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“The comfort zone is a psychological state in which one feels familiar, safe, at ease, 

and secure. You never change your life until you step out of your comfort zone; 

change begins at the end of your comfort zone.”  
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ABSTRACT 

The systematic assessment of polymeric chain structures is essential for an 

in-depth mechanistic understanding of macromolecular processes. The access to pre-

cise structural information of organic, oligomeric and macromolecular compounds is 

provided by high resolution electrospray ionization mass spectrometry (ESI MS). The 

mild conditions associated with the ionization process are essential to retain the 

chains’ covalent bond integrity. In the present thesis, high resolution ESI-Orbitrap MS 

is used as a platform technology to access chain structure information from complex 

demanding macromolecular systems. Importantly, the high resolution provided by the 

Orbitrap’s design and data evaluation allow for the precision mass determination as-

sociated with a detailed insight into the species’ isotopic pattern. The structural as-

signment of the polymer depends on the comparison of the experimental isotopic 

pattern with a simulation based on the assigned chemical formula. Critically, a reliable 

access route to non-polar polyhydrocarbons (such as poly(styrene) and poly(1,4-buta-

diene)) is established via chloride attachment in negative ion mode. The remarkably 

strong coordination of halides (here chloride) with aromatic or olefinic motifs pro-

motes ionization beyond singly charged species and showcases that high-molecular 

weight polyhydrocarbons can be ionized efficiently. Furthermore, the observed poly-

hydrocarbon’s charge state distribution can be adjusted by adding auxiliary super-

charging agents such as sulfolane or propylene carbonate to the ESI solution. The 

established chloride attachment in the negative ion mode is the basis of multiple mac-

romolecular elucidations including poly(ionic liquid)s (PILs), nitroxide-containing pol-

ymers and the efficient ionization of degradable step-growth polymers. In addition, 

ESI MS benefits significantly from the coupling to size exclusion chromatography (SEC-

ESI MS). The present thesis describes a powerful characterization techniques for intra-

chain crosslinked linear precursor polymers to single chain nanoparticles (SCNPs) by 

SEC-ESI MS hyphenation. The high resolution MS characterization of this important 

class of nanoparticles provides direct insight into the chemistry of the folding process 

for every single polymer chain in solution, thus enabling direct insight into the folding 

mechanism. Finally, the established platform is capable of imaging even complex ter- 



and quaterpolymers prepared by a sequence-regulated step-growth Passerini 

polymerization as demonstrated in the present thesis.





KURZZUSAMMENFASSUNG 

Die systematische Strukturaufklärung von Makromolekülen ist ein wesentli-

cher Bestandteil zum tiefgehenden Verständnis von makromolekularen Prozessen. 

Der Zugang zur exakten Strukturaufklärung ist durch die Verwendung von hoch-auf-

lösender Elektrospray-Ionisation (ESI MS) gewährleistet. Die milden Ionisierungsbedin-

gungen sind unentbehrlich um intakte kovalente Bindungen in der Polymerkette si-

cherzustellen. Die vorliegende Doktorarbeit behandelt die Strukturaufklärung ver-

schiedener komplexer makromolekularer Systeme mittels ESI-Orbitrap MS. Für die 

exakte Massenbestimmung ist die Hochauflösung entscheidend, die durch das Design 

der Orbitrap und die Datenverarbeitung bereitgestellt wird. Hierdurch ermöglicht sich 

die präzise Untersuchung einzelner Spezies und deren Isotopenmuster. Diese bildet 

die Grundlage nachfolgender Strukturaufklärungen, da das experimentelle mit dem 

simulierten (aus der zuvor bestimmten chemischen Strukturformel) Isotopenmuster 

verglichen wird. Zuvor ist die zuverlässige Ionisierung unpolarer Polykohlenwasser-

stoffe (z.B. Polystyrol und Polybutadien) unerlässlich, die durch die Anlagerung von 

Chlorid-Ionen gewährleistet wird. Hierfür wird das Massenspektrometer in einer für 

negative Ionen sensitive Betriebsweise gesetzt. Die Anlagerung von Halogeniden an 

aromatische oder olefinische Strukturelemente ist bemerkenswert stark, sodass eine 

Mehrfachionisierung hervorgerufen wird. Darüber hinaus kann die Verteilung des La-

dungszustands der Polykohlenwasserstoffe durch einfache Zugabe von sog. ‘Su-

percharging’ Agenzien (z.B. Sulfolan oder Propylencarbonat) beeinflusst werden. Die 

hier neuentwickelte Methode zur Anlagerung von Chlorid-Ionen bildet die Grundlage 

zur Aufklärung verschiedenster funktionaler Makromoleküle, unter anderem von po-

lyionischen Flüssigkeiten und Polymeren mit Nitroxid-Sturkturelementen. Des Weite-

ren können degradierbare Stufenwachstumspolymere effizient in die Gasphase ver-

setzt und somit vermessen werden. ESI MS profitiert auch durch eine vorangeschaltete 

Größenausschlusschromatographie (SEC-ESI MS). Hierdurch können intramolekular 

vernetzte Polymere – sogenannte Einzelkettennanopartikel – charakterisiert werden, 

wodurch ein direkter Einblick in die Chemie des Faltungsprozesses ermöglicht wird. 

Mittels der entwickelten Methode können sogar komplexe Ter- oder Quaterpolymere 

strukturell aufklären werden.  
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1  
INTRODUCTION 

“We learned to make elephants fly,” said John Fenn, Nobel Prize laureate in 

2002 after having developed a soft ionizing method for large (bio)macromolecules via 

electrospray.1 By the time his revolutionary research was about to be published in 

1988, he was at his age of 70 years and an emeritus at Yale University. The university 

had downsized his financial situation to a small office without being allowed to su-

pervise graduate students to further develop the technique. Finally, the Virginia Com-

monwealth University funded his research and provided him with a fully furnished 

laboratory for his research, where Fenn was able to further develop the electrospray 

ionization. Despite a legal dispute with Yale University – Fenn held a personal patent 

on the electrospray techniques, which was against Yale’s policies –, he established a 

fundamental technology to ‘make elephants fly’.2 His endurance to withstand financial 

pressures and the passion for his research paid off and Fenn became a Novel Prize 

Laureate. His groundbreaking work is the fundament of the current thesis evaluating 
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novel access routes for macromolecular ionizations. In Fenn’s words: Make the non-

polar elephants fly. 

Nowadays, soft ionization equips researchers to study the exact structure of 

natural biomacromolecules, i.e. proteins, DNA and RNA. Interactions between pro-

teins are critical in order to understand the signal transition. Such non-covalent bio-

molecule complexes can be examined with ESI. The method is superior to other meth-

ods regarding its rapidity, sensitivity and identification of the actual interaction. Ap-

plications include:1 

Pharmaceuticals development: The early phase of pharmaceuticals develop-

ment has undergone a paradigm shift. Combined with liquid separation, ESI MS has 

enabled the assessment of several hundred compounds per day.1 

Malaria: Scientists have recently discovered new ways of studying the spread 

of malaria. Early diagnosis is possible thanks to the soft ionization.1 

Food control: ESI technology has also progressed to small molecule analysis. 

An increasing number of substances are hazardous to health, e.g. acrylamide which 

can cause cancer. Mass spectrometry allows for the rapid analysis of food at various 

stages of production. By modifying the temperature and the ingredients, potential 

harmful substances can be avoided or minimized.1 

By its applications in life sciences i.e. determining the fundamental mecha-

nism how soft matter interact, soft ionization techniques gained great interest in pol-

ymer science. The present thesis will draw a detailed picture of Fenn’s electrospray 

ionization technique and equip the reader with the fundamental knowledge of the 

accepted charge-to-analyte transfer mechanisms. Furthermore, a detailed review of 

different mass analyzers is presented. Here, Orbitrap is the most prominent candidate 

as the results presented in the current thesis are based on this specific high resolution 

mass analyzer. 

One overarching aim of the present thesis is to develop ionization platforms 

to efficiently image non-polar macromolecules (i.e. polyhydrocarbons) and very polar 

macromolecules (i.e. poly(ionic liquid)s). Both macromolecules are considered to con-

stitute major challenges in mass spectrometry. For instance, polyhydrocarbons are 

not equipped with dipoles and electron-donating motifs such as esters, ethers or 

amines. Such motifs are known to efficiently coordinate Na+. Consequently, the lack 

of polar groups reduces the ion abundances significantly. An efficient ionization plat-

form for polyhydrocarbons is presented in Chapter 3 implementing for the first time 
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a negative ionization route via chloride attachment. Poly(ionic liquid)s, on the other 

hand, are very polar macromolecules (‘salt polymers’) entailing dipoles and electron-

donating motifs. However, the counter ions of the polymers are conductive and the 

additional ions suppress the polymer signals entirely (ion suppression). Thus, mass 

spectrometry is a major challenge for this entire class of polyelectrolytes. The current 

thesis provides an efficient ionization route for the characterization of poly(ionic liq-

uid)s in Chapter 4.  

The second overarching aim of the present thesis is to establish mass spec-

trometry as an approach for mechanistic elucidations. Here, mass spectrometry pro-

vides a direct view into the polymer chain structure by specific mass changes that the 

macromolecule undergoes during reaction. The most important mechanistic assess-

ment covered in the current thesis include intrachain crosslinking reactions (also 

known as single-chain folding) and light-induced degradation of polymers (self-immo-

lative motifs). In particular, the main characterization route for the hydrodynamic radii 

changes during a single-chain folding have been assessed via morphological tech-

niques. A direct (mechanistic) view into the formation of nanoparticles during collapse 

was not available. Here, mass spectrometry can give direct access to the determina-

tion and clarification of such folding processes by the specific mass-to-charge ratio, 

which the chain undergoes during the collapse. The novel characterization technique 

is presented in Chapter 6. The motivation to study the degradation mechanism of 

polymers via mass spectrometry is that the soft ionization provides an efficient access 

to all by-products that accumulate during the disassembly process. Thus, the main 

characterization routes include size-exclusion chromatography for macromolecular 

weight determination and nuclear magnetic resonance for structural elucidations. Of-

ten, however, the proton resonances of the compound and the small molecules 

formed after degradation are isochronous, which makes a simple and fast evaluation 

by their resonances challenging. Mass spectrometry provides a platform to obtain full 

mechanistic information by chain termini elucidations, and it thus allows to draw a 

detailed mechanism of the degradation process. Such data evaluation of a degradable 

polymer is presented in Chapter 7. The following Figure 1 collates the overarching 

aims of the present thesis and an illustrative representation of the corresponding pro-

jects. 
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Figure 1 Overview of the overarching aims of the present PhD thesis including efficient ionization (with the corresponding projects in Chapter 3 and 4) and 
mechanistic investigations (with the corresponding projects in Chapters 5-7). 



2  
THEORETICAL BACKGROUND AND 

LITERATURE OVERVIEW 

The following chapter collates an overview on the theoretical background and 

literature, to which the projects of the present dissertation are related. The present 

work is situated at the interface between polymer science and in-depth molecular 

characterization, in particular represented by high resolution mass spectrometry. 

Hence, a comprehensive literature overview including the historical evolution, recent 

developments in the field of soft ionization techniques, and advanced topics on the 

manipulation of charge states (known as supercharging) in mass spectrometry is pro-

vided. Furthermore, an outline of a plethora of polymerization techniques is given 

constituting the basis of polymer science as well as materials science. The research 

projects described in the present dissertation were realized by either step-growth or 

chain-growth polymerization, whose mechanistic differences will be highlighted. For 

instance, specific functional macromolecules such as poly(ionic liquid)s, single-chain 
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polymeric nanoparticles and self-immolative polymers will be defined, described and 

their characteristics explained. Finally, an overview on modular (light-induced) ligation 

techniques is provided. 

2.1. MASS SPECTROMETRY 

The thesis addresses advanced mass spectrometric (MS) platforms for the de-

duction of macromolecular chain structures, including (quantitative) end group deter-

mination and the elucidation of complex mechanistic scenarios. Therefore, a critical 

overview of the relevant literature is given, along with the theoretical background re-

quired to understand mass spectrometric concepts.  

2.1.1. A brief history 

The father of mass spectrometry is J. J. Thomson (Nobel Prize laureate in Phys-

ics 1906 for conductivity of electricity by gases)3,4 who pioneered the field by measur-

ing charge-to-mass ratios (i.e. ionized atoms). Subsequently, Francis Aston (super-

vised by Thomson) built the first mass spectrometer with the ability to detect charged 

atoms by using discharge tubes generating the ions.5 Later, the Manhattan Project 

and World War II pushed MS as a technique to prove the existence of elemental iso-

topes.4 Revolutionary contributions by Alfred Nier, including 60° sector field mass 

spectrometry (known as Nier-Johnson geometry), enabled the isolation of uranium-

235 and provided evidence that 235U undergoes a slow neutron fission.6–9 Fred McLaf-

ferty,10 Klaus Biemann11 and Carl Djerassi11 elucidated the fragmentation mechanism 

of organic molecules during the ionization process, ultimately allowing chemists to 

precisely determine the structure of unknown organic molecules. Biemann pioneered 

in the determination of complex molecules and laid the groundwork for modern pro-

teomics.12 Nowadays, the contributions of MS to the proteomics sector is remarkable, 

advancing to the dominant platform for protein and cell compartment determina-

tion.13,14 

However, spectra obtained with mass spectrometers available hitherto had a 

low signal resolution with large errors making precision chemical formula determina-

tion challenging. The resolution (R) is a certain value indicating two adjacent signals 

to be baseline separated (given as R = m∙Δm-1).15,16 Alan Marshall and Melvin Comisarow 
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further improved the prevalent measurement techniques of low-resolution mass spec-

trometry by implementing the well-known phenomenon of ion cyclotron resonance 

(ICR) (discovered by J. A. Hipple in 1949)17 coupled with Fourier transformation (FT) to 

read out the mass-to-charge ratio.18 Thus, high resolution FT-ICR MS was first reported 

in 1974 progressing the field of MS significantly by having small errors making chem-

ical formula determination more precise.  

In the 1980s, MS was a well-established characterization technique for organic 

molecules. However, large macromolecules such as nucleic acids, carbohydrates and 

proteins provided a major challenge as the harsh conditions for ionization induced 

fragmentation and decomposition. Although fast atom bombardment (FAB), plasma 

desorption, and thermospray ionization provided access to small proteins, the state 

or the art technology back in these days were not suitable in ionizing larger proteins.4 

In 1988, electrospray ionization (ESI) and matrix assisted laser desorption ionization 

(MALDI) were reported – almost simultaneously – revolutionizing biological MS by pro-

ducing intact peptide ions. Due to their exceptional mild ionization protocols, they 

are still the dominant pathways to ionize macromolecules. A substantial contribution 

is attributed to John Fenn19 (Nobel Prize laureate in Chemistry 2002 for ESI)20 for dis-

covering the electrospray phenomenon and the idea to introduce a soft ionization 

method for large (bio)macromolecules. Simultaneously, Franz Hillenkamp and Michael 

Karas investigated the laser-induced desorption of small molecules from surfaces.21 

Although Koichi Tanaka was awarded the Nobel Prize jointly with John Fenn 2002, 

Tanaka is not the inventor of MALDI but developed a MALDI-based (soft laser desorp-

tion (SLD)) access to high-molecular (bio)macromolecules such as proteins. Both tech-

niques have their advantages, which make them indispensable for a wide variety of 

applications nowadays. ESI can be readily coupled to separation techniques (i.e. high-

pressure liquid chromatography (HPLC), size-exclusion chromatography (SEC)), 

whereas MALDI tolerates contaminations (i.e. salt, detergent).4 

The background information provided in the following section showcases the 

importance of soft ionization techniques to retain the full structural integrity of a 

macromolecule. Next, the ESI process, especially highlighting the proposed gas-ion 

formation mechanism, is discussed. 
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2.1.2. Mass Analyzers 

From a historical perspective, the development of precise mass analyzers ad-

vanced as standard platform for small molecule analysis and macromolecular charac-

terization alike. Coupled to ionization techniques (ESI/MALDI), the success of mass 

spectrometry is the unique synergy between ionization and mass separation afforded 

by a mass analyzers. The present section will focus on mass analyzers that are widely 

available in combination with soft ionization techniques such as the quadrupole mass 

filter, time-of-flight (ToF) as well as ion traps such as Orbitrap. The Orbitrap will be 

discussed in detail as it is the mass analyzer of choice used in all projects described 

in the following chapters. Ion traps and ToF mass analyzers are economic alternatives 

and thus widely employed that will be discussed briefly as well in the following sec-

tion.  

Quadrupole Mass Filter 

Quadrupole (Q) mass filters (Wolfgang Paul, Nobel Prize laureate 1989) are 

powerful mass filters whose first utilization dates back to the 1970s.22 The fabrication 

of the four parallel metal rods is economic and they are operated by connecting each 

opposite rod pair electrically, where a radiofrequency (RF) voltage with a direct current 

offset is applied. As ions travel through the rods, only certain mass-to-charge ratios 

are stable (their trajectory can be described with the Mathieu differential equation),23 

whereas the unstable trajectories will collide with the rods. The fast scanning of nar-

row mass windows gave the quadrupole the function as a ‘mass filter’. Due to their 

versatility, quadrupoles are the most widely used devices in mass spectrometry. For 

instance, employed as hybrid mass spectrometers, quadrupole mass filters find broad 

application in, e.g. ESI Quadrupole-Time-of-Flight (ESI-QToF) combining a low resolu-

tion quadrupole mass filter (Q) and a high-resolution mass analyzation (ToF) or as 

triple-quadrupole (ESI-QQQ). Developed to avoid each other’s disadvantage, quadru-

pole and Orbitrap have been commercialized as ESI-QOrbitrap settings.  

Time-of-Flight (ToF) 

ToF analyzers became very important as Hillenkamp and Karas developed 

MALDI soft ionization. Within this analyzer method, the ions are separated by their 

time of flight in ultrahigh vacuum. Importantly, ToF analyzers require precise start 

times, which can be realized, e.g., by pulsed laser desorption methods. Thus, contin-

uous ionization techniques as represented by e.g. ESI, are not well suited. Due to the 
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ion’s kinetic energy deviations caused by the desorption process, modern ToF analyz-

ers are equipped with an ion mirror (reflectron). Hence, the ions a decelerated in an 

electrostatic field and accelerated in reverse direction resulting in enhanced spectral 

resolution and ion sensitivity. The mass range of ToF analyzers is unlimited. However, 

polymer samples have to be well-defined (dispersity below 1.1 give best results, 

broader samples require work-arounds and can suffer ion sensitivity), and interactions 

with the incident light beam can photochemically interfere with the sample.  

Orbitrap 

Orbitraps are ion traps and represent the most modern mass analyzers com-

mercialized in 2005. Figure 2 collates the setup of modern Orbitraps. After ion gen-

eration (detailed process is showcased in the following section) in the atmospheric 

pressure ionization (API) source, the ions enter a chamber held under vacuum (1.5 

Torr) where they enter the S lens setup. The S lens comprises several metal electrodes 

to focus the ion beam. The mass spectrometer applies a RF voltage to the electrodes, 

and adjacent electrodes have voltages of opposite phase. As the RF amplitude in-

creases, ions of progressively higher mass-to-charge ratios pass through to the exit 

lens where the ion beam passes a so-called active beam guide (90° bend flatapole) 

reducing the noise of neutral species not being guided to the linear quadrupole. Here, 

in-source collision induced dissociation (CID) can be applied. A source offset ranging 

from 0 to 100 eV (200 eV in QExacative Plus) can be applied, whereas the DC offset 

combines the capillary DC, S lens DC and exit lens DC. Thus, the analyte is accelerated 

into the flatapole, where the species can collide with residual source gas molecules 

Orbitrap Source

S-Lens

Linear Quadrupole

C-Trap

HCD Chamber

Figure 2 Scheme of a QExactive Orbitrap mass spectrometer commercialized by Thermo Fisher. Copy-
right Thermo Fisher 2005.  
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for an induced fragmentation. Often, in-source CID enhances the ion sensitivity as the 

analyte is accelerated and does not necessarily undergo a fragmentation.24,25 The ma-

jor task of a quadrupole has been outlined previously. The ion beam enters the C-

trap, a very crucial component in the mass spectrometer setup: the C-trap is a gas-

filled curved linear trap accumulating and decelerating the entering ions. After reach-

ing a certain preset time (e.g. 50 µs) the ions are injected into the Orbitrap for subse-

quent mass analysis or transferred to the higher-energy collision dissociation (HCD) 

chamber (sometimes HCD is referred to as higher-energy C-Trap dissociation). The 

electrical offset (given in eV) between C-Trap and HCD chamber accelerates the ions 

into a gas-filled chamber where the precursor ions undergo induced fragmentation. 

Fragment ions are stored in the C-trap and transferred to the Orbitrap. In the Orbitrap, 

the ion are injected tangentially into an electrostatic field (generated by an inner axial 

spindle and an outer barrel-like electrode), the carefully manufactured and optimized 

shape of the electrode balances the centrifugal forces in a way that keeps the ions on 

stable trajectories orbiting around the spindle. Their high resolving power (up to 280 

000) ranks Orbitraps under the most precise bench-top mass analyzers.  

2.1.3. Electrospray Ionization Mechanism 

The ESI mechanism remains a highly debated subject in mass spectrometry 

even decades after Fenn’s revolutionary discovery. After early ESI MS reports in 1968,19 

a plethora of experiments were performed to identify how charged droplets transfer 

the charge and subsequently release the charged analyte from the solvent shell to 

form gas-phase molecular ions. Charged droplets are produced in the electrospray 

process when an electrically conductive liquid is exposed to an electric field. Due to 

the solution’s surface tension, a deformation occurs countering the electric force. 

Reaching a specific limit force, the shape of a cone appears emitting a jet (fine mist) 

of liquid at its tip (called cone-jet) marking the beginning of the electrospraying pro-

cess. The initial droplets have radii in the micrometer range, yet the analyte is fully 

surrounded by solvent molecules. Upon Coulomb emission, the droplet size is re-

duced dramatically on a short time scale by solvent evaporation. The charge density 

in the droplet increases until the surface tension balances the Coulomb repulsion 

(Rayleigh limit). Droplets close to the Rayleigh limit undergo jet fission producing 
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smaller, highly charged offspring droplets. Repeated evaporation/fission events ulti-

mately yield in nanometer sized droplets.  

The charge-to-analyte transfer is not fully understood and subject of ongoing 

research. Recently, the development of advanced molecular dynamics simulations re-

vealed possible scenarios, whose most prominent mechanisms are explained below. 

Konermann et al. present detailed molecular dynamics simulations based on investi-

gation of the ESI mechanism comprising the ion ejection model (IEM), the charge re-

sidual model (CRM) and – for the first time proposed – the chain ejection model 

(CEM).26 Historically, the IEM and CRM were controversially discussed with evidence 

provided for both models. Theoretical considerations regarding the CRM was pub-

lished by Rayleigh (1882)27 and Dole contextualized Rayleigh’s work with ESI in 196828 

and 1970.29 IEM was suggested by Iribane and Thomson in 1975.30 The CRM is the 

accepted model for the formation of nanometer sized droplets from micrometer 

scaled ones. Depending on the analyte size it is proposed that CRM also transfers the 

charge to the analyte. Representative analytes are native proteins, having a globular 

shape. In contrast, the IEM is discussed for small analytes. Iribane and Thomson dis-

cuss that a charge residual leading to jet emission of small molecules is unlikely since 

the droplet never become sufficiently small to contain only one analyte. Prior to the 

jet fission close to the Raleigh limit, the charge density on the surface is so high that 

the resulting electrostatic field is sufficiently intense to catapult one or more gas-

phase ions out of the solvent shell.  

To achieve a deeper understanding of the ESI mechanism it is critical to com-

prehend how charges behave in a droplet close to the Rayleigh limit. Gauss’ Law dic-

tates electric charges to migrate to the outer surface (in an isolated conductor). In 

molecular dynamics simulations, Konermann et al. showed that the ions prefer a po-

sition in the droplet interior – well solvated by the solvent.26 Due to the induced dipole 

of the polar solvent, the net charge is located at the outer surface and thus obey 

Gauss’ Law.  

Ion Ejection Model (IEM)26 

The IEM is based on a sufficiently high electric field causing the ejection of 

small solvated ions from the droplet surface. Transition state theory in combination 

with molecular dynamics simulations suggest that ions need to cross an activation 

barrier (escaping the attractive energy of solvation) of ~32 kJ∙mol-1.26 After rapturing 

the parent solvent shell, the very small offspring ion collides with ambient gas and 
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loses the residual solvent molecules. It is believed that small analytes, protonated 

drugs and metabolites ionize via IEM. Particularly, the high ion abundance caused by 

non-polar moieties support the IEM since they tend to orient close to the droplet sur-

face (high surface affinity).26  

Charge Residual Model (CRM)26 

The CRM is the widely accepted – though controversially debated31 – model 

how large, globular species such as natively folded proteins are released into the gas 

phase. Here, Rayleigh-charged nanodroplets evaporate to dryness, transferring the 

charge directly to the analyte. Throughout the solvent evaporation, ions (e.g. sodium 

ions) are ejected into the gas phase via IEM thus keeping the droplet at the Rayleigh 

limit while its size is decreasing. In contrast to the IEM, the CRM is challenging to 

simulate via molecular dynamics simulations due to its microseconds time scale. 

Figure 3 Schematic representation of the ion ejectionmodel (IEM), the charge residual model (CRM) and 
the chain ejection model (CEM). Cartoon illustration of an ion that interacts with two oriented dipoles (as 
zoom into the first IEM droplet). 
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Nonetheless, computational studies imply that an ejection via the IEM of the folded 

protein is kinetically not preferred.26  

Chain ejection model (CEM)26 

Fenn realized that the charge state of poly(ethylene glycol) (PEG) was higher 

than the Rayleigh prediction suggested and therefore proposed a different ESI mech-

anism including a chain elongation caused by Coulomb repulsion of the charges re-

sulting in elongated droplets with conical ends that accumulate the charge density.31 

Molecular dynamics simulations independently performed by Konermann26,32 and Con-

sta33,34 revealed alternative scenarios how droplets respond beyond the Rayleigh limit. 

For instance, Konermann addresses important ESI efficiencies, i.e. a high ESI efficiency 

entails rapid desolvation (or ejection) from the droplet rather than being imprisoned 

in the solvent shell being defined as inefficient ESI process.32 Since the ESI efficiency 

is dependent on the polarity of the polymer, which is governed by the respective types 

of monomers,32 the chain ejection mechanism must be subdivided into polymer type-

dependent scenarios (Figure 4). A macromolecule with nonpolar side chains is ex-

pelled stepwise from the droplets’ surface (Figure 4a).32 Interestingly, Consta revealed 

that the CEM as represented in Figure 4a, was confirmed for aqueous solutions only, 

since PEG behaved differently in organic medium.33 In methanol, the droplet escape 

the Rayleigh limit by forming small offspring droplets in a necklace-like orientation 

(Figure 4b). Protonated poly(histidine) as polyelectrolyte in aqueous solution leads to 

high droplet deformations (spine-like ordered structures).34  

Although a plethora of (computational) work has afforded an in-depth view 

into the ESI mechanism, the CEM is still subject of ongoing research. Hitherto, exclu-

sively the positive ion mode (via protonation or sodiation) has been covered in very 

polar solvents (i.e. water, methanol) and very polar polymers. Nonpolar polymers such 

as poly(styrene) (PS) and poly(butadiene) (PBD) have very low efficiencies. According 

to Konermann, such polymers are caught in the solvent shell and might be expelled 

by a different mechanism.26  

The present section showcased the ESI mechanism. The next section covers 

the supercharging effect which manipulates the observed charge states of the macro-

molecule. 



2.1 Mass Spectrometry 
  

14 
 

2.1.4. Supercharging 

During the charge-to-analyte transfer, the droplet’s response close to the Ray-

leigh limit and its impact on the gas phase ion generation is a critical and important 

aspect to consider. A further crucial parameter is the analyte-charge interaction that 

influences the ESI mechanism and the ESI efficiency alike. Recently, the analyte-charge 

interplay became more of a focus in the investigation of the ESI mechanism as Wil-

liams35 proposed the so-called supercharging effect showing that the addition of cer-

tain small molecules – with high polarities and surface tension35,36 – can manipulate 

the observed charge state of proteins.37 The shift of a protein’s charge state allows 

for accessing high-molecular weight macromolecules. Even more importantly, many 

physical properties of the gas phase ion change with its charge state, e.g. proton 

Figure 4 Models of stable droplet-chain conformations beyond Rayleigh limit. (a) A part of the chain is 
ejected leaving the droplet below Rayleigh limit. (b) The droplet is split into several offspring droplets, 
each below Rayleigh limit. (c) Observed conformations of charged poly(histidine) in water at high charges. 
The assumptions of the Rayleigh model are not valid. 
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transfer,38 ion-ion reactivity,39 fragmentation pathway40 and efficiency of electron-cap-

ture cross sections (ECD).41 Thus, supercharged proteins open avenues for modern 

proteomics including their precision sequence determination (top down method).42  

Currently, the supercharging mechanism is highly debated and as the ESI 

mechanism not fully unraveled. Taking the different ionization models into consider-

ation, four distinct scenarios attempt to explain the charge shift of proteins.  

Berkeley mechanism  

Discovered by Williams and co-workers at the University of Berkeley,35 the 

Berkeley mechanism is the first and most prominent – though controversially de-

bated43,44 – mechanism. Here, Williams proposes a retarded formation of the gas-phase 

ions caused by the low volatility of the added molecules.45 A wide range of such su-

percharging agents have been discussed in the literature ranging from m-nitrobenzyl 

alcohol (mNBA), sulfolane, propylene carbonate (PC), ethylene carbonate (EC), dime-

thyl sulfoxide (DMSO) and o-nitroanisole amongst others.37,46 All mentioned com-

pounds share the high surface tension as a physical property. Williams and co-workers 

concluded that the increased surface tension allows droplets to decrease their radii 

further before the Rayleigh limit is reached.45 Offspring droplets after Rayleigh fission 

contain more ions as they would without supercharging agent. Recently, Loo and co-

workers introduced further supercharging agents that were added as solids and thus 

reduce the overall surface tension.43 Their results and Konermann’s molecular dynam-

ics simulations44 questioned the role of the surface tension and the Berkeley mecha-

nism. 

Lewis acid/base mechanism 

An essential parameter for high ion abundances is the ESI efficiency, which is 

governed by the droplet shell escape and the Lewis basicity (ability to coordinate to 

H+ or Na+) as well as Lewis acidity (ability to transfer a proton to the solvent). Under 

non-supercharging conditions, the solvent and the analyte compete for the available 

charges in the droplet. Supercharging agents have a lower Lewis basicity than water. 

Since high amounts of supercharging agents are employed (up to 50% v/v), the charge 

competition between water and protein is highly reduced. Thus, the charge-analyte 

equilibrium is shifted to higher amounts of charged analyte.47 

Dipole-based mechanism 

First proposed by Douglass and co-workers,36 the dipole-based mechanism is 

the first approach considering interactions between supercharging agent and analyte. 
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During the CRM, the maximum amount of the protein’s Lewis basic regions limits the 

theoretical charge state. Experimentally, however, the charge state is limited by the 

Coulomb repulsion of Lewis basic moieties in close proximity. As proposed, super-

charging agents coordinate to the ions after their attachment to the Lewis basic moi-

ety via dipole interactions. Thus, the repulsive interactions are shielded facilitating 

the attachment of further charges to Lewis basic moieties in close proximity.48 

Charge-trapping mechanism 

Based on molecular dynamics simulations, Konermann et al. studied the in-

teractions of supercharging agent with the solvent and the analyte.44 Their simulations 

suggest a solvent segregation leading to an aqueous core containing the analyte and 

a shell consisting of the supercharging agent. The supercharging mechanism appears 

to be a two stage process commencing with the ejection of ion/water clusters (e.g. H+ 

or Na+) via IEM thus reducing the droplet’s radius containing the analyte, the super-

charging agent, water and the ions. As soon as the water is evaporated, the super-

charging agents trap the residual ions from escaping the droplet via IEM enabling the 

transfer of the charge to the analyte via CRM.44  

In summary, the present section introduced the supercharging effect as useful 

access tool for multiply charged macromolecules. It aids in understanding the under-

lying background information for the present thesis. Interested readers are referred 

to recent articles.26,45 The following section provides details on a specialized mass 

spectrometric tool for surface applications. 

2.1.5. Surface-Sensitive Ionization: ToF-SIMS 

In 1910, J. J. Thomas observed that ion bombardment on solid surfaces induce 

the release of positive ions and neutral fragments.49 It took another 30 years, before 

the pump technology was sufficient to build a first prototype of a secondary ion mass 

spectrometer (SIMS) by Herzog and Viehböck.50 

ToF-SIMS as commercialized in its current setup50 is represented in Figure 5.51 

It is a routine MS technique to identify the composition of a solid surface. Hence, a 

focused primary ion beam sputters the surface and collects all ejecting secondary 

ions.52 At the heart of each ToF-SIMS is the primary ion beam source (see Figure 5 (1) 

or (2)), where noble gas ions (i.e. Ar+ and Xe+), SF5
+ or C60

+ are generated by electron 

ionization. An alternative ion beam source – which has also been used for the current 

thesis in Section 4.4 – provides Cs+ that evaporate and ionized from a porous tungsten 
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plug.53,54 The choice of available ion sources is critical for the surface analysis and is 

dependent upon the requirement of a continuous or pulsed current. Cs+ is used in 

case the specimen contains dominantly electronegative elements i.e. polymer sur-

faces. C60
+ is used during molecular depth profiling. The ion beam is focused on the 

target sample, which sputters ionized and neutral atoms off the surface (see Figure 

5 (4)). The ions are focused into the ToF analyzer (refer to Section 2.1.2), where ions 

are separated and detected with common mass detectors for ToF analyzers being an 

Figure 5 Schematic representation of a typical dynamic SIMS instrument. High energy (usually several 
keV) ions are supplied by an ion gun (1 or 2) and focused on to the target sample (3), which ionizes and 
sputters some atoms off the surface (4). These secondary ions are then collected by ion lenses (5) and 
filtered according to atomic mass (6), then projected onto an electron multiplier (7, top), Faraday cup 
(7, bottom), or CCD screen (8). Reprinted with permission from Ref. [51]. 
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electron multiplier,55 a Faraday cup56 or an electron-multiplying charge-coupled device 

(CCD).57–59 

In polymer science, ToF-SIMS is a valuable tool for identifying thin polymer 

films and to determine their composition. Furthermore, access to spatially resolved 

surface patterning via photochemistry (see Section 2.5) is an important field of mate-

rials science.60–63 Furthermore, lithography techniques, i.e. 3D laser printing benefit 

from the spatially resolution of ToF-SIMS, allowing for the identification of specific 

secondary ions on certain areas of the specimen or the lithographically fabricated 

macrostructre.64–67 

In summary, ToF-SIMS is a powerful tool for imaging spatially resolved poly-

mer pattern on surfaces and to determine characteristic secondary ions by their mass-

to-charge ratio. The following section will introduce hyphenated techniques (i.e. cou-

pling chromatography techniques to mass spectrometry) for further polymer charac-

terization.  
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2.1.6. Hyphenated Techniques 

Standard measurements give a certain response (e.g. intensity) for a physical 

parameter resulting in a one dimensional plot. The entropic separation of polymer 

chains by their individual hydrodynamic radii is utilized in SEC techniques. The sepa-

ration is driven by geometry-dependent diffusion into pores of the column material 

or size-dependent exclusion caused by the unfavorable entropy of mixing associated 

with the partition.68 These separation techniques are very commonly utilized for hy-

drodynamic volume determinations of polymers in solution. Coupled with suitable 

calibration polymer standards, the molecular weight is accessible. However, one di-

mensional plots can lack in-depth information, in particular for complex structures. A 

two dimensional (or hyphenated) approach has proven to be successful for the char-

acterization of multi blockcopolymers as well as further advanced architectures.69,70 In 

liquid chromatography, hyphenation is realized by coupling two different chromatog-

raphy techniques. For instance liquid adsorption chromatography at critical condi-

tions (LACCC),71–73 HPLC74 or SEC70 belong to the most often employed hyphenations 

resulting in LACCC-HPLC, LACCC-SEC or HPLC-SEC. In mass spectrometry, a separation 

afforded by prior (liquid) chromatography is very beneficial. The information depth is 

suitable to solve many analytical issues.69–74 In the following section, the focus will be 

set primarily on SEC coupled to ESI MS (SEC-ESI MS).  

As discussed above, SEC is a liquid chromatography technique separating 

macromolecules by their hydrodynamic radii. The radius is governed by contour 

length of the polymer in a specific solvent. Under theta conditions (enthalpy of mixing 

equals zero), the radius depends on �√�, where a is the stiffness of the chain and N 

represent the repeat unit of the chain.75,76 The separation of different polymer coils is 

realized by non-interactive, i.e. enthalpy equals zero, diffusion into pores of a certain 

size. Resulting in a plot in which large polymers elute first and the smaller later, typ-

ical SEC traces have Gaussian shape caused by the chain growth statistic of the 

polymerization process, and the statistical motion of the particle resulting in diffusion 

broadening.77 The detectors employed are most commonly refractive index (RI) or ul-

traviolet (UV) light of a specific wavelength and depending on the concentration of 

the sample yet are very accurate. Transformed from the retention time on the column 

with well-known polymer standards with specific molar masses (calibration of the 

SEC), the mass axis is beset with large errors (special evaluation methods lower the 

error to about 5%).78 In addition to the coil structure of polymer chains, it is important 
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to understand how nanospheric macromolecules behave in fluids. Such a definition 

was afforded by Einstein’s viscosity model of nanofluids in 1906: � =  �଴ሺͳ + ʹ.ͷ�ሻ     (1) 

Where � is the viscosity of the nanofluid, �଴ the viscosity of the base fluid and � is the volume fraction of the solute in the solution. Einstein was able to demonstrate 

that when the solute particles are rigid spheres at infinite dilution, the intrinsic vis-

cosity equals 2.5 and defined the infinite dilution as intrinsic viscosity [�]. Einstein’s 

equation at intrinsic viscosity can be described as: [�] =  lim�→଴ �−�బ� = ଶ.ହ�� = ଶ.ହ∙ேಲ∙�ℎெ   (2) 

Where ஺ܰ is the Avogadro constant, �ℎ =  ସ�∙�ℎయଷ  is the hydrodynamic volume, 

with the hydrodynamic radius �ℎ and ܯ is the molar mass of the dissolved substance. 

Benoit and co-workers deduced thus, that Einstein’s law can be described as:79 [�] = � ∙ ቀ�ℎெቁ     (3) 

Where � is a constant. Consequently, Equation (3) can be rearranged as:  ܯ ∙ [�] = � ∙ �ℎଷ ⋅ ��−యమ    (4) 

Where � is a parameter introduced by Zimm, with its exponent � ranging from 

0.5 to 1.5. Benoit and co-workers concluded that the product ܯ ∙ [�] should be univer-

sal (i.e. independent of the type of polymer) but only depend on the solvent of choice 

allowing to determine the molecular weight by SEC of various polymers even if no 

standard for calibration is accessible. The only limitation is to know the exact intrinsic 

viscosity of the polymer under identical conditions (temperature, solvent). As the ex-

perimental determination of the intrinsic viscosity is time-consuming, modern SEC 

setups are equipped with viscosimetry detectors determining the intrinsic viscosime-

try online and allowing to deduce more accurate universal calibrations. Additionally, 

a multi-angle laser light scattering (MALLS) detector can be utilized. MALLS detectors 

allow for the accurate molecular weight determination as described by Zimm.80 The 

reader is encouraged to consult the literature for exact molecular weight determina-

tion by light scattering. 

MS results are entailed with high mass accuracy but their detector response 

is uncertain (ionization bias).81 However, hyphenating those two techniques results in 
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very accurate masses with very accurate concentration determination by the RI detec-

tor.70 Thus, SEC-ESI MS has been used to quantify polymer mixtures, determine Mark-

Houwink parameters82 and to quantify end group conversions.83–87  

Figure 6 depicts the schematic setup of a SEC-ESI MS measurement: the poly-

mer passes the chromatography (in THF) with a flow rate of 0.3 mL∙min-1. Thereafter, 

the flow splits to both detection: the concentration-dependent RI and UV cells as well 

as the mass-dependent Orbitrap detector. In order to achieve sufficient ionization, NaI 

in methanol (100 µM) is added. As high molecular weight polymer chains tend to 

become multiply charged, SEC-ESI MS is a useful tool to map the sample’s individual 

charge states depending on the elution time (and thus the molecular weight). The 

reason why larger polymer chains tend to become multiply charged is not fully under-

stood but might be correlated with the unique ionization mechanism.  

In summary, mass spectrometry provides access to molecular (polymer) struc-

tures based on sophisticated soft ionization protocols (ESI, MALDI), advanced (high-

resolution) mass analyzers (ToF, Orbitrap) and structural elucidation via CID experi-

ments. The section provides the reader with the fundamental background information 

required to navigate through the thesis introducing analytical protocols for various 

Figure 6 Chromatographic setup employed for coupling the concentration sensitive RI and UV detectors 
and the electrospray ionization mass spectrometer to the column effluent in parallel. Numbers indicate 
flow rates in mL min-1. Reprinted with permission from Ref. [70]. Copyright American Chemical Society 
(2009). 
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polymers that provided major challenges in the past. The thesis addresses these chal-

lenges by taking advantage of the Orbitrap mass analyzer with enhanced ion sensitiv-

ity and high resolution. Further background information is provided on important 

characterization tools such as SEC coupling (hyphenation technique) and ToF-SIMS, 

which is a surface sensitive mass spectrometry. The following section will showcase 

the theoretical background from a synthetic perspective introducing polymerization 

as access to macromolecules. 
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2.2. FUNDAMENTALS OF POLYMERIZATION 

A precise characterization requires sophisticated polymerization techniques 

as access route to well-defined materials either defined by high end group fidelity 

(realized by reversible-deactivation radical polymerization (RDRP)) or by sequence 

(step-growth polymerization). The present thesis combines modern polymerization 

techniques with advanced and novel mass spectrometric approaches to elucidate their 

individual chain structure. The polymerization fundamentals are outlined in the fol-

lowing section. 

2.2.1. Chain-Growth and Step-Growth Polymerization 

A polymerization transforms monomeric organic molecules into polymers 

thereby changing the physical properties of the material fundamentally. 1953, Paul 

Flory categorized polymerizations into two subsets: (i) chain-growth polymerizations, 

which are realized by a reactive, transient chain terminus and (ii) step-growth polymer-

izations, which are characterized by stable intermediates during propagation.88 Step-

growth polymerizations and chain-growth polymerizations follow different kinetics. 

For instance, during chain-growth, the chain reacts exclusively with monomers 

whereas during step-growth dimers, trimers and tetramers, etc. can react with each 

other. While chain-growth polymerizations yield high molecular weight polymers es-

pecially during the early stages of the reaction, step-growth polymerizations require 

very high conversions (>99%) to obtain high molecular weight material (Figure 7).88,89 

Their unique polymerization behavior manifests itself in the materials characteristics. 

Thus, polymers prepared via step-growth polymerization yield polymers with adjust-

able property profiles. For instance, polycarbonates are robust with high impact 

strength, stiffness and transparency,90 whereas polyamides can be processed to flex-

ible fibers with high robustness and toughness.91  

The material properties of chain-growth polymers are governed by their side 

groups.89 In contrast to chemically individual backbones of step-growth polymers, the 

backbone of chain-growth polymers are represented by CH2-CH2 moieties. By varying 

the chemical motifs of the side group, variable polymers can be obtained. For in-

stance, a phenyl group attachment results in PS, which is hard but sensitive to im-
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pact,92 whereas a methyl ester group yields poly(methyacrylate) (PMA) affords trans-

parent materials, which can be processed in a thermally reversible procedure.93 In 

recent years, substantial progress has been reported in chain-growth polymerization. 

A concise literature review on anionic, free radical and ring-opening polymerization is 

presented in the next section. 

2.2.2. Chain-Growth Polymerization 

As already discussed, reactive monomers are involved in chain-growth 

polymerization, featuring an active chain terminus for further monomer addition. The 

polymerization is started with initiators. Hitherto, a plethora of initiators are available, 

releasing either radicals (thermally or photochemically) or electrophiles/nucleophiles. 

Initiators transform monomers from an unreactive (dormant) state and activate them 

to start further monomer additions (propagation).89 Active chains propagate until a 

Figure 7 Schematic representation of the chain-growth polymerization (a) and step-growth polymeriza-
tion (b). 
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termination event quenches the active chain terminus and thus, convert the active 

state to an unreactive (“dead”) end group. Importantly, dead chains cannot be reac-

tivated.89 The nature of the active propagating species depends on the polymerization 

techniques being a carbanion for anionic polymerization, carbocation for cationic 

polymerizations, radicals in a free radical polymerization or an organometallic center 

for coordinative polymerizations. Consequently, dead chains are generated if the car-

banion reacts with an electrophile (e.g. H+), carbocations are prone to undergo rear-

rangements or react with nucleophiles (e.g. OH–) and radicals can recombine or dis-

proportionate. Thus, all chain-growth polymerizations feature a minimum of pro-

cesses including initiation, propagation, termination and transfer.89 Figure 8 collates 

INITIATION

PROPAGATION

TERMINATION

Figure 8 Accepted mechanism of a chain-growth polymerization with initiation, propagation and termi-
nation. Exemplarily, a free radical polymerization is depicted. The transfer reaction is not illustrated. 
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the accepted chain-growth polymerization mechanism. Transfer reactions are not de-

picted. 

In the following, aspects of different chain-growth polymerizations will be 

highlighted and modern concepts introduced. 

Anionic polymerization89,94 

Anionic polymerization is a subtype of ionic polymerization, i.e. the active 

chain terminus is a carbanion. The initiation requires strong bases such as alkyllith-

ium, potassium amide or Grignard reagents. Their high reactivity towards double 

bonds and carbonyls alike makes anionic polymerization rather intolerant for ester-

containing monomers. Using catalysts activating the double bond, milder bases and 

nucleophiles can be used giving direct access to carbonyl-containing monomers such 

as acrylates, which are susceptible of reacting with strong bases. After initiation, the 

carbanion of the active chain adds further monomers during propagation. However, 

two anionic centers do not react with each other. Hence, polymers prepared by anionic 

have no termination pathway (if operated under strict exclusion of oxygen and water) 

and active chain termini without termination channel are considered to be ”living”.95 

After initiation the polymer chains grow without reinitiation and termination, the ac-

tive chains grow linear with conversion resulting in defined materials with predictable 

molecular weights, narrow dispersities (below 1.1) and high end group fidelity. After 

full monomer conversion, a second monomer type can be added to allow for the prep-

aration of block copolymers. The disadvantages of anionic polymerization are a rela-

tively strong restriction in monomer functionality (protic functionalities quench the 

initiator) and the strict exclusion of water and oxygen limiting the process to advanced 

Schlenk technique. Thus, more versatile processes are accessible via controlled radical 

polymerization. 

Free radical polymerization 

In a free radical polymerization, the active chain end carries a radical capable 

of adding further monomer units. The initiation proceeds (as depicted in Figure 8) via 

a radical initiator, often azo or peroxy compounds (thermal initiators) or benzoin de-

rivatives (photochemical initiators). The preferred reactivity towards double and triple 

bonds, while tolerating a plethora of functionalities and the robustness towards water 

(but not oxygen) makes the free radical polymerization a universal access route to 

polymeric materials. However, the high reactivity of radicals opens numerous termi-

nation pathways, i.e. intra- and inter chain radical transfer reactions, termination via 
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disproportionation and recombination as well as transfer to solvent molecules.96 With-

out additional transfer agent, free radical polymerization techniques are featured by 

having various end groups and broad dispersities (1.7 – 2.5).89 Adding transfer agents 

such as thiols or CCl4 allow to control the molecular weight while introducing specific 

end groups, yet provide broad dispersities. In the late 20th century, Australian re-

searchers were leading in developing technologies to control radical polymerization 

leading to RDRP.97 Their main approach relied on the reduction of termination path-

ways, mimicking anionic polymerization. Nitroxide-mediated polymerization (NMP) 

(1970’s) was developed by Solomon, Rizzardo and coworkers at the Commonwealth 

Scientific and Industrial Research Organisation (CSIRO), based on the persistent radi-

cal effect of nitroxides to control the polymerization, as it converts the radical revers-

ibly into a dormant (thus unreactive) state.98–100 In 1995, simultaneously described by 

Krzysztof Matyjaszewski and Mitsuo Sawamoto, atom transfer radical polymerization 

(ATRP) was pioneered involving redox-active transition metal catalyst (often copper(I)) 

and alkyl halides as initiators. The fundamental reaction mechanism resembles NMP: 

the radical reacts reversibly with the transition metal catalyst under reformation of a 

dormant alkyl halide species.101,102 In 1998, Rizzardo, Thang and Moad and co-workers 

developed the reversible addition-fragmentation chain transfer (RAFT) polymeriza-

tion where thioester mediate the polymerization kinetics. Simultaneously, Zard and 

coworkers reported the macromolecular design by interchange of xanthates (MADIX) 

process utilizing xanthates as RDRP. In contrast to NMP and ATRP, RAFT does not rely 

on converting the radical species into a dormant, non-reactive intermediate. The in-

terplay with the (macro)RAFT reagent liberates a radical species, thus the radical con-

centration remains (nearly) as high as in a non-controlled free radical polymerization. 

Thus, the life time of a single radical is increased from several seconds to several 

minutes (even up to hours). Consequently, single polymer chains have an increased 

overall life time and grow to similar lengths. The result is a low dispersity, high end 

group fidelity as well as linear molecular growth as observed for anionic polymeriza-

tion.103–105  

As a consequence of their versatility, RDRP have enabled a plethora of re-

search areas including biomedicine (development of well-defined micelles based on 

block copolymers), materials science (e.g. fabrication of membranes with precisely 

defined pore sizes, responsive as well as self-healing materials) and physics (e.g. pre-

cision lithography via 3D printing or stimulated emission depletion (STED) lithogra-
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phy). However, monodisperse macromolecules cannot yet be realized with such tech-

niques. Nature has perfected the precision macromolecular preparation of sequence-

defined proteins and deoxyribonucleic acid (DNA) including their three dimensional 

structuring. Synthetic polymer science is at the early stage of preparing sequence-

controlled (narrowly disperse multiple block copolymers) and sequence defined ma-

terials (precisely monodisperse macromolecules). Synthetic macromolecules with a 

dispersity of 1.0 and the perfect placement of the monomer units (as nature’s proteins 

and enzymes) are regarded as the next large scientific milestone in the field of poly-

mer chemistry.106  

Ring-opening polymerization107 

Conventionally, anionic and radical polymerization involves double bonds of 

styrene-type and acrylate-type monomers (amongst others). As soon as cyclic mono-

mers participate, it is convenient to refer to such polymerization as ring-opening 

polymerization (ROP). The initiation process involves the nucleophile, electrophile or 

radical ring-opening of the cyclic monomer.89 The active chain, which can be a carban-

ion,108 a radical species109,110 or a carbocation,111,112 propagates by ring-opening further 

cyclic monomers. As the transformation from double bond to single bond is associ-

ated with the release of enthalpy favoring the formation of polymer chains, the ring-

opening process has to be thermodynamically feasible. The Gibb’s Free Energy de-

creases from three-membered rings (e.g. oxirane) to seven-membered rings.113 Here, 

the energy from releasing the ring strain is critical. Although the design of cyclic mon-

omers can be sophisticated and less versatile as for conventional polymerizations, 

synthetic ring-opening macromolecules have a pivotal advantage: The backbone motif 

contains all functionalities of the cyclic ring instead of simple CH2-CH2 motifs. For 

instance, the most common oxirane is epoxide (ethylene oxide),112 which ring-opens 

to poly(ethylene oxide) (PEO) or PEG. In contrast to many other synthetic polymers, 

PEG is biocompatible, since it is not recognized by the human immune system (‘stealth 

effect’).114 Another example of a biocompatible polymer is poly(lactide), which is pre-

pared by ring-opening the six-membered lactide monomer.114 In addition to the bio-

compatibility, poly(lactide) can be degraded through hydrolysis of the ester bonds. 

Radical-induced ROP of vinyl cyclopropane feature an interesting characteristic: the 

prepared polymers have the same or a lower density as the monomer. Some applica-

tions require that the resulting polymer has the same (or even a larger) volume than 
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the monomer e.g. tooth fillings.107 Thus, synthetic ROP polymers are versatile in their 

backbone structure, serving as ideal candidates for biomedical applications.  

In the following, cyclic imino ethers as monomer for ring-opening polymeri-

zation is discussed as one project within is based on the preparation of poly(ester 

amide)s (PEA)s.115,116 

As illustrated in Scheme 1, the general polymerization mechanism of cyclic 

imino ethers involve the initiation by a Lewis acid, followed by a propagation until a 

Lewis base terminates the polymerization. PEAs have drawn much attention as they 

serve as a versatile platform for stealth bio-applicable polymers with tailor-made side 

group functionalities.117–125  

2.2.3. Step-Growth Polymerization 

In addition to ROP and in order to incorporate versatile functionalities into the 

backbone of a polymer chain, step-growth polymerization is historically the most im-

portant access route for macromolecules with a functionalized backbone. Wallace 

Hume Carothers (†1937) was a pioneer in developing and understanding the mecha-

nism of step-growth polymerization.89 He obtained fibers from poly(amide)s which can 

be used to fabricate NYLON™ (1935). NYLON has similar elastic properties as the well-

known silk.126 Carothers shaped the nomenclature for step-growth polymers introduc-

ing polyaddition and polycondensation as access routes. In contrast to chain-growth 

polymerization, no initiators are required to initiate the reaction. Conventionally, re-

Scheme 1 Ring-opening polymerization of cyclic imino ethers. 
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action conditions that proved to be successful on organic molecules (e.g. esterifica-

tions, alcohol addition to isocyanates) can be applied for the production of macromo-

lecular structures.89 Most remarkably, the functionalities (e.g. acid and alcohol moie-

ties in the case of polycondensation via esterification) retain their reactivity through-

out the monomer addition. Even after the polymerization has been quenched, step-

growth polymers have characteristic monomer-derived end groups, which can readily 

be used for further step-growth polymerization. A critical difference to chain-growth 

polymerization is the high monomer conversion required to afford sufficiently high 

molecular weights. Furthermore, step-growth polymerization does not tolerate a dilu-

tion of the reaction mixture, leading to ring formation. Macrocyclic species are ‘dead’ 

chains as they are not available for any further monomer addition.89 In the following, 

more specialized step-growth polymerizations that have been used for projects sum-

marized in Chapter 5, Chapter 6 and Chapter 7 of the present thesis will be discussed. 

(Hetero) Diels-Alder polyaddition 

Chapter 7 introduces photochemically and thermally degradable polymers 

prepared by a hetero Diels-Alder polyaddition. Diels-Alder reactions are defined to be 

thermally-induced concerted reactions between a diene and an ene ([4+2] cycloaddi-

tion).127–131 In rare cases, the diene is generated by a photochemical reaction. The ring-

closure to a six-membered cyclic molecule, however, is thermally induced. For their 

work on this ground-breaking reaction, Otto Diels and Kurt Alder received the Nobel 

Prize in 1950.132 Important for the stereochemistry and regioselectivity is the energy 

of the lowest unoccupied molecular orbital (LUMO) of the diene and the highest occu-

pied molecular orbital (HOMO) of the ene: the smaller the difference of these two 

orbitals, the more likely is the reaction. The relative orbital geometries resulting from 

unsymmetrically attached functionalities to either the diene or the ene can be calcu-

lated and the strongest HOMO-LUMO overlap will lead to the stereochemically most 

favored product.133 The short reaction times, mild reaction conditions and high con-

versions of the Diels-Alder reaction makes dienes and enes a perfect couple for poly-

additions. Recently, Barner-Kowollik and co-workers developed a hetero Diels-Alder 

reaction involving the thiocarbonyl moiety of RAFT agents as ene with conventional 

dienes (e.g. cyclopentadiene).  

The most remarkable feature of macromolecules prepared via hetero Diels-

Alder reaction is the thermal reversibility leading to bonding/debonding on demand 

accessing self-healing materials.134–138 
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Spontaneous zwitterionic (alternating) copolymerization (SZWIP) 

A step-growth process between two homo bifunctional monomers (e.g. acid 

and alcohol) leads ultimately to alternating copolymers as the acid reacts with the 

alcohol but not with other acid functionalities. This high sequence regulation is 

unique for the step-growth process and is realized in chain-growth polymerizations 

only under certain circumstances i.e. if high control, quantitative conversions in short 

polymerization times is granted.89 Currently, the research focuses on new pathways 

to obtain sequence control of chain-growth-based monomers. One alternative is the 

spontaneous zwitterionic copolymerization (SZWIP). Here, an electrophilic monomer 

(ME) and a nucleophilic monomer (MN) react forming zwitterionic intermediates.115,116 

Despite its early discovery in 1977 by Saegusa and numerous reports in the 1970s 

and 1980s, this polymerization technique has not received much attention mainly as 

no high molecular weights can be realized.116,121,139,140 It is assumed that the polymeri-

zation mechanism includes side reaction but a full mechanistic study has not yet been 

accomplished. Further, SZWIP seems to follow a chain/step-growth hybrid mechanism 

as both characteristics are observed: alternating copolymers with approximately 50% 

end group of both monomers present in the resulting polymer; initiation and termi-

nation steps as they are present in chain-growth polymerization. A detailed mecha-

nistic review is provided in Chapter 5.  

Multicomponent polymerization 

Multicomponent reactions belong to a versatile type of a synthesis procedure 

involving three or more organic molecules to form one specific product. Beginning 

with the Strecker synthesis for amino acids (1850),141 multicomponent reactions have 

Scheme 2 Hetero Diels-Alder polyaddition as reported by Barner-Kowollik and co-workers. 
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evolved to be a versatile platform for a plethora of functional moieties. A popular 

multicomponent reaction is Passerini’s procedure using isocyanides, aldehydes and 

carboxylic acids to form α-acyloxy amides.141 Scheme 3 illustrates the accepted Pas-

serini mechanism in polar solvents leading to the protonation of the aldehyde and – 

in a multi-step pathway – the isocyanide and the carboxylic acid attack subsequently 

followed by a rearrangement. In contrast, non-polar solvents favor a concerted reac-

tion pathway.142,143 

In 2011, Meier and co-workers implemented the Passerini reaction for a mul-

ticomponent step-growth polymerization yielding renewable polymers. The high atom 

economy and access to versatile functionalities introduced into the backbone makes 

the Passerini polymerization a competitive alternative to existing procedures.144–147  

In summary, a plethora of polymerization protocols are available to produce 

macromolecules with various functionalities. All introduced polymerization tech-

niques are performed in solution (either in bulk or diluted with an appropriate sol-

vent). The next section describes approaches to attach polymer strands to surfaces. 

Scheme 3 Proposed Passerini mechanism (a) ionic in polar solvents (ionic) and (b) concerted in non-polar 
solvents (concerted). 
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2.2.4. Surface Modification 

Computer technology (e.g. microchips),148 medicinal technology (e.g. anti-

fouling surfaces)149,150 and biological applications (e.g. cellulose modification)151 bene-

fit significantly from progresses in surface modification. In more detail, the current 

section will describe the most prominent approaches for generating polymer-coated 

surfaces.  

Polymer films can be generated via the grafting-from (Figure 9 top) or graft-

ing-to (Figure 9 middle) protocol. The grafting-from approach is based on an initiator-

coated surface that are placed into the monomer solution. The polymerization is 

started thermally or photochemically. The grafting-to approach is based on polymer 

chains entailing reactive motifs for subsequent surface immobilization. Often, Dials-

Alder chemistry is employed for grafting-to approaches.152–158 If sub-micrometer preci-

sion is required, grafting approaches are not well suited. Here, 3D lithography (Figure 

9 bottom) using two photon absorption processes provides small voxels of the inci-

dent photon’s cross-section. Thus, 300-400 nm line width can be achieved.159 

In summary, fundamental polymerization protocols have been developed to 

control chain growth and end group fidelity. For instance, ROP allows for the monomer 

Figure 9 Schematic representation of surface modifications: grafting-from approach based on surface-
imitated polymerizations (top); grafting-to approach based on forming covalent bonds between polymer 
strands and anchors attached to the surface (middle); 3D lithography based two photon absorption ini-
tiation processes. 
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functionality to be inserted into the backbone. The present section showcased the 

most important candidates, which are relevant for the thesis. The following sections 

will highlight polymeric materials stemming from one of the above discussed polymer-

ization protocols such as polyelectrolytes prepared by FRP, or self-immolative poly-

mers prepared step-growth polymerizations. 
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2.3. POLY(IONIC LIQUID)S (PILS) 

Three projects of the current thesis (summarized in Chapter 4) address a 

unique class of polyelectrolytes: poly(ionic liquid)s (PILs). Although the free radical 

polymerization of monomeric ionic liquids (ILs) is straight-forward, the characteriza-

tion of the resulting PILs is challenging. The current section focuses on the unique 

properties of PILs required to understand why these polymers are challenging to ana-

lyze using standard polymer analytics. 

2.3.1. Ionic liquids  

In 1979, John S. Wilkes defined ILs as ionic substances (mostly organic cation 

with an inorganic anion) that melt below 100 °C. If the salts are liquid at room tem-

perature, he classified them as Room Temperature Ionic Liquids (RTILs). Although 

Wilkes described and defined ILs to what they are, their early discovery dates back to 

1877, when Charles Friedel and James Mason Crafts begun to work on acylation of 

aromatic systems observing a red oil on the bottom of the reaction flask. Unable to 

CATION

ANION

Figure 10 Common cation and anion structures forming ILs if combined. 
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identify the exact molecular structure (NMR as a standard technique was not availa-

ble), Paul Warden contributed characterizing physical properties allowing him to iden-

tify the structure of ethylammonium nitrate [(C2H5)NH3]+[NO3]- in 1914.160,161  

As collated in Figure 10, common cations are quaternary ammonium species 

either incorporated into heterocycles (imidazolium, pyridinium) or tethered with any 

(a)

(b)

Figure 11 (a)Plot illustrating the magnitude of each interaction parameters for ILs at room temperature: 
a –   hydrogen bond basicity; b – hydrogen bond activity; r – interactions via non-bonding electrons and 
π-electrons; s – polarizability; l – dispersion forces; (b) Possible association site of anion X illustrated on 
the example of an imidazolium cation: (i) primary C2 H-bond with a bond distance of ~2 Å; (ii) ring C4 
and C5 H-bond with a bond distance of ~2.2 Å; (iii) first methylene and first methyl H-bond with bond 
distances between 2.3 and 2.7 Å; (iv) secondary alkyl H-bond; (v) terminal methyl H-bond. Reprinted with 
permission from Ref. [166]. Copyright American Chemical Society 2016). 
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alkyl or aromatic rest. Common anions are halides forming polar ILs with higher melt-

ing points around 80 °C and perfluorinated species such as PF6
- and BF4

- forming non-

polar RTILs). The physical properties of ILs change drastically depending on the coun-

ter anion attached to the cationic core structure such as solubility and viscosity.162–165 

Presumably, the IL structural properties are associated with the interaction of the an-

ion with specific moieties of the core, either in an intramolecular or intermolecular 

fashion. Figure 11b illustrates possible interactions.166 The stronger the H-bonding 

properties of the counter ion, the more polar solvents are required to break the asso-

ciated strong forces. Hence, well H-bonding counter ions (such as chloride) increase 

the melting point, the viscosity and the ability to function as a solvent itself capable 

to dissolve very polar macromolecules – even starch and cellulose to a certain ex-

tent.167,168 Exchanging chloride against a more hydrophobic counter ion diminishes the 

H-bonding interactions fundamentally. PF6
-, for instance, weakly interconnects ionic 

liquids making them even liquid at room temperature.166  

The structure-property relationship of monomeric ILs is unique, which can be 

translated into the macromolecule after polymerization.169,170 Although PILs are always 

solids at room temperature, their viscosity is akin to those of polyelectrolytes and the 

counter ion exchange imparts them with responsive characteristics. The following 

section focuses solely on the proposed coiling behavior of polyelectrolytes and the 

characterization of these materials. 

2.3.2. Poly(Ionic Liquid)s: Characterization Aspects 

As noted in Section 2.2, polymers prepared via various polymerization tech-

niques are governed by a statistical process. Thus, a complete characterization in-

cluding structural information (obtained by NMR, ESI MS), molecular weight distribu-

tion (obtained for example by SEC, field flow fractionation171 or analytical ultracentrif-

ugation172 equipped with concentration-sensitive detectors) and hydrodynamic radii 

(obtained by diffusion ordered spectroscopy (DOSY) or dynamic light scattering (DLS)) 

is required. Polyelectrolytes feature specific characteristics as outlined in Section 

2.3.1. The counter ion has a strong impact on the global chain properties, including 

solubility, viscosity and polarity.160,161,164,166,169,170,173 Furthermore, polyelectrolytes re-

spond strongly to the solute’s salt concentration. Polymers in solution coil to maxim-

ize favorable interactions (e.g. van-der-Waals interactions, dipole-dipole interactions) 

and minimize non-favored interactions (e.g. caused by solvation).169,174 In addition, 

polyelectrolytes have to maximize the Coulomb interactions in such a fashion that the 
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repulsive interactions are minimized while maximizing the attractive interactions forc-

ing the polymer chain to form necklace-like conformations. Interestingly, such con-

formations resemble those illustrated in Figure 4b,173 where the charged macromole-

cule in an ESI droplet is regarded as a polyelectrolyte. Thus, the charge of a polymer 

forces the macromolecular chain to change the conformation to a necklace-like state. 

Increasing the salt conformation reduces the Debye screening length causing 

the expansion of the polyelectrolyte. SEC – as hydrodynamic radius sensitive standard 

characterization – is challenging: the column material and the polymer chain might 

interact. Commercially available SEC columns are based on PS microspheres. Polyelec-

trolytes can strongly interact with these column materials, preventing a pure SEC sep-

aration mechanism, which needs to be purely entropic (ΔS >> ΔH).169,174 Nowadays, 

state-of-the-art column materials for polyelectrolyte analysis are polyelectrolyte mi-

crospheres being either polycation or polyanion based. Since the Coulomb interaction 

are purely repulsive, the polymer will elute earlier. Indeed, the penetration depth into 

the porous material is governed by the maximum repulsive force. Most PILs are poly-

cations, thus, polycationic column material can be utilized for SEC characterization of 

polar PILs (mostly with a halide as counter ion).174 As SEC is a relative technique based 

on calibrating the elution time with molecular weights of fully characterized stand-

ards, a polyelectrolyte requires calibration based on a polyelectrolyte (as the hydro-

dynamic radius depends on the salt concentration). Unfortunately, the controlled 

preparation of polyelectrolytes is difficult. In general, only a few non-ionic polymers 

have been commercialized as standards for calibration purposes (such as PEG, PS, 

PMMA amongst others). Recently, Matyjaszewski and co-workers pioneered a full char-

acterization of hydrophobic PILs by THF-SEC,175 whereas Taton and co-workers re-

ported a comprehensive study on hydrophilic PILs (H2O-SEC) adding the PIL’s counter 

ion into the eluent.174 Mass spectrometry, on the other hand, was employed by several 

research groups. Moreover, Tenhu and co-workers successfully recorded the molecu-

lar weight distribution of different PILs by means of MALDI-ToF spectrometry. How-

ever, they could not identify single polymer chains within the obtained data sets.176 

Matyjaszewski and co-workers did not obtain convincing results by employing the ESI 

MS technique either. 175 

In summary, a careful literature scan on the characterization of PILs evidences 

major challenges that have been addressed recently. A reason for the fast analytical 

progress of these polyelectrolytes is based on the fact that more advanced character-

ization protocols become available. Nowadays, SEC with a plethora of column sets are 
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commercially available with a broad range of suitable calibration sets. MS as standard 

analytical tool has also advanced after Orbitrap as benchtop mass analyzer has been 

commercialized. The analysis of PILs should be feasible based on high-resolution MS 

with a suitable ionization protocol.  
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2.4. SINGLE CHAIN POLYMER NANOPARTICLES 

Nature has evolved unique techniques to generate precision sequence-defined 

macromolecules and to assemble them in the three-dimensional space for instance in 

proteins and DNA.177 Polymer researchers attempt to obtain similar results syntheti-

cally by mimicking nature, however two critical challenges remain: (i) the sequence-

definition of artificial macromolecules has advanced,178,179 yet there is no universal 

technique to produce a sequence-defined polymer on a multi gram scale. The produc-

tion involves sequential organic synthesis and high efforts.179 Furthermore, (ii), re-

searchers have studied the precision assembly of polymers in three dimensions, yet 

not achieved access to complex architectures as represented by enzymes. A promi-

nent candidate for the triggered formation of 3D structures are single-chain polymeric 

nanoparticles (SCNPs).180–186 As implied in the name, single chains undergo an intra-

chain collapse forming nanoparticles. They have found interesting applications in 

drug delivery,187 imaging,188 nano-containers and catalysis.189 As the present thesis ad-

dresses a novel characterization technique for SCNPs, chain collapse technologies and 

characterization techniques are briefly discussed.  

2.4.1. SCNP Collapse 

Typically, SCNP collapses are executed in dilute solution (< 1 mg∙mL-1) to fa-

vor intra-chain crosslinking. To date, a plethora of crosslinking chemistries has been 

established ranging from covalent crosslinking reactions (e.g. Friedel-Crafts alkyla-

tion,190 thermal191–193 and photochemical194–197 cycloadditions, free radical polymeriza-

tion,198,199 carbamate/urethane reactions,200 ring-opening reactions,201 “click” reac-

tions,202,203 transition metal-induced coupling reactions,200 Menschutkin reaction,204 

Bergman cyclization205,206 and photodimerization195,207) to non-covalent processes in-

cluding supramolecular chemistry (Hamilton wedge/cyanuric acid hydrogen bonding, 

2-Ureido-4[1H]-pyrimidinone (UPy) hydrogen bonding),182,208,209 and metal coordina-

tion.210–212 Most commonly, sophisticated synthetic processes have to be designed to 

equip monomers with a corresponding crosslinking motif. A subsequent (controlled) 

free radical copolymerization with a non-functional monomer yields macromolecules 

with statistically distributed crosslinking functionalities.201 In a selective point folding 

approach, often orthogonal folding motifs have to be precisely introduced at prese-



Theoretical Background and Literature Overview 
 

41 
 

lected and defined positions of the polymer chain,213 whereas in a statistically distrib-

uted copolymer, the folding motifs are randomly tethered leading to a repeat unit 

folding approach (Figure 12).194 Although selective point folding allows for precision 

collapse and a more defined tertiary structure, the synthetic efforts can be significant. 

After intra-molecular crosslinking, SCNPs require thorough characterization, which is 

facilitated by the (partial) disappearance of specific crosslinking moieties and a drastic 

morphological change. The following section is focused on the standard analytic plat-

forms to probe SCNPs folding. 

2.4.2. SCNP Characterization Methods 

The most powerful characterization tool to follow SCNP folding is SEC.214 The 

plethora of eluent/column combinations allow the analysis of a broad range of poly-

mers and intra-chain crosslinked SCNPs. However, the molecular weight of the SCNP 

is affected by its globular morphology and the absence of suitable calibration stand-

ards. A characteristic shift in the SEC trace confirms a reduction of the SCNPs’ hydro-

dynamic radius (high retention volume, low hydrodynamic radius) compared to the 

linear polymer (low retention volume, large hydrodynamic radius) – as long as the 

macromolecule elutes without remarkable enthalpy contributions. First theoretical 

considerations of Pomposo and co-workers215 can be utilized to calculate the hydro-

dynamic radius based on the apparent molecular weight. Hence, Equation (2) – intro-

duced in Section 2.1.6 – can be easily rearranged as: �ℎ = ଶ∙[�]∙ெହ∙ேಲ      (5) 

Figure 12 SCNP collapse via (a) selective point folding of orthogonal folding motifs or (b) repeat unit 
folding of identical folding motifs. 
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And further to: 

�ℎ = ʹ ∙ √ଷ∙��+భଵ଴�య
    (6) 

Thus, if the Mark-Houwink parameters (� and �) of the polymer system were 

precisely determined, the hydrodynamic radius can be determined from Equation (6). 

However, care must be taken that Mark-Houwink parameters of statistical copolymers 

do not exist for every feed ratio. Hence, the evaluation of the radius is highly uncer-

tain. Furthermore, after crosslinking, the architecture is changed from a linear chain 

(analogue to the calibration) to an intra-chain crosslinked structure, which will have a 

different hydrodynamic diameter. Hence, it is highly unlikely that Mark-Houwink pa-

rameters exist for single-chain nanoparticle making such calculations arguable.216 

Dynamic light scattering (DLS)217 is an alternative valuable technique where 

light of a specific wavelength (generated by a laser) travels through a solution con-

taining particles. Depending on the particle’s size, different scattering scenarios are 

considered:218  

 Rayleigh scattering (small particles compared to the light wavelength) 

 Mie scattering (particle size in the range of the light wavelength) 

 Geometric scattering (large particles compared to the light wavelength) 

Rayleigh scattering was first modeled by Lord Rayleigh, where the particle 

diameter must be smaller than the wavelength of the scattered wave; typically the 

upper limit is 1/10 of the wavelength. Both Mie and Rayleigh scattering are considered 

elastic scattering processes,218 in which the energy (and thus the wavelength and the 

frequency) of the light is not substantially changed. However, electromagnetic radia-

tion scattered by moving scattering centers undergoes a Doppler shift, which can be 

detected and used to measure the diffusion coefficient.219 DLS uses the Doppler Effect 

of particles in motion relative to the light beam. Due to the Doppler Effect, a frequency 

shifted spectrum is recorded as an envelope of multiple Lorentzian functions. As the 

shift in frequency caused by the Doppler shift is small compared to the incoming light 

beam, an interferometer cannot be used. Instead, it is convenient to Fourier transform 

the Doppler shift spectrum into a time-resolved autocorrelation function.220,221 As the 

intensity of the beam is correlated after a time τ, the correlation is high for very small 

times τ (few ms) but very small for long times τ (up to µs). The decay of τ with the 

intensity is exponential. Different algorithms taking the dispersity of the particle into 

account are available processing the decay producing the diffusion coefficient of the 
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particle.221 Best results are generated by monodisperse macromolecules with many 

scattering points resulting in high detector counts. Specifically, the hydrodynamic ra-

dii of SCNPs are ranging in the range of a few nanometers (see detailed and relevant 

discussion about absolute SCNP sizes below). On a molecular level, every single SCNP 

has a different hydrodynamic radius based on various assumptions: (i) the sample’s 

dispersity is strongly related to polymer science in general and is – to date – never 

monodisperse, (ii) the globular polymeric chain in solution is never identical and thus 

the folding scenarios never occur identically producing various different microarchi-

tectures, and (iii) different loop sizes between crosslinks is generated strictly related 

to the statistic process underlying in a repeat unit folding approach. Hence, each SCNP 

will have its distinct diffusion coefficient, and its corresponding Doppler shift during 

its motion. An autocorrelation function will be the envelope of many Doppler shift 

spectra, and thus, the evaluation will require sophisticated numerical analytic tech-

niques. Modern DLS setups are equipped with an appropriate software for disperse 

sample evaluation, yet the diffusion coefficient obtained will only represent the sta-

tistical value of all described scenarios.  

NMR spectroscopy is a powerful technology in organic synthesis. The high 

precision afforded by the chemical shift in the magnetic fields allows for fast and 

quantitative evaluation of the crosslinking process. Gradient pulsed experiments en-

abled new methodologies to measure molecules spatially resolved. Such diffusion or-

dered spectroscopy (DOSY) characterizations are powerful in determining the hydro-

dynamic radius of polymers – especially of SCNPs. At the heart of each DOSY experi-

ment are the gradient pulses encoding and decoding the diffusion information (Figure 

Figure 13 A pictorial description of the simplest DOSY pulse sequence (pulsed field gradient spin-echo). 
The first 1H pulse aligns the magnetization in the x-direction. The first gradient pulse creates the cork-
screw effect. The second 1H pulse inverts the magnetization vector in the x–y plane. The second gradient 
pulse undoes the corkscrew effect of the first gradient pulse. The data is then acquired. The gradient 
pulses are color labeled (red = 2%, green = 50%, blue = 95% of the maximum power of the gradient 
generator). Reprinted with permission from Ref. [222]. Copyright Royal Society of Chemistry (2017). 
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13).222 After aligning the molecule’s magnetization with a 90° pulse, the gradient (ap-

plied in different strengths ranging from 2% to 95%) delocalize the spin along the z-

axis in a corkscrew pattern.222 As molecules are diffusing along the z-axis, the effective 

magnetization vector will be altered depending on how much time (Δ) they have to 

diffuse. After time Δ, a second gradient pulse reverses the destructive misalignment 

effect of the first gradient and the effective magnetization can be measured. As the 

gradient strength is varied from 2% to 95%, the diffusion coefficient of a molecule can 

be determined be the decay of the relative intensity measured.222 

As both techniques measure the diffusion coefficient, the Einstein-Smolu-

chowski relationship relates the diffusion coefficient D to the particle’s mobility µ:223 ܦ = µ ∙ ݇஻ ∙ �   (7) 

If the Reynolds number is very small (as it is for molecules), the equation can 

be replaced by Stoke’s equation for spherical objects leading to Einstein-Stoke’s equa-

tion (r indicates the hydrodynamic radius of the polymeric particle in the NMR solu-

tion): ܦ = �ಳ∙�଺�∙�∙�     (8) 

Further morphological characterization of SCNPs is achieved via small angle 

X-ray scattering (SAXS),224 atomic force microscopy (AFM)188 or transmission electron 

spectroscopy (TEM).214 As these techniques have no relevance for the current thesis, 

the reader is referred to current literature. Most publications are concerned with the 

relative changes in hydrodynamic radii only. The recent work of Blasco et al. suggests 

a careful evaluation of these absolute data.225 For their work, an array of SCNPs re-

ported in the literature by means of their size (either determined by SEC, DLS, DOSY, 

viscosimetry or microscopic methods) were assessed and correlated to their Mn. Most 

remarkably, they calculated the density of the SCNPs, which should be between 0.1 

and 1.0 g∙mL-1 and identified that the most reliable data were produced by viscosi-

metric evaluation. Thus, they “submit that the careful analysis provided […] is critical 

for moving the field towards not only relative size change observations and their ra-

tionalization, but also absolute radii discussions, which are critical for the design of 

functional biomimetic entities”.225  

In summary, SCNPs are a demanding class of macromolecules from an analyt-

ical perspective. Currently, SCNPs are evidenced by a characteristic SEC shift towards 

higher retention time, or via morphological techniques such as DOSY, DLS, SAXS or 
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AFM. However, a direct view into the chemistry of the folded particles is not revealed. 

The present thesis closes this important analytical gap for SCNPs in Chapter 6. 
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2.5. LIGHT-INDUCED CHEMISTRY 

Sun light is a powerful source of energy comprising a broad range of wave-

lengths from UV light, visible light (400 nm – 650 nm) and infrared light.226 Nature 

processes the sun’s light energy in photosynthesis to convert CO2 into high-energy 

carbohydrates.227 Soon after the discovery of plant’s photosynthesis, scientists real-

ized the versatility of photochemistry and studied first fundamental photoconversions 

of organic molecules. As the current thesis addresses photodegradable polymers, the 

following section is focused on photochemical fundamentals with a short summary 

for photoligations. 

2.5.1. Concepts of Photochemistry 

The wavelength regime in which molecules absorb light is governed by elec-

tronic transition processes from their HOMO to the LUMO.228 A plethora of organic 

molecules consist of carbon, hydrogen, oxygen and nitrogen atoms. Such atoms entail 

2s and 2p molecular orbitals.228,229 During bond formation, the s and p orbitals form 

bonding and antibonding (σ/σ* as well as π/π*-orbitals) as well as non-binding orbitals 

(n).230 Non-binding orbitals are not involved in a chemical bond (i.e. lone electrons). 

To enable σ→σ* electron transitions in saturated hydrocarbons, high amounts of en-

ergy (~100-200 nm) are required as the electron experiences high attractive Coloumb 

forces by the close proximity to the nuclei. π→π* electron transitions, e.g. in aromatic 

systems, require less energy than σ→σ* electron transitions (~200-300 nm) as p-elec-

trons are slightly further apart from their respective nucleus. If the aromatic system 

is conjugated by adjacent π-systems, the required energy can be decreased, leading 

to a bathochromic effect (400-700 nm).231 If non-bonding orbitals are involved in elec-

tron transitions, they most likely represent the HOMO and thus, n→π* electron tran-

sition are possible. Generally, an electron transition is strong for identical orbital sym-

metry.232 However, electron transitions between n-orbitals and the π*-orbital are sym-

metrically forbidden and exhibit only weak intensities. 

After excitation from the ground electron state (HOMO) to a higher electron 

state (e.g. LUMO), the electron has a certain lifetime in the excited state, upon which 

the molecule undergoes radiative or non-radiative deactivation.233 
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Absorption 

Absorption transfers the electron into an excited state with the same spin 

multiplicity (S→S transition). According to Franck and Condon, the electron excitation 

is sufficiently fast, so that the nuclei motion can be neglected (timescale of 10-15 sec-

onds).234–236 The highest intensities are realized if the electron is excited vertically 

above to the excited state. Figure 14 illustrates the Franck-Condon principle, where 

an absorption from the most populated S0,0→S1,1 is most favored.237 

Internal conversion and vibrational relaxation 

The excited molecule internally converts the absorbed energy within the same 

spin system via environmental collision or vibrational relaxation. The so-called inter-

nal conversion is a fast pathway of non-radiative deactivation on timescales of 10-12 

seconds.238  

Fluorescence 

Energy can be released in a radiative pathway within the same spin multiplic-

ity. After non-radiative relaxation (e.g. S1,4→S1,0 Kasha’s rule),239 the remaining energy 

Figure 14 Jablonski diagram representing energy levels and spectra. Solid arrows indicate radiative tran-
sitions as occurring by absorption (violet, blue) or emission (green for fluorescence; red for phosphores-
cence) of a photon. Curvy arrows represent non-radiative transitions (violet, blue, green, red). Internal 
conversion is a non-radiative transition, which occurs when a vibrational state of a higher electronic state 
is coupled to a vibrational state of a lower electronic state. In the notation of, for example, S1,0, the first 
subscript refers to the electronic state (first excited) and the second one to the vibrational sublevel (v = 
0). In the diagram the following internal conversions are indicated: S2,4→S1,0, S2,2→S1,0, S2,0→S1,0 and S1,0→S0,0. 
The dotted arrow from S1,0→T1,0 is a non-radiative transition called intersystem crossing, because it is a 
transition between states of different spin multiplicity. Below the diagram sketches of absorption-, fluo-
rescence- and phosphorescence spectra are shown. 
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to convert the electron into the ground state is achieved by a spontaneous emission 

of a photon. The fluorescence lifetime is approx. 10-9 seconds.240 

Intersystem Crossing (ISC) 

The molecule can be transferred from an excited singlet spin multiplicity to 

an energetically lower excited triplet spin multiplicity (electron spin flip). Such transi-

tions are quantum mechanically forbidden and thus only a fraction of excited mole-

cules will undergo the ISC. The underlying mechanism of ISC is a spin-orbit interac-

tion, which correlates with the atomic number. Thus, heavy atoms (high atomic num-

ber) accelerate the ISC significantly.241 

Phosphorescence 

In the triplet state, the molecule releases the energy in internal conversions 

until the triplet’s excited ground state is reached (e.g. T1,0). An emission via a photon 

(as in the case of fluorescence) is possible, yet the spin flip is not favored. The mole-

cule is spin trapped and has a lifetime of >10-3 seconds to undergo chemical reactions 

prior to a radiative deactivation by photon emission.240  

Photoinitiated Processes  

Norrish and coworkers studied the electron transition of carbonyl derivatives 

(n→π* electron transition) extensively.242 They observed that the photoinduced homo-

lytically carbonyl-carbon bond cleavage in α- or β-position (refer to Scheme 4) is more 

favored from the triplet state after ISC (S1,0→T1,x). As many commercial photoinitiators 

are based on such Norrish-type reactions, their fundamentals are described in the 

following. As collated in Scheme 4, carbonyl molecules undergo a homolytic α-cleav-

age (Norrish Type I), resulting in two radical species.242 They can further react in re-

combination, disproportionation, H shift or decarboxylation reactions. Yet, in the 

presence of a monomer, Norrish-Type I photoinitiators start the polymerization, 

equipping the chain terminus with either one of the two radical species or radical by-

products thereof. If the δ-carbon is subject to a radical-stabilizing environment (e.g. 

secondary substituted carbon), a Norrish-Type II reaction takes place.243 After excita-

tion, the oxygen-located radical can abstract the proton from the δ-carbon. Hence, the 

biradical molecule can undergo a cyclization reaction, a β-cleavage or a recombination 

to the starting material. If the δ-carbon does not sufficiently stabilize the radical but 

the carbonyl carbon does (e.g. in case of benzophenone), a proton can be abstracted 

from donor molecules. The thus generated donor radical can initiate a polymerization. 
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If no donor molecule is available, excited benzophenone undergoes a fast pinacol 

coupling.242  

Scheme 4 Overview scheme of Norrish type I and type II reaction pathways.242 
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2.5.2. Photoinduced Diels-Alder Reactions 

In the course of the present thesis, selected photoinduced reactions have 

been utilized to obtain characteristic material properties, including benzophenone 

initiators (refer to Chapter 7). In addition, o-quinodimethane structural motifs have 

been used as outlined in Section 4.4. The current section will focus on o-quinodime-

thanes for photoinduced Diels-Alder reactions. As introduced by Robert Burns Wood-

ward and Roald Hoffmann in their set of organic rules for pericyclic reactions, Diels-

Alder ([4+2]) cycloadditions are thermally induced i.e. the σ bonds are formed at am-

bient temperature or cleaved upon elevated temperatures.244 However, the reactive 

intermediates (i.e. diene or ene) for the thermally driven Diels-Alder reaction can be 

generated via UV exposure of stable compounds.  

The first report of an o-quinodimethane was reported in 1961 by Yang and 

Rivas.245 However, Porter and Tchir246,247 finally unraveled their UV-activation mecha-

nism based on the precursor 2-methoxy-6-methylbenzaldehyde. The mechanism is 

depicted in Scheme 5.  

Upon UV irradiation, the carbonyl moiety of 2-methoxy-6-methylbenzalde-

hyde is excited (S0,0→S1,x) into a n→π* electron transition followed by a fast ISC into 

the triplet state (S1,0→T1,x). Via a Norrish Type II reaction, the proton located at the 

Scheme 5 Mechanism of the o-quinodimethane formation as adapted from Porter and Tchir.246,247 
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methyl group is abstracted and thereby the carbonyl motif of 2-methoxy-6-methylben-

zaldehyde forms a biradical. Internal conversion results in two energetically close iso-

mers (E/Z) as the triplet state conically intersects with the E/Z singlet ground state.248 

The E isomer displays a reasonable lifetime whereas the Z isomer undergoes a rapid 

1,5-sigmatropic rearrangement to the starting material. The E isomer reacts in a ther-

mal Diels-Alder reaction with an ‘ene’. As the activation is driven by UV light, spatially 

resolved structures can be realized (e.g. spatially tethered surfaces). Recently, Barner-

Kowollik, Wegener and co-workers took advantage of this powerful photoisomeriza-

tion in order to manufacture 3D printed structures below the diffraction limit.159 The 

orthogonality to other reaction pathways allows for producing versatile macromolec-

ular architectures.159,249–255 

In summary, photoinduced reactions are a powerful tool to fabricate poly-

meric materials. Many light-induced mechanisms have been elucidated by Norrish or 

Porter and co-workers. The electron excitation to a higher singlet state have all pho-

tochemical reactions in common. The excited state constitutes the basis for a plethora 

of possible pathways for the molecule to process the absorbed energy. Jablonski in-

troduced a clear schematic representation on ISC, internal conversion, fluorescence 

and phosphorescence. Therefore, the present section showcased the fundamentals of 

photoinduced reactions. The next section will introduce light-responsive trigger units 

for the design of light degradable polymers. 
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2.6. SELF-IMMOLATIVE POLYMERS: NOVEL DE-

GRADABLE MATERIALS 

Progresses in medicine and biology introduce novel methods to fight cancer, 

(lethal) diseases and dementia. However, the human immune system is exceptional 

strong in fighting exogenous substances such as an administered drug. Polymer 

chemistry is a suitable platform for future drug delivery as certain polymers (e.g. 

PEG,114 PAEs115,116 and poly(phosphoester)s (PPE)256) are invisible for the human immune 

system (‘stealth’ technique). However, the polymeric material will remain in the body 

after the drug has been delivered, and thus its removal has to be addressed. Here, 

the interplay of highly functional polymer scaffolds for drug assembly and cleavable 

backbone structures is important. As result of increased public and private funding, 

an entire research area focuses on novel degradable polymers for applications in med-

icine.257–261  

A widely utilized degradable polymer is the poly(lactide) (PLA), which is ob-

tained by the ROP of lactide. Lactides entail ester moieties enabling a suitable pathway 

(i.e. hydrolysis) for subsequent degradation. Thus, PLA is utilized e.g. in medicinal 

threads.262 Although PLA and its degradation products are biocompatible, the degra-

dation is slow (up to days) and the polymer is not amenable to backbone functionali-

zation and property adjustment. Furthermore, the hydrolysis as degradation trigger 

is not controlled.  

As the present thesis addresses the synthesis and characterization of novel 

degradable polymers entailing precision (i.e. in each repeat unit) trigger systems, the 

following section focuses on light-responsive trigger units and their respective SIPs.  

2.6.1. Stimuli-Responsive Triggers 

Scheeren, Shabat and McGrath reported the first SIPs almost simultane-

ously,263–265 implementing self-immolative dendrimers for drug delivery. Boydston and 

co-workers defined SIPs as “having a linearly depolymerizing main chain of greater 

than 10 repeat units”.266 Although the synthesis of SIPs is of remarkable interest for 

the corresponding community, the present section is focused on the disassembly 
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mechanism and later on the design of light-responsive trigger units. For further de-

tails, the reader is referred to the most recent reviews in the field.266–269 

Of even more significance than the self-immolative linker are the trigger units, 

as the choice of stimuli restrains the spatial and temporal control of the triggered 

destruction of the polymer. As many SIPs have strong association with biological sys-

tems due to their envisaged drug delivery, the enzyme-mediated cleavage is a fre-

quently employed trigger.270–276 For linear SIPs, the enzymatic trigger event was identi-

fied as the rate limiting step for the polymer disassembly.273 Of similar important are 

redox-mediated cleavages as their installation is accessible via, e.g., transition metal-

mediated reductions,263,277–281 reduction of disulfide linkages282 or oxidation of boro-

nates with peroxides.271,283–289 In particular, disulfide triggers are attractive for biologi-

cal systems as the reducing intracellular environment can initiate the disassembly.282 

Less biologically relevant are nucleophile-mediated motifs. Here, no additional water 

is required for the trigger event and hydrolytically susceptible SIPs can be fabri-

cated.290–292 

Photomediated cleavage is arguably the most important trigger and regarded 

critical for future on-demand debonding systems. As the current thesis presents light-

adaptive SIPs, the following part will be entirely focused on the photomediated cleav-

age. Currently, the demand for spatially and temporally controlled precision payload 

release under non-invasive, mild conditions drives research interest into light-adap-

tive SIPs. These degradable materials will disassemble upon irradiation with visible or 

near infrared (NIR) sources. However, the toolbox of existing photocleavable com-

Figure 15 Cartoon of a SIP with a stimulus-responsive unit (red) and self-immolative repeat units (blue) 
endowed with small molecule output (green). Stimuli applied to SIPs can be enzyme, redox, nucleophile, 
acid/base or light. Reprinted with permission from Ref. [266]. Copyright American Chemical Society 
(2012). 
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pounds is small, comprising coumarins,293–295 o-nitrobenzyl alcohol,296–298 and benzo-

quinones.299 Most current approaches introduce the light responsive unit either as end 

group295 or at the end of a branch within each repeating unit.293,298  

Figure 16 depicts two prominent candidates and their cleavage mechanisms 

for the photomediated cleavage being o-nitrobenzylalcohol (Figure 16A) and couma-

rin-4-ylmethyl alcohol (Figure 16B). Both photo-removable protecting groups are able 

to undergo single photon (1P) and two photons (2P) absorption with reliably high 

Goeppert-Mayer units (ͳ ܯܩ = ͳͲ−ହ଴ �݉ସ ∙ ݏ ∙ �ℎ݊݋ݐ݋−ଵ ∙ –ଵ).281 The Goeppert−�݈ݑ��݈݋ܯ

Mayer unit describes the absorption of two incident photons as a cross-section, where 

both photons have to encounter the material simultaneously. The higher the unit the 

likelier is an absorption process.300,301 o-Nitrobenzylalcohol was reported in 1970 as an 

Figure 16 Proposed cleavage mechanisms for o-nitrobenzyl alcohol (A) and coumarin-4-ylmethyl alcohol 
(B). 



Theoretical Background and Literature Overview 
 

55 
 

effective protecting group.302 The proposed cleavage mechanism suggests an n→π* 

electron transition involving the nitroso motif attached to the aryl rest to a singlet 

state. A 1,5-sigmatropic rearrangement leads to (E)-aci-nitro, whereas an ISC to the 

triplet state followed by a 1,5-sigmatropic rearrangement produces (Z)-aci-nitro.303 

Both isomers can undergo a cyclization, whose subsequent ring-opening ultimately 

liberates the X group as carbonate or carbamate (see Figure 16A).  

Coumarin-4-ylmethyl motifs are promising candidates for biologically relevant 

applications.294,295,304 The attractive feature of the coumarin cage is the (pro)fluorescent 

property of the material, which can be used as self-reporting materials.303 Installation 

of electron-donating groups on the 7-position of the coumarin can red-shift the ab-

sorption into the visible light region.303 The excepted mechanism is illustrated in Fig-

ure 16B. It is proposed that the coumarin-4-ylmethyl motif is exited in an n→π* elec-

tron transition to a singlet state. The leaving group is expelled via a nucleophilic sub-

stitution (first order) reaction mechanism, where a carbocation is formed. The carbo-

cation can react with a nucleophile (e.g. water), and thus, liberate the leaving group 

X.  

The present thesis presents light-degradable polymers based on benzophe-

none (BP) for the photomediated cleavage. A full mechanistic scenario of the degrada-

ble BP polymer system is outlined in Chapter 7, whereas the current section focuses 

on the mechanistic details revealed by various scientists (see Figure 17). In 1996, 

Figure 17 Reaction mechanism of BP via a H-abstraction (photoreduction) and subsequent radical-radical 
coupling (Oinakol coupling), Paterno-Büchi reaction with a double bond or photosensitizing organic mol-
ecules. 
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Porter and coworkers reported 2-benzoylbenzoic acid as highly effective photo pro-

tective group for alcohols and thiols.305 The chemistry of BP is – in general – well ex-

plored with a plethora of possible applications in materials science, biological systems 

and polymer science.306 After excitation via an n→π* electron transition, BP can be 

used as photosensitizer, for [2+2] cycloadditions, and most importantly it undergoes 

H-abstraction and radical recombination. 

2.6.2. Depolymerization Mechanism of SIPs 

Upon removal of the triggering group from the SIP chain end, three distinct 

depolymerization mechanisms have been demonstrated: (i) 1,6- and 1,4-eliminations 

to form quinone methides, (ii) cyclization to form imidazolidinones, oxazolidinones, 

or 1,3-oxathiolan-2-ones, and (iii) cleavage of hemiacetals to dialdehyde monomers.266 

Qualitatively, the depolymerization kinetics is as follows: hemiacetal eliminations < 

1,6-eliminations < 1,4-eliminations < cyclization−eliminations.266 Rather than explain-

ing every single depolymerization mechanism, special attention will be paid to a re-

cent fascinating work of Shabat and co-workers.307 The work of Shabat and co-workers 

introduce – for the first time reported – a self-reporting SIP based on chemilumines-

cence, including a degradation of the main chain and the prochemiluminescent motif 

alike. 

As outlined in Figure 18 a novel self-immolative monomer has been designed 

and polymerized to yield a polycarbonate. The disassembly is a self-reporting system 

by virtue of the dioxetan ring, which is prochemiluminescent emitting blue light upon 

Figure 18 Chemiluminescent SIPs as published by Shabat and co-workers implementing a dioxetan ring 
as luminescent unit. Various triggers have been utilized (i.e. nucleophilic and redox active). Reproduced 
with permission from Ref. [307]. Copyright American Chemical Society 2017. 
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the degradation. Most remarkably, Shabat and co-workers take advantage of the 

chemically initiated electron-exchange luminescence (CIEEL) mechanism transferring 

the energy to the oxetane. Thus, the chemiluminescence reaction is triggered. 

In summary, light-triggered chemistry is a valuable strategy to introduce de-

gradable polymers. The present section highlighted SIPs entailing stimulus responsive 

trigger units as representative candidates for such degradable systems. Furthermore, 

the disassembly mechanism is illustrated. The section equips the reader with the fun-

damental knowledge about phototriggered SIPs that are further studied in Chapter 7.
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3.1. MOTIVATION 

Non-polar polymers represent a vast amount of the industrially produced pol-

ymers. Commencing with poly(ethylene), to poly(propylene), poly(vinyl chloride), 

poly(tetrafluoroethylene), PBD and PS, these polymers have specific properties for 

unique applications. Furthermore, they are robust and stable, may retaining their 

structural integrity even at elevated temperatures, under high twisting forces or under 

high pressure. An in-depth analysis including their structural assessment is thus es-

sential for both academic and industrial research. SEC, NMR, IR and UV have funda-

mentally contributed to characterizing these materials, however, these techniques fail 

in imaging the chain structure. MS has advanced as a powerful characterization tech-

nique for non-polar polymer structures, mainly due the strong ionization provided by 

MALDI. Here, poly(hydrocarbons) such as PE, PBD and PS can be ionized sufficiently. 

However, in order to ionize PE – as the chain structures entails only CH2 motifs – 

requires end group modification with a charged chain terminus (e.g. ammonium, 

phosphonium). As discussed in Section 2.1.3, the ionization mechanism in ESI is com-

plex including solvent/analyte interactions as well as charge/solvent and charge/an-

alyte interactions. In positive ion mode, synthetic polymers can be charged by com-

plexation with protons, alkali metal ions (Li+, Na+, K+), ammonium, silver(I), Cu(II) and 

Co(I).308 Before starting the in-depth investigation on sufficiently ionize poly(hydrocar-

bon)s with low coordination tendency, PS mainly formed singly charged species, 

whereas ESI failed in ionizing PBD.  

Motivated by the current status of insufficient ESI ion abundances for non-

polar polymers and the demand to generate multiply charged species (supercharging) 

allowing to elucidate high-molecular weight polymers even beyond the mass range 

dictated by the employed mass analyzer (i.e. Orbitrap < 8000 m/z), a mass spectro-

metric access route to analyze non-polar poorly ionizing synthetic polymers is re-

ported, exploiting supercharging technology by chloride attachment. The mass spec-

trometric procedure allows for the characterization of polyhydrocarbons, including 

                                           
1 Poly(butadiene) and poly(styrene) samples have been provided by Polymer Standard Service 
(PSS, Mainz). ESI MS measurements were jointly performed with M. Cecchini (equal contribu-
tion). S. Reale is thanked for discussions. A. S. Goldmann and C. Barner-Kowollik have super-
vised the project. This chapter is adapted with permission from Steinkoenig, J.; Cecchini, M. 
M.; Reale, S.; Goldmann, A. S.; Barner-Kowollik, C. Macromolecules 2017, 50, 8033-8041. Cop-
yright 2017 American Society of Chemistry.  
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hardly ionizable polymers such as PS (ranging from 1700 g·mol-1 to 18000 g·mol-1), 

and – for the first time reported using ESI as ionization method – PBD (ranging from 

1000 g·mol-1 to 10000 g·mol-1). As described in Section 2.1.4, water as ESI solvent is 

a critical ingredient for a successful supercharging effect. Thus, the method is also 

applied to water-soluble synthetic polymers including poly(2-vinylpyridine) (P2VP) and 

poly(acrylamide) (PAAm). The powerful chloride attachment enables the detection of 

multiply charged polyhydrocarbons (up to quadruply charged). For the current pro-

ject, a systematic assessment of the manipulation of these charge states using super-

charging agents (sulfolane, propylene carbonate and m-nitrobenzyl alcohol) is carried 

out, and described in detailed in the following section. 
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3.2. RESULTS AND DISCUSSION 

The following section is divided into two parts: (i) establishing a sufficient 

ionization pathway generating multiply charged ions during ESI to enable the MS anal-

ysis of non-polar polymers, and (ii) the manipulation of the charge state of PS, P2VP 

and PAAm using supercharging agents.  

Figure 19 illustrates the interplay of ionization method, supercharging agents 

and synthetic polymers explored in the current chapter. Hence, a detailed presenta-

tion of the results is carried out.309  

Figure 19 Illustration of the employed supercharging agents (sulfolane, propylene carbonate and m-
nitrobenzyl alcohol) for the investigation of the polymers (PS, poly(2-vinylpyridine) (P2VP) and poly(acryla-
mide) (PAAm) via chloride attachment in negative ion mode. Reprinted with permission from Ref. [310]. 
Copyright American Chemical Society (2017). 
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Negative ion mode ionization via chloride attachment 

PS is a versatile polymer enabling the preparation of sophisticated molecular 

architectures, (amphiphilic) block copolymers,310 and styrene-type polymers such as 

poly(vinylbenzyl chloride) serves as a building block for postmodifcation.311 The main 

mass spectrometric characterization of PS relies mainly on MALDI-ToF, whereas ESI 

studies are limited to short PS chains (up to 2000 g∙mol-1)312 via various cationiza-

tions.308 The major disadvantage of cationization is that it does not readily promote 

multiple charging. Although multiply charged ions can cause isotopic overlaps and 

might hamper a detailed evaluation, highly charged species are the only access route 

to high-molecular weight polymers having their mass beyond the mass range of the 

analyzer. Herein, a powerful mass spectrometric technology is presented to analyze 

PS – even beyond the mass range of the mass analyzer enabled by the generation of 

multiply charged species via chloride attachment. High signal intensities were 

achieved by doping the ESI solvent (dichloromethane/methanol = 3:1 (v/v)) with 0.1% 

(w/w) NaCl. No significant [NaCl]xCl clusters were observed in negative ion mode using 

the QExactive Orbitrap. However, on a QExacative Plus (BioPharma option) a higher 

ion sensitivity enabled the detection of salt cluster formation. Thus, it is recom-

mended not to exceed 50 mM NaCl concentration to avoid salt cluster formation. The 
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Figure 20 ESI-Orbitrap mass spectra of PS in negative ion mode (via Cl- attachment) (left) and positive ion 
mode (via Na+ attachment) (right). For the molecular weight of Mn = 1700 g∙mol-1 PS is entirely singly 
charged () ionized by chloride or sodium ion. At Mn = 3400 g∙mol-1 PS is singly charged ionized by so-
dium, and singly () and double charged () ionized by chloride. For the molecular weight of 
Mn = 9000 g∙mol-1 PS cannot be detected in positive mode, whereas chloride attachment in negative mode 
promotes doubly () and triply () charged species. For the molecular weight of Mn = 18000 g∙mol-1 PS 
cannot be analyzed in positive ion mode, whereas chloride attachment promotes triply () and quadruply 
charged () species. All PS samples were obtained from Polymer Standard Service (PSS). Reprinted with 
permission from Ref. [310]. Copyright American Chemical Society (2017). 
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comparative study of sodium ionized PS and chloride ionized PS (Figure 20) highlights 

two important aspects of our mass spectrometric technique: (i) higher molecular 

weight PS (Mn = 9000 g∙mol-1 and Mn = 18000 g∙mol-1) cannot be investigated in posi-

tive ion mode (via complexation to sodium). As main reason the low metal affinity 

either to the phenyl structure (ion-π interaction) or to the alkyl chain (H-binding affin-

ity) is cited.166 Thus, exclusively singly sodiated () PS ions were identified in positive 

ion mode. In contrast, chloride possesses high H-binding affinities resulting in 

stronger coordination tendency with either the phenyl part or the alkyl part of the 

polymer.313 The most evident observations were therefore (ii) the doubly (), triply 

(), and even quadruply () charged PS species, where PS species with a degree of 

polymerization (DPn) up to 180 were detected (refer to Figure 21). As revealed by the 

measurements (refer to Figure 20), the charge state increased with increasing molec-

ular weight. These observations were in good agreement with the CEM, where the 



 



Figure 21 Singly (), doubly (), triply (), and even quadruply () charged PS with their individual 
polymer structure determined by comparing the experiment with the simulation. An expanded spectrum 
and the assignments can be found in the Appendix (Fig. A 1 and Tab. A 1). Reprinted with permission 
from Ref. [310]. Copyright American Chemical Society (2017). 
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polymer chain is released incrementally into the gas phase. In line with the CEM ioni-

zation (see Section 2.1.3), long polymer chains were capable of carrying more charges 

due to the reduced Coulomb repulsion afforded by enlarged chain conformations. 

The negative ion mode ionization via chloride attachment was further applied 

on ionization of PBD, where ESI failed in positive ion mode. PBD is a key industrial 

polymer with multiple applications.314 Especially, the (block)copolymerizations315 and 

advanced post-functionalization of the alkene double bond316 drive the demand to 

enhance the existing characterization techniques for this important class of polymer. 

Similar to PS, chloride possesses a high H-bonding affinity resulting in a strong inter-

action between the ion and either an alkyl part (H-Cl interaction) or a double bond (π-

Cl interaction) of PDB. Herein, the first ESI mass spectrometric analysis of PBD is pre-

sented as a new analytical technology platform, which is not restricted to low molec-

ular weight PDB (Figure 22) but enables the assessment of molecular weights up to 

10000 g∙mol-1. As observed for PS, the strong H-bonding of chloride promoted multi-

ple charges, allowing for the detection of masses beyond the analyzer mass range 

restricted to 6000 m/z. As collated in Figure 22, four PDB samples ranging from 

Mn = 1000 g∙mol-1 to Mn = 10000 g∙mol-1 have been analyzed. Chain-length dependent, 

the charge state increased from singly charged (labeled with ) to doubly charged 
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Figure 22 Mass spectra of PBD in negative mode (via Cl- attachment) and positive mode (via Na+ attach-
ment). At Mn = 1000 g∙mol-1, Mn = 2000 g∙mol-1, and Mn = 4000 g∙mol-1 PBD is entirely singly charged () 
ionized by chloride. At Mn = 10000 g∙mol-1 chloride attachment promotes doubly () charged species. 
PBD cannot be analyzed in positive mode. Reprinted with permission from Ref. [310]. Copyright American 
Chemical Society (2017). 
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(labeled with ) (refer to Figure 23). In contrast, the analysis of PDB in positive ion 

mode via Na+ attachment was not successful. 

High Resolution Mass Spectrometric Access to Nitroxide Containing Pol-

ymers2 

Before a detailed discussion of the charge state manipulate using supercharg-

ing agents closes the present section, an important application of the novel negative 

ion mode attachment technology is presented. A full discussion including potential 

applications of such polymers will be presented in T. Fischer’s doctoral thesis, with 

whom the candidate shares aspects of the presented results. Here, key findings of the 

study of nitroxide-containing polymers are reported,317 which are – due to the pres-

ence of unpaired spins – highly challenging to analyze via NMR techniques. Thus, the 

nitroxide content within the polymer chain structure was varied between 11.3 and 

29.1 mol% in a statistical copolymer consisting of poly(styrene-stat-vinylbenzyl chlo-

ride) (p(S-stat-VBC), 4800 ≥ Mn / g∙mol-1 ≥ 11100), where 4-carboxy-2,2,6,6-tetra-

methylpiperidine 1-oxyl (4-carboxy-TEMPO) units were attached by post-polymeriza-

tion modification. By carefully evaluating the isotopic pattern of the nitroxide contain-

ing polymers, it was demonstrated that the persistent nitroxyl radical retained its 

structural integrity during the soft ionization process employing spray currents up to 

                                           
2 T. Fischer performed all synthetic work including polymer preparation and post-polymerization 

modification. ESI MS measurements were performed by J. Steinkoenig. H. Woehlk is acknowledged for EPR 

measurements. J. Blinco and K. Fairfull-Smith are thanked for discussion. J. Steinkoenig designed and C. 

Barner-Kowollik motivated and supervised the project. This chapter is adapted with permission from 

Fischer, T.; Steinkoenig, J.; Woehlk, H.; Blinco, J. P.; Fairfull-Smith, K. E.; Barner-Kowollik, C. Polym. Chem. 

2017, 8, 5269-5274. Copyright 2017 Royal Society of Chemistry. 

 

Figure 23 Singly (), and doubly () charged PBD with their individual polymer structure determined by 
comparing the experiment with the simulation. An expanded spectrum and the assignments can be 
found in the Appendix (Fig. A 3 and Tab. A 3).  Reprinted with permission from Ref. [310]. Copyright 
American Chemical Society (2017). 
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4.3 kV and in-source collision induced dissociation energies up to 30 eV using the 

chloride attachment technology in the negative ion mode. The nitroxide-containing 

polymers ionized sufficiently, most likely enabled by the styrene motif of the polymer. 

However, increasing amounts of nitroxide mol% incorporated into the polymer struc-

ture led to high-molecular weight gas-phase aggregates (see Figure 24). Cimino et al. 

reported a high tendency to form hydrogen bridges between TEMPO and an H-do-

nor.318 Additionally, Mendenhall and Ingold reported the reversible dimerization of 

nitroxide radicals at low temperatures, suggesting the formation of aggregates.319 

With increasing molar ratios of TEMPO, more aggregated species were generated. 

However, HCD tandem MS experiments potentially allowing for the structural assess-

ment of such aggregated species are limited to a mass range below 2500 m/z, and 

thus, have not been conducted in the present study. The generation of aggregated 

species was more pronounced in situations when the polymer contained 30 mol% of 

a)

c)

b)

d)

Pϭ’
Mn = 4800 Da

11.3 % TEMPO

Pϯ’
Mn = 6900 Da

16.3 % TEMPO

PϮ’
Mn = 8600 Da

27.8 % TEMPO

Pϰ’
Mn = 11100 Da

29.1 % TEMPO

Figure 24 a) Overview ESI mass spectra of the nitroxide containing polymer P1’ from m/z 1500 to 6000 
recorded in negative ion mode, showing some minor high molecular weight species between m/z 4000 
to m/z 6000. b) Overview ESI Orbitrap mass spectrum of P2’ from m/z 1800 to 6000 measured in neg-
ative ion mode with increasing ion abundance of higher molecular weight species compared to a). c) 
Overview ESI Orbitrap mass spectrum of P3’ from m/z 1900 to 6000 measured in negative ion mode, 
showing a significant increase of ion abundance of higher molecular weight species compare to a) and 
b). d) Overview ESI Orbitrap mass spectrum of P4’ from m/z 1800 to 6000 recorded in negative ion 
mode. Clusters detected in the mass range between m/z 3500 and m/z 6000 cannot be identified due 
to insufficient resolution. Such high-molecular weight species are out of range for higher-energy collision 
dissociation tandem MS experiments (<2500 m/z). Reprinted with permission from Ref. [318]. Copyright 
Royal Chemical Society (2017). 
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free radicals indicated by a strong baseline drift. Furthermore, when the molecular 

weight was increased keeping the free radical molar ratio constant at close to 30 

mol%, the mass spectrum of P4’ (Figure 24d) had a strong baseline drift, being much 

more pronounced than for the smaller polymer P3’. Nonetheless, the non-aggregated 

species between 2000 m/z and 4000 m/z were unambiguously assigned to radical 

containing species (see Figure 25) as identified by their isotopic pattern. 

Charge state manipulation by supercharging agents 

As discussed in Section 2.1.4, supercharging agents have a fundamental in-

fluence on the ionization process. Importantly, in order to study supercharging a cru-

cial requirement is that the species of interest is capable of forming multiple charges. 

With the negative ion mode chloride attachment developed, the subsequent research 

interest is to identify parameters effecting the observed charge states. In the litera-

ture, an extensive study has been performed on various proteins (as they promote 

multiply charged species readily in ESI), however, a full synthetic macromolecular as-

sessment has still been missing. The present chapter closes this important analytical 

gap. In order to provide a well-organized discussion of the supercharging effect, the 

results of the water-soluble polymers PAAm and P2VP are presented, which are in 

good agreement to Konermann’s molecular dynamics simulations (described in Sec-

tion 2.1.4). Subsequently, the supercharging results of the non-polar PS are discussed. 

Figure 25 Expanded Region of the ESI-MS spectrum of polymer P1’ between 2480 and 2605 m/z. The 
most abundant species are labelled as well as the repeating unit of PS. Reprinted with permission from 
Ref. [318]. Copyright Royal Chemical Society (2017). 
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As revealed by the supercharging experiments, the charge state of PAAm 

strongly reacted to the addition of auxiliary agents. It is important to note that PAAm 

was prepared with a water-soluble initiator and thus carried a sulfite as functional end 

group (refer to Figure 26). Consequently, the end group had a fundamental influence 

on the charging behavior of the entire polymer and should be considered for the eval-

uation (and comparison) of the data. PAAm 13700 g·mol-1 Figure 27 was explored as 

polymer as the molecular weight is beyond the mass range (here, Orbitrap QExacative 

was used with a mass limitation of < 6000 m/z). Figure 27A compares the influence 

of sulfolane ranging from 5% (v/v) to 10% (v/v). As the results with propylene car-

bonate were less successful, the spectra are reported in the Appendix Fig. A 4. Here, 

only the addition of sulfolane as supercharging agent is discussed. The most im-

portant observation is that the ion abundance increases significantly. Furthermore, 

zooming into the spectra (Figure 27B) reveals species of higher charge states appear-

ing in agreement with the increased amount of supercharging agent. Without any 

 



Figure 26 Singly (), doubly () and triply () charged PAAm with their individual polymer structure 
determined by comparing the experiment with the simulation. Peak assignments of the ESI Orbitrap mass 
spectrum of PAAm showing the labels, the resolution (obtained by the Xcalibur software), the experi-
mental m/z and theoretical m/z values, ∆m/z and the proposed chemical structures are provided in the 
table. Reprinted with permission from Ref. [310]. Copyright American Chemical Society (2017). 
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auxiliary agent, the spectrum contained doubly charged species (labeled with ). Af-

ter the addition of 5% (v/v) and 10% (v/v) sulfolane, triply charged (labeled with ) 

and quadruply charged species (labeled with ) indicated a strong charge shift from 

entirely doubly charged species to a higher charge state. Thus, the supercharging 

agent promoted the ionization of large PAAm chains via multiple chloride attachment.  

Next, the supercharging experiments of P2VP are discussed. The results from 

the negative ion mode elucidation have been placed in the Appendix (Fig. A 4,5 and 

Tab. A 4,5) in order to avoid a repetitive discussion. P2VP has a high solubility in a 

broad range of solvents making it a valuable candidate for a supercharging investiga-

tion. Figure 28 illustrates the results obtained for the supercharging investigations in 

(i) methanol/dichloromethane=1:3 (v/v) (Figure 28A) and in (ii) water/acetonitrile=1:1 

(v/v) Figure 28B). Interestingly, the ESI solvent mixture dichloromethane/methanol 

(no supercharging agent) promoted doubly charged species (labeled with ), whereas 

water/acetonitrile (no supercharging) exclusively formed singly charged species (la-

beled with ). Supercharging agents, i.e. sulfolane, added to organic solvents (here, 

dichloromethane/methanol) caused a significant decrease in ion intensity associated 

with a slight subcharging (increase of the relative intensity of singly charged species). 

The water/acetonitrile solvent mixture doped with sulfolane as supercharging agent, 

however, promoted the formation of doubly charged species. Why does dichloro-

methane/methanol favor the ready formation of multiply charged species? As evi-

denced by the structural investigation, which is collated in the Appendix (Fig. A 4,5 

and Tab. A 4,5), P2VP was ionized by virtue of complexation to the chloride anion in 
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Figure 27 Mass spectra of PAAm 13700 g· mol-1 in negative mode (via Cl- attachment) comparing the 
influence of sulfolane as supercharging agent (ranging from 1% (v/v) to 10% (v/v)) in the ESI solvent 
water/acetonitrile=1:1 (v/v). Depicted are the full spectra (left) and a zoom (right) between 1362 m/z 
and 1440 m/z. Doubly (); triply (), quadruply () charged ions. Reprinted with permission from Ref. 
[310]. Copyright American Chemical Society (2017). 
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the case of dichloromethane/methanol, yet by the acetate anion for water/acetonitrile 

solvent mixture. It was essential to dope the ESI solvent with 1% (v/v) acetic acid due 

to enhance the solubility of the polymer in a slightly acidic medium. In Section 4.3 a 

detailed investigation of the anion in negative mode ionization is carried out, which 

results are essential for the discussion here: It has been evidenced that high H-binding 

anions such as chloride coordinate strongly to the polymer (see also the detailed dis-

cussion in “Negative ion mode ionization via chloride attachment” of the current 

section). Weakly coordinating anions, here acetate, do not possess equal H-binding 

capabilities and thus do not promote multiply charged species. Only the addition of 

supercharging agents into the water/acetonitrile mixtures increases the formation of 

doubly charged species. Again, this observation can be explained by the proposed 

charge-trapping mechanism described by Konermann and co-workers (outlined in Sec-

tion 2.1.4). Their molecular dynamics simulations led to the conclusion that water 

plays an essential role in preventing the charge from escaping the nano-droplet.  

Finally, the effect of supercharging agent in organic medium was assessed. 

Here, PS was opted for as the chloride attachment in negative ion mode promoted 

high ion abundances of multiply charged species (refer to Figure 20). Figure 29 high-

lights the results obtained for all reported molecular weights of PS with 5% (v/v) sul-

folane and 5% (v/v) propylene carbonate. No further charge state distribution was 

observed for PS with the molecular weight Mn = 1700 g·mol-1. As discussed earlier in 

the current section, the main reason for singly charged polymers with very low mo-
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Figure 28 Mass spectra of P2VP 5000 g·mol-1 in negative mode (via Cl- attachment) comparing the influ-
ence of 1% (v/v) sulfolane and 5% (v/v) sulfolane as supercharging additive in the ESI solvents dichloro-
methane/methanol=3:1 (v/v) (right) and water/acetonitrile=1:1 (v/v) (left). Singly () and doubly () 
charged ions. Signals labelled with an asterisk () stem from PDMS (see SI for details). Reprinted with 
permission from Ref. [310]. Copyright American Chemical Society (2017). 
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lecular weight was the Coulomb repulsion preventing an additional charge to coordi-

nate to the polymer chain. Furthermore, the ion intensity decreased significantly from 

approx. 60·106 to 15·106 with sulfolane and slightly to 50·106 with propylene car-

bonate. A similar trend emerged for PS with Mn = 3400 g·mol-1 and PS with 

Mn = 9000 g·mol-1 where the supercharging agent did not shift the charge state form-

ing species of higher charge state (than without supercharging agent). Although the 

ion intensities decreased significantly for sulfolane-doped mixtures, the relative abun-

dances of singly():doubly() charged species (PS 3400 g·mol-1) as well as dou-

bly():triply() charged species (PS 9000 g·mol-1) showed an increased abundance of 

higher charge species (see Figure 30). The relative charge abundance was determined 

as follows: Integration of the full isotopic pattern of the highest peak in the distribu-

tion of the lower charge state was compared with the integrated value of the full iso-

topic pattern of the highest peak in the distribution of the higher charge state. Always 
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Figure 29 ESI-Orbitrap mass spectra of PS in negative mode (via Cl- attachment) comparing the influence 
of 5% (v/v) sulfolane and 5% (v/v) propylene carbonate as supercharging additive in the ESI solvent meth-
anol/dichloromethane=1:3 (v/v): (A) PS 1700 g· mol-1; (B) PS 3400 g· mol-1; (C) 9000 g· mol-1; (D) 
18000 g· mol-1. Singly (); doubly (); triply (), quadruply () charged ions. Reprinted with permission 
from Ref. [310]. Copyright American Chemical Society (2017). 
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the same pair of species were used throughout the complete calculation within the 

supercharging study. 

For PS with Mn = 3400 g·mol-1 and Mn = 9000 g·mol-1, a relative increase of the 

higher charge state up to 10-15% was observed. In contrast, when propylene-doped 

solvents were used, the ion intensity remained constant, but the higher charge state 

decreased completely (see Figure 30A and B). The supercharging experiments of PS 

with Mn = 18000 g·mol-1 revealed the same trend as discussed previously. Doping the 

solution with 5% (v/v) sulfolane increased the relative abundance of quadruply () 

charged species drastically (see Figure 30C). Interestingly, and in contrast to all other 

PS samples, the ion intensity did not decrease (refer to Figure 29D). Adding 5% (v/v) 

propylene carbonate diminished the abundance of quadruply () charged species to 

0% (see Figure 30C). Such subcharging phenomena have been discussed in the liter-

ature.320,321 A suitable explanation submits a charge competition mechanism,35 where 

the analyte and the supercharging agent bind equally strong to the ion. By applying 
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Figure 30 Relative charge abundance of PS with increasing amount of supercharging agents (PC and 
sulfolane): (A) PS 3400 g∙mol-1; (B) PS 9000 g∙mol-1 and (C) PS 18000 g∙mol-1. Reprinted with permission 
from Ref. [310]. Copyright American Chemical Society (2017). 
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additional literature-known supercharging agents such as mNBA for the analysis of PS 

with Mn = 9000 g·mol-1 gave similar results with a drastic decrease of the ion intensity. 

As the experiments are of minor significance for the further discussions, the spectra 

can be found in the Appendix Fig. A 7.  

Summarizing the results for the supercharging of PS leads to the conclusion 

that the type of supercharging agent has a significant influence due to a proposed 

charge competition mechanism. Further, the amount of supercharging agent is of 

high importance for ionizing synthetic polymers. Still, no additional charge state was 

observed for PS. Further, the influence of various solvents and solvent mixtures (ace-

tone/methanol, acetone/acetonitrile, THF/methanol, THF, DCM) in combination with 

sulfolane as supercharging agent was studied (see Figure 31 and Table 1). An im-

portant criterion for the choice of the ESI solvent was the full dissolution of the analyte 

and sufficient conductivity for the formation of a stable current.322 Thus, the solvent 

mixtures acetone/MeOH, acetone/acetonitrile, and THF/MeOH successfully allowed 

Acetone/MeOH Acetone/Acetonitrile

THF/MeOH THF

DCM

0

5k

10k

15k

20k

25k

0

4k

7k

3000 4000 5000 6000

0

5k

9k

14k

no supercharging agent

5% sulfolane

1% sulfolane

no supercharging agent

In
te

n
s

it
y

 /
 a

.u
.

m/z

0

50k

100k

150k

200k

0

35k

70k

105k

140k

3000 4000 5000 6000

0

20k

40k

no supercharging agent

1% sulfolane

In
te

n
s

it
y

 /
 a

.u
.

5% sulfolane

m/z

0

2k

4k

6k

0

5k

9k

14k

3000 4000 5000 6000

0

6k

11k

17k

22k

28k

no supercharging agent

1% sulfolane

In
te

n
s

it
y

 /
 a

.u
.

5% sulfolane

m/z

3000 4000 5000 6000

0

500

1k

no supercharging agent

I 
/ 

a
.u

.

m/z

3000 4000 5000 6000

0

500

no supercharging agent

I 
/ 
a
.u

.

m/z

Figure 31 ESI-Orbitrap mass spectra of PS 9000 g· mol-1 recorded Acetone/MeOH, Acetone/Acetonitrile, 
THF/MeOH, THF and DCM as ESI solvent dopes with 0%, 1% and 5% sulfolane as supercharging agent. 
Reprinted with permission from Ref. [310]. Copyright American Chemical Society (2017). 
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the detection of negatively ionized PS species, whereas pure dichloromethane and 

THF did not promote the formation of stable spray currents. Thus, no polymer species 

were detected. Those solvents with stable spray conditions promote the formation of 

triply charged () PS species, however, adding supercharging agent to the ESI solvent 

did not shift the charge state.  

Table 1 Comparison of maximum ion intensities for PS (9000 g∙mol-1) obtained with different ESI sol-
vents and sulfolane as supercharging agent. Reprinted with permission from Ref. [310]. Copyright Amer-
ican Chemical Society (2017). 

Solvent Mixture Max. Ion Intensity 

no SC 

Max. Ion Intensity 1% 

sulfolane 

Max. Ion Intensity 5% 

sulfolane 

DCM/MeOH 160 000 56 000 35 000 

DCM/MeOH + 1% water 59 000 13 000 17 000 

DCM/MeOH + 5% water 37 000 13 000 24 000 

THF/MeOH 5 000 13 000 28 000 

THF/water (20vol%) No species detected 7 000 18 000 

Acetone/MeOH 21 000 8 600 12 000 

Acetone/Acetonitrile 170 000 113 000 43 000 

THF No species detected Not determined Not determined 

DCM No species detected Not determined Not determined 

3.3. CONCLUSIONS 

A novel mass spectrometric procedure for the in-depth characterization of 

polyhydrocarbons such as PS and PBD via chloride attachment in negative ion mode 

has been pioneered. It is demonstrated that the coordination of chloride is a powerful 

method to access high molecular weight polyhydrocarbons by promoting multiply 

charged species (up to four charges). The charge state distribution can be adjusted 

via supercharging agents such as sulfolane, propylene carbonate and m-nitrobenzyl 

alcohol. Specifically, supercharging experiments were carried out with the polymers 

poly(styrene), poly(2-vinylpyridine) and poly(acrylamide). The current section’s con-

clusions are: (i) the choice of supercharging agent is crucial for synthetic polymers in 

negative ion mode via chloride attachment. Explained by the charge competition 

mechanism, some supercharging agents (e.g. m-nitrobenzyl alcohol) may function as 

subcharging agent. (ii) The amount of supercharging agent can have a negative influ-

ence on the ion abundance caused by the charge competition mechanism. (iii) The 

choice of ESI solvent can completely impede a potential supercharging effect. Thus, 
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the charge state modification is most evident for water-soluble polymers (e.g. PAAm) 

and only slightly in methanol and other organic solvents. (iv) The chain length is cru-

cial for observing multiple charges because the conformation has a significant influ-

ence on the charge state (e.g PS 18 000 g∙mol-1 promotes quadruply charged species, 

PS 1700 g∙mol-1 remains singly charged). (v) The existence of polar groups is im-

portant for a strong supercharging effect as previously demonstrated in the mass 

spectrometric analysis of PAAm. The polymer has functional moieties, which contrib-

ute to the supercharging effect, which have to be taken into consideration in order to 

understand Konermann’s supercharging mechanism (see Section 2.1.4). As reported 

in Section 2.1.4, the supercharging was successfully employed for biomacromolecules 

and for poly(ethylene glycol), which are very polar substances.35,45,323–325 The super-

charging mechanisms that are in good agreement to the measurements in the present 

section are Konermann’s charge-trapping mechanism (since water had a crucial im-

pact on the efficiency of the supercharging agents) and Donald’s dipole-based mech-

anism (since the presence of functional moieties in PAAm is fundamental for success-

ful supercharging). Thus, the charge state of completely hydrophobic polymers (as PS 

and PBD) are almost unaffected by auxiliary additives, irrespective of the solvent 

choice. Under non-stable ESI spraying conditions, the addition of supercharging agent 

supports the stabilization and the occurrence of a charged species (as evidenced by 

the THF/water experiments). 

3.4. EXPERIMENTAL SECTION 

3.4.1. Materials 

All polymer standards were purchased or donated by Polymer Standard Ser-

vice (PSS) in the molecular weight as referenced in the manuscript. The ESI solvents 

were used without further purification: acetone (Sigma-Aldrich; HPLC grade), acetic 

acid (Scharlau, analytical grade), acetonitrile (Roth, LC-MS grade), dichloromethane 

(Roth, HPLC grade), methanol (Roth, HPLC grade), water (Milli-Q), tetrahydrofuran 

(Scharlau, HPLC grade). All chemicals were used as received: NaCl (Roth, >99%), pro-

pylene carbonate (TCI, >98%), sulfolane (Sigma-Aldrich, analytical standard), m-nitro-

benzyl alcohol (TCI, >99%). 
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3.4.2. Instrumentation 

Electrospray ionization-Orbitrap mass spectrometry (HR ESI MS). Mass 

spectra were recorded on a Q Exactive (Orbitrap) mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA, USA) equipped with a HESI II probe. The instrument was cali-

brated in the m/z range 1000-6000 m/z using ammonium hexafluorophosphate 

(Thermo Scientific). All spectra were recorded in the negative mode, using the ESI 

solvents as described in the main text doped with 0.1% (w/w) NaCl. PS; PBD and P2VP 

were recorded in a concentration of 0.5 mg·mL-1; PAAm was recorded in a concentra-

tion of 0.05 mg·mL-1. The FT resolution was set to 140 000 employing 3 microscans 

during an acquisition time between 2 and 5 min measuring with a capillary tempera-

ture of 320 °C. The aux gas flow was (dimensionless) 0.00, the sheath gas 10.00, and 

the spare gas 1.00. The flow rate was set to 5 µL·min-1. The spray voltage was set to 

a specific value (PS: 4.5 kV; P2VP: 3.9 kV; PAAm: 4.0 kV; PBD: 3.6 kV) and kept con-

stant while performing the supercharging experiments. An in-source CID energy of 

10 eV was employed for recording PAAm.  
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4.1. MOTIVATION 

PILs are fascinating polymers with unique properties. They can be readily 

adapted to many desired functions by exchanging the associated counter ion. To re-

alize their full structural capability, a quantitative salt exchange is critical and often 

enabled by adding silver salts. Standard characterizations are limited to IR spectros-

copy and NMR (in case the exchanged counter ion has a nucleus that can be traced). 

More advanced characterization techniques providing access to structural information 

on the molecular level have not been explored so far. Although the salt exchange via 

silver is convenient, it cannot be applied to porous materials as the precipitating silver 

halide could potentially block the pores and would require thorough and time-con-

suming rinsing processes. Apart from the salt exchange, the polymerization of IL 

monomers can be challenging. Often, PILs are dialyzed after polymerization due to 

difficult precipitation as both the monomer and the polymer feature the same solubil-

ity. Especially ester-containing IL monomers are susceptible for hydrolysis during di-

alysis. However, SEC characterization cannot reveal potential side-chain cleavage. Fur-

ther, NMR might be hampered for revealing hydrolytical processes as NMR lacks sen-

sitivity. A valuable alternative would be mass spectrometry as it allows for direct chain 

visualization. The exact mass determination combined with tandem MS processes and 

isotopic simulations give access to their structural information. However, 

Matyjaszewski and co-workers reported that it is very challenging to image PILs via 

ESI.175 Although Tenhu and co-workers reported successful MALDI determination, they 

did not display the corresponding mass spectra in their publication and thus did not 

allow to determine the chain structure.176  

                                           
3 The synthesis of PILs was performed in collaboration with M. Cecchini (University of L’Aquila 
Italy) and F. Bloesser (formerly KIT, now Queensland University of Technology). ESI MS meas-
urements were jointly performed with M. Cecchini (equal contribution). ToF‐SIMS measure-
ments were performed by A. Welle (Institute of Functional Interfaces, KIT) and XPS measure-
ments by V. Trouillet (Institute of Functional Interfaces, KIT). H2O-SEC analysis has been per-
formed by B. Huber and supervised by L. Barner (both Insitiute for Biological Interfaces, KIT). 
MALDI-ToF measurements has been performed by S. Weidner. J. Yuan, P. Roesky, S. Reale and 
F. De Angelis were involved in scientific discussions. A. S. Goldmann and C. Barner-Kowollik 
have supervised the projects. Parts of this chapter is adapted with permission from Steinkoenig, 
J.; Bloesser, F. R.; Huber, B.; Welle, A.; Trouillet, V.; Weidner, S.; Barner, L.; Roesky, P. W.; Yuan, 
J.; Goldmann, A. S.; Barner-Kowollik, C. Polym. Chem. 2016, 7, 451-461. Copyright 2016 Royal 
Society of Chemistry; Cecchini, M. M.; Steinkoenig, J.; Reale, S.; Barner, L.; Yuan, J.; Goldmann, 
A. S.; De Angelis, F.; Barner-Kowollik, C. Chem. Sci. 2016, 7, 4912-4921. Copyright 2016 Royal 
Society of Chemistry and Steinkoenig, J.; Cecchini, M. M.; Goldmann, A. S.; Reale, S.; De Ange-
lis, F.; Barner-Kowollik, C. Macromol. Rapid Commun. 2016, 37, 1662-1666. Copyright 2016 
Wiley. 
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Motivated by the current status of lacking mass spectrometric analysis for 

PILs, a universal high resolution mass spectrometric method for the analysis of PILs 

is introduced in the following section, which belong to the most challenging polyelec-

trolytes from an analytical perspective by fusing HR CID-Orbitrap MS with supercharg-

ing agents. The current study includes a wide array of hydrophilic halide-containing 

PILs, which were analyzed in negative ion mode. The influence of the core structures 

(based on imidazolium, triazolium, ammonium, phosphonium and pyridinium moi-

ties), and variable styrene-, acrylate- and vinyl-type IL polymers on the ionization be-

havior is mapped in detail. Variable end group functionalities were introduced via 

functional chain transfer agents (CTA) in RAFT polymerization to assess their influ-

ence on the MS analysis.   
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4.2. RESULTS AND DISCUSSION 

4.2.1. Preparation of PILs 

Among the many versatile features of the RAFT process,326 the high tolerance 

towards functional monomers is an important characteristic for a controlled polymer-

ization process. Hence, RAFT is expected to be a suitable candidate for the precision 

preparation of monomeric ILs with well-defined chain termini and thus applied in the 

presented work outlined in the following section. The synthesis and properties of 1-

alkyl-3-(p-vinylbenzyl)-imidazolium based PILs were widely investigated,175,327 yet the 

RAFT process of the corresponding monomers remains challenging. The current the-

sis presents the controlled polymerization for the generation of poly(1-butyl-3-(p-vi-

nylbenzyl)-1H-imidazolium chloride) (p([BVBIM]Cl), 3) and poly(1-butyl-3-(p-vinylben-
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Figure 32 (a) Synthetic approach for the preparation of p([BVBIM]Cl) (3) and p([BVBIM]Tf2N) (4) from the 
monomers [BVBIM]Cl (1) and [BVBIM]Tf2N (2), respectively. Molar ratio [M]:[CTA]:[I] for i) 200:1:0.2 and 
for iii) 200:1:0.2 (i: RAFT polymerization; ii: anion exchange; iii: RAFT polymerization; iv: anion ex-
change). (b) GPC traces of p[BVBIM]Cl (3) via the RAFT mediated polymerization of [BVBIM]Cl (1) at 85 °C 
in DMSO. (c) Molecular weight evolution of the RAFT polymerization of p([BVBIM]Tf2N) (4) at 85 °C (left) 
in butyronitrile. (d) Plot of molecular weight (Mn) and dispersity (Ð) vs. monomer conversion. Molar ratio 
of monomer:CTA:initiator 200:1:0.2 (CTA = 2-cyano-2-propyl dodecyl trithiocarbonate; initiator = 1,1’-
azobis(cyclohexanecarbonitrile)). H2O-SEC system conditions: water/0.3 M formic acid/0.5 g∙L-1 NaCl, 
30 °C, flow rate 1.0 mL∙min-1. (e) Molecular weight evolution (MP) with conversion for the RAFT mediated 
polymerization of (2). Molar ratio [M]:[CTA]:[I] 200:1:0.2, 85 °C, butyronitrile (CTA: 2-cyano-2-propyl do-
decyl trithiocarbonate; I = 1,1’-azobiscyclohexane carbonitrile). THF-SEC system conditions: 10 mmol 
LiTf2N, 10 mmol n-butylimidazole, 35 °C, flow rate 1.0 mL∙min- 1.Reprinted with permission from Ref. 
[312]. Copyright Royal Society of Chemistry (2016) 
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zyl)-1H-imidazol-3-ium bis(trifluoromethanesulfonyl)imide) (p([BVBIM]Tf2N), 3) as rep-

resentative candidates for PILs in detail. All other PIL core structures including their 

characterization is compiled in Appendix Fig. B 1-35. 

The polymerization of [BVBIM]Cl (1) and BVBIM]Tf2N (2) can either be realized 

by direct polymerization or by the post-polymerization modification of poly(vinylben-

zyl chloride) (P(VBC)) followed by counter ion exchange with Tf2N- (refer to Figure 

32a). Both monomers [BVBIM]Cl (1) and [BVBIM]Tf2N (2) were prepared by a quaterni-

zation reaction (Menschutkin reaction) between 4-vinylbenzyl chloride and n-butylim-

idazole with a slightly modified synthesis protocol given in the literature.328 A rapid 

counter ion exchange performed in water as solvent resulted in [BVBIM]Tf2N (2).  

Subsequently, [BVBIM]Cl (1) was polymerized in DMSO as solvent of choice 

ensuring a good dissolution of both the IL monomer (1) and 2-cyano-2-propyl dodecyl 

trithiocarbonate (CPDT) employed as CTA. A molar ratio of the reagents 

[M]:[CTA]:[I] = 200:1:0.2 (Initiator: 1,1’-azobis(cyclohexanecarbonitrile)) was used. In-

terestingly, the RAFT polymerization of [BVBIM]Cl (1) was highly affected by the choice 

of the solvent. For instance, protic solvents, such as ethanol, methanol and water, led 

to a less controlled polymerization (refer to Appendix Tab. B 1). [BVBIM]Tf2N (2) was 

polymerized in butyronitrile as solvent due to its favorable solubility in non-po-

lar/aprotic solvents. The molecular weight evolution of the SEC traces in Figure 32b,c 

verifies the living character of the process. Both the 1H NMR (Appendix Fig. B 20) as 

well as the SEC results are in good agreement with the theoretically obtained molec-

ular weights (Figure 32d,e). P([BVBIM]Cl) (3) is a charged polymer and as such it in-

teracts strongly with the column material and other polymer chains through hydrogen 

bonding of the chloride counter ion. As a consequence, halide-containing PILs often 

displays a rather broad dispersity in a H2O-SEC system.329 

The Tf2N- containing monomeric IL (2) can be prepared via a similar synthetic 

approach: CPDT was used as CTA in butyronitrile at 85 °C and 1,1’-azobiscyclohexane-

carbonitrile as initiator. Figure 32c shows the molecular weight evolution of the RAFT 

polymerization of [BVBIM]Tf2N (4), where the controlled molecular weight evolution 

can be verified via the SEC traces (10 mmol LiTf2N, 10 mmol n-butylimidazole, 35 °C, 

flow rate 1.0 mL·min-1). The molecular weight determination of the polymers (Mn < 10 

000 g·mol-1) was hampered by the presence of residual monomer, which cannot be 

removed by precipitation in methanol/water, or dialysis in water (3 d at ambient tem-

perature as well as for 14 d at elevated temperatures at 40 °C). Dialysis in THF or 



4.2 Results and Discussion 
  

84 
 

acetone – as described by Matyjaszewski and coworkers175 – may work for high-mo-

lecular PILs, however, failed for the low-molecular weight polymers (diffusion out of 

the membrane). Dialysis in DMSO was successful for certain polymer samples, how-

ever, failed as a standard dialysis for Tf2N- containing PILs. Thus, the polymer signals 

and the monomer signal overlapped significantly in the SEC trace. The overlap was 

most likely due to the SEC column system that differs slightly from the SEC column 

system employed by Matyjaszewski and coworkers.175  

4.2.2. Mass Spectrometric Characterization 

As noted above, the current thesis introduces a platform to characterize PIL 

chain structures by fusing proteomics based supercharging technology with HR ESI-

Orbitrap MS. RAFT-prepared PILs bearing different types of core structures (pyri-

dinium, ammonium, phosphonium, imidazolium) and non-controlled prepared PILs 

(based on imidazolium and triazolium core structures) form the analytical base library 

(Figure 33). Furthermore, the technology was applied to acrylate-type PILs with varia-

ble side groups. The present thesis focuses on the description of the analytical 

method in general and on the results obtained with pyridinium as core structure. As 

the mass spectrometric elucidation of the remaining PILs is repetitive, the candidate 

decided to present the data in the Appendix. The reader can access all NMR (monomer 

and polymer) as well as all expanded spectra with their corresponding isotopic pattern 

simulations and tables of assignments in the Appendix B. 

Figure 33 Overview over the IL monomer preparation (X: halide; Y: N or P or S; R’: alkyl or aryl), the free 
radical and RAFT polymerization collating all investigated PILs in the present study (Z: stabilizing group, 
R: leaving group). Reproduced with permission from Ref. [339]. Copyright Royal Society of Chemistry 
2016. 
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ESI MS spectra have been recorded in negative ion mode, employing the in-

source CID fragmentation technique. CID fragmentation is a technique of tandem 

mass spectrometry to induce collisions between ions and neutral gas molecules. The 

collision energy employed for tandem MS in the QExactive Orbitrap MS ranges from 5 

up to 100 eV and can collisional activate all ions emitted by the electrospray source. 

The resulting spectrum is thus a collection of the precursor ions and the product 

ions.330 Applying the CID activation strategy to PILs resulted in a sensitive polyelectro-

lyte detection, without significant dissociative events (refer to Figure 34A).331  

Since PILs feature strong intra- and intermolecular ionic interactions (see Sec-

tion 2.3),332 the in-source CID fragmentation can induce a declustering of polymeric 

chains. As a result, single PIL chains ionized by chloride attachment in the negative 

ion mode can be detected rather than polymer clusters, which are nearly undetectable. 

Importantly – and in addition to CID –, the previously discussed supercharging effect 

(refer to Section 2.1.4 and Chapter 3) has improved the PIL spectra significantly. Since 

the repeat unit of PILs can separate corresponding peaks by several hundred Da, a 

division by two (for doubly charged) or three (for triply charged) has a significant 

impact on the mass spectra. Although propylene carbonate has shown to be a sub-

charging agent for the polyhydrocarbons studied in Chapter 3, it plays a key-role in 

the extent of charging PILs in the negative ion mode, allowing for the detection of 

doubly and triply charged species (refer to Figure 34B). The proposed PIL supercharg-

ing may be attributed to a high halide concentration at the moment of ion formation 
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Figure 34 (A) (Top) ESI-CID-Orbitrap spectrum of p([VBPy]Cl) (6) employing 10 eV as collision energy. 
(Bottom) ESI-Orbitrap spectrum of p([VBPy]Cl) (6) without employing additional collision energy. Based 
on information of Thermo Scientific, the background signals stem from residual and hard to remove 
Ultramark® calibration markers with a characteristic repeating unit of 99.99 Th. These are always visible 
in negative ion mode. (B) (Top) ESI-CID-Orbitrap spectrum of p([TEVBA]Cl) (7) utilizing 1% (v/v) PC as 
supercharging agent. (Bottom) ESI-CID-Orbitrap spectrum of p([TEVBA]Cl) (7) without any auxiliary addi-
tive to the ESI solvent (water/acetonitrile 50:50). Reproduced with permission from Ref. [339]. Copyright 
Royal Society of Chemistry 2016. 
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(in accordance to Konermann’s trapping mechanism described in Section 2.1.4). The 

combination of the CID fragmentation technique with a supercharging additive led to 

the development of a novel mass spectrometric method for the in-depth structural 

elucidation of PILs. 

Pyridinium as core structure 

Until now, pyridinium-based PILs have not attracted significant attention in 

the literature. The chemical difference of pyridinium in comparison with other well-

known core structures are significant, making poly(1-(4-vinylbenzyl)pyridin-1-ium 

chloride) (p([VBPy]Cl), 6) an interesting candidate for a mass spectrometric investiga-

tion. The ESI-CID-Orbitrap measurements of p([VBPy]Cl) (6) were performed in nega-

tive ion mode using water/acetonitrile (1:1, v/v) as ESI solvent. During the analysis of 

p([VBPy]Cl) (6), a CID fragmentation of 10 eV was critical for the detection of the pol-

ymer (refer to Figure 34A). Promoted without the addition of an auxiliary supercharg-

ing agent, the ionization provided doubly and triply charged species (Figure 35c) 

ionized by chloride attachment. The ESI MS profile displayed the typical Gaussian 

shape of a polymer (Figure 35a) in the mass range between 1000 m/z to 3500 m/z. 

The expanded spectrum (Figure 35b) highlights the repeating peaks of the doubly 

(labeled with ) and triply (labeled with ) charged species. Interestingly, without the 

addition of a supercharging agent, p([VBPy]Cl) (6) was multiply charged. The repeat 

unit of the doubly charged species is 115.5406 m/z (m/z(theo) 115.5412), while the 

triply charged species are separated by 77.0283 m/z (m/z(theo) 77.0277). The ex-

panded spectrum (Figure 35b) indicates a cyclohexanecarbonitrile moiety stemming 

from the initiator (1,1’-azobis-(cyclohexanecarbonitrile)) rather than the expected 2-

cyano-2-propyl moiety. The corresponding species at 1476.8310 m/z (labeled with  

for the triply charged ion) and 1502.5176 m/z (labeled with  for the doubly charged 
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Figure 35 ESI-CID-Orbitrap MS spectra of p([VBPy]Cl) (6) (Mn = 1800 g· mol-1, Ð = 1.8) depicting (A) the 
overview spectrum from 1000 m/z to 3500 m/z; (B) zoom into one repeat unit (m/z(exp) 115.5406, 
m/z(theo) 115.5412); (C) proposed structure of the most abundant species. Species labeled with  derive 
from (multiple) loss(es) of gaseous HCl. Reproduced with permission from Ref. [339]. Copyright Royal 
Society of Chemistry 2016. 
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ion) unambiguously identified these end groups. Furthermore, the trithiocarbonate 

group underwent a partial oxidation, producing the triply charged ions at 

1471.4959 m/z (labeled with ). Further species of minor abundance could be as-

signed to multiple neutral losses of HCl (labeled with ) (refer to Table 2 for the 

complete list of assignments). A significant contribution to the detected end group 

variety of p([VBPy]Cl) (6) was attributed to the employed CID fragmentation during the 

acquisition of the mass spectrum.  

Table 2 Peak assignment of the ESI-CID-Orbitrap spectrum of p([VBPy])Cl (6) from 1460 m/z to 1500 m/z 
showing the label (in correspondence to the species in Figure 35b), the experimental m/z and theoretical 
m/z values (determined by the most abundant isotope of the isotopic pattern), ∆m/z, the resolution 
(obtained by the Xcalibur software), the number of repeating units n, and the structure determination. 
Due to the deprotonation process, no structure was determined for species labelled with . Reproduced 
with permission from Ref. [339]. Copyright Royal Society of Chemistry 2016. 

Label m/z (exp) m/z (theo) ∆m/z Resolution n Structure 

 1463.4843 1463.4834 0.0009 53500 17 

 

 1471.4959 1471.5015 0.0056 49500 17 

 

 1476.8310 1476.8272 0.0039 54600 17 

 

 1482.4991 1482.4967 0.0024 53800 11 

 

 1502.5176 1502.5124 0.0052 52600 11 

 

 1511.4758 1511.4758 0.0000 53300 11 
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Crosthwaite et al. investigated the thermal stability of pyridinium and showed 

a significant difference between a pyridinium and an imidazolium halide,333 supporting 

the findings that – during MS/MS analysis of p([VBPy]Cl) (6) performed on the ion at 

1482±10 m/z – a fragmentation according to the reverse Menshutkin mechanism (re-

fer to Figure 36) is operational. 

In summary, a unique access route to polymer ionization is presented by the 

attachment of chloride. In Chapter 3, the chloride attachment has been introduced 

according to the analyte/charge interactions that have been submitted for non-polar 

polymers. PILs, however, are highly polar polyelectrolytes, whose corresponding anion 

has been responsible for charging the entire macromolecule. The sensitive depend-

ence on the charge of the observed species motivated a further study on salt-ex-

changed PILs measured by MS that is discussed in the next section. 

4.3. JUST ADD SALT: A MASS SPECTROMETRIC 

ANALYSIS METHOD FOR IMAGING ANION-EX-

CHANGED POLY(IONIC LIQUID)S 

4.3.1. Motivation 

Section 2.3 highlighted the characteristic properties of PILs associated with 

their respective counter ion. For instance, exchanging the hydrophilic halide against 

hydrophobic perfluoroborates or –phosphates alters the materials properties funda-

mentally, making a quantitative reaction even more important. However, quantitative 

1000 1100 1200 1300 1400 1500

0.0

0.2

0.4

0.6

0.8

1.0

- 
3
9
.5

2
0
6

- 
3
9
.5

2
2
7

R
e
la

ti
v
e

 A
b

u
n

d
a
n

c
e

m/z

- 
3
9
.5

2
0
1

BA

Figure 36 (A) Tandem MS experiment (negative mode) of a double charged species at 1482 m/z with a 
HCD energy of 10 eV. The identification of three double charged species depicting the loss of a pyridine 
unit (m/z(theo) = 39.5216). (B) Proposed fragmentation of p([VBPy]Cl) (6) via a reverse Menshutkin mech-
anism including the stepwise nucleophilic attack of the chloride anion at the electrophilic benzylic moi-
ety. Reproduced with permission from Ref. [339]. Copyright Royal Society of Chemistry 2016. 
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information cannot be guaranteed by IR or NMR as characterization techniques: IR 

requires sophisticated calibration and NMR relies on NMR active nuclei. An often re-

ported work-around is the utilization of silver salts, both introducing the desired ion 

and guarantee quantitative conversions by precipitating silver halide. The following 

section is thus motivated by two essential questions: (i) is MS as characterization tech-

nique sufficiently powerful to proof a quantitative salt exchange on a molecular level? 

And (ii), how does the counter ion influence the ionization of the PILs? 

Thus, the first mass spectrometric analysis of PILs containing weakly-coordi-

nating anions is introduced via a fast, simple and quantitative post-modification 

method on the example of the hydrophilic, well-defined p([VBPy]Cl) (6) species, ana-

lyzed with an in-source CID-Orbitrap MS protocol. The MS approach allowed for a pre-

cise structural elucidation of ion-exchanged p([VBPy]Cl) (6) utilizing AgX (X = NO3
-, 

CF3CO2
-, BF4

-) salts. The anion exchange was quantitative – without observing residual 

chlorinated PIL – using only filtration as a standard procedure during sample prepa-

ration. In addition, the influence of weakly coordinating anions (WCA) on the ioniza-

tion behavior of PILs was studied in detail. 
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4.3.2. Results and Discussion 

Silver salts are commonly used in organic chemistry as precursors for other 

organometallic compounds,334 for halide abstraction,335 for the precipitation of AgX 

salts (X = Cl-, Br-, I-) and for the Ag(I) binding ability of vinyl- and arene-containing 

organic compounds.336 The advantage of the irreversible, and fast precipitation of 

AgCl to introduce WCAs, such as nitrate (NO3
-), trifluoroacetate (CF3CO2

- or TFA) and 

tetrafluoroborate (BF4
-) has been exploited. Figure 37 collates the ESI MS spectra of 

(i) the chloride-containing precursor PIL ionized by chloride in negative ion mode em-

ploying a CID energy of 10 eV and (ii) the WCA-containing PILs obtained by rapid 

counter ion exchange with the respective silver salt and elimination of AgCl by filtra-

tion.337 Process (i) is described in detail in Section 4.2.2, whereas the present section 

focuses on the salt exchange employing equimolar silver salts. Despite the plethora 

of possible core structures available for PILs (e.g. imidazolium, ammonium, sul-

fonium, phosphonium), a pyridinium-based PIL was an ideal candidate for the anion 

exchange studies, as the PIL distribution peaks at approx. 2000 m/z allowing for the 

detection of the anion exchanged PILs. In contrast to chloride as lowest molecular 

Figure 37. Rapid and facile salt exchange during the sample preparation: p([VBPy]Cl) (6) is either dis-
solved in water/acetonitrile (1:1, v/v), which results in a chloride ionized Orbitrap-CID spectrum in the 
negative mode (i), or is dissolved in water/acetonitrile (1:1, v/v) in the presence of 1.00 eq of AgX salt 
(X = NO3 , CF3CO2 , BF4 ). The precipitated AgCl forms an opaque solution, which is filtered through 
default PTFE filters (0.2 µm pore size) in order to remove the silver salt from the solution (ii). Reproduced 
with permission from Ref. [338]. Copyright Wiley 2016. 
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weight anion, the WCA analogues are heavy, hence, shifting the distribution to higher 

m/z. (Cl-: 34.97 m/z; NO3
-: 61.99 m/z; BF4

-: 87.00 m/z; CF3CO2
-: 112.99 m/z) (Fig-

ure 38a). Furthermore, the pyridinium-based PIL charge state entirely consisted of 

doubly (and triply) charged species. As discussed in Section 4.2.2, the charge of the 

PILs always stemed from the corresponding counter ion (e.g. Cl- for p([VBPy]Cl) (6); 

NO3
- for p([VBPy]NO

3
) (6b)), and thus, a modified charge distribution (e.g. from doubly 

charged to singly charged) allowed for the qualitative assessment of the anion coor-

dination to PILs. 

The anion exchanged polymer p([VBPy]NO
3
) (6b) was recorded with an in-

source CID energy of 40 eV. During acquisition, the PIL structure was intact without 

significant fragmentation.338 The ESI MS profile measured in the mass range from 

1750 m/z to 5000 m/z clearly indicated a distribution of singly (labeled with ) and 

doubly (labeled with ) charged species (Figure 38b). The good agreement of simu-

lated and experimental isotopic pattern of a doubly charged species of p([VBPy]NO3) 

(6b) at 2815.5589 m/z (m/z(theo) 2815.5726) confirmed the PIL species in which 

each repeat unit (258.0977 m/z; m/z(theo) 258.1004) along the polymer chain was 

associated with the exchanged anion (for expanded spectrum refer to Appendix Fig B 

67). The shift of the polymer mass distributions towards higher m/z as outlined in 

Figure 38a and Figure 38b is best explained by comparing the repeat units of 

p([VBPy]Cl) (6) (m/z(theo) 231.0815) with p([VBPy]NO
3
) (6b) (m/z(theo) 258.1004). Af-

ter successful salt exchange from chloride to nitrate, the molecular weight of every 

polymer chain increased by 27.0189 m/z per repeat unit. In addition, in negative ion 

mode p([VBPy]NO
3
) (6b) was charged by complexation with a NO3

- anion. Thus, Cl- 

stemming from p([VBPy]Cl) (6) was removed quantitatively using AgNO3. Interestingly, 

the charge state subcharged from entirely doubly and triply charged p([VBPy]Cl) (6) 

species to singly and doubly charged p([VBPy]NO3) (6b) species. The subcharging ef-

fect is attributed to slightly reduced H-bonding of NO3
- compared to Cl-.339 Further-

more, the increased steric hindrance of the nitrate anion might reduce the chance for 

the attachment of additional nitrate anions to the PIL.  
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Motivated by the first successful measurements, TFA was chosen as its H-

bonding activity is similar to NO3
-.339 Thus, an analogue trend was expected and in-

deed confirmed after the salt metathesis employing AgCF
3
CO

2
 (Figure 38c). The salt-

exchanged PIL p([VBPy]CF3CO2) (6c), ionized with an auxiliary in-source CID energy of 

50 eV, was recorded in the mass range from1900 m/z to 5000 m/z, revealing two 

distributions of singly (labeled with ) and doubly charged (labeled with ) species. 

As previously reported for AgNO3 as salt exchange reagent, every single Cl- anion 

Figure 38 Orbitrap-CID overview spectra and proposed structures of the most abundant species of 
p([VBPy]Cl) (6), p([VBPy]NO3) (6b), p([VBPy]CF3CO2) (6c), and p([VBPy]BF4) (6d). Reproduced with permission 
from Ref. [338]. Copyright Wiley 2016. 
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along the polymer chain was replaced by CF3CO2
-. Thus, the repeat unit of 

p([VBPy]CF3CO2) (6c) was 309.0887 m/z (m/z(theo) 309.0977) (for the fully expanded 

spectrum refer to Appendix Fig. B 70). In negative ion mode, p([VBPy]CF3CO2) (6c) was 

charged by complexation with the CF3CO2
- anion. As expected, the charge state of 

entirely doubly and triply charged species (p([VBPy]Cl) (6)) was subcharged to doubly 

and singly charged species for WCA-containing p([VBPy]CF3CO2
-) (6c), however, simi-

lar to the nitrate-exchanged p([VBPy]NO3) (6b) (Figure 38). As in the order of 

Cl- >> NO3
- ≈ CF3CO2

- >> BF4
- tetrafluoroborate (BF4

-) features the least H-binding 

activity and is thus the weakest coordinating anion employed in the present section, 

it was expected that mainly a singly charged state distribution for p([VBPy]BF4) (6d) 

was observed and – since BF4
- charged the PIL negatively –, a low ion abundance was 

anticipated. Indeed, the ESI-CID-Orbitrap spectrum of p([VBPy]BF4) (6d) (Figure 38d), 

recorded with an in-source CID energy of 90 eV, illustrates a polymer distribution with 

entirely singly charged species (labeled with  and ) in the mass range from 

2500 m/z to 5500 m/z. The repeat unit of p([VBPy]BF4) (6d) was 283.0960 m/z 

(m/z(theo) 283.1155) (for expanded spectrum refer to Appendix Fig B 73). The WCA 

BF
4
- required the harshest conditions (CID 90 eV) for the detection, explaining a fur-

ther singly charged distribution (labeled with ) derived from the degradation of one 

repeat unit following the reverse Menshutkin reaction. Due to the low coordination 

tendency of BF
4
-, p([VBPy]BF

4
) (6d) was observed with an ion abundance of 102 , while 

the abundances for p([VBPy]NO
3
) (6b) and p([VBPy]CF

3
CO

2
) (6c) were approx. 104. In 

the present study – due to the low ion abundance –, no degradation of the BF
4
- as 

counter ion during the structural elucidation of p([VBPy]BF
4
) (6d) has been observed. 
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4.4. SURFACE MODIFICATION 

Surface design is an important and steadily growing field in contemporary 

chemistry. PIL-decorated surfaces can serve as imaging, wetting/dewetting, and anti-

biofouling interfaces.340–343 Initiated by the work of Ye et al. who investigated grafted 

PILs via ROMP on TiO2 substrates and the successful anti-fouling studies,342 

Matyjaszewski and colleagues attached well-characterized, ATRP-prepared PILs on Si 

substrates via a thermally driven ligation protocol.340 Furthermore, Drockenmueller 

and coworkers patterned azide-functionalized copolymerized PILs on a silicon sub-

strate. The azide motif release highly reactive nitrenes upon UV irradiation, which has 

been used as surface anchor.343 The present section covers the characterization of 

photochemically patterned p([BVBIM]Cl) (6) and p[1,2-dimethyl-3-(p-vinylbenzyl)-1H-

imidazol-3-ium bis(trifluoro methanesulfonyl)imide] (p([DMVIM]Tf2N)) via a surface 

sensitive mass spectrometric analytical method, i.e. ToF-SIMS as well as X-ray photo-

electron spectroscopy (XPS).  

Photomask

Figure 39 Schematic illustration of the surface functionalization for the spatially resolved surface func-
tionalization of silicon wafers with (1) and (1’). (3-Aminopropyl)triethoxysilane (APTES)-coated silicon wa-
fers were coated with 4-maleimidobutyroyl chloride to achieve maleimide-functionalized surfaces (7). 
After irradiation, the surfaces covered with a photomask with an ARIMED B6 lamp (max = 320 nm) in a 
solution of the photoenol functional CTA to result in (8) followed by RAFT polymerization of (1) from the 
surface. Subsequent salt metathesis of (9a) with KMnO4 resulted in a highly violet colored meander pat-
tern of p([BVBIM]MnO4) (10). Reprinted with permission from Ref. [312]. Copyright Royal Society of Chem-
istry (2016). 
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Figure 39 summarizes the grafting-from approach of the PILs exploiting the 

RAFT polymerization of (1) and (1’). Initially, the RAFT agent (14’)344 was photopat-

terned via o-quinodimethane chemistry onto maleimide-functionalized silicon wa-

fers345 (7). Therefore, a blank silicon wafer was activated with Piranha solution 

(H
2
O

2
:H

2
SO

4
 = 1:4 (v/v)) and immersed into APTES solution at 70 °C overnight. APTES-

coated surfaces,345 thoroughly cleaned by rinsing with toluene, acetone, methanol and 

Milli Q water, were placed in a solution of freshly prepared 4-maleimidobutyroyl chlo-

ride in dichloromethane. After successful maleimide-functionalization, the wafer was 

covered with a dotted (or meander-shaped) photo mask in a self-fabricated sample 

holder and placed in a solution containing the RAFT agent. Irradiation (2.5 h) with 

ARIMED B6™ lamp (max = 320 nm) afforded surface 14. The grafting-from polymeriza-

tion with [BVBIM]Cl (1) as monomer was subsequently performed in a DMSO/DMF mix-

ture (1:1, v/v) at a concentration of approx. 0.6 mol·L-1. 2-(dodecylthiocarbonothioyl-

thio)propionic acid (DoPAT) as sacrificial RAFT agent and VAZO-88 as radical starter 

was added and the mixture degassed by three consecutive freeze-pump-thaw cycles. 

As demonstrated by Zamfir et al.,346 a good grafting-from performance is obtained in 

a 1:1 ratio of CTA:initiator. As due to the hopping mechanism,347 a steady termination 

of adjacent radicals on the surface occur, a high initiator concentration is necessary. 

The polymerization was conducted for 7 h, after which the residual monomer as well 

as potential polymer attached via physisorption was removed by thorough rinsing of 

the functionalized surfaces (15a) with Milli Q water, methanol, acetone, and Milli Q 

water followed by immersing the surface in methanol for 12 h. Subsequently, the sur-

face was ultrasonicated in a solution containing 0.5 g·L-1 ammonium chloride and 

rinsed thoroughly with acetone. In contrast, the hydrophobic p([DMVBIM]Tf
2
N-func-

tionalized surface (15b) was cleaned by removal of residual monomer as well as po-

tential polymer attached via physisorption by thorough rinsing with acetone, dichloro-

methane, methanol and Milli Q water followed by treating the surface in a solution 

containing 1.0 g·L-1 LiTf
2
N. Residual salt was removed via ultrasonification in acetone. 

Both surfaces were characterized by surface-sensitive techniques, i.e. XPS and ToF-

SIMS. 

Figure 40a shows the corresponding XP spectra. The C 1s spectrum shows 

the (C-C, C-H) component at 285.0 eV, (C-O, C-N) at 286.4 eV and (COO, NCO) at 288.5 

eV, which were associated with in the maleimide (surface (7)) and the photoenol (sur-

face (14)). The photo-ligation of (7) was evidenced by the sulfur signal at 163.6 eV 

indicating the presence of the trithiocarbonate group. After the surface-initiated 
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polymerization affording (15a), the signal at 401.8 eV – characteristic for the imidaz-

ole group (N+) – was detected in the N 1s spectrum. The (protonated) amine signal at 

401.8 eV increased from 0.3 at% (surface 14) to 8.9 at% (surface (15a)), which could 

be assigned to the imidazolium group. Most characteristically, a signal originating 

from Cl 2p indicated the counter ion, which was absent on the APTES/maleimide-

coated surface (7) as well as on the RAFT agent-functionalized surface (14). Figure 

40b depicts the ToF-SIMS images of C12H25S-, S-, C16H21N2
+ (surface (15a)) and 
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Figure 40 (a) XP spectra of the maleimide functionalization (13), photoenol functionalization (14) and 
the grafting-from polymerization (15a) with [BVBIM]Cl (1). (b) ToF-SIMS images of o-quinodimethane func-
tionalization (14), grafting-from polymerization (15a) with [BVBIM]Cl (1), grafting-from polymerization 
(9b) with [DMVBIM]Tf2N (1’) and (c) photograph of the violet colored meander pattern of p([BVBIM]MnO4) 
(10) resulting from the salt metathesis of (15a) with KMnO4. Reprinted with permission from Ref. [312]. 
Copyright Royal Society of Chemistry (2016). 
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C14H17N2
+ (surface (15b)) fragments. The surface-sensitive mass images confirmed the 

covalent attachment of (14) precisely following the dotted shape of the photomask. 

As expected, in the areas covered by the photomask, no o-quinodimethane reaction 

occurred and consequently no species stemming from (14) were detected. After suc-

cessful grafting-from of [BVBIM]Cl (1), ToF-SIMS measurements in positive ion mode 

identified repeating unit species (C16H21N2
+; 241.20 m/z) on the surface (15a). Fur-

thermore, successful grafting of [DMVBIM]Tf
2
N (1’) was confirmed by its characteristic 

repeating unit species (C14H17N2
+; 213.13 m/z) on the surface (15b). The presence of 

the ionic nature of the PIL attached to the surface was supported by a rapid salt me-

tathesis with colorful MnO
4
- (Figure 40c).  

4.5. CONCLUSIONS 

PILs are a fascinating and versatile family of polyelectrolytes. Their properties 

can be readily adjusted without much synthetic effort by exchanging the counter ion. 

The present section introduces facile synthetic access to styrenic IL monomer units 

with various core structures (imidazolium, pyridinium, ammonium and phosphonium) 

via the RAFT polymerization technique. Furthermore, a detailed and universal mass 

spectrometric platform for the complete structural elucidation of PILs is provided. ESI-

CID-Orbitrap MS in combination with supercharging agents are demonstrated to be 

powerful characterization access modes to structural information of complex poly-

electrolytes. Additionally, it has been demonstrate that sterically more demanding 

counter ions replace the chloride anion of p([VBPy]Cl) (6) by a rapid anion exchange 

using various silver salts AgX (X = NO3
-, CF3CO2

-, BF4
-). Removing AgCl by simple 

filtration allows for the direct injection of the filtered solution into the electrospray 

source. The mass spectrometric method outlined in this section is based on an in-

source CID fragmentation technique and constitutes a facile strategy for accessing 

the structure of weakly-coordinated PILs. The in-depth mass spectrometric character-

ization of all investigated PIL systems evidences important structure/property rela-

tionships: (i) the counter ion promotes the ionization, (ii) PILs prepared by RAFT keep 

their full structural integrity although an in-source CID technique was used, (iii) all PIL 

halides dissolve readily in water/acetonitrile and allow supercharging as described in 

Section 3 having an exceptional synergy in reducing the PILs’ molecular mass of the 
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repeat unit by increasing the charge state, (iv) PILs can be photopatterned on pre-

treated surfaces allowing to adjust the surface’s properties, and (v) ToF-SIMS confirms 

PIL structure as fully intact monomer fragment species. 

4.6. EXPERIMENTAL SECTION 

4.6.1. Materials 

All solvents were obtained from Sigma-Aldrich, Acros Organics or Fischer and 

used without further purification. Absolute solvents were purchased from Acros Or-

ganics and stored under nitrogen and over molecular sieves. Triethylamine was re-

fluxed over CaH2, freshly distilled under inert atmosphere and stored over molecular 

sieves (3 Å) at 4 °C. All other reactants were used without further purification. The 

dialysis tubes were purchased from Spectra/Por (Spectra/Por 7 Dialysis RC Tubing).  

1-(chloromethyl)-4-vinylbenzene (90%, Sigma-Aldrich), 2-cyano-2-propyl do-

decyl trithiocarbonate (97%, Sigma-Aldrich), 1,2-dimethylimidazole (98%, Acros), 1,1'-

azobiscyclohexanecarbonitrile (VAZO-88) (98%, Sigma-Aldrich), 1-butylimidazole 

(98%, Sigma-Aldrich), LiTf2N (99%, Acros), CuSO4∙5 H2O (99%, Acros), K2S2O8 (97%, 

abcr), 2,3-dimethylanisole (97%, abcr), AlCl3 (99%, Acros), methyl-4-bromomethyl ben-

zoate (97%, Fischer), potassium carbonate (99%, Roth), NaOH (99%, Roth), 18-crown-

6 (98%, TCI), 4-(dimethylamino)pyridine (99% Sigma-Aldrich), N-(3-dimethylaminopro-

pyl)-N'-ethylcarbodiimide hydrochloride (99%, Sigma-Aldrich), thionyl chloride (>99%, 

Sigma-Aldrich), (3-aminopropyl)triethoxysilane (99%, Sigma-Aldrich), 4-maleimidobu-

tyric acid (98%, TCI), H2O2 (35%, Roth), sulphuric acid (96%, Roth), hydrochloric acid 

(37%, Roth), sodium hydrogencarbonate (99%, Roth).  

2,2′ -Azobis(2-methylpropionitril) (AIBN) was recrystallized twice from meth-

anol. 2-(acryloyloxy)-N,N,N-trimethylethan-1-aminium chloride was purchased from 

Sigma-Aldrich (80% water solution) and purified by two times precipitation in acetone, 

dried under high-vacuum and stored at -5 °C. All other reactants were used without 

further purification.  

All solvents for mass spectrometric analysis (Milli-Q water; UHPCL-grade ace-

tonitrile (Thermo Fisher)) were used without further treatment. 

1-decyl-2-methylimidazole (98%, Sigma-Aldrich), pyridine (>99%, Acros), tri-

methylamine (>99%, Merck), triphenylphosphine (>99%, Merck), propylene carbonate 

(98%, TCI) were used as received. 
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4.6.2. Instrumentation 

Mass spectra were recorded on a Q Exactive (Orbitrap) mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA, USA) equipped with a HESI II probe. The in-

strument was calibrated in the m/z range 1000-6000 m/z using ammonium hex-

afluorophosphate (Thermo Scientific). All spectra were recorded in the negative mode, 

using water/acetonitrile (1:1, v/v) in a concentration of 0.5 mg· mL-1 as solvent. The 

FT resolution was set to 140 000 employing 3 microscans during an acquisition time 

between 2 and 3 min measuring with a capillary temperature of 320 °C. The aux gas 

flow was (dimensionless) 0.00, the sheath gas 10.00, and the spare gas 1.00. The 

flow rate was set to 10 µL· min-1. The spray voltage was set between 2.0 eV and 4.5 eV 

depending on the S/N ratio. A CID fragmentation was employed depending on the 

analyzed PIL. The ion optics settings are as follows: the S-lens RF level was set to 68.0, 

the S-lens voltage to -25.0 V, the skimmer voltage to -15.0 V, the gate lens voltage to 

-6.00 V and the C-trap RF to 2400.0 V. 

4.6.3. Synthesis 

Synthesis of 1-butyl-3-(4'-vinylbenzyl)-1H-imidazol-3-ium chloride 

([BVBIM]Cl, 1): 9.00 g n-butylimidazole (72.5 mmol, 1.00 eq) was dissolved in 100 mL 

chloroform and cooled to 0 °C. Subsequently, 15.4 mL vinylbenzyl chloride (16.6 g, 

108.7 mmol, 1.50 eq) was added. The mixture was stirred at 50 °C for 24 h. The mix-

ture was extracted with water (3×25 mL), evaporated at reduced pressure to get rid 

of the residue organic solvents, and freeze-dried. 17.5 g of product 1 (63.1 mmol, 

87%) was received as a colorless, highly viscous liquid.  

1H NMR (400 MHz, DMSO-d6, 298 K): δ = 9.72 (s, 1 H, N=CH-N), 7.91 (d, 

3J = 13.8 Hz, 2 H, Im-H), 7.50 (d, 3J = 8.2 Hz, 2 H, Ph-H), 7.46 (d, 3J = 8.2 Hz, 2 H, Ph-

H), 6.72 (dd, 3J(Z) = 11.0 Hz, 3J(E) = 17.7 Hz, 1 H, H2C=CH), 5.85 (d, 3J(E) = 17.7 Hz, 1 

H, HC(H)=CH), 5.49 (s, 2 H, Bn-H), 5.27 (d, 3J(Z) = 11.0 Hz, 1 H, HC(H)=CH), 4.20 (t, 
3J = 7.2 Hz, 2 H, N-CH2-CH2), 1.92 – 1.60 (m, 2 H, CH2-CH2-CH2), 1.43 – 1.02 (m, 2 H, 

CH2-CH2-CH3), 0.87 (t, 3J(Z) = 7.5 Hz, 3 H, CH2-CH3) ppm. 

13C-NMR (100 MHz, DMSO-d6, 298 K): δ = 137.56 (C), 136.17 (C), 135.93 (CH), 

134.30 (CH), 128.67 (2 CH), 126.67 (2 CH), 122.79 (CH), 122.54 (CH), 115.29 CH2), 

51.65 (CH2), 48.67 (CH2), 31.24 (CH2), 18.79 (CH2), 13.26 (CH3) ppm. 
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Synthesis of 1-butyl-3-(4'-vinylbenzyl)-1H-imidazol-3-ium bis(trifluoro-

methanesulfonyl)imide ([BVBIM]Tf2N, 2): 4.50 g n-butylimidazole (36.2 mmol, 

1.00 eq) was dissolved in 100 mL chloroform and cooled to 0 °C. Subsequently, 

8.3 g vinylbenzyl chloride (54.4 mmol, 1.50 eq) was added. The mixture was stirred 

at 50 °C for 24 h. The mixture was extracted with water (2×100 mL), and evaporated 

at reduced pressure to get rid of the residual organic solvents. Afterwards, 10.4 g 

LiTf2N (36.2 mmol, 1.00 eq) was added. The reaction was allowed to proceed over-

night at ambient temperature. The mixture was extracted with ethyl acetate 

(3×75 mL). The combined organic solvents were washed with water (1×100 mL), and 

dried over sodium sulfate. 15.97 g of product 2 (30.7 mmol, 84%) was received as a 

colorless liquid.  

1H NMR (400 MHz, DMSO-d6, 298 K): δ = 9.29 (s, 1 H, N=CH-N), 7.77 (s, 2 H, 

Im-H), 7.52(d, 3J = 8.1 Hz, 2 H, Ph-H), 7.43 (d, 3J = 8.2 Hz, 2 H, Ph-H), 6.74 (dd, 
3J(Z) = 11.0 Hz, 3J(E) = 17.7 Hz, 1 H, H2C=CH), 5.86 (d, 3J(E) = 17.7 Hz, 1 H, 

HC(H)=CH), 5.42 (s, 2 H, Bn-H), 5.29 (d, 3J(Z) = 11.0 Hz, 1 H, HC(H)=CH), 4.19 (t, 
3J = 7.2 Hz, 2 H, N-CH2-CH2), 1.79 (quin, 3J = 7.5 Hz, 2 H, CH2-CH2-CH2), 1.28 (m, 2 H, 

CH2-CH2-CH3), 0.90 (t, 3J = 7.5 Hz, 3 H, CH2-CH3) ppm. 

13C{1H} NMR (100 MHz, DMSO-d6, 298 K): δ = 139.32 (C), 135.90 (C), 135.83 

(CH), 131.52 (CH), 129.36 (2 CH), 127.49 (2 CH), 122.30 (CH), 122.08 (CH), 119.95 

(q, 1J = 318.0 Hz, CF3), 115.88 (CH2), 53.59 (CH2), 50.31 (CH2), 32.07 (CH2), 19.49 

(CH2), 13.39 (CH3) ppm. 

 

Synthesis of 1,2-dimethyl-3-(4’-vinylbenzyl)-1H-imidazol-3-ium bis(trifluo-

romethanesulfonyl)imide ([DMVBIM]Tf2N, 1’): A Schlenk tube was charged with 2.00 

g 1,2-dimethylimidazole (20.8 mmol, 1.00 eq), dissolved in 10 mL CHCl3 and cooled 

to 0 °C. Subsequently, 3.81 g vinylbenzyl chloride (25.0 mmol, 1.20 eq) was added 

and the tube was heated from 0 °C to 50 °C. The mixture was stirred at 50 °C for 24 

h. The mixture was extracted with water (slow phase separation). Afterwards, 7.17 g 

LiTf2N (25.0 mmol, 1.2 eq) was added and the mixture stirred for 3 d at ambient 

temperature. The mixture was extracted with ethyl acetate (3×40 mL) und the organic 
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solvent washed with water (1×50 mL). The organic layers were dried over sodium sul-

fate and the solvent was evaporated at reduced pressure. 8.67 g of product 5 

(17.6 mmol, 85%) was received as a slightly orange colored liquid.  

1H NMR (400 MHz, DMSO-d6, 298 K): δ = 7.67 (d, 3J = 20.2 Hz, 2 H, Im-H), 7.51 

(d, 3J = 8.2 Hz, 2 H, Ph-H), 7.32 (d, 3J = 8.2 Hz, 2 H, Ph-H), 6.74 (dd, 3J(Z) = 11.0 Hz, 
3J(E) = 17.7 Hz, 1 H, H2C=CH), 5.86 (d, 3J(E) = 17.7 Hz, 1 H, HC(H)=CH), 5.41 (s, 2 H, 

Bn-H), 5.29 (d, 3J(Z) = 11.0 Hz, 1 H, HC(H)=CH), 3.77 (s, 3 H, N-CH3), 2.60 (s, 3 H, N-

C(CH3)-N) ppm. 

13C{1H} NMR (100 MHz, DMSO-d6, 298 K): δ = 144.66 (C), 137.42 (C), 135.94 

(C), 134.04 (CH), 128.12 (2 CH), 124.36 (2 CH), 122.69 (CH), 121.24 (CH), 119.57 (q, 
1J = 321.8 Hz, CF3), 115.07 (CH2), 50.46 (CH2), 34.78 (CH3), 9.40 (CH3) ppm. 

ESI-MS for C14H17N2
+: m/z = 213.14. 

 

Synthesis of poly[1-butyl-3-(4'-vinylbenzyl)-1H-imidazol-3-ium chloride] 

(3): A Schlenk flask was charged with 2.03 g 1-butyl-3-(4'-vinylbenzyl)-1H-imidazol-3-

ium chloride (1) (7.41 mmol, 200.00 eq), 1.8 mg 1,1’-azobis(cyclohexanecarbonitrile) 

(0.00741 mmol, 0.20 eq) and 12.8 mg 2-cyano-2-propyl dodecyl trithiocarbonate 

(0.037 mmol, 1.00 eq). The mixture was dissolved in DMSO, degassed by three con-

secutive freeze-pump-thaw cycles, filled with nitrogen, and subsequently immersed 

in a preheated oil bath at 85 °C. The polymerization was stopped by sudden freezing 

in liquid nitrogen, diluting in water and purging with air. Next, the polymer was puri-

fied by dialysis in pure water (3 d, a.t., 1 kDa MWCO).  

 

Synthesis of poly[1-butyl-3-(4’-vinylbenzyl)-1H-imidazol-3-ium bis(trifluo-

romethanesulfonyl)imide] (4): A Schlenk flask was charged with 8.00 g 1-butyl-3-(4'-

vinylbenzyl)-1H-imidazol-3-ium bis(trifluoromethane) sulfonimide (2) (15.34 mmol, 

200.00 eq), 3.8 mg 1,1’-azobis(cyclohexanecarbonitrile) (0.0153 mmol, 0.20 eq) and 

26.5 mg 2-cyano-2-propyl dodecyl trithiocarbonate (0.0767 mmol, 1.00 eq). The mix-

ture was dissolved in BuCN, degassed by three consecutive freeze-pump-thaw cycles, 

filled with nitrogen and subsequently immersed in a preheated oil bath at 85 °C. The 

polymerization was stopped by sudden freezing in liquid nitrogen, diluted in acetone 

and purging with air. After dialysis (pure water or DMSO for 3 d, a.t., 1 kDa MWCO), 
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the product (4) was obtained as yellow substance depending on the residual monomer 

as a highly viscous liquid or as a solid. 

 

Synthesis of poly[1-butyl-3-(4’-vinylbenzyl)-1H-imidazol-3-ium bis(triluo-

romethanesulfonyl)imide] (4) by salt metathesis: 21.0 mg poly(1-butyl-3-(4'-vi-

nylbenzyl)-1H-imidazol-3-ium chloride) (8900 g·mol-1, 0.0755 mmol, 1.00 eq) was dis-

solved in 1 mL water. Subsequently, 26.0 mg LiTf2N (0.0906 mmol, 1.20 eq) was 

added, and the reaction was allowed to proceed for 24 h at ambient temperature. 

Next, the product was extracted with ethyl acetate (2×5 mL), dried over sodium ace-

tate, and evaporated at reduced pressure. The product 4 was received as a yellowish 

solid. 

Synthesis of 1-decyl-2-methyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chlo-

ride ([DeMVBIM]Cl). A Schlenk tube was charged with 4.50 g 1-decyl-2-methylimid-

azole (20.2 mmol, 1.00 eq), dissolved in 100 mL CHCl3 and cooled to 0 °C. Subse-

quently, 4.29 mL vinylbenzyl chloride (30.4 mmol, 1.50 eq) was added and the tube 

was heated from 0 °C to 50 °C. The mixture was stirred at 50 °C for 24 h. The mixture 

was extracted with water (1×80 mL) (phase separation overnight), evaporated at re-

duced pressure to get rid of the residual organic solvents, and freeze-dried. 3.27 g of 

the product (58%) was received as a colorless liquid. 
1H NMR (400 MHz, DMSO-d6, 298 K): δ  = 7.82 (d, 3J = 2.1 Hz, 1H), 7.79 (d, 

3J = 2.1 Hz, 1H), 7.51 (d, 3J = 8.1 Hz, 2H), 7.31 (d, 3J = 8.1 Hz, 2H), 6.73 (dd, 
3J(E) = 17.7 Hz, 3J(E) = 11.0 Hz, 1H), 5.86 (d, 3J = 17.7 Hz, 1H), 5.43 (s, 2H), 5.29 (d, 
3J = 11.0 Hz, 1H), 4.12 (t, 3J = 7.4 Hz, 3H), 2.63 (s, 3H), 1.78 – 1.62 (m, 2H), 1.32 – 

1.15 (m, 14H), 0.85 (t, 3J = 6.8 Hz, 4H) ppm. 
13C{1H} NMR (100 MHz, DMSO-d6, 298 K): δ  = 144.02 (C), 137.28 (CH), 135.92 

(C), 134.07 (C), 128.12 (CH), 126.64 (CH), 121.72 (CH), 121.57 (CH), 115.13 (CH2), 

50.32 (CH2), 47.63 (CH2), 31.24 (CH2), 28.94 (CH2), 28.84 (CH2), 28.64 (CH2), 28.43 

(CH2), 25.58 (CH2), 22.07 (CH2), 13.93 (CH3), 9.50 (CH3) ppm. 

Synthesis of 1-(4-vinylbenzyl)pyridin-1-ium chloride ([VBPy]Cl). A Schlenk 

tube was charged with 2.48 mL pyridine (8.00 g, 52.4 mmol, 1.00 eq), dissolved in 

100 mL CHCl3 and cooled to 0 °C. Subsequently, 7.41 mL vinylbenzyl chloride (2.44 g, 

30.8 mmol, 1.50 eq) was added and the tube was heated from 0 °C to 50 °C. The mix-

ture was stirred at 50 °C for 24 h. The mixture was extracted with water (3×50 mL), 
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evaporated at reduced pressure to get rid of the residual organic solvents, and freeze-

dried. 4.81 g of the product (40%) were obtained as a colorless, highly viscous liquid. 
1H NMR (400 MHz, DMSO-d6, 298 K): δ  = 9.37 (d, 3J = 5.5 Hz, 2H), 8.68 – 8.59 

(m, 1H), 8.23 – 8.15 (m, 2H), 7.59 (d, 3J = 8.3 Hz, 2H), 7.53 (d, 3J = 8.3 Hz, 2H), 6.73 

(dd, 3J(E) = 17.7, 3J(Z) = 11.0 Hz, 1H), 5.96 (s, 1H), 5.88 (d, 3J = 17.7, 1H), 5.30 (d, 
3J = 11.0, 1H) ppm. 

13C{1H} NMR (100 MHz, DMSO-d6, 298 K): δ  = 145.94 (CH), 144.87 (CH), 

138.09 (C), 135.82 (C), 133.83 (CH), 129.30 (CH), 128.43 (CH), 126.82 (CH), 115.68 

(CH2), 62.69 (CH2) ppm. 

Synthesis of N,N,N-triethyl-N-(4-vinylbenzyl)ammonium chloride 

([TEVBA]Cl). A Schlenk tube was charged with 3.50 g triethylamine (34.6 mmol, 

1.00 eq), dissolved in 50 mL CHCl3 and cooled to 0 °C. Subsequently, 7.33 mL vi-

nylbenzyl chloride (7.92 g, 51.9 mmol, 1.50 eq) was added and the tube was heated 

from 0 °C to 50 °C. The mixture was stirred at 50 °C for 24 h. The mixture was ex-

tracted with water (3×40 mL), evaporated at reduced pressure to get rid of the residual 

organic solvents, and freeze-dried. 8.22 g of the product (94%) were obtained as col-

orless needles. 
1H NMR (400 MHz, DMSO-d6, 298 K): δ  = 7.59 (d, 3J = 8.2 Hz, 2H), 7.52 (d, 

3J = 8.2 Hz, 2H), 6.79 (dd, 3J(E) = 17.7 Hz, 3J(Z) = 11.0 Hz, 1H), 5.95 (d, 3J = 17.7 Hz, 

1H), 5.37 (d, 3J = 11.0 Hz, 1H), 4.54 (s, 2H), 3.19 (q, 3J = 7.1 Hz, 6H), 1.30 (t, 
3J = 7.1 Hz, 9H) ppm. 

13C{1H} NMR (100 MHz, DMSO-d6, 298 K): δ  = 138.71 (CH), 135.76 (C), 132.88 

(CH), 127.38 (C), 126.54 (CH), 116.18 (CH2), 59.27 (CH2), 52.01 (CH2), 7.59 (CH3) ppm. 

Synthesis of triphenyl(4-vinylbenzyl)phosphonium chloride ([TPVBP]Cl). 

5.00 g vinylbenzyl chloride (29.5 mmol, 1.50 eq) was added dropwise to a stirred so-

lution of 7.73 g triphenylphosphine (29.5 mmol, 1.00 eq) in 20 mL acetonitrile. Sub-

sequently, the homogeneous solution was stirred at 50 °C for 24 hours. The reaction 

mixture was cooled to ambient temperature and the solvent removed under reduced 

pressure to afford a white solid. The product was thoroughly washed by stirring with 

three 30 mL portions of acetone. The solid was finally washed with 30 mL of diethyl 

ether and dried under vacuum overnight. 
1H NMR (400 MHz, DMSO-d6, 298 K): δ  = 7.95 – 7.86 (m, 3H), 7.80 – 7.67 (m, 

12H), 7.33 (d, 3J = 8.1 Hz, 2H), 6.98 (d, 3J = 8.  Hz, 2H), 6.65 (dd, 3J(E) = 17.6 Hz, 
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3J(Z) = 11.0 Hz, 1H), 5.81 (d, 3J = 17.6 Hz, 1H), 5.30 (d, 2J = 15.9 Hz, 2H), 5.25 (d, 
3J = 11.0 Hz, 1H) ppm. 

13C{1H} NMR (100 MHz, DMSO-d6, 298 K): δ  = 303.70 (d, 2J = 4.2 Hz, C), 

302.50 (C), 301.78 (d, 4J = 2.7 Hz, CH), 300.79 (d, 3J = 9.8 Hz, CH), 297.85 (d, 3J 

= 5.7 Hz, CH), 296.80 (d, 2J = 12.4 Hz, CH), 294.19 (CH), 293.11 (d, 4J = 3.3 Hz, CH), 

284.61 (d, 1J = 85.5 Hz, C), 281.97 (CH2), 194.70 (d, 1J = 46.4 Hz, CH2) ppm. 
31P{1H} NMR (162 MHz, DMSO-d6, 298 K): δ  = 22.83 ppm. 

 

Synthesis of 4-methyl-1-vinyl-4H-1,2,4-triazol-1-ium iodide ([MVTr]I). A 

100 mL flask was filled with a mixture of 5.40 mL 1-vinyl-1,2,4-triazole 1 (5.50 g, 

57.8 mmol, 1.00 eq), 5.40 mL iodomethane (12.3 g, 86.7 mmol, 1.50 eq) and 50 mg 

2,6-di-tert-butyl-4-methylphenol (0.227 mol). After stirring and heating for 24 h at 

50 °C, the crude product was filtered off and washed with THF for three times. A pale 

yellow solid (13.21 g, 96.4%) was obtained.  
1H NMR (400 MHz, DMSO-d6, 298 K): δ  = 10.35 (s, 1H), 9.28 (s, 1H), 7.54 (dd, 

3J(E) = 15.3 Hz, 3J(Z) = 8.6 Hz, 1H), 6.03 (d, 3J(E) =15.3 Hz, 1H), 5.56 (d, 3J(Z) =8.6 Hz, 

1H), 3.93 (s, 3H) ppm. 
13C{1H} NMR (100 MHz, DMSO-d6, 298 K): δ  = 145.38 (CH), 142.03 (CH), 

128.98 (CH), 110.21 (CH2), 34.70 (CH3) ppm. 

Synthesis of 1-benzyl-3-vinyl-1H-imidazol-3-ium chloride ([BnVIM]Cl). A 

mixture of 9.41 g 1-vinyl-imidazole (0.100 mol, 1.00 eq), 12.7 g benzyl chloride 

(0.100 mol, 1.00 eq) and 20 mL of ethanol with 100 mg 2,6-di-tert-butyl-4-methylphe-

nol as the stabilizer were charged into a 100 mL Schlenk flask. The mixture was stirred 

at ambient temperature for 1 h and at 35 °C for another hour before it was kept at 

60 °C for 24 h. After cooling down to ambient temperature, the mixture was poured 

into 1 L THF. The liquid oily phase was washed with THF 3 times and dried at ambient 
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temperature under high vacuum for 4 h. A pale yellow product (17.7 g, 80%) was then 

stored in a freezer. 
1H NMR (400 MHz, D2O, 298 K): δ  = 9.06 (s, 1H), 7.70 (s, 1H), 7.46 (s, 1H), 

7.44 – 7.26 (m, 5H), 7.05 (dd, 3J(E) = 15.6 Hz, 3J(Z) = 8.7 Hz, 1H), 5.73 (d, 
3J(E) = 15.6 Hz, 1H), 5.37 (d, 3J(Z) = 8.7 Hz, 1H), 5.31 (s, 2H) ppm. 

13C{1H} NMR (100 MHz, D2O, 298 K): δ  = 134.13 (CH), 133.01 (CH), 129.30 

(CH), 129.28 (CH), 128.74 (CH), 127.93 (CH), 122.66 (CH), 119.52 (CH), 109.48 (CH2), 

53.02 (CH2) ppm. 

Synthesis of poly(1-decyl-2-methyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium 

chloride) (p([DeMVBIM]Cl), 5). A Schlenk flask was charged with 3.85 g 1-decyl-2-

methyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride (1) (10.26 mmol, 200.00 eq), 

2.51 mg 1,1′ -azobis(cyclohexanecarbonitrile) (0.0103 mmol, 0.20 eq) and 17.7 mg 

2-cyano-2-propyldodecyl trithiocarbonate (0.0513 mmol, 1.00 eq). The mixture was 

dissolved in 20 mL DMF/EtOH (1:1, v/v), degassed by three consecutive freeze-pump-

thaw cycles, filled with nitrogen and subsequently immersed in a preheated oil bath 

at 85 °C. The polymerization was stopped by sudden freezing in liquid nitrogen, di-

luted with water and purged with air. The polymer was purified by dialysis in pure 

water (3 d, a.t., 1 kDa MWCO). 

Synthesis of poly(1-(4-vinylbenzyl)pyridin-1-ium chloride) (p([VBPy]Cl), 6). 

A Schlenk flask was charged with 4.81 g 1-(4-vinylbenzyl)pyridin-1-ium chloride (2) 

(20.8 mmol, 200.00 eq.), 5.1 mg 1,1′ -azobis(cyclohexanecarbonitrile) (0.0208 

mmol, 0.20 eq.) and 36.3 mg 2-cyano-2-propyldodecyl trithiocarbonate (0.105 mmol, 

1.00 eq.). The mixture was dissolved in 48 mL DMSO and 24 mL DMF, degassed by 

three consecutive freeze–pump–thaw cycles, filled with nitrogen, and subsequently 

immersed in a preheated oil bath at 85 °C. The polymerization was stopped by sudden 

freezing in liquid nitrogen, diluted with water and purged with air. The polymer was 

purified by dialysis in pure water (3 d, a.t., 1 kDa MWCO). 

Synthesis of poly(N,N,N-triethyl-N-(4-vinylbenzyl)ammonium chloride) 

(p([TEVBA]Cl), 7). A Schlenk flask was charged with 2.70 g N,N,N-triethyl-N-(4-vi-

nylbenzyl)ammonium chloride (3) (63.1 mmol, 200.00 eq), 1.86 mg 1,1′ -azobis(cy-

clohexanecarbonitrile) (0.0076 mmol, 0.20 eq) and 13.1 mg 2-cyano-2-propyldodecyl 

trithiocarbonate (0.0380 mmol, 1.00 eq). The mixture was dissolved in DMSO (15 mL) 

and DMF (10 mL), degassed by three consecutive freeze-pump-thaw cycles, filled with 

nitrogen and subsequently immersed in a preheated oil bath at 85 °C. The polymeri-

zation was stopped by sudden freezing in liquid nitrogen, diluted with water and 
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purged with air. The polymer was purified by dialysis in pure water (3 d, a.t., 1 kDa 

MWCO). 

Synthesis of poly(triphenyl(4-vinylbenzyl)phosphonium chloride) 

(p([TPVBP]Cl), 8). A Schlenk flask was charged with 7.10 g triphenyl(4-vinylben-

zyl)phosphonium chloride (4) (17.1 mmol, 200.00 eq), 4.2 mg 1,1′ -azobis(cyclohex-

anecarbonitrile) (0.017 mmol, 0.20 eq) and 29.6 mg 2-cyano-2-propyldodecyl trithio-

carbonate (0.086 mmol, 1.00 eq). The mixture was dissolved in DMSO (15 mL) and 

DMF (10 mL), degassed by three consecutive freeze-pump-thaw cycles, filled with ni-

trogen and subsequently immersed in a preheated oil bath at 85 °C. The polymeriza-

tion was stopped by sudden freezing in liquid nitrogen, diluted with water and purged 

with air. The polymer was purified by dialysis in pure water (3 d, a.t., 1 kDa MWCO). 

Synthesis of poly(2-(acryloyloxy)-N,N,N-trimethylethan-1-aminium chlo-

ride) (p([ATMEA]Cl), 9). A Schlenk flask was charged with 4.00 g 2-(acryloyloxy)-

N,N,N-trimethylethan-1-aminium chloride (9) (20.7 mmol, 200.00 eq), 3.4 mg 2,2′ -

azobis(2-methylpropionitril) (0.0207 mmol, 0.20 eq) and 35.8 mg 2-cyano-2-

propyldodecyl trithiocarbonate (0.104 mmol, 1.00 eq). The mixture was dissolved in 

20 mL DMSO/H2O (1:1, v/v), degassed by three consecutive freeze-pump-thaw cycles, 

filled with nitrogen and subsequently immersed in a preheated oil bath at 60 °C. The 

polymerization was stopped by sudden freezing in liquid nitrogen, diluted with water 

and purged with air. The polymer was purified by dialysis in pure water (3 d, a.t., 

1 kDa MWCO). 

Synthesis of poly(1-butyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride) 

(p([BVBIM]Cl), 10). A Schlenk flask was charged with 13.9 g 1-butyl-3-(4-vinylbenzyl)-

1H-imidazol-3-ium chloride (50.3 mmol, 200 eq), 12.3 mg 1,1’-azobis(cyclohex-

anecarbonitrile) (0.0503 mmol, 0.20 eq) and 166 mg DoPAT-PE (251 mmol, 1.00 eq). 

The mixture was dissolved in 75 mL DMSO/DMF (1:1, v/v), degassed by three consec-

utive freeze-pump-thaw cycles, filled with nitrogen and subsequently immersed in a 

preheated oil bath at 85 °C. The polymerization was stopped by sudden freezing in 

liquid nitrogen, diluted with water and purged with air. The polymer was purified by 

dialysis in pure water (3 d, a.t., 1 kDa MWCO). 

Synthesis of poly(4-methyl-1-vinyl-4H-1,2,4-triazol-1-ium iodide) 

(p([MVTr]I), 11). A mixture of 5.00 g 4-methyl-1-vinyl-4H-1,2,4-triazol-1-ium iodide 

(21.10 mmol), 50 mg AIBN (0.300 mmol), and 20 mL of anhydrous DMF was put in-

side a 50 mL Schlenk flask under argon protection. Three freeze-pump-thaw cycles 
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were applied for oxygen removal. The reaction was stirred at 75 °C for 24 h and the 

crude product was dialyzed in water (2 d, a.t.). A yellow powder was received after 

removal of solvents, the yield was 3.6 g (72%). 

Synthesis of poly(1-benzyl-3-vinyl-1H-imidazol-3-ium chloride) 

(p([BnVIM]Cl), 12). A 100 mL Schlenk flask was filled with a mixture of 5.00 g 1-ben-

zyl-3-vinyl-1H-imidazol-3-ium chloride. (22.6 mol), 50 mg AIBN (0.300 mmol), and 

50 mL DMSO. Then, three freeze-pump-thaw cycles were applied for oxygen removal 

and argon protection. The reaction was stirred at 90 °C for 12 h. After cooling down 

to ambient temperature, the crude product was precipitated in THF. The precipitate 

was re-dissolved in methanol and precipitated in THF again. 4.00 g of a white powder 

(80%) was received after removal of solvents. 

Synthesis of the photoenol- functionalized RAFTagent (14’) 

The synthesis was followed the protocol of Kaupp et al.344  

 

Synthesis of 4-maleimidobutyroyl chloride 

The synthesis was followed the protocol of Hermann et al.348  

 

APTES-functionalization of Si wafer: The Si surfaces (approx. 1×1 cm2) were 

treated with piranha solution (H2SO4:H2O2, 4:1 v/v) for 3 h. Subsequently, the Si wafers 

were rinsed thoroughly with Milli Q water and dried under a stream of nitrogen. In a 

further step, the activated surfaces were placed in a solution of 5.0 mL APTES, 70.0 

mL toluene and 0.1vol% triethylamine and allowed to react overnight at 80 °C. The 

substrates were rinsed with toluene, acetone and methanol, before being dried under 

a stream of nitrogen.  

 

Maleimide-functionalization of (APTES) Si wafer: The APTES-functionalized 

Si substrate was immersed in 55 mM DCM solution of TEA. Equal volume of a 50 mM 

solution of 4-maleimidobutyroyl chloride in dry dichloromethane was added subse-

quently under inert atmosphere. The reaction was allowed to proceed for 4 h. The 

surfaces were rinsed with dichloromethane, methanol and Milli Q water and left in a 
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petri dish with methanol overnight. Next, the surfaces were rinsed with THF, methanol 

and Milli Q water. 

 

Photo-patterning of DoPAT-PE (14’) on the maleimide-functionalized Si 

wafer (13): The substrate was immersed in a 11 mM solution of DoPAT-PE (14’) in 

acetonitrile, and subsequently degassed by purging with nitrogen for 20 minutes. 

Next, the wafer was irradiated for 2.5 h (UV lamp: ARIMED B6, λmax = 320 nm). Subse-

quently, the wafer was rinsed thoroughly with THF, acetone, methanol and Milli Q 

water and dried under a stream of nitrogen. 

 

Grafting-from polymerization of butylvinylbenzylimidazolium chloride 

(1): The DoPAT-PE-functionalized substrate 14 was placed in a vial and flushed with 

argon for 5 minutes. A solution – degassed via three consecutive freeze-pump-thaw 

cycles – of 5.55 g butylvinylbenzylimidazolium chloride (1) (20.1 mmol, 1500 eq), 4.7 

mg DoPAT (0.0134 mmol, 1.00 eq) and 3.3 mg VAZO-88 (0.0134 mmol, 1.00 eq) was 

added to the wafer and the vial placed in a preheated custom-built heating block at 

85 °C. After 7 h, the polymerization was stopped by sudden cooling in liquid nitrogen 

and bubbled with air. The solution was dialyzed in deionized water for 3 d and freeze-

dried afterwards. The wafer was rinsed thoroughly with Milli Q water, methanol, ace-

tone and Milli Q water again and left in a petri dish with methanol overnight. The 

wafer was again rinsed with Milli Q water, methanol and Milli Q water and left for 

another 24 h in a petri dish with methanol. After 24 h, the wafer was rinsed with Milli 

Q water, methanol and Milli Q water and dried under a stream of nitrogen. 

 

Reaction of PIL-grafted surface (16) with KMnO4: The PIL-grafted surface 

was dipped into a 50 mM solution of KMnO4 in water for 2 to 3 seconds. Subsequently, 

the surface was rinsed thoroughly with Milli Q water and dried under a stream of 

nitrogen. 
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5.1. MOTIVATION 

Cyclic imino ethers (CIE) are an important class of monomers for ring-opening 

polymerization. After polymerization, they form PEAs115,116 where the ester moiety en-

tails a plethora of motifs e.g. double and triple bonds for subsequent ligation reac-

tions. Their ‘stealth’ properties – as discussed earlier – makes these polymers ideal 

platforms for drug delivery. However, their degradability is limited to hydrolysis of 

the ester side chain. In addition, there is no disassembly pathway to transform the 

entire polymer chain into small environmentally friendly compartments. An alternative 

constitutes SZWIP-prepared polymers recently prepared by Kempe and his team (see 

Section 2.2.3), who rediscovered the reaction between an electrophilic monomer ME, 

i.e. CIE, and a nucleophilic monomer MN, i.e. acrylic acid.349 

After their first mentioning by Segusa in 1977, the polymerization mechanism 

was elucidated by techniques available in the 1970s and 80s. A detailed mechanism 

including a precision determination of by-products has not yet been described. Thus, 

the present section introduces a HR ESI MS access route leading to in-depths insight 

into the SZWIP mechanism between CIE (i.e. 2-methyl-2-oxazoline (MeOx), 2-ethyl-2-

oxazoline (EtOx) or 2-ethyl-2-oxazine (EtOz)) with acrylic acid (AA), exploiting the 

characteristic species accumulating during the copolymerization as well as tandem 

mass spectrometry (MS/MS). Furthermore, preferences in α,ω-end group formation by 

screening various feed ratios of CIE and AA (e.g. MeOx:AA = 1:1; MeOx:AA = 2:1; 

MeOx:AA = 1:2) are showcased. Critically, a calibration curve – based on AA-MeOx-AA 

dimer – was established allowing for the semi-quantitative determination of the end 

group ratios with different feed ratios of AA. The formation of alternating copolymers 

was confirmed by MS/MS experiments and deviations from an ideal alternating com-

position were found to decrease from MeOx to EtOx to EtOz.  

                                           
4 The synthesis of the oligomers was performed by P. A. J. M. de Jongh (University of Warwick, 
UK). ESI MS measurements were performed by J. Steinkoenig. D. Haddleton is thanked for 
discussions. A. S. Goldmann, C. Barner-Kowollik and K. Kempe motivated and supervised the 
project. This chapter is adapted with permission from Steinkoenig, J.; de Jongh, P. J. M.; Had-
dleton, D.; Goldmann, A. S.; Barner-Kowollik, C.; Kempe, K. Macromolecules 2018, 51, 318-
327. Copyright 2018 American Chemical Society. 
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5.2. RESULTS AND DISCUSSION 

A library of oligomeric NPAEs, i.e. oligo(MeOx-alt-AA)nA, oligo(EtOx-alt-AA)nA 

and oligo(EtOz-alt-AA) was prepared using previously reported procedures.116,139,140,350 

Specifically, CIEs were reacted with AA in different ratios as summarized in Table 3. 

Figure 41 Schematic representation of the SZWIP procedure of 2-methyl-2-oxazoline (MeOx), 2-ethyl-2-
oxazoline (EtOx) or 2-ethyl-2-oxazine (EtOz) with acrylic acid (AA) and their analysis via ESI MS and struc-
tural identification using tandem MS (x = 1: 2-oxazoline; x = 2: 2-oxazine). Reprinted with permission 
from Ref. [352]. Copyright American Chemical Society (2018). 
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Structural assessment by 1H NMR was impeded due to the presence of rotamers as 

well as the existence of different oligomeric species and end groups. Thus, the poly-

mer composition, i.e. ratio of the two monomers, was the only information obtained.116 

A precise structural assignment can only be accessed via high resolution ESI MS. The 

following mass spectrometric experiments have been performed on an Orbitrap mass 

analyzer critically surpassing the previously published data on SZWIP-prepared poly-

mers.116 The oligomers were dissolved in water/acetonitrile/acetic acid (1:1:0.1 (v/v)) 

with a concentration of 0.500 mg∙mL-1 (the exact mass is crucial for subsequent quan-

tifications). Figure 41 collates the work that has been performed in the present sec-

tion comprising oligomer production, detailed full MS as well as MS/MS and mecha-

nistic elucidation based on the post-mortem analysis of specific fragment ions.351  

Table 3 1H NMR and SEC characterization data of the oligomeric NPAEs prepared by SZWIP of different 
cyclic imino ethers (CIEs) and acrylic acid (AA). Reprinted with permission from Ref. [352]. Copyright 
American Chemical Society (2018). 

CIE CIE : AA DPa  

(CIE/AA) 

Mn,NMR
a 

[g mol-1] 

Mn,SEC
b  

[g mol-1] 

Đb 

MeOx 2 : 1 2.5/2.5 465 1800 1.32 

 1 : 1 2.5/2.5 465 1300 1.18 

 1 : 2 3.0/3.0 543 1500 1.27 

EtOx 1 : 1 2.5/2.5 500 1600 1.30 

 1 : 2 2.0/2.0 414 1300 1.17 

EtOz 1 : 1 3.0/3.0 627 2000 1.27 

1 : 2 2.5/2.5 535 1600 1.20 
a Determined from 1H NMR analysis from the peak areas of the vinyl groups and the methylene 

group of CIE and AA repeating units. b Determined by SEC analysis. 

For clarity, the current section is divided into four parts: (i) expanded mass 

spectra highlighting important species (Section 5.2.1), (ii) short MS/MS discussion 

with one product ion and its fragmentation ions (Section 5.2.2), (iii) quantification of 

the mass spectra (Section 5.2.3) and (iv) discussion of the suggested polymerization 

mechanism (Section 5.2.4).  
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5.2.1. Expanded Spectra of the SZWIP Oligomers 

The expanded ESI spectra (Figure 42A-C) collate all species recorded within 

one full repeat unit (e.g. m/z(MeOx-AA)exp 157.0736; m/z(MeOx-AA)theo 157.0739). 

Most abundant were the H+ ionized and Na+ ionized alternating copolymer species (ω-

acid chain terminus (, , ) and the ω-amide chain terminus (, , )). Further char-

acteristic ions were detected, i.e. a low abundant peak in the MeOx/AA = 1:2 spec-

trum with 324.1047 m/z (labeled with ) representing oligo(MeOx1-alt-AA3). The in-

corporation ratio MeOx/AA=1:3 reveals an AA-AA dimer generated by a Michael addi-

tion reaction352 before it reacts with another MeOx-AA dimer. As such a reaction pref-

erably occurs with a surplus of AA (e.g. MeOx/AA = 1:2), the AA-AA dimer species is 

of even lower abundance for the other copolymerization ratios (i.e. MeOx/AA = 1:1 

and 2:1). A more important side product that has been detected in the course of the 

mass spectrometric study is based on the homocoupling of CIE (CIE-CIE dimer). For 

instance, a species at 328.1859 m/z (labeled with ) was almost equally abundant in 
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Figure 42 Overview ESI mass spectra of (A) oligo(MeOx-alt-AA)nA with feed ratio MeOx/AA =1:1; 1:2 and 
2:1; (B) oligo(EtOx-alt-AA)nA with feed ratio EtOx/AA = 1:1 and 1:2; (C) oligo(EtOz-alt-AA) with feed ratio 
EtOz/AA = 1:1 and 1:2  recorded in water/acetonitrile/acetic acid (1:1:0.1 v/v) in a mass range between 
m/z 200 to 1000. The labels , ,  correspond to an acid-terminated species (H+ ionized), and labels 
, ,  indicate the corresponding amide-terminated species (H+ ionized). (D) Proposed structural as-
signment for the ideally alternating copolymers with α -acrylic and ω-amide end groups. Reprinted with 
permission from Ref. [352]. Copyright American Chemical Society (2018). 



5.2 Results and Discussion 
  

114 
 

each spectrum, irrespective of the copolymerization ratio and can be assigned as ol-

igo(MeOx3-alt-AA1). MeOx. If the acrylic acid was incorporated into the main chain, the 

highly reactive cyclic oxazolinium was susceptible to ring-opening reactions with any 

nucleophiles (e.g. water). Yet, low abundant species have been detected (labeled with 

 (Figure 42)), where the SZWIP process was terminated by ambient water instead of 

acrylic acid. Table 4 collates the species identified in the mass spectra (see Figure 

42). 

Table 4 Peak assignment of the ESI- Orbitrap spectrum showing the label (in correspondence with the 
species in Figure 43), the experimental m/z and theoretical m/z values (determined by the most abun-
dant isotope of the isotopic pattern), ∆m/z, the resolution (obtained by the Xcalibur software), and the 
structure determination. One of various isobaric structures is depicted. Reprinted with permission from 
Ref. [352]. Copyright American Chemical Society (2018). 

Label m/z (exp) m/z (theo) ∆m/z Resolution Structure 

 315.1544 315.1552 0.0012 122800 

 

 324.1047 324.1054 0.0007 118500 

 

 328.1859 328.1867 0.0008 118500 

 

 363.1752 363.1762 0.0010 108000 

 

 400.2067 400.2078 0.0011 101400 

 

 343.1859 343.1864 0.0005 113800 

 

 324.1047 324.1054 0.0007 118500 

 

 370.2329 370.2336 0.0007 111400 
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 415.2063 415.2075 0.0012 104100 

 

 442.2535 442.2548 0.0013 97400 

 

 371.2168 371.2177 0.0009 109000 

 

 324.1047 324.1054 0.0007 118500 

 

 443.2378 443.2382 0.0004 99800 

 

 484.3006 484.3012 0.0006 97100 

 

 515.2589 515.2594 0.0005 91700 

 
 

5.2.2. MS/MS Elucidation 

In order to obtain information about the general reaction between AA and 

CIEs allowing to deduce the polymerization mechanism, a closer look into the micro-

structure is important. The oligomer microstructures have been revealed by employ-

ing MS/MS (Figure 42D), where a precursor ion (442.2538 m/z) was fragmented with 

nitrogen gas by applying a collision energy of 20 eV. The determination of the micro-

structure is a complex process as many isobaric structures are possible, comprising 

(i) the development of a feasible fragmentation mechanism;353,354 (ii) their structural 

assessment; and (iii) the identification of key fragment ions unambiguously confirm-

ing the microstructure.  
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Step (i): fragmentation mechanism 

Exemplary performed on oligo(MeOx3-alt-AA1), such a microstructure determi-

nation process is depicted in Figure 44. Two dominant fragmentation pathways are 

discussed: (i) a concerted depolymerization via a six-membered transition state oc-

curring at the chain termini and at the main chain fragments alike; and (ii) a ring 

closure depolymerization releasing fragments always in β-position to the acetamide 

structural unit. Based on the structural assignments of the MS/MS results, it is pro-

posed that the concerted depolymerization is the favored fragmentation pathway. The 

fragment ion 256.1656 m/z represents MeOx3 confirming that the microstructure 

contains homocoupled MeOx. An important consequence is that AA terminates the 

SZWIP process by ring opening MeOx. If the AA is incorporated into the main chain, 

the highly reactive cyclic oxazolinium is susceptible to ring-opening reactions with 

any nucleophiles (e.g. water). Yet, low abundant species have been detected (labeled 

with  (Figure 42)) where the SZWIP process was terminated by ambient water instead 

of AA. 

Step (ii) and (iii): structural assessment and key structures 

Close interpretation of the peaks observed in the MS spectra is critical for the 

identification of isobaric structures. Species such as those labeled with  represent 

CONCERTED DEPOLYMERIZATION RING CLOSURE DEPOLYMERIZATION

KEY FRAGMENT ION

Figure 44 Proposed fragmentation (depolymerization) during MS/MS experiments revealing the microstruc-
ture of CIEs. Oligo(MeOx3-alt-AA1) having acrylic acid as chain termini (acrylic acid terminates the SZWIP 
polymerization) yields various fragment ions. A key fragment ion with three MeOx units connected to each 
other has been detected. An isobaric structure having acrylic acid incorporated into the main chain is un-
likely since the cyclic iminium ether is susceptible to ring-opening reactions (e.g. water). Reprinted with 
permission from Ref. [352]. Copyright American Chemical Society (2018). 
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amide-terminated moieties possessing an ideally alternating microstructure. How-

ever, tandem MS is the only technique available to precisely assess microstructural 

defects. For instance, a species identified as oligo(MeOx3-alt-AA3) prepared from a 

feed ratio MeOx/AA = 1:2 (m/zexp 472.2295; m/ztheo 472.2290) is discussed in the fol-

lowing. Strong signals in the MS/MS spectrum (Figure 45) indicate the alternating 

nature of oligo(MeOx3-alt-AA3). For instance, a species at 158.0814 m/z represents 

the AA-MeOx dimer (m/ztheo 158.0812; labeled with ). Furthermore, an alternating 

depolymerization sequence starting from 472.2295 to 86.0609 m/z (MeOx monomer) 

is evident in the MS/MS spectrum. Strikingly, the existence of a MeOx-MeOx sequence 

is detected at 171.1130 m/z (labeled with ) indicating some extent of MeOx ho-

mopolymerisation during SZWIP. Applying 18 eV collision energy, 1.49 mol% of this 

species is produced as product ion. Table 5 gives the error of the structural as-

signments. 

Table 5 Peak assignment of ESI MS/MS experiment (Figure 46) at 472.2295 m/z with a HCD energy of 
18 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 
Reprinted with permission from Ref. [352]. Copyright American Chemical Society (2018). 

m/z(exp) m/z(theo) Δm/z Error / ppm 

472.2295 472.2290 0.0005 1.06 
400.2082 400.2078 0.0004 1.00 
315.1552 315.1551 0.0001 0.32 
243.1345 243.1339 0.0006 2.47 
212.0920 212.0917 0.0003 1.41 
171.1130 171.1128 0.0002 1.17 
158.0814 158.0812 0.0002 1.27 
86.0609 86.0600 0.0009 10.46 
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Figure 45 Proposed microstructures of oligo(MeOx3-alt-AA3) (m/zexp 472.2295; m/ztheo 472.2290) and key 
fragment ions based on peaks identified. The strong alternating microstructure () and a micro-
structure containing a MeOx-MeOx sequence () can be assigned in the MS/MS spectrum. Re-
printed with permission from Ref. [352]. Copyright American Chemical Society (2018). 
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5.2.3. Quantitative Assessment 

Although MS/MS experiments provide quantitative information based on 

product ions, spectra acquired in a full range mode (detecting several species) are of 

limited reliability for quantification. However, it is interesting and important to evalu-

ate the influence of different feed ratios (MeOx/AA = 1:1; 1:2; and 2:1) on their re-

spective end group quantities. To enable (semi-)quantification, a small molecule ana-

logue, the acid-terminated dimer AA-MeOx-AA was prepared (Figure 47A) and used 

to record a calibration curve in single ion monitoring mode ranging from 

0.75 mg∙mL-1 to 0.01 mg∙mL-1 (m/zexp 230.1019; m/ztheo 230.1023) (Figure 47B). 

Here, the protonated species has been evaluated. The calibration curve based on the 

sodiated species (m/zexp 252.0835) can be found in the Appendix Fig. C 16. 

Based on the calibration curve, it was possible to extract semi-quantitative 

information from all oligo(MeOx-alt-AA)nA spectra with the peak used for calibration 

(230.1019 m/z) being present in all feed ratios (MeOx/AA = 1:1; 1:2; and 2:1). Within 

the same spectrum (e.g. MeOx/AA = 1:1), semi-quantitative information based on the 

Figure 47. (A) Reaction scheme for the small molecule analogue: (i) a.t., 18 h; (ii) (CH3CO)2O, Al2O3, 10 min; 
(iii) CH3COCl, NEt3, DMF, 0 °C to a.t., 18 h, (iv) trifluoroacetic acid, DMF, 0 °C to a.t., 18 h; (B) calibration 
curve recorded in single ion monitoring (SIM) mode focusing on the H+ ionized species (labelled with ); 
(C) repeat unit dependent evaluation of the mole fraction; (D) equation to obtain the mole fraction (χ) and 
the results of one species () based on the calibration; (E) general structure of species . Reprinted with 
permission from Ref. [352]. Copyright American Chemical Society (2018. 
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mole fraction determination was obtained (Figure 47D).355 The calibration curve pro-

vided quantitative values for the acid-terminated oligomers and thus allowed for the 

semi-quantitatively determination of the mole fractions in all individual spectra (1:1; 

1:2 and 2:1), which were compared with each other. Thus, the amide-terminated spe-

cies has been determined by its mole fraction always referenced to the 

m/zexp 230.1019 species (Figure 47A). Semi-quantitative information from oligo(EtOz-

alt-AA) and oligo(EtOx-alt-AA)nA has been obtained by using the same calibration 

curve nased on the assumption that the incorporation of additional neutral CH2 groups 

(either in the side chain as for EtOx or in both side and main chain as for EtOz) have 

a limited effect on the ionization of the macromolecule. Key findings of the semi-

quantification are illustrated in Figure 47C and further discussed in the following.  

End group quantification within MeOx: Increasing the acrylic acid content 

in the feed increases the amount of acid-terminated oligomers (e.g. species at 

m/zexp 387.1756, labeled with ) from χavg = 0.27 (MeOx/AA = 1:1) to χavg = 0.57 

(MeOx/AA = 1:2), whereas a depletion of MeOx (MeOx/AA = 2:1) yields χavg = 0.16. In-

creasing the cyclic imino ether in the feed increases the amount of amide-terminated 

oligomers (e.g. species at m/zexp 315.1455, labeled with ) from χavg = 0.36 

(MeOx/AA = 1:1) to χavg = 0.49 (MeOx/AA = 2:1), whereas MeOx/AA = 1:2 yields 

χavg = 0.20. The full and detailed quantitative data for each end group and all polymer 

systems studied can be found in Figure 48. 

Homocoupling quantification: Species attributed to homocoupling reaction 

steps (e. g. the species at m/zexp 328.1862, labeled with  refer to Figure 47) are 

most abundant for MeOx/AA = 1:1 (χavg = 0.45), however strongly reduced for 

MeOx/AA = 1:2 (χavg = 0.17). Generally, MeOx homopolymer sequences with up to five 

repeat units containing H+ and acrylic acid end groups can be assigned in remarkable 

abundancies, indicating the ring-opening polymerization of cyclic imino ethers as a 

competitive pathway. The mole fraction of these species decreases from χavg = 0.36 

(MeOx/AA = 1:1) to χavg = 0.25 (MeOx/AA = 1:2) and increases slightly under surplus 

cyclic imino ether in the feed to χavg = 0.39 (MeOx/AA = 2:1). As the assessment of the 

homocoupling quantification is exemplarily illustrated in Figure 47, it was decided to 

illustrate the remaining quantitative assessments for several species in the Appendix 

Tab. C 1-7 and Fig. C 17-21. 
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Quantification of different CIEs: Changing the 2-oxazoline from MeOx to 

B

A

C

Figure 48 Illustration of the mole fraction 
along the repeat units of (A) MeOx/AA 
(1:1, 1:s and 2:1), (B) EtOx/AA (1:1 and 
1:2) and (C) EtOz/AA (1:1 and 1:2) deter-
mined based on the H+ and Na+ ionized 
acid- and amide-terminated intensities. 
Reprinted with permission from Ref. 
[352]. Copyright American Chemical So-
ciety (2018). 
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EtOx had a strong effect on the end groups. The amide-terminated species increase 

from χavg = 0.28 (MeOx/AA = 1:1) to χavg = 0.50 (EtOx/AA = 1:1). Strikingly, homopoly-

merization of EtOx decreases from χavg = 0.70 (MeOx/AA = 1:1) to χavg = 0.27 

(EtOx/AA = 1:1). A likely explanation for the increased abundancies of amide-termi-

nated species is that the zwitterion of AA and EtOx (represented by ) forms less 

rapidly compared to MeOx and AA (represented by ) (see the detailed mechanistic 

approach below). Thus, more ionic adducts such as [HEtOx]+[AA]- were present in the 

mixture, which were responsible for the amide chain termination. Expanding the ring 

from a five-membered (oxazoline) to a six-membered (oxazine) ring influences the 

chain terminus ratios even more drastically: amide-terminated species decreased from 

χavg = 0.28 (MeOx/AA = 1:1) and χavg = 0.50 (EtOx/AA = 1:1) to χavg = 0.22 

(EtOz/AA = 1:1). Further, homopolymerization of EtOz decreased from χavg = 0.70 

(MeOx/AA = 1:1) and χavg = 0.27 (EtOx/AA = 1:1) to only χavg = 0.03 (EtOz/AA = 1:1). 

The quantification data within each CIE (i.e. EtOx and EtOz) can be found in Figure 

49. 

5.2.4. Polymerization Mechanism 

Supported by previous literature reports and based on the post-mortem anal-

ysis of the SZWIP-prepared oligomers by full MS and MS/MS alike, a detailed mecha-

nism for the SZWIP of CIEs and AA is suggested. In general, CIEs and AA can react in 

two ways either via a Michael addition reaction, which leads to the required reactive 

zwitterionic species (Figure 50i and ii) or via an acid-base reaction, which results in 
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Figure 49 Illustration of the mole fraction along the repeat units of CIE (1:1) determined based on the 
(A) H+ ionized and (B) Na+ acid- and amide-terminated intensities. (C) Illustration of the mole fraction 
along the repeat units of p(CIE) determined based on the H+ ionized intensities. Reprinted with permission 
from Ref. [352]. Copyright American Chemical Society (2018). 
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the formation of an ion pair [HCIE]+[AA]- (Figure 50iii). The acid-base reaction de-

pends on the acidity of AA (pKa = 4.26) and the basicity of the CIEs (MeOx: pKb = 5.77; 

EtOx: pKb = 5.65; EtOz: pKb = 6.49).356 As a consequence, the protonation of the CIE is 

not preferred. However, as revealed by the MS analysis, the formation of an ion pair 

[HCIE]+[AA]- seems to be crucial for the generation of the amide chain termini (Figure 

50vii). Thus, the acid-base equilibrium is an important parameter to consider. As re-

vealed by the end group determination and supported by the pKb value, EtOx forms 

the ion pairs most readily, represented as [HEtOx]+[AA]- yielding ω-amide end groups 

(see termination discussion below). As noted above, CIEs and AA can undergo an Aza-

Michael addition reaction (Figure 50ii) followed by an intramolecular proton transfer 

(Figure 50i). The presence of the zwitterion was proven experimentally.357 Surpris-

ingly, there is not much data available on the Aza-Michael addition kinetics with an 

acrylate. Reyniers and co-workers358 have provided calculations that estimate equilib-

rium constants and kinetics of Aza-Michael additions. An important criterion for the 

generation of strongly alternating copolymers is the reaction rate of the Aza-Michael 

addition between a secondary amine and acryl derivative. Such reactions are fast 

(~10-3 L∙mol-1∙s-1), but thermodynamically not favored (K~10-3 L∙mol-1). The driving 

force for the formation of the dimer is the irreversible proton transfer (K~1017).358  

Three possible propagation reaction pathways are available after the (sponta-

neous) initiation under zwitterion ion pair formation: (A) dimer-dimer reaction gener-

ating ideally alternating copolymer structures; (B) homocoupling of unreacted CIE with 

the dimer/oligomer producing microstructurally defect alternating copolymers; and 

(C) initiation of homopolymerization by the ion pair to obtain poly(cyclic imino ether)s. 

Pathways (B) and (C) depend on the homocoupling kinetics, with MeOx polymerizing 

faster than EtOx.359 Due to the six-membered ring of EtOz, the ring-opening reaction 

is approximately four times slower.360  

Ultimately, three termination pathways have been revealed by the high reso-

lution MS analysis. The majority of all zwitterionic species will be terminated by AA, 

which acts as nucleophile in the ring-opening reaction of the activated CIE and also 

protonates the ω-carboxylate end group (D). Thus, α-acrylic, ω-carboxylic copolymers 

are generated (Figure 50vi). As demonstrated by different feed ratios, the acid end 

group responds sensitively to any change in feed ratios. In contrast, the amide end 

group is only little influenced by changes in feed ratio rationalized by the fact that 

only activated cyclic iminium ethers (e.g. [HCIE]+[AA]-) will yield amide chain termini 

(Figure 50vii) (E). Thus, the formation of α-acrylic, ω-amide copolymers is observed. 
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A third possible termination is the quenching of the active end groups by other am-

bient nucleophiles, such as water, which can ring-open the CIE (F). 

 

INITIATION

PROPAGATION

TERMINATION

(A)

(B)

(C)

(D)

(E)

(F)

Figure 50 Proposed SZWIP mechanism based on post-mortem species identified during ESI MS and 
MS/MS experiments. Michael addition (MA) reaction (i, ii) to produce the zwitterionic dimer or acid/base 
reaction (iii) as competing reactions during initation. Alternating step-growth polymerization of MA di-
mers (iv), homocoupling to a MA dimer (v) or homopolymerization via consecutive homocouplings as 
competing reactions during propagation. Acid-induced ring opening reaction (vi) producing α -acrylic, ω-
acid chain termini, two ring opening reactions (vii) forming α -acrylic, ω-amide chain termini, and water 
induced ring opening reaction (viii) as competing reactions during termination. Reprinted with permis-
sion from Ref. [352]. Copyright American Chemical Society (2018). 
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5.3. CONCLUSIONS 

The present section introduces an in-depth high resolution MS investigation 

of SZWIP-prepared oligomers of three structurally different CIEs and AA yielding ol-

igo(MeOx-alt-AA)nA, oligo(EtOx-alt-AA)nA and oligo(EtOz-alt-AA)nA. Mass spectra as 

well as MS/MS profiling of important species unambiguously identify their microstruc-

ture with particular focus on the alternating character and end groups of the oligo-

mers. Key findings are: (i) An excess of AA influences the amount of ω-carboxylic acid 

end groups significantly (χavg = 0.27 (MeOx/AA = 1:1); χavg = 0.57 (MeOx/AA = 1:2); 

χavg = 0.16 (MeOx/AA = 2:1)) due to the fact that AA terminates the polymerization. (ii) 

An excess of CIE does not affect the amide chain terminus abundance similarly to acid 

excess (χavg = 0.36 (MeOx/AA = 1:1); χavg = 0.49 (MeOx/AA = 2:1); χavg = 0.20 

(MeOx/AA = 1:2)) due to the fact that only activated CIEs will react producing ω-amide 

end groups. (iii) The reaction of CIEs and AA either leads to the formation of a zwit-

terion or an ion pair [HCIE]+[AA]- containing an activated CIE, which strongly depends 

on the AA/CIE acid-base equilibrium an thus decreases from EtOx>MeOx>EtOz. There-

fore, highest amide end group abundance is realized using EtOx (χavg = 0.50 

(EtOx/AA); χavg = 0.28 (MeOx/AA); χavg = 0.22 (EtOz/AA)). (iv) Importantly, homocou-

pling of CIEs as side reaction to the zwitterionic dimer formation introduces defects 

to the ideal alternating structure. The homocoupling is fast for five-membered rings 

(MeOx>EtOx) and four times slower for six-membered rings (EtOz) (χavg = 0.70 

(p(MeOx)); χavg = 0.27 (p(EtOx); χavg = 0.03 (p(EtOz)). Thus, oligo(EtOz-alt-AA)nA is dis-

tinguished by only a marginal amount of microstructural defects. A detailed assess-

ment of the polymerization mechanism allows for targeted materials design via end 

group modification of e.g. the acid functionality. A precise understanding of the SZWIP 

process helps in preparing ideal alternating copolymeric structures. 

5.4. EXPERIMENTAL SECTION 

5.4.1. Materials 

Acrylic acid (AA, 99%, anhydrous, Sigma Aldrich), acetonitrile (MeCN, 99.8%, 

Sigma Aldrich), 4-methoxyphenol (MEHQ, 99%, Sigma Aldrich) and diethyl ether (Et2O, 

>98%, Sigma Aldrich) were used as received. 2-Ethyl-2-oxazine (EtOz) was synthesized 
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as described elsewhere.361 2-Methyl-2-oxazoline (MeOx, 99%, Sigma Aldrich) and 2-

ethyl-2-oxazoline (EtOx, >99%, Sigma Aldrich) and EtOz were distilled to dryness over 

barium oxide (BaO) and stored under nitrogen. 

Ethanolamine, tert-butyl acrylate, acetyl anhydride, Al2O3, acryloyl chloride, 

trimethylamine, trifluoroacetic acid were purchased from Sigma Aldrich and used as 

received. Tert-butyl 3-((2-hydroxyethyl)amino)propanoate was synthesized according 

to a literature procedure.362 

The ESI solvents were used without further purification: acetone (Sigma-Al-

drich; HPLC grade), acetic acid (Scharlau, analytical grade), acetonitrile (Roth, LC-MS 

grade), dichloromethane (Roth, HPLC grade), methanol (Roth, HPLC grade), water 

(Milli-Q), tetrahydrofuran (Scharlau, HPLC grade).  

5.4.2. Instrumentation 

1H NMR spectroscopy. 1H NMR spectra were recorded on a Bruker DPX-400 

spectrometer using deuterated chloroform (CDCl3) obtained from Sigma Aldrich.  

Size exclusion chromatography (SEC). SEC measurements were conducted 

using an Agilent 390-LC MDS fitted with differential refractive index (DRI), light scat-

tering (LS) and viscometry (VS) detectors Fe7.5 mm) and autosampler. All samples 

were passed through 0.2 µm nylon filters before analysis. The mobile phase was DMF 

containing 5 mM NH4BF4 with a flow rate of 1 mL min-1 at 50 °C. SEC data was analyzed 

using Agilent Technologies SEC software. Calibration curves were produced using Ag-

ilent Easi-Vials linear poly(methyl methacrylate) standards (200 – 4.7 x 105 g mol-1).  

Electrospray ionization-Orbitrap mass spectrometry. Mass spectra were 

recorded on a Q Exactive Plus (BioPharma Option) (Orbitrap) mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA, USA) equipped with a HESI II probe. The in-

strument was calibrated in the m/z range 600-6000 using ammonium hexafluoro-

phosphate (Thermo Scientific). All spectra were recorded in the positive ion mode, 

water/acetonitrile/acetic acid (1:1:0.1 (v/v)). The FT resolution was set to 140000 em-

ploying 3 microscans during an acquisition time between 2 min measuring with a 

capillary temperature of 320 °C. The aux gas flow was (dimensionless) 0.00, the 
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sheath gas 5.00, and the spare gas 1.00. The flow rate was set to 5 µL· min-1. The 

spray voltage was set to 3.5 kV and kept constant while performing the experiments.  

5.4.3. Semi-Quantification 

Calibration: MeOx/AA dimer (m/z 230.1019) was dissolved in acetoni-

trile:water:acetic acid (v/v 1:1:0.1) in a concentration of 0.75 mg∙mL-1. The stock so-

lution was dilution to 0.5 mg∙mL-1, 0.25 mg∙mL-1, 0.1 mg∙mL-1, 0.05 mg∙mL-1 and 

0.01 mg∙mL-1 and injected into the ESI system. The calibration was performed three 

times keeping the instrumental parameters and concentrations constant. 

5.4.4. Synthesis 

Tert-butyl 3-(N-(2-hydroxyethyl)acetamido)propanoate was synthesized 

based on a literature procedure.363 Tert-butyl 3-((2-hydroxyethyl)amino)propanoate 

(1.00 g, 5.30 mmol) was transferred into a 20 mL vial filled with Al2O3 (0.81 g, 

7.90 mmol). Acetic anhydride (Ac2O, 0.60 g, 5.80 mmol) was added under ice-cooling 

without stirring. After 3 minutes the ice-cooling was removed and the reaction was 

allowed to continue for another 7 minutes. Subsequently, ethyl acetate (20 mL) was 

added and the mixture was filtered. The organic solvent and residual Ac2O were re-

moved under reduced pressure. Colum chromatography (SiO2, dichloro-

methane/methanol/hexane 8/1/1) yielded 2 as a colorless liquid (yield: 80%).  

HR ESI-MS: m/zexp 254.1358 (M+Na); m/ztheo 254.1363 (M+Na); m/zexp 

232.1540 (M+H); m/ztheo 232.1543 (M+H). 

2-(N-(3-(tert-butoxy)-3-oxopropyl)acetamido)ethyl acrylate. Tert-butyl 3-(N-

(2-hydroxyethyl)acetamido)propanoate (500.0 mg, 2.20 mmol) was dissolved in di-

chloromethane (3 mL). Under ice cooling, triethylamine (0.260 g, 2.60 mmol) was 

added and the solution was stirred for 5 min before acryloyl chloride (0.240 g, 

2.60 mmol) was added over 5 min. Stirring was continued for 18 h and the solution 

was allowed to come to room temperature. After filtration of the precipitate the sol-

vent and excess reagents were removed under reduced pressure. The slightly yellow-

ish crude 3 was used without further purification (yield: 60%). 

3-(N-(2-(acryloyloxy)ethyl)acetamido)propanoic acid. 2-(N-(3-(tert-butoxy)-

3-oxopropyl)acetamido)ethyl acrylate (0.33 g, 1.20 mmol) was dissolved in dichloro-

methane (2 mL). Under ice cooling trifluoroacetic acid (0.66 g, 5.80 mmol) in dichloro-
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methane (2 mL) was added dropwise. The solution was allowed to come to room tem-

perature and stirred for 18 h. Subsequently, solvent and excess trifluoroacetic acid 

were removed under reduced pressure. The crude was purified by column chromatog-

raphy (SiO2, hexane/acetone 1/1 to methanol) to yield 4 as a colorless liquid (yield: 

56%). HR ESI MS: m/zexp 230.1019; m/ztheo 230.1023. 

Typical procedure for the synthesis of the macromonomers. In a dried 

Schlenk flask equipped with a magnetic stirrer bar, MEHQ (1 mg, 8.06 x 10-6 mol) was 

dissolved in MeCN. The CIE was subsequently added under nitrogen, followed by AA 

(see Table S1 for exact amounts per reaction). The mixture was placed in an oil bath 

(70 °C) for 24 h. Subsequently, the polymer solution was cooled down to room tem-

perature, precipitated in Et2O and isolated by centrifugation. The purification method 

was repeated two more times. To remove the Et2O, the polymer was placed under 

vacuum to give the products as yellowish oils. The repeating units and molar masses 

of the oligomers were calculated by 1H NMR, by comparing the ratio of the integrals 

of the vinyl end group and the ring-opened CIE and AA repeating unit signals. Sum-

mary of the characterization data is provided in Table 6. 

Table 6 Details for the synthesis of the macromonomers. 

CIE CIE AA [CIE] [mol L-1] [AA] [mol L-1] 

MeOx 1 : 1 9.92 9.92 

 1 : 2 4.94 9.92 

 2 : 1 6.32 3.16 

EtOx 1 : 1 3.71 3.71 

 1 : 2 2.17 4.34 

EtOz 1 : 1 3.32 3.32 

 1 : 2 2.21 4.42 
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6.1. MOTIVATION 

Precisely folded SCNPs have emerged as a major research area in the field of 

macromolecular architectures,180–186 with key application as imaging agent, drug deliv-

ery vectors or as nano-container.187,188 Section 2.4 provides a detailed picture of current 

SCNP research addressing their characterization via SEC, DOSY, DLS and other tech-

niques able to assess hydrodynamic information and sizes. However, a short-coming 

of these methods lies in the fact that they are not capable of mapping single chains 

and the individual chemical transformations they undergo. Specifically, SEC, DOSY and 

DLS provide statistic information of the particle’s hydrodynamic radius. As discussed 

in Section 2.4, one ensemble of SCNPs is constituted of an array of differently folded 

particles, with different loop sizes and different compaction. Thus, statistical charac-

terization techniques cannot access the uniqueness of the chain structure, their fold-

ing motifs and the loop sizes.  

The present section is strongly motivated by the overarching aim to develop 

a new characterization route to access direct information of the chain transformation 

during SCNP folding. Thus, in the following chapter the first ever approaches to map 

SCNP folding via HR SEC-ESI MS are introduced. The successful collapse of polymeric 

chains into SCNPs is imaged by characteristic mass changes, allowing to draw detailed 

mechanistic information regarding the folding mechanism (Section 6.2.3). The poly-

meric precursor is methyl methacrylate (MMA) statistically copolymerized with glyc-

idyl methacrylate (GMA) resulting in p(MMA-stat-GMA), which is subsequently folded 

into an SCNP by using B(C6F5)3 as ring-opening polymerization catalyst. Both the pre-

cursor polymer and the SCNPs can be well-ionized via ESI MS and the covalent cross-

links are stable during ionization. The MS approach can unambiguously differentiate 

between two mechanistic modes of chain collapse for every chain constituting the 

SCNP sample. The structural elucidation can be further underpinned by employing 

HCD as MS/MS technique. 

                                           
5 The synthesis of the precursor polymers was performed by J. Steinkoenig. H. Rothfuss as-
sisted with SCNP folding experiments. A. Lauer assisted in setting up SEC-ESI MS/MS measure-
ments. B. Tuten is acknowledged for theoretical contributions. C. Barner-Kowollik supervised 
and motivated the project. Parts of this chapter is reproduced with permission from 
Steinkoenig, J.; Rothfuss, H.; Lauer, A.; Tuten, B. T.; Barner-Kowollik, C. J. Am. Chem. Soc. 
2017, 139, 51-54. Copyright 2017 American Chemical Society. 
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6.2. RESULTS AND DISCUSSION 

The current section is divided into (i) preparation of the polymeric precursor 

and SCNP collapse, (ii) MS elucidation and (iii) deduction of a possible folding mecha-

nism. The synthetic strategy is depicted in Figure 51. 

6.2.1. Synthesis of polymeric precursor and SCNP 

The synthetic approach was inspired by the work of Pomposo and co-work-

ers.201 In contrast to their statistical non-controlled free radical copolymerization of 

MMA and GMA as precursor polymer p(MMA-stat-GMA) (17), the current project is 

based on RAFT polymerization affording excellent end group fidelity. Subsequently, 

a Lewis acid catalyst B(C6F5)3
364,365 initiates an intra-chain cationic ROP,366,367 transform-

ing the linear precursor (17) into a SCNP (18). The present section describes the fol-

lowing experiments: (i) direct addition of the catalyst B(C6F5)3; (ii) slow addition of the 

catalyst with a syringe pump at a flow rate of 1 mL·h-1; (iii) GMA feed ratios of 10% and 

Figure 51 Preparation of p(MMA-stat-GMA) (17) (Mn = 13100 g∙mol-1, Ð = 1.26) under RAFT conditions 
(bulk, 80 °C, 1 h) and the single-chain collapse using B(C6F5)3 as catalyst for intra-chain ROP (a.t., 72 h). 
Reprinted with permission from Ref. [377]. Copyright American Chemical Society (2017). 
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15% where the SCNPs were collapsed by direct addition of the catalyst; (iv) SEC-ESI 

MS/MS experiments to evidence the folding process; and (v) aqueous quenching of all 

GMA units for a study in negative ion mode.  

The SCNP collapse was performed in highly diluted solution (0.2 mg∙mL-1) and 

evidenced by a characteristic SEC shift to higher retention volume (see Figure 52A). 

The resulting SCNP (18) features a decreased dispersity (Ð = 1.19) as reported for 

many SCNP systems.215 The precursor (17) and the SCNP (18) were utilized for the 

subsequent MS characterization. 

6.2.2. SEC-ESI MS Characterization of SCNPs 

As noted in Section 6.2.1, a methacrylate-type system is used for imaging 

SCNPs via mass spectrometry. The decision to rely on Pomposo’s201 system is three-

fold: (i) PMMA ionizes excellently in positive ion mode; (ii) the ethylene glycol motifs 

from the intra-chain crosslinking event do not negatively affect the ionization,368 and 

(iii) the intra-chain ROP of glycidyl moieties allows for the elucidation of two possible 

collapse avenues: via a bimolecular coupling (i.e. a single glycidyl unit finds another 

glycidyl unit and reacts only once, terminating in a single ether bridge) or via propa-

gation (i.e. one glycidyl unit ring-opens to find another glycidyl unit, which then ring-

opens again to find another glycidyl unit, and so on). The excellent solubility of pre-

cursor (17) and SCNP (18) in THF allows for the characterization using SEC-ESI MS 

(refer to Figure 52). The results presented in the current section focus on the doubly 

charged oligomer profiles (see Section 2.1.6 for a detailed review of SEC-ESI MS) rather 

than the additionally observed singly, triply and quadrupoly charged oligomer pro-

files. Thus, the observed doubly charged oligomeric profile covers a broad mass range 

of p(MMA-stat-GMA) (17) and the SCNP (18). To date, the limitation of the method is 

dictated by the ionization ability of the polymers (e.g. polar macromolecules), the 

accessible mass range (e.g. for Orbitrap <6000 m/z), and good solubility in THF (for 
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Figure 52 Preparation of p(MMA-stat-GMA) (17) (Mn = 13100 g∙mol-1, Ð = 1.26) under RAFT conditions 
(bulk, 80 °C, 1 h) and the single-chain collapse to (18) using B(C6F5)3 as catalyst for intra-chain ROP (a.t., 
72 h). Reprinted with permission from Ref. [377]. Copyright American Chemical Society (2017). 
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SEC coupling). A detailed assessment of SEC-ESI MS’ general limitations is provided in 

Section 6.4. The obtained mass spectra of the direct addition of catalyst B(C6F5)3 (refer 

to Figure 52B and C) clearly illustrates that a chemical modification took place (see 

Appendix Fig. D 4) for the expanded spectra). Due to statistics of the crosslinking 

event, it was not expect that well baseline separated peaks were found in the spectrum 

as illustrated in Figure 52C (for the zoomed spectrum refer to Appendix Fig. D 4). 

Although the ion abundance decreased slightly, SCNP (18) ionized representatively 

and allowed the clear species assignment according to specific mechanisms (see Sec-

tion 6.2.3). Without further experiments on various SCNP systems, it is unclear what 

causes a reduction of the ion abundance. An explanation for the SCNP (18) in the 

present section could entail: the strong Lewis acid catalyst B(C6F5) forms stable com-

plexes with oxygen,201 and therefore the catalyst is coordinated to each initially ring-

opened epoxide. A Lewis acid exchange with a proton takes place during the aqueous 

work-up. Hence, each epoxide, which was ring-opened by the catalyst, carries a proton 

instead of the catalyst and – as proposed – is positively charged before injection into 

the ESI source. As a consequence, SCNPs containing many crosslinks might become 

multiply charged (> 4) and cannot be analyzed sufficiently due to the unfavorable 

mass-to-charge ratio. Moreover, a (cross) ionization between Na+ (stemming from an 

external source) and H+ or entirely by H+ is observed. To result in 100% sodiated 

SCNPs, Na+ stemming from an external source would have to diffuse into the SCNP 

structure during the spray process and the following ionization mechanism,26 thereby 

replacing the protons. It is assumed that this process did not occur as no species has 

been observed being ionized entirely by Na+. A similar ionization phenomenon was 

observed during an additional SCNP MS characterization project, which will be dis-

cussed in Section 6.4.  

To confirm the SCNP formation, the epoxides of p(MMA-stat-GMA) (17) were 

ring-opened with water. Subsequent SEC-ESI MS measurements (see Appendix Fig. D 

5) performed in negative ion mode point to hypothetically positively charged SCNPs, 

since neither complexation to iodide nor by deprotonation events afforded negatively 

charged SCNPs. Thus, it is believed that the SCNPs form a specific geometry, which 

hinders external ionization agents (as Na+ or iodide) to exchange already existing 

charges such as an H+ stemming from the Lewis acid exchange). Therefore, direct 

addition of B(C6F5)3 for SCNP collapse results in a mass spectrum (Figure 53A) where 

the species can be assigned to H+ or H+/Na+ ionized structures (Figure 53B). Each 

single isotopic pattern contains up to four individual SCNP species. The presence of 
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different SCNP species within each peak pattern was evidenced by the fusion of the 

individual contributing simulated isotopic patterns of each SCNP folding product. The 

isotopic pattern have been carefully assessed, yet had to be placed in the Appendix 

D better readability. For instance, a species at 2236 m/z (labeled with ) was assigned 
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Figure 53 Direct addition of catalyst to produce SCNP (2): (a) zoomed SEC-ESI Orbitrap spectrum (positive 
mode) between 2235 m/z and 2292 m/z obtained by summing up all species between 14.42 mL and 
15.92 mL retention volume. Labeled are the most abundant species and the repeat-ing unit of pMMA 
(m/z(exp) 50.0269; m/z(theo) 50.0257); (b) structural assignment of the peak at 2238 m/z (see Appen-
dix Fig. D 9-13 for the isotopic simulation). The structures have an estimated ratio of : = 5:1. For all 
structures and the table of assignment refer to Appendix Tab. D 2. Reprinted with permission from Ref. 
[377]. Copyright American Chemical Society (2017). 
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Figure 54 (A) SEC-ESI MS/MS (tandem MS in positive ion mode) of a doubly charged species at 2238 m/z 
with an HCD energy of 25 eV in the relevant range from 300 m/z and 515 m/z. (B) List of assignment 
for all MS/MS species. Reprinted with permission from Ref. [377]. Copyright American Chemical Society 
(2017). 
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to a SCNP where two glycidyl moieties reacted with each other (m/z(exp) 2236.6506; 

m/z(theo) 2236.6436).  

The loop size is defined as numbers of non-crosslinking monomer between 

two crosslinking monomer and is in this specific system represented by x and y in 

Figure 53B. The question of how many MMA units separate the ethylene glycol bridge 

formed during the SCNP collapse is another aim of the project. Therefore, SEC-ESI 

MS/MS experiments on the peak at 2236 m/z has been performed collecting all frag-

ments after the tandem experiment (see Figure 54) to find a species which would give 

the number of MMA units in one loop for determining the loop size. However, even 

the lowest employed HCD energy resulted in small molecule fragments. The presence 

of the proposed ethylene glycol moiety (refer to Figure 54) could be confirmed iden-

tifying characteristic species in the MS/MS spectrum. Although the loop size determi-

nation was not successful using tandem MS experiments, the folding mechanism was 

clearly identified and will be outlined in the subsequent section.  

6.2.3. SCNP folding mechanism 

Two overarching mechanistic scenarios under which the folding can proceed 

based on the data shown in Figure 55 are discussed. The data presentation includes 

two experiments: first, the SCNPs resulting from direct catalyst addition are summa-

rized and secondly, the SCNPs resulting from a folding experiment where the catalyst 

is infused via a syringe pump are considered and critically compared to the SCNPs 

Figure 55 Schematic illustration of (a) bimolecular coupling of two glycidyl moieties in different possible 
motifs; (b) propagation during cationic ROP with three and four glycidyl units involved. Reprinted with 
permission from Ref. [377]. Copyright American Chemical Society (2017). 
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with direct catalyst addition. The mechanistic scenarios are (i) bimolecular coupling 

and (ii) propagation. 

The bimolecular coupling reaction involves only two GMA units (Figure 55A). 

It is assumed that a bimolecular coupling is entropically favored.369 In a scenario of a 

linear chain undergoing a folding process, the global chain flexibility is maximized 

resulting in maximized entropy. The sterically strained and inflexible loop being 

formed as a result of the bimolecular coupling reduces the maximized entropy. In a 

second bimolecular coupling event, the chain loses again an amount of entropy 

formed by the sterically strained loop at a different position of the chain. Therefore, 

a bimolecular coupling event always creates a SCNP with maximized entropy by means 

of the global chain flexibility. SEC-ESI MS experiments confirm higher ion abundance 

associated with bimolecular coupling species in comparison to the less abundant 

propagation species.  

A propagation mechanism involves three or more GMA units analog to a 

mechanism described for ROP (see Section 2.2.2 and Figure 55B). As proposed, prop-

agation forces the collapsing chain into a certain geometry, resulting from the de-

mand of all epoxides to be in close proximity to each another. The activated epoxide 

propagates in a short amount of time, leading to a larger loss of entropy than in a 

bimolecular coupling event. In more detail, it is proposed that the SCNP species la-

beled with  (m/z(exp) 2248.1500; m/z(theo) 2248.1492) (see Appendix Tab. D 2) 

for structure) was produced by first undergoing bimolecular coupling resulting in a 

collapse with a maximum amount of global chain flexibility. Subsequently, the resid-

ual glycidyl moieties intra-chain crosslink via propagation. The corresponding precur-

sor p(MMA-stat-GMA) (18) with 34 repeat units of MMA and 5 repeat units of GMA was 

assigned as a peak at m/z(exp) 2251.6378 (m/z(theo) 2251.6189). Based on the 

knowledge of the present SEC-ESI MS study and considering the literature,364–367 the 

following crosslinking mechanism is proposed taking p(MMA34-stat-GMA5) (17) as 

model precursor: the strong Lewis acid catalyst B(C6F5)3 activates the epoxide. Due to 

the high dilution a further epoxide in close proximity ring-opens the activated one. If 

the highly reactive oxiranium species do not find a further reaction partner, residual 

water quenches the ROP in a termination event. The three remaining epoxides cross-

link via propagation (forming species ), or via bimolecular coupling (forming species 

 after the last epoxide reacts with water). Alternatively, the oxiranium ion can also 

react via an elimination reaction forming a double bond adjacent to the oxygen (form-
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ing species ). Furthermore, the propagating oxiranium can undergo a macrocycliza-

tion reaction as described by Barroso-Bujans and co-workers.370 Elimination and cy-

clization as termination reactions result in completely isobaric structures.  

To investigate if the mode of catalyst addition to the reaction mixture has any 

fundamental influence on the folding mechanism, an experiment adding B(C6F5)3  over 

a period of several hours was performed. Thus, a syringe pump set to a flow rate of 

1 mL·h-1 was used. Surprisingly, the SEC trace of the prepared SCNP (18) (see Figure 

56) only indicated a slight shift towards higher retention volume.  

Comparing the mass spectrum obtained by direct addition (Figure 52C) with 

the spectrum obtained after adding the catalyst over a period of several hours (see 

Figure 56) gave similar mass signals. Thus, a SCNP collapse took place. However – as 

evidenced by the SEC trace –, to a lesser degree as observed by direct addition of the 

Lewis acid. A comparison of both doubly charged single oligomer profiles revealed 

significantly broadened isotopic pattern for some of the peaks in Figure 53A (refer to 

Figure 56). Adding the catalyst over a period of several hours seems to produce pref-

erably SCNPs with bimolecular coupled crosslinks (labeled with ). Utilizing the iso-

topic simulation as a sensor, a ratio of the species labeled with ::: = 10:3:4:3 

was found in the case of direct addition of the catalyst. Using the syringe pump, the 

isotopic pattern suggests a ratio of ::: = 10:1:0:0 (see Figure 56). The ion 

Figure 56 (Top) Syringe pump addition of catalyst: SEC-ESI Obitrap mass spectrum obtained of a SCNP 
(18, green line) sample evidenced by a slight shift in the SEC elugramm; (bottom) direct addition of 
catalyst: SEC-ESI Orbitrap mass spectrum with a strong shift in the SEC elugramm. The obtained ESI mass 
spectra are identical except of a broadening of the isotopic pattern in specific mass areas. Reprinted with 
permission from Ref. [377]. Copyright American Chemical Society (2017). 
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abundance of important propagating species (labeled with  and ) is decreased sig-

nificantly. Moreover, the species labeled with  (m/z(exp) 2250.6579; 

m/z(theo) 2250.6423) as a product of three consecutive bimolecular coupling events 

is absent. Consequently, the slight shift to higher retention time might be explained 

by strong reduction of propagation and multiple bimolecular coupling events. Similar 

results were obtained from further experiments utilizing a step-growth Passerini 

polymer and a radical-induced intra-chain crosslinking that will be discussed in detail 

in the next section. As mechanistically suggested, propagation forces the collapsing 

chain into a certain geometry, which might be more compact and thus smaller in its 

hydrodynamic radius. In contrast, bimolecular coupling allows the chain to almost 

keep its initial conformation. As proposed, the forming loop results in only slight 

conformational changes and thus in a slight reduction of the hydrodynamic radius. 

6.3. CONCLUSIONS 

In summary, SEC-ESI MS as a technique to assess the folding of a collapsed 

linear polymer into a SCNP is introduced. P(MMA-stat-GMA) (17) and the resulting 

SCNPs (18) meet essential requirements for the successful ionization. Clearly, two 

distinct pathways of SCNP collapse have been identified by the high-resolution af-

forded by the Orbitrap ESI MS technique. Specifically, in addition to the bimolecular 

coupling as dominant, entropically favored crosslinking process, species arising from 

a propagation pathway have been assigned in the mass spectra. The work outlined in 

the current section constitutes a novel characterization platform for SCNPs that can 

be employed to all SCNP systems that ionize well and provide critical molecular infor-

mation regarding the folding process.



6.4. RADICAL-INDUCED SINGLE-CHAIN FOLDING OF 

PASSERINI SEQUENCE-REGULATED POLYMERS VIS-

UALIZED BY HIGH-RESOLUTION MASS SPECTROME-

TRY6 

6.4.1. Motivation 

As noted in Section 6.2, the loop size characterization poses a major chal-

lenge in the field of SCNP characterization. Yet, a reliable access tool to accurate loop 

sizes is a critical aspect for the perspective design of high-precision crosslinked 

SCNPs. As shown in Section 6.2, MS is a suitable platform for loop size determination. 

Yet, MS/MS relies significantly on suitable fragmentation mechanisms and advanced 

subsequent multidimensional tandem MS to elucidate intact loop structures. An alter-

native approach is the design of a degradable precursor polymer entailing motifs able 

to cleave the backbone adjacent to the crosslinking moieties (refer to Section 2.6). Li 

and co-workers introduced a facile synthesis of photo-cleavable polymers via se-

quence-regulated Passerini polymerization.146 Here, the proposed mechanism always 

cleaves the ester bond between the light-adaptive monomer (introduced as aldehyde 

in the Passerini polymerization) and the diacid.  

In the present section, the versatility of Orbitrap-based HR SEC-ESI was as-

sessed by the – to date – most challenging SCNP system, both in terms of precursor 

complexity and folding mechanism. Here, sequence-regulated ter- and quaterpoly-

mers prepared by the Passerini multicomponent step-growth polymerization serve as 

ideal complex precursor structures to identify critical parameters for successful MS 

mapping and thus understanding of the radical intra-chain compaction process. As 

Passerini monomers for the terpolymerization, 1,6-diisocyanohexane (1 eq.), HO2C-

PEG10-11-CO2H (1 eq.) and 4-formyl coumarin equipped with an acrylate (2 eq.) were 

utilized for subsequent radical-induced single-chain collapse. The characteristic mass 

species evidence the successful folding, confirming the folding mechanism via bimo-

lecular coupling or propagation. A quaterpolymer containing 1,6-diisocyanohexane (1 

                                           
6 The present section is the original version. An adapted manuscript has been sub-

mitted to the scientific journal Macromolecules. B. Tuten and T. Nitsche are acknowledged for 
critical scientific discussions. C. Barner-Kowollik supervised the project. 
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eq.), HO2C-PEG10-11-CO2H (1 eq.), benzaldehyde (1.7 eq.) and 4-formyl coumarin acry-

late (0.3 eq.) is also collapsed, yet cannot be mapped via SEC-ESI MS, as the number 

of chains entailing a reactive unit is too small, while diffusion ordered NMR spectros-

copy (DOSY) can readily witness the compaction. Based on these two precursor sys-

tems, criteria were identified that the precursors and the folded system have to fulfill 

for their successful SEC-ESI MS characterization. The folding mechanism can only be 

elucidated via mass analysis if (i) a minimum of four to five intra SCNP linkages are 

present, and, thus, (ii) the precursor formation needs to lead to a sufficient number 

of chains that feature reactive coumarin acrylate units. Finally, (iii), a chemically too 

diverse system such as the quarterpolymer leads to a high end group diversity after 

folding that challenges the MS analysis given the contemporary resolution limits. 

6.4.2. Results and Discussion 

As depicted in Figure 57, a step-growth polymer based on the sequence-reg-

ulated (i.e. precision monomer insertion) Passerini multicomponent polymerization 

was utilized.144–146,371 Step-growth polymers are a challenging class of macromolecules 

for mass analysis – and thus well suited for the purposes of the current study – mainly 

due to the large repeat units, the resulting high dispersities (Đ~2.0) and the high 

number of disparate monomer units. The high dispersity might hamper high-quality 

MALDI,372,373 where the best results are obtained with narrowly dispersed macromole-

cules. Theoretically, high dispersities cause no disadvantage during ESI-MS analysis. 

However, due to the high molecular weight of every repeat unit, a few monomer in-

sertions can cover the entire mass range of the analyzer and a bias towards shorter 

Figure 57 1,6-diisocyanohexane, HO2C-PEG10-11-CO2H and 4-formyl coumarin are subjected to a Passerini 
copolymerization to produce 19a as terpolymer and statistically with benzaldehyde to afford 19b as 
quaterpolymer. The precursors are collapsed via a radical reaction (using 4,4′-azobis(4-cyanovaleric acid) 
(AVCA) as initiator) of the double bond attached to the coumarin. 
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chains is visible in the resulting spectra.374,375 Furthermore, conventional step-growth 

polymers have a low tendency to form stable complexes with Na+ in positive ion 

mode.374 Recently, Meier and co-workers were able to identify the repeat unit of a 

sequence-regulated Passerini polymer in SEC-ESI MS, which encouraged the current 

investigation into the Passerini product formation in more detail including end group 

determination.145 More importantly, the α-acyloxy amide moiety adds a high degree of 

functionality to the material, challenging the ESI process even further. Since a plethora 

of aldehydes can be employed, coumarin as a functional monomer was introduced 

entailing a double bond for subsequent radical-induced single-chain collapse. Im-

portantly, the Passerini system can be adjusted from 100 mol% of 4-formyl coumarin 

(affording the terpolymer) or less, replacing it with a non-vinyl moiety containing al-

dehyde (here benzaldehyde), giving access to a complex quarterpolymer precursor. 

As the crosslinks resemble a polyacrylate, negative influences on the ionization pro-

cess after SCNP formation are not expected.376 Consequently, the SCNP characteriza-

tion was assessed via SEC-ESI MS considering the following aspects: The effect of the 

inherently broadly distributed Passerini precursors, a multi-component polymeriza-

tion leading to end groups that have to date not been mass spectrometrically mapped 

and a complex composition matrix effected by (i) the ratio of 4-formyl coumarin to 

benzaldehyde (terpolymer vs quarterpolymer), (ii) the number of diacid (including var-

iable ethylene glycol repeat units) and (iii) isocyanide units within the final chain struc-

ture. For each species in the mass spectra, these individual unit numbers have to be 

carefully varied during the mathematical analysis of the mass spectra, in order to 

identify the polymer structure. 

A radically induced collapse198,199 was selected, as it introduces even more pa-

rameters that have to be considered during the MS data evaluation: Every incorporated 

coumarin motif entails a double bond that can fold and subsequently terminate either 

via disproportionation or recombination. Disproportionation results in a vinyl function 

or a proton as chain terminus. Recombination, on the other hand, can occur with 

another formed radical or an initiator-derived radical. All possible end groups have to 

be considered and evaluated. Thus, given the complex nature of our precursor system 

– arguably the most complex folded SCNP system to date – the current study will 

demonstrate the power of the newly introduced high resolution mass spectrometric 

assessment of SCNP folding processes, allowing the identification of the folding mech-

anism. On this basis, it is ultimately concluded that high resolution ESI MS is essential 
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during – where possible – all SCNP characterization, as it opens a unique view into the 

hitherto hidden mechanistic aspects of their fascinating folding chemistry. 

The versatile Passerini polymerization yielded 19a as a terpolymer and 19b 

as a quaterpolymer depending if either exclusively 4-formyl coumarin as aldehyde 

(19a, 2.0 eq 4-formyl coumarin) in the multicomponent reaction or additionally ben-

zaldehyde (19b, 1.7 eq benzaldehyde and 0.3 eq 4-formyl coumarin) was incorpo-

rated. Although the molecular weight distribution of the linear precursors can be de-

termined via SEC and the number-weighted average molecular weight is obtained rel-

ative to linear PS samples, substantial uncertainties associated with such measure-

ments are expected. Due to the entirely different chain structure of calibration stand-

ard and the employed polymer (19a, 19b), the obtained SEC data is inaccurate and 

the SEC error will further increase after SCNP collapse.377–379 Thus, both the precursor’s 

and the SCNP’s average molecular weight numbers are not reported, yet for the SCNP 

assessment the more important characteristic, i.e. the SEC trace’s shift to higher re-

tention volume after compaction is employed.  

The polymerization was screened carefully with various solvents and reaction 

times (refer to Figure 58 for the solvent study). The starting materials were stirred in 
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1 Μ chloroform for five days at 45 °C to produce 19b, whereas the polymerization was 

terminated after three days in the case of 19a. Both precursor polymers (19a and 19b) 

were characterized thoroughly by 1H NMR (1D and 2D; refer to Appendix Fig. D 14-

42) as well as SEC-ESI MS (Appendix Fig. D 43, 49). The single-chain collapse of 19a 

and 19b affording SCNP 20a and SCNP 20b was conducted under high dilution 

(0.3 mg∙mL-1) in THF using 4,4′-azobis(4-cyanovaleric acid) (AVCA) as initiator. Prior, 

the polymer and initiator were dissolved in THF for 1 h (at ambient temperature) and 

subsequently degassed for 45 min by purging with argon. To screen the SCNP col-

lapse, different equivalents of AVCA relative to the amount of 4-formyl-coumarin-7-yl 

acrylate (0.5 eq, 0.25 eq and 0.1 eq) were employed. The intra-chain crosslinking pro-

ceeded for 24 h. SCNPs 20a and 20b were thoroughly analyzed by 1H NMR (Appendix 

Fig. D 1-42) and SEC-ESI MS (Appendix Fig. D 48). All resonances in the NMR spectra 

were clearly assigned to the polymer protons, and furthermore, the 30 mol% incorpo-

ration of 4-formyl coumarin into 19b was confirmed (refer to Appendix Fig. D 38). 

Due to the complexity of the studied polymers (19a and 19b) as well as their 

corresponding SCNPs (20a and 20b), the below discussion is organized as follows: (i) 

Discussion of SEC-ESI MS results obtained by the terpolymer system (19a and 20a). 

As three monomers were introduced, the resulting mass spectra can be interpreted 

as performed in Section 6.2,376 i.e. the doubly as well as triply charged species (approx. 

6 4-formyl-coumarin units available for SCNP formation) assessed. (ii) Subsequently, 

it will be showcased how diluting can affect the SCNP collapse and therefore the cor-

responding SEC trace as well as the resulting mass spectra. (iii) The quaterpolymer 

system (19b and 20b) is being discussed.  
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Figure 59 SEC-ESI mass spectra of 19a (top, cyan) and 19b (bottom, brown) of the full spectra ranging 
from 1000 m/z to 2250 m/z and the corresponding SEC RI traces simultaneously recorded with the ESI 
MS measurement (A). Expanded spectra of 19a and 19b ranging from 1842 m/z to 1875 m/z (B). For 
structural assignments see Appendix Tab. D 3-6. 



6.4 Radical-Induced Single-Chain Folding of Passerini Sequence-Regulated Polymers Visualized 
by High-Resolution Mass Spectrometry 
  

144 
 

Mass spectra of the terpolymer system (19a and 20a): Figure 59 displays 

the mass spectra of 19a and 20a. The characteristic SEC shift indicateed a successful 

SCNP collapse. Critically, after SCNP collapse the highest peak abundance of the dou-

bly charged species at 1865 m/z shifted to 1959 m/z, whereas the maximum of the 

SEC trace shifted from 15.1 mL to 15.6 mL (refer to Figure 59A). The expanded mass 

spectra (refer to Figure 59B) demonstrate that each species of 19a (for the exact 

assignment refer to Appendix Tab. D 3-6) has been transformed, thereby forming new 

species after SCNP collapse (20a). As the underlying intra-chain crosslinking reaction 

is a non-controlled free radical polymerization of the acrylate motifs attached to the 

coumarin, various end group combinations have to be taken into consideration, in-

cluding recombination, disproportionation (generating an H and a double bond as 

chain terminus), and initiator-derived radical coupling. Importantly, one initiator frag-

ment can react per one acrylate, generating an entire matrix of possible chain termini. 

Due to the resulting complexity from a characterization perspective, it is expected 
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Figure 60 (A) Overview SEC-ESI mass spectrum of SCNP 20a highlighting the expanded areas; (B) ex-
panded mass spectrum of SCNP 20a representing doubly charged species (top) and the isotopic pattern 
simulation (bottom); (C) expanded mass spectrum of SCNP 20a representing triply charged species (top) 
and the isotopic pattern simulation (bottom) and (D) table of assignments for the doubly charged species. 
For full and detailed table of structural assignments see Appendix Tab. D 4,5. 
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that the employed SCNP system is ideally suited to test the limits of the herein intro-

duced novel high resolution SEC-ESI MS SCNP characterization platform. After a thor-

ough evaluation of the SCNP 20a mass spectra, the following SCNPs as shown in Fig-

ure 61 were identified (refer to Appendix Tab. D 3-6 for a list of assignments). 

In the SEC ESI mas spectrum, an array of SCNP species can be assigned (refer 

to Figure 60), resulting in partly overlapping isotopic patterns. In-line with the evalu-

ation performed in Section 6.2, SCNP species associated with the bimolecular coupling 

(labeled with ) and with the propagation (labeled with ) were identified. Species  

(refer to Table S2) was assigned to a mass of 1318.8509 m/z (theo: 1318.8501 m/z), 

where six coumarin moieties have reacted with six AVCA initiator fragments. Im-

portantly, four AVCA have reacted with a double bond, two of them found another 

double bond before terminating with another AVCA radical. The two remaining radi-

cals formed by reaction with initiator derived radical fragments terminated in a dis-

proportionation process (with any radical source) forming a double bond in both 

cases. Species  (refer to Figure 61) was assigned to a mass of 1313.5250 m/z (theo: 

1313.5198 m/z). Here, six coumarin moieties have reacted with only two AVCA radi-

cals initiating two propagations (involving three double bonds) and a termination, 

generating proton chain termini. Due to the manifold end group combinations and 

the statistical non-controlled crosslinking process, many resulting SCNP species differ 

in 1 m/z leading to overlapping isotopic patterns. It is submitted that the intra-chain 

crosslinking mechanism is similar to a free non-controlled radical polymerization. As 

such reactions are well-studied, a detailed discussion is not reiterated here. The full 

and highly detailed lists of all assignments are given in Appendix Tab. D 3-6, evidenc-

ing that the approach can elucidate the folding mechanism. Instead, here, an inter-

esting trend is discussed: The more diluted the system (from 0.3 mg∙mL-1 to 

0.2 mg∙mL-1), the larger is the SEC trace shift in retention time (15.1 mL to 16.1 mL) 

although some precursor species are still present (refer to Figure 62. At higher con-

centrations (0.3 mg∙mL-1) a smaller SEC trace shift is identified, yet feature quantita-

tive crosslink conversions (i.e. no double bond motif left; refer to Figure 60).  
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Dilution effects on the terpolymer system (20a’): To understand why the 

more diluted system shows a larger shift towards high retention volumes, close in-

spection of the isotopic pattern is required (Figure 63). As discussed in Section 6.2 

the SCNP folding is a dual-gated mechanism,376 and thus now, (i), it is expected that 

bimolecular coupling reactions lead to loops in the polymer chain resembling a hair-

pin structure.377 Based on the hairpin structure, it is hypothesized that the overall size-

reduction by the collapse is less significant than in the second scenario, (ii), i.e. the 



B

A

Figure 61 Schematic representation (A) and chemical structure (B) of a SCNP labeled with . Two initiator 
fragments have initiated and propagated two consecutive double bonds before they have been termi-
nated by disproportionation, forming the –H chain terminus. 
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Figure 62 SEC-ESI mass spectra of 19a (top) and SCNP 20a’ (bottom) (prepared at c = 0.2 mg∙mL-1; 0.5 
eq initiator) and the simultaneously recorded RI SEC trace (A); expanded mass spectra of 19a (top), SCNP 
20a’ (middle) and simulation (bottom) (B). 
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propagation reaction. Thus, a collapse via propagation leads to a more compact SCNP 

structure and hence to larger SEC trace shifts in retention time.376 Figure 63 illustrates 

a similar scenario: SCNP 20a is composed of structures formed by bimolecular reac-

tions (m/z(exp) 1944.7704; m/z(theo) 1944.7662; Δm/z 0.0042), whereas species of 

SCNP 20a’ (higher dilution) can be clearly assigned to propagation (m/z(exp) 

1944.7898; m/z(theo) 1944.7837; Δm/z 0.0061). However, it remains unresolved why 

the folding of 19a does not result in quantitative conversion to SCNP 20a’. 

Finally, the quaterpolymer (19b) is subjected to identical conditions (c = 0.3 

mg∙mL-1) for the SCNP folding and characterization. The SEC trace shifts from 13.7 mL 

to 14.9 mL (0.5 mol% initiator) indicating the successful SCNP formation (refer to Fig-

ure 64A). However, the individual chain transformations of SCNP 20b cannot be vis-

ualized by ESI MS as above performed for SCNP 20a (Figure 64A and B). Benzaldehyde 

was identified as the main factor impeding the successful identification of SCNP spe-

cies. From a statistical perspective, the formation of a precursor polymer, where the 

chain structure entails only benzaldehyde and no reactive 4-formyl coumarin is likely 

and was indeed confirmed by the SEC-ESI MS measurement as the main distribution 

(refer to Appendix Tab. D 3-6 for structural assignment). Using a molar ratio of 1.7 

(benzaldehyde) to 0.3 (coumarin), approx. 30 mol% 4-formyl coumarin was introduced 

into the polymer chain (as evidenced by NMR spectroscopy, refer to Appendix Fig. D 

38). Thus, species with, for instance, one 4-formyl coumarin unit and five benzalde-

hyde units can be detected. However, its ion abundance is low. 
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It is expected that quaterpolymers prepared in a step-growth polymerization 

are unsuitable for our SEC-ESI MS investigation for the following reasons: (i) It is nec-

essary to have at least four or five crosslinking motifs to effectively assess the SCNP 

folding based on the proposed mechanisms, and, (ii), the ion abundance of these 

motifs are reduced significantly in the quaterpolymer due to incorporation statistics. 

Thus, to prove the successful SCNP formation, the shift of the SEC trace to higher 

retention volume and changes in the DOSY spectra (refer Figure 64C) are provided, 

both indicating a reduction of the hydrodynamic radius. DLS measurements are not 

reported as the fluorescence of the polymers (19a, 19b, 20a, 20b) may lead to mis-

leading scattering information.380,381 As indicated by the DOSY experiments, the radius 

decreases from 4.1 nm to 3.2 nm. A recently published article on SCNP characteriza-

tion addresses the accuracy of the absolute hydrodynamic radii numbers.379 Neverthe-

less, in comparison Zhao and co-workers382 reported coumarin-based SCNPs and their 

hydrodynamic radii. Their precursor (5.4 nm; Mn = 13.2 kDa) and SCNP (3 nm) values 

are in good agreement with the numbers given in the present section. 
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Figure 64 (A) SEC-ESI MS spectra of SCNP 20b collapsed with 0.5 mol% (black-brown), 0.25 mol% (red-
brown) and 0.1 mol% (ocher) in comparison to the precursor polymer 19b (blue) and their corresponding 
online RI detected SEC traces. (B) expanded mass spectra in the mass range between 1512 m/z and 1545 
m/z. (C) DOSY (400 MHz, 298 K, DMSO-d6) spectra of 19b (diffusion trace in blue) and SCNP 20b (diffu-
sion trace in brown). 
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6.4.3. Conclusions 

In summary, the radical-induced single-chain folding of sequence-regulated 

Passerini step-growth ter- and quarterpolymer precursors is explored in-depth by uti-

lizing a high-resolution SEC-ESI MS approach. The study is designed to assess the 

strength and limits of the herein introduced novel high resolution MS-based SCNP 

characterization platform guided by the following factors: (i) Step-growth polymers 

are a challenging class of macromolecules for mass analysis, mainly due to their large 

repeat units and the high dispersities (Đ~2.0), where a few monomer insertions can 

cover the entire mass range of the analyzer and a bias towards shorter chains may 

result in the spectra; (ii) a highly complex primary polymer structure with varying 4-

formyl coumarin, diacid (including variable ethylene glycol repeat units) and diisocy-

anide contents has to be elucidated by adjusting the number of each unit in the mass 

spectra in order to identify the corresponding structure; (iii) the radical collapse intro-

duces a multitude of reactions into the collapse system, i.e., every incorporated 4-

formyl coumarin motif introduces a double bond that can fold and subsequently ter-

minate either via disproportionation or recombination. Disproportionation results in 

a double bond or a proton as chain terminus. Recombination, on the other hand, can 

occur with another formed radical or an initiator-derived primary radical and all pos-

sible end groups have to be considered and evaluated. 

The high resolution ESI MS approach is capable of resolving such a complex 

structural variety. It can be concluded that the chain transformation during SCNP fold-

ing of step-growth prepared precursors can be visualized by SEC-ESI MS, whereby the 

increased complexity of the quaterpolymer system makes the evaluation highly chal-

lenging due to the broad statistical variety within its structure, while the terpolymer 

SCNP system is fully assessable. Based on the high-resolution MS analysis, it is sub-

mitted that at least four to five crosslinking units must be present for deducing a 

folding mechanism and the precursor formation needs to lead to a sufficient number 

of chains that feature reactive coumarin acrylate units. 

To nevertheless evidence successful quaterpolymer folding, the resulting 

SCNPs have been assessed by diffusion-ordered NMR spectroscopy (DOSY) and SEC 

rather than SEC-ESI MS. In summary, the present study has shown that high resolution 

SEC-ESI MS is indeed a suitable technique to elucidate single-chain folding even when 

radical processes and structurally highly diverse sequence-regulated precursor are in-

volved. These findings strongly suggest that SEC-ESI MS should be carried out in the 
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context of SCNP analysis as a matter of course, as it is the only existing approach 

providing detailed chemical and mechanistic insides into the folding process. 

 



6.5. EXPERIMENTAL SECTION 

6.5.1. Materials 

All solvents for synthesis were obtained from Sigma-Aldrich, Acros Organics, 

Merck or Fischer and used without further purification. Absolute solvents were pur-

chased from Acros Organics and stored under nitrogen and over molecular sieves. 

2,2′-Azobis(2-methylpropionitril) (AIBN) was purchased from Acros (98%) and recrys-

tallized twice from methanol. Methyl methacrylate (MMA, Sigma-Aldrich, 99%) and 

glycidyl methacrylate (GMA, Alfa Aesar, 97%) were deinhibited by passing through a 

column of basic aluminium oxide. Manganese(IV) oxide, activated, tech., Mn 58% min-

imum (Alfa Aesar, 58% Mn, product number: 014340) was freshly activated as follows: 

MnO2 (50 g) was placed on a large Büchner funnel and 10% nitric acid (80 mL) was 

added slowly. After the addition was completed, the MnO2 cake was washed with a 

large amount of water (2-3 L) or until the filtrate was neutral. The MnO2 was subse-

quently dried at 105 °C for two days and could then be stored under normal laboratory 

conditions for several weeks without loss of activity. Phosphorous(V)oxy chloride 

(Sigma Aldrich, 99%) was distilled twice at ambient pressure until a colorless liquid 

remained. Tris(pentafluorophenyl)borane (B(C6F5)3) was purchased from TCI (97%) and 

stored in the glove box. THF (Scharlau, GPC grade) and MeOH (Roth, HPLC ultra gra-

dient grade) for SEC-ESI MS analysis were used without further treatment. 2-cyano-2-

propyl dodecyl trithiocarbonate (Sigma-Aldrich, 97%), NaI (Sigma-Aldrich, 99%), 4,4′-

azobis(4-cyanovaleric acid) (AVCA) (Sigma-Aldrich, 98%), benzaldehyde (Alfa Aesar, 

>99%), poly(ethylene glycol) bis(carboxymethyl) ether (Sigma Aldrich, Mw = 600 Da), 

acryloyl chloride (Sigma Aldrich, 97%), resorcinol (Alfa Aesar, 99%), ethyl 4-chloroace-

toacetate (Alfa Aesar, 99%), hexamethylenediamine (Sigma Aldrich, 98%), ethyl for-

mate (>95%), diisopropylamine (Sigma Aldrich, 99%) were used as received. 

6.5.2. Instrumentation 

Size exclusion chromatography-electrospray ionization mass spectrome-

try (SEC-ESI MS). Spectra were recorded on a Q Exactive Plus (BioPharma Option) (Or-

bitrap) mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with 

an HESI II probe. The instrument was calibrated in the m/z range 74-1822 using pre-
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mixed calibration solutions and the m/z range 600-6000 using ammonium hexafluor-

ophosphate (Thermo Scientific). A constant spray voltage of 4.6 kV, a dimensionless 

sheath gas of 8, and a dimensionless auxiliary gas fl ow rate of 2 were applied. The 

capillary temperature and the S-lens RF level were set to 320 °C and 62.0, respectively. 

The Q Exactive was coupled to an UltiMate 3000 UHPLC System (Dionex, Sunnyvale, 

CA, USA) consisting of a pump (LPG 3400SD), autosampler (WPS 3000TSL), and a ther-

mostated column department (TCC 3000SD). Separation was performed on two mixed 

bed size exclusion chromatography columns (Polymer Laboratories, Mesopore 

250 × 4.6 mm, particle diameter 3 µm) with precolumn (Mesopore 50 × 4.6 mm) op-

erating at 30 °C. THF at a fl ow rate of 0.30 mL· min-1 was used as eluent. The mass 

spectrometer was coupled to the column in parallel to (an UV detector (VWD 3400 RS), 

and) a RI detector (RefractoMax520, ERC, Japan) in a setup described earlier.383 

0.27 mL· min-1 of the eluent were directed through the RI-detector and 30 µL· min-1 

infused into the electrospray source after postcolumn addition of a 50 µM solution of 

sodium iodide in methanol at 20 µL· min-1 by a micro-fl ow HPLC syringe pump (Tele-

dyne ISCO, Model 100DM). A 100 µL aliquot of a polymer solution with a concentra-

tion of 2 mg· mL-1 was injected onto the HPLC system. 

Nuclear magnetic resonance (NMR) spectroscopy. 1H, 13C as well as COSY 

and HSQC-spectra were recorded on a Bruker System 600 Ascend LH, equipped with 

an ONP-Probe (5 mm) with z-gradient (1H: 600 MHz, 13C 151 MHz). The δ -scale was 

normalized relative to the solvent signal of DMSO-d6 for 1H spectra and for 13C spectra 

to DMSO-d6.  

6.5.3. Synthesis 

Poly(methyl methacrylate-stat-glycidyl methacrylate) (17). 3.53 mL methyl 

methacrylate (3.32 g, 33.2 mmol, 233 eq), 500 µL glycidyl methacrylate (0.53 g, 

3.70 mmol, 26.0 eq), 2.80 mg AIBN (0.017 mmol, 0.12 eq) and 49.2 mg 2-cyano-2-

propyl dodecyl trithiocarbonate (0.142 mmol, 1.00 eq) were placed in a dry glass vial 

with a septum cap, degassed by purging nitrogen through the reaction mixture for 

30 min and then placed in an oil bath thermostated at 80 °C. After 60 min, the result-

ing p(MMA-stat-GMA) was recovered by precipitation in MeOH and dried under vac-

uum at 55 °C. The MMA:GMA=7:1 ratio was determined by NMR spectroscopy. 

Single-chain folding of poly(methyl methacrylate-stat-glycidyl methacry-

late) (17) to SCNP (18). A flame-dried Schlenk flask was charged with 40.0 mg 

poly(methyl methacrylate-stat-glycidyl methacrylate) (17) (0.053 mmol GMA, 1.00 eq) 
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and dissolved in 200 mL dry dichloromethane. After 5 min of magnetic stirring, 

13.3 mg B(C6F5)3 (0.026 mmol, 0.49 eq) was added to the reaction mixture in one por-

tion. The mixture was stirred for 72 h at ambient temperature. Subsequently, the mix-

ture was washed with brine (50 mL), the phases were separated and concentrated 

under reduced pressure (avoiding evaporation to complete dryness). The polymer was 

recovered by precipitation in cold cyclohexane resulting in a white powder after filtra-

tion and drying under high vacuum. 

1,6-Diisocyanohexane. The synthesis was adapted from the literature.384  

4-(chloromethyl)-7-hydroxy-coumarin. 11.0 g resorcinol (99.9 mmol, 

1.00 eq) was carefully dissolved in 90 mL H2SO4 (96%) at 0 °C, while stirring vigorously. 

18.1 g ethyl 4-chloroacetoacetate (110 mmol, 1.10 eq) was slowly added to the solu-

tion and the reaction mixture was stirred at 0 °C to ambient temperature for 5 h. The 

solution was slowly poured into an ice/water mixture (700 mL) and a large amount of 

a white solid precipitated. The precipitate was filtered and washed with water several 

times. The precipitate was recrystallized from ethanol. 14.7 g (60%) of an off-white 

solid was obtained. 

1H NMR (400 MHz, DMSO-d6) δ /ppm = 7.66 (d, 3J = 8.8 Hz, 1H), 6.83 (dd, 
3J = 8.8, 4J = 2.4 Hz, 1H), 6.75 (d, 4J = 2.4 Hz, 1H), 6.40 (s, 1H), 4.94 (s, 2H). 

13C{1H} NMR (101 MHz, DMSO-d6) δ /ppm = 161.66, 160.50, 155.49, 151.21, 

126.72, 113.37, 111.24, 109.57, 102.74, 41.56. 

4-(hydroxymethyl)-7-hydroxy-coumarin. 600 mL water was added to 5.00 g 

4-(chloromethyl)-7-hydroxy-coumarin (23.7 mmol). The dispersion was stirred vigor-

ously and heated to 110 °C. After 2 days of stirring, the solid was completely dissolved 

forming a slightly yellow colored, yet clear aqueous solution. Stirring and heating was 

continued for 1 day. Subsequently, the mixture was hot filtered and cooled to ambient 

temperature. Further cooling in the fridge overnight yielded in off-white needles. The 

product was filtered dried under high vacuum at 55 °C (4.5 g, 99%). 

1H NMR (400 MHz, DMSO-d6) δ /ppm = 10.50 (s, 1H), 7.52 (d, 3J = 8.7 Hz, 1H), 

6.77 (dd, 3J = 8.7,  4J = 2.4 Hz, 1H), 6.72 (d, 4J = 2.4 Hz, 1H), 6.26 – 6.19 (m, 1H), 5.57 

(t, 3J = 5.6 Hz, 1H), 4.70 (dd, 3J = 5.6, 4J = 1.6 Hz, 2H). 

13C{1H} NMR (101 MHz, DMSO-d6) δ /ppm = 160.99, 160.63, 156.82, 154.86, 

125.50, 112.83, 109.55, 106.53, 102.29, 59.07. 
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4-formyl-3-hydroxy coumarin. To a solution of 100 mg 4-(hydroxymethyl)-7-

hydroxy-coumarin (0.520 mmol, 1.00 eq) in anhydrous THF (3 mL) under an Argon 

atmosphere was added 1.00 g freshly activated manganese oxide. After the suspen-

sion was stirred at 50 °C overnight, the black solid was removed by filtration (short 

silica gel column flushed with ethyl acetate:cyclohexane = 1:1). The yellow fraction 

was collected, and the solvent removed under reduced pressure. 80 mg yellow prod-

uct (84%) was obtained. 

1H NMR (400 MHz, DMSO-d6) δ /ppm = 10.72 (s, 1H), 10.08 (s, 1H), 8.30 (d, 
3J = 8.8 Hz, 1H), 6.89 (s, 1H), 6.85 (dd, 3J = 8.8, 4J = 2.1 Hz, 1H), 6.78 (d, 4J = 2.1 Hz, 

1H). 

13C NMR (101 MHz, DMSO-d6) δ /ppm = 194.34, 162.02, 161.03, 156.47, 

144.22, 127.66, 120.73, 114.13, 107.56, 103.10. 

HR ESI MS m/zexp 189.0185; m/ztheo 189.0193 

4-formyl-coumarin-7-yl acrylate. A solution of 1.67 g 4-formyl-7-hydroxy 

coumarin (8.80 mmol, 1.00 eq) in 88 mL dichloromethane (0.1 M) was cooled to 0 °C. 

Subsequently, 1.65 mL DIPEA (1.25 g, 9.68 mmol, 1.10 eq) was added and stirred for 

5 min. 1.07 mL acryloyl chloride (1.19 g, 13.1 mmol, 1.50 eq) as 0.1 M solution in 

anhydrous DCM (13 mL) was added carefully. The solution was stirred for 16 h. The 

mixture was diluted with 50 mL dichloromethane and washed with water (3×100 mL) 

and brine (1×100 mL). The organic layer was dried over sodium sulfate and the sol-

vent was evaporated at reduced pressure (25 °C, ~500 mbar). The yellow solid was 

suspended in ethyl acetate (15 mL) and shortly heated to 55 °C in a water bath. The 

organic solvent adapted the yellow color, whereas the solids remained as an off-white 

powder. The suspension was left in the freezer overnight and 1.18 g of the product 

(4.84 mmol, 55%) was collected after filtration.  

1H NMR (600 MHz, DMSO-d6) δ /ppm = 10.14 (s, 1H), 8.54 (d, 3J = 8.8 Hz, 1H), 

7.46 (d, 4J = 2.3 Hz, 1H), 7.30 (dd, 3J = 8.8, 4J = 2.3 Hz, 1H), 7.20 (s, 1H), 6.59 (dd, 
2J = 17.3, 3J = 1.1 Hz, 1H), 6.45 (dd, 2J = 17.3, 2J = 10.4 Hz, 1H), 6.22 (dd, 2J = 10.4, 
3J = 1.1 Hz, 1H). 

13C NMR (151 MHz, DMSO-d6) δ  193.86, 164.08, 160.38, 155.03, 153.29, 

143.50, 134.95, 127.70, 127.46, 125.10, 119.41, 113.49, 111.04. 

HR ESI MS m/zexp 267.0265; m/ztheo 267.0264 
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Passerini terpolymer 19a. A mixture of 363.7 mg 4-formyl-coumarin-7-yl 

acrylate (1.49 mmol, 2.00 eq), 446.8 mg HO2C-PEG-CO2H (0.745 mmol, 1.00 eq) and 

101.3 mg 1,6-diisocyanohexane (0.744 mmol, 1.00 eq) was dissolved in 730 µL CHCl3 

(1.0 M) and stirred at 45 °C for 3 days. The polymer was obtained by precipitation in 

cold diethyl ether. Diethyl ether was decanted, the yellow substance was washed twice 

with cold diethyl ether and the polymer was dried under high vacuum overnight. 

Terpolymer SCNP collapse to 20a. 47.5 mg 19a (38.8 µmol, 1.00 eq) and 

5.4 mg 4,4’-azobis(4-cyanovaeleric acid) (19.4 µmol, 0.5 eq) were dissolved in 

316 mL anhydrous THF (destabilized; c = 0.3 mg∙mL- 1) and purged with Argon for 

45 min while stirring. The mixture was heated from ambient temperature to 60 °C and 

stirred for 24 h at 60 °C. Subsequently, the solvent was removed under reduced pres-

sure. 

Passerini quaterpolymer 19b. A mixture of 308.3 mg 4-formyl-coumarin-7-

yl acrylate (1.26 mmol, 0.3 eq), 759.2 mg benzaldehyde (7.15 mmol, 1.70 eq), 2.53 g 

HO2C-PEG-CO2H (4.21 mmol, 1.00 eq) and 573.2 mg 1,6-diisocyanohexane 

(4.21 mmol, 1.00 eq) was dissolved in 4.2 mL CHCl3 (1.0 M) and stirred at 45 °C for 5 

days. The polymer was obtained by precipitation in cold diethyl ether. Diethyl ether 

was decanted, the yellow substance was washed twice with cold diethyl ether and the 

polymer was dried under high vacuum overnight. 

Quaterpolymer SCNP collapse to 20b. 47.5 mg 19b (38.8 µmol, 1.00 eq) 

and 5.4 mg 4,4’-azobis(4-cyanovaeleric acid) (19.4 µmol, 0.5 eq) were dissolved in 

316 mL anhydrous THF (destabilized; c = 0.3 mg∙mL- 1) and purged with Argon for 

45 min while stirring. The mixture was heated to 60 °C and stirred for 24 h. Subse-

quently, the solvent was removed under reduced pressure.
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7.1. MOTIVATION 

As discussed in Section 2.6, the highly defined degradation of functional pol-

ymer systems by applying a controlled and mild external trigger signal, leading to 

non-toxic, and environmentally compatible small molecules via a chain-shatter mech-

anism, is a critical prerequisite for specific biomedical applications. The photoreduc-

tion of BP, known for more than a half century, is an important example of a reaction 

featuring a very high quantum yield (Φ = 1.4±0.4).385,386 Thus, BP has proven to be 

highly useful in a wide variety of key fundamental and practical applications, as it is 

chemically more robust than alternative molecules and stable to ambient illumination. 

However, it can be activated using light of a certain wavelengths, which do not dam-

age the majority of biomolecules.387,388 For instance, BP finds use as photoinitiator for 

polymerizations (type II initiators), in ink and coating applications and to protect per-

sonal care products from being damaged by UV light. 389–392 BP derivatives are chemi-

cally robust and are toxicologically benign. Thus, it comes as a surprise that BPs have 

not been exploited in degradable polymer systems. 

The current section is strongly motivated by the light-adaptive characteristics 

of BP. BP is exploited to introduce a chain-shattering degradation mechanism trig-

gered by light (λmax = 365 nm, 36 W). Incorporated in every repeat unit via a step-

growth polymerization of AA- and BB-type difunctional monomers, the BP functional 

group enables the disassembly of the on-demand degradable polymers within a few 

hours into small molecules. Specifically, the BP unit is photoactivated to reversibly 

generate a biradicaloid triplet state on each monomer moiety, in which the radicals 

can recombine in an inter-chain crosslinking reaction (Pinacol coupling) or undergo a 

reduction process, the latter one being key to the disassembly (refer to Section 2.6.1 

for more details). The newly formed hydroxyl functionality in ortho position to the 

ester bond induces the chain-shattering process via an intramolecular lactonization 

reaction. The polymerization and the light-triggered degradation are assessed in de-

tail by SEC, and – for the first time performed for chain-shattering polymer systems – 

                                           
7 The synthesis of the monomers and polymers was performed by J. Steinkoenig. M. 

Zieger is acknowledged for fruitful discussions. H. Mutlu and C. Barner-Kowollik motivated and 
supervised the project. Parts of this chapter are reproduced with permission from Steinkoenig, 
J.; Zieger, M. M.; Mutlu, H.; Barner-Kowollik, C. Macromolecules 2017, 50, 5385-5391. Copy-
right 2017 American Chemical Society. 
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by HR ESI MS. The degradation mechanism can be unambiguously confirmed by char-

acteristic transformations during the ring-closure reaction forming lactones as stable 

intermediates in the chain-shattering reaction. Finally, the present section showcases 

that the system can rapidly undergo gated and orthogonal thermally induced degra-

dation, which can be useful for recycling applications of the polymer. 

7.2. RESULTS AND DISCUSSION 

As depicted in Figure 65, an HDA polymerization was selected for the synthe-

sis of the benzophenone-based polymers for the following reasons: (i) the mild Lewis 

acid (i.e. ZnCl2) catalyzed conditions efficiently yield a sequence-regulated linear mac-

romolecule;393 (ii) the HDA polymerization has a high tolerance towards functional 

Figure 65 Synthesis and degradation of the dual responsive chain-shattering polymer (22): (a) thermally-
triggered degradation via heating to 160 °C for 40 min; (b) hetero Diels-Alder step-growth polymerization 
of 21a and 21b under Lewis acidic conditions; (c) light-triggered disassembly under irradiation with 
λmax = 365 nm using isopropyl alcohol as redox partner. As a simplification, only one selected isomer is 
depicted. Thermal responsive moieties are shown in purple, while photo-sensitive moieties are repre-
sented in cyan. Reprinted with permission from Ref. [375]. Copyright American Chemical Society (2017). 
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groups – a broad variety of dienes and dienophiles can be potentially utilized, thus 

allowing the adjustment of the temperature range in which the bonding/debonding 

proceeds;394,395 and (iii) the 3,6-dihydro-2H-thiopyran ring is chemically robust and tol-

erates irradiation in the ultraviolet/visible (UV/vis) light regime.396  

7.2.1. Synthesis and Light-Triggered Degradation 

A benzophenone-based light-responsive monomer (2E,4E)-hexa-2,4-dienyl 2-

(4-((((2E,4E)-hexa-2,4-dienyl)-oxy)carbonyl)benzoyl)benzoate (21a) was designed, 

which was subsequently polymerized with 1,4-phenylenebis(methylene) bis((diethox-

yphosphoryl)methanedithioformate) (21b) adapting a previously described procedure 

(Figure 65).393 The reaction conditions were screened carefully by varying the solvent 

(i.e. acetone, dichloromethane, ethyl acetate and tetrahydrofuran) (refer to Figure 66). 

The highest molecular weight was realized in ethyl acetate, in which polymer 22 pre-

cipitates after a few hours of polymerization. More polar solvents (e.g. dichloro-

methane) disallowed the formation of the target macromolecule resulting in an oligo-

meric reaction mixture even after 24 h although all components were well dissolved 

(refer to Figure 66). Polymer 22 was characterized via ESI MS (refer to Appendix Fig. 

E 10), MS/MS (refer to Figure 69B), NMR (see Appendix Fig. E 1-5), SEC (Figure 67A) 

and UV-visible (UV-vis) spectroscopy (refer to Figure 74C). As discussed in Section 

2.6.1, BP is photoreduced upon irradiation (λmax = 365 nm, refer to Appendix Fig. E 18 

Solvent
Mn / 

g∙mol-1

Mw /

g∙mol-1
Ð

EtAc 2500 5600 2.19

THF 2200 4300 1.95

Acetone 2200 4600 2.09

DCM 1500 2800 1.82

BA

Figure 66 (A) SEC traces of polymer 22 after 8 h polymerization using ethyl acetate (EtAc) (bright cyan), 
THF (dark cyan), acetone (green) and dichloromethane (DCM) (blue) as polymerization solvent. Condi-
tions: THF SEC performing at 30 °C and a flow rate of 1 mL∙min-1. (B) Polymer characterization (Mn, Mw 
and Ð) obtained from SEC measurements in different solvents. Calibration was relative to poly(styrene) 
standards. Reprinted with permission from Ref. [375]. Copyright American Chemical Society (2017). 



Dual-Gated Chain-Shattering Based on Light Responsive Benzophenones and Thermally 
Responsive Diels-Alder Linkages 

 

161 
 

for the light emission spectrum) in the presence of isopropyl alcohol as redox partner. 
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Figure 67 SEC traces of intact polymer (22) (Mw = 14 kDa; Mn = 7 kDa; Ð = 2.0), and after irradiation with 
light (λmax = 365 nm) for 1 h, 2 h, 3 h, 4 h and 24 h leading to small components (Mw = 5.4 kDa; 
Mn = 3.3 kDa; Ð = 1.6) (A); NMR spectra (DMSO-d6, 298 K, 400 MHz) of a 1:1 mixture of 21a, 21b, 22 as 
well as 22 before and after 2 h irradiation (B). For the proton resonance assignments of polymer 22 refer 
to Appendix Fig. E 3. Reprinted with permission from Ref. [375]. Copyright American Chemical Society 
(2017). 
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The degradation was monitored using NMR, SEC and HR ESI MS. The results will be 

discussed as follows: (i) assessment of the SEC traces; (ii) evaluation of the ESI MS 

data monitoring the light-triggered degradation and (iii) establishment of a detailed 

mechanism based on the ESI MS results. Finally, (iv), the thermal degradation is pre-

sented.  

SEC is a powerful tool to assess the size distribution’s retention time changes 

(correlating with changes in the molecular weight based on a certain calibration) dur-

ing the chain-shattering of polymer 22. To study the light-induced degradation, poly-

mer 22 was dissolved in acetonitrile/isopropyl alcohol = 1:1 (v/v) at a concentration 

of 2 mg∙mL-1. Prior to irradiation with λmax = 365 nm (36 W), the solution was degassed 

by purging with nitrogen for 15 min to avoid side reactions due to the biradical char-

acter of oxygen.397 As collated in Figure 67A, polymer 22 (Mw = 14 kDa; Mn = 7 kDa; 

Ð = 2.0) dissembles within 2 h into oligomers (Mw = 10 kDa; Mn = 4 kDa; Ð = 2.6) and 

after 24 h into small molecules (Mw = 5.4 kDa; Mn = 3.3 kDa; Ð = 1.6). As the molecu-

lar weight of a possible fragment after disassembly is 985 Da (refer to Appendix Fig. 

E 12), the chain shattering does not produce entirely small molecules. Interestingly, a 

short irradiation time of 1 h results in a clearly bimodal molecular weight distribution, 

displaying two peaks with one maximum at approx. 19 mL (Mw = 250 kDa; 

Mn = 170 kDa) and one maximum at approx. 25 mL (Mw = 6.8 kDa; Mn = 4.6 kDa). The 

formation of high-molecular components is due to the radical-based mechanism (refer 

to the detailed discussion below). While the changes in retention time evidences the 

size reduction of polymer 22 due to chain-shattering, molecular changes can only be 

revealed by 1D and 2D NMR as well as ESI MS. Figure 67B shows the NMR spectra of 

a 1:1 mixture of the monomers 21a and 21b, polymer 22 before and after 2 h degra-

dation (for detailed 2D NMR spectra of 21a and polymer 22 refer to Appendix Fig. E 

4,5 and Figure 68, respectively). The most significant transformation indicated by 1H 

NMR analysis is the disappearance of the resonances associated with the methyl 

groups of monomer 21a (1.7 ppm), whereas the proton resonances of the 3,6-dihy-

dro-2H-thiopyran ring appear at 4.1 and 5.5 ppm. However, many proton resonances 

of the polymer are isochronous with their resonance position appearing between 4.0 

and 6.0 ppm (Figure 68). After irradiation with UV-vis light (λmax = 365 nm, 36 W), the 

magnetic resonance within the aromatic range of the spectrum, i.e. between 7.0 and 

8.0 ppm, undergoes the most apparent transformation: Prior to inducing the degra-

dation by the photoredox reaction between BP and isopropyl alcohol, the aromatic 

range exhibits four broad resonances representing the BP core of monomer 21a and 
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the phenyl core of 21b (as shown in Figure 67B). After 2 h irradiation, the three res-

onances associated with the BP core were merged to one very broad resonance repre-

senting a plethora of degradation products, associated with all isomers produced by 

the HDA chemistry. Consequently, although NMR is a compelling and selective char-

acterization technique, it is of limited use for the determination of the specific degra-

dation products in the current system. Thus, the attention turned to HR Orbitrap ESI 

MS for a detailed molecular analysis.  

An ESI MS kinetic monitoring study of the photocleavage of the BP-based pol-

ymers (22) was performed under highly diluted conditions (0.5 mg∙mL-1 in isopropyl 

alcohol/acetonitrile = 1:1 (v/v)) after purging the solution with nitrogen for 15 min. 

The spectra were recorded in negative ion mode taking advantage of the strong chlo-

ride attachment ionization as reported in Chapter 3. In addition, SEC-ESI MS as hy-

phenated technique (refer to Section 2.1.6) was carried out, identifying the small mol-

ecule components formed during degradation. The small molecules ionize sufficiently 

in positive ion mode (refer to Appendix Fig. E 11-17 for the isotopic simulations of 

the degraded species). As evident from Figure 70A/C, ESI MS is indeed the method 

Figure 68 1H-1H COSY (298 K) spectrum of polymer 22 in DMSO-d6. Reprinted with permission from Ref. 
[375]. Copyright American Chemical Society (2017). 
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of choice to assess the triggered degradation of polymer 22 and the transformation 

the macromolecule undergoes during the disassembly, surpassing NMR in this partic-

ular case in information depth. After 20 min of irradiation, distinct degradation prod-

ucts started to appear: (i) the isotopic pattern of the species at 1955 m/z (Figure 70B) 

undergoes a significant transformation indicating a mixture of two species. As illus-

trated in Figure 69A, the species at 1955 m/z represented the intact polymer chain 

structure (refer to Figure 69B for the full MS/MS analysis of the intact polymer struc-

ture), whereas the increasing ion abundance at 1957 m/z indicated the formation of 

a new species.  

The MS/MS experiments clearly confirmed the polymer structure by specific 

product ions from the precursors ion at 1955 m/z. A HCD energy of 14 eV generated 

sufficient ion abundance to fully assess the polymer fragmentation. The assigned 

product ions are collated in Table 7. 
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Figure 69 (A) Isotopic simulation of a selected degradation species at 1955 m/z comparing the experi-
ment (purple line) and the simulation (grey line) of degraded polymer 22. The ion abundance of the 
lactone at 1957 m/z indicates the successful degradation. (B) ESI MS/MS (tandem MS in negative ion 
mode) of polymer 22 isolating a species at 1955 m/z with a HCD energy of 14 eV in the relevant range 
from 200 m/z and 2000 m/z. Reprinted with permission from Ref. [375]. Copyright American Chemical 
Society (2017). 
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Table 7 Peak assignment of the ESI MS/MS experiment conducted on polymer 22 at 1955 m/z with a 
HCD energy of 14 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the pro-
posed structure. Reprinted with permission from Ref. [375]. Copyright American Chemical Society (2017). 

m/z(exp) m/z(theo) Δm/z Structure 

269.0457 269.0455 0.0002 

 

297.0765 297.0768 0.0003 

 

349.1084 349.1081 0.0003 

 

500.9863 500.9858 0.0005 

 

553.0172 553.0171 0.0001 

 

581.0488 581.0484 0.0004 

 

633.0791 633.0797 0.0006 

 

661.1116 661.1110 0.0006 

 

879.1345 879.1325 0.0020 

 

931.1664 931.1638 0.0026 
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959.1960 959.1951 0.0009 

 

983.1965 983.1951 0.0014 

 

1011.2283 1011.2264 0.0019 

 

1257.2809 1257.2793 0.0016 

 

1309.3081 1309.3106 0.0025 

 

1361.3396 1361.3419 0.0023 

 

1461.1914 1461.1882 0.0032 

 

1513.2203 1513.2195 0.0008 

 

1541.2475 1541.2508 0.0033 
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1891.3632 1891.3663 0.0031 

 
Further, the detailed isotopic pattern simulations (see Figure 69A) revealed 

that the species resulted from the degradation process of polymer 22 (refer to Figure 

71 for the degradation mechanism). Here, the ester bond in ortho position to the BP 

carbonyl has been cleaved and a lactone was formed in a ring-closing reaction. The 

remaining isotopic pattern simulations have been placed in the Appendix Fig. E 8,9. 

(ii) A further characteristic species appears at 2017 m/z, which represents a ring-

opening reaction product by nucleophilic attack of an isopropyl alcohol. Additionally, 

due to the strong coordination of the polymer 22 to the Lewis acid ZnCl2, many species 

were ionized by chloride attachment along with the formation of a complex resulting 

in [ZnCl3]- (for easier readability, the peak assignments can be found in Appendix Fig. 

E 7). The presence of such species were in good agreement with the literature.393 Thus, 

(iii), species ionized by the zinc complexes were highly abundant in the mass spectra. 

The ion at 2091 m/z represented the degradation product, in which the lactone is 

formed as the first stable intermediate. Furthermore, the abundance of the high-mo-

lecular weight species recorded in the range between 3125 m/z and 3700 m/z were 

rapidly reduced, and disappeared within 120 min (refer to Figure 70C). 

Thus, based on the conducted ESI MS analysis (refer to Figure 70), the follow-

ing degradation mechanism for polymer 22 is submitted: Upon irradiation, the car-

bonyl bond of BP undergoes a n-π* electron transition to an excited state.398 After inter-

system crossing (ISC),397,399 the biradical benzophenone can react via two distinct 
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Figure 70 (A) ESI-Orbitrap mass spectra of polymer 22 before and after irradiation with light 
(λmax = 365 nm, 36 W) for 1, 5, 20, 50 and 120 min. in the mass range between m/z 1950 and m/z 2150 
with the simulated isotopic pattern of important degradation products; (B) expanded m/z area of the 
isotopic pattern of the species at m/z 1955 indicating the formation of a degradation product at 
m/z 1957 (the first peak of the isotopic pattern is highlighted); (C) high-molecular weight range between 
m/z 3125 and m/z 3700 illustrates the disappearance of high-molecular species upon irradiation. For 
detailed peak assignments and isotopic pattern simulations refer to Appendix Fig. E 8,9. Reprinted with 
permission from Ref. [375]. Copyright American Chemical Society (2017). 
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mechanistic pathways: (i) the radicals find each other in an inter-chain bimolecular 

coupling reaction or (ii) the radical species are reduced to the corresponding alcohol 

derivative (refer to Section 2.6.1 for a detailed revision). At the beginning of the deg-

radation two types of reactions compete – i.e. the bimolecular (Pinacol) coupling and 

the reduction –, which was visualized by SEC analysis after one hour of irradiation 

(Figure 67A). The peak with its maximum at 19 mL retention volume (Mw = 250 kDa; 

Mn = 170 kDa) represented high-molecular compartments produced by the crosslink-

ing reaction. As illustrated in Figure 71, a ring-closure reaction can proceed forming 

a lactone after successful radical coupling leading to a chain scission. Accordingly, 

degradation product structures were identified in ESI MS. However, such species were 

isobaric to their linear chain analogues. The subsequent degradation of inter-chain 

crosslinked macromolecules also resulted in lower molecular weight fragments as in-

dicated by the SEC traces (2 h-24 h, Figure 67A). The retention volume’s signal cli-

maxing at 19 mL disappeared completely, supporting the proposed degradation of 

the intermittently formed crosslinked structures. In contrast to inter-chain radical cou-

pling, the photoreduction of the BP unit to benzhydrol as an alternative reaction path-

way has often been described in the literature.306 As unambiguously confirmed by the 

ESI MS investigation, photoreduced BP formed a lactone if an ester in ortho position 

was available for ring closure. Both fragments of the previously noted cleavage sce-

nario – i.e. the lactone-terminated polymer chain as well as the alcohol-terminated 

polymer chain – could be identified by HR ESI MS. Furthermore, isopropyl alcohol can 

act as a nucleophile preceding a ring-opening reaction.400 Most importantly, as evi-

denced by ESI MS, the residual polymer backbone represented by the 3,6-dihydro-2H-

thiopyran ring in benzyl position to the phenyl core kept its full structural integrity as 

no associated degradation species have been identified. 
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7.2.2. Thermally-Triggered Degradation 

The thermal approach of the chain shattering process of polymer 22 was 

demonstrated via SEC, online high-temperature 1H NMR (Figure 74A and B) as well as 

UV-vis spectroscopy (refer to Figure 73). The thermally induced degradation was ac-

complished by dissolving polymer 22 in acetonitrile (20 mg∙mL-1) in a pressure tube. 

The solution was kept at 160 °C for 40 min and rapidly cooled in liquid nitrogen to 

prevent the reformation of Diels-Alder linkages. Figure 74A represents the SEC trace 

recorded after polymer 22 was degraded thermally: the parent polymer (Mw = 14 kDa; 

Mn = 7 kDa; Ð = 2.0) disassembles rapidly to small molecules (Mw = 2.8 kDa; 

Mn = 1.2 kDa; Ð = 2.2). Online high-temperature NMR spectroscopy (Figure 74B) al-

lowed for a chemical assessment of the debonding process: the specific double bond 

resonances of (i) the 3,6-dihydro-2H-thiopyran ring (between 5.5 and 6.0 ppm) and 

(ii) the residual diene resonances (between 4.3 and 5.0 ppm) become more pro-

nounced in the course of the thermal treatment between 25 and 125 °C. Importantly, 

some diene resonances are isochronous with the 3,6-dihydro-2H-thiopyran ring pro-

ton resonances impeding a strongly visible change in the region between 5.5 and 6.0 

ppm. Nevertheless, the percentage of unreacted diene can be deduced as follows: The 

aromatic region (6.945 – 8.303 ppm) was normalized to 12 H; the olefin region (4.400 

– 6.500 ppm) was integrated with constant set boundaries. For 0% debonding: the 

Figure 71 Proposed degradation mechanism: (i) irradiation at λmax = 365 nm (36 W) induces the formation 
of a biradical species; (ii) the radicals react in an inter-chain crosslinking reaction or in a reduction reac-
tion; (iii) the alcohol in ortho-position to the ester bond induces the chain-shattering process forming a 
lactone as stable degradation product. Reprinted with permission from Ref. [375]. Copyright American 
Chemical Society (2017). 
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thiopyrane ring is represented by 4 H, whereas the free diene resonance integrals is 

0 H. Thus: Ͳ%: Ͷ = ሺͶܪ − Ͷ ∙ ሻܪ� + ͳʹ ∙ → ܪ� Ͷ = Ͷܪ + ͺ ∙ ܪͶͶ → ܪ� = ͳ + ʹ� 
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Figure 72 Overview spectra of the online HT NMR (400 MHz, DMSO-d6) experiment of polymer 22 in the 
temperature range between 298 and 398 K. Reprinted with permission from Ref. [375]. Copyright Amer-
ican Chemical Society (2017). 
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Figure 73 UV/visible measurement of polymer 22 in acetonitrile (298 K) before (cyan line) and after 
temperature increase to 160 °C for 40 min (light purple line). The photos indicate the color change from 
colorless to red after heating to 160 °C. Reprinted with permission from Ref. [375]. Copyright American 
Chemical Society (2017). 
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During the polymerization reaction, less than 100% of the dienes have been 
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Figure 74 SEC traces of the intact polymer (22) (Mw = 14 kDa; Mn = 7 kDa; Ð = 2.0), and after thermally 
induced degradation at 160 °C (40 min) leading to small components (Mw = 2.8 kDa; Mn = 1.2 kDa; 
Ð = 2.2) (A); online high-temperature 1H NMR spectra (DMSO-d6, 400 MHz) of polymer 22 at 25 and 125 °C 
illustrating the significant double bond resonances (integrated) in the chemical shift regime between 
4.3 and 6.5 ppm as well as the aromatic resonances (integrated to 12 H) between 7.0 and 8.5 ppm(B). 
Reprinted with permission from Ref. [375]. Copyright American Chemical Society (2017). 
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consumed and at 25 °C the degree of debonding (X) can be calculated as:  

ʹͷ °ܥ: ͷ.ͺ͹Ͷܪ = ͳ + ʹ� → � = Ͳ.ʹ͵ 
At 25 °C, the olefin resonance regime integrates to 5.87 representing 23% 

debonding (Figure 74B and Figure 72); at 125 °C, the integrated value increases to 

8.04 representing 51% debonding. Thus, 28% additional diene species have formed 

during thermal treatment at 125 °C. Furthermore, the integrated value of the diene 

resonance indicates the recovery of 21a (for the full online HT NMR spectra refer to 

Figure 72). The thermally-gated degradation of polymer 22 entails recycling, yielding 

both monomer species 21a and 21b. Alternatively, 21b can be recovered after thermal 

treatment of the light-induced degradation mixture. Further, UV-vis spectroscopy (re-

fer to Figure 73) indicates the reformation of the dithioester group possessing a high 

absorbance between 500 and 550 nm and between 275 and 400 nm.401 

7.3. CONCLUSION 

In summary, a novel dual-responsive polymer system was introduced, which 

can be degraded into environmentally compatible small molecules by taking ad-

vantage of the light-adaptive properties of the BP trigger motif and the thermo-re-

sponsive reversible HDA linkages. The successful formation of the polymer via mild 

hetero Diels-Alder polymerization was evidenced by a detailed SEC and NMR charac-

terization. Most importantly, the advanced self-immolative polymers retain their full 

structural integrity until the precision chain-shattering is started upon external light 

irradiation (λmax = 365 nm). SEC and ESI MS enabled the monitoring of the degradation 

reaction. The specific degradation species ionize efficiently in negative ion mode via 

chloride attachment, allowing for the unambiguous identification of the formed prod-

ucts. The chain-shattering character of the BP-based degradable polymer relies on a 

photoreduction between the carbonyl motif and isopropyl alocohol as key intermedi-

ate step, cleaving the chain backbone via intramolecular lactone formation. Alterna-

tively, the polymer can be degraded via a thermal gate, which proceeds orthogonally 

to the light induced process. 
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7.4. EXPERIMENTAL SECTION 

7.4.1. Materials 

All solvents for synthesis were obtained from Sigma-Aldrich, Acros Organics 

or Fischer and used without further purification. The benzophenone-2,4'-dicarboxylic 

acid monohydrate (TCI, >98%), trans,trans-2,4-hexadien-1-ol (Alfa Aesar, 98%), α ,α ’-

dibromo-p-xylene (Sigma Aldrich, 98%), carbon disulfide (VWR, 99.9%), diethyl phos-

phite (Fluka, >95%), sodium hydride (Sigma Aldrich, 95%) and zinc chloride (Sigma 

Aldrich, >98%) were used as received. THF (Scharlau, GPC grade), MeOH (Roth, HPLC 

ultra gradient grade) and NaI (Sigma-Aldrich, 99%) for SEC-ESI MS analysis were used 

without further treatment. 

7.4.2. Instrumentation 

Electrospray ionization-Orbitrap mass spectrometry (ESI-Orbitrap MS). 

Mass spectra were recorded on a Q Exactive (Orbitrap) mass spectrometer (Thermo 

Fisher Scientific, San Jose, CA, USA) equipped with a HESI II probe. The instrument was 

calibrated in the m/z range 74-1822 using premixed calibration solutions (Thermo 

Scientific) and in m/z range 1000-6000 Th using ammonium hexafluorophosphate 

(Thermo Scientific). All spectra were recorded in the negative mode, using isopropyl 

alcohol/acetonitrile = 1:1 (v/v) as ESI solvent. The spectra were recorded in a concen-

tration of 0.5 mg· mL-1. Prior to the time-dependent irradiation of polymer 22 with 

light (λ max = 365 nm), the solvent was degassed by purging with nitrogen for 15 min. 

The FT resolution was set to 140000 employing 3 microscans during an acquisition 

time between 2 and 5 min measuring with a capillary temperature of 320 °C. The aux 

gas flow was (dimensionless) 0.00, the sheath gas 10.00, and the spare gas 1.00. The 

flow rate was set to 5 µL· min-1. The spray voltage was set to 4.6 kV and kept constant 

throughout the irradiation study.  

Size exclusion chromatography coupled with electrospray ionization 

mass spectrometry (SEC-ESI MS). Spectra were recorded on a LTQ Orbitrap XL Q 

Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped 

with an HESI II probe. The instrument was calibrated in the m/z range 74-1822 using 

premixed calibration solutions (Thermo Scientific) and in m/z range 1000-6000 Th 

using ammonium hexafluorophosphate (Thermo Scientific). A constant spray voltage 
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of 4.6 kV, a dimensionless sheath gas of 8, and a dimensionless auxiliary gas fl ow 

rate of 2 were applied. The capillary temperature and the S-lens RF level were set to 

320 °C and 62.0, respectively. The Q Exactive was coupled to an UltiMate 3000 UHPLC 

System (Dionex, Sunnyvale, CA, USA) consisting of a pump (LPG 3400SD), autosampler 

(WPS 3000TSL), and a thermostated column department (TCC 3000SD). Separation 

was performed on two mixed bed size exclusion chromatography columns (Polymer 

Laboratories, Mesopore 250 × 4.6 mm, particle diameter 3 µm) with precolumn (Mes-

opore 50 × 4.6 mm) operating at 30 °C. THF at a fl ow rate of 0.30 mL· min-1 was used 

as eluent. The mass spectrometer was coupled to the column in parallel to a RI-detec-

tor (RefractoMax520, ERC, Japan). 0.27 mL· min-1 of the eluent were directed through 

the RI-detector and 30 µL· min-1 infused into the electrospray source after postcolumn 

addition of a 100 µM solution of sodium iodide in methanol at 20 µL· min-1 by a micro-

fl ow HPLC syringe pump (Teledyne ISCO, Model 100DM). A 50 µL aliquot of a polymer 

solution with a concentration of 2 mg· mL-1 was injected onto the HPLC system. 

7.4.3. Synthesis 

(2E,4E)-hexa-2,4-dienyl 2-(4-((((2E,4E)-hexa-2,4-dienyl)oxy)carbonyl)ben-

zoyl)benzoate (21a). To a stirred solution of 500 mg benzophenone-2,4’-dicarboxylic 

acid monohydrate (1.74 mmol, 1.00 eq) (protected from ambient light) in 1.2 mL an-

hydrous DMF (1.5 M), 106.0 mg DMAP (0.867 mmol, 0.50 eq) and 426 mg sorbin al-

cohol (4.34 mmol, 2.50 eq) were added. 831 mg EDC∙HCl (4.33 mmol, 2.50 eq) was 

added to the reaction mixture at 0 °C, which was then stirred for 5 min at 0 °C and  

for 48 h at ambient temperature. The mixture was subsequently diluted with 200 mL 

dichloromethane, washed twice with water and once with brine. The organic phase 

was dried over Na2SO4 and evaporated at reduced pressure. The product was obtained 

as colorless oil (322 mg, 0.746 mmol, 43%) after flash chromatography using cyclo-

hexane:ethyl acetate = 10:1 as eluent.  

Rf = 0.54 (cyclohexane:ethyl acetate = 2:1) 

1H NMR (400 MHz, 298 K, DMSO-d6): δ  = 8.05 (m, 3H), 7.88 – 7.64 (m, 4H), 

7.54 (dd, 3J = 7.5 Hz, 4J = 0.9 Hz, 1H), 6.38 (m, 1H), 6.17 – 6.01 (m, 2H), 5.96 – 5.59 

(m, 4H), 5.41 – 5.26 (m, 1H), 4.83 (d, 3J = 6.4 Hz, 2H), 4.50 (d, 3J = 6.4 Hz, 2H), 1.71 

(m, 6H). 

13C NMR (101 MHz, 298 K, DMSO-d6) δ  = 195.55 (C), 165.00 (C), 164.76 (C), 

140.54 (C), 140.08 (C), 134.64 (CH), 134.57 (CH), 133.34 (CH), 133.16 (CH), 131.08 

(CH), 130.97 (CH), 130.48 (CH), 130.42 (CH), 130.34 (CH), 129.82 (CH), 129.57 (CH), 
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129.08 (CH), 128.55 (CH), 127.86 (CH), 123.84 (CH), 122.98 (CH), 65.45 (CH2), 65.39 

(CH2), 17.90 (CH3), 17.84 (CH3). 

HR ESI MS: [21a+Na]: m/z 453.1669 (m/z(theo) 453.1672) 

1,4-phenylenebis(methylene) bis((diethoxyphosphoryl)methanedithiofor-

mate) (21b): The synthesis was adapted from the literature.133 

Hetero Diels-Alder step-growth polymerization to yield polymer 22. 

100 mg (2E,4E)-hexa-2,4-dienyl 2-(4-((((2E,4E)-hexa-2,4-dienyl)oxy)carbonyl)ben-

zoyl)benzoate (21a) (0.232 mmol, 1.00 eq), 123.2 mg 1,4-phenylenebis(methylene) 

bis((diethoxyphosphoryl)methanedithioformate) (21b) (0.232 mmol, 1.00 eq) and 

34.8 mg ZnCl2 (0.256 mmol, 1.10 eq) were stirred in 780 µL ethyl acetate at 50 °C. 

After 24 h, the solids were filtered, washed with cold ethyl acetate and dried under a 

high vacuum. Polymer 22 was obtained as pale brown solid (quantitative yield). 

Light-triggered degradation of polymer 22: 10 mg polymer 22 

(Mw = 14 kDa; Mn = 7 kDa; Ð = 2.0) was dissolved in 5 mL isopropyl alcohol:acetoni-

trile = 1:1 (v/v) in a concentration of 2 mg∙mL-1 and portioned equally to 5 sealed 

vials. The solution was degassed by purging with nitrogen for 15 min and subse-

quently irradiated using a Philips Cleo Compact PL-L fluorescent lamp (36 Watt, 

λ max = 350 nm) in a self-made photo reactor. After 1, 2, 3, 4 and 24 h, respectively, 

an aliquot was taken, and the solvent was removed under reduced pressure prior to 

analytical characterization. 

Thermally-triggered degradation of polymer 22: 20 mg polymer 22 

(Mw = 14 kDa; Mn = 7 kDa; Ð = 2.0) was placed in a pressure tube and dissolved in 

0.5 mL acetonitrile. The red color indicated the formation of the thiocarbonyl group 

(see Figure 73). After 40 min, the reaction was rapidly cooled in liquid nitrogen to 

prevent potential Diels-Alder reactions. 





8  
CONCLUSIONS AND OUTLOOK 

The present thesis addresses two overarching aims: (i) establishing efficient 

routes for macromolecular ionization in electrospray ionization mass spectrometry 

and (ii) elucidating chemical reaction pathways during the degradation of macromol-

ecules into small molecules or the single chain folding polymers. Within the following 

section, a critical assessment of the thesis’ objectives is carried out.  

In Chapter 3, an efficient ionization route to access non-polar polymers via 

chloride attachment in negative ion mode is described. The chloride attachment pro-

vides an ion abundance between 105 and 108 of the non-polar macromolecular analyte. 

In contrast to the sodium attachment, multiply charged species – and for the first time 

described – quadruply charged polystyrene were detected. In addition, the ionization 

platform establishes an efficient ionization route for polybutadiene, representing its 
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first time successful analysis by electrospray ionization. Although the ionization plat-

form is very powerful for a large array of non-polar polymers, some polystyrene-type 

polymers remain still challenging.   

 

Figure 75 Exemplary representation of non-polar styrene-type polymers that are challenging to ionize 
via chloride attachment in negative ion mode. 

The structure represented in Figure 75 is a tetrazole functionalized polymer. 

As recently observed, tetrazole functionalized polymers do not exhibit good ioniza-

tion in electrospray ionization. The tetrazole motif is a large conjugated π system 

(highlighted in purple), which should be capable of coordinating to chloride ions via 

negative ion attachment. However, preliminary tests indicate a low ion abundance, 

which might be associated with the nitrogen entailed within the tetrazole. It is pro-

posed that the nitrogen can be converted into a protonated species resembling a 

polyelectrolyte. Yet, it is still unclear why both positive and negative ion mode do not 

promote the sufficient ionization of tetrazole tethered polymers. In Chapter 3, NaCl 

was utilized for doping the ESI solvent. A more potent alternative is Ph4PCl, which 

dissociates readily.402 Furthermore, the cation (Ph4P+) has a low tendency to coordinate 

to any structural motifs in the polymer, and thus, does not contribute to an ion abun-

dancy reduction by a charge competition mechanism.26,35,37,45 

Supercharging – also described in Chapter 3 – is a powerful route to promote 

multiply charged analytes. As assessed in the current thesis, the supercharging effect 

is most prominent in water. Thus, highly polar macromolecules such as poly(ionic 

liquid)s benefit strongly from the supercharging effect allowing their mapping in neg-

ative ion mode. Without supercharging agent, the ion abundance of poly(ionic liquid)s 

is very low. The results are described in detail in Chapter 4. Thus, the present thesis 

reports for the first time an in-depth mass spectrometric elucidation of an entire class 

of polymers. In Chapter 4, the results described for the mass spectrometric analysis 
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of poly(ionic liquid)s formulate chloride as counter ion, which also promotes the ion-

ization in negative ion mode. A fast and quantitative salt exchange imparted into the 

sample preparation has been reported in Chapter 4, Section 4.3. Here, a detailed elu-

cidation of the influence of an exchanged counter ion on the ionization behavior in 

negative ion mode was studied. Strikingly, the data was correlated with the H-bonding 

activity of the counter ions being most pronounced for chloride and weak for perfluor-

inated species such as tetrafluoroborate. The described electrospray ionization plat-

form critically aids in determining PILs’ structure including defects resulting from, 

e.g., hydrolysis events in case of an acrylate-type PIL. The current work paves the way 

for detailed polymerization mechanism studies via a pulsed laser polymerization 

method, which is helpful to further understand this unique class of polyelectrolytes. 

In Chapter 5, the polymerization mechanism of a spontaneous zwitterionic 

alternating copolymerization between various cyclic imino ethers and acrylic acid was 

elucidated by a post-mortem high resolution mass spectrometric analysis of the pol-

ymeric material. Importantly, a calibration curve was established to semi-quantify the 

end group and different species in the mass spectrum. Based on the quantification 

and detailed MS/MS measurements, the polymerization mechanism was unraveled. 

The data for chain termini quantification should to process the material in a more 

efficient fashion, e.g. via a post-polymerization functionalization introducing func-

tionalities such as anchors for surface decoration or peptide modification.  

A topic with high future potential was introduced in Chapter 6. Here, for the 

first time reported, a detailed investigation into single chain collapsed nanoparticles 

by high resolution mass spectrometry reveals a fascinating and precise view into the 

folding mechanism of such nanoparticles. As research on single chain nanoparticles 

is rapidly expanding, it is expected that the herein established high resolution mass 

spectrometry protocols will critically extend the toolbox of existing morphological 

techniques including SEC, DOSY, DLS, SAXS and AFM, providing a unique view on chain 

folding processes. In Chapter 6, first results indicate the great potential of imaging 

single chain nanoparticles via electrospray ionization.  

What is next? One envisaged project could focus on the determination and 

quantification of specific folding points. Here, the analytics benefit from systems 

where a small molecule per formed crosslinking point is released. For instance, a suit-

able ligation with small molecule release is the light-induced nitrilimine formation of 

tetrazole precursors that reacts rapidly with double bonds in a 1,3-dipolar cycloaddi-

tion. Upon light exposure, tetrazole releases molecular nitrogen (24 Da), which can 



  
  

180 
 

be used to count the number of ligation points within the single chain nanoparticle 

(refer to Figure 76).  

Alternatively, a thermal nitrogen releasing system can be introduced via 

nitrene crosslinking chemistry.403 The second major challenge is the determination of 

loop sizes. Here, a clever chemical system has to be introduced, which cleaves the 

midchain bonds only after successful crosslink formation. In addition, the cleavage 

must be carried in such a fashion that the loops stay intact.  

Finally, the photodegradation of polymers was introduced in Chapter 7. The 

research on self-immolative polymers with chain shattering characteristic is young 

and dynamic and it is expected that a rapid growth of the research will lead to the 

development of novel drug delivery systems as well as provide access medical implant 

applications. Apart from the investigation of novel trigger systems – including a de-

tailed analysis as performed in Chapter 7 – future objectives are most likely in the 

fabrication of locally degradable 3D structures.404 Here, the materials properties can 

be easily adjusted from hydrophobic motifs to hydrophilic motifs (e.g. carboxyl 

groups) after deprotection.405 

In summary, the present thesis introduces new ionization protocols for elec-

trospray ionization. The powerful negative mode ionization allows for the efficient 

mapping of a broad range of polyhydrocarbons, yet is challenging for large π systems 

(likely associated with π-π stacking) or if multiple nitrogen atoms are present that 

N2

Figure 76 Cartoon of the tetrazole-mediated SCNP formation releasing molecular nitrogen. 
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can become positively charged. The positive charge counters the negative chloride 

attachment resulting in neutral species disallowing the mapping via electrospray ion-

ization. A detailed study on how supercharging agents can influence the charge state 

of macromolecules is provided. Here, the successful ionization of PILs is described, 

which significantly benefit from the charge state promotion afforded by the super-

charging agents. Moreover, the thesis presents detailed insights into polymerization, 

folding mechanisms and degradation mechanisms of polymer systems based a pow-

erful high resolution ESI MS platform. 

 





9  
INSTRUMENTATION 

The following section comprises the instrumental information of the charac-

terization methods used for the entire thesis. If not indicated in the corresponding 

section, the general instrumentation is displayed as follows: 

9.1. SIZE EXCLUSION CHROMATOGRAPHY (SEC) 

THF SEC was performed on an Agilent Series 1200 HPLC system, comprising 

an autosampler, one SDV column (particle size 10 µm, dimension 300 × 8 mm, po-

rosity 1000 Å) and a UV/vis detector using THF/10 mM LiTf2N/10 mM n-butylimidaz-

ole as the eluent at 35 °C with a flow rate of 1 mL·min-1. The SEC system was calibrated 

using linear polystyrene standards ranging from 470 to 2.56 g mol-1. Appropriate SEC 
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calibrations were carried out relative to a polystyrene calibration (Mark Houwink pa-

rameters K = 14.1 10 - 5 dL·g-1; α = 0.7). 

Water-based SEC was performed on a PSS WinGPC, comprising an au-

tosampler, a PSS Novema Max precolumn, one PSS Novema Max (particle size 10 µm, 

dimension 8.00 × 300.00 mm, porosity 30 Å), two PSS Novema Max (particle size 

10 µm, dimension 8.00 × 300.00 mm, porosity 1000 Å), and a differential refractive 

index detector (PSS SECcurity RI) as well as an UV detector (PSS SECcurity UV) using 

water, 0.1 g·L-1 NaCl and 0.3 M formic acid as the eluent at 30 °C with a flow rate of 

1 mL·min-1. The SEC system was calibrated using linear poly(2-vinyl pyridine) stand-

ards ranging from 1100 to 1.06∙106 g·mol-1. SEC calibration was carried out relative 

to poly(2-vinyl pyridine) calibrations (Mark Houwink parameters K = 2.5 10-5 dL·g-1; 

α = 0.93). 

DMAc-based SEC was performed on a Polymer Laboratories PLGPC 50 Plus 

Integrated System, comprising an autosampler, a PLgel 5 ʅm bead-size guard column 

(50×7.5 mm) followed by three PLgel 5 ʅm MixedC columns (300×7.5 mm) and a dif-

ferential refractive index detector using N,N-dimethylacetamide (DMAc) containing 

0.03 wt% LiBr as eluent at 50 °C with a flow rate of 1.0 mL min-1. The SEC system was 

calibrated against linear poly(styrene) standards with molecular weights ranging from 

700 to 2∙106 g mol-1. 

9.2. NMR SPECTROSCOPY 

Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a 

Bruker AM 400 (400 MHz) spectrometer. Chemical shifts are expressed in parts per 

million (ppm) and calibrated on characteristic solvent signals as internal standards. 

All coupling constants are absolute values and J values are expressed in Hertz 

(Hz).The description of signals include: s = singlet, bs = broad singlet, d = doublet, 

dd = double doublet, t = triplet, q = quartet, m = multiplet. 

Carbon nuclear magnetic resonance (13C NMR) spectra were recorded on a 

Bruker AM 400 (100 MHz) spectrometer.  

Phosphorus nuclear magnetic resonance (31P{1H} NMR) spectra were recorded 

on a Bruker AM 400 (162 MHz) spectrometer. 
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DOSY spectra were recorded on a Bruker Ultrashield 400, equipped with a 

BBO-Probe (5 mm) with z-gradient (1H: 400 MHz) utilizing the ledgp2s pulse sequence. 

The δ -scale was normalized relative to the solvent signal of DMSO-d6 for 1H spectra.  

9.3. X-RAY PHOTOELECTRON SPECTROSCOPY 

(XPS) 

X-Ray photoelectron spectroscopy (XPS). XPS measurements were per-

formed using a K-Alpha + XPS spectrometer (Thermo Fisher Scientific, East Grinstead, 

UK). Data acquisition and processing using the Thermo Avantage software is de-

scribed elsewhere.8 All thin films were analyzed using a microfocused, monochro-

mated Al Kα X-ray source (400 µm spot size). The K-Alpha charge compensation sys-

tem was employed during analysis, using electrons of 8 eV energy, and low-energy 

argon ions to prevent any localized charge build-up. The kinetic energy of the elec-

trons was measured by a 180° hemispherical energy analyzer operated in the constant 

analyzer energy mode (CAE) at 50 eV pass energy for elemental spectra. The spectra 

were fitted with one or more Voigt profiles (BE uncertainty: +0.2 eV) and Scofield sen-

sitivity factors were applied for quantification.9 All spectra were referenced to the C1s 

peak (C-C, C-H) at 285.0 eV binding energy controlled by means of the well known 

photoelectron peaks of metallic Cu, Ag, and Au, respectively. 

9.4. TIME-OF-FLIGHT SECONDARY ION MASS SPEC-

TROMETRY (TOF-SIMS) 

ToF-SIMS was performed on a TOF.SIMS5 instrument (ION-TOF GmbH, Mün-

ster, Germany), equipped with a Bi cluster primary ion source and a reflectron type 

time-of-flight analyzer. UHV base pressure was < 5∙10-9 mbar. For high mass resolution 

the Bi source was operated in the “high current bunched” mode providing short Bi3
+ 

primary ion pulses at 25 keV energy and a lateral resolution of approx. 4 µm. The 

short pulse length of 1.1 ns allowed for high mass resolution. Primary ion doses were 

                                           
8 K. L. Parry, A. G. Shard, R. D. Short, R. G. White, J. D. Whittle, A. Wright, Surf. .Inter-

face Anal., 2006, 38, 1497. 
9 J. H. Scofield, J. Electron Spectr. Relat. Phen., 1976, 8, 129. 
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kept below 1011 ions/cm2 (static SIMS limit). Spectra were calibrated on the omnipres-

ent C-, C2
-, C3

-, or on the C+, CH+, CH2
+, and CH3

+ peaks. Based on these datasets the 

chemical assignments for characteristic fragments were determined. Images larger 

than the maximum deflection range of the primary ion gun of 500×500 ʅm2 were 

obtained using the manipulator stage scan mode. 

9.5. UV-VISIBLE SPECTROSCOPY 

UV-visible spectroscopy was performed using a Cary 300 Bio spectrophotom-

eter (Varian) featuring a thermostated (298 K) sample cell holder. Absorption spectra 

of the samples were recorded with a resolution of 1 nm and a slit width of 2 nm in a 

quartz glass cuvette (VWR, quartz glass, SUPRASIL®).  
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CHLORIDE ATTACHMENT IN NEGATIVE ION MODE 

Poly(styrene) 

 

Tab. A 1 Peak assignment of the ESI Orbitrap mass spectrum of PS showing the labels (corresponding to 
the species in Fig. A 1), the resolution (obtained by the Xcalibur software), the experimental m/z and 
theoretical m/z values, ∆m/z and the proposed chemical structures. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 58000 1445.8618 1445.8615 0.0003 

 

 78000 1523.8774 1523.8720 0.0054 C113H116ClO
-
 

  

1450 1500 1550

0.0

0.2

0.4

0.6

0.8

1.0






R
e

la
ti

v
e

 A
b

u
n

d
a

n
c

e

m/z

104.0619

Fig. A 1 Expanded ESI Orbitrap mass spectrum (negative ion mode via Cl- attachment) of PS 1700 g∙mol-1 
between 1440 m/z and 1560 m/z. Labeled are the most abundant species and the repeating unit of PS 
(m/z(exp) 104.0619; m/z(theo) 104.0626). 



III 
 

 

Tab. A 2 Peak assignment of the ESI Orbitrap mass spectrum of PS showing the labels (corresponding to 

the species in Fig. A 2), the resolution (obtained by the Xcalibur software), the experimental m/z and 

theoretical m/z values, ∆m/z and the proposed chemical structures. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 54000 
1537.945
5 

1537.9439 0.0016 

 

 53000 
1553.922
3 

1553.9388 0.0164 

 

 53000 
1569.858
1 

1569.8561 0.0020 

 

 

  

Fig. A 2 Expanded ESI Orbitrap mass spectrum (positive ion mode via Na+ attachment) of PS 1700 g∙mol-1 
between 1535 m/z and 1650 m/z. Labeled are the most abundant species and the repeating unit of PS 
(m/z(exp) 104.0745; m/z(theo) 104.0626). Species labeled with  stem from present 
poly(dimethylsiloxane) (PDMS) (repeating unit: m/z(exp) 74.0189; m/z(theo) 74.0188). 





IV 
 

Poly(1,4 butadiene) 

 

Tab. A 3 Peak assignment of the ESI Orbitrap mass spectrum of PS showing the labels (corresponding to 
the species in Fig. A 3), the resolution (obtained by the Xcalibur software), the experimental m/z and 
theoretical m/z values, ∆m/z and the proposed chemical structures. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 50000 
1606.366
3 

1606.3612 0.0052 

 

 53000 
1622.359
9 

1622.3561 0.0039 

 

 

  

Fig. A 3 Expanded ESI Orbitrap mass spectrum (negative mode via Cl- attachment) of PBD 2000 g∙mol-1 
between 1605 m/z and 1670 m/z. Labeled are the most abundant species and the repeating unit of PBD 
(m/z(exp) 54.0481; m/z(theo) 54.0470). 
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Poly(2-vinylpyridine) 

 

Tab. A 4 Peak assignment of the ESI Orbitrap mass spectrum of PS showing the labels (corresponding to 
the species in Fig. A 4), the resolution (obtained by the Xcalibur software), the experimental m/z and 
theoretical m/z values, ∆m/z and the proposed chemical structures. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 38000 
2900.553
2 

2900.5705 0.0173 

 

 38000 
2908.061
9 

2908.0759 0.0140 C382H389Cl2N55
2-

 

 39000 
2929.584
9 

2929.6096 0.0247 

 

 





Fig. A 4 Expanded ESI Orbitrap mass spectrum (negative mode via Cl- attachment) of P2VP 5000 g∙mol-1 
(recorded in DCM/MeOH) between 2900 m/z and 2960 m/z. Labeled are the most abundant species and 
the repeating unit of P2VP (m/z(exp) 52.5278; m/z(theo) 52.5295). Isotopic simulation of the singly () 
and doubly () charged P2VP with their individual polymer structure determined by comparing the 
experiment with the simulation. 



VI 
 

 

Tab. A 5 Peak assignment of the ESI Orbitrap mass spectrum of PS showing the labels (corresponding to 
the species in Fig. A 5), the resolution (obtained by the Xcalibur software), the experimental m/z and 
theoretical m/z values, ∆m/z and the proposed chemical structures. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 38000 
2848.584
0 

2848.5962 0.0121 

 

 39000 
2930.590
9 

2930.5993 0.0084 

 

 

 





Fig. A 5 Expanded ESI Orbitrap mass spectrum (negative mode via Cl- attachment) of P2VP 5000 g∙mol-1 
(recorded in water/acetonitrile with 0.1% acetic acid) between 2845 m/z and 2960 m/z. Labeled are the 
most abundant species and the repeating unit of P2VP (m/z(exp) 105.0557; m/z(theo) 105.0578). 
Isotopic simulation of the singly () and doubly () charged P2VP with their individual polymer structure 
determined by comparing the experiment with the simulation. 
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CHARGE STATE MANIPULATION BY SUPERCHARGING 

AGENTS 

Poly(acrylamide) 

Poly(styrene) 
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Fig. A 6 ESI-Orbitrap mass spectra of PAAm 13700 g∙mol-1 in negative mode (partly via Cl- attachment) 
comparing the influence of different amounts of propylene carbonate as supercharging agent ranging 
from 0% (v/v) to 10% (v/v). No PAAm species can be detected recording the spectrum with 10% PC. 
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Fig. A 7 ESI-Orbitrap mass spectra of PS 9000 g· mol-1 (A) and 18000 g· mol-1 (B) recorded with 5% (v/v) 
mNBA.  
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SYNTHESIS OF POLY(IONIC LIQUID)S 

Tab. B 1 RAFT polymerization of [BVBIM]Cl employing ethanol and DMSO/water (1:1, v/v) as solvents. 

 Ethanol H2O/DMSO (1:1, v/v) 

Entry 
t 

[h] 

Mn
theo. 

[g mol-1] 

Mn
NMR 

[g mol-1] 

Mn
SEC 

[g mol-1] 

ÐSEC 

Conv. 

[%] 

t 

[h] 

Mn
theo. 

[g mol-1] 

Mn
NMR 

[g mol-1] 

Mn
SEC 

[g mol-1] 
ÐSEC 

Conv. 

[%] 

1 2 5100 6200 1100 6.44 13 2 5000 3700 2300 2.0 20 

2 4 8900 8700 11700 1.90 23 4 6300 4000 4000 1.7 25 

3 5 13300 12000 17000 1.69 35 6 12000 8000 8200 1.6 48 

4 8 17400 15000 20000 1.76 47 8 16000 6400 8900 1.6 67 
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Fig. B 1 1H NMR (400 MHz, 298 K) of monomer 1 in DMSO-d6. 

0255075100125150

a

b
c

DMSO

d

e

gh

jk
l

m

n

o
p

 / ppm
Fig. B 2 13C{1H} (100 MHz, 298 K) of monomer 1 in DMSO-d6. 
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Fig. B 3 1H NMR (400 MHz, 298 K) of monomer 2 in DMSO-d6. 
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Fig. B 4 13C{1H} (100 MHz, 298 K) of monomer 2 in CDCl3. 
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Fig. B 5 1H NMR (400 MHz, 298 K) of monomer 1’ in DMSO-d6. 
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Fig. B 6 13C{1H} (100 MHz, 298 K) of monomer 1’ in DMSO-d6. 
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Fig. B 7 1H NMR (400 MHz, 298 K) of [DeMVBIM]Cl in DMSO-d6. 
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Fig. B 8 13C{1H} NMR (100 MHz, 298 K) of [DeMVBIM]Cl in DMSO-d6. 
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Fig. B 9 1H NMR (400 MHz, 298 K) of [VBPy]Cl in DMSO-d6. 
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Fig. B 10 13C{1H} NMR (100 MHz, 298 K) of [VBPy]Cl in DMSO-d6. 
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Fig. B 11 1H NMR (400 MHz, 298 K) of [TEVBA]Cl in DMSO-d6. 
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Fig. B 12 13C{1H} NMR (100 MHz, 298 K) of [TEVBA]Cl in DMSO-d6. 
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Fig. B 13 1H NMR (400 MHz, 298 K) of [TPVBP]Cl in DMSO-d6. 
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Fig. B 14 13C{1H} NMR (100 MHz, 298 K) of [TPVBP]Cl in DMSO-d6. 



XVII 
 

 

 

-100-80-60-40-20020406080100

 / ppm

Fig. B 15 31P{1H} NMR (162 MHz, 298 K) of [TPVBP]Cl in DMSO-d6. 
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Fig. B 16 1H NMR (400 MHz, 298 K) of [MVTr]I in DMSO-d6. 
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Fig. B 17 13C{1H} NMR (100 MHz, 298 K) of [MVTr]I in DMSO-d6. 
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Fig. B 18 1H NMR (400 MHz, 298 K) of [BnVIM]Cl in D2O. 
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Fig. B 19 13C{1H} NMR (100 MHz, 298 K) of [BnVIM]Cl in D2O. 
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Fig. B 20 1H NMR (400 MHz, 298 K) of polymer (3) in DMSO-d6. 
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Fig. B 21 1H NMR (400 MHz, 298 K) of polymer (4) in DMSO-d6. 
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Fig. B 22 1H NMR (400 MHz, 298 K) of p([DeMVBIM]Cl) (5) in DMSO-d6. 
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Fig. B 23 1H NMR (400 MHz, 298 K) of p([VBPy]Cl) (6) in MeOD. 
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Fig. B 24 1H NMR (400 MHz, 298 K) of p([TEVBA]Cl) (7) in DMSO-d6. 
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Fig. B 25 1H NMR (400 MHz, 298 K) of p([TPVBP]Cl) (8) in DMSO-d6. 
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Fig. B 26 1H NMR (400 MHz, 298 K) of p([BVBIM]Cl) (10) in DMSO-d6. 
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Fig. B 27 1H NMR (400 MHz, 298 K) of p([MVTr]I) (11) in DMSO-d6. 



XXIV 
 

 

 

  

024681012

ab

c

d

 / ppm

Fig. B 28 1H NMR (400 MHz, 298 K) of p([BnVIM]Cl) (12) in D2O. 
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Fig. B 29 SEC trace (eluent: water/0.3 M formic acid/0.5 g∙L-1 NaCl) of p([DeMVBIM]Cl) (5). 
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Fig. B 30 SEC trace (eluent: water/0.3 M formic acid/0.5 g∙L-1 NaCl) of p([VBPy]Cl) (6). 
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Fig. B 31 SEC trace (eluent: water/0.3 M formic acid/0.5 g∙L-1 NaCl) of p([TEVBA]Cl) (7). 
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Fig. B 32 SEC trace (eluent: water/0.3 M formic acid/0.5 g∙L-1 NaCl) of p([TPVBP]Cl) (8). 
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Fig. B 33 SEC trace (eluent: water/0.3 M formic acid/0.5 g∙L-1 NaCl) of DoPAT-PE polymerized p([BVBIM]Cl) 
(10). 
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Fig. B 34 SEC trace (eluent: aqueous acetate buffer/methanol (8:2, v/v), calibration standard pullulan) of 
p[([MVTr]I) (11). 



XXVIII 
 

 

  

7 8 9 10 11

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

il
z
e

d
 R

I 
In

te
n

s
it

y
 /

 a
.u

. 

Retention Volume / mL

 M
n
 = 96000 g mol-1, Ð = 2.5

Fig. B 35 SEC trace (eluent: aqueous acetate buffer/methanol (8:2, v/v), calibration standard pullulan) of 
p[([BnVIM]Cl) (12). 
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MASS SPECTROMETRIC ELUCIDATIONS 

p([DeMVBIM]Cl) (5) 

 

 

 

 

 

 

 

 

 

 

 

Fig. B 36 Expanded spectrum (negative ion mode) of p([DeMVBIM]Cl) (5) obtained via ESI-CID-Orbitrap MS 
doped with 2.0% (v/v) propylene carbonate depicting the repeating unit of 374.2405 m/z 
(m/z(theo) 347.2489) of the most abundant species (labeled with ). Species labeled with  derive from 
(multiple) loss(es) of gaseous HCl. 
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Tab. B 2 Peak assignment of the ESI-CID-Orbitrap spectrum of p([DeMVBIM])Cl (5) from 2690 m/z to 
2870 m/z showing the label (in correspondence to the species in Fig. B 36Fig. B 36 Expanded spectrum 
(negative ion mode) of p([DeMVBIM]Cl) (5) obtained via ESI-CID-Orbitrap MS doped with 2.0% (v/v) 
propylene carbonate depicting the repeating unit of 374.2405 m/z (m/z(theo) 347.2489) of the most 
abundant species (labeled with ). Species labeled with  derive from (multiple) loss(es) of gaseous HCl.), 
the experimental m/z and theoretical m/z values (determined by the most abundant isotope of the 
isotopic pattern), ∆m/z, the resolution (obtained by the Xcalibur software), the number of repeating units 
n, and the structure determination. Due to the deprotonation process, no structure was determined for 
species labeled with . 

Label m/z (exp) m/z (theo) ∆m/z Resolution n Structure 

 2256.3679 2256.3758 0.0078 43600 5 

 

 2270.4142 2270.4196 0.0053 44200 11 

 

 

 

 

 

Fig. B 37 Isotopic pattern of one selected peak at 2083 m/z comparing the experiment (black line) and 
the simulation (red line) with a resolution of 45900. 
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Fig. B 38 Illustration of two simulated isotopic pattern representing the species at 2256 m/z and 
2631 m/z. The difference of the 91% intensity peak and the 100% intensity peak corresponds to the 
theoretical value of the repeating unit. 
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Tandem MS experiment of p([DeMVBIM]Cl) (5) 

 

  

Fig. B 39 Tandem MS experiment (negative mode) of a double charged species at 2270 m/z under harsh 
conditions employing a HCD energy of 40 eV and a CID energy of 25 eV. No apparent reverse Menshutkin 
fragmentation was observed although a feasible cleavage of the imidazolium moiety was expected due 
to a – for a nucleophilic attack favored – planar geometry of the imidazolium.  
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p([VBPy]Cl) (6) 

 

 

Fig. B 40 Isotopic pattern of one selected peak at 1482 m/z comparing the experiment (black line) and 
the simulation (red line) with a resolution of 53800. 

Fig. B 41 Illustration of two simulated isotopic pattern representing the species at 1482 m/z and 
1598 m/z. The difference of each highest peaks corresponds to the theoretical value of the repeating 
unit. 
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p([TEVBA]Cl) (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B 42 Zoomed spectrum (negative mode) of p([TEVBA])Cl (7) obtained via ESI-CID-Orbitrap MS doped 
with 0.5% (v/v) propylene carbonate depicting the repeating unit of 126.5786 m/z  (m/z(theo) 126.5799) 
of the most abundant species (labeled with ). 
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Tab. B 3 Peak assignment of the ESI-CID-Orbitrap spectrum of p([TEVBA])Cl (7) from 1840 m/z to 
1960 m/z showing the label (in correspondence to the species in Fehler! Verweisquelle konnte nicht 
gefunden werden.), the experimental m/z and theoretical m/z values (determined by the most abundant 
isotope of the isotopic pattern), ∆m/z, the resolution (obtained by the Xcalibur software), the number of 
repeating units n, and the structure determination. 

Label m/z (exp) m/z (theo) ∆m/z Resolution n Structure 

 1842.7522 1842.7530 0.0008 50300 20 

 

 1858.0859 1858.0867 0.0008 49900 13 

 

 1870.5965 1870.5950 0.0015 46000 13 

 

 1877.1090 1877.1031 0.0059 48500 13 

 

 1887.0626 1887.0659 0.0033 48000 13 

 

 1903.0852 1903.0837 0.0014 48127 6 

 

 1916.5422 1916.5447 0.0025 48500 13 

 

 1961.0461 1961.0461 0.0000 45100 6 
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Fig. B 44 Isotopic pattern of one peak at 1858 m/z comparing the experiment (black line) and the 
simulation (red line) with a resolution of 49900. 

Fig. B 43 Illustration of two simulated isotopic pattern representing the species at 1858 m/z and 
1984 m/z. The difference of the 98% intensity peak and the 100% intensity peak corresponds to the 
theoretical value of the repeating unit. 
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Tandem MS experiment of p([TEVBA])Cl (7) 

 

 

Scheme B 1 Proposed fragmentation process of p([TEVBA])Cl (7) via a reverse Menshutkin mechanism 
including the stepwise nucleophilic attack of the chloride anion at the electrophilic benzylic moiety. 

 

 

Fig. B 45 Tandem MS experiment (negative ion mode) of a double charged species at 1731 m/z with a 
HCD energy of 35 eV. The identification of two double charged species depicting the loss of a 
triethylamine unit (m/z(theo) 50.5608). 
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p([TPVBP]Cl) (8) 

 

Tab. B 4 Peak assignment of the ESI-CID-Orbitrap spectrum of p([TPVBP])Cl (8) from 2690 m/z to 
2870 m/z showing the label (in correspondence to the species in Fig. B 47 Fehler! Verweisquelle konnte 
nicht gefunden werden.), the experimental m/z and theoretical m/z values (determined by the most 
abundant isotope of the isotopic pattern), ∆m/z, the resolution (obtained by the Xcalibur software), the 
number of repeating units n, and the structure determination. Due to the deprotonation process, no 
structure was determined for species labeled with . Species labeled with  are H2O adducts. 

 

Label m/z (exp) m/z (theo) ∆m/z Resolution N Structure 

 2697.3183 2697.3339 0.0156 40000 12 

 

 2764.8487 2764.8705 0.0218 38600 13 

 

 2831.8759 2831.9073 0.0314 35000 14 

 

Fig. B 46 Expanded spectrum (negative ion mode) of p([TPVBP]Cl) (8) obtained via ESI-CID-Orbitrap MS 
doped with 1.0% (v/v) propylene carbonate depicting the repeating unit of 207.0621 m/z 
(m/z(theo) 207.0658) of the most abundant species (labeled with ). Species labeled with  derive from 
(multiple) loss(es) of gaseous HCl. 
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 2869.8960 2869.9152 0.0192 39000 6 

 

 

Fig. B 48 Isotopic pattern of one selected peak at 2697 m/z comparing the experiment (black line) and 
the simulation (red line) with a resolution of 40000. 
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Tandem MS experiment of p([TPVBP]Cl) (8)  

Fig. B 50 Illustration of two simulated isotopic pattern representing the species at 2697 Th and 2904 Th. 
The difference of the 98% intensity peak and the 100% intensity peak corresponds to the theoretical 
value of the repeating unit. 

Fig. B 49 Tandem MS experiment (negative ion mode) of a single charged species at 1758 m/z with a 
HCD energy of 24 eV. The identification of two single charged species depicting the loss of a gaseous 
HCl (m/z(theo) 35.9767). 
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p([ATMEA]Cl) (9) 

 

Tab. B 5 Peak assignment of the ESI-CID-Orbitrap spectrum of p([ATMEA]Cl) (9) from 1775 m/z to 
1810 m/z showing the label (in correspondence to the species in Fig. B 52), the experimental m/z and 
theoretical m/z values (determined by the most abundant isotope of the isotopic pattern), ∆m/z, the 
resolution (obtained by the Xcalibur software), the number of repeating units n, and the structure 
determination. 

Label m/z (exp) m/z (theo) ∆m/z Resolution n Structure 

 1871.8086 1871.8082 0.0004 50800 18 

 

 1889.8308 1889.8307 0.0001 49900 19 

 

 1908.3517 1908.3530 0.0013 47300 20 

 

 

Fig. B 51 Expanded spectrum (negative ion mode) of p([ATMEA]Cl) (9) obtained via ESI-CID-Orbitrap MS 
doped with 1.0% (v/v) propylene carbonate depicting the repeating unit of 96.5420 m/z 
(m/z(theo) 96.5440) of one species (labeled with ). 
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Fig. B 54 Isotopic pattern of one selected peak at 1793 m/z comparing the experiment (black line) and 
the simulation (red line) with a resolution of 50000. 

Fig. B 53 Illustration of two simulated isotopic pattern representing the species at 2256 m/z and 
2631 m/z. The difference between each highest peak corresponds to the theoretical value of the 
repeating unit. 
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Tandem MS experiment of p([ATMEA]Cl) (9) 

A tandem MS experiment of p([ATMEA]Cl) (9) was not possible due to 

the low ion density. The collision-induced dissociation (CID) of 25 eV was 

sufficient to give both a spectrum of p([ATMEA]Cl) (9) and a cleavage of the 

vulnerable acrylate ester bond. The cleavage of 2-hydroxy-N,N,N-

trimethylethan-1-aminium chloride can be considered as an indirect structural 

proof. 
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p([BVBIM]Cl) (10) 

 

  

Fig. B 55 Expanded spectrum (negative ion mode) of p([BVBIM]Cl) (10) obtained via ESI-CID-Orbitrap MS 
depicting the repeating unit of 138.0686 m/z (m/z(theo) 138.0702) of the most abundant species 
(labeled with ). Species labeled with  derive from (multiple) loss(es) of gaseous HCl. 
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Tab. B 6 Peak assignment of the ESI-CID-Orbitrap spectrum of p([BVBIM]Cl) (10) from 2079 m/z to 
2165 m/z showing the label (in correspondence to the species in Fig. B 56), the experimental m/z and 
theoretical m/z values (determined by the most abundant isotope of the isotopic pattern), ∆m/z, the 
resolution (obtained by the Xcalibur software), the number of repeating units n, and the structure 
determination. Due to the deprotonation process, no structure was determined for species labeled with 
. 

Label m/z (exp) m/z (theo) ∆m/z R n Structure 

 2079.9240 2079.9264 0.0024 46400 6 

 

 2100.9830 2100.9840 0.0010 45400 20 

 

 2109.6604 2109.6703 0.0099 44700 21 

 

 2165.0008 2165.0045 0.0037 43500 13 
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Fig. B 58 Isotopic pattern of one selected peak at 2009 m/z comparing the experiment (black line) and 
the simulation (red line) with a resolution of 48000. 

Fig. B 57 Illustration of two simulated isotopic pattern representing the species deriving from 
disproportionation at 2026 m/z and 2165 m/z. The difference of the 98% intensity peak and the 100% 
intensity peak corresponds to the theoretical value of the repeating unit. 
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p([MVTr]I) (11) 

  

Fig. B 59 Expanded spectrum (negative ion mode) of p([MVTr]I) (11) obtained via ESI-CID-Orbitrap MS 
depicting the repeating unit of 236.9756 m/z (m/z(theo) 236.9763) of the most abundant species 
(labeled with ). Species labeled with  derive from (multiple) loss(es) of gaseous HI. 
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Tab. B 7 Peak assignment of the ESI-CID-Orbitrap spectrum of p([MVTr]I) (11) from 1583 m/z to 1767 m/z 
showing the label (in correspondence to the species in Fig. B 60), the experimental m/z and theoretical 
m/z values (determined by the most abundant isotope of the isotopic pattern), ∆m/z, the resolution 
(obtained by the Xcalibur software), the number of repeating units n, and the structure determination (as 
representative candidate the saturated polymer chain was chosen). Due to the deprotonation process, 
no structure was determined for species labeled with . 

Label m/z (exp) m/z (theo) ∆m/z Resolution n Structure 

 1583.2922 1583.2917 0.0006 27700 12 

 

 1617.8189 1617.8206 0.0008 28200 6 

 

 1712.8668 1712.8690 0.0021 24000 7 

 

 1767.7148 1767.7148 0.0000 26300 6 
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Fig. B 61 Isotopic pattern of one selected peak at 1617 m/z comparing the experiment (black line) and 
the simulation (red line) with a resolution of 28200. 
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Tandem MS experiment of p([MVTr]I) (11) 

 

Fig. B 62 Tandem MS experiment (negative ion mode) of a single charged species at 906 m/z with a HCD 
energy of 13 eV. 
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Scheme B 2 Proposed fragmentation of p([MVTr]I) (11) via three reaction pathways: a reverse Menshutkin mechanism including the stepwise nucleophilic attack of 
the iodide anion at the methyl moiety (loss of MeI); stepwise main chain depolymerization leading to the short-chained analogues of 11; stepwise deprotonation via 
the release of gaseous HI. 
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p([BnVIM]Cl) (12) 

  

Fig. B 63 Expanded spectrum (negative ion mode) of p([BnVIM]Cl) (12) obtained via ESI-CID-Orbitrap MS 
depicting the repeating unit of 220.0765 m/z (m/z(theo) 220.0767) of the most abundant species 
(labeled with ). Species labeled with  derive from (multiple) loss(es) of gaseous HCl. 
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Tab. B 8 Peak assignment of the ESI-CID-Orbitrap spectrum of p([BnVIM]Cl) (12) from 1504 m/z to 
1717 m/z showing the label (in correspondence to the species in Fig. B 64), the experimental m/z and 
theoretical m/z values (determined by the most abundant isotope of the isotopic pattern), ∆m/z, the 
resolution (obtained by the Xcalibur software), the number of repeating units n, and the structure 
determination (as representative candidate the saturated polymer chain was chosen). Due to the 
deprotonation process, no structure was determined for species labeled with . 

Label m/z (exp) m/z (theo) ∆m/z Resolution n Structure 

 1504.5024 1504.4947 0.0078 27800 13 

 

 1522.5273 1522.5378 0.0105 26100 7 

 

 1579.0432 1579.0051 0.0382 28500 14 

 

 1579.5655 1579.5034 0.0621 25300 7 

 

 1564.0478 1564.0189 0.0288 25800 15 

 

 1517.0268 1516.9923 0.0345 28500 14 

 

 1648.5595 1648.5614 0.0019 25300 7 
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 1551.0228 1551.0215 0.0013 26900 14 

 

 1597.5482 1597.5488 0.0006 28800 15 

 

 1673.6112 1673.5567 0.0545 26300 7 

 

 1717.6002 1717.6024 0.0022 27400 7 
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Fig. B 66 Isotopic pattern of one selected peak at 1522 m/z comparing the experiment (black line) and 
the simulation (red line) with a resolution of 26100. The isotopic pattern consists of both expected 
disproportion products. 

Fig. B 65 Illustration of two simulated isotopic pattern representing the species deriving from 
disproportionation at 1520 m/z and 1740 m/z. The difference of each highest peaks corresponds to the 
theoretical value of the repeating unit. 
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p([VBPy]NO3) (6b) 

 

Tab. B 9 Peak assignment of the ESI-CID-Orbitrap spectrum of p([VBPy]NO3) (6b) showing the label (in 
correspondence to the species in Fig. B 68), the resolution (obtained by the Xcalibur software), the 
number of repeating units n, the experimental m/z and theoretical m/z values, ∆m/z and the 
corresponding structure. 

Label Resolution n m/z(exp) m/z(theo) ∆m/z Structure 

 36400 9 2730.0358 2730.0531 0.0173 

 

 38400 20 2815.5589 2815.5726 0.0137 

 

Fig. B 67 Expanded Orbitrap-CID mass spectrum of p([VBPy]NO3) (6b) depicting the repeating unit of 
258.0977 m/z (m/z(theo) 258.1004). 



LVII 
 

  

  

Fig. B 69 Isotopic pattern of one selected double charged peak at 2815 m/z comparing the experiment 
(blue line) and the simulation (grey line) with a resolution of 38400. 
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p([VBPy]CF3CO2) (6c) 

 

Tab. B 10 Peak assignment of the ESI-CID-Orbitrap spectrum of p([VBPy]CF3CO2) (6c) showing the label 
(in correspondence to the species in Fig. B 71), the resolution (obtained by the Xcalibur software), the 
number of repeating units n, the experimental m/z and theoretical m/z values, ∆m/z and the 
corresponding structure. 

Label Resolution n m/z(exp) m/z(theo) ∆m/z Structure 

 35500 9 3239.9949 3240.0253 0.0305 

 

 34700 20 3376.5025 3376.5421 0.0395 

 

 

Fig. B 70 Expanded Orbitrap-CID mass spectrum of p([VBPy]CF3CO2) (6c) depicting the repeating unit of 
309.0887 m/z (m/z(theo) 309.0977). 
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Fig. B 72 Isotopic pattern of one selected peak at 3376 m/z comparing the experiment (green line) and 
the simulation (grey line) with a resolution of 34700. 
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p([VBPy]BF4) (6d) 

  

Fig. B 73 Expanded Orbitrap-CID mass spectrum of p([VBPy]BF4) (6d) depicting the repeating unit of 
283.0960 m/z (m/z(theo) 283.1155). 
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Tab. B 11 Peak assignment of the ESI-CID-Orbitrap spectrum of p([VBPy]BF4) (6d) showing the label (in 
correspondence to the species in Fig. B 74), the resolution (obtained by the Xcalibur software), the 
number of repeating units n, the experimental m/z and theoretical m/z values, ∆m/z and the 
corresponding structure. Due to the low total ion current (102), the most abundant peak was used for 
labelling. 

Label Resolution n m/z(exp) m/z(theo) ∆m/z Structure 

 35200 13 4112.6126 4112.6817 0.0691 

 

 34500 14 4248.6581 4248.7509 0.0928 

 

 

  

Fig. B 75 Isotopic pattern of one selected peak at 4112 m/z comparing the experiment (red line) and the 
simulation (red line) with a resolution of 35200. 
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Surface Modification 

 

Fig. B 77 Schematic representation of the custom-built photoreactor employed in the current study for 
the surface-patterning of PILs with the Arimed B6 bulb in the middle with a motor operated carousel as 
sample holder. 

Fig. B 76 Sample holders and the shadow masks utilized for the reaction to obtain the dotted pattern 
(top) and the meander structure (below) on the surfaces. 
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SYNTHESIS  

 

 

Fig. C 1 1H NMR (CDCl3, 400 MHz) spectrum of tert-butyl 3-(N-(2-hydroxyethyl)acetamido)propanoate. 

Fig. C 2 13C{1H} NMR (CDCl3, 400 MHz) spectrum of tert-butyl 3-(N-(2-hydroxyethyl)acetamido)propanoate. 
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Fig. C 4 1H NMR (CDCl3, 400 MHz) spectrum of crude 2-(N-(3-(tert-butoxy)-3-oxopropyl)acetamido)ethyl 
acrylate. 

Fig. C 3 1H NMR (D2O, 400 MHz) spectrum of 3-(N-(2-(acryloyloxy)ethyl)acetamido)propanoic acid. 
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Fig. C 5 13C{1H}  NMR (D2O, 400 MHz) spectrum of 3-(N-(2-(acryloyloxy)ethyl)acetamido)propanoic acid. 
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POLYMER SYNTHESIS 

 

 

Fig. C 6 1H NMR (400 MHz, CDCl3) of oligo(MeOx-alt-AA)nA (1:1). 

Fig. C 7 1H NMR (400 MHz, CDCl3) of oligo(MeOx-alt-AA)nA (1:2). 
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Fig. C 9 1H NMR (400 MHz, CDCl3) of oligo(MeOx-alt-AA)nA (2:1). 

Fig. C 8 SEC analysis of oligo(MeOx-alt-AA)nA (1:1 (black); 1:2 (red); 2:1 (blue)) in DMF containing 5 mM 
NH4BF4 relative to PMMA calibration. 
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Fig. C 11 1H NMR (400 MHz, CDCl3) of oligo(EtOx-alt-AA)nA (1:1). 

Fig. C 10 1H NMR (400 MHz, CDCl3) of oligo(EtOx-alt-AA)nA (1:2). 
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Fig. C 13 SEC analysis of oligo(EtOx-alt-AA)nA (1:1 (black); 1:2 (red) in DMF containing 5 mM NH4BF4 
relative to PMMA calibration. 

Fig. C 12 1H NMR (400 MHz, CDCl3) of oligo(EtOz-alt-AA)nA (1:1). 
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Fig. C 15 1H NMR (400 MHz, CDCl3) of oligo(EtOz-alt-AA)nA (1:2). 

Fig. C 14 SEC analysis of oligo(EtOz-alt-AA)nA (1:1 (black); 1:2 (red) in DMF containing 5 mM NH4BF4 
relative to PMMA calibration. 
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SEMI-QUANTIFICATION 
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Fig. C 16 Calibration curve determined by measuring the intensity in a dilution series of an acid-
terminated MeOx/AA dimer (252.0835 m/z).  
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Tab. C 1 Quantitative calculations based on the calibration curve referred to the overview spectrum 
showing the m/z, the peak intensities, and the mole fraction χ . 

MeOx / AA = 1:1 c / mg mL-1 0.50  

 

 

REPEAT UNIT H+  REPEAT UNIT Na+ 
 

 

m/z Intensity Mole Fraction χ m/z Intensity 
 Mole Fraction χ 

230.1019 2.20E+07 0.18 252.0836 8.03E+07  0.14 

315.1543 2.08E+08 0.39 337.1365 4.72E+08  0.29 

387.1756 6.39E+07 0.25 409.1575 1.49E+08  0.17 

472.2285 2.99E+08 0.43 494.2094 5.02E+08  0.32 

544.2496 9.95E+07 0.32 566.2314 1.31E+08  0.24 

629.3008 1.88E+08 0.49 651.2829 3.02E+08  0.36 

701.3233 5.02E+07 0.43 723.3045 7.44E+06  0.05 

786.3755 7.18E+07 0.55 808.3581 1.01E+08  0.39 

858.3955 1.90E+07 0.55 880.3782 2.57E+07  0.44 

943.4495 2.43E+07 0.61 965.4294 3.09E+07  0.43 

MeOx / AA = 1:2 c / mg mL-1 0.50  

 

 

REPEAT UNIT H+  REPEAT UNIT Na+ 
 

 

m/z Intensity Mole Fraction χ m/z Intensity 
 Mole Fraction χ 

230.1019 9.50E+07 0.77 252.0835 4.34E+08  0.76 

315.1543 1.96E+08 0.37 337.1365 4.02E+08  0.25 

387.1747 1.74E+08 0.67 409.1575 6.33E+08  0.73 

472.2282 2.10E+08 0.30 494.2095 4.56E+08  0.29 

544.2492 1.84E+08 0.60 566.2300 3.36E+08  0.62 

629.3022 9.79E+07 0.25 651.2831 1.80E+08  0.21 

701.3223 5.33E+07 0.46 723.3049 1.03E+08  0.68 

786.3748 2.36E+07 0.18 808.3559 3.80E+07  0.15 

858.3947 1.10E+07 0.32 880.3789 1.66E+07  0.29 

943.4485 4.99E+06 0.12 965.4338 5.64E+06  0.08 

MeOx / AA = 2:1 c / mg mL-1 0.50  

 
 

REPEAT UNIT H+  REPEAT UNIT Na+ 
 

 

m/z Intensity Mole Fraction χ m/z Intensity 
 Mole Fraction χ 

230.1019 5.81E+06 0.05 252.0835 5.84E+07  0.10 

315.1543 1.27E+08 0.24 337.1363 7.50E+08  0.46 

387.1753 2.08E+07 0.08 409.1573 8.08E+07  0.09 

472.2274 1.82E+08 0.26 494.2104 6.32E+08  0.40 

544.2482 2.42E+07 0.08 566.2310 7.44E+07  0.14 

629.3011 1.00E+08 0.26 651.2823 3.56E+08  0.42 

701.3215 1.29E+07 0.11 723.3039 4.06E+07  0.27 

786.3760 3.50E+07 0.27 808.3573 1.18E+08  0.46 

858.3961 4.80E+06 0.14 880.3773 1.56E+07  0.27 

943.4503 1.08E+07 0.27 965.4319 3.49E+07  0.49 
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Tab. C 2 Quantitative calculations based on the calibration curve referred to the expanded spectrum 
showing the m/z, the peak intensities, and the mole fraction χ . 

MeOx / AA = 1:1 c / mg mL-1 0.50 

 REPEAT UNIT   

Label m/z Intensity Mole Fraction χ 

 230.1019 2.20E+07 0.18 

 315.1543 2.08E+08 0.39 

 324.1047 6.22E+06 0.12 

 328.1862 5.64E+07 0.29 

 387.1756 6.39E+07 0.25 

 400.2073 1.84E+08 0.45 

 472.2285 2.99E+08 0.43 

 481.1780 1.32E+07 0.10 

 485.2593 5.55E+07 0.42 

 544.2496 9.95E+07 0.32 

 557.2800 1.54E+08 0.49 

 629.3008 1.88E+08 0.49 

 638.2519 9.66E+06 0.21 

 642.3334 4.56E+07 0.50 

 701.3233 5.02E+07 0.43 

 714.3548 8.28E+07 0.54 

 786.3755 7.18E+07 0.55 

 795.3271 7.11E+06 0.17 

 799.4059 2.50E+07 0.59 

 858.3955 1.90E+07 0.55 

 871.4288 3.46E+07 0.59 

MeOx / AA = 1:2 c / mg mL-1 0.50 

 REPEAT UNIT  

Label m/z Intensity Mole Fraction χ 

 230.1019 9.31E+07 0.77 

 315.1543 1.27E+08 0.24 

 324.1047 4.23E+07 0.82 

 328.1861 3.86E+07 0.20 

 387.1753 1.74E+08 0.67 

 400.2064 1.21E+08 0.30 

 472.2285 2.10E+08 0.30 

 481.1780 1.13E+08 0.87 

 485.2593 3.25E+07 0.25 

 544.2496 1.84E+08 0.60 

 557.2800 7.65E+07 0.24 

 629.3008 9.79E+07 0.25 

 638.2519 3.11E+07 0.69 

 642.3334 1.60E+07 0.17 
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 701.3233 5.33E+07 0.46 

 714.3548 2.59E+07 0.17 

 786.3755 2.36E+07 0.18 

 795.3271 3.28E+07 0.77 

 799.4059 2.67E+06 0.06 

 858.3955 1.10E+07 0.32 

 871.4288 6.46E+06 0.11 

MeOx / AA = 2:1 c / mg mL-1 0.50 

 REPEAT UNIT   

Label m/z Intensity Mole Fraction χ 

 230.1019 5.81E+06 0.05 

 315.1543 1.96E+08 0.37 

 324.1045 2.94E+06 0.06 

 328.1860 9.99E+07 0.51 

 387.1747 2.08E+07 0.08 

 400.2071 1.00E+08 0.25 

 472.2285 1.82E+08 0.26 

 481.1780 4.40E+06 0.03 

 485.2593 4.36E+07 0.33 

 544.2496 2.42E+07 0.08 

 557.2800 8.59E+07 0.27 

 629.3008 1.00E+08 0.26 

 638.2519 4.39E+06 0.10 

 642.3334 3.03E+07 0.33 

 701.3233 1.29E+07 0.11 

 714.3548 4.48E+07 0.29 

 786.3755 3.50E+07 0.27 

 795.3271 2.48E+06 0.06 

 799.4059 1.46E+07 0.34 

 858.3955 4.80E+06 0.14 

 871.4288 1.76E+07 0.30 
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Tab. C 3 Quantitative calculations based on the calibration curve for the homocoupling showing the m/z, 
the peak intensities, and the mole fraction χ . 

 MeOx / AA = 1:1  

 REPEAT UNIT   

n m/z Intensity Mole Fraction  χ 

2 265.1154 1.48E+08 0.27 

3 350.1681 3.16E+07 0.29 

4 435.2206 6.11E+06 0.30 

5 520.2737 7.91E+05 0.58 

    

 MeOx / AA = 1:2  

 REPEAT UNIT  

n m/z Intensity Mole Fraction  χ 

2 265.1153 1.45E+08 0.26 

3 350.1681 3.66E+07 0.34 

4 435.2206 7.64E+06 0.38 

5 520.2752 3.26E+04 0.02 

    

 MeOx / AA = 2:1  

 REPEAT UNIT     

n m/z Intensity Mole Fraction  χ 

2 265.1153 2.63E+08 0.47 

3 350.1679 3.95E+07 0.37 

4 435.2203 6.42E+06 0.32 

5 520.2747 5.49E+05 0.40 
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Tab. C 4 Quantitative calculations based on the calibration curve referred to the overview spectrum 
showing the m/z, the peak intensities, and the mole fraction χ . 

EtOx/AA = 1:1 c / mg mL-1 0.50   

REPEAT UNIT H+  REPEAT UNIT Na+  

m/z Intensity Mole Fraction χ m/z Intensity Mole Fraction χ 
244.1174 1.75E+07 0.36 266.0990 9.86E+07 0.26 

343.1860 1.62E+08 0.68 365.1674 5.45E+08 0.60 

415.2069 5.47E+07 0.45 437.1882 2.38E+08 0.29 

514.2745 2.78E+08 0.79 536.2565 9.58E+08 0.67 

586.2967 8.20E+07 0.57 608.2778 2.68E+08 0.40 

685.3636 1.71E+08 0.86 707.3464 6.75E+08 0.77 

757.3850 4.14E+07 0.72 779.3661 1.53E+08 0.50 

856.4545 5.65E+07 0.89 878.4362 2.16E+08 0.80 

928.4753 1.28E+07 0.54 950.4554 4.63E+07 0.61 

244.1174 1.75E+07 0.36 266.0990 9.86E+07 0.26 

EtOx/AA = 1:2 c / mg mL-1 0.50   

REPEAT UNIT H+  REPEAT UNIT Na+  

m/z Intensity Mole Fraction χ m/z Intensity Mole Fraction χ 
244.1174 3.17E+07 0.64 266.0992 2.74E+08 0.74 

343.1855 7.48E+07 0.32 365.1676 3.65E+08 0.40 

415.2062 6.67E+07 0.55 437.1885 5.89E+08 0.71 

514.2748 7.50E+07 0.21 536.2567 4.79E+08 0.33 

586.2952 6.23E+07 0.43 608.2780 4.03E+08 0.60 

685.3638 2.83E+07 0.14 707.3443 2.06E+08 0.23 

757.3851 1.59E+07 0.28 779.3662 1.55E+08 0.50 

856.4515 7.08E+06 0.11 878.4332 5.30E+07 0.20 

928.4753 1.10E+07 0.46 950.4553 3.01E+07 0.39 

244.1174 3.17E+07 0.64 266.0992 2.74E+08 0.74 
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Tab. C 5 Quantitative calculations based on the calibration curve for the homocoupling showing the m/z, 
the peak intensities, and the mole fraction χ . 

 EtOx / AA = 1:1  

 REPEAT UNIT   

n m/z Intensity 

Mole 
Fraction  χ 

2 271.1647 1.44E+08 0.70 

3 370.2330 4.15E+07 0.83 

4 469.3013 7.09E+06 0.88 

5 568.3695 5.30E+05 1.00 

    

 EtOx / AA = 1:2  

 REPEAT UNIT  

n m/z Intensity 

Mole 
Fraction  χ 

2 271.1647 6.16E+07 0.30 

3 370.2330 8.64E+06 0.17 

4 469.3013 1.00E+06 0.12 

5 568.3695 0.00E+00 0.00 
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Tab. C 6 Quantitative calculations based on the calibration curve referred to the overview spectrum 
showing the m/z, the peak intensities, and the mole fraction χ . 

EtOz/AA = 1:1 c / mg mL-1 0.50   

REPEAT UNIT H+  REPEAT UNIT Na+  

m/z Intensity Mole Fraction χ m/z Intensity Mole Fraction χ 
258.133 4.17E+07 0.27 280.1148 1.04E+08 0.35 

371.2173 2.05E+08 0.46 393.1988 2.37E+08 0.48 

443.2381 1.59E+08 0.23 465.2193 1.70E+08 0.26 

556.3218 2.44E+08 0.53 578.3040 4.25E+08 0.55 

628.3434 1.49E+08 0.26 650.3240 1.91E+08 0.30 

741.4259 1.31E+08 0.60 763.4082 2.99E+08 0.68 

813.4469 7.34E+07 0.33 835.4305 1.21E+08 0.41 

926.5327 5.01E+07 0.68 948.5127 1.03E+08 0.77 

998.5529 2.58E+07 0.39    

EtOz/AA = 1:2 c / mg mL-1 0.50   

REPEAT UNIT H+  REPEAT UNIT Na+  

m/z Intensity Mole Fraction χ m/z Intensity Mole Fraction χ 
258.1333 1.12E+08 0.73 280.1151 1.91E+08 0.65 

371.2169 2.46E+08 0.54 393.1984 2.60E+08 0.52 

443.2376 5.28E+08 0.77 465.2200 4.86E+08 0.74 

556.3226 2.14E+08 0.47 578.3031 3.41E+08 0.45 

628.3423 4.22E+08 0.74 650.3246 4.49E+08 0.70 

741.4265 8.94E+07 0.40 763.4088 1.43E+08 0.32 

813.4474 1.50E+08 0.67 835.4284 1.77E+08 0.59 

926.5330 2.35E+07 0.32 948.5131 3.10E+07 0.23 

998.5530 4.09E+07 0.61    
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Tab. C 7 Quantitative calculations based on the calibration curve for the homocoupling showing the m/z, 
the peak intensities, and the mole fraction χ . 

 EtOz / AA = 1:1  

 REPEAT UNIT   

n m/z Intensity Mole Fraction  χ 

2 299.1960 3.64E+07 0.48 

3 412.2797 2.35E+06 0.89 

4 525.3640 1.88E+04 1.00 

5 638.4487 0.00E+00 0.00 

    

 EtOz / AA = 1:2  

 REPEAT UNIT  

n m/z Intensity Mole Fraction  χ 

2 299.1960 3.93E+07 0.52 

3 412.2797 2.97E+05 0.11 

4 525.3640 0.00E+00 0.00 

5 638.4487 0.00E+00 0.00 
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Fig. C 17 Illustration of the mole fraction along the repeat units of MeOx/AA (1:1; 1:2 and 2:1) 
determined based on the H+ ionized  labeled intensities. 
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Illustration of the mole fraction along the repeat units of MeOx/AA (1:1; 1:2 and 2:1) determined based 
on the Na+ ionized  labeled intensities. 
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Fig. C 18 Illustration of the mole fraction along the repeat units of MeOx/AA (1:1; 1:2 and 2:1) determined 
based on the H+ ionized  labeled intensities. 
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Fig. C 20 Illustration of the mole fraction along the repeat units of MeOx/AA (1:1; 1:2 and 2:1) 
determined based on the H+ ionized  labeled intensities. 
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Fig. C 19 Illustration of the mole fraction along the repeat units of MeOx/AA (1:1; 1:2 and 2:1) 
determined based on the H+ ionized  labeled intensities. 
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Fig. C 22 Illustration of the mole fraction along the repeat units of MeOx/AA (1:1; 1:2 and 2:1) determined 
based on the H+ ionized p(MeOx) intensities. 
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Fig. C 21 Illustration of the mole fraction along the repeat units of EtOx/AA (1:1 and 1:2) determined 
based on the H+ ionized p(EtOx) intensities. 
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MS/MS RESULTS 

 

Tab. C 8 Peak assignment of ESI MS/MS experiment (Fig. C 23) at 328.1861 m/z with a HCD energy of 
25 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 
The proposed structures can be found in Scheme C 3. 

m/z(exp) m/z(theo) Δm/z Error / ppm 

328.1858 328.1867 0.0009 2.74 
256.1660 256.1656 0.0004 1.56 
243.1338 243.1337 0.0001 0.41 
184.0967 184.0968 0.0001 0.54 
171.1127 171.1128 0.0001 0.58 
158.0811 158.0812 0.0001 0.63 
99.0446 99.0441 0.0005 5.05 
86.0606 86.0600 0.0006 6.97 
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Fig. C 23 ESI MS/MS (tandem MS in positive ion mode) of MeOx/AA (1/1) isolating a species at 328 m/z 
with a HCD energy of 25 eV in the relevant range from 50 m/z and 400 m/z. 
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Scheme C 4 Fragmentation scheme for precursor ion at 328.1867 m/z with an HCD energy of 25 eV. 
Product ion at 171.1128 m/z represents a key structure for a dimerization of MeOx.
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Tab. C 9 Peak assignment of ESI MS/MS experiment (Fig. C 24) at 337.1368 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z. The proposed structures 
can be found in Scheme C 5. 

m/z(exp) m/z(theo) Δm/z Error / ppm 

337.1368 337.1370 0.0002 0.59 
265.1152 265.1159 0.0007 2.64 
252.0837 252.0842 0.0005 1.98 
243.1333 243.1337 0.0006 1.65 
193.0944 193.0947 0.0003 1.55 
180.0630 180.0631 0.0001 0.56 
171.1126 171.1128 0.0002 1.17 
162.0525 162.0525 0.0000 0.00 
158.0812 158.0812 0.0000 0.00 
126.0526 126.0525 0.0001 0.79 
86.0607 86.0600 0.0007 8.13 
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Fig. C 24 ESI MS/MS (tandem MS in positive ion mode) of MeOx/AA (1/1) isolating a species at 337 m/z 
with a HCD energy of 20 eV in the relevant range from 50 m/z and 400 m/z. 



LXXXVII 
 

 

Scheme C 6 Fragmentation scheme for precursor ion at 337.1368 m/z with an HCD energy of 20 eV. Approx. 5% homocoupling have been identified comparing the 
product ion at 193 m/z with the product ion at 180 m/z.
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Tab. C 10 Peak assignment of ESI MS/MS experiment Fig. C 25) at 400.2072 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z. The proposed structures 
can be found in Scheme C 7-9. 

m/z(exp) m/z(theo) Δm/z Error / ppm 

400.2072 400.2078 0.0006 1.50 
328.1865 328.1867 0.0002 0.61 
315.1545 315.1551 0.0006 1.90 
297.1444 297.1445 0.0001 0.34 
268.1649 268.1656 0.0007 2.61 
256.1653 256.1656 0.0003 1.17 
256.1175 256.1179 0.0004 1.56 
243.1334 243.1339 0.0005 2.06 
212.0915 212.0917 0.0002 0.94 
189.1231 189.1234 0.0003 1.59 
184.0970 184.0968 0.0002 1.09 
171.1126 171.1128 0.0002 1.17 
158.0813 158.0812 0.0001 0.63 
99.0446 99.0441 0.0005 5.05 
87.0446 87.0441 0.0005 5.74 
86.0607 86.0600 0.0007 8.13 
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Fig. C 25 ESI MS/MS (tandem MS in positive ion mode) of MeOx/AA (1/1) isolating a species at 400 m/z 
with a HCD energy of 20 eV in the relevant range from 50 m/z and 500 m/z. 
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Scheme C 7 Fragmentation scheme for precursor ion at 400.2072 m/z with an HCD energy of 20 eV. Fragmentation scheme is based on an AABA oligomer (A = MeOx; 
B = AA).  

  



XC 
 

 

Scheme C 8 Fragmentation scheme for precursor ion at 400.2072 m/z with an HCD energy of 20 eV. Fragmentation scheme is based on an AAAB oligomer (A = MeOx; 
B = AA). 

  



XCI 
 

 

Scheme C 9 Fragmentation scheme for precursor ion at 400.2072 m/z with an HCD energy of 20 eV. Fragmentation scheme is based on an ABAA oligomer (A = MeOx; 
B = AA). 
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Tab. C 11 Peak assignment of ESI MS/MS experiment (Fig. C 26) at 409.1574 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 
The proposed structures can be found in Scheme C 10. 

m/z(exp) m/z(theo) Δm/z Error / ppm 

409.1574 409.1581 0.0007 1.71 
337.1366 337.1370 0.0004 1.19 
324.1054 324.1053 0.0001 0.31 
315.1542 315.1551 0.0009 2.86 
265.1150 265.1159 0.0009 3.39 
252.0836 252.0842 0.0006 2.38 
243.1332 243.1339 0.0007 2.88 
198.0735 198.0737 0.0002 1.01 
180.0628 180.0631 0.0003 1.67 
162.0523 162.0525 0.0002 1.23 
158.0811 158.0812 0.0001 0.63 
95.0108 95.0104 0.0004 4.21 
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Fig. C 26 ESI MS/MS (tandem MS in positive ion mode) of MeOx/AA (1/1) isolating a species at 409 m/z 
with a HCD of 20 eV in the relevant range from 50 m/z and 500 m/z. 
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Scheme C 11 Fragmentation scheme for precursor ion at 409.1574 m/z with an HCD energy of 20 eV. 



XCIV 
 

 

Tab. C 12 Peak assignment of ESI MS/MS experiment (Fig. C 27) at 422.1891 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 
The proposed structures can be found in Scheme C 12 

m/z(exp) m/z(theo) Δm/z Error / ppm 

422.1891 422.1898 0.0007 1.66 
350.1679 350.1686 0.0007 2.00 
337.1362 337.1370 0.0008 2.37 
315.1542 315.1551 0.0009 2.86 
265.1150 265.1159 0.0009 3.39 
252.0836 252.0842 0.0006 2.38 
243.1332 243.1339 0.0007 2.88 
198.0735 198.0737 0.0002 1.01 
180.0628 180.0631 0.0003 1.67 
162.0523 162.0525 0.0002 1.23 
158.0811 158.0812 0.0001 0.63 
95.0108 95.0104 0.0004 4.21 
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Fig. C 27 ESI MS/MS (tandem MS in positive ion mode) of MeOx/AA (1/1) isolating a species at 422 m/z 
with a HCD energy of 20 eV in the relevant range from 50 m/z and 500 m/z. 



XCV 
 

 

Scheme C 13 Fragmentation scheme for precursor ion at 422.1891 m/z with an HCD energy of 20 eV.
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Tab. C 13 Peak assignment of ESI MS/MS experiment (Fig. C 28) at 472.2295 m/z with a HCD of 18 eV 
showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 

m/z(exp) m/z(theo) Δm/z Error / ppm 

472.2295 472.2290 0.0005 1.06 
400.2082 400.2078 0.0004 1.00 
315.1552 315.1551 0.0001 0.32 
243.1345 243.1339 0.0006 2.47 
212.0920 212.0917 0.0003 1.41 
171.1130 171.1128 0.0002 1.17 
158.0814 158.0812 0.0002 1.27 
86.0609 86.0600 0.0009 10.46 
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Fig. C 28 ESI MS/MS (tandem MS in positive ion mode) of MeOx/AA (1/1) isolating a species at 472 m/z 
with a HCD energy of 18 eV in the relevant range from 50 m/z and 500 m/z. 



XCVII 
 

 

Tab. C 14 Peak assignment of ESI MS/MS experiment (Fig. C 29) at 481.1797 m/z with a HCD energy of 
18 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure.  

 

m/z(exp) m/z(theo) Δm/z Error / ppm 

481.1797 481.1793 0.0004 0.83 
409.1582 409.1581 0.0001 0.24 
337.1374 337.1370 0.0004 1.19 
324.1055 324.1053 0.0002 0.62 
315.1550 315.1551 0.0001 0.32 
252.0847 252.0842 0.0005 1.98 
230.1025 230.1023 0.0002 0.87 
198.0740 198.0737 0.0003 1.51 
180.0633 180.0631 0.0002 1.11 
167.0317 167.0315 0.0002 1.20 
162.0528 162.0525 0.0003 1.85 
158.0816 158.0812 0.0004 2.53 
95.0111 95.0104 0.0007 7.37 
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Fig. C 29 ESI MS/MS (tandem MS in positive ion mode) of MeOx/AA (1/2) isolating a species at 481 m/z 
with a HCD energy of 18 eV in the relevant range from 50 m/z and 500 m/z. 
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Tab. C 15 Peak assignment of ESI MS/MS experiment (Fig. C 30) at 490.2400 m/z with a HCD energy of 
15 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 

m/z(exp) m/z(theo) Δm/z Error /ppm 

490.2400 490.2395 0.0005 1.02 
315.1554 315.1551 0.0003 0.95 
243.1342 243.1339 0.0003 1.23 
176.0919 176.0917 0.0002 1.14 
171.1131 171.1128 0.0003 1.75 
158.0815 158.0812 0.0003 1.90 
86.0609 86.0600 0.0009 10.46 
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Fig. C 30 ESI MS/MS (tandem MS in positive ion mode) of MeOx/AA (1/1) isolating a species at 490 m/z 
with a HCD energy of 15 eV in the relevant range from 50 m/z and 500 m/z. 
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Tab. C 16 Peak assignment of ESI MS/MS experiment (Fig. C 31) at 494.2101 m/z with a HCD energy of 
18 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 

m/z(exp) m/z(theo) Δm/z Error /ppm 

494.2101 494.2109 0.0008 1.62 
422.1880 422.1898 0.0018 4.26 
409.1565 409.1581 0.0016 3.91 
400.2063 400.2078 0.0015 3.75 
350.1685 350.1686 0.0001 0.29 
337.1368 337.1370 0.0002 0.59 
324.1042 324.1053 0.0011 3.39 
283.1263 283.1264 0.0001 0.35 
265.1152 265.1159 0.0007 2.64 
252.0838 252.0842 0.0004 1.59 
243.1334 243.1339 0.0005 2.06 
211.1054 211.1053 0.0001 0.47 
198.0736 198.0737 0.0001 0.50 
180.0630 180.0631 0.0001 0.56 
171.1126 171.1128 0.0002 1.17 
162.0525 162.0525 0.0000 0.00 
158.0812 158.0812 0.0000 0.00 
126.0526 126.0525 0.0001 0.79 
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Fig. C 31 ESI MS/MS (tandem MS in positive ion mode) of MeOx/AA (1/1) isolating a species at 494 m/z 
with a HCD energy of 18 eV in the relevant range from 50 m/z and 500 m/z. 
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Tab. C 17 Peak assignment of ESI MS/MS experiment (Fig. C 32) at 507.2419 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 

m/z(exp) m/z(theo) Δm/z Error /ppm 

507.2419 507.2425 0.0006 1.18 
435.2216 435.2214 0.0002 0.46 
422.1888 422.1898 0.0010 2.37 
413.2380 413.2395 0.0015 3.63 
350.1676 350.1686 0.0010 2.86 
337.1359 337.1370 0.0011 3.26 
328.1870 328.1867 0.0003 0.91 
296.1575 296.1581 0.0006 2.03 
278.1475 278.1475 0.0000 0.00 
265.1156 265.1159 0.0003 1.13 
256.1654 256.1656 0.0002 0.78 
252.0841 252.0842 0.0001 0.40 
243.1337 243.1339 0.0002 0.82 
193.0946 193.0947 0.0001 0.52 
180.0632 180.0631 0.0001 0.56 
171.1128 171.1128 0.0000 0.00 
167.0792 ?   
158.0809 158.0812 0.0003 1.90 
86.0606 86.0600 0.0006 6.97 
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Fig. C 32 ESI MS/MS (tandem MS in positive ion mode) of MeOx/AA (1/1) isolating a species at 507 m/z 
with a HCD energy of 20 eV in the relevant range from 50 m/z and 550 m/z. 



CI 
 

 

Tab. C 18 Peak assignment of ESI MS/MS experiment (Fig. C 33) at 365.1670 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure.  

m/z(exp) m/z(theo) Δm/z Error / ppm 

365.1670 365.1683 0.0013 3.56 
293.1464 293.1472 0.0012 2.73 
271.1643 271.1652 0.0009 3.32 
266.0992 266.0999 0.0007 2.63 
199.1436 199.1441 0.0005 2.51 
194.0784 194.0788 0.0004 2.06 
176.0677 176.0682 0.0005 2.84 
172.0964 172.0968 0.0004 2.32 
140.0679 140.0682 0.0003 2.14 
100.0759 100.0757 0.0002 2.00 
95.0106 95.0104 0.0002 2.11 
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Fig. C 33 ESI MS/MS (tandem MS in positive ion mode) of EtOx/AA (1/1) isolating a species at 365 m/z 
with a HCD energy of 20 eV in the relevant range from 50 m/z and 400 m/z. 



CII 
 

 

Scheme C 14 Fragmentation scheme for precursor ion at 365.1670 m/z with an HCD energy of 20 eV. 
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Tab. C 19 Peak assignment of ESI MS/MS experiment (Fig. C 34) at 437.1882 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 

m/z(exp) m/z(theo) Δm/z Error / ppm 

437.1882 437.1894 0.0012 2.74 
365.1673 365.1683 0.0010 2.74 
343.1851 343.1868 0.0017 4.95 
338.1202 338.1210 0.0002 2.37 
293.1463 293.1472 0.0009 3.07 
271.1642 271.1652 0.0010 3.69 
266.0990 266.0999 0.0009 3.38 
244.1171 244.1179 0.0008 3.28 
212.0889 212.0893 0.0004 1.89 
194.0783 194.0788 0.0005 2.58 
176.0678 176.0682 0.0004 2.27 
172.0963 172.0968 0.0005 2.91 
167.0312 ?   
140.0678 140.0682 0.0004 2.86 
122.0576 122.0576 0.0000 0.00 
95.0107 95.0104 0.0003 3.16 
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Fig. C 34 ESI MS/MS (tandem MS in positive ion mode) of EtOx/AA (1/1) isolating a species at 437 m/z 
with a HCD energy of 20 eV in the relevant range from 50 m/z and 500 m/z. 
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Scheme C 15 Fragmentation scheme for precursor ion at 437.1894 m/z with an HCD energy of 20 eV.
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Tab. C 20 Peak assignment of ESI MS/MS experiment (Fig. C 35) at 442.2538 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 

m/z(exp) m/z(theo) Δm/z Error / ppm 

442.2538 442.2548 0.0010 2.26 
370.2330 370.2336 0.0006 1.62 
343.1859 343.1864 0.0005 1.46 
271.1648 271.1652 0.0004 1.48 
199.1439 199.1441 0.0002 1.00 
194.0784 194.0788 0.0004 2.06 
172.0964 172.0968 0.0004 2.32 
154.0859 154.0885 0.0006 16.87 
100.0760 100.0757 0.0003 3.00 
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Fig. C 35 ESI MS/MS (tandem MS in positive ion mode) of EtOx/AA (1/1) isolating a species at 442 m/z 
with a HCD energy of 20 eV in the relevant range from 50 m/z and 500 m/z. 
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Scheme C 16 Fragmentation scheme for precursor ion at 442.2538 m/z with an HCD energy of 20 eV. 
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Tab. C 21 Peak assignment of ESI MS/MS experiment (Fig. C 36) at 464.2353 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 

m/z(exp) m/z(theo) Δm/z Error / ppm 

464.2353 464.2367 0.0014 3.02 
392.2146 392.2156 0.0010 2.55 
370.2323 370.2336 0.0013 3.51 
365.1667 365.1683 0.0016 4.38 
293.1464 293.1472 0.0008 2.73 
271.1643 271.1652 0.0009 3.32 
266.0992 266.0999 0.0007 2.63 
239.1361 239.1366 0.0005 2.09 
221.1253 221.1260 0.0007 3.17 
199.1436 199.1441 0.0005 2.51 
194.0784 194.0788 0.0004 2.06 
172.0964 172.0968 0.0004 2.32 
100.0760 100.0757 0.0003 3.00 
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Fig. C 36 ESI MS/MS (tandem MS in positive ion mode) of EtOx/AA (1/1) isolating a species at 464 m/z 
with a HCD energy of 20 eV in the relevant range from 50 m/z and 500 m/z. 
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Tab. C 22 Peak assignment of ESI MS/MS experiment (Fig. C 37) at 482.2463 m/z with a HCD energy of 
25 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 

m/z(exp) m/z(theo) Δm/z Error / ppm 

482.2463 482.2473 0.0009 2.07 

383.1778 383.1789 0.0011 2.87 

311.1571 311.1577 0.0006 1.93 

293.1467 293.1472 0.0005 1.71 

284.1098 284.1105 0.0007 2.46 

271.1646 271.1652 0.0006 2.21 

239.1364 239.1366 0.0002 0.84 

212.0889 212.0893 0.0004 1.89 

199.1439 199.1441 0.0002 1.00 

194.0784 194.0788 0.0004 2.06 

176.0680 176.0682 0.0002 1.14 

172.0964 172.0968 0.0004 2.32 

140.0680 140.0682 0.0002 1.43 

100.0760 100.0757 0.0003 3.00 
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Fig. C 37 ESI MS/MS (tandem MS in positive ion mode) of EtOx/AA (1/1) isolating a species at 482 m/z 
with a HCD energy of 25 eV in the relevant range from 50 m/z and 500 m/z. 
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Scheme C 17 Fragmentation scheme for precursor ion at 482.2463 m/z with an HCD energy of 25 eV.
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Tab. C 23 Peak assignment of ESI MS/MS experiment (Fig. C 38) at 393.1995 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure. 

m/z(exp) m/z(theo) Δm/z Error /ppm 

393.1995 393.1996 0.0001 0.25 
299.1968 299.1965 0.0003 1.00 
280.1156 280.1155 0.0001 0.36 
208.0946 208.0944 0.0002 0.96 
186.1126 186.1125 0.0001 0.54 
114.0918 114.0913 0.0005 4.38 
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Fig. C 38 ESI MS/MS (tandem MS in positive ion mode) of EtOz/AA (1/1) isolating a species at 393 m/z 
with a HCD energy of 20 eV in the relevant range from 50 m/z and 400 m/z. 
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Scheme C 18 Fragmentation scheme for precursor ion at 393.1995 m/z with an HCD energy of 20 eV. 
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Tab. C 24 Peak assignment of ESI MS/MS experiment (Fig. C 39) at 393.1995 m/z with a HCD energy of 
20 eV showing the experimental m/z, the theoretical m/z values, and ∆m/z and the proposed structure.  

m/z(exp) m/z(theo) Δm/z Error /ppm 

465.2210 465.2207 0.0003 0.25 
409.1946 299.1965 0.0003 1.00 
280.1156 280.1155 0.0001 0.36 
208.0946 208.0944 0.0002 0.96 
186.1126 186.1125 0.0001 0.54 
114.0918 114.0913 0.0005 4.38 
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Fig. C 39 ESI MS/MS (tandem MS in positive ion mode) of EtOz/AA (1/1) isolating a species at 465 m/z 
with a HCD energy of 20 eV in the relevant range from 50 m/z and 500 m/z. 
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Fig. C 40 ESI MS/MS (tandem MS in positive ion mode) of EtOz/AA (1/1) isolating a species at 472 m/z 
with a HCD energy of 18 eV in the relevant range from 50 m/z and 500 m/z. 
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Fig. C 41 ESI MS/MS (tandem MS in positive ion mode) of EtOz/AA (1/1) isolating a species at 484 m/z 
with a higher-energy collision dissociation (HCD) of 18 eV in the relevant range from 50 m/z and 
500 m/z. 
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IMAGING SCNP BY HR ESI MS 

NMR and SEC Data 
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Fig. D 1 1H NMR (400 MHz, 298 K) of p(MMA-stat-GMA) (17) in CDCl3. 
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Fig. D 2 1H NMR (400 MHz, 298 K) of the SCNP (18) in CDCl3. 

25 26 27 28 29 30 31 32 33 34 35
0.0

0.2

0.4

0.6

0.8

1.0

 M
n
 = 13100 g mol-1, Ð = 1.26

 M
n
 = 13000 g mol-1, Ð = 1.24

N
o

rm
a

li
z
e

d
 I

R
 I

n
te

n
s

it
y

 /
 a

.u
.

Retention  Volume / mL

Fig. D 3 SEC traces for p(MMA-stat-GMA) (17) (purple line) and SCNP (18) obtained by using a syringe pump 
to inject B(C6F5)3 with a flow rate of 1 mL·h-1 into a solution containing p(MMA-stat-GMA) (17) in 100 mL dry 
dichloromethane. 
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MS Data 

 

Fig. D 4 (Top) SEC-ESI Orbitrap mass spectrum after successful folding resulting in SCNP (18) formation; 
(bottom) SEC-ESI Orbitrap mass spectrum prior to the folding of p(MMA-stat-GMA) (17). The spectrum 
ranges from 2030 m/z to 2130 m/z illustrating doubly charged species of the precursor polymer and 
the SCNP. 

Fig. D 5 SEC-ESI Orbitrap mass spectrum (negative ion mode) obtained of p(MMA-stat-GMA) (17), in which 
all glycidyl moieties were ring-opened by water. The SEC trace depicts no shift from the parent polymer 
(purple trace) to the ring-opened polymer (blue trace). The ionization is by virtue of complexation to 
iodide. 
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Fig. D 6 Zoomed SEC-ESI Orbitrap mass spectrum (positive ion mode) of p(MMA-stat-GMA) (17) between 
1808 m/z and 1862 m/z obtained by summing all species between 14.71 mL and 15.13 mL retention 
volume. Labeled are the most abundant species and the repeating unit of pMMA (m/z(exp) 50.0274; 
m/z(theo) 50.0257). The minor distributions (slightly shifted isotopic pattern) stems from complexation 
by virtue of a second NaI and was not labeled in order to keep a good readability of the spectrum. 
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Fig. D 7 Isotopic simulation of a selected peak at 1813 m/z comparing the experiment (purple line) and 
the simulation (grey line) of (I) p(MMA28-stat-GMA3) ionized by virtue of complexation to sodium and (II) 
p(MMA26-stat-GMA3) ionized by virtue of complexation to sodium and formation of adducts to sodium 
iodide with a resolution of 48000. 
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Tab. D 1 Peak assignment of the SEC-ESI Orbitrap mass spectrum of p(MMA-stat-GMA) (17) showing the 
labels (corresponding to the species in Fig. D 8), the resolution (obtained by the Xcalibur software), the 
experimental m/z and theoretical m/z values, ∆m/z and the proposed chemical structures. The SEC-ESI 
Orbitrap mass spectrum was integrated from 14.71 mL to 15.13 mL to obtain a sufficient signal to noise 
ratio. The minor distributions (slightly shifted isotopic pattern) stems from a second complexation by 
virtue of NaI and was not labeled in order to keep a good readability of the spectrum. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 48000 1809.4139 1809.3987 0.0152 

 

 48000 1813.3304 1813.3143 0.0162 

 

 40000 1817.4307 1817.4143 0.0164 

 

 46000 1822.4063 1822.3883 0.0180 

 

 43000 1826.3174 1826.3039 0.0135 
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 46000 1830.4180 1830.4039 0.0141 

 

 49000 1834.3356 1834.3196 0.0160 

 

 49000 1838.4356 1838.4196 0.0160 

 

 49000 1842.3539 1842.3352 0.0187 

 

 45000 1846.4538 1846.4352 0.0185 

 

 44000 1851.4204 1851.4092 0.0112 
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 47000 1855.3399 1855.3248 0.0150 
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SEC-ESI MS data of SCNP (2) obtained by direct 

addition of B(C6F5)3 

 

  

Fig. D 9 Isotopic simulation of a selected peak at 2238 m/z comparing the experiment (blue line) and 
the simulation (grey line) of SCNPs (18) with a resolution of 40000. Species  and species  have an 
approximated ratio of : = 5:1. 
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Fig. D 10 Isotopic simulation of a selected peak at 2248 m/z comparing the experiment (blue line) and 
the simulation (grey line) of SCNP (18) with a resolution of 40000. Species , ,  and species  have 
an approximated ratio of ::: = 10:3:4:3. 

Fig. D 11 Isotopic simulation of a selected peak at 2258 m/z comparing the experiment (blue line) and 
the simulation (grey line) of SCNP (18) with a resolution of 40000. Species , ,  and species  have 
an approximated ratio of ::: = 10:3:4:3. 
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Fig. D 13 Isotopic simulation of a selected peak at 2268 m/z comparing the experiment (blue line) and 
the simulation (grey line) of SCNP (18) with a resolution of 40000. Species ,  and species  have an 
approximated ratio of :: = 5:1:1. 

Fig. D 12 Isotopic simulation of a selected peak at 2258 m/z comparing the experiment (blue line) and 
the simulation (grey line) of SCNP (18) with a resolution of 40000. Species , ,  and species   have 
an approximated ratio of :::  = 2:2:3:1. 
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Tab. D 2 Peak assignment of the SEC-ESI Orbitrap mass spectrum of SCNP (18) showing the label, the resolution (obtained by the Xcalibur software), the 
experimental m/z and theoretical m/z values, ∆m/z and the proposed structures. SEC-ESI Orbitrap mass spectrum was integrated from 14.42 mL to 14.92 mL 
to obtain sufficient signal to noise ratio. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 40000 2236.6506 2236.6436 0.0070 

 

 44000 2239.6546 2239.6454 0.0093 

 

 44000 2241.5566 2241.5489 0.0077 

 

 42000 2246.6452 2246.6385 0.0067 
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 42000 2248.1500 2248.1492 0.0008 

 

 40000 2249.6551 2249.6467 0.0084 

 

 40000 2250.6579 2250.6423 0.0152 

 

 40000 2251.5541 2251.5632 0.0090 
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 42000 2252.5548 2252.5592 0.0045 

 

 40000 2256.6660 2256.6528 0.0131 

 

 43000 2258.6646 2258.6520 0.0126 

 

 41000 2259.6600 226604 0.0004 
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 40000 2260.6594 2260.6506 0.0088 

 

 48000 2261.5678 2261.5678 0.0032 

 

 42000 2266.6604 2266.6542 0.0062 

 

 44000 2268.6648 2268.6663 0.0015 
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 40000 2270.6725 2270.6520 0.0205 

 

 39000 2271.5674 2271.5594 0.0080 

 

 44000 2272.5667 2272.5685 0.0018 

 

 40000 2276.6685 2276.6611 0.0074 
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 40000 2278.6612 2278.6667 0.0055 

 

 

 40000 2279.6684 2279.6573 0.0111 

 

 42000 2281.6689 2281.6559 0.0130 

 

 46000 2281.5771 2281.5737 0.0034 
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 43000 2283.5826 2283.5729 0.0097 
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RADICAL-INDUCED SINGLE-CHAIN FOLDING OF 

PASSERINI SEQUENCE-REGULATED POLYMERS 

VISUALIZED BY HIGH-RESOLUTION MASS SPEC-
TROMETRY 

NMR Data 
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Fig. D 14 1H NMR (298 K, 400 MHz) of 4-(chloromethyl)-7-hydroxy-coumarin in DMSO-d6. 
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Fig. D 15 13C{1H} NMR (298 K, 101 MHz) of 4-(chloromethyl)-7-hydroxy-coumarin in DMSO-d6 
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Fig. D 16 1H NMR (298 K, 400 MHz) of 4-(hydroxymethyl)-7-hydroxy-coumarin in DMSO-d6. 
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Fig. D 17 13C{1H} NMR (298 K, 101 MHz) of 4-(hydroxymethyl)-7-hydroxy-coumarin in DMSO-d6. 

Fig. D 18 HSQC NMR (1H-13C{1H}, 298 K) of 4-(hydroxymethyl)-7-hydroxy-coumarin in DMSO-d6. 
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Fig. D 19 1H NMR (298 K, 400 MHz) of 4-formyl -7-hydroxy-coumarin in DMSO-d6. 
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Fig. D 20 13C{1H} NMR (298 K, 400 MHz) of 4-formyl -7-hydroxy-coumarin in DMSO-d6. 
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Fig. D 21 HSQC NMR (1H-13C, 298 K) of 4-formyl-7-hydroxy-coumarin in DMSO-d6. 
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Fig. D 22 1H NMR (298 K, 600 MHz) of 4-formyl -coumarin-7-yl acrylate in DMSO-d6. 
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Fig. D 23 1H NMR (298 K, 151 MHz) of 4-formyl -coumarin-7-yl acrylate in DMSO-d6. 

Fig. D 24 HSQC NMR (1H-13C, 298 K) of 4-formyl-coumarin-7-yl acrylate in DMSO-d6. 
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Fig. D 25 1H NMR (298 K, 600 MHz) of 19a in DMSO-d6. 

Fig. D 26 COSY NMR (1H-1H, 298 K, 600 MHz) of 19a in DMSO-d6. 
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Fig. D 27 HSQC NMR (1H-13C, 298 K) of 19a in DMSO-d6. 

4.1 nm

Fig. D 28 DOSY NMR of 19a with a diffusion time (Δ) of 0.75 s and a gradient duration () of 1500 µs. 
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Fig. D 29 Echo intensity plotted against the gradient strength (G2) to evaluate diffusion coefficients of 
19a. Parameter were as follows: diffusion time (Δ) of 0.75 s, gradient duration () of 1500 µs, 400 MHz. 
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Fig. D 30 1H NMR (298 K, 600 MHz) of 20a in DMSO-d6. 

Fig. D 31 COSY NMR (1H-1H, 298 K, 600 MHz) of 20a in DMSO-d6. 
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Fig. D 32 HSQC NMR (1H-13C, 298 K) of 20a in DMSO-d6. 
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Fig. D 33 1H NMR (298 K, 600 MHz) of 19b in DMSO-d6. 
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Fig. D 34 COSY NMR (1H-1H, 298 K, 600 MHz) of 19b in DMSO-d6. 
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Fig. D 35 HSQC NMR (1H-13C, 298 K) of 19b in DMSO-d6. 

4.1 nm

Fig. D 36 DOSY NMR of 19b with a diffusion time (Δ) of 0.60 s and a gradient duration () of 1500 µs. 
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Fig. D 37 Echo intensity plotted against the gradient strength (G2) to evaluate diffusion coefficients of P2. 
Parameter were as follows: diffusion time (Δ) of 0.60 s, gradient duration () of 1500 µs, 400 MHz. 
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Fig. D 38 1H NMR (298 K, 600 MHz) of 20b in DMSO-d6. 

Fig. D 39 HSQC NMR (1H-13C, 298 K) of 20b in DMSO-d6. 
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Fig. D 40 COSY NMR (1H-1H, 298 K, 600 MHz) of 20b in DMSO-d6. 

3.2 nm

Fig. D 41 DOSY NMR of 20b with a diffusion time (Δ) of 0.24 s and a gradient duration () of 1500 µs. 
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Fig. D 42 DOSY NMR of 20b with a diffusion time (Δ) of 0.24 s and a gradient duration () of 1500 µs. 
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MASS SPECTROMETRIC RESULTS 

Precursor 19a 
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Fig. D 43 Overview SEC-ESI Orbitrap of 19a between m/z 1000 and m/z 2500 obtained by summing all 
species between 16.98 mL and 17.92 mL retention volume. 
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Fig. D 44 Expanded SEC-ESI Orbitrap mass spectrum (positive mode) of 19a between 1842 m/z and 1870 
m/z obtained by summing all species between 17.47 mL and 17.74 mL retention volume. Labeled are 
the most abundant species and the repeating unit of PEG (m/z(exp) 22.0139; m/z(theo) 22.0126). 
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Tab. D 3 Peak assignment of the SEC-ESI Orbitrap mass spectrum of 19a showing the labels (corresponding to the species in Fig. D 44 Expanded SEC-ESI Orbitrap 
mass spectrum (positive mode) of 19a between 1842 m/z and 1870 m/z obtained by summing all species between 17.47 mL and 17.74 mL retention volume. 
Labeled are the most abundant species and the repeating unit of PEG (m/z(exp) 22.0139; m/z(theo) 22.0126).), the resolution (obtained by the Xcalibur software), 
the experimental m/z and theoretical m/z values, ∆m/z and the proposed chemical structures. The SEC-ESI Orbitrap mass spectrum was integrated from 17.47 mL 
and 17.74 mL to obtain a sufficient signal to noise ratio. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 90000 1842.6967 1842.6894 0.0073 

 

 90000 1851.8015 1851.8092 0.0077 

 

 86000 1859.7157 1859.7106 0.0051 
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Fig. D 45 Isotopic simulation of a selected peak at 1842 m/z comparing the experiment (blue line) and 
the simulation (grey line) of 19a with a resolution of 90000. 
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Fig. D 46 Isotopic simulation of a selected peak at 1851 m/z comparing the experiment (blue line) and 
the simulation (grey line) of 19a with a resolution of 90000. 
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Fig. D 47 Isotopic simulation of a selected peak at 1859 m/z comparing the experiment (blue line) and 
the simulation (grey line) of 19a with a resolution of 86000. 
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Fig. D 48 Overview SEC-ESI Orbitrap of SCNP 20a between 1000 m/z and 2250 m/z obtained by summing 
all species between 17.80 mL and 18.10 mL retention volume. 
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Tab. D 4 Peak assignment of the SEC-ESI Orbitrap mass spectrum of SCNP 20a showing the label, the resolution (obtained by the Xcalibur software), the experimental 
m/z and theoretical m/z values, ∆m/z and the proposed structures. The SEC-ESI Orbitrap mass spectrum was integrated from 17.91 mL to 18.08 mL to obtain 
sufficient signal to noise ratio. All species are triply charged by adduct formation with H+. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 120000 1313.1832 1313.1845 0.0013 

 

 100000 1313.5250 1313.5198 0.0053 

 

 100000 1314.5249 1314.5248 0.0001 

 



CLVII 
 

 111000 1318.1782 1318.1753 0.0029 

 

 99000 1318.8509 1318.8501 0.0008 

 

 116000 1322.5358 1322.5408 0.0050 
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Tab. D 5 Peak assignment of the SEC-ESI Orbitrap mass spectrum of SCNP1 showing the label, the resolution (obtained by the Xcalibur software), the experimental 
m/z and theoretical m/z values, ∆m/z and the proposed structures. The SEC-ESI Orbitrap mass spectrum was integrated from 17.79 mL to 18.28 mL to obtain 
sufficient signal to noise ratio. All species are doubly charged by adduct formation with H+. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 40000 1935.2852 1935.2914 0.0062 

 

 45000 1936.7732 1936.7737 0.0005 

 

 43000 1938.7818 1938.7774 0.0044 
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 42000 1944.7704 1944.7662 0.0042 

 

 44000 1947.2844 1947.2857 0.0013 

 

 44000 1950.7933 1950.7999 0.0066 
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 41000 1952.2940 1952.2997 0.0057 

 

 36000 1953.2923 1953.2970 0.0047 

 

 37600 1956.2948 1956.2897 0.0051 
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Fig. D 49 Expanded SEC-ESI Orbitrap mass spectrum (positive ion mode) of P1 between 1842 m/z and 
1870 m/z obtained by summing all species between 17.47 mL and 17.74 mL retention volume. Labeled 
are the most abundant species and the repeating unit of PEG (m/z(exp) 22.0139; m/z(theo) 22.0126). 
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Tab. D 6 Peak assignment of the SEC-ESI Orbitrap mass spectrum of 19b showing the labels (corresponding to the species in Fig. D 49), the resolution (obtained by 
the Xcalibur software), the experimental m/z and theoretical m/z values, ∆m/z and the proposed chemical structures. The SEC-ESI Orbitrap mass spectrum was 
integrated from 17.47 mL and 17.74 mL to obtain a sufficient signal to noise ratio. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 110000 1220.6363 1220.6299 0.0064 

 

 110000 1223.5951 1223.5883 0.0069 

 

 110000 1227.6274 1227.6245 0.0029 
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 110000 1229.6419 1229.6352 0.0067 

 

 110000 1232.6005 1232.5985 0.0020 
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Fig. D 50 Isotopic simulation of a selected peak at 1220 m/z comparing the experiment (blue line) and 
the simulation (grey line) of 19b with a resolution of 110000. 
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Fig. D 51 Isotopic simulation of a selected peak at 1223 m/z comparing the experiment (blue line) and 
the simulation (grey line) of 19b with a resolution of 110000. 
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Fig. D 53 Isotopic simulation of a selected peak at 1229 m/z comparing the experiment (blue line) and 
the simulation (grey line) of 19b with a resolution of 110000. 
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Fig. D 52 Isotopic simulation of a selected peak at 1227 m/z comparing the experiment (blue line) and 
the simulation (grey line) of 19b with a resolution of 110000. 
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NMR ANALYSIS 
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Fig. E 1 1H NMR (400 MHz, 298 K) spectrum of monomer (21a) in DMSO-d6. 
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Fig. E 2 13C{1H} NMR (101 MHz, 298 K) spectrum of monomer (21a) in DMSO-d6. 
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Fig. E 3 1H NMR (400 MHz, 298 K) spectrum of polymer (22) in DMSO-d6. Not all potential isomers are 
depicted and assigned. 

Fig. E 4 1H-13C HSQC (298 K) spectrum of 19a in DMSO-d6. 
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Fig. E 5 1H-13C HSQC (298 K) spectrum of polymer 22 in DMSO-d6. 
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MS Data 

 

Fig. E 6 ESI-Orbitrap mass spectrum of polymer 22 (Mn = 2200 g∙mol-1, Mw = 5600 g∙mol-1, Ð = 2.19) 
recorded in negative ion mode in DCM:MeOH = 3:1 (v/v) from 1500 m/z to 6000 m/z. 
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Fig. E 7 Expanded mass spectrum of polymer 22 (Mn = 2200 g∙mol-1, Mw = 5600 g∙mol-1, Ð = 2.19) 
displayed in a range between 2620 m/z to 3660 m/z depicting the repeating unit (m/z(exp) 960.1808; 
m/z(theo) 960.2024). Labeled are the most abundant species. Species labeled with  stem from 
(multiple) attachment of ZnCl2. 
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Tab. E 1 Peak assignment of the SEC-ESI Orbitrap mass spectrum of polymer 22 showing the labels (corresponding to the species in Fig. E 7), the resolution (obtained 
by the Xcalibur software), the experimental m/z and theoretical m/z values, ∆m/z and the proposed chemical structures. Minor species stemming from (multiple) 
attachment of ZnCl2 or by elimination of EtOH are not depicted. 

Label Resolution m/z(exp) m/z(theo) Δm/z Structure 

 40000 2681.5327 2681.5450 0.0122 

 

 37000 2798.5490 2798.5608 0.0118 

 

 40000 2915.5644 2915.5767 0.0123 

 

 38000 2964.6035 2964.6132 0.0097 
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 38000 3013.6313 3013.6498 0.0185 

 

 35000 3345.7293 3345.7574 0.0254 
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Fig. E 8 Isotopic simulation of a selected degradation species at 2015 m/z comparing the experiment 
(purple line) and the simulation (grey line) of degraded 22. Since ZnCl2 coordinates strongly to 22, the 
slightly shifted low abundant peaks stem from polymer/ZnCl2 complexes and are not assigned.  
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Fig. E 9 Isotopic simulation of a selected degradation species at 2091 m/z comparing the experiment 
(purple line) and the simulation (grey line) of degraded 22. Since ZnCl2 coordinates strongly to 22, the 
slightly shifted low abundant peaks stem from polymer/ZnCl2 complexes and are not assigned. 
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SEC-ESI MS data  
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Fig. E 10 SEC-ESI Orbitrap mass spectrum (positive ion mode) of polymer 22 (bottom) and the degraded 
22 (top) between 500 m/z and 2000 m/z obtained by summing all species between 16.33 mL and 
19.70 mL retention volume. Labeled are the important degradation species (left). SEC traces obtained 
from the RI detector implemented in the SEC-ESI MS system of P1 (bottom) and the degraded P1 (top). 
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Fig. E 11 Isotopic simulation of a selected degradation species at 749 m/z comparing the experiment 
(purple line) and the simulation (grey line) of degraded 22 (bottom) with the intact polymer 22 (top). 
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Fig. E 12 Isotopic simulation of a selected degradation species at 985 m/z comparing the experiment 
(purple line) and the simulation (grey line) of degraded 22 (bottom) with the intact polymer 22 (top). 
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Fig. E 13 Isotopic simulation of a selected degradation species at 1003 m/z comparing the experiment 
(purple line) and the simulation (grey line) of degraded 22 (bottom) with the intact polymer 22 (top). 
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Fig. E 14 Isotopic simulation of a selected degradation species at 1043 m/z comparing the experiment 
(purple line) and the simulation (grey line) of degraded 22 (bottom) with the intact polymer 22 (top). 
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Fig. E 15 Isotopic simulation of a selected degradation species at 1219 m/z comparing the experiment 
(purple line) and the simulation (grey line) of degraded 22 (bottom) with the intact polymer 22 (top). 
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Fig. E 16 Isotopic simulation of a selected degradation species at 1237 m/z comparing the experiment 
(purple line) and the simulation (grey line) of degraded 22 (bottom) with the intact polymer 22 (top). 
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Fig. E 17 Isotopic simulation of a selected degradation species at 1317 m/z comparing the experiment 
(purple line) and the simulation (grey line) of degraded 22 (bottom) with the intact polymer 22 (top). 
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Set-up for irradiation experiments 

The samples to be irradiated were placed on a metallic disc revolving 

around a compact low-pressure fluorescent lamp (Cleo PL-L, Philips 

Deutschland GmBH) emitting at 365 nm (±50 nm, 36 W) at a distance of 40-50 

mm in a custom built photoreactor. 
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Fig. E 18 Emission spectrum of the employed compact low-pressure fluorescent lamp PL-L (36 W, 
λmax = 365 nm). The emission spectrum was recorded with a UV sensor (Opsytec Dr. Gröbel GmbH; 
Ettlingen, Germany). 
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APTES (3-aminopropyl)triethoxysilane 
DoPAT 2-(dodecylthiocarbonothioylthio)propionic acid 
AIBN 2,2′-azobis(2-methylpropionitril) 
CPDT 2-cyano-2-propyl dodecyl trithiocarbonate 
EtOz 2-ethyl-2-oxazine 
EtOx 2-ethyl-2-oxazoline 
MeOX 2-methyl-2-oxazoline 
Upy 2-Ureido-4[1H]-pyrimidinone 
DMAP 4-(dimethylamino)-pyridin 
AVCA 4,4′-azobis(4-cyanovaleric acid) 
4-carboxy-
TEMPO 4-carboxy-2,2,6,6-tetramethylpiperidine 1-oxyl 
MEHQ 4-methoxyphenol 
MeCN acetonitrile 
AA acrylic acid 
Å Angström 
E anti configuration 
API atmospheric pressure ionization 
ATRP atom transfer radical polymerization 
AFM atomic force microscopy 
Mn average number-weighted molecular weight 
Mw average wight-weighted molecular weight 
BP benzophenone 
BuCN butyronitrile 
CEM chain ejection model  
CTA chain transfer agents 
CRM charge residual model  
CCD charge-coupled device 
δ chemical shift in a magnetic field 
CIEEL chemically initiated electron-exchange 

luminescence 
CID collision induced dissociation  
CSIRO Commonwealth Scientific and Industrial Research 

Organisation 
COSY correlated spectroscopy 
J coupling constant 
CIE Cyclic imino ethers 
Da Dalton 
°C degree Celcius 
DPn degree of polymerization 
DANN deoxyribonucleic acid  
DCM dichloromethane 
DOSY diffusion-ordered spectroscopy 
DMSO dimethyl sulfoxide 
DMAc dimethylacetamide 
DMF dimethylformamide 
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DMSO dimethylsulfoxide 
Ð dispersity 
dd doublet of doublet 
d doublet; day 
DLS dynamic light scattering  
eV electron volt 
ECD electron-capture cross sections 
ESI electrospray ionization  
eq equivalents 
et al. et alii ( 
EtOH ethanol 
EtAc ethyl acetate 
EC ethylene carbonate 
e.g. exempli gratia 
FAB fast atom bombardment  
FT Fourier transformation  
GMA glycidyl methacrylate 
g gramm 
Hz Hertz 
HDA hetero Diels-Alder  
HSQC heteronuclear single quantum coherence 
HR high resolution 
HCD higher-energy C-trap dissociation / higher-energy 

collision dissociation 
HOMO highest occupied molecular orbital  
HPLC high-pressure liquid chromatography 
HT high-termperature 
h hour 
i.e. id est 
ICR ion cyclotron resonance 
IEM ion ejection model  
IL ionic liquid 
K Kelvin 
LACCC liquid adsorption chromatography at critical 

conditions 
LC liquid chromatography 
L Liter 
LUMO lowest unoccupied molecular orbital  
MADIX macromolecular design by interchange of 

xanthates 
MS mass spectrometry 
m/z mass-to-charge ratio 
MALDI matrix assisted laser desoprtion ionization 
MeOH Methanol 
MMA methyl methacrylate 
µ micro 
m milli 
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m milli; multiplet; meta 
min minutes 
mNBA m-nitrobenzyl alcohol 
M molar 
MWCO molecular weight cut off 
MALLS multi-angle laser light scattering  
EDC∙HCl N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride 
nm nanometer 
NIR near infrared 
NMP Nitroxide-mediated polymerization 
NMR nuclear magnetic resonance spectroscopy 
1D one dimensional 
o ortho 
p para 
ppm  part per million 
PE Photo-Enol 
p([BVBIM]Tf2N) poly(1-butyl-3-(p-vinylbenzyl)-1H-imidazol-3-ium 

bis(trifluoromethanesulfonyl)imide) 
p([BVBIM]Cl poly(1-butyl-3-(p-vinylbenzyl)-1H-imidazolium 

chloride) 
P(2VP) poly(2-vinylpyridine) 
P(AAm) poly(acrylamide) 
PBD poly(butadiene) 
PEA poly(ester amide) 
PEG poly(ethylene glycol) 
PEO poly(ethylene oxide) 
PIL poly(ionic liquid) 
PLA poly(lactide) 
PMA poly(methyacrylate) 
PPE poly(phosphoester)s 
PS poly(styrene) 
p(S-stat-VBC poly(styrene-stat-vinylbenzyl chloride) 
PVBC poly(vinylbenzyl chloride) 
PSS Polymer Standard Service 
PC propylene carbonate 
Q quadrupole 
RF radiofrequency 
RI refractive index 
RAFT reversible addition-fragmentation chain transfer 
RDRP reversible-deactivation radical polymerization  
ROP ring-opening polymerization 
RTIL room temperature ionic liquid 
SIMS secondary ion mass spectrometer 
s seconds; singulet 
S/N signal-to-noise 
SCNP single-chain polymeric nanoparticle 
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SEC size-exclusion chromatography 
SAXS small angle X-ray scattering 
SLD soft laser desorption 
SZWIP spontaneous zwitterionic copolymerization 
stat statistically copolymerized 
STED stimulated emission depletion 
Z syn configuration 
MS/MS tandem mass spectrometry 
THF tetrahydrofuran 
3D three dimensional 
ToF time-of-flight 
TEM transmission electron spectroscopy 
TEA triethylamine 
TFA trifluoroacetic acid 
t triplett 
2D two dimensional 
UV ultraviolet 
v/v volume percent 
W watt 
WCA weakly coordinating anion 
w/w weight percent 
XPS X-ray photoelectron spectroscopy 
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