importance of having complete thermodynamic 

databases (TDB) for the correct interpretation of a given (radionuclide) system. The absence of 

relevant solid phases or aqueous complexes in the available TDB may result in totally 

unrealistic thermodynamic calculations (e.g. solubility limits, aqueous speciation, etc.). Neither 

K2U2O7∙1.5H2O(cr) nor Na2U2O7·H2O(cr) are currently selected in the NEA–TDB reviews. 

This fact can be taken as evidence of the importance that thermodynamic studies still have in 

the context of nuclear waste disposal. 
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6 Summary and conclusions 

This PhD thesis aimed at providing a fundamental understanding on the solution chemistry of 

uranium, with focus on three main parts aspects, namely redox behavior, solubility and 

hydrolysis. The boundary conditions investigated range from very acidic to hyperalkaline pH 

values, from very reducing to oxidizing, and from dilute to concentrated salt systems. In this 

context, focus is given to conditions for which relevant data gaps or controversial discussion is 

provided in the literature. Some of these conditions are representative of different repository 

concepts (e.g. crystalline, clay, salt-rock) and wasteforms (e.g. cementitious systems), and thus 

can provide relevant inputs in the context of nuclear waste disposal. 

The redox behaviour of uranium was investigated in reducing, dilute to concentrated 

NaCl solutions from acidic to hyperalkaline pHm conditions. Uranium(VI) was added to 

NaCl solutions of given pHm values containing individual and mixed reducing systems (Sn(II), 

Na2S2O4, Sn(II) + Fe(0), Sn(II) + TiO2 and Sn(II) + Fe3O4). According to thermodynamic 

calculations in the form of Pourbaix diagrams, the reducing conditions set by these systems 

(with pe + pHm ≤ 4) were expected to promote the reduction of U(VI) to U(IV). The large 

difference in solubility between solid phases of U(VI) (UO3⋅2H2O(cr) and Na2U2O7⋅H2O(cr)) 

and U(IV) (UO2(am, hyd)) expected to form in these conditions was taken as main indicator to 

follow the reduction to U(IV). Solubility data, in combination with solvent extraction and 

XANES confirm that a complete reduction of U(VI) to U(IV) took place in most of the 

investigated systems. The reduction occurs in two steps, involving a first, fast precipitation of 

a U(VI) solid phase, and a second, slower reaction with the transformation of this solid phase 

into UO2(am, hyd). The main parameters affecting the reduction kinetics are identified as 

[U(VI)]0, pHm, Eh, concentration of the reducing chemicals, presence of redox-active surfaces 

and [NaCl] (in alkaline systems). In the less favoured conditions, a complete reduction is only 

observed after 635 days. The pH-independent solubility observed (after attaining equilibrium 

conditions) from weakly acidic to hyperalkaline conditions (up to pHm ≈ 14.5) confirms the 

predominance of U(OH)4(aq) in the aqueous phase, in equilibrium with UO2(am, hyd). These 

results preclude a predominant role of anionic hydrolysis species (U(OH)5
– and U(OH)6

2–) in 

the solution chemistry of U(IV). Furthermore, experimental observations obtained within this 

work support that previous studies reporting the formation of such anionic species of U(IV) are 

affected by insufficient equilibration time, and that the increased uranium concentrations 

measured in previous publications correspond indeed to a solubility-control by 

Na2U2O7⋅H2O(cr). 
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The excellent agreement between experimental observations obtained in this work and 

thermodynamic calculations (Pourbaix and solubility diagrams) supports the use of (pe + pHm) 

measurements as an accurate tool to predict the redox behaviour of uranium in dilute to 

concentrated saline systems under repository relevant boundary conditions.  

U(IV) solubility was investigated in reducing, dilute to concentrated NaCl, MgCl2 and 

CaCl2 solutions under acidic to hyperalkaline pHm conditions. A U(IV) solid phase was 

precipitated in alkaline, reducing conditions and aged for three months before further use in 

solubility experiments. A thorough characterization of this solid using XRD, EXAFS, SEM-

EDS, TG-DTA and quantitative chemical analysis confirmed the formation of a 

(nano-)crystalline UO2∙H2O(ncr) phase with an average crystal (domain) size of (3 ± 1) nm. 

The well-characterized solid was used in a series of undersaturation solubility experiments in 

0.1–5.0 M NaCl at 1 ≤ pHm ≤ 14.5, 0.25–4.5 M MgCl2 at 1 ≤ pHm ≤ 9, and 0.25–4.5 M CaCl2 

at 9 ≤ pHm ≤ 12. Solid phase characterization performed after completing the solubility 

experiments confirmed that UO2∙H2O(ncr) remained unaltered in the course of the solubility 

study. 

In acidic NaCl and MgCl2 solutions, the solubility of UO2∙H2O(ncr) shows a steep decrease 

with increasing pHm. Although following a very similar trend in terms of log [U] vs. pHm, 

solubility data determined in this work is approximately two orders of magnitude lower than 

most of the previous solubility studies with UO2(am, hyd). This observation highlights the more 

crystalline character of the solid phase compared to previous solubility studies. All solubility 

data measured above pHm ≈ 4 / 5 (depending upon ionic strength) resulted in values below the 

detection limit of standard ICP–MS. The use of μ-injection ICP–MS for the quantification of 

[U] in 0.1 and 0.5 M NaCl systems allowed a significantly reduced detection limit, showing 

that solubility is pHm-independent and significantly lower than previous studies with UO2(am, 

hyd). As in the case of oversaturation / redox experiments, these results support the 

predominance of U(OH)4(aq) in solution for this pHm-range, thus ruling out a predominant role 

of anionic hydrolysis species of U(IV) in hyperalkaline systems. Solubility data measured at 

pHm ≥ 3 without using any phase separation technique resulted in uranium concentrations 2–3 

orders of magnitude higher than those measured after 10 kD ultrafiltration. This observation is 

likely related to the presence of U(IV) intrinsic colloids as those previously described for Th(IV) 

and Pu(IV). However, a trend to decreasing the concentration of the colloidal fraction with time 

may hint towards aggregation phenomena, and opens the question of the long-term stability of 

such colloids.  
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All solubility measurements in CaCl2 solutions resulted below the detection limit of standard 

ICP–MS. Although unable to confirm the formation of the ternary complex Ca4[U(OH)8]4+ 

expected in analogy to the previously reported species for Th(IV), Np(IV) and Pu(IV), upper 

limits derived in this work for log *β°(4,1,8) are consistent with the estimates provided in Fellhauer 

et al. (2010) based upon linear free energy relationships. 

The combination of solubility data determined in the present work, solid phase characterization 

and thermodynamic data reported in the NEA–TDB and Neck and Kim (2001) for U(IV) 

hydrolysis species allowed deriving accurate thermodynamic and activity models for the system 

U4+–Na+–Mg2+–Ca2+–H+–Cl––OH––H2O(l). To the author’s knowledge, this is the most 

comprehensive thermodynamic study undertaken so far for U(IV) and, especially, involving the 

most accurate solid phase characterization of the solubility-controlling oxo-hydroxide phase of 

U(IV).  

In the last part of this PhD study, the solubility of U(VI) was investigated in dilute to 

concentrated KCl systems under near neutral to hyperalkaline pHm conditions. A solid 

phase precipitated in an alkaline KCl solution was characterized using XRD, SEM-EDS, TG-

DTA and quantitative chemical analysis, and identified as K2U2O7∙1.5H2O(cr). This solid phase 

was used in a systematic series of solubility experiments in 0.1–4.0 M KCl at 7.5 ≤ pHm ≤ 14.6. 

Characterization of selected solid samples after the solubility experiments confirmed that 

K2U2O7∙1.5H2O(cr) remained unaltered in the course of the experiments, except in less alkaline, 

dilute KCl solutions where the formation of a solid phase with a ratio U:K < 1 was hinted by 

XRD. Slope analysis of the solubility data confirms the predominance of UO2(OH)3
– and 

UO2(OH)4
2– below and above pHm ≈ 11, in excellent agreement with previous solubility 

experiments in analogous alkaline NaCl systems. Chemical, thermodynamic and SIT activity 

models for the system UO2
2+–H+–K+–Na+–Cl––OH––H2O(l) were derived based on the newly 

generated solubility data in alkaline conditions, previous solubility studies in acidic KCl 

systems and U(VI) hydrolysis constants reported in Altmaier et al. (2017). This work 

contributes to close an important thermodynamic gap affecting the solution chemistry of U(VI) 

in the hyperalkaline pHm conditions representative of cementitious systems. 

This PhD thesis provides new insights on the solution chemistry of uranium with focus in the 

+IV and +VI oxidation states. Thermodynamic constants derived in the standard state and (SIT) 

ion interaction coefficients obtained can be implemented in thermodynamic databases and used 

in geochemical calculations under a variety of boundary conditions. This covers dilute to 

concentrated salt systems, thus allowing thermodynamic calculations under conditions 
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representative of the different host-rocks foreseen for repositories for nuclear waste disposal. 

The important effort undertaken to attain an accurate characterization of the solid phase/s 

controlling the solubility in the investigated systems represents in itself an important 

achievement, especially in the case of U(IV) where amorphous, ill-defined oxo-hydroxides 

phases control the solution chemistry of uranium over a very broad range of geochemical 

conditions. 
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