
A L G O R I T H M S FO R T H E I D E N T I F I C AT I O N O F C E N T R A L
N O D E S I N L A RG E R E A L - WO R L D N E T WO R K S

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

E L I S A B E T TA B E RG A M I N I

Tag der mündlichen Prüfung: 11. December 2017
erster Gutachter: Prof. Dr. Henning Meyerhenke
zweiter Gutachter: Prof. Dr. Pierluigi Crescenzi

Elisabetta Bergamini: Algorithms for the Identification of Central Nodes in Large Real-
World Networks, © 2017

This document is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

ERKLÄRUNG

Ich versichere, diese Dissertation selbstständig angefertigt, alle benutzten Hilfsmittel voll-
ständig angegeben, und kenntlich gemacht zu haben, was aus Arbeiten anderer und eigener
Veröffentlichungen unverändert oder mit Änderungen entnommen wurde.

Karlsruhe, 2017

Elisabetta Bergamini

ACKNOWLEDGEMENTS

First of all, I thank my advisor Henning Meyerhenke for offering me the opportunity to
work in his group and for all the advice and support he gave me during the time of my
PhD. Thank you also for your trust, for giving me the chance to develop my own research
ideas and for always being willing to meet my needs. I would also like to thank Pierluigi
Crescenzi for agreeing to act as a second referee and taking the time to read my thesis
and travel to Karlsruhe. I am also very grateful to David Bader and Oded Green for their
hospitality and advice during my research stay in Atlanta.
A big thank also goes to my past and present colleagues. In particular, I would like

to thank Christian Staudt, Moritz von Looz and Roland Glantz, who accompanied me
from the very beginning of my PhD. Thank you for your help and support, and for all
the fun moments we had together. Thank you also to Charilaos (Harry/Efca) Tzovas for
always being able to put everyone in a good mood (sometimes by threatening to eat them,
but I guess the end justifies the means). Thank you also to Eugenio Angriman, Marcel
Radermacher, Tamara Mchedlidze and all the other colleagues on the third floor for making
lunch breaks always pleasant.
I also wish to thank all the (ex-)students I advised or collaborated with, in particular

Kolja Esders, Maximilian Vogel, Michael Wegner, Patrick Bisenius and Arie Slobbe: thank
you for all the great work you have done! My thanks also go to Matteo Riondato, for all
the precious feedback he gave me.
I am also grateful to my coauthors Michele Borassi, Andrea Marino, Lorenzo Severini,

Gianlorenzo D’Angelo and Yllka Velaj: I really enjoyed collaborating with you! Thank
you also to all my colleagues from the DFG SPP “Algorithms for BIG DATA”, in particu-
lar Mark Ortmann, David Veith, Mahyar Behdju, Manuel Penschuck, Michael Hamann,
Jan Hackfeld, Miriam Schlöter and Marsha Kleinbauer: thank you for all the interesting
discussions and fun we had at conferences, meetings and summer schools.
Special thanks also to Laurette Lauffer, Lilian Beckert and Ralf Kölmel for all their

help, without them I would have been lost.
A huge thanks also to my dear friends Julia, Vincenzo, Gabriele, Flavia, Dimitra, Ali,

Spiros, Sabrina and Oliver, for always supporting me and being there for me. Thank you
also for your warmth and hospitality in the last months, you have been like a second family
to me. I also thank Valeria and Martina for the great time we had during their stay in
Karlsruhe and Eleonora, Letizia, Sara, Adele and Eric, for being good friends in spite of
the distance. Thank you also to Ole for helping me improve my German!
I also wish to thank my parents Ilva and Giuseppe, my siblings and siblings-in-law

Chiara, Enrico and Matteo for their support, and my two wonderful nephews Francesco
and Riccardo for all the joy they have brought me.
Last but not least, a few words cannot describe how grateful I am to my boyfriend

Enrico for his continuous support, for his patience and for his love... thank you!

v

CONTENTS

i introduction 1
1 motivation and contribution 3

1.1 Network Analysis and Centrality Measures 3
1.2 Objectives and Methodology . 4
1.3 Outline and contribution . 5

2 shortest paths and centrality measures 11
2.1 Graph basics . 11
2.2 Distances in graphs . 11

2.2.1 Shortest-path distance . 12
2.2.2 Resistance distance . 13

2.3 Centrality Measures . 14
2.3.1 Node Centrality Measures . 14
2.3.2 Edge Centrality Measures . 18

3 dynamic shortest-path algorithms 21
3.1 Preliminaries . 21
3.2 Dynamic Algorithms: A Data-driven Motivation 22

3.2.1 Affected Nodes . 22
3.2.2 Real Edge Dynamics vs Random Updates 24

ii dynamic algorithms for betweenness centrality 31
4 overview of algorithms for betweenness centrality 33

4.1 Introduction . 33
4.2 Brandes’s algorithm (BA) . 33
4.3 Static Approximation Algorithms . 34
4.4 Dynamic Algorithms . 35

5 faster incremental betweenness centrality 37
5.1 Introduction . 37
5.2 Dynamic augmented APSP . 37

5.2.1 Algorithm by Kourtellis et al. (KDB) 38
5.2.2 Algorithm by Kas et al. (KWCC) 38
5.2.3 Faster augmented APSP update 39

5.3 Dynamic dependency accumulation . 40
5.3.1 Algorithm by Kourtellis et al. (KDB) 40
5.3.2 Algorithm by Kas et al. (KWCC) 41
5.3.3 Faster betweenness update . 42

5.4 Time complexity . 43
5.5 Experimental Results . 45

6 dynamic single-node betweenness centrality 49
6.1 Introduction . 49
6.2 Dynamic Betweenness for a Single Node 50

6.2.1 Initialization . 50
6.2.2 Update . 51

vii

6.2.3 Time complexities . 52
6.3 Experimental evaluation . 56

6.3.1 Running times of the dynamic algorithm for the betweenness of
one node . 56

6.3.2 Running times of the greedy algorithm for betweenness maximization 58
7 fully-dynamic betweenness approximation 63

7.1 Introduction . 63
7.2 RK algorithm . 64
7.3 New upper bounds on the vertex diameter 66

7.3.1 Directed unweighted graphs. 66
7.3.2 Undirected weighted graphs . 67
7.3.3 Directed weighted graphs. 68

7.4 Fully-dynamic approximation algorithms 68
7.4.1 Path subsitution. 68
7.4.2 Sampling new paths. 71
7.4.3 SSSP update in weighted graphs. 72
7.4.4 SSSP update in unweighted graphs. 75
7.4.5 Fully-dynamic VD approximation. 75
7.4.6 Combined dynamic betweenness approximation. 78
7.4.7 Complexity of the dynamic betweenness algorithms. 80

7.5 Experiments . 84
7.5.1 Accuracy. 86
7.5.2 New upper bound on VD for directed graphs. 87
7.5.3 Running times. 87

iii efficient computation of nodes with highest closeness cen-
trality 93

8 overview of algorithms for closeness centrality 95
8.1 Introduction . 95
8.2 Related Work . 95

9 computing top-k closeness centrality 99
9.1 Introduction . 99
9.2 Preliminaries . 100
9.3 Overview of the Algorithm . 101
9.4 Neighborhood-Based Lower Bound . 103
9.5 The updateBoundsBFSCut Function . 108
9.6 The updateBoundLB Function . 109
9.7 The Directed Disconnected Case . 111

9.7.1 The Neighborhood-Based Lower Bound 112
9.7.2 The updateBoundsBFSCut Function 113
9.7.3 The updateBoundsLB Function . 113
9.7.4 Computing α(v) and ω(v) . 113

9.8 Experimental Results . 115
9.8.1 Comparison with the State of the Art 115
9.8.2 Real-World Large Networks . 118

9.9 IMDB Case Study . 119
9.10 Wikipedia Case Study . 121

viii

10 computing top-k closeness centrality in fully-dynamic graphs129
10.1 Introduction . 129
10.2 Preliminaries . 130

10.2.1 Notation and Problem Definition 130
10.2.2 Static Top-k Closeness . 130

10.3 Dynamic Top-k Closeness Centrality . 132
10.3.1 Updating the Number of Reachable Nodes 132
10.3.2 Finding Affected Nodes . 132
10.3.3 Update after an edge insertion . 134
10.3.4 Update After an Edge Deletion . 135
10.3.5 Running Times and Memory Requirements 136

10.4 Experiments . 138
10.4.1 Experimental Setup . 138
10.4.2 Speedups on Recomputation . 139

11 scaling up group closeness maximization 151
11.1 Introduction . 151
11.2 Preliminaries . 152
11.3 Related work . 152

11.3.1 Greedy approximation algorithm 153
11.4 A scalable greedy algorithm . 153

11.4.1 Pruned SSSP . 154
11.4.2 Submodularity improvement . 155
11.4.3 Bit-parallel group closeness . 156

11.5 ILP formulation of group closeness . 157
11.6 Experiments . 157

11.6.1 Accuracy . 158
11.6.2 Speedup on Greedy . 158
11.6.3 Comparison with OSA . 160
11.6.4 Running time evaluation . 161
11.6.5 Greedy++ using bit vectors . 162
11.6.6 Group closeness versus top-k closeness 164

iv estimation of electrical closeness 169
12 estimation of electrical closeness 171

12.1 Introduction . 171
12.2 Preliminaries: Graphs as electrical networks. 171
12.3 Related Work . 172

12.3.1 Solving Laplacian linear systems. 172
12.3.2 Laplacian linear systems for network analysis. 173

12.4 Electrical closeness centrality . 173
12.5 Approximating electrical closeness . 174

12.5.1 Sampling-based approximation. 175
12.5.2 Projection-based approximation. 175

12.6 Experimental Evaluation . 176
12.6.1 Approximation algorithms. 177
12.6.2 Comparison with shortest-path closeness. 179
12.6.3 Correlation with degree. 180

ix

12.7 Conclusions . 182

v conclusion 185

bibliography 189

Appendices 199

x

L I ST OF F IGURES

Figure 1 Algorithm engineering cyclic process [111]. 5
Figure 2 Ranking of nodes in the karate graph based on their degree (left)

and their closeness centrality (right). The color and size of the nodes
indicate their centrality. 14

Figure 3 Nodes a and e have the same closeness but different harmonic values. 15
Figure 4 Ranking of nodes in the karate graph based on their degree (left)

and their betweenness centrality (right). The color and size of the
nodes indicate their centrality. 16

Figure 5 Ranking of edges in the karate graph based on their betweenness
(left) and their spanning centrality (right). The color of the edges
indicate their centrality. 19

Figure 6 Edge insertion connecting two components. 22
Figure 7 Kolmogorov-Smirnov statistic for the distribution of affected node

pairs generated by real insertions and the distribution generated
by random insertions and random deletions, respectively. 26

Figure 8 Correlation between number of affected node pairs and sum of the
degrees of the two endpoints, product of the degrees of the two
endpoints and distance between the endpoints before the insertion. 26

Figure 9 Upper bound on the percentage of affected node pairs (i.e. pairs
that change their distance) over 1000 real edge insertions, for the
networks of Table 1. 28

Figure 10 Upper bound on the percentage of affected node pairs (i.e. pairs
that change their distance) over 1000 random edge insertions, for
the networks of Table 1. 29

Figure 11 Upper bound on the percentage of affected node pairs (i.e. pairs
that change their distance) over 1000 random edge deletions, for
the networks of Table 1. 30

Figure 12 Insertion of (u, v). 38
Figure 13 Affected targets (in green) and affected sources (x1,x2,u). 39
Figure 14 Running times of iBet, KDB and KWCC for 100 edge updates on

oregon1-010526. Left: times for the APSP update step. Right:
times for the dependency update step. 47

Figure 15 Left: Running times of iBet, KDB, KWCC and BA on the oregon1-010526
graph for 100 edge updates. Right: Average speedups on recompu-
tation with BA (geometric mean) over all networks of Table 5 for
the three incremental algorithms. The column on the left shows the
speedup of the complete update, the one in the middle the speedup
of the APSP update only and the one on the right the speedup of
the dependency update only. 47

xi

Figure 16 Average speedups on recomputation with BA (geometric mean) over
all networks of Table 5, with random weights. The column on the
left shows the speedup of the complete update, the one in the mid-
dle the speedup of the APSP update only and the one on the right
the speedup of the dependency update only. 48

Figure 17 Insertion of (u, v) affects the betweenness of nodes lying in the old
shortest paths (red). 50

Figure 18 Possible positions of x with respect to the new shortest paths after
the insertion of edge (u, v). On the left, x lies between the source
s and u. In the center, x lies between v and the target t. On the
right, x does not lie on any new shortest path between s and t. . . 52

Figure 19 Top: Running time of AI and SI as a function of the number of
affected node pairs for two directed graphs (left: ego-gplus, right:
munmun-digg). Bottom: Same as the two plots above, but zoomed
on the running times of SI. The points are the computed running
times, the lines are the results of a linear regression and the area
around the lines is a 95% confidence interval for the regression. . . 58

Figure 20 Top: Running time of AI and SI as a function of the number of
affected node pairs for two undirected graphs (left: dr-melanog,
right: Homo-sapiens). Bottom: same as the two plots above, but
zoomed on the running times of SI. The points are the computed
running times, the lines are the results of a linear regression and the
area around the lines is a 95% confidence interval for the regression. 59

Figure 21 Sampled paths and score update in the RK algorithm 64
Figure 22 Path (C1, ...,Cl) of the DAG G of SCCs. Each SCC Ci has its own

upper bound ṼDSC(Ci) and ṼDDIR is computed as
∑
i=1,..,l ṼDSC(Ci). 67

Figure 23 Updating shortest paths and betweenness scores 69
Figure 24 Relative rank error on PGPgiantcompo for nodes ordered by rank.

Left: relative errors of all nodes. Right: relative errors of the 100
nodes with highest betweenness. 86

Figure 25 Speedups of DA on RK, with ε = 0.05 and with batches of different
sizes. Left: real unweighted networks using real dynamics. Right:
hyperbolic unit-disk graphs of different sizes. 88

Figure 26 Left: speedups of DA on RK in real unweighted graphs under ran-
dom updates. Right: Speedups of DAD on RK on the facebook
directed graph using real dynamics. 89

Figure 27 Relation between nodes at distance 4 for s and the neighbors of s.
The red nodes represent the nodes at distance 3 for w1 (left), for
w2 (center) and for w3 (right). 104

Figure 28 Growth of performance ratio with respect to the number of nodes
(k = 1). 119

Figure 29 Upper bound on c(y) computed by the NBCut algorithm. For
nodes up to distance dcut(y) we know the exact distance. Then,
ñdcut(y)+1 nodes are assumed to be at distance dcut(y) + 1 and the
remaining at distance dcut(y) + 2. 131

Figure 30 Left: u and v are far-away nodes for y. Right: u is a boundary node.136

xii

Figure 31 Geometric mean of the average speedups over all tested networks,
for different values of k. The upper part of the plot shows the
results for street networks, whereas the lower part shows the re-
sults for complex networks. Detailed numbers can be found in Ta-
ble 36, 37, 38 and 39 for complex networks, and Tables 44, 45, 46
and 47 for street networks. 141

Figure 32 Pruned SSSP. If a node w is such that dS [w] ≤ d(u,w), the same
holds for the whole SSSP subtree rooted in w. In the figure, black
nodes represent elements of S. 155

Figure 33 Running times of Greedy and Greedy++ for different group sizes
(log-log scale). left: running times for ca-HepTh; right: running
times for oregon_1_010526. 160

Figure 34 Closeness centrality of the solution found by the methods for differ-
ent group sizes and different graphs. The plot shows the results of
Greedy++, OSA with sample sizes of 1000 and 2000, and the group
consisting of the k nodes with highest degree. 160

Figure 35 Running times of Greedy++ and OSA with sample sizes of 1000
and 2000 for k = 20 (left) and k = 100 (right). 161

Figure 36 Percentage overlap between the group found by Greedy++ and the
k nodes with highest closeness (Top-k) and between the group found
by Greedy++ and the k nodes with highest degree (Degree). 164

Figure 37 Shortest-path closeness centrality cannot distinguish between node
x1 and node x2. 174

Figure 38 Time vs. Spearmann coefficient for the two approximation algo-
rithms, using different parameters. The points represent the aver-
age among the networks of Table 58. 179

Figure 39 Time vs. maximum relative error for the two approximation algo-
rithms, using different parameters. The points represent the average
among the networks of Table 58. 179

Figure 40 Relative standard deviation for shortest-path and electrical closeness.180
Figure 41 Resilience to noise for different percentages of inserted edges. The

points represent the average among the networks of Table 58. . . . 180
Figure 42 Correlation with cA for complex networks. 181
Figure 43 Correlation with cA for street networks. 182

xiii

L I ST OF TABLES

Table 1 Networks with real edge dynamics. 23
Table 2 Upper bounds |A| on the percentage of affected node pairs in net-

works with real dynamics. The fourth column contains the average
value of |A| over the 1000 edge insertions, the fifth column the
maximum, and the last column the standard deviation. 24

Table 3 Upper bounds |A| on the percentage of affected node pairs under
random insertions. The fourth column contains the average value
of |A| over the 1000 edge updates, the fifth column the maximum,
and the last column the standard deviation. 24

Table 4 Upper bounds |A| on the percentage of affected node pairs under
random deletions. The fourth column contains the average value
of |A| over the 1000 edge updates, the fifth column the maximum,
and the last column the standard deviation. 25

Table 5 Graphs used in the experiments and running time of the static
algorithm BA. 45

Table 6 The table shows the average, maximum and 75-th percentile of the
speedups of the incremental algorithms on BA. The best result is
shown in bold font. 46

Table 7 Average running times of the betweenness algorithms on directed
real-world graphs. The last two columns report the standard devi-
ation of the running times of AI and SI over the 100 edge insertions. 57

Table 8 Average running times of the betweenness algorithms on undirected
real-world graphs. The last two columns report the standard devi-
ation of the running times of AI and SI over the 100 edge insertions. 57

Table 9 Speedups on the static algorithm and on the dynamic algorithm
for all nodes on directed networks. For both Stat and AI, the first
column reports the geometric mean of the speedups over the 100
insertions, the second column reports the maximum speedups and
the third column the minimum speedup. 60

Table 10 Speedups on the static algorithm and on the dynamic algorithm for
all nodes on undirected networks. For both Stat and AI, the first
column reports the geometric mean of the speedups over the 100
insertions, the second column reports the maximum speedups and
the third column the minimum speedup. 61

Table 11 The left part of the table reports the running times (in seconds) of
Greedy on directed real-world graphs for different values of k. The
right part shows the standard deviations. 61

Table 12 The left part of the table reports the running times (in seconds)
of Greedy on undirected real-world graphs for different values of k.
The right part shows the standard deviations. 62

Table 13 Overview of small real-world networks used in the experiments. . . 84

xiv

Table 14 Overview of real dynamic graphs used in the experiments, taken
from http://konect.uni-koblenz.de/. 85

Table 15 Maximum and average absolute errors on real networks for different
values of ε (δ = 0.1). The values are averaged over 10 runs. 86

Table 16 Lower bound on VD (VD?) and upper bounds (our new bound ṼD
and the one proposed in RK, ṼDRK) on real-world networks. 87

Table 17 Times and speedups of DA on RK in unweighted real graphs under
real dynamics and random updates, for batch sizes of 1 and 1024. . 88

Table 18 Times and speedups of DAW on RK in weighted real graphs under
real dynamics and random updates, for batch sizes of 1 and 1024. . 89

Table 19 Times and speedups of DA on RK in hyperbolic unit-disk graphs,
for batch sizes of 1 and 1024. 89

Table 20 Notations used. 100
Table 21 Complex networks: geometric mean and standard deviation of the

edge traversal ratios of the algorithm in [97] (Olh), the algorithm
in [96] (Ocl), and the four variants of the new algorithm (DegCut,
DegBound, NBCut, NBBound). 116

Table 22 Street networks: geometric mean and standard deviation of the
edge traversal ratios of the algorithm in [97] (Olh), the algorithm
in [96] (Ocl), and the four variants of the new algorithm (DegCut,
DegBound, NBCut, NBBound). 117

Table 23 Big networks: geometric mean and standard deviation of the edge
traversal ratios of the best variant of the new algorithm (NBCut
in complex networks, NBBound in street networks). 118

Table 24 Detailed ranking of the IMDB actor graph. 120
Table 25 Detailed edge traversal ratios on the IMDB actor graph. 121
Table 26 Top 10 pages in Wikipedia directed graph, both in the standard

graph and in the reversed graph. 122
Table 27 Detailed comparison of the edge traversal ratios, with k = 1. . . . 124
Table 28 Detailed comparison of the edge traversal ratios, with k = 10. . . . 125
Table 29 Detailed comparison of the edge traversal ratios, with k = 100. . . 126
Table 30 Detailed comparison of the edge traversal ratios on big networks.

For street networks, the results refer to NBBound, whereas for
complex networks they refer to NBCut. 127

Table 31 Overview of directed complex networks used in the experiments. . . 138
Table 32 Overview of undirected complex networks used in the experiments. 138
Table 33 Overview of street networks used in the experiments. 139
Table 34 Impact of optimizations in directed networks for k = 10, averaged

over 100 insertions. The column “affected” contains the average
number of affected nodes and “% affected” its percentage of the to-
tal number of nodes. The next three columns report the percentage
of affected nodes that can be skipped for each optimization and the
last column the percentage of affected nodes for which a BFSCut
has been run. 142

xv

http://konect.uni-koblenz.de/

Table 35 Impact of optimizations in undirected complex networks for k = 10,
averaged over 100 insertions. The column “affected” contains the
average number of affected nodes and “% affected” its percentage
of the total number of nodes. The next three columns report the
percentage of affected nodes that can be skipped for each optimiza-
tion and the last column the percentage of affected nodes for which
a BFSCut has been run. 142

Table 36 Speedups on recomputation over 100 edge insertions in directed
complex networks, for k ∈ {1, 10, 100}. The column “gmean” con-
tains the geometric mean of the achieved speedups, “min” and
“max” the minimum and the maximum speedup. 143

Table 37 Speedups on recomputation over 100 edge insertions in undirected
complex networks, for k ∈ {1, 10, 100}. The column “gmean” con-
tains the geometric mean of the achieved speedups, “min” and
“max” the minimum and the maximum speedup. 143

Table 38 Speedups on recomputation over 100 edge deletions in directed
complex networks, for k ∈ {1, 10, 100}. The column “gmean” con-
tains the geometric mean of the achieved speedups, “min” and
“max” the minimum and the maximum speedup. 144

Table 39 Speedups on recomputation over 100 edge deletions in undirected
complex networks, for k ∈ {1, 10, 100}. The column “gmean” con-
tains the geometric mean of the achieved speedups, “min” and
“max” the minimum and the maximum speedup. 144

Table 40 Update times for 100 random edge insertions with k ∈ {1, 10, 100}
in directed complex networks. The columns “static” and “dynamic”
contain the average time for the static and dynamic algorithm,
respectively. 145

Table 41 Update times for 100 random edge insertions with k ∈ {1, 10, 100}
in undirected complex networks. The columns “static” and “dy-
namic” contain the average time for the static and dynamic algo-
rithm, respectively. 145

Table 42 Update times for 100 random edge deletions with k ∈ {1, 10, 100} in
directed complex networks. The columns “static” and “dynamic”
contain the average time for the static and dynamic algorithm,
respectively. 146

Table 43 Update times for 100 random edge deletions with k ∈ {1, 10, 100} in
undirected complex networks. The columns “static” and “dynamic”
contain the average time for the static and dynamic algorithm,
respectively. 146

Table 44 Speedups on recomputation over 100 edge insertions in directed
street networks, for k ∈ {1, 10, 100}. The column “gmean” contains
the geometric mean of the achieved speedups, “min” and “max”
the minimum and the maximum speedup. 147

Table 45 Speedups on recomputation over 100 edge insertions in undirected
street networks, for k ∈ {1, 10, 100}. The column “gmean” contains
the geometric mean of the achieved speedups, “min” and “max”
the minimum and the maximum speedup. 147

xvi

Table 46 Speedups on recomputation over 100 edge deletions in directed
street networks, for k ∈ {1, 10, 100}. The column “gmean” contains
the geometric mean of the achieved speedups, “min” and “max”
the minimum and the maximum speedup. 147

Table 47 Speedups on recomputation over 100 edge deletions in undirected
street networks, for k ∈ {1, 10, 100}. The column “gmean” contains
the geometric mean of the achieved speedups, “min” and “max”
the minimum and the maximum speedup. 148

Table 48 Update times for 100 random edge insertions with k ∈ {1, 10, 100}
in directed street networks. The columns “static” and “dynamic”
contain the average time for the static and dynamic algorithm,
respectively. 148

Table 49 Update times for 100 random edge insertions with k ∈ {1, 10, 100}
in undirected street networks. The columns “static” and “dynamic”
contain the average time for the static and dynamic algorithm,
respectively. 148

Table 50 Update times for 100 random edge deletions with k ∈ {1, 10, 100}
in directed street networks. The columns “static” and “dynamic”
contain the average time for the static and dynamic algorithm,
respectively. 149

Table 51 Update times for 100 random edge deletions with k ∈ {1, 10, 100} in
undirected street networks. The columns “static” and “dynamic”
contain the average time for the static and dynamic algorithm,
respectively. 149

Table 52 Comparison with optimum on small real-world networks, for k =

10. The fifth and the sixth columns show the objective function of
Eq. (29) for the optimum and Greedy++, respectively. 159

Table 53 Comparison with optimum on small real-world networks, for k = 2.
The fifth and the sixth columns show the objective function of
Eq. (29) for the optimum and Greedy++, respectively. 159

Table 54 Comparison with optimum on small real-world networks, for k =

20. The fifth and the sixth columns show the objective function of
Eq. (29) for the optimum and Greedy++, respectively. The results
for caenorhab-eleg are not included, because the CPLEX solver
did not find the optimum within 13 hours. 159

Table 55 Networks used in the experiments and performance of Greedy++
for k = 10. The fourth and fifth columns report the sequential
and parallel running times with 16 threads, respectively. The last
column reports the speedup of the parallel implementation on the
sequential one. 162

Table 56 Performance of Greedy++ for k = 20 and k = 100, using 16 threads.163
Table 57 Performance of the new algorithm for group closeness using pruned

SSSPs (Greedy++) and using bit vectors (bitGreedy++). The first
three columns represent the speedup of bitGreedy++ on Greedy++
(i.e. the ratio between their running times). The last two columns
report the memory requirements. 163

Table 58 Properties of smaller benchmark instances used. 177

xvii

Table 59 Properties of large benchmark instances used. 178
Table 60 Comparison between exact (= within desired tolerance τ) and Sam-

pling approach, with 20 pivots. The first two columns report the
running times of the two approaches, when computing electrical
closeness on 100 nodes. The third column reports the Spearmann
rank correlation coefficient between the approaches and the fourth
the percentage of rank inversions. 182

Table 61 Running time of Sampling with 20 pivots when computing cEC of
a single node. 183

xviii

ZUSAMMENFASSUNG

Network Science ist ein wachsendes Forschungsfeld mit dem Ziel, nützliche Informatio-
nen aus Netzwerkdaten (d.h. Daten zu den Beziehungen zwischen Entitäten) zu gewinnen.
Diese Art von Daten – die oft als Netzwerke bezeichnet werden – lasst sich auf natür-
liche Weise mit Graphen modellieren, sodass zahlreiche Erkenntnisse der Graphentheorie
genutzt werden können, um Fragen zu den Daten zu beantworten.
Eine der häufigsten Aufgaben der Network Science ist die Identifizierung der beson-

ders wichtigen Entitäten eines Netzwerks. Zum Beispiel könnte es Knoten oder Verbin-
dungen geben, deren Entfernung zu einer größeren Störung oder deren Einfügung zu einer
wesentlichen Änderung des Netzwerkflusses führt.

In den letzten Jahren wurde oft versucht, diesen anwendungsabhängigen Begriff von
Wichtigkeit zu formalisieren. Auf diese Weise wurden mehrere Zentralitätsmaße (also
Funktionen, die den Knoten oder Kanten eines Netzwerks einen Wert zuweisen, der ihre
Wichtigkeit widerspiegelt) vorgeschlagen. Zentralitätsmaße kann man – je nachdem, ob sie
den gesamten Graphen oder nur einen kleinen Teil den Knoten herum berücksichtigen – als
lokal oder global klassifizieren. Lokale Zentralitätsmaße (wie z.B. der Grad eines Knotes)
können typischerweise Knoten schlecht charakterisieren und komplexe Mechanismen, die
das Netzwerk beinflussen, nicht aufdecken. Anderseits ist die Berechnung von globalen
Zentralitätsmaßen in der Regel aufwändiger, insbesondere für viele heutige Netzwerke, die
Millionen oder sogar Milliarden von Knoten haben.
Viele Netzwerke, die von Interesse sind – wie z.B. soziale Netzwerke und der Web-Graph

– sind nicht nur sehr groß, sondern entwickeln sich auch kontinuierlich im Laufe der Zeit,
indem neue Verbindungen geschaffen und alte gekappt werden. Eine einzige Analyse des
Netzwerkes ist also möglicherweise nicht ausreichend, um die Dynamik des Systems zu
verstehen. Dynamische Algorithmen hingegen erlauben es, die zur Zentralitätsberechnung
verwendeten Daten mehrmals zu aktualisieren, und dabei die Laufzeit in Grenzen zu hal-
ten.
Hauptziel dieser Arbeit ist es, skalierbare Algorithmen zu entwickeln, mit denen man

immer noch relevante Informationen extrahieren kann. Zu den Techniken, die zu diesem
Zweck eingesetzt wurden, gehören Näherungsverfahren, die Verwendung effizienter Daten-
strukturen und die Entwicklung von Heuristiken, die bestehende Algorithmen effizienter
machen.
Im Allgemeinen folgt diese Arbeit dem Paradigma des Algorithm Engineering, welches

neben dem Entwurf und der theoretischen Analyse auch die Implementierung sowie die
systematische experimentelle Evaluation der Verfahren berücksichtigt.
Die Arbeit lässt sich in vier Abschnitte gliedern. Alle betrachteten Probleme beziehen

sich auf die effiziente Berechnung von Zentralitätsmaßen in großen und/oder dynamischen
Netzwerken, jedoch variieren die angewandten Techniken je nach Zentralitätsmaß und
Szenario. Im Folgenden werden kurz der Inhalt und die Beiträge jedes Teils dieser Arbeit
zusammengefasst.

dynamische algorithmen für betweenness centrality. Die Between-
ness Centrality ist ein bekanntes Zentralitätsmaß, das auf dem Zählen kürzester Wege

xix

basiert. Für einen Knoten v ∈ V wird angenommen, dass er umso zentraler liegt, je mehr
er an möglichen Kommunikationswegen zwischen Paaren von Knoten beteiligt ist. Es wer-
den alle kürzesten Wege zwischen Paaren von Knoten genutzt, daher braucht die Berech-
nung von Betweenness Centrality mindestens eine quadratische Laufzeit in der Anzahl der
Knoten. Bei Netzwerken, die sich im Laufe der Zeit ändern, wäre eine Neuberechnung
nach jeder Änderung zu teuer für große Eingaben.
Kapitel 5 beschreibt einen dynamischen Algorithmus, der die Betweenness von allen

Knoten nach der Einfügung neuer Kanten aktualisiert. Unser Algorithmus iBet ist ef-
fizienter als zwei der besten bereits bestehenden Methoden [67, 72]; seine Laufzeit ist
durchschnittlich um eine Größenordnung schneller.
Danach (Kapitel 6) wird das Problem der Aktualisierung eines einzelnen Knoten betra-

chtet. Obwohl ein dynamischer Algorithmus wie iBet für diese Aufgabe genutzt werden
könnte, ist die Aktualisierung nur eines einzelnen Knotens auch effizienter möglich. Es
wird daher für dieses Szenario ein dynamischer Algorithmus vorgeschlagen und durch Ex-
perimente verdeutlicht, dass die gewählte Methode bis zu zwei Größenordnungen schneller
als iBet ist. Dieses Ergebnis unterscheidet sich vom statischen Fall, wo die Berechnung
des Wertes eines einzelnen Knotens nicht wesentlich schneller ist, als die Berechnung aller
Werte.

Die bisher vorgeschlagenen Algorithmen sind jeweils exakt und zielen auf Netzwerke mit
bis zu Zehntausenden von Knoten und Kanten. Kapitel 7 beschreibt den ersten dynamis-
chen Algorithmus, der eine Approximation von Betweenness aktualisiert. Unsere neue
Methode basiert auf dem statischen Approximationsalgorithmus RK [107] und erbt seine
Garantie auf die Approximationsgüte: Nach jeder Aktualisierung garantiert der Algorith-
mus, dass sich die approximierten Betweenness-Werte höchstens ε von den exakten Werten
mit Wahrscheinlichkeit 1− δ oder höher unterscheiden, wobei ε und δ beliebig kleine Kon-
stanten sind. Unsere Experimente zeigen, dass unsere Methode um mehrere Größenord-
nungen schneller als RK ist. Sie zeigen auch ein deutlich verbessertes Skalierungsverhalten
im Vergleich zu exakten Ansätzen – z.B. kann unsere Methode in wenigen Sekunden Be-
tweenness in einem Netzwerk mit 36 Millionen Kanten aktualisieren.
Einige der in diesem Teil vorgestellten Ergebnisse wurden als [22], [18], [16] und [17]

veröffentlicht.

berechnung von knoten mit höchster closeness centrality. Die
Closeness Centrality ist definiert als die Umkehrung der durchschnittlichen Graphdistanz
zwischen einem Knoten und den anderen Knoten des Netzwerks. Um die Berechnung der
Closeness für alle Knoten zu durchführen, muss man ein APSP (All-Pairs Shortest Path)
lösen. Allerdings braucht man für viele Anwendungen nur die zentralsten Knoten, anstatt
die Closeness aller Knoten zu finden.
In diesem Teil schlagen wir zunächst Algorithmen vor, die die k Knoten mit höchster

Closeness in Netzwerken mit kleinen bzw. großen Durchmessern effizient finden (Kapi-
tel 9). Die vorgeschlagenen Techniken berechnen verschiedene obere Schranken für die
Closeness der Knoten und stoppen die Berechnung, wenn k Knoten gefunden wurden,
deren Closeness höher ist als die obere Schranken der anderen Knoten. Mit unserem neuen
Ansatz können wir z.B. die Top-10-Knoten mit der höchsten Closeness im gesamten nor-
damerikanischen Straßennetzwerk (mit 36 Millionen Kanten) in circa einer Stunde finden,
während bestehende Methode wie z.B. [97] selbst nach Tagen nicht terminieren würden.

xx

In Kapitel 10 betrachten wir dann das Problem der Aktualisierung der k Knoten mit
höchster Closeness in dynamischen Netzwerken. Unsere Algorithmen, die auf den statis-
chen Top-k-Algorithmen von Kapitel 9 basieren, verwenden Informationen von früheren
Berechnungen, um unnötige Operationen zu vermeiden. Unsere experimentellen Ergeb-
nisse zeigen, dass in vielen Fällen unsere dynamischen Algorithmen zwei Größenordnungen
schneller sind als die statischen Algorithmen von Kapitel 9; bei einigen großen Graphen
erreichen wir sogar durchschnittliche Speedups zwischen 103 und 104.
Kapitel 9 und Kapitel 10 zielen darauf ab, individuell zentrale Knoten zu finden. Allerd-

ings kann es in einigen Anwendungen erforderlich sein, eine Gruppe von Knoten zu
finden, die als Ganzes zentral sind. Group Closeness Maximization (GCM) zielt darauf
ab, eine Gruppe von k Knoten mit der minimalen durchschnittlichen Distanz zu den
anderen Knoten zu finden. In Kapitel 11 schlagen wir Techniken vor, um einen Greedy-
Algorithmus [37] für GCM so abzuändern, dass seine Laufzeit skaliert, d.h. auch für große
Eingaben vertretbar bleibt. Unsere Methode findet eine Gruppe G, so dass die Closeness
c(G) von G mindestens (1− 1/e)c(G?) ist, wobei G? das Optimum ist. In Netzwerken
mit bis zu hundert Millionen Kanten finden wir eine Lösung in Minuten, während der
Greedy-Algorithmus in [37] für Netzwerke mit Hunderttausenden von Kanten mehrere
Tage dauern würde.

Einige der in diesem Teil vorgestellten Ergebnisse wurden als [19], [24] und [14] veröf-
fentlicht.

nährung der electrical closeness. In diesem letzten Teil betrachten wir
ein Zentralitätsmaß, das – ebenso wie die traditionelle Closeness – die umgekehrte durch-
schnittliche Distanz zu den anderen Knoten anzeigt. Jedoch bedeutet Distanz in diesem
Fall Resistance Distance [33]. Die Resistance Distance zwischen zwei Knoten u und v ist
die erwarteten Anzahl von Schritten, die ein RandomWalk, der in u startet, benötigt, um v

zu erreichen und dann zum ersten Mal zu u zurückzukehren (bis auf einen multiplikativen
Faktor).
Leider ist die Berechnung der Electrical Closeness teuer: sie erfordert, eine n×n-Matrix

zu invertieren, wobei n die Anzahl der Knoten ist. In Kapitel 12 stellen wir zwei Approxima-
tionsalgorithmen vor, die auf der Lösung linearer Gleichungssysteme basieren und zu sehr
genauen Ergebnissen in der Praxis führen. Mit ihnen können wir nun eine Schätzung der
Electrical Closeness eines Knotens in Netzwerken mit zehn Millionen Knoten innerhalb von
Sekunden oder wenigen Minuten berechnen. Darüber hinaus zeigen unsere Experimente,
dass die Electrical Closeness zwischen den Knoten deutlich besser als die Kürzester-Pfad-
Closeness unterscheiden kann (d.h. sie führt zu einem breiteren Intervall der Werte). Sie
ist zudem auch wesentlich widerstandsfähiger gegen verrauschte Daten - auf diese Weise
zeigen wir, dass zwei bekannte Nachteile der Kürzester-Pfad-Closeness von der elektrischen
Variante gemildert werden.

Ergebnisse wurden als [20] veröffentlicht.

xxi

ABSTRACT

Network science is a growing field of study whose aim is essentially to discover useful
information from network data, i.e. data on relations between entities. This kind of data –
often referred to as networks – can be naturally modeled with graphs, making it possible
to use the many existing results from graph theory to answer questions on the data.
Among these questions, one of the most natural is whether there are entities in the

network that are particularly important. For instance, there might be nodes or connections
whose removal leads to a disruption or whose insertion generates a major change in the
network flow.
Recent years have seen several attempts to formalize this clearly application-dependent

notion of importance. As a result, several centrality measures (i.e., functions that associate
to the nodes or edges of a network a value indicating their importance) have been intro-
duced. Depending on whether they take the whole graph into account or just a limited
subset of it, one can distinguish between local and global centrality measures. Local cen-
trality measures (such as the degree of nodes) are mostly intuitive and easy to compute,
but they are typically unable to differentiate well and to reveal insights on more complex
mechanisms affecting the network. On the other hand, computing global centrality mea-
sures is typically an expensive task, especially for many today’s networks having millions
or billions of connections.
In addition to being massive in size, many networks of interest – such as social networks

and the Web graph – evolve continuously over time, creating new connections and deleting
existing ones. A static analysis of a specific snapshot of the network might not be sufficient
to understand the dynamics of the underlying system, raising the need for algorithms that
can efficiently keep track of centrality in evolving graphs.
Achieving scalability while still being able to extract relevant information is the main

goal of this work. Techniques employed to this end include approximation, efficient data
structures and the use of heuristics to reduce redundant work in existing algorithms.
In general, the research presented in this work has been carried out following the algo-

rithm engineering paradigm. Differently from purely theoretical analysis, algorithm engi-
neering does not only focus on design and theoretical analysis, but also on implementation
and systematic experimental evaluation.
This work is divided into three main parts. All considered problems are related to

the efficient computation of centrality in large and/or evolving networks, but the used
techniques vary considerably, depending on the targeted centrality measures and scenarios.
In the following, we briefly summarize the content and contributions presented in each part.

dynamic algorithms for betweenness centrality. Betweenness central-
ity is a popular measure which ranks nodes according to their participation in the shortest
paths of the network. A node v ∈ V is therefore considered to be central when it lies in
many shortest paths between other pairs of nodes. Because it requires all shortest paths
between node pairs, the computation of betweenness is at least quadric in the number of
nodes. In networks that change over time, recomputing betweenness from scratch after
each update would be too expensive, in particular for large instances.

xxiii

In Chapter 5, we first propose an algorithm for updating the betweenness centrality of all
nodes after edge insertions. Our algorithm builds on two existing dynamic approaches [67,
72] and improves on them by identifying and significantly reducing redundant operations.
Our experiments show that the proposed approach, which we call iBet, improves the state
of the art by about one order of magnitude on average.
We then consider in Chapter 6 the problem of updating the betweenness centrality of a

single node. Although a dynamic algorithm such as iBet could be used for this task, we no-
tice that the update of a single node can be carried out much more efficiently. We therefore
propose a new dynamic algorithm for this scenario and compare it experimentally against
iBet, showing considerably improved running times – of up to two orders of magnitude on
the largest tested instances. Interestingly, this is in contrast to the static case, for which
computing the betweenness of a single node requires all pairwise distances and is therefore
not significantly faster than computing betweenness for all nodes.
Both algorithms proposed so far are exact and therefore target networks with up to

tens of thousands of nodes and edges. Chapter 7 describes the first dynamic algorithm
that updates an approximation of betweenness centrality. Our new method builds on the
static approximation algorithm RK [107] and inherits its theoretical guarantee on the
approximation quality: After each update, the approximated betweenness values differ by
at most ε from the exact values with probability at least 1− δ, where ε and δ can be
arbitrarily small constants. Our experiments show that our new approach is orders of
magnitude faster than RK and also has a much improved scaling behavior compared to
exact approaches – e.g., we can update betweenness scores in a network with 36 million
edges in a few seconds on typical workstation hardware.
Some of the results presented in this part have been published as [22], [18], [16] and [17].

computation of nodes with highest closeness centrality. Closeness
centrality is defined as the inverse of the average shortest-path distance between one node
and the other nodes of the network. Computing closeness for all nodes requires to solve
an APSP (All-Pairs Shortest Path). However, since many applications are interested in
finding the most-central nodes rather than the score of each node, a natural question
is whether the top-k nodes with highest closeness can be found faster than computing
closeness for all nodes.
In this part, we first propose algorithms that allow us to efficiently find the k nodes with

highest closeness in networks with small and large diameters, respectively (Chapter 9). The
proposed techniques compute different upper bounds on the closeness values and stop the
computation when k nodes are found whose closeness is higher than the bounds of the
other nodes. Using our new approach, for example, we are able to find the top-10 nodes
with highest closeness in the whole street network of North America (with 36 millions
edges) in about one hour, where existing methods such as [97] would not terminate in
days.
We then consider in Chapter 10 the problem of keeping track of the k nodes with

highest closeness centrality in dynamic networks. Our algorithms build on the static top-k
closeness algorithms presented in Chapter 9 and use information obtained during earlier
computations to omit unnecessary work. Our experimental results show that, on many
instances, our dynamic algorithms are two orders of magnitude faster than recomputation;
on some large graphs, we even reach average speedups between 103 and 104.

xxiv

Chapter 9 and Chapter 10 aim at finding nodes that are individually central. However,
for some applications it might be required to find a group of nodes that is central as a
whole. Group Closeness Maximization (GCM) aims at finding a group of k nodes with the
minimum average shortest path distance to the remaining nodes. We propose in Chapter 11
techniques for reducing the running time and memory requirements of an existing greedy
algorithm [37] for GCM. Our method finds a solution G such that its closeness c(G) is at
least (1− 1/e)c(G?), where G? is the group with maximum closeness. With our method
we can now approximate the group with maximum closeness on networks with up to
hundreds of millions of edges in minutes or at most a few hours, whereas a straightforward
implementation of the algorithm in [37] would take several days already on networks with
hundreds of thousands of edges.
Some of the results presented in this part have been published as [19], [24] and [14].

approximation of electrical closeness. In this last part, we consider a
centrality measure which, similarly to traditional closeness, indicates the inverse average
distance to the other nodes. However, in this case distance means resistance distance [33].
The resistance distance between two nodes u and v is defined as the expected number of
steps taken by a random walk starting in u to reach v and then return to u for the first
time (up to a multiplicative factor).
Unfortunately, electrical closeness is an expensive measure: an exact computation re-

quires to invert a n×n matrix, where n is the number of nodes. In Chapter 12, we present
two approximation algorithms based on solving linear systems and leading to very accurate
results in practice. Using them we are now able to compute an estimation of electrical close-
ness on networks with tens of millions of nodes within seconds or a few minutes. Also, our
experiments indicate that electrical closeness can discriminate among nodes significantly
better than traditional shortest-path closeness and is also considerably more resistant to
noise – we thus show that two known drawbacks of shortest-path closeness are alleviated
by the electrical variant.
The results presented in this part have been published as [20].

xxv

Part I

I N T RO D U C T I O N

1
MOTIVATION AND CONTRIBUTION

1.1 network analysis and centrality measures

Most complex systems, both artificial and living, are comprised of interacting components
whose behavior is typically much simpler than the one of the overall system. It is often
the case that a shift of perspective towards the interconnections between parts and the
structure of these interconnections can reveal important insights about the underlying
system. For example, a recent study performed on the Facebook social network has shown
that a person’s romantic partner can be identified with high accuracy, without relying on
any data other than the connections between users [7].
Network science is an emerging discipline investigating the properties of complex systems

based on their relational structure. Data indicating relations between entities or individ-
uals are often referred to as networks. In addition to the romantic partnership example
mentioned above, network models have been used to shed light on a variety of complex
phenomena, including the causes of obesity, the diffusion of infectious diseases, the neural
correlates of Alzheimer’s disease and the propagation of viruses through the Internet [39,
99, 128], just to mention a few examples. One of the reasons behind the success of network
models can be attributed to their very natural representation as graphs, mathematical
objects consisting of a set of nodes and a set of edges connecting node pairs. This implies
that the rich existing theory about graphs and their properties can be used to extract
insights on the system under study.
Among others, a very common task in network analysis is the identification of the most

“important” nodes of a network. For instance, there might be nodes or connections whose
removal leads to a disruption or whose insertion generates a major change in the network
flow. There might as well be elements from which information can spread quickly over the
whole network and others that can be easily reached. The first attempts to formally define
this notion of importance date back to the late 1940s, when Alex Bavelas and his research
group at MIT conducted some experiments in the context of communication patterns
and group collaboration [11]. The results suggested that centrality was related to group
efficiency in problem-solving, and agreed with the subjects’s perception of leadership.
In the following decades, several centrality measures (i.e., functions defined on the nodes

or edges of a network indicating their importance) have been introduced and employed in
a multitude of contexts. For example, it has been show experimentally in [5] that some
centrality measures are most correlated to epidemic spreading, whereas others can better
explain rumor dynamics. Other centrality measures have been used to understand the
wealth of families in the 15th-century Florence based on marriages and financial transac-
tions [98], and others to explain the dominance of early Moscow based on the network of
trade in the 12th and 13th century [100]. In social network analysis, centrality measures
are used to identify important or influential actors and search engines employ centrality
to rank web pages [32].
Depending on their scope in the graph, one can distinguish between local and global

centrality measures. For instance, the number of connections of a node is a local measure,

3

4 motivation and contribution

since the information it encodes is only based on a small subset of the network. On the con-
trary, global measures take the whole graph into account, and a change in a single edge or
node could drastically influence them. Local centrality measures are mostly intuitive and
easy to compute, but they are typically unable to differentiate well among nodes (or edges)
and to reveal insights on more complex mechanisms affecting the network. On the other
hand, since the score of each node or edge depends on the whole graph, computing global
centrality measures is usually an expensive task, typically at least quadratic in the size of
the graph. Phenomena such as the diffusion of social media and the considerably-increased
computing power of modern machines made the size of available data increase drastically.
As a result, quadratic algorithms are out of reach for many today’s networks, often con-
taining millions or even billions of nodes and edges. In most cases, only algorithms with a
complexity linear in the size of the graph take a reasonable amount of time to complete.
Also, many networks of interest evolve continuously over time, creating new connections
and deleting existing ones. For example, every second, several thousands of tweets and
millions of emails are sent.1 For such networks, a static analysis of a specific snapshot
might not be sufficient to understand the dynamics of the underlying system, raising the
need for scalable algorithms that can efficiently recompute the required information after
a change occurs.

1.2 objectives and methodology

Achieving scalability while still being able to extract relevant information is the main goal
of this work. With the term scalability we mean the capability of effectively applying
algorithms to the growing volume of data arising in practice. It does not refer in this
context to parallel scalability – i.e., using large numbers of processing elements, although
in some cases we also use parallelism to further decrease the running time of our algorithms.
All contributions presented in this work aim at improving scalability of existing ap-

proaches for different subproblems in the area of centrality computation. Our results are
mostly obtained following one of two paths: algorithmic improvements to existing algo-
rithms – leading to an exact solution in a shorter time, or approximation – yielding inexact
but still qualitatively similar results. In the latter case, we make sure that the results re-
turned by the algorithm are meaningful by either comparing them agains exact results on
a variety of real-world instances or by proving theoretical guarantees on the approximation
quality (or, in most cases, both).
An example of algorithmic improvement is the work presented in Chapter 9, whose goal

is to find the k nodes with highest closeness centrality (a centrality measure ranking nodes
according to their average shortest-path distance to the other nodes). In this case, we
exploit properties of real-world networks to compute quick upper bounds on the centrality
of nodes and skip nodes that cannot be among the top k. We show experimentally that
the approach is orders of magnitude faster than the textbook algorithm, while still finding
exactly the same solution. Also dynamic algorithms (such as the ones presented in Chap-
ter 5 and Chapter 10) return exactly the same result as recomputation on the modified
graph. In this case, properties of the graph before the update are used to skip unnecessary
work.

1 Source: www.internetlivestats.com

www.internetlivestats.com

1.3 outline and contribution 5

Figure 1: Algorithm engineering cyclic process [111].

We followed the path of approximation in Chapter 12 (among others), where we study
the problem of computing electrical closeness (a variant of closeness taking all paths into
account and not only the shortest ones). Since an exact computation would be prohibitive
on networks with more than a few thousands of nodes, we propose two inexact approaches
for which we show experimentally that the returned ranking is very similar to the exact
one. Nevertheless, approximation is orders of magnitude faster than an exact approach,
computing electrical closeness of a node on networks with millions of nodes in seconds or
minutes.
In general, the research presented in this work has been carried out trying to follow the

algorithm engineering paradigm. Algorithm engineering can be seen as an iterative process
cycling through the stages of algorithm design, analysis, implementation and experimental
evaluation, guided by real-world computational problems [111] (see Figure 1). In this view,
the implementation and experimental study of algorithms are not left to practitioners, but
are part of the process of algorithm development. Thus, all algorithms presented in this
work have been implemented and thoroughly tested on a variety of real-world instances.
Our code is implemented in C++ building on NetworKit [119], an open-source framework
for large-scale network analysis. The carefully-chosen NetworKit data structures provide
us a convenient basis for writing efficient code. Also, implementing all algorithms in Net-
worKit, we make sure that our comparisons are unbiased.

Another fundamental aspect of algorithm engineering is the reproducibility of results, so
that other researchers can either draw the same conclusions by repeating experiments, or
disprove previous theories. In this respect, we always use data sets from publicly available
collections and make our algorithms available as part of NetworKit (for the most recent
results, we plan to make them available in the near future).

1.3 outline and contribution

This work is divided into four parts. The first one introduces the targeted problems and
the used techniques, and the following three present original contributions in different
subtopics. All considered problems are related to the efficient computation of centrality
in large and/or evolving networks, but the used techniques vary considerably, depending
on the targeted centrality measures and scenarios. The second part focuses on algorithms

6 motivation and contribution

for updating a popular centrality measure called betweenness in dynamic networks, both
exactly and using approximation. In the third part, scalable algorithms for finding the
k most-central nodes in static and dynamic networks are presented, where here “central”
refers to a measure called closeness centrality. Both betweenness and closeness centrality
build on the assumption that information flows through the network following shortest
paths. Since in some applications it might make sense to also consider alternative slightly-
longer paths, in the fourth part we consider an additional measure called electrical close-
ness. Electrical closeness takes all paths of the network into account (weighted based on
their length), but is expensive to compute exactly. Thus, we propose accurate and scalable
algorithms for approximating it.

introduction. The introduction is composed of three chapters, the first of which
motivates the problems considered in this work and outlines our contributions. Chapter 2
presents basic notation used throughout the thesis and gives an overview of some of the
most well-known centrality measures. Since several algorithms presented in this thesis up-
date shortest-path based centrality measures in dynamic graphs, in Chapter 3 we first
introduce some notation related to dynamic graphs, and then give motivation for develop-
ing dynamic algorithms for real-world evolving networks.

dynamic algorithms for betweenness centrality. Betweenness central-
ity is a popular measure which ranks nodes according to their participation in the shortest
paths of the network. Nodes with high betweenness can be important in routing, spread-
ing processes and mediation of interactions. More precisely, the betweenness centrality of
a node v is defined as the fraction of shortest paths between other node pairs that go
through v. Because it requires all shortest paths between node pairs, the computation of
betweenness is at least quadric in the number of nodes. In particular, with Brandes’s algo-
rithm [31], it can be computed in Θ(nm) time in unweighted graphs and Θ(nm+n2 logn)
time in weighted graphs, where n is the number of nodes and m is the number of edges. In
networks that change over time, recomputing betweenness from scratch after each update
would be too expensive. After an introduction of betweenness and related work in Chap-
ter 4, we propose in Chapter 5 an algorithm for updating the betweenness centrality of
all nodes after edge insertions. Our algorithm builds on two of the best existing dynamic
approaches [67, 72] and improves on them by identifying and significantly reducing redun-
dant operations. Our experiments show that the proposed approach, which we call iBet,
improves the state of the art by about one order of magnitude on average.
We then consider in Chapter 6 the problem of updating the betweenness centrality

of a single node, motivated – among other applications – by the maximum betweenness
improvement problem (MBI) [42]. MBI is based on the assumption that having a high
centrality can be beneficial for a node, and is defined as the problem of choosing a set
of k edges to be added to the graph such that they maximize the betweenness of a given
node v. The best known approximation algorithm for MBI (developed by Crescenzi et
al. [42]) requires to repeatedly add edges to the graph and compute the betweenness
of v in the modified graphs. Although a dynamic algorithm such as iBet could be used
for this task, we notice that the update of a single node can be carried out much more
efficiently. We therefore propose a new dynamic algorithm for this scenario and compare
it experimentally against iBet, showing considerably improved running times – of up to
two orders of magnitude on the largest tested instances. Preliminary results show that

1.3 outline and contribution 7

the difference is even higher if we compare our new approach for a single node against
algorithms existing before iBet [67, 72] – between two and three orders of magnitude
on average. Interestingly, this is in contrast to the static case, for which computing the
betweenness of a single node requires all pairwise distances and is therefore not significantly
faster than computing betweenness for all nodes.
Both algorithms proposed so far are exact and can target networks with up to tens of

thousands of nodes and edges. For larger instances, we propose in Chapter 7 a dynamic
algorithm that updates an approximation of betweenness centrality. Our approach builds
on the static approximation algorithm by Riondato and Kornaropoulos [107], and inherits
its theoretical guarantee. After each update, the algorithm guarantees that the approxi-
mated betweenness values differ by at most ε from the exact values with probability at
least 1 − δ, where ε and δ can be arbitrarily small constants. Our experimental study
shows that our algorithms are the first to make in-memory computation of a betweenness
ranking practical for large dynamic networks. Using approximation, we achieve a much
improved scaling behavior compared to exact approaches, enabling us to update between-
ness scores in a network with 36 million edges in a few seconds on typical workstation
hardware. Our experiments also show that the measured absolute errors are always lower
than the guaranteed ones. For nodes with high betweenness, also the rank of nodes is well
preserved, even for relatively large values of ε.
The results presented in Chapter 5 have been published as “Faster betweenness centrality

updates in evolving networks” (coauthored with Henning Meyerhenke, Mark Ortmann, and
Arie Slobbe) at the Sixteenth International Symposium on Experimental Algorithms (SEA
2017). Chapter 6 is based on joint work with Pierluigi Crescenzi, Gianlorenzo D’Angelo,
Henning Meyerhenke, Lorenzo Severini and Yllka Velaj, and is currently in revision for
international journal publication. Part of the results presented in Chapter 7 have ben pub-
lished as “Approximating betweenness centrality in large evolving networks” (coauthored
with Henning Meyerhenke and Christian Staudt) at the Seventeenth Workshop on Algo-
rithm Engineering and Experiments (ALENEX 2015). Another part of the results has been
published as “Fully-dynamic approximation of betweenness centrality” (coauthored with
Henning Meyerhenke) at the Twenty-third Annual European Symposium on Algorithms
(ESA 2015) and further extended in “Approximating betweenness centrality in fully dy-
namic networks” (coauthored with Henning Meyerhenke), published in the journal Internet
Mathematics.

computation of nodes with highest closeness centrality. Closeness
centrality is defined as the inverse of the average shortest-path distance between one node
and the other nodes of the network. The idea behind this definition is that a central
node must be efficient in spreading information to other nodes: a node is central if the
average number of links needed to reach another node is small. Computing closeness
for all nodes requires all pairwise distances. However, differently from betweenness, the
closeness of a given node can be computed in Θ(n +m) times using a Breadth-First
Search (or in Θ(n logn+m) time using Dijkstra’s algorithm in weighted graphs). Since
many applications are interested in finding the most central nodes rather than the score
of each node, a natural question is whether the top-k nodes with highest closeness can be
found faster than computing closeness for all nodes.
In Chapter 9 we propose algorithms that allow us to efficiently find the k nodes with

highest closeness in networks with small and large diameters, respectively. The proposed

8 motivation and contribution

techniques compute different upper bounds on the closeness values and stop the computa-
tion when k nodes are found whose closeness is higher than the bounds of the other nodes.
For example, using our new approach, we are able to find the top-10 nodes with highest
closeness in the whole street network of north America (with 36 millions edges) in about
one hour, where exhaustive computation would take years.
We then consider in Chapter 10 the problem of keeping track of the k nodes with

highest closeness centrality in dynamic networks. Our algorithms build on the static top-k
closeness algorithms presented in Chapter 9 and use information obtained during earlier
computations to omit unnecessary work. However, they do not require asymptotically more
memory than the static algorithms (i. e., linear in the number of nodes). Our experimental
results show that, on many instances, our dynamic algorithms are two orders of magnitude
faster than recomputation; on some large graphs, we even reach average speedups between
103 and 104.

The top-k closeness problem consists in finding nodes that are individually central.
However, a number of applications are actually interested in finding a group of nodes that
is central as a whole. For example, in social networks, retailers might want to select a group
of nodes as promoters of their product, in order to maximize the spread among users. In
this context, picking the k most central nodes might lead to a large overlap between the
sets of influenced nodes, whereas there might be k nodes that are not individually central,
but that influence different areas of the network. Group Closeness Maximization (GCM)
aims at finding a group of k nodes with the minimum average shortest path distance to the
remaining nodes (where the distance between a group and a node v is the minimum among
the distances between v and the elements of the group). Recently, Chen et al. [37] showed
that GCM is NP-hard and proposed an (1− 1/e)-approximation algorithm. Unfortunately,
the algorithm does not scale easily to graphs with more than about 104 vertices, since it
requires to compute pairwise distances. In Chapter 11 we propose techniques for scaling
up the approximation algorithm by Chen et al. [37]. Our method allows us to approximate
the group with maximum closeness on networks with up to hundreds of millions of edges
in minutes or at most a few hours. To have the same theoretical guarantee, the approach
in [37] would take several days already on networks with hundreds of thousands of edges.
Our new approach allows us to study properties of the most-central group of nodes in
large networks, such as its overlap with the k nodes with individually highest closeness.
The results presented in Chapter 9 have been published as “Computing top-k Close-

ness Centrality Faster in Unweighted Graphs” (coauthored with Michele Borassi, Pierluigi
Crescenzi, Andrea Marino, and Henning Meyerhenke) at the Eighteenth Workshop on Al-
gorithm Engineering and Experiments (ALENEX 2016), and extended in a journal version,
currently in revision. The results presented in Chapter 10 are joint work with Patrick Bise-
nius, Eugenio Angriman and Henning Meyerhenke and have been accepted for publication
at the Twentieth Workshop on Algorithm Engineering and Experiments (ALENEX 2018).
The results presented in Chapter 11 are joint work with Tanya Gonser and Henning Mey-
erhenke and have been accepted for publication at the Twentieth Workshop on Algorithm
Engineering and Experiments (ALENEX 2018).

approximation of electrical closeness. In Chapter 12 we consider a cen-
trality measure which, differently from closeness and betweenness, takes all paths of the
graph into account, weighted by their length. Just as traditional closeness, electrical close-
ness [33] indicates the inverse average distance to the other nodes, but in this case distance

1.3 outline and contribution 9

means resistance distance. The resistance distance between two nodes u and v is a quan-
tity proportional to the expected number of steps taken by a random walk starting in u
to reach v and then return to u for the first time (the term “electrical” comes from the
fact that the same formulation can be obtained interpreting the network as an electrical
circuit). Unfortunately, electrical closeness is an expensive measure: an exact computation
requires to invert a n×n matrix, where n is the number of nodes. We present two approx-
imation algorithms based on solving linear systems and leading to very accurate results
in practice. Using them we are now able to compute an estimation of electrical closeness
in networks with tens of millions of nodes within seconds or a few minutes. Also, our
experiments indicate that electrical closeness can discriminate among nodes significantly
better than traditional shortest-path closeness and is also considerably more resistant to
noise – we thus show that two known drawbacks of shortest-path closeness are alleviated
by the electrical variant.
The results presented in Chapter 12 have been published as “Estimating current-flow

closeness centrality with a multigrid laplacian solver” (coauthored with Michael Wegner,
Dimitar Lukarski, and Henning Meyerhenke) at the Seventh SIAM Workshop on Combi-
natorial Scientific Computing (CSC 2016).

2
SHORTEST PATHS AND CENTRAL ITY MEASURES

2.1 graph basics

Definition 2.1.1 (Graph (unweighted, undirected)). An undirected unweighted graph is
an ordered pair G = (V ,E), where V is a set and E is a set of 2-element subsets of V ,
that is E ⊆ {{u, v} : u, v ∈ V }.

The elements of V are usually referred to as nodes or vertices, and the elements of E as
edges or links. An unweighted graph is said to be directed if the elements of E are ordered
pairs of elements of V , namely E ⊆ {(u, v) : u, v ∈ E}.

Definition 2.1.2 (Graph (weighted, undirected)). An undirected weighted graph is an
ordered triplet G = (V ,E,ω), where (V ,E) is an undirected unweighted graph and ω is a
function ω : E → R.

We call ω(e) the weight of edge e ∈ E. As for the unweighted case, a weighted graph
is directed if E ⊆ {(u, v) : u, v ∈ E}. Any unweighted graph can be seen as a weighted
graph where ω(e) = 1, ∀e ∈ E. In this work, we only consider graphs with positive edge
weights. Whether the considered graphs are directed, undirected, weighted or unweighted
will be made clear in each chapter.

Given a graph G = (V ,E), graph G′ = (V ′ ⊆ V ,E′ ⊆ E ∩ (V ′ × V ′)) is called a
subgraph of G. An edge e containing nodes u and v is said to be incident to u and v

and both nodes are adjacent. In an undirected graph, the set of nodes adjacent to u are
called neighbors of u. In directed graphs, we distinguish between in-neighbors of u (i.e.,
v ∈ V : (v,u) ∈ E) and out-neighbors of u (i.e., v ∈ V : (u, v) ∈ E).

2.2 distances in graphs

In mathematics, a metric or distance is a function defined on each pair of elements of a
set S. To be a metric on S, a function d : S × S → R has to satisfy the following four
properties:

1. non-negativity: d(u, v) ≥ 0 ∀u, v ∈ S

2. identity of indiscernibles: d(u, v) = 0 ⇐⇒ u = v

3. symmetry: d(u, v) = d(v,u) ∀u, v ∈ S

4. triangle inequality: d(u,w) ≤ d(u, v) + d(v,w) ∀u, v,w ∈ S

Given a graph G = (V ,E,ω), a node distance measure is a function d : V ×V → R defined
on the node pairs of G that satisfies the four properties listed above.2 In the following, we
describe two well-known graph distance measures, which will be necessary to understand
the centrality measures described in Section 2.3.

2 Exceptions are typically made for the symmetry property in directed graphs.

11

12 shortest paths and centrality measures

2.2.1 Shortest-path distance

One of the most natural definitions of distances between two nodes is the length of the
shortest path connecting one to the other.

Definition 2.2.1 (Walk, Path). Given a graph G = (V ,E,ω) and two nodes s, t ∈ V ,
a walk pst from s to t is a sequence of nodes (p0, . . . , pk) such that p0 = s, pk = t and
(pi, pi+1) ∈ E, for i = 0, . . . , k − 1. A path is a walk where all nodes are distinct, except
possibly s and t.

In particular, a path pst such that s = t is called a cycle. A graph with no cycles is said
to be acyclic. We will use the acronym DAG for directed acyclic graphs.
We say that node t is reachable from node s if there exists a path between s and t. An

undirected graph is said to be connected if every node in G is reachable from every other
node. We use the term tree to indicate an undirected connected acyclic graph. A directed
graph for which every node is reachable from every other node is called strongly connected.
The length of a walk or a path is defined as the sum of the weights of its edges,

i. e. ω(pst) =
∑k−1
i=0 ω(pi, pi+1).3 The shortest path between s and t is the path pst with

minimum length (notice that there might be multiple paths satisfying this property). The
shortest-path distance d is therefore the function that associates to each node pair (s, t)
the length of the shortest path(s) between s and t.

Definition 2.2.2 (Shortest-path distance). Let Pst be the set of all paths between node s
and node t. The shortest-path distance d is a function d : V × V → R such that d(s, t) :=
minp∈Pst ω(p), ∀s, t ∈ V .

It is easy to see that d is a metric in undirected graphs, whereas it does not satisfy
symmetry in directed graphs (the distance from s to t might be different from the distance
from t to s).
There are several ways of computing shortest-path distances between nodes. Although

it is not clear when this problem was considered for the first time, one can imagine that
finding shortest paths was essential even for primitive societies (for example, for reaching
food as quickly as possible). Edsger W. Dijkstra published his well known algorithm in
1959, rediscovering previous results by Prim and the Czech mathematician Jarník. Using
a Fibonacci Heap-based priority queue, Dijkstra’s algorithm finds shortest paths between
one node and the remaining ones in time Θ(m+n logn), where n andm are the number of
nodes and the number of edges, respectively. If the graph is unweighted, the shortest paths
from one node to the others can be computed with a Breadth-First Search (BFS) in time
Θ(n+m). This problem is often referred to as Single-Source Shortest Path (SSSP). When
the shortest paths between all pairs of nodes are needed, one usually refers to the All-Pairs
Shortest Path (APSP) problem. Variants of SSSP and APSP that only require to compute
distances and not the actual paths are sometimes called Single-Source Distances (SSD) and
All-Pairs Distances (APD) (although not all authors make a distinction between APSP
and APD). APSP and APD can be solved by running Dijkstra’s algorithm or BFS from
each node, requiring time Θ(n2 logn+ nm) in weighted and Θ(nm) in unweighted graphs.
Alternatively, pairwise distances can be computed using matrix multiplications. Using
Seidel’s algorithm, this can be done in time Θ(MM (n) logn) in undirected unweighted

3 We recall that, in an unweighted graph, every edge is assumed to have weight 1.

2.2 distances in graphs 13

graphs, whereMM(n) is the cost of multiplying two matrices of size n×n. Currently, the
best existing algorithms can do this in time O(n2.373) [54, 123]. For directed and weighted
graphs, other techniques also based on matrix multiplication have been developed [114,
127]. We refer the reader to [48] for an overview on fast matrix multiplication methods.

For dense graphs, methods based on fast matrix multiplication are asymptotically faster
than running a SSSP from each node. However, large hidden constants make the algebraic
methods usually much slower in practice (also, notice that most real-world networks are
actually sparse). Thus, BFS and Dijkstra’s algorithm are usually preferred.

2.2.2 Resistance distance

Information does not always follow shortest paths. An example is electricity, which flows
according to the well-known Ohm’s law. One can regard a graph as an electrical network
where each edge {u, v} corresponds to a resistor with conductance ωuv (the edge weight) or
resistance 1/ωuv. The conductance can be interpreted as the ease with which an electrical
current can flow through the edge. Then, the resistance distance between a pair of nodes
u and v is the electrical resistance measured across nodes u and v or, in other words,
the potential difference that appears across terminals u and v when a unit current source
is applied between them. Intuitively, the resistance distance measures how close u and v
are: it is small when there are many short paths between them. We refer the reader to
Chapter 12 for a more formal definition of resistance distance.
The resistance distance is related to a matrix called graph Laplacian, defined as the

difference between the degree matrix and the adjacency matrix of the graph, i. e. L :=
D−A. Naming L† the Moore-Penrose pseudoinverse of the Laplacian L, one can show that
the resistance distance ρ(u, v) between u and v can be computed as L†uu−L†uv−L†vu+L†uu.
If G is undirected, then ρ(u, v) = ρ(v,u) and the resistance distance is a metric. Since
inverting a matrix is an expensive operation, alternative methods are sometimes used in
practice. Naming buv a vector with all zeros but +1 in position u and −1 in position v,
ρ(u, v) can be computed as puv(u)− puv(v), where puv is the solution to the linear system
Lpuv = buv. Spielman and Teng [117] showed that one can construct iterative algorithms
to solve Laplacian systems in nearly-linear running time. Here, nearly-linear refers to a
complexity of the form O(λ logc λlog(1/τ)), where λ is the number of nonzero entries in
the matrix, c is a positive constant, and τ is the desired accuracy to be reached (tolerance).
These results have been further improved and simplified in the last years [68, 73, 74]. So-
called multigrid methods have an even better empirical running time of O(m log (1/τ))
(where m is the number of edges), and are therefore used in practice [75, 84].

Resistance distance is equivalent, up to a multiplicative factor,4 to commute-time dis-
tance, namely the expected time taken by a random walk starting in vertex u to travel to
vertex v and then go back to u (for the first time). For further properties of this measure,
we refer the reader to [86] and references therein.

4 The multiplicative factor is the square root of the graph volume, which is the sum of the weights of all
edges.

14 shortest paths and centrality measures

Figure 2: Ranking of nodes in the karate graph based on their degree (left) and their closeness
centrality (right). The color and size of the nodes indicate their centrality.

2.3 centrality measures

The concept of centrality answers a natural question: “Given a network, which are the
most important nodes or edges?”. In fact, this question has arisen many times in sociology,
psychology and computer science. But what does “important” actually mean? In [53],
Freeman suggests as a starting point for defining a notion of centrality the fact that the
center of a star graph should be its most important node. However, the center of a star
verifies several properties at the same time: it is the node with the highest number of
neighbors, the node with minimum average distance to the other nodes, the node through
which most shortest paths pass, and many more. Clearly, there cannot be a universal
definition of centrality, as this is strongly application-dependent. Over the years, a huge
number of definitions of importance have been proposed under the name of centrality
measures. A centrality measure is a function, defined on either the nodes or the edges of a
graph, that attributes to each element a real (usually non-negative) number, representing
its importance. Depending on whether it is defined on the nodes or the edges, we distinguish
between node centrality and edge centrality measures.

2.3.1 Node Centrality Measures

degree centrality. Degree centrality is one of the simplest measures and it iden-
tifies the structural importance of a node with its number of connections. In an undirected
graph, the degree of a node v is defined as follows:

degree(v) := |{w ∈ V : {v,w} ∈ E}| (1)

In directed graphs, one can distinguish between outdegree of v (|{w ∈ V : (v,w) ∈ E}|) and
indegree of v (|{w ∈ V : (w, v) ∈ E}|). Differently from other measures, degree is local:
it only depends on the immediate neighborhood of a node. Nevertheless, in real-world
complex networks, there is often a strong correlation between degree and other global
centrality measures.

2.3 centrality measures 15

closeness centrality. According to closeness, a node is central when it can reach
other nodes quickly. Assuming that information follows shortest paths, this also means that
a node with high closeness can spread information to other nodes efficiently. More formally,
the closeness centrality of a node v is:

cC(v) :=
n− 1∑

w∈V d(v,w) (2)

where d is the shortest-path distance in G.
The graph in Figure 2 represents the well-known Zachary’s karate club, where each node

is a member of the club and an edge indicates an interaction between the members. The
left part of the figure indicates the degrees of the nodes, whereas the right part shows their
closeness (larger and darker nodes are more central). In this graph (as in most real-world
complex networks), nodes with high degree also have a high closeness. However, closeness
differentiates better among nodes with smaller degree.
Notice that closeness is defined only on connected graphs (or, if G is directed, it has to

be strongly connected), since if some node w was not reachable from v, the denominator
would be infinity. Hence, alternative measures for disconnected graphs have been proposed.
Naming R(v) the set of nodes reachable from v and r(v) its cardinality, closeness can be
generalized as follows [97]:

cC(v) :=
(r(v)− 1)2

(n− 1)
∑
w∈R(v) d(v,w) (3)

In case a vertex v has (out)degree 0, its closeness centrality is set to 0. Another estab-
lished variant of closeness for disconnected graphs is harmonic closeness [25]. Instead of
computing the inverse of the sum of the distances, harmonic closeness sums the inverse of
the distances to the other nodes.

cH(v) :=
∑

w∈R(v),w 6=v

1
d(v,w) (4)

a

c

b d e

Figure 3: Nodes a and e have the
same closeness but differ-
ent harmonic values.

In addition to extend to disconnected graphs in a very
natural way, harmonic closeness has been shown to sat-
isfy all axioms presented in [25]. However, notice that
harmonic closeness is not exactly equivalent to closeness.
For example, consider a small graph as in Figure 3. Node
a has distance 1 to nodes b and c, distance 2 to node d
and distance 3 to node e. On the other hand, node e
has distance 1 to node c and distance 2 to all remain-
ing nodes. Although the sum of their distances are the
same (and therefore their closeness values), the harmonic closeness of a is higher than the
harmonic closeness of e.

betweenness centrality. Betweenness centrality ranks the nodes according to
their participation in the shortest paths of the graph. In other words, a node has high
betweenness when it lies in many shortest paths between other pairs of nodes. Naming σst

16 shortest paths and centrality measures

Figure 4: Ranking of nodes in the karate graph based on their degree (left) and their betweenness
centrality (right). The color and size of the nodes indicate their centrality.

the number of shortest paths between node s and node t and σst(v) the number of these
paths that go through v, betweenness is defined as follows:

cB(v) :=
∑
s 6=v 6=t

σst(v)

σst
(5)

Betweenness is often normalized in order to have all scores between 0 and 1. To do this, it
is sufficient to divide by n(n− 1) in Eq (5). Figure 4 shows a comparison between degree
and betweenness centrality on Zachary’s karate club. Although not exactly the same, the
rankings given by the two measures on this graph are quite similar. In fact, there is often a
high correlation between degree and betweenness in complex networks. The experimental
study in Chapter 12 gives some evidence of this fact.

electrical closeness. Introduced by Brandes and Fleischer [33], electrical close-
ness (also known as current-flow closeness) ranks the nodes based on their average distance
to the other nodes, with the difference that here “distance” means resistance distance.

cEC(v) :=
n− 1∑

w∈V ρ(v,w) (6)

Electrical closeness is defined only on undirected graphs and, as shortest-path closeness,
it is well-defined only if the graph is connected (but could be extended as in Eq. (3) or
Eq. (4)). One criticism to shortest-path closeness is that its distribution is often rather flat
in complex networks. This is actually not surprising, if we consider that the diameter (and
therefore also the average shortest-path distance to other nodes) is typically extremely
small. The fact that electrical closeness takes all paths into account (weighted by their
length) and not only the shortest one makes it a promising alternative to traditional
closeness. The experiments in Chapter 12 support the intuition that electrical closeness
can differentiate better among nodes.

electrical betweenness. In an electrical network, the analog of the fraction of
shortest paths going through a node is the fraction of current flowing through that node.
Resistance distance between two nodes s and t is computed applying a positive supply in

2.3 centrality measures 17

s and a negative supply in t, equal and opposite to the one in s. This supply generates a
current xst(~e) on each edge e. Based on the current flowing through the incident edges of
a node, Brandes and Fleischer [33] define the throughput τst(v) of a node v as:

τst(v) :=
1
2

∑
e:={v,w}∈E

|xst(~e)| (7)

Electrical betweenness of node v is then defined as:

cEB(v) :=
∑
s 6=v 6=t

τst(v) (8)

The fact that electrical closeness and betweenness account for all paths and not only the
shortest ones makes them very interesting measures. However, a major drawback is that
their exact computation is quite expensive: it requires O(I(n− 1) +n) time for the former
and O(I(n− 1) +mn logn) for the latter, where I(n− 1) is the time needed to invert a
(n− 1) × (n− 1)-matrix (which is Ω(n2 logn) [33]). For this reason, an approximation
algorithm for electrical betweenness has been proposed in [33], and we present two new
approaches for electrical closeness in Chapter 12.

eigenvector centrality. Eigenvector centrality is based on the concept that a
node is important when it has important neighbors. Thus, connections to highly-central
nodes contribute more to the score of a node than connections to nodes with lower cen-
trality. Being A the adjacency matrix of the graph, the eigenvector x of A is the vector
solving the equation Ax = λx for some constant λ. In general, there can be many different
eigenvalues λ for which a non-zero eigenvector x exists. However, the Perron-Frobenius
theorem implies that all entries of x are positive only for the greatest eigenvalue λmax of
A. Thus, assuming nodes are indexed from 1 to n, eigenvector centrality is defined as:

cEig(vi) := xi (9)

where xi is the i-th component of the eigenvector x solving the equation Ax = λmaxx.
Eigenvector centrality requires the graph to be (strongly) connected. If this is not the
case, the eigenvector might be equal to zero in correspondence of some of the components.

pagerank. Alleged to be used in Google’s ranking algorithm, PageRank is one of
the best-known centrality indices. Let the nodes be indexed from 1 to n and let α be a
constant (called damping factor) in the interval (0, 1). Then, the PageRank of a node vi
is defined as

cPR(vi) := xi (10)

where xi satisfies the equation

xi = α
n∑
j=1

Aji
deg(vj)

xj +
1− α
n

(11)

PageRank might be interpreted as the stationary distribution of a random walk over
the pages of the Web, following hyperlinks between pages (where pages are nodes and

18 shortest paths and centrality measures

hyperlinks are edges). The damping factor α represents the probability of the user to
continue the random walk, whereas (1 − α) can be interpreted as the probability of a
random jump to another page.

katz centrality. Katz centrality can be seen as an extension of degree centrality
that accounts for all walks starting from a node. The length of the walks is taken into
account by means of an attenuation factor α. In particular, let ωkv be the number of walks
of length k starting in v. Then, Katz centrality is the sum – over all possible lengths – of
the number of walks of that length, multiplied by the attenuation factor.

cKatz(v) :=
+∞∑
k=1

ωkvα
k (12)

Katz centrality can also be expressed in terms of powers of the adjacency matrix A. In this
respect, notice that Ak encodes the number of walks of length i between pairs of nodes,
i. e. (Ak)ij contains the number of walks of length k between vi and vj (assuming, again,
that nodes are indexed from 1 to n). Then, Eq. (12) can be rewritten as

cKatz(vi) :=
+∞∑
k=1

n∑
j=1

αj(Ak)ji (13)

For the series to converge, the value of the attenuation factor α has to be smaller than the
reciprocal of (the absolute value of) the largest eigenvalue of A.

2.3.2 Edge Centrality Measures

As the name suggests, an edge centrality measure is a function that attributes to each edge
of the graph a number representing its importance. Just like node centrality measures, a
variety of indices have been proposed in the literature for edges as well. In the following, we
describe two of them, since they have both received considerable attention in the research
community and are of interest for the next chapters.

edge betweenness centrality. Similarly to node betweenness, edge between-
ness indicates the fraction of shortest paths between pairs of nodes going through an edge.
Given an edge e ∈ E, let us name σst the number of shortest paths between node s and
node t and σst(e) the number of these paths going through e. Thus, the definition of edge
betweenness is analogous to that of node betweenness.

cB(e) :=
∑
s,t∈V

σst(e)

σst
(14)

In an unweighted graph, edge betweenness is always at least 1, since the shortest path
between the two endpoints of the edge is the edge itself.

spanning edge centrality. Spanning edge centrality is defined as the fraction
of minimum spanning trees containing an edge. A spanning tree of a connected undirected
graph G is a connected subgraph of G containing all of its nodes and n− 1 of its edges.
A minimum spanning tree (MST) is a spanning tree whose total weight (the sum of the

2.3 centrality measures 19

Figure 5: Ranking of edges in the karate graph based on their betweenness (left) and their span-
ning centrality (right). The color of the edges indicate their centrality.

weights of its edges) is minimum among all spanning trees of G. Spanning edge centrality
is then defined as follows:

cS(e) :=
τ (e)

τ
(15)

where τ is the number of MSTs in G and τ (e) the number of those going through edge e.
Initially introduced under the name “spanning edge betweenness” in Teixeira et al. [121],
this measure is based on a quite different concept than edge betweenness. Intuitively, span-
ning edge centrality indicates how important an edge is for the connectivity of the graph.
Thus, edges with a degree-1 node as an endpoint have centrality 1 (the maximum possible
value), since all spanning trees have to contain them and their removal would disconnect
the graph. The difference between spanning edge centrality and edge betweenness can be
seen also in Figure 5.
Although this might not be apparent at first sight, the spanning edge centrality of an

edge {u, v} in an unweighted graph is the resistance distance between u and v. Thus, it
can be either computed using the Moore-Penrose pseudoinverse of the Laplacian, or by
solving a Laplacian system for each edge.

3
DYNAMIC SHORTEST -PATH ALGORITHMS

3.1 preliminaries

Dynamic graphs are graphs that evolve over time. Depending on their nature, different
kinds of graph updates are defined. In all following definitions, we assume Γ to be the set
of all possible graphs with a finite number of nodes and positive edge weights.

Definition 3.1.1 (Edge insertion). Let G = (V ,E,ω) ∈ Γ be a graph, u, v ∈ V be two
nodes such that (u, v) /∈ E and let α ∈ R+ be a positive number. An edge insertion
is a function φ(u,v,α) : Γ → Γ such that φ(u,v,α)(G) = G′ := (V ,E′,ω′), where E′ =
E ∪ {(u, v)}, ω′(u, v) = α and ω′(e) = ω(e) ∀e ∈ E.

Definition 3.1.2 (Edge deletion). Let G = (V ,E,ω) ∈ Γ be a graph and u, v ∈ V be
two nodes such that (u, v) ∈ E. An edge deletion is a function φ(u,v) : Γ → Γ such that
φ(u,v)(G) = G′ := (V ,E′,ω′), where E′ = E \ {(u, v)} and ω′(e) = ω(e) ∀e ∈ E′.

Definition 3.1.3 (Edge-weight decrease). Let G = (V ,E,ω) ∈ Γ be a graph, u, v ∈ V be
two nodes such that (u, v) ∈ E and let α ∈ R+ be a positive number, α < ω(u, v). An edge
weight decrease is a function φ(u,v,α) : Γ → Γ such that φ(u,v,α)(G) = G′ := (V ,E,ω′),
where ω′(u, v) = α and ω′(e) = ω(e) ∀e ∈ E \ {(u, v)}.

Definition 3.1.4 (Edge-weight increase). Let G = (V ,E,ω) ∈ Γ be a graph, u, v ∈ V be
two nodes such that (u, v) ∈ E and let α ∈ R+ be a positive number, α > ω(u, v). An edge
weight decrease is a function φ(u,v,α) : Γ → Γ such that φ(u,v,α)(G) = G′ := (V ,E,ω′),
where ω′(u, v) = α and ω′(e) = ω(e) ∀e ∈ E \ {(u, v)}.

Edge insertions and edge-weight decreases are named incremental updates, whereas edge
deletions and edge-weight increases are referred to as decremental updates.
A dynamic graph algorithm is an algorithm that takes as input the new graph G′, the

edge update φu,v,α and a set P of properties of G and returns the updated set of properties
P ′ for G′. A straightforward dynamic algorithm is the static algorithm that recomputes P ′
onG′ without using any information about P. Depending on what kind of updates they can
handle, algorithms for dynamic graphs are also divided into incremental, decremental and
fully-dynamic (algorithms that can handle both incremental and decremental updates).
In addition to single-edge updates, algorithms for batch updates exist. A batch update is

a sequence of edge updates that are applied to the graph one after another. More formally:

Definition 3.1.5 (Batch update). Let G = (V ,E,ω) ∈ Γ be a graph and let β =

(φ
(1)
(u1,v1,α1)

, . . . ,φ(k)(uk,vk,αk)
) be a sequence of edge updates. A batch update φβ is the compo-

sition of functions φ(k)(uk,vk,αk)
◦ · · · ◦ φ(1)(u1,v1,α1)

: Γ→ Γ.

A dynamic batch algorithm updates a set of properties after a batch of updates is applied
to G. Depending on the kind of updates composing the batch, incremental, decremental
and fully-dynamic batch algorithms are defined.
In addition to edge updates, we can define node updates, divided into node insertions

and node deletions.

21

22 dynamic shortest-path algorithms

Definition 3.1.6 (Node insertion). Let G = (V ,E,ω) ∈ Γ be a graph, x /∈ V be a new
node and let β = (φ

(1)
(u1,v1,α1)

, . . . ,φ(k)(uk,vk,αk)
) be a sequence of edge insertions such that

either ui = x or vi = x, for all i ∈ {1, . . . , k}. A node insertion is defined as φβ ◦ψ, where
ψ(G) = G′ := (V ∪ {x},E,ω).

Definition 3.1.7 (Node deletion). Let G = (V ,E,ω) ∈ Γ be a graph, x ∈ V be a
node of G and let β = (φ

(1)
(u1,v1)

, . . . ,φ(k)(uk,vk)
) be a sequence of edge deletions such that

φ
(i)
(ui,vi)

∈ β ⇐⇒ (ui, vi) ∈ E ∧ x ∈ {ui, vi}. A node deletion is defined as ψ ◦ φβ, where
ψ(G) = G′ := (V \ {x},E,ω).

For simplicity of notation, in the following we will use (u, v,α) to indicate the edge up-
date φ(u,v,α) and β = {(u1, v1,α1), . . . , (uk, vk,αk)} to indicate the corresponding batch up-
date. If the graph is unweighted, we will simply write (u, v) and β = {(u1, v1), . . . , (uk, vk)}.

3.2 dynamic algorithms: a data-driven motivation

3.2.1 Affected Nodes

u

v

Figure 6: Edge insertion con-
necting two compo-
nents.

Many networks of interest – such as social networks and the
Web graph – are dynamic in nature and some of them evolve
over time at a very quick pace. For such networks, a natural
idea is to develop algorithms that can reuse information from
the initial graph and update it efficiently after a change oc-
curs. It is as well reasonable, though, to ask ourselves whether
the gain (in terms of running time) would be worth the effort
of spending time developing a new algorithm and implement-
ing additional code. For example, consider the problem of up-
dating pairwise distances in the graph depicted in Figure 6.
The insertion of edge (u, v) connects the component of u with
that of v affecting the distance of about half of all possible
node pairs. Similarly, connecting any node in one component
with any node in the other component would lead to the same
result. In such a case, the improvement of any dynamic algo-
rithm on static recomputation would be very limited. Thus,
when developing a dynamic algorithm for this specific instance, we should be aware that
our algorithm cannot be more than (roughly) two times faster than recomputation.
Fortunately, real-world networks usually look quite different from the one in Figure 6.

In this section, we try to give evidence for the fact that shortest-path distances in a
complex network are resilient to most edge changes, motivating efforts to develop dynamic
algorithms and providing a reference for their empirical evaluation. The reason why we
specifically focus on shortest-path distances is that the dynamic algorithms we propose in
the next chapters recompute centrality measures based on shortest paths. Other distances
(such as resistance distance) might behave differently, but are not considered in this chapter.
For this study, we consider a set of real-world networks with real edge dynamics, taken
from the KONECT dataset [76] and summarized in Table 1. All edges of these graphs
are characterized by a time of arrival. In case of multiple edges, we ignore additional
edges between nodes that were already connected by an edge with a smaller timestamp.

3.2 dynamic algorithms: a data-driven motivation 23

Graph Nodes Edges Description Type
digg 30398 85155 Digg users replies Directed
slashdot 51083 116573 Slashdot threads Directed
linux 63399 159996 Linux kernel mailing list replies Directed
facebook 46952 183412 Facebook wall posts Directed
enron 87273 297456 Emails between Enron employees Directed
facebookFriends 63731 817035 Facebook friendships Undirected
ca-HepPh 28093 3148447 Coauthorship Undirected
wikipedia 1870709 36532531 Hyperlinks of the English Wikipedia Directed

Table 1: Networks with real edge dynamics.

In our experiments, we consider each graph without its last 1000 edges (the ones with the
highest timestamp) and we insert these edges back into the graph in increasing order of
timestamp. We call affected the node pairs that change their distance after the insertion of
an edge and we indicate their set with A. Computing the set of affected pairs would require
to compute all pairwise distances, at least on the initial graph. Since this would be too
expensive for the networks of Table 1, we actually compute an upper bound on the number
of affected pairs. Given an edge insertion (u, v), we call A(u) := {t ∈ V : d(u, t) 6= d′(u, t)}
and A(v) := {v ∈ V : d(s, v) 6= d′(s, v)}, where d and d′ indicate the shortest-path
distances in the original and the modified graph, respectively. If (s, t) ∈ A, then necessarily
(s, v) ∈ A(v) and (u, t) ∈ A(u) (if G is undirected, we assume s to be closer to u than
t, w.l.o.g.). Intuitively, this is due to the fact that all new shortest paths have to go
through (u, v). A more formal proof can be found, among other sources, in [104]. Therefore,
|A| := |A(u)| · |A(v)| (or |A| := 2 · |A(u)| · |A(v)| in undirected graphs) is an upper bound
on the number of affected node pairs |A|. Notice that A(u) (respectively, A(v)) can be
easily computed with one SSSP from u (respectively, to v) on the initial graph and one
on the modified graph.
Figure 9 shows the distribution of the percentage of affected node pairs, i. e. |A|

n(n−1) · 100.
For simplicity, the figure denotes this percentage with |A| (although we recall that this
is actually an upper bound on the number of affected nodes). Table 2 reports average,
maximum and standard deviation of the percentage of affected pairs. Although there is
some clear variation among the networks and among the updates (the standard deviation
is often higher than the mean), it is interesting to notice that no edge insertion affects more
than 0.5% of all possible node pairs. On ca-HepPh and wikipedia, no insertion affects
more than 0.005% of node pairs. This means that an optimal dynamic algorithm could
achieve a speedup of 20000 (i. e. 1/0.00005) on static recomputation for the worst-case
instances of these two graphs5.
The very small number of affected pairs could be due to one of two factors, or a com-

bination of both. On the one hand, it might be that the structure of complex networks is
such that any edge insertion would not affect a large number of pairs, and that random
edge insertions would lead to a similar distribution of |A|. On the other hand, the reason
for these small numbers of affected pairs might be attributed to the specific insertions we

5 This is based on the assumption that the running time of the static algorithm is proportional to the total
number of node pairs, which is actually the case for networks where m = O(n), and the running time of
the dynamic algorithm is proportional to the number of affected pairs.

24 dynamic shortest-path algorithms

Graph Nodes Edges Average |A| Maximum |A| Std. Dev. |A|
digg 30398 85155 0.01013% 0.05282% 0.00661%
slashdot 51083 116573 0.00291% 0.04370% 0.00376%
linux 63399 159996 0.00011% 0.00853% 0.00041%
facebook 46952 183412 0.03686% 0.44824% 0.05455%
enron 87273 297456 0.00083% 0.08258% 0.00387%
facebookFriends 63731 817035 0.00268% 0.09858% 0.00592%
ca-HepPh 28093 3148447 0.00024% 0.00355% 0.00082%
wikipedia 1870709 36532531 0.00001% 0.00149% 0.00005%

Table 2: Upper bounds |A| on the percentage of affected node pairs in networks with real dynamics.
The fourth column contains the average value of |A| over the 1000 edge insertions, the
fifth column the maximum, and the last column the standard deviation.

Graph Nodes Edges Average |A| Maximum |A| Std. Dev. |A|
digg 30398 86155 0.01206% 0.05627% 0.00646%
slashdot 51083 117573 0.00500% 0.04639% 0.00539%
linux 63399 160996 0.00262% 0.30255% 0.01561%
facebook 46952 184412 0.12777% 1.15197% 0.14379%
enron 87273 298456 0.04543% 0.95641% 0.08232%
facebookFriends 63731 818035 0.02006% 0.23578% 0.02613%
ca-HepPh 28093 3149447 0.00252% 0.07355% 0.00539%
wikipedia 1870709 36533531 0.00015% 0.01506% 0.00073%

Table 3: Upper bounds |A| on the percentage of affected node pairs under random insertions. The
fourth column contains the average value of |A| over the 1000 edge updates, the fifth
column the maximum, and the last column the standard deviation.

considered, which might only involve peripheral nodes or nodes that were already close to
each other before the insertion. In the following, we try to answer this question by com-
paring the distribution of affected pairs generated by real updates and random updates,
respectively.

3.2.2 Real Edge Dynamics vs Random Updates

Figure 9 and Table 2 depict the distribution of the number of node pairs affected by
1000 real edge insertions. Understanding whether this distribution would be similar under
different kinds of dynamics (e. g. random edge insertions) might not only give us insights
on the properties of shortest paths in complex networks, but also possibly provide us with
a realistic way of testing dynamic algorithms on networks for which we have no temporal
information. In fact, in the literature it is quite common to find papers that test dynamic
algorithms based on random edge insertions and deletions (see for example [58, 72, 112])
without, however, discussing whether such updates would be realistic. Notice that here
by “realistic” we simply mean “generating a distribution of affected pairs similar to that
of real edge insertions”. Simulating the evolution of a graph given a static snapshot is
a very interesting, but also complex, research question exceeding the scope of this work.
We first consider two simple ways of generating edge insertions, and then we provide

3.2 dynamic algorithms: a data-driven motivation 25

Graph Nodes Edges Average |A| Maximum |A| Std. Dev. |A|
digg 30398 84155 0.01029% 0.03528% 0.00612%
slashdot 51083 115573 0.00305% 0.03337% 0.00320%
linux 63399 158996 0.00097% 0.11179% 0.00648%
facebook 46952 182412 0.02125% 0.43805% 0.04184%
enron 87273 296456 0.00090% 0.15963% 0.00671%
facebookFriends 63731 816035 0.00127% 0.03750% 0.00313%
ca-HepPh 28093 3147447 0.00001% 0.00133% 0.00006%
wikipedia 1870709 36531531 0.00001% 0.00096% 0.00003%

Table 4: Upper bounds |A| on the percentage of affected node pairs under random deletions. The
fourth column contains the average value of |A| over the 1000 edge updates, the fifth
column the maximum, and the last column the standard deviation.

results suggesting that more sophisticated techniques are unlikely to lead to much more
realistic results. The first method we consider are random edge insertions. Each node pair
(u, v) such that (u, v) /∈ E has the same probability of being chosen for a new insertion.
The affected pairs are therefore the ones for which their distance in G without edge (u, v)
is larger than their distance in G′ := (V ,E ∪ {(u, v)}). The second method are random
edge deletions. Here an existing edge e ∈ E is chosen uniformly at random among the
edges in E and deleted from the graph. Although at first sight the first method is suitable
only to test incremental algorithms (i. e. that update distances after an insertion) and the
second one to test decremental algorithms (i. e. that update distances after a deletion),
this is in fact not true. Indeed, when using random insertions, we could initially compute
distances in the graph G′ := (V ,E ∪ {(u, v)}), delete (u, v), and update distances using
a decremental algorithm. Similarly, after choosing an edge e at random, one can delete
it from G, compute distances on the obtained graph, insert it back into G and update
distances with an incremental algorithm6.
We consider 1000 random edge insertions and 1000 random edge deletions on the net-

works of Table 1 and compute the distribution of affected node pairs. Figure 10 and Table 3
show the affected pairs for random insertions, whereas Figure 11 and Table 4 show the af-
fected pairs for random deletions. Interestingly, the distribution under real edge insertions
(Figure 9 and Table 2) is much more similar to the one obtained with random deletions
than the one obtained with random insertions. Consider, for example, the facebook graph.
Under random insertions, the percentage of affected pairs is below 0.05% only 12.1% of
the times, whereas this is true 47.0% of the times under random deletions and 41.6% of
the times under real insertions. Also, under random insertions, 3.1% of updates lead to a
percentage of affected pairs between 0.5% and 2%, whereas this is never the case for real
insertions and random deletions, where the percentage of affected pairs is always below
0.5%. In general, random insertions lead to a significantly higher number of affected pairs,
indicating a tendency of real insertions to preserve shortest-path distances (compared to
random ones). On the other hand, the percentage of affected pairs is always below 2%
for all types of updates, meaning that the structure itself of the tested networks makes
shortest paths resilient to most edge modifications.

6 Again, we emphasize that we do not aim at simulating the evolution of a network, but just at providing
ways of testing dynamic algorithms that would lead to a similar performance as with real edge dynamics.

26 dynamic shortest-path algorithms

di
gg

sla
sh

do
t

lin
ux

fa
ce

bo
ok

en
ro

n

fa
ce

bo
ok

Fr
ie
nd

s

ca
-H

ep
Ph

wik
ip

ed
ia

0.0

0.2

0.4

0.6

0.8

1.0

K
o
lm

o
g
o
ro

v
S
m

ir
n
o
v
 s

ta
ti

st
ic

random insertions

random deletions

Figure 7: Kolmogorov-Smirnov statistic for the distribution of affected node pairs generated by real
insertions and the distribution generated by random insertions and random deletions,
respectively.

di
gg

sla
sh

do
t

lin
ux

fa
ce

bo
ok

en
ro

n

fa
ce

bo
ok

Fr
ie
nd

s

ca
-H

ep
Ph

wik
ip

ed
ia

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
a
rm

a
n
's

 c
o
e
ff

ic
ie

n
t

sum of degrees

product of degrees

distance

Figure 8: Correlation between number of affected node pairs and sum of the degrees of the two end-
points, product of the degrees of the two endpoints and distance between the endpoints
before the insertion.

To quantify the similarity of the distribution of affected pairs generated by real in-
sertions, random insertions and random deletions, we use the two-sample Kolmogorov-
Smirnov statistic. The Kolmogorov-Smirnov (KS) statistic is defined as the supremum of
the absolute difference between the empirical distributions of two samples. This means that
it is equal to 0 when the two empirical distributions are exactly the same, and the closer
it is to 1, the more unlikely it is that that the samples have been generated by the same
probability distribution. Figure 7 shows the KS statistic for the distribution of affected
pairs generated by 1000 real insertions and the distribution generated by 1000 random
insertions and 1000 random deletions, respectively. It is apparent that real insertions are
much closer to random deletions than to random insertions. In particular, the difference
between the distribution of real insertions and random deletions is always below 0.2 (ex-
cept for ca-HepTh, where it is 0.29) and on 4 out of 8 graphs (digg, slashdot, enron and
wikipedia) it is below 0.1. On the contrary, the difference between real insertions and
random insertions is over 0.8 for enron and above 0.4 for most of the graphs.
In terms of number of affected pairs, random deletions are therefore a better candidate

for approximating real insertions than random insertions. Still, there might be other ways
of choosing the edges to update (based on properties of the sampled edges) that better
approximate real insertion (again, we recall that our “approximation” is in terms of number
of affected pairs). To investigate this, we need to identify properties of the newly-inserted

3.2 dynamic algorithms: a data-driven motivation 27

edges that influence the value of |A|. For example, it may be natural to think that, if
the two endpoints are far away from each other before the insertion, then the number
of affected pairs will be higher. Or that nodes with a higher degree might affect a larger
portion of the graph, compared to nodes with only a few neighbors. Our results in this
regard are quite counterintuitive. Figure 8 shows the correlation between |A| and the
distance between the endpoints of the inserted edge, the product of their degrees and the
sum of their degrees, respectively. In particular, each column represents the Spearman’s
correlation coefficient between |A| and each one of the three properties. We recall that
Spearman’s correlation coefficient is 1.0 when two variables are monotone functions of one
another and 0 when they are completely uncorrelated.
The correlation between |A| and degrees is mostly very close to 0, both for the sum and

the product. Only for the linux graph, the correlation with the sum is above 0.6. However,
for all other tested networks, this correlation is below 0.1 – and it is even negative for the
facebookFriends, ca-HepPh and wikipedia graphs. Therefore, it seems unlikely that
we can predict the number of affected pairs based on the degree of the endpoints of the
updated edge, and consequently also quite unlikely that sampling edges based on degree
can generate a distribution of affected pairs similar to that of real edge insertions.
Even the correlation with distance, although positive, is mostly quite small. It is never

above 0.8 and for almost all graphs it is below 0.6. Also, creating new edges with a
probability based on the distance requires to compute all-pairs shortest paths, which is
impractical for large networks. Other properties, such as the betweenness or spanning edge
centrality of the edges, might have a higher correlation with the number of affected pairs,
but would be too expensive to compute on the networks of Table 1.
To summarize, our results suggest that random deletions generate a distribution of

affected pairs that is much more similar to that of real insertions than the one generated
by random insertions. Also, simple properties such as degree of the nodes incident to an
edge and their distance before the insertion do not seem to have a strong correlation with
the number of affected pairs and it is therefore unlikely that a more sophisticated way of
sampling edges based on these properties can lead to much better results than random
deletions. Since random deletions are easy to compute and their distribution of affected
nodes does not differ much from that of real edge insertions, in the rest of this work we
use random deletions whenever we need to test dynamic algorithms, and networks with
real edge dynamics are not appropriate or sufficient for our tests.

28 dynamic shortest-path algorithms

0% <= |A| < 0.0005%
0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.1%

0% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.05%

(a) Left: digg graph. Right: slashdot graph.

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05% 5e-05% <= |A| < 0.0001%
0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.01%

0% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.05%

0.05% <= |A| < 0.1%

0.1% <= |A| < 0.5%

(b) Left: linux graph. Right: facebook graph.

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%

5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001% 0.001% <= |A| < 0.005%

0.005% <= |A| < 0.1%

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%
5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.1%

(c) Left: enron graph. Right: facebookFriends graph.

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%
5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.005%

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%

5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.005%

(d) Left: ca-HepPh graph. Right: wikipedia graph.

Figure 9: Upper bound on the percentage of affected node pairs (i.e. pairs that change their dis-
tance) over 1000 real edge insertions, for the networks of Table 1.

3.2 dynamic algorithms: a data-driven motivation 29

0% <= |A| < 0.0005%
0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.1%

0% <= |A| < 1e-05%
1e-05% <= |A| < 5e-05%
5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%
0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.05%

(a) Left: digg graph. Right: slashdot graph.

0% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%
0.005% <= |A| < 0.01%
0.01% <= |A| < 0.05%
0.05% <= |A| < 0.5%

0% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.05%

0.05% <= |A| < 0.1%

0.1% <= |A| < 0.5%

0.5% <= |A| < 2%

(b) Left: linux graph. Right: facebook graph.

0% <= |A| < 1e-05%
1e-05% <= |A| < 5e-05%
5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%
0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.05%

0.05% <= |A| < 0.1%

0.1% <= |A| < 1%

0% <= |A| < 0.0005%
0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%0.005% <= |A| < 0.01%

0.01% <= |A| < 0.05%

0.05% <= |A| < 0.1%

0.1% <= |A| < 0.5%

(c) Left: enron graph. Right: facebookFriends graph.

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%

5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.1%

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%

5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%
0.001% <= |A| < 0.05%

(d) Left: ca-HepPh graph. Right: wikipedia graph.

Figure 10: Upper bound on the percentage of affected node pairs (i.e. pairs that change their
distance) over 1000 random edge insertions, for the networks of Table 1.

30 dynamic shortest-path algorithms

0% <= |A| < 0.0005%
0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%0.005% <= |A| < 0.01%

0.01% <= |A| < 0.05%

0% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.05%

(a) Left: digg graph. Right: slashdot graph.

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%
5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%
0.001% <= |A| < 0.005%
0.005% <= |A| < 0.01%
0.01% <= |A| < 0.5%

0% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.05%

0.05% <= |A| < 0.1%

0.1% <= |A| < 0.5%

(b) Left: linux graph. Right: facebook graph.

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%

5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%
0.0005% <= |A| < 0.001%

0.001% <= |A| < 0.005%

0.005% <= |A| < 0.5%

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%
5e-05% <= |A| < 0.0001%

0.0001% <= |A| < 0.0005%

0.0005% <= |A| < 0.001%
0.001% <= |A| < 0.005%

0.005% <= |A| < 0.01%

0.01% <= |A| < 0.05%

(c) Left: enron graph. Right: facebookFriends graph.

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%

5e-05% <= |A| < 0.0001%
0.0001% <= |A| < 0.005%

0% <= |A| < 1e-05%

1e-05% <= |A| < 5e-05%

5e-05% <= |A| < 0.001%

(d) Left: ca-HepPh graph. Right: wikipedia graph.

Figure 11: Upper bound on the percentage of affected node pairs (i.e. pairs that change their
distance) over 1000 random edge deletions, for the networks of Table 1.

Part II

DY N A M I C A L G O R I T H M S FO R B E T W E E N N E S S
C E N T R A L I T Y

4
OVERVIEW OF ALGORITHMS FOR BETWEENNESS
CENTRAL ITY

4.1 introduction

Betweenness centrality is a well-known measure which ranks nodes according to their
participation in the shortest paths of the network. Nodes with high betweenness can be
important in routing, spreading processes and mediation of interactions. Depending on
the context, this can mean, for example, finding the most influential persons in a social
network, the key infrastructure nodes in the internet, or super spreaders of a disease.
Formally, the betweenness of a node v is defined as cB(v) =

∑
s 6=v 6=t

σst(v)
σst

, where σst is
the number of shortest paths between two nodes s and t and σst(v) is the number of these
paths that go through node v. Because it requires all shortest paths between node pairs,
the computation of betweenness is at least quadric in the number of nodes. In particular,
the (asymptotically) fastest existing algorithm is due to Brandes [31] and requires Θ(nm)

time in unweighted graphs and Θ(nm+ n2 logn) time in weighted graphs, where n is the
number of nodes and m is the number of edges. Some heuristics have been proposed to
speed up Brandes’s algorithm in practice [51, 102]. In particular, the authors of [51] report
speedups of up to a factor 75 compared to Brandes’s algorithm on some networks. However,
even these methods cannot scale to networks with more than a few hundreds of thousands
of edges, whereas nowadays several networks of interest have millions or even billions of
nodes and edges. Thus, recent years have seen the publication of approximation algorithms
and heuristics that aim to reduce the computational effort, while finding betweenness
values that are as close as possible to the exact ones. Good results have been obtained in
this regard; in particular, recent algorithms [30, 107, 108] give probabilistic guarantees on
the quality of the approximation.
In addition, most real-world networks, such as the Web graph or social networks, contin-

uously undergo changes. Since an update in the graph might affect only a small fraction of
nodes, recomputing betweenness with Brandes’s algorithm (or even with a static approxi-
mation algorithm) after each update would be very inefficient. For this reason, another line
of research has focused on developing algorithms that can efficiently update betweenness
after a change in a graph. In this chapter, we provide an overview of existing algorithms
for betweenness centrality, both exact and approximate, and for both static and dynamic
graphs.

4.2 brandes’s algorithm (ba)

Betweenness centrality can be easily computed in time Θ(n3) by simply applying its def-
inition. In 2001, Brandes proposed an algorithm (BA) [31] which requires time Θ(nm)

for unweighted and Θ(n(m+ n logn)) for weighted graphs, i.e. the time of computing n
single-source shortest paths (SSSPs). The algorithm is composed of two parts: the aug-
mented APSP computation phase based on n SSSPs and the dependency accumulation

33

34 overview of algorithms for betweenness centrality

phase. As dynamic algorithms based on BA build on these two steps as well, we explain
them now in more detail.

augmented apsp. In this first part, BA needs to perform an augmented APSP,
meaning that instead of simply computing distances between all node pairs (s, t), it also
finds the number of shortest paths σst and the set of predecessors Ps(t). This can be
done while computing an SSSP from each node s (i.e. BFS for unweighted and Dijkstra
for weighted graphs). When a node w is extracted from the SSSP (priority) queue, BA
computes Ps(w) as {v : (v,w) ∈ E ∧ d(s,w) = d(s, v) + ω(v,w)}, by looping over the
incoming edges, and σsw as

∑
v∈Ps(w) σsv. Notice that the time complexity of this phase

is the same as computing a “normal” SSSP from each node, since computing predecessors
and number of shortest paths only takes Θ(m) additional time for each SSSP.

dependency accumulation. Brandes defines the one-side dependency of a node
s on a node v as δs•(v) :=

∑
t6=v σst(v)/σst. Then, the betweenness centrality cB(v) of a

node v can be expressed as
∑
s 6=v δs•(v). In [31], Brandes proves the following theorem:

Theorem 4.2.1. [31] The one-side dependency of node s on node v, s 6= v, can be
rewritten as:

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw

(1 + δs•(w)), ∀s, v ∈ V

Intuitively, the term δs•(w) in the equation represents the contribution of the sub-DAG
(of the SSSP DAG of s) rooted in w to the betweenness of v, whereas the term 1 is the
contribution of w itself. For all nodes v such that {w : v ∈ Ps(w)} = ∅ (i.e. the nodes
that have no successors), we know that δs•(v) = 0. Indeed, if v has no successors, there
cannot be other nodes whose shortest paths from s go through v. Starting from these
nodes, we can compute δs•(v) ∀v ∈ V by “walking up” the SSSP DAG rooted in s, using
Theorem (4.2.1). Notice that it is fundamental that we process the nodes in order of
decreasing distance from s, because to correctly compute δs•(v), we need to know δs•(w)

for all successors of v. This can be done by inserting the nodes into a stack as soon as they
are extracted from the SSSP (priority) queue in the first step. This procedure is repeated
for all s ∈ V and the betweenness of v is then simply computed as

∑
s 6=v δs•(v).

In this second step, for each source s, each node has to iterate over the predecessors in
the shortest paths from s. Since this is a subset of the incoming edges, the cost of this
part is O(m) for each source and thus O(nm) in total.

4.3 static approximation algorithms

Most existing approximation algorithms are based on sampling shortest paths according to
some criterion and extrapolating the betweenness of nodes based on the computed paths.
The algorithm by Brandes and Pich [34] is the first approximation algorithm to have
been proposed. The algorithm basically works like Brandes’s static algorithm, with the
difference that SSSPs are computed only from a subset of nodes – called pivots – instead
of all nodes. For each pivot s, the one-side dependencies δs•(v) are computed for all v ∈ V
and the betweenness of each v is approximated as n

|S|
∑
s∈S δs•(v), where S is the set of

pivots. Selecting the pivots uniformly at random, the approximation can be proven to be
an unbiased estimator for cB(v) (i.e. its expectation is equal to cB(v)).

4.4 dynamic algorithms 35

In a subsequent work, Geisberger et al. [56] notice that the approach by Brandes and
Pich can overestimate betweenness scores of nodes close to the pivots. To limit this bias,
they introduce a scaling function which gives less importance to contributions from pivots
that are close to the node. In particular, the authors propose two possibilities: a linear
scaling function, where the effect of the contribution of a pivot on a node v increases linearly
with the distance between the pivot and v, and a bisection scaling function, which considers
only contributions of pivots that are “far enough” from v and ignores contributions from
other pivots.
In contrast to the two approaches described so far – which consider the problem of

estimating the betweenness of all nodes in the graph, Bader et al. [8] approximate the
betweenness of a specific node only, based on an adaptive sampling technique that reduces
the number of pivots for nodes with high centrality. Chehreghani [36] proposes alternative
sampling techniques that try to minimize the number of samples, when the betweenness
of a single node has to be estimated.
Different from previous approaches is the approximation algorithm by Riondato and

Kornaropoulos [107], which samples a single random shortest path at each iteration. This
approach does not compute one-side dependencies, but simply approximates the between-
ness of each node as the fraction of sampled paths the node is part of. This allows for a
theoretical guarantee on the quality of approximation: if the number r of sampled paths is
large enough, one can prove that Pr(∃v ∈ V : |cB(v)− c̃B(v)| > ε) < δ, where ε and δ are
two arbitrarily-chosen constants in (0, 1). The same guarantee is offered by ABRA [108],
a recent approximation algorithm based on progressive random sampling, which lever-
ages on Rademacher averages and pseudodimension. In their experimental evaluation, the
authors of ABRA show that their new approach requires significantly less samples than
the one by Riondato and Kornaropoulos [107]. Also, they propose an adaptation of their
algorithm which has a multiplicative error guarantee for the top-k nodes with highest
betweenness. ABRA has then been further improved by Borassi and Natale in [30]. Their
algorithm, named KADABRA, makes use of balanced bidirectional SSSPs and achieves
average speedups on ABRA of up to two orders of magnitude in their experimental evalu-
ation.

4.4 dynamic algorithms

The basic idea of dynamic betweenness algorithms is to keep track of the old betweenness
scores (and additional data structures) and efficiently update this information after some
modification in the graph. Based on the type of updates they can handle, dynamic algo-
rithms are classified as incremental (only edge insertions and weight decreases), decremen-
tal (only edge deletions and weight increases) or fully-dynamic (all kinds of edge updates).
Although using different techniques, one commonality of all these approaches is that they
build on the two phases of Brandes’s static algorithm BA [31].
The approach proposed by Green et al. [58] for unweighted graphs maintains all previ-

ously calculated betweenness values and additional information, namely pairwise distances,
number of shortest paths and lists of predecessors of each node in the shortest paths from
each source node s ∈ V . Using this information, the algorithm tries to limit the recom-
putation of BA to the nodes whose betweenness has been affected by the edge insertion.
Kourtellis et al. [72] modify the approach by Green et al. [58] in order to reduce the
memory requirements from O(nm) to O(n2). Instead of being stored, the predecessors are

36 overview of algorithms for betweenness centrality

recomputed every time the algorithm requires them. The authors show that not only using
less memory allows them to scale to larger graphs, but their approach (which we refer to
as KDB, from the authors’s initials) turns out to be also faster than the one by Green et
al. [58] in practice (most likely because of the cost of maintaining the data structure of
the algorithm by Green et al.).
Kas et al. [67] extend an existing algorithm for the dynamic all-pairs shortest paths

(APSP) problem by Ramalingam and Reps [104] to also update betweenness scores. Differ-
ently from the previous two approaches, this algorithm can handle also weighted graphs.
Although good speedups have been reported for this approach, no experimental evaluation
compares its performance with that of the approaches by Green et al. [58] and Kourtellis
et al. [72]. We refer to this algorithm as KWCC, from the authors’s initials.
Nasre et al. [94] compare the distances between each node pair before and after the

update and then recompute the dependencies from scratch as in BA (see Section 4.2).
Although this algorithm is faster than recomputation on some graph classes (i.e. when
only edge insertions are allowed and the graph is sparse and weighted), it is shown in [18]
that its practical performance is much worse than that of the algorithm proposed by Green
et al. [58]. This is quite intuitive, since recomputing all dependencies requires Ω(n2) time
independently of the number of nodes that are actually affected by the insertion.
Pontecorvi and Ramachandran [101] extend existing fully-dynamic APSP algorithms

with new data structures to update all shortest paths and then recompute dependencies
as in BA. To our knowledge, this algorithm has never been implemented, probably because
of the quite complicated data structures it requires. Also, since it recomputes dependencies
from scratch as Nasre et al. [94], we expect its practical performance to be similar.
Differently from the other algorithms, the approach by Lee et al. [79] is not based on

dynamic APSP algorithms. The idea is to decompose the graph into its biconnected com-
ponents and then recompute the betweenness values from scratch only for the nodes in the
component affected by the update. Although this allows for a smaller memory requirement
(Θ(m) versus Ω(n2) needed by the other approaches), the speedups on recomputation re-
ported in [79] are significantly worse than those reported for example by Kourtellis et
al. [72].
The ones described so far are all dynamic exact algorithms, meaning that they update

exact betweenness scores. The algorithm presented in Chapter 7 is the first dynamic al-
gorithm to update an approximation of betweenness centrality. After it was published,
another dynamic approximation algorithm was proposed by Hayashi at al. [61]. The au-
thors represent the shortest paths in a data structure named hypergraph sketch, which
allows them to further speedup the algorithm in Chapter 7 of up to one order of magni-
tude, according to their experimental evaluation.

5
FASTER INCREMENTAL BETWEENNESS CENTRAL ITY

5.1 introduction

As mentioned in Section 4.4, several algorithms for updating betweenness centrality in
dynamic networks have been proposed. Nevertheless, an exhaustive experimental compar-
ison between the different approaches is still missing in the literature. In this chapter, we
describe and experimentally evaluate two of the approaches for which the best speedups
have been reported, namely KDB [72] and KWCC [67] (named after the initials of the
authors). These approaches are based on the two steps of Brandes’s algorithm (BA): the
augmented APSP and the dependency accumulation step. While describing them, we iden-
tify redundant or unnecessary operations, whenever present. Thus, we propose two new
solutions – one for the augmented APSP and one for the dependency recomputation –
that significantly reduce the amount of work done by KDB and KWCC.
In particular, in the APSP update, we notice that both KWCC and KDB repeatedly

iterate over the neighboring edges of affected nodes, whereas we show that this operation
can be done only once, based on properties of the newly-created shortest paths. Compared
to KWCC and KDB, our algorithm for the augmented APSP update is asymptotically faster
for dense graphs: O(n2) in the worst case versus O(nm).
Also, we show that dependencies can be recomputed by accumulating values in a fashion

similar to that of BA. However, differently from BA, our method only processes nodes
that lie in shortest paths between affected pairs. This improves over KDB, where also
several non-affected nodes might be processed, and KWCC, which instead of accumulating
dependency changes, updates the betweenness scores for each affected node pair separately.
Our dependency update works also for weighted graphs (whereas KDB does not) and it is
asymptotically faster than the dependency update of KWCC for sparse graphs (O(nm+

n logn) in the worst case versus O(v3)).
In the following, we describe how KDB and KWCC perform the augmented APSP (Sec-

tion 5.2) and the dependency accumulation (Section 5.3). After describing existing al-
gorithms and their limitations, we introduce our new approaches in Section 5.2.3 and
Section 5.3.3.

5.2 dynamic augmented apsp

As mentioned earlier, dynamic algorithms based on BA build on its two steps. In the
following, we will see how KDB [72] and KWCC [67] update the augmented APSP data
structures (i.e. distances and number of shortest paths) after an edge insertion or a weight
decrease. One difference between these two approaches is that KDB does not store the
predecessors explicitly, whereas KWCC does. However, since in [72] it was shown that
keeping track of the predecessors only introduces overhead, we report a slightly-modified
version of KWCC that recomputes them “on the fly” when needed (we will also use this
version in our experiments in Section 5.5). We will then introduce our new approach in
Section 5.2.3.

37

38 faster incremental betweenness centrality

5.2.1 Algorithm by Kourtellis et al. (KDB)

Let (u, v) be the new edge inserted into G (we recall from Section 4.4 that KDB works only
on unweighted graphs, so edge weight modifications are not supported). For each source
node s ∈ V , there are three possibilities: (i) d(s,u) = d(s, v), (ii) |d(s,u)− d(s, v)| = 1
and (iii) |d(s,u)− d(s, v)| > 1 (in case (ii) and (iii), let us assume that d(s,u) < d(s, v)
without loss of generality). We recall that d is the distance before the edge insertion.

In the first case, it is easy to see that the insertion does not affect any shortest path
rooted in s, and therefore nothing needs to be updated for s.
In case (ii), the distance between s and the other nodes is not affected, since there

already existed an alternative shortest-path from s to v. However, the insertion creates
new shortest paths from s to to v and consequently to all the nodes t in the sub-DAG
(of the SSSP DAG from s) rooted in v. To account for this, for each of these nodes t, we
add σsu · σvt to the old value of σst (where σsu · σvt is the number of new shortest paths
between s and t going through (u, v)).
Finally, in case (iii), a part of the sub-DAG rooted in v might get closer to s. This case

is handled with a BFS traversal rooted in v. In the traversal, all neighbors y of nodes x
extracted from the BFS queue are examined and all the ones such that d(s, y) ≥ d′(s,x)
are also enqueued. For each traversed node y, the new distance d′(s, y) is computed as
minz:(z,y)∈E d

′(s, z) + 1 and the number of shortest paths σ′sy as
∑
z∈P ′

s(y)
σsz.

5.2.2 Algorithm by Kas et al. (KWCC)

u

vt

Figure 12: Insertion of (u, v).

KWCC updates the augmented APSP based on a dynamic
APSP algorithm by Ramalingam and Reps [104]. Instead
of checking for each source s whether the new edge (or
the weight decrease) changes the SSSP DAG rooted in s,
KWCC first identifies the affected sources S = {s : d(s, v) ≥
d(s,u) + ω′(u, v)}. These are exactly the nodes for which
there is some change in the SSSP DAG. The affected sources
are identified by running a pruned BFS rooted in u on G

transposed (i.e. the graph obtained by reversing the direction of edges in G). For each
node s traversed in the BFS, KWCC checks whether the neighbors of s are also affected
sources and, if not, it does not continue the traversal from them. Notice that even on
weighted graphs, a (pruned) BFS is sufficient since we already know all distances to v and
we can basically sidestep the use of a priority queue.

Once all affected sources s are identified, KWCC starts a pruned BFS rooted in v for each
of them. In the pruned BFS, only nodes t such that d(s, t) ≥ d(s,u)+ω′(u, v)+ d(v, t) are
traversed (the affected targets of s). The new distance d′(s, t) is set to d(s,u) + ω′(u, v) +
d(v, t) and the new number of shortest paths σ′(s, t) is set to

∑
z∈P ′

s(t)
σsz as in KDB.

Compared to KDB, the augmented APSP update of KWCC requires fewer operations.
First, it efficiently identifies the affected sources instead of checking all nodes. Second, in
case (iii), KDB might traverse more nodes than KWCC. For example, assume (u, v) is a
new edge and the resulting SSSP DAG of u is as in Figure 12. Then, KWCC will prune the
BFS in t, since d(u, t) < d(u, v) + d(v, t), skipping all the SSSP DAGs rooted in t. On the
contrary, KDB will traverse the whole subtree rooted in t, although neither the distances

5.2 dynamic augmented apsp 39

nor the number of shortest paths from u to those nodes are affected. The reason for this
will be made clearer in Section 5.3.1.

5.2.3 Faster augmented APSP update

u

v

x1 x2

Figure 13: Affected targets
(in green) and
affected sources
(x1,x2,u).

To explain our idea for improving the APSP update step,
let us start with an example, shown in Figure 13. The inser-
tion of (u, v) decreases the distance from nodes x1,x2,u to
all the nodes shown in green. KWCC would first identify the
affected sources S = {x1,x2,u} and, for each of them, run a
pruned BFS rooted in v. This means we are repeating almost
exactly the same procedure for each of the affected sources.
We clearly have to update the distances and number of short-
est paths between each affected source and the affected tar-
gets (and this cannot be avoided). However, KWCC also goes
through the outgoing edges of each affected target multiple
times, leading to a worst-case running time of O(mn). Notice
that this is true also for KDB, with the difference that KDB
starts a BFS from each node instead of first identifying the
affected sources and that it also visits additional nodes. Our basic idea is to avoid this
redundancy and is based on the following proposition (a similar result was proven also
in [82]).

Proposition 5.2.1. Let t ∈ V and y ∈ Pv(t) be given. Then, S(t) ⊆ S(y).

Proof. Let s be any node in S(t), i.e. either d′(s, t) = d(s, t) and σ′st 6= σst (case (i)), or
d′(s, t) < d(s, t) (case (ii)). We want to show that s ∈ S(y).
Before proving this, we show that y has to be in P ′s(t). In fact, if s ∈ S(t), there have to

be shortest paths between s and t going through (u, v), i.e. d′(s, t) = d(s,u) + ω′(u, v) +
d(v, t). On the other hand, we know y ∈ Pv(t) and thus

d′(s, t) = d(s,u) + ω′(u, v) + d(v, y) + ω(y, t). (16)

Now, d(s,u) + ω′(u, v) + d(v, y) cannot be larger than d′(s, y), or this would mean that
d′(s, t) > d′(s, v)+ω(y, t), which contradicts the triangle inequality. Also, d(s,u)+ω′(u, v)+
d(v, y) cannot be smaller than d′(s, y) by definition of distance. Thus, d′(s, y) = d(s,u) +
ω′(u, v) + d(v, y). If we substitute this in Eq. (16), we obtain d′(s, t) = d′(s, y) + ω(y, t),
which means y ∈ P ′s(t).

Now, let us consider case (i). We have two options: either y was a predecessor of t
from s also before the edge update, i.e. y ∈ Ps(t), or it was not. If it was not, it means
d(s, y) + ω(y, t) > d(s, t) = d′(s, t) = d′(s, y) + ω(y, t), which implies d(s, y) > d′(s, y)
and thus s ∈ S(y). If it was, we can similarly show that d(s, y) = d′(s, y). Since we have
seen before that d′(s, y) = d(s,u) + ω′(u, v) + d(v, y), there has to be at least one new
shortest path from s to y in G′ going through (u, v), which means σ′sy > σsy and therefore
s ∈ S(y).

40 faster incremental betweenness centrality

Case (ii) can be easily proven by contradiction. We know d(s, t) ≤ d(s, y) + ω(y, t) (by
the triangle inequality) and that ω′(y, t) = ω(y, t). Thus, if it were true that d(s, y) =

d′(s, y) then

d(s, t) ≤ d(s, y) + ω(y, t) = d′(s, y) + ω(y, t) = d′(s, t), (17)

which contradicts our hypothesis that d′(s, t) < d(s, t) (case (ii)). Thus, d(s, y) 6= d′(s, y).
Since pairwise distances in G′ can only be equal to or shorter than pairwise distances in
G, d(s, y) 6= d′(s, y) implies d(s, y) > d′(s, y) and thus s ∈ S(y).

In particular, this implies that S(t) ⊆ S(v) for each t ∈ T (u). Consequently, it is
sufficient to compute S(v) and T (u) once via two pruned BFSs. Our approach is described
in Algorithm 1. The pruned BFS to compute S(v) is performed in Line 3. Then, a pruned
BFS from v is executed, whereby for each t ∈ T (u) we store one of its predecessors p(t)
in the BFS (Line 27).
Let d?(s, t) be the length of a shortest path between s and t going through (u, v), i.e.

d?(s, t) := d(s,u)+ω′(u, v)+ d(v, t). To finally compute S(t) all that is left to do is to test
whether d?(s, t) ≤ d(s, t) for each s ∈ S(p(t)) once we remove t from the queue (Lines 11
- 22). Note that this implies that S(p(t)) was already computed. In case d?(s, t) < d(s, t),
the path from s to t via edge (u, v) is shorter than before and therefore we set d′(s, t) to
d?(s, t) and σ′st to σsu · σvt, since all new shortest paths now go through (u, v)). Also in
case of equality (d?(s, t) = d(s, t)), s is in S(t), since its number of shortest paths has
changed. Consequently we set σ′st to σst + σsu · σvt (since in this case also old shortest
paths are still valid). If d?(s, t) > d(s, t), the edge (u, v) does not lie on any shortest path
from s to t, hence s /∈ S(t) (and s is not added to S(t) in Lines 18 - 20).

5.3 dynamic dependency accumulation

After updating distances and number of shortest paths, dynamic algorithms need to update
the betweenness scores. This means increasing the score of all nodes that lie in new shortest
paths, but also decreasing that of nodes that used to be in old shortest paths between
affected nodes. Again, we will first see how KDB and KWCC update the dependencies and
then we will present our new approach in Section 5.3.3.

5.3.1 Algorithm by Kourtellis et al. (KDB)

In addition to d and σ, KDB keeps track of the old dependencies δs•(v) ∀s, v ∈ V . The
dependency update is done in a way similar to BA (see Section 4.2). Also in this case,
nodes v are processed in decreasing order of their new distance d′(s, v) from s (otherwise
it would not be possible to apply Theorem (4.2.1)). However, in this case we would only
like to process nodes for which the dependency has actually changed. To do this, while still
making sure that the nodes are processed in the right order, KDB replaces the stack used
in BA with a bucket list. Every node that is traversed during the APSP update is inserted
into the bucket list in a position equal to its new distance from s. Then, nodes are extracted
from the bucket list starting from the ones with maximum distance. Every time a node v is
extracted, we compute its new dependency as δ′s•(v) =

∑
w:v∈P ′

s(w)
σ′

sv
σ′

sw
(1+ δ′s•(w)). Since

5.3 dynamic dependency accumulation 41

Algorithm 1: Augmented APSP update
Input : Graph G = (V ,E), edge insertion/weight decrease (u, v,ω′(u, v)), d(s, t),

σst, ∀(s, t) ∈ V 2

Output : Updated d′(s, t), σ′st, ∀(s, t) ∈ V 2

Assume : Initially d′(s, t) = d(s, t) and σ′st = σst ∀(s, t) ∈ V 2

1 vis(v)← false ∀v ∈ V ;
2 if ω′(u, v) ≤ d(u, v) then
3 S(v)← findAffectedSources(G, (u, v,ω′(u, v)));
4 d(u, v)← ω′(u, v);
5 Q← ∅;
6 p(v)← v;
7 Q.push(v);
8 vis(v)← true;
9 while Q.length() > 0 do

10 t = Q.front();
11 foreach s ∈ S(p(t)) do
12 if d(s, t) ≥ d(s,u) + ω′(u, v) + d(v, t) then
13 if d(s, t) > d(s,u) + ω′(u, v) + d(v, t) then
14 d′(s, t)← d(s,u) + ω′(u, v) + d(v, t);
15 σ′st ← 0;
16 end
17 σ′st ← σ′st + σsu · σvt;
18 if t 6= v then
19 S(t).insert(s);
20 end
21 end
22 end
23 foreach w s.t. (t,w) ∈ E do
24 if not vis(w) and d(u,w) ≥ ω′(u, v) + d(v,w) then
25 Q.push(w);
26 vis(w)← true;
27 p(w)← t;
28 end
29 end
30 end
31 end

we are processing the nodes in order of decreasing new distance, we can be sure that δ′s•(v)
is computed correctly. The score of v is then updated by adding the new dependency δ′s•(v)
and subtracting the old δs•(v), which was previously stored. Also, all neighbors y ∈ P ′s(v)
that are not in the bucket list yet are inserted at level d′(s, y) = d′(s, v)− 1. Notice that,
in the example in Figure 12, all the nodes in the sub-DAG of t are necessary to compute
the new dependency of t, although they have not been affected by the insertion. This is
why they are traversed during the APSP update.

5.3.2 Algorithm by Kas et al. (KWCC)

KWCC does not store dependencies. On the contrary, for every node pair (s, t) for which
either d(s, t) or σst has been affected by the insertion, all the nodes in the new shortest
paths and the ones in the old shortest paths between s and t are processed. More specif-
ically, starting from t, all the nodes y ∈ P ′s(t) are inserted into a queue. When a node y
is extracted, we increase its betweenness by σ′(s, y) · σ′(y, t)/σ′(s, t) (i.e. the fraction of
shortest paths between s and t going through y). Then, also y enqueues all nodes in P ′s(y)

42 faster incremental betweenness centrality

and the process is repeated until we reach s. Decreasing the betweenness of nodes in the
old paths is done in a similar fashion, with the only difference that nodes in Ps(y) are
enqueued (instead of nodes in P ′s(y)) and that σ(s, y) · σ(y, t)/σ(s, t) is subtracted from
the scores of processed nodes. Notice that the worst-case complexity of this approach is
O(n3), whereas that of KDB is O(nm). This cubic running time is due to the fact that, for
each affected node pair (s, t) (at most Θ(n2)), there could be up to Θ(n) nodes lying in
either one of the old or new shortest paths between s and t. (In the running time analysis
of [72], this is represented by the term |σold|I.) This means that, if many nodes are affected,
KWCC can even be slower than recomputation with BA. On the other hand, we have seen
in Section 5.2.2 that KDB also processes nodes for which the betweenness has not changed
(see Figure 12 and its explaination), which in some cases might result in a higher running
time than KWCC.

5.3.3 Faster betweenness update

We propose a new approach for updating the betweenness scores. As KWCC, we do not store
the old dependencies (resulting in a lower memory requirement) and we only process the
nodes whose betweenness has actually been affected. However, we do this by accumulating
contributions of nodes only once for each affected source, in a fashion similar to KDB. For
an affected source s ∈ S and for any node v ∈ V , let us define ∆s,•(v) as

∑
t∈T (s) σst(v)/σst.

This is the contribution of nodes whose old shortest paths from s went through v, but
which have been affected by the edge insertion. Analogously, we can define ∆′s,•(v) as∑
t∈T (s) σ

′
st(v)/σ′st. Then, the new dependency δ′s,•(v) can be expressed as:

δ′s,•(v) = δs,•(v)− ∆s,•(v) + ∆′s,•(v) (18)

Notice that for all nodes t /∈ T (s), σ′st = σst and σ′st(v) = σst(v), therefore their contribu-
tion to δs,•(v) is not affected by the edge update. The new betweenness c′B(v) can then
be computed as cB(v)−

∑
s∈S ∆s,•(v) +

∑
s∈S ∆′s,•(v). The following theorem allows us to

compute ∆s,•(v) and ∆′s,•(v) efficiently.

Theorem 5.3.1. For any s ∈ T , v ∈ V :

∆s,•(v) =
∑

w:v∈Ps(w)∧w∈T (s)
σsv/σsw(1+ ∆s,•(w)) +

∑
w:v∈Ps(w)∧w/∈T (s)

σsv/σsw ·∆s,•(w) .

Similarly:

∆′s,•(v) =
∑

w:v∈P ′
s(w)∧w∈T (s)

σ′sv/σ′sw(1+ ∆′s,•(w)) +
∑

w:v∈P ′
s(w)∧w/∈T (s)

σ′sv/σ′sw ·∆′s,•(w) .

Proof. We prove only the equation for ∆s,•(v), the one for ∆′s,•(v) can be proven analo-
gously. Let t be any node in T (s), t 6= v. Then, the term σst(v)/σst can be rewritten as∑
w:v∈Ps(w) σst(v,w)/σst, where σst(v,w) is the number of shortest paths between s and t

going through both v and w. Then:

∆s,•(v) =
∑

t∈T (s)
σst(v)/σst =

∑
t∈T (s)

∑
w:v∈Ps(w)

σst(v,w)/σst =
∑

w:v∈Ps(w)

∑
t∈T (s)

σst(v,w)/σst .

5.4 time complexity 43

Now, of the σsw paths from s to w, there are σsv many that also go through v. Therefore,
for t 6= w, there are σsv

σsw
· σst(w) shortest paths from s to t containing both v and w, i.e.

σst(v,w) = σsv
σsw
· σst(w). On the other hand, if t = w, σst(v,w) is simply σsv. Therefore,

we can rewrite the equation above as:

∑
w:v∈Ps(w)∧w∈T (s)

 σsv
σsw

+
∑

t∈T (s)−{w}

σst(v,w)
σst

+
∑

w:v∈Ps(w)∧w/∈T (s)

∑
t∈T (s)

σst(v,w)
σst

=
∑

w:v∈Ps(w)∧w∈T (s)

σsv
σsw

1 +
∑

t∈T (s)−{w}

σst(w)

σst

+
∑

w:v∈Ps(w)∧w/∈T (s)

σsv
σsw

∑
t∈T (s)

σst(w)

σst

=
∑

w:v∈Ps(w)∧w∈T (s)

σsv
σsw

(1 + ∆s,•(w)) +
∑

w:v∈Ps(w)∧w/∈T (s)

σsv
σsw
· ∆s,•(w) .

Theorem 5.3.1 allows us to accumulate the dependency changes in a way similar to
BA. To compute ∆s,•, we need to process nodes in decreasing order of d(s, ·), whereas to
compute ∆′s,• we need to process them in decreasing order of d′(s, ·). To do this, we use two
priority queues PQs and PQ′s (if the graph is unweighted, we can use bucket lists as the
ones used in KDB). Notice that nodes w such that σst(w) = 0∧ σ′st(w) = 0 ∀t ∈ T (s) do
not need to be added to the queue. PQs and PQ′s are filled with all nodes in T (s) during
the APSP update in Algorithm 1. In PQs, nodes w are inserted with priority d(s,w) and
PQ′s with priority d′(s,w). Algorithm 2 shows how we decrease betweenness of nodes that
lied in old shortest paths from s (notice that this is repeated for each s ∈ S(v)). In Lines 7
- 12, Theorem 5.3.1 is applied to compute ∆s,•(y) for each predecessor y of w. Then, y
is also enqueued and this is repeated until PQs is empty (i.e. when we reach s). The
betweenness update of nodes in the new shortest paths works in a very similar way. The
only difference is that PQ′s is used instead of PQ, that d′ and σ′ are used instead of d and
σ and that ∆′s,• is added to cB and not subtracted in Line 4. At the end of the update, σ
is set to σ′ and d is set to d′.
In undirected graphs, we can notice that

∑
s∈S(w) ∆s,•(w) =

∑
t∈T (w) ∆t,•(w). Thus, to

account also for the changes in the shortest paths between w and the nodes in T (w), 2∆s,•
is subtracted from cB(w) in Line 4 (and analogously 2∆′s,• is added in the update of nodes
in the new shortest paths).

5.4 time complexity

Let us study the complexity of our two new algorithms for updating APSP and betweenness
scores described in Section 5.2.3 and Section 5.3.3, respectively. We define the extended
size ||A|| of a set of nodes A as the sum of the number of nodes in A and the number of
edges that have a node of A as their endpoint. Then, the following holds.

Theorem 5.4.1. The running time required by Algorithm 1 to update the augmented
APSP after an edge insertion (or weight decrease) (u, v,ω′(u, v)) is Θ(||S(v)||+ ||T (u)||+∑

y∈T (u) |S(p(y))|), where p(y) can be any node in Pu(y).

Proof. The function findAffectedSources in Line 3 identifies the set of affected sources
starting a BFS in v and visiting only the nodes s ∈ S(v). This takes Θ(||S(v)||), since

44 faster incremental betweenness centrality

Algorithm 2: Betweenness update for nodes in old shortest paths
1 ∆s,•(u)← 0 ∀u ∈ V ;
2 while PQs 6= ∅ do
3 w ← PQs.extractMax();
4 cB(w)← cB(w)− ∆s,•(w);
5 foreach y s.t. (y,w) ∈ E do
6 if y 6= s and d(s,w) = d(s, y) + ω(y,w) then
7 if w ∈ T (s) then
8 c← σsy

σsw
· (1 + ∆s,•(w));

9 end
10 else
11 c← σsy

σsw
· ∆s,•(w);

12 end
13 if y /∈ PQs then
14 Insert y into PQs with priority d(s, y);
15 end
16 ∆s,•(y)← ∆s,•(y) + c;
17 end
18 end
19 end

this pruned BFS visits all nodes in S(v) and their incident edges. Then, the while loop of
Lines 9 - 30 identifies all the affected targets T (u) with a pruned BFS. This part (excluding
Lines 11 - 22) requires Θ(||T (u)||) operations, since all affected targets and their incident
edges are visited. In Lines 11 - 22, for each affected node t ∈ T (u), all the affected sources
of the predecessor p(y) of y are scanned. This part requires in total Θ(

∑
t∈T (u) |S(p(y))|)

operations.

Notice that, since |S(p(y))| is O(n) and both ||T (u)|| and ||S(v)|| are O(n+m), the
worst-case complexity of Algorithm 1 is O(n2). To show the complexity of the dependency
update described in Algorithm 2, let us introduce, for a given source node s, the set
τ (s) := T (s) ∪ {w ∈ V : ∆s,•(w) > 0}. Then, the following theorem holds.

Theorem 5.4.2. The running time of Algorithm 2 is Θ(||τ (s)|| + |τ (s)| log |τ (s)|) for
weighted graphs and Θ(||τ (s)||) for unweighted graphs.

Proof. In the following, we assume a binary heap priority queue for weighted graphs and
a bucket list priority queue for unweighted graphs. Then, the extractMax() operation in
Line 3 requires constant time for unweighted and logarithmic time for weighted graphs.
Also, for each node extracted from PQ, all neighbors are visited in Lines 5 - 18. Therefore,
it is sufficient to prove that the set of nodes inserted into (and therefore extracted from)
PQ is exactly τ (s). As we said in the description of Algorithm 2, PQ is initially populated
with the nodes in T (s). Then, all nodes y inserted into PQ in Line 14 are nodes that lied
in at least one shortest path between s and a node in T (s) before the insertion. This means
that there is at least one t ∈ T (s) such that σst(y) > 0, which implies that ∆s,•(y) > 0,
by definition of ∆s,•(y).

The running time necessary to increase the betweenness score of nodes such that ∆′s,• > 0
can be computed analogously, defining τ ′(s) = T (s)∪{w ∈ V : ∆′s,•(w) > 0}. Overall, the
running time of the betweenness update score described in Section 5.3.3 is Θ(

∑
s∈S ||τ (s)||+

||τ ′(s)||) for unweighted and Θ(
∑
s∈S ||τ (s)||+ ||τ ′(s)||+ |τ (s)| log |τ (s)|+ |τ ′(s)| log |τ ′(s)|)

5.5 experimental results 45

for weighted graphs. Consequently, in the worst case, this is O(nm) for unweighted and
O(n(m+ n logn)) for weighted graphs, which matches the running time of BA. For sparse
graphs, this is asymptotically faster than KWCC, which requires Θ(n3) operations in the
worst case.

5.5 experimental results

implementation and settings For our experiments, we implemented BA, KDB,
KWCC, and our new approach, which we refer to as iBet (from Incremental Betweenness).
All the algorithms were implemented in C++, building on the open-source NetworKit
framework [119]. All codes are sequential; they were executed on a 64bit machine with 2
x 8 Intel(R) Xeon(R) E5-2680 cores at 2.7 GHz with 256 GB RAM with a single thread
on a single CPU.

data sets and experimental design For our experiments, we consider a set
of unweighted undirected real-world networks belonging to different domains, taken from
SNAP [81], KONECT [76], and LASAGNE (piluc.dsi.unifi.it/lasagne). We also
create a weighted version of each networks, by assigning random weights to edges with
mean 1.0 and standard deviation 0.1. Since KDB cannot handle weighted graphs, only
KWCC and iBet are tested on them . The networks are reported in Table 5. Due to the
time required by the static algorithm and the memory constraints of all dynamic algorithms
(Θ(n2)), we only considered networks with up to about 30000 nodes.

To simulate real edge insertions, we remove an existing edge from the graph (chosen
uniformly at random), compute betweenness on the graph without the edge and then re-
insert the edge, updating betweenness with the incremental algorithms (and recomputing
it with BA). A motivation for this technique can be found in Section 3.2.2. For all networks,
we consider 100 edge insertions and report the average over these 100 runs.

Graph Nodes Edges Type Time BA [s]
maldives 1 736 2 290 street 0.57
HC-BIOGRID 4 039 10 321 biological network 5.42
Mus-musculus 4 610 5 747 biological network 2.83
Caenor-elegans 4 723 9 842 metabolic 5.05
ca-GrQc 5 241 14 484 coauthorship 4.29
advogato 7 418 42 892 social 14.62
hprd-pp 9 465 37 039 biological network 30.23
ca-HepTh 9 877 25 973 coauthorship 22.19
dr-melanogaster 10 625 40 781 biological network 41.31
oregon1-010526 11 174 23 409 autonomous systems 24.72
oregon2-010526 11 461 32 730 autonomous systems 29.70
Homo-sapiens 13 690 61 130 biological network 69.81
GoogleNw 15 763 148 585 hyperlinks 91.70
as-caida20071105 26 475 53 381 autonomous systems 153.62
faroe-islands 31 097 31 974 street 98.18

Table 5: Graphs used in the experiments and running time of the static algorithm BA.

piluc.dsi.unifi.it/lasagne

46 faster incremental betweenness centrality

Average Speedup Maximum Speedup Minimum Speedup
Graph iBet KDB KWCC iBet KDB KWCC iBet KDB KWCC
maldives 38.2 3.5 4.2 2105 26 67 3.3 1.6 0.1
HC-BIOGRID 76.9 14.7 10.9 1815 20 81 8.9 5.7 1.3
Mus-musculus 245.3 22.4 7.9 56997 9078 54 17.0 2.6 0.5
Caenor-elegans 112.2 15.5 8.4 83725 14131 91 18.9 1.8 1.1
ca-GrQc 1282.0 75.7 30.2 78549 10720 63 29.0 1.9 0.7
advogato 72.0 18.4 13.3 206532 23565 108 9.7 1.2 1.9
hprd-pp 188.4 16.7 28.5 395032 52012 131 22.2 1.1 2.8
ca-HepTh 616.8 25.0 32.9 274505 24027 90 38.1 1.2 0.3
dr-melanogaster 117.3 14.1 16.4 309409 25927 92 23.9 1.5 1.7
oregon1-010526 72.5 10.5 10.4 9045 419 67 11.3 1.3 0.8
oregon2-010526 68.5 10.9 14.6 320208 2774 86 20.5 1.2 1.7
Homo-sapiens 106.3 18.3 15.2 417723 34666 98 11.4 1.3 1.8
GoogleNw 276.9 152.2 26.5 87397 3506 137 6.3 0.6 1.4
as-caida20071105 41.0 9.0 6.2 3023 38 34 12.2 1.0 0.5
faroe-islands 153.8 6.8 1.6 225266 6003 38 1.7 1.5 0.0005

Table 6: The table shows the average, maximum and 75-th percentile of the speedups of the incre-
mental algorithms on BA. The best result is shown in bold font.

experimental results Table 5 shows the running times of BA for each graph and
Table 6 reports the speedups of the three incremental algorithms on BA. Notice that with
the term speedup we mean the ratio between the running times of two algorithms and not
the parallel speedup (all implementations are sequential). Our new method iBet clearly
outperforms the other two approaches and is always faster than both of them. On average,
iBet is faster than BA by a factor 179.1, whereas KDB by a factor 13.0 and KWCC by a
factor 22.9.
Figure 14 compares the APSP update (on the left) and dependency update (on the

right) steps for the oregon1-010526 graph (a similar behavior was observed also for the
other graphs of Table 5. On the left, the running time of the APSP update phase of the
three incremental algorithms on 100 edge insertions are reported, sorted by the running
time taken by KDB. It is clear that the APSP update of iBet is always faster than the
competitors. This is due to the fact that iBet processes the edges between the affected
targets only once instead of doing it once for each affected source as both KDB and
KWCC. Also, the running time of the APSP update of KDB varies significantly. On about
one third of the updates, it is basically as fast as KWCC. This means that in these cases,
KDB only visits a small amount of nodes in addition to the affected ones (see Figure 12
and its explanation). However, in other cases KDB can be much slower, as shown in the
figure.
On the right of Figure 14, the running times of the dependency update step are reported.

Also for this step, iBet is faster than both KDB and KWCC. However, for this part there is
not a clear winner between KWCC and KDB. In fact, in some cases KDB needs to process
additional nodes in order to recompute dependencies, whereas KWCC only processes nodes
in the shortest paths between affected nodes. However, KDB processes each node at most
once for each source node s, whereas KWCC might process the same node several times if
it lies in several shortest paths between s and other nodes (we recall that the worst-case

5.5 experimental results 47

0 20 40 60 80 100

Edge update

0

1

2

5

10
T
im

e
 [

s]
iBet

KDB

KWCC

0 20 40 60 80 100

Edge update

0

1

2

5

T
im

e
 [

s]

iBet

KDB

KWCC

Figure 14: Running times of iBet, KDB and KWCC for 100 edge updates on oregon1-010526. Left:
times for the APSP update step. Right: times for the dependency update step.

0 20 40 60 80 100

Edge update

0

1

2

5

10

20

50

T
im

e
 [

s] iBet

KDB

KWCC

BA

Complete update APSP update Dependency update
0

100

101

102

103

104

S
p
e
e
d
u
p
 o

n
 B

A

KDB

KWCC

iBET

Figure 15: Left: Running times of iBet, KDB, KWCC and BA on the oregon1-010526 graph for
100 edge updates. Right: Average speedups on recomputation with BA (geometric mean)
over all networks of Table 5 for the three incremental algorithms. The column on the
left shows the speedup of the complete update, the one in the middle the speedup of
the APSP update only and the one on the right the speedup of the dependency update
only.

running time of KWCC is O(n3), whereas that of KDB is O(nm)). Notice also that in some
rare cases KDB is slightly faster than iBet in the dependency update. This is probably due
to the fact that our implementation of iBet is based on a priority queue, whereas KDB on
a bucket list.
Figure 15 on the left reports the total running times of iBet, KDB, KWCC and BA on

oregon1-010526. Although the running times vary significantly among the updates, iBet
is always the fastest among all algorithms. On the contrary, there is not always a clear
winner between KDB and KWCC. On the right, Figure 15 shows the geometric mean of the
speedups on recomputation for the three incremental algorithms, considering the complete
update, the APSP update step only and the dependency update step only, respectively.
iBet is the method with the highest speedup both overall and on the APSP update and
dependency update steps separately, meaning that each of the improvements described in
Section 5.2.3 and Section 5.3.3 contribute to the final speedup. On average, iBet is a factor
82.7 faster than KDB and a factor 28.5 faster than KWCC on the APSP update step and
it is a factor 9.4 faster than KDB and a factor 4.9 faster than KWCC on the dependency
update step. Overall, the speedup of iBet on KDB ranges from 6.6 to 29.7 and is on average
(geometric mean of the speedups) 14.7 times faster. The average speedup on KWCC is 7.4,
ranging from a factor 4.1 to a factor 16.0.

48 faster incremental betweenness centrality

Complete update APSP update Dependency update
0

100

101

102

103

104

S
p
e
e
d
u
p
 o

n
 B

A

KWCC

iBET

Figure 16: Average speedups on recomputation with BA (geometric mean) over all networks of
Table 5, with random weights. The column on the left shows the speedup of the complete
update, the one in the middle the speedup of the APSP update only and the one on
the right the speedup of the dependency update only.

The results for weighted networks (reported in Figure 16) are even better: the average
speedup of iBet on recomputation is 1582, whereas that of KWCC is 61, meaning that iBet
is about 26 times faster than KWCC on average (we recall that KDB does not work for
weighted graph).

bibliographic notes

The results presented in this chapter have been published as “Faster betweenness centrality
updates in evolving networks” (coauthored with Henning Meyerhenke, Mark Ortmann, and
Arie Slobbe) at the Sixteenth International Symposium on Experimental Algorithms (SEA
2017).

6
DYNAMIC S INGLE -NODE BETWEENNESS CENTRAL ITY

6.1 introduction

The dynamic algorithms described in Section 4.4, as well as the new algorithm iBet pre-
sented in Chapter 5, update the betweenness centrality scores of all nodes after an edge
insertion. However, there might be cases in which only the betweenness centrality of a
specific node needs to be computed (and updated, in a dynamic scenario).
As a motivation, we consider the problem of Maximum Betweenness Improvement

(MBI), initially introduced by Crescenzi et al. [42]. MBI can be described as follows: as-
suming that a node v in an unweighted graph G can connect itself with k other nodes,
how should these nodes be chosen in order to maximize the betweenness centrality of v? In
other terms, we want to add a set of k edges to the graph (all incident to v), such that the
betweenness of v in the new graph is as high as possible. This problem can be of interest in
all contexts in which having a high betweenness can be beneficial for a node. For example,
in the field of transportation network analysis, betweenness centrality was shown to be
positively related to the efficiency of an airport [88]. In the context of social networks,
the authors of [87] show experimentally that nodes with high betweenness are also very
effective in spreading influence to other nodes. Therefore, it might be interesting for a user
to create new links with other users or pages in order to increase his own influence spread.
Crescenzi et al. [42] propose a greedy algorithm (Greedy), guaranteed to find a solution

that is a (1− 1
e)-approximation of the optimum. For k times, the algorithm tries to insert

into G all possible edges incident to v. For each edge, Greedy computes the betweenness
score of v in the new graph containing the edge, and chooses the edge that maximizes
it. Algorithm 6 shows the pseudocode of Greedy. Although very accurate, this algorithm
needs to compute betweenness centrality O(k · n) times (the number of iterations times
the number of potential edges to be added to v), leading to an overall running time of
O(k · n2m) – clearly too expensive for large networks.
A simple idea would be to use iBet, the dynamic algorithm presented in Chapter 5, to

update betweenness after each insertion. However, Greedy requires only the betweenness
of v to be updated, so iBet might perform some unnecessary work. In this chapter we
investigate whether other techniques can be even faster in the context of updating the
betweenness of a single node, and we apply them to speed up the greedy algorithm for
MBI by Crescenzi et al. [42]. However, we would like to point out that the algorithm we
propose can be applied to more general problems than updating betweenness within Greedy.
Indeed, in MBI all new edges are incident to one specific node, whereas our algorithm can
handle insertions of edges anywhere in the graph. In addition, the algorithm also works
for edge weight decreases in weighted graphs, whereas Greedy can only deal with edge
insertions in unweighted graphs.

49

50 dynamic single-node betweenness centrality

6.2 dynamic betweenness for a single node

To understand why an algorithm specifically designed to update the betweenness of a
single node might be more efficient than algorithms that update betweenness of all nodes,
consider the example shown in Figure 17. The insertion of an edge (u, v) does not only
affect the betweenness of the nodes lying in the new shortest paths, but also that of
the nodes lying in the old shortest paths between affected sources and affected targets
(represented in red). Indeed, the fraction of shortest paths going through these nodes –
and therefore their betweenness – has decreased as a consequence of the new insertion.
Therefore, algorithms for updating the betweenness of all nodes have to walk over each
old shortest path between node pairs whose distance (or number of shortest paths) has
changed. However, if we are only interested in the betweenness of one particular node x,
we can simply update the distances (and number of shortest paths) and check which of
these updates affect the betweenness of x.
In the following, we assume the reader to be familiar with the algorithm iBet described

in Chapter 5 and we describe how this can be adapted to update the betweenness of a
single node. Also, we assume that the graph G is unweighted and connected, but the algo-
rithm can be easily extended to weighted and disconnected graphs, similarly to iBet. Our
algorithm can be divided in two phases: an initialization phase, where pairwise distances,
the betweenness of a given node x and additional information are computed and stored,
and an update phase, where the data structures are updated after the edge insertion.

6.2.1 Initialization

We recall from Chapter 5 that iBet stores the pairwise distances d(s, t) and the number
of shortest paths σst for each s, t ∈ V . In addition to this, in this case we also store the
number σst(x) of shortest paths between s and t that go through x. Then, we can compute
betweenness by using its definition, i. e. cB(x) =

∑
s 6=x 6=t

σst(x)
σst

.
The initialization can be easily done by running an augmented Single-Source Shortest

Path (SSSP) from each node, as in the first phase of Brandes’s algorithm for between-
ness centrality [31] (see Chapter 5 for a brief description of Brandes’s algorithm). While
computing distances from a source node s to any other node t, we set the number σst of
shortest paths between s and t to the sum

∑
σsp over all predecessors p in the shortest

u

v

Figure 17: Insertion of (u, v) affects the betweenness of nodes lying in the old shortest paths (red).

6.2 dynamic betweenness for a single node 51

paths from s (and we set σss = 1). This can be done for a node s in O(m) in unweighted
graphs and in O(m+ n logn) in weighted graphs (the cost of running a BFS or Dijkstra,
respectively). Instead of discarding this information after each SSSP as in Brandes’s algo-
rithm, we store the distances d(s, t) and the numbers of shortest paths σst ∀s, t ∈ V in
two matrices. Then, we can compute the number σst(x) of shortest paths going through
x. For each node pair (s, t), σst(x) is equal to σsx · σxt if d(s, t) = d(s,x) + d(x, t), and to
0 otherwise. The betweenness cB(x) of x can then be computed using the definition. This
second part can be done in O(n2) time by looping over all node pairs. Therefore the total
running time of the initialization is O(nm) for unweighted graphs and O(n(m+ n logn))
for weighted graphs, and the memory requirement is O(n2), since we need to store three
matrices of size n× n each.

6.2.2 Update

The update works in a way similar to iBet (see Chapter 5), with a few differences. Let
us assume that an edge (u, v) with weight ω′uv has been inserted into the graph, or that
its old weight ωuv has been decreased to a new value ω′uv (for simplicity, from now on
we will refer to “edge insertions”, but the results apply to edge weight decreases as well).
Algorithm 3 gives an overview of the algorithm for betweenness update for a single node
x, whereas Algorithm 4 and Algorithm 5 describe the update of σst and σst(x) when
d(s, t) > d(s,u) + ω′uv + d(v, t) and when d(s, t) = d(s,u) + ω′uv + d(v, t), respectively.
Algorithm 3 shares its structure with iBet. In Lines 2-8, after setting the new distance

between u and v, also σuv and σuv(x) are updated with either updateSigmaGR or update-
SigmaEQ. Then, just like in iBet, the affected sources are identified with a pruned BFS
rooted in u on G transposed (function findAffectedSources).
Then, a (pruned) BFS rooted in v is started to find the affected targets for u (Lines 14-

40). In Lines 36-40, the neighbors w of the affected target t are visited and, if they are
also affected (i.e. d(u,w) ≥ ω′uv + d(v,w)), they are enqueued. Also, t is stored as the
predecessor of w (Line 40). In Lines 17-32, for each affected node pair (s, t), we first
subtract the old contribution σst(x)/σst from the betweenness of x, then we recompute
d(s, t), σst and σst(x) with either updateSigmaGR or updateSigmaEQ, and finally we add
the new contribution σ′st(x)/σ′st to cB(x). Notice that, if x did not lie in any shortest
path between s and t before the edge insertion, σst(x) = 0 and therefore cB(x) is not
decreased in Line 19. Analogously, if x is not part of a shortest path between s and t after
the insertion, cB(x) is not increased in Line 29.
In the following, we consider updateSigmaGR and updateSigmaEQ separately.

6.2.2.1 UpdateSigmaGR

Let us consider the case d(s, t) > d(s,u) + ω′uv + d(v, t). In this case, all the old shortest
paths between affected pairs are discarded, as they are not shortest paths any longer, and
all the new shortest paths go through edge (u, v). Therefore, we can set the new number
σ′st of shortest paths between s and t to σsu · σvt. Since all old shortest paths should
be discarded, also σ′st(x) depends only on the new shortest paths and not on whether x
used to lie in some shortest paths between s and t before the edge insertion. Depending
on the position of x with respect to the new shortest paths, we can define three cases,
depicted in Figure 18. In Case (a) (left), x lies in one of the shortest paths between s

52 dynamic single-node betweenness centrality

and u. This means that it also lies in some shortest paths between s and t. In particular,
the number of these paths σ′st(x) is equal to σsu(x) · σvt. Notice that no shortest paths
between s and u can be affected (see Chapter 5) and therefore σsu(x) = σ′su(x). In Case
(b) (center), x lies in one of the shortest paths between v and t. Analogously to Case 1,
the new number of shortest paths between s and t going through x is σ′st(x) = σsu ·σvt(x).
Notice that Case (a) and Case (b) cannot both be true at the same time. In fact, if
d(s,u) = d(s,x) + d(x,u) and d(v, t) = d(v,x) + d(x, t), we would have that d′st =

d(s,u) + ω′uv + d(v, t) = d(s,x) + d(x,u) + ω′uv + d(v,x) + d(x, t) > d(s,x) + d(x, t),
which is impossible, since d′st is the shortest-path distance between s and t. Therefore, at
least one among σsu(x) and σvt(x) must be equal to 0. Finally, in Case (c) (right), σsu(x)
and σvt(x) are both equal to 0, meaning that x does not lie on any new shortest path
between s and t. Once again, this is independent on whether x lied in an old shortest path
between s and t or not. Algorithm 4 shows the computation of σ′st and σ′st(x). Notice that,
in the computation of σ′st(x), the first addend is greater than zero only in Case (a) and
the second only in Case (b).

s

u

v

t

x

(a)

s

u

v

t

x

(b)

x

s

u

v

t
(c)

Figure 18: Possible positions of x with respect to the new shortest paths after the insertion of edge
(u, v). On the left, x lies between the source s and u. In the center, x lies between v and
the target t. On the right, x does not lie on any new shortest path between s and t.

6.2.2.2 UpdateSigmaEQ

Let us now consider the case d(s, t) = d(s,u) + ω′uv + d(v, t). Here all the old shortest
paths between s and t are still valid and, in addition to them, new shortest paths going
through (u, v) have been created. Therefore, the new number of shortest paths σ′st is
simply σst + σsu · σvt. Notice that we never count the same path multiple times, since all
new paths go through (u, v) and none of the old paths does. Also all old shortest paths
between s and t through x are still valid, therefore σ′st(x) is given by the old σst(x) plus
the number of new shortest paths going through both x and (u, v). This number can be
computed as described for updateSigmaGR according to the cases of Figure 18. Algorithm 5
shows the computation of σ′st and σ′st(x).

6.2.3 Time complexities

6.2.3.1 Dynamic betweenness algorithm

Let us define the extended size ||A|| of a set of nodes A as the sum of the number of nodes
in A and the number of edges that have a node of A as their endpoint. Then, the following
proposition holds.

6.2 dynamic betweenness for a single node 53

Proposition 6.2.1. The running time of Algorithm 3 for updating the betweenness of a
single node after an edge insertion (u, v) is Θ(||S(v)||+ ||T (u)||+

∑
y∈T (u) |S(P (y))|).

Proof. The function findAffectedSources in Line 9 identifies the set of affected sources
starting a BFS in v and visiting only the nodes s such that d(s,u) +ω′uv + d(v, t) ≤ d(s, t).
This takes Θ(||S(v)||), since this partial BFS visits all nodes in S(v) and their incident
edges. Then, the while loop of Lines 14 - 40 (excluding the part in Lines 16 - 32) identifies
all the affected targets T (u) with a partial BFS. This part requires Θ(||T (u)||) operations,
since all affected targets and their incident edges are visited. In Lines 16 - 32, for each
affected node t ∈ T (u), all the affected sources of the predecessor P (t) of t are scanned.
This part requires in total Θ(

∑
t∈T (u) |S(P (t))|) operations, since for each node in S(P (t)),

Lines 17 - 32 require constant time.

Notice that, since S(P (y)) is O(n) and both ||T (u)|| and ||S(v)|| are O(n+m), the
worst-case complexity of Algorithm 3 is O(n2) (assuming m = Ω(n)). This matches the
worst-case running time of the augmented APSP update of iBet. However, notice that iBet
needs a second step to update the betweenness of all nodes, which is more expensive and
requires Θ(nm) operations in the worst case. Also, this introduces a contrast between the
static and the incremental case: Whereas the static computation of one node’s betweenness
has the same complexity as computing it for all nodes (at least no algorithm for computing
it for one node faster than computing it for all nodes exists so far), in the incremental
case the betweenness update of a single node can be done in O(n2), whereas there is no
algorithm faster than O(nm) for the update of all nodes.

6.2.3.2 Greedy algorithm for betweenness maximization

Using the dynamic algorithm, we can improve the running time of the Greedy algorithm
(Algorithm 6) for the MBI problem. In fact, in Line 4 of Algorithm 6, each edge (x, v) /∈ E
is added to the graph and, for each inserted edge, betweenness is computed in the new
graph. Computing betweenness with BA, this step requires O(nm), leading to an overall
complexity of O(kn2m). In Line 4, instead of computing betweenness on the new graph
from scratch, we can use Algorithm 3. As we proved previously, its worst-case complexity
is O(n2). This leads to an overall worst-case complexity of O(kn3) for Greedy. However,
our experiments in Section 6.3 show that Greedy is actually much faster in practice.

54 dynamic single-node betweenness centrality

Algorithm 3: Update of cB(x) after an edge insertion
Algorithm: Incremental betweenness
Input : Graph G = (V ,E), edge update (u, v,ω′uv), pairwise distances d, numbers σ of shortest

paths, numbers σx of shortest paths through x, betweenness value cB(x) of x
Output : Updated d, σ, σx and cB(x)
Assume : boolean vis(v) is false, ∀v ∈ V

1 if d(u, v) ≥ ω′uv then
2 if d(u, v) > ω′uv then
3 d(u, v)← ω′uv;
4 σuv,σuv(x)←updateSigmaGR(G, (u, v), d,σ,σx);
5 end
6 else
7 σuv,σuv(x)←updateSigmaEQ(G, (u, v), d,σ,σx);
8 end
9 S(v)← findAffectedSources(G, (u, v), d);

10 Q← ∅;
11 P (v)← v;
12 Q.push(v);
13 vis(v)← true;
14 while Q.length() > 0 do
15 t = Q.front();
16 foreach s ∈ S(P (t)) do
17 if d(s, t) ≥ d(s,u) + ω′uv + d(v, t) then
18 if x 6= s and x 6= t then
19 cB(x)← cB(x)− σst(x)/σst;
20 end
21 if d(s, t) > d(s,u) + ω′uv + d(v, t) then
22 σst,σst(x)←updateSigmaGR(G, (u, v), d,σ,σx);
23 d(s, t)← d(s,u) + ω′uv + d(v, t);
24 end
25 else
26 σst,σst(x)←updateSigmaEQ(G, (u, v), d,σ,σx);
27 end
28 if x 6= s and x 6= t then
29 cB(x)← cB(x) + σst(x)/σst;
30 end
31 if t 6= v then
32 S(t).insert(s);
33 end
34 end
35 end
36 foreach w s.t. (t,w) ∈ E do
37 if not vis(w) and d(u,w) ≥ ω′uv + d(v,w) then
38 Q.push(w);
39 vis(w)← true;
40 P (w)← t;
41 end
42 end
43 end
44 end

6.2 dynamic betweenness for a single node 55

Algorithm 4: Update of σst and σst(x) when (u, v) creates new shortest paths of
length smaller than d(s, t)
Algorithm: UpdateSigmaGR
Input : Graph G = (V ,E), edge insertion (u, v), pairwise distances d, numbers σ of shortest paths,

numbers σx of shortest paths through x
Output : Updated σ′st, σ′st(x)

1 σ′st ← σsu · σvt;
2 σ′st(x)← σsu(x) · σvt + σsu · σvt(x);
3 return σ′st, σ′st(x);

Algorithm 5: Update of σst and σst(x) when (u, v) creates new shortest paths of
length equal to d(s, t)
Algorithm: UpdateSigmaEQ
Input : Graph G = (V ,E), edge insertion (u, v), pairwise distances d, numbers σ of shortest paths,

numbers σx of shortest paths through x
Output : Updated σ′st, σ′st(x)

1 σ′st ← σst + σsu · σvt;
2 σ′st(x)← σst(x) + σsu(x) · σvt + σsu · σvt(x);
3 return σ′st, σ′st(x);

Algorithm 6: Greedy algorithm for MBI [42].
Input : A directed graph G = (V ,E); a vertex x ∈ V ; and an integer k ∈N

Output : Set of edges S ⊆ {(x, v) /∈ E} such that |S| ≤ k
1 S ← ∅;
2 for i = 1, 2, . . . , k do
3 foreach v ∈ V : (x, v) /∈ E do
4 Compute cB(x) in Gv := (V ,E ∪ S ∪ {(x, v)});
5 end
6 vmax ← arg max{cB(x) in Gv} over v ∈ V : (x, v) /∈ E;
7 S ← S ∪ {(x, vmax)};
8 end
9 return S;

56 dynamic single-node betweenness centrality

6.3 experimental evaluation

In our experiments, we evaluate the running time of the dynamic algorithm for updating
the betweenness of a node and of the version of Greedy based on it. All algorithms compared
in our experiments are implemented in C++, building on the open-source NetworKit [119]
framework. The experiments were done on a machine equipped with 256 GB RAM and a 2.7
GHz Intel Xeon CPU E5-2680 having 2 sockets with 8 cores each. To make the comparison
with previous work more meaningful, we use only one of the 16 cores. The machine runs
64 bit SUSE Linux and we compiled our code with g++-4.8.1 and OpenMP 3.1.
For our experiments, we consider a set of real-world networks belonging to different

domains, taken from SNAP [81], KONECT [76], and the 10th DIMACS Implementation
Challenge [9]. The properties of the networks are reported in Table 7 (directed graphs)
and in Table 8 (undirected graphs).

6.3.1 Running times of the dynamic algorithm for the betweenness of one node

In the following, we refer to our incremental algorithm for the update of the betweenness
of a single node as SI (Single-node Incremental). Since there are no other algorithms
specifically designed to compute or update the betweenness of a single node, we use the
static algorithm by Brandes [31] and the algorithm iBet from Chapter 5 for a comparison.
Indeed, the algorithm by Brandes (which here we refer to as Stat, from Static) is the best
known algorithm for static computation of betweenness and iBet (which here we name AI,
from All-nodes Incremental) has been shown to outperform other dynamic algorithms (see
Chapter 5).
To compare the running times of the algorithms for betweenness centrality, we choose a

node x at random and we assume we want to compute the betweenness of x. Then, we add
an edge to the graph, also chosen uniformly at random among the node pairs (u, v) such
that (u, v) /∈ E. After the insertion, we use the three algorithms to update the betweenness
centrality of x and compare their running times. We recall that Stat is a static algorithm,
which means that we can only run it from scratch on the graph after the edge insertion.
On each graph, we repeat this 100 times and report the average running time obtained by
each of the algorithms.
Table 7 and Table 8 show the running times for directed and undirected graphs, respec-

tively. As expected, both dynamic algorithms AI and SI are faster than the static approach
and SI is the fastest among all algorithms. This is expected, since SI is the one that per-
forms the smallest number of operations. Also, notice that the standard deviation of the
running times of both AI and SI is very high, sometimes even higher than the average. This
is actually not surprising, since different edge insertions might affect portions of the graph
of very different sizes. Figure 19 and Figure 20 report the running times of AI and SI as
a function of the number of affected node pairs for two directed and undirected graphs,
respectively (similar results can be observed for the other tested graphs). As expected,
the running time of both algorithms (as well as the difference between the running time
of AI and that of SI) mostly increases as the number of affected pairs increases. However,
AI presents a much larger deviation than SI. This is due to the fact that its running time
also depends on the number of nodes that used to lie in old shortest paths between the
affected pairs. Indeed, the number of nodes whose betweenness gets affected does not only
depend on the number of affected pairs (which we recall to be the ones for which the edge

6.3 experimental evaluation 57

Graph Nodes Edges Time Stat [s] Time AI [s] Time SI [s] STD AI [s] STD SI [s]
subelj-jung 6 120 50 535 1.25 0.0019 0.0002 0.0036 0.0005
wiki-Vote 7 115 100 762 8.18 0.0529 0.0015 0.0635 0.0038
elec 7 118 103 617 8.67 0.0615 0.0019 0.0858 0.0053
freeassoc 10 617 63 788 14.96 0.1118 0.0034 0.1532 0.0036
dblp-cite 12 591 49 728 5.04 0.1726 0.0071 0.7905 0.0451
subelj-cora 23 166 91 500 34.08 0.3026 0.0327 1.1598 0.1575
ego-twitter 23 370 33 101 8.47 0.0062 0.0001 0.0576 0.0003
ego-gplus 23 628 39 242 10.01 0.0024 0.0001 0.0026 0.0000
munmun-digg 30 398 85 247 78.09 0.2703 0.0073 0.2539 0.0099
linux 30 837 213 424 34.75 0.0692 0.0108 0.3019 0.0637

Table 7: Average running times of the betweenness algorithms on directed real-world graphs. The
last two columns report the standard deviation of the running times of AI and SI over the
100 edge insertions.

Graph Nodes Edges Time Stat [s] Time AI [s] Time SI [s] SD AI [s] SD SI [s]
Mus-musculus 4 610 5 747 2.87 0.0337 0.0037 0.0261 0.0024
HC-BIOGRID 4 039 10 321 5.32 0.1400 0.0083 0.1450 0.0119
Caenor-eleg 4 723 9 842 4.75 0.0506 0.0025 0.0406 0.0014
ca-GrQc 5 241 14 484 4.15 0.0377 0.0033 0.0245 0.0017
advogato 7 418 42 892 12.65 0.1820 0.0024 0.1549 0.0008
hprd-pp 9 465 37 039 29.19 0.2674 0.0053 0.1873 0.0021
ca-HepTh 9 877 25 973 21.57 0.1404 0.0095 0.1108 0.0053
dr-melanog 10 625 40 781 38.18 0.2687 0.0067 0.2212 0.0029
oregon1 11 174 23 409 23.77 0.5676 0.0037 0.5197 0.0020
oregon2 11 461 32 730 27.98 0.5655 0.0039 0.5551 0.0026
Homo-sapiens 13 690 61 130 68.06 0.5920 0.0079 0.4203 0.0035
GoogleNw 15 763 148 585 76.17 2.4744 0.0044 4.1075 0.0045
CA-CondMat 21 363 91 342 168.44 1.1375 0.0486 0.7485 0.0358

Table 8: Average running times of the betweenness algorithms on undirected real-world graphs.
The last two columns report the standard deviation of the running times of AI and SI over
the 100 edge insertions.

insertion creates a shortcut or new shortest paths), but also on how many shortest paths
there used to be between the affected pairs before the insertion and how long these paths
were.

Table 9 and Table 10 show the speedups of SI on AI and those of SI on Stat, for directed
and undirected graphs, respectively. Although the speedups vary considerably among the
networks and the edge insertions, SI is always at least as fast as AI and up to 1560 times
faster (maximum speedup for GoogleNw). On average (geometric mean of the average
speedups over the tested networks), SI is 29 times faster than AI for undirected graphs
and 18 times faster for directed graphs. The high speedups on the dynamic algorithm
for all nodes is due to the fact that, when focusing on a single node, we do not need
to update the scores of all the nodes that lie in some shortest path affected by the edge
insertion. On the contrary, for each affected source node s, AI has to recompute the change
in dependencies by iterating over all nodes that lie in either a new or an old shortest path
from s. As a result, SI is extremely fast: on all tested instances, its running time is always
smaller than 0.05 seconds, whereas AI can take up to seconds to update betweenness.

58 dynamic single-node betweenness centrality

0 10 20 30 40 50 60 70
Affected pairs

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012
T
im

e
 [

s]

AI

SI

0 100000 200000 300000
Affected pairs

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 [

s]

AI

SI

0 10 20 30 40 50 60 70
Affected pairs

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

T
im

e
 [

s]

AI

SI

0 100000 200000 300000
Affected pairs

0.00

0.02

0.04

0.06

0.08

0.10

T
im

e
 [

s]

AI

SI

Figure 19: Top: Running time of AI and SI as a function of the number of affected node pairs
for two directed graphs (left: ego-gplus, right: munmun-digg). Bottom: Same as the
two plots above, but zoomed on the running times of SI. The points are the computed
running times, the lines are the results of a linear regression and the area around the
lines is a 95% confidence interval for the regression.

Compared to recomputation, SI is on average about 4200 times faster than Stat on di-
rected and about 33000 times on undirected graphs (geometric means of the speedups).
Since SI has shown to outperform other approaches in the context of updating the between-
ness centrality of a single node after an edge insertion, we use it to update betweenness
in the greedy algorithm for the Maximum Betweenness Improvement problem. Therefore,
in all the following experiments, what we refer to as Greedy is Algorithm 6 where we
recompute betweenness after each edge insertion with SI.

6.3.2 Running times of the greedy algorithm for betweenness maximization

In this section, we report the running times of Greedy, using SI to recompute betweenness.
Table 11 and Table 12 show the results on directed and undirected graphs, respectively.
For each value of k, the tables show the running time required by Greedy when k edges
are added to the graph. Notice that this is not the running time of the kth iteration, but
the total running time of Greedy for a certain value of k. Since on directed graphs the
betweenness of x is a submodular function of the solutions for MBI (see [42]), we speed
up the computation for k > 1 similarly to what has been done in [42].
Although the standard deviation is quite high, we can clearly see that exploiting sub-

modularity has significant effects on the running times: for all graphs in Table 11, we see
that the difference in running time between computing the solution for k = 1 and k = 10

6.3 experimental evaluation 59

0 50000 100000 150000
Affected pairs

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
T
im

e
 [

s]

AI

SI

0 50000 100000 150000
Affected pairs

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 [

s]

AI

SI

0 50000 100000 150000
Affected pairs

0.00

0.01

0.02

0.03

0.04

0.05

T
im

e
 [

s]

AI

SI

0 50000 100000 150000
Affected pairs

0.00

0.01

0.02

0.03

0.04

0.05

T
im

e
 [

s]

AI

SI

Figure 20: Top: Running time of AI and SI as a function of the number of affected node pairs for
two undirected graphs (left: dr-melanog, right: Homo-sapiens). Bottom: same as the
two plots above, but zoomed on the running times of SI. The points are the computed
running times, the lines are the results of a linear regression and the area around the
lines is a 95% confidence interval for the regression.

is at most a few seconds. Also, for all graphs the computation never takes more than a
few minutes.
Unfortunately, submodularity does not hold for undirected graphs, therefore for each k

we need to apply SI to all possible new edges between x and other nodes. Nevertheless,
apart from the CA-CondMat graph (where, on average, it takes about 10 hours for k = 10)
and ca-HepTh (where it takes about 1.5 hours), Greedy never requires more than 1 hour
for k = 10. For k = 1, it takes at most a few minutes. Quite surprisingly, the running time
of the first iteration is often smaller than that of the following ones, in particular if we
consider that the first iteration also includes the initialization of SI. This might be due to
the fact that, initially, the pivots are not very central and therefore many edge insertions
between the pivots and other nodes affect only a few shortest paths. Since the running
time of IA is proportional to the number of affected node pairs, this makes it very fast
during the first iteration. On the other hand, at each iteration the pivot x gets more and
more central, affecting a greater number of nodes when a new shortcut going through x
is created.
To summarize, our experimental results show that the new incremental algorithm for

the betweenness of one node is much faster than the algorihm iBet proposed in Chapter 5
(which is, in turn, faster than other existing incremental algorithms for the betweenness
of all nodes), taking always fractions of seconds even when the others take seconds. The

60 dynamic single-node betweenness centrality

Speedups on Stat Speedups on AI
Graph Geometric mean Maximum Minimum Geometric mean Maximum Minimum
subelj-jung 24668.3 67477.6 342.9 10.0 63.7 1.1
wiki-Vote 23779.8 381357.7 275.6 39.3 310.7 1.0
elec 21560.5 408629.3 175.6 32.1 285.1 1.1
freeassoc 6783.2 330333.4 707.5 13.0 94.0 1.1
dblp-cite 24745.7 140950.0 11.4 13.3 314.5 1.1
subelj-cora 18936.5 543630.2 22.9 32.4 257.5 1.0
ego-twitter 111597.2 134716.0 3169.2 4.0 216.3 1.0
ego-gplus 115936.2 154869.5 57650.6 14.6 74.5 1.1
munmun-digg 34299.5 998564.0 1796.8 30.7 188.3 1.2
linux 103469.6 433745.5 59.5 32.1 94.6 1.5

Table 9: Speedups on the static algorithm and on the dynamic algorithm for all nodes on di-
rected networks. For both Stat and AI, the first column reports the geometric mean of the
speedups over the 100 insertions, the second column reports the maximum speedups and
the third column the minimum speedup.

combination of it with the greedy approach for the MBI problem allows us to maximize
betweenness of graphs with hundreds of thousands of edges in reasonable time.

bibliographic notes

This chapter is based on joint work with Pierluigi Crescenzi, Gianlorenzo D’Angelo, Hen-
ning Meyerhenke, Lorenzo Severini and Yllka Velaj, and is currently in revision for interna-
tional journal publication. A preprint containing the results presented in this chapter and
additional results related to the MBI problem can be found in [23]. In particular, in [23]
we show that MBI cannot be approximated in polynomial-time within a factor (1− 1

2e)

and that the Maximum Ranking Improvement problem (similar to MBI, with the differ-
ence that the ranking of a given node should be maximized, and not its betweenness score)
does not admit any polynomial-time constant factor approximation algorithm, both unless
P = NP . We also compare experimentally the greedy algorithm against several baselines
and show that it outperforms them in terms of accuracy.

6.3 experimental evaluation 61

Speedups on Stat Speedups on AI
Graph Geometric mean Maximum Minimum Geometric mean Maximum Minimum
Mus-musculus 1031.2 174166.8 191.4 7.7 21.9 1.7
HC-BIOGRID 962.3 4060.6 56.7 17.0 51.1 4.5
Caenor-eleg 2152.2 293172.8 474.6 15.0 49.4 1.3
ca-GrQc 1517.5 220289.2 351.8 10.0 22.8 2.1
advogato 5819.0 698406.6 2860.5 43.4 192.7 1.9
hprd-pp 5846.6 10852.3 1696.6 39.2 119.5 3.2
ca-HepTh 2642.6 432794.2 549.2 12.3 35.7 2.8
dr-melanog 6105.9 10589.7 1869.7 29.9 88.3 3.1
oregon1 7407.4 733008.3 1562.3 72.6 493.4 2.4
oregon2 9192.5 617710.0 1595.8 68.8 470.5 2.5
Homo-sapiens 9216.4 17177.4 2706.2 57.0 165.2 3.4
GoogleNw 34967.2 505509.9 3799.3 137.3 1560.3 2.9
CA-CondMat 4073.9 10690.6 537.8 20.8 69.4 2.8

Table 10: Speedups on the static algorithm and on the dynamic algorithm for all nodes on undi-
rected networks. For both Stat and AI, the first column reports the geometric mean of
the speedups over the 100 insertions, the second column reports the maximum speedups
and the third column the minimum speedup.

Running time Greedy STD. DEV. Greedy
Graph k = 1 k = 2 k = 5 k = 10 k = 1 k = 2 k = 5 k = 10
subelj-jung 1.79 1.91 1.99 2.10 0.56 0.58 0.61 0.68
wiki-Vote 14.32 14.44 14.74 15.19 10.75 10.81 11.04 11.46
elec 12.47 12.57 12.81 13.13 7.80 7.83 7.99 8.16
freeassoc 81.52 83.01 87.00 96.60 66.27 67.88 70.84 82.01
dblp-cite 584.90 694.19 710.90 729.73 1060.50 1268.18 1296.99 1328.83
subelj-cora 1473.04 1504.96 1600.68 1688.39 1491.48 1526.95 1657.98 1784.74
ego-twitter 164.43 179.13 217.19 229.39 200.10 211.52 259.85 275.22
ego-gplus 211.39 225.58 230.26 240.29 195.22 186.00 188.82 196.78
munmun-digg 736.13 739.82 749.74 759.58 313.45 313.50 313.66 316.35
linux 1145.94 1239.16 1271.74 1311.28 822.06 917.50 933.02 951.61

Table 11: The left part of the table reports the running times (in seconds) of Greedy on directed
real-world graphs for different values of k. The right part shows the standard deviations.

62 dynamic single-node betweenness centrality

Running time Greedy STD. DEV. Greedy
Graph k = 1 k = 2 k = 5 k = 10 k = 1 k = 2 k = 5 k = 10
Mus-musculus 27.06 87.80 394.30 1155.46 15.53 36.35 176.05 630.80
HC-BIOGRID. 34.54 85.98 289.84 701.50 9.63 25.63 100.04 217.76
Caenor-elegans 11.17 25.47 94.94 320.85 3.23 10.23 23.66 55.19
ca-GrQc. 19.76 43.01 149.43 438.98 8.64 20.65 53.63 96.31
advogato 12.42 28.07 81.79 299.05 1.56 13.96 28.23 147.66
hprd-pp 47.08 111.85 460.31 1561.82 12.84 29.65 59.01 439.32
ca-HepTh 100.34 464.66 2069.34 5926.75 42.83 282.09 604.61 1320.20
dr-melanog 71.43 160.89 614.92 2084.71 18.01 31.55 46.88 333.84
oregon1 30.66 69.06 191.63 441.09 4.87 9.41 23.99 76.51
oregon2 36.44 73.35 233.28 594.53 9.63 16.92 25.26 44.3 7
Homo-sapiens 99.82 276.09 1155.97 3554.53 20.30 54.42 258.89 673.55
GoogleNw 68.33 102.35 220.32 451.29 11.71 17.18 36.19 76.37
CA-CondMat 1506.68 3402.10 12177.24 36000.24 381.00 927.40 2178.47 17964.74

Table 12: The left part of the table reports the running times (in seconds) of Greedy on undirected
real-world graphs for different values of k. The right part shows the standard deviations.

7
FULLY -DYNAMIC BETWEENNESS APPROXIMATION

7.1 introduction

As mentioned in Chapter 4, computing betweenness centrality exactly can be rather oner-
ous for networks with more than a few tens of thousands of nodes. For large networks,
approximation algorithms are therefore used in practice. On the other hand, if these large
networks evolve over time, even rerunning an approximation algorithm after each mod-
ification or set of modifications might be too expensive, in particular for networks that
change at a very quick pace. In these scenarios, dynamic exact algorithms such as the ones
presented in Chapter 5 and Chapter 6 are also out of reach, both because of their quadratic
memory requirement, and because their initialization requires to run an expensive static
exact algorithm.
In this chapter, as our main contribution, we present the first approximation algorithms

for betweenness in graphs that change over time. Such graphs may be directed or undi-
rected, weighted or unweighted. We consider two dynamic scenarios, an incremental one
(i. e.only edge insertions or weight decreases are allowed) and a fully-dynamic one, which
also handles edge deletions or weight increase operations. In order to account for quickly-
changing networks, we process the edge modifications in batches: our algorithms recompute
betweenness after a sequence of updates is applied to the graph.
Based on the static approximation algorithm RK by Riondato and Kornaropoulos [107],

our dynamic algorithms assert the same guarantee: the approximated betweenness values
differ by at most ε from the exact values with probability at least 1− δ, where ε and δ can
be arbitrarily small constants. Running time and memory required depend on how tightly
the error should be bounded. Notice that the same guarantee is offered by two newer
algorithms (ABRA [108] and KADABRA [30]), which have both been shown to perform
better than RK in practice. However, the work presented in this chapter is antecedent
these two algorithms.
Besides resampling as few shortest paths as possible, several new intermediate algorith-

mic results contribute to the speed of the respective new approximation algorithms: (i)
In Section 7.3 we propose new upper bounds on the vertex diameter VD (i. e.number of
nodes in the shortest path(s) with the maximum number of nodes). These bounds vary
depending on the graph type (weighted vs unweighted, directed vs undirected). Their use-
fulness stems from the fact that the new bounds can often improve the one used in the RK
algorithm [107] and thereby significantly reduce the number of samples necessary for the
error guarantee. (ii) In Section 7.4, besides detailing the betweenness approximation algo-
rithms, we also present the first fully-dynamic algorithms for updating an approximation
of VD in undirected graphs. (iii) As part of the betweenness approximation algorithms,
we propose an algorithm with lower time complexity for updating single-source shortest
paths in unweighted graphs after a batch of edge updates.
Our experimental study shows that our algorithms are the first to make in-memory

computation of a betweenness ranking practical for large dynamic networks. With ap-
proximation we achieve a much improved scaling behavior compared to exact approaches,

63

64 fully-dynamic betweenness approximation

s1

s2

t2

t1

u

v
+ 2

r

+ 1
r

Figure 21: Sampled paths and score update in the RK algorithm

enabling us to update betweenness scores in a network with 36 million edges in a few
seconds on typical workstation hardware. Moreover, processing batches of edges, our algo-
rithms yield significant speedups (several orders of magnitude) compared to restarting the
approximation with RK. Regarding accuracy, our experiments show that the estimated
absolute errors are always lower than the guaranteed ones. For nodes with high between-
ness, also the rank of nodes is well preserved, even when relatively few shortest paths are
sampled.
Since RK is the building block of our dynamic algorithms, we will describe it in Sec-

tion 7.2. Following the notation used in RK, in the following we use the normalized defini-
tion of betweenness centrality, namely cB(v) := 1

n(n−1)
∑
s 6=v 6=t

σst(v)
σst

.

7.2 rk algorithm

In this section we briefly describe the static betweenness approximation algorithm by
Riondato and Kornaropoulos (RK) [107], the foundation for our incremental approach.
The idea of RK is to sample a set S = {p(1), ..., p(r)} of r shortest paths between randomly
sampled source-target pairs (s, t). Then, RK computes the approximate betweenness cen-
trality c̃B(v) of a node v as the fraction of sampled paths p(k) ∈ S that v is internal to,
by adding 1

r to the node’s score for each of these paths. Figure 21 illustrates an example
where the sampling of two shortest paths leads to 2

r and 1
r being added to the score of u

and v, respectively. Each possible shortest path pst has the following probability of being
sampled in each of the r iterations: πG(pst) = 1

n(n−1) ·
1
σst

(Lemma 7 of [107]). The number
r of samples required to approximate betweenness scores with the given error guarantee
is calculated as

r =
c

ε2

(
blog2 (VD − 2)c+ 1 + ln 1

δ

)
, (19)

where ε and δ are constants in (0, 1), c ≈ 0.5 and VD is the vertex diameter of G, i.e. the
number of nodes in the shortest path of G with maximum number of nodes. In unweighted
graphs VD coincides with diam+1, where diam is the number of edges in the longest
shortest path. In weighted graphs VD and the (weighted) diameter diam (i. e.the length of
the longest shortest path) are unrelated quantities. The following error guarantee holds:

7.2 rk algorithm 65

Lemma 7.2.1. [107] If r shortest paths are sampled according to the above-defined proba-
bility distribution πG, then with probability at least 1− δ the approximations c̃B(v) of the
betweenness centralities are within ε from their exact value:

Pr(∃v ∈ V s.t. |cB(v)− c̃B(v)| > ε) < δ.

To sample the shortest paths according to πG, RK first chooses a node pair (s, t) uni-
formly at random and performs an SSSP search from s, keeping also track of the number
σsv of shortest paths from s to v and of the list of predecessors Ps(v) for any node v. Then
one shortest path is selected: Starting from t, a predecessor z ∈ Ps(t) is selected with
probability σsz/

∑
w∈Ps(t) σsw = σsz/σst. The sampling is repeated iteratively until node

s is reached. Algorithm 7 is the pseudocode for RK. Function computeAugmentedSSSP is
an SSSP algorithm that keeps track of the number of shortest paths and of the list of
predecessors while computing distances, as in BA [31] (see Chapter 4.2). Since we are only
interested in the paths from s to t, we can stop the computation of the SSSP once t is
reached.

Algorithm 7: RK algorithm
Input : Graph G = (V ,E), ε, δ ∈ (0, 1)
Output : Approximated betweenness values ∀v ∈ V

1 foreach node v ∈ V do
2 c̃B (v)← 0;
3 end
4 VD (G)←getVertexDiameter(G);
5 r ← (c/ε2)(blog2(VD(G)− 2)c+ ln(1/δ));
6 for i← 1 to r do
7 (si, ti)← sampleUniformNodePair(V);
8 (dsi ,σsi ,Psi)← computeAugmentedSSSP(G, si);

// Now one path from si to ti is sampled uniformly at random
9 v ← ti;

10 p(i) ← empty list;
11 while Psi(v) 6= {si} do
12 sample z ∈ Psi(v) with Pr = σsi(z)/σsi(v);
13 c̃B(z)← c̃B(z) + 1/r;
14 add z → p(i); v ← z;
15 end
16 end
17 return {(v, c̃B(v)), v ∈ V }

approximating the vertex diameter. RK uses two upper bounds on VD
that can be both computed in O(n+m). For unweighted undirected graphs, it samples
a source node si for each connected component of G, computes a BFS from each si and
sums the two shortest paths with maximum length starting in si. The VD approximation
is the maximum of these sums over all components. For directed or weighted graphs, RK
approximates VD with the size of the largest weakly connected component, which can be
a significant overestimation for complex networks, possibly of orders of magnitude. In this
chapter, we present new approximations for directed and for weighted graphs, described
in Section 7.3.

66 fully-dynamic betweenness approximation

7.3 new upper bounds on the vertex diameter

7.3.1 Directed unweighted graphs.

Let G be a directed unweighted graph. For now, let us assume G is strongly connected.
Let s be any node in G and let u be the node with maximum forward distance from s

(i. e.d(s,u) ≥ d(s,x) ∀x ∈ V). Analogously, let v be the node with maximum backward
distance (i. e.d(v, s) ≥ d(x, s) ∀x ∈ V). Then, naming ṼDSC the sum d(s,u) + d(v, s) + 1:

Lemma 7.3.1. VD ≤ ṼDSC < 2VD.

Proof. Let x and y be two nodes such that the number of nodes in the shortest path
from x to y is equal to VD. Due to the triangle inequality, d(x, y) ≤ d(x, s) + d(s, y).
Therefore, d(x, y) ≤ d(v, s) + d(s,u). Since in unweighted graphs d(x, y) = VD − 1, the
first inequality holds. By definition of VD, 2 ·VD ≥ (d(v, s) + 1) + (d(s,u) + 1) > ṼDSC.

The upper bound ṼDSC can be computed in O(n+m), simply by running a forward
and a backward BFS from any source node s.
Let us now consider any directed unweighted graph G. We can define the directed

acyclic graph G = (V, E) of strongly connected components (SCCs) (sometimes referred
to as shrunken graph in the literature) similarly to Borassi et al. [29]. In G, the set of
vertices is the set of SCCs of G and there is an edge from C ∈ V to C ′ ∈ V if and only
if there is an edge in E from a node in C to a node in C ′. (Notice that this also means
that all nodes in C ′ are reachable from the nodes in C.) More in general, the set of nodes
reachable from any node in C is the set of nodes in the SCCs reachable from C in G.
We can now define an algorithm that computes an upper bound on VD for G. For each

C in V, we compute an upper bound ṼDSC(C) on VD in C (i. e., considering only paths
that are contained in C) as described before for strongly connected graphs. This can be
done in linear time by running a backward and a forward BFS from a random source node
s for each SCC and stopping the search when a visited node belongs to a different SCC
from that of s. For each Ci, we know that the nodes reachable from nodes in Ci are only
those in the SCCs Cj such that there is a path in G from Ci to Cj . We can compute a
topological sorting {C1, . . . ,Ck} of V (that is, (Ci,Cj) ∈ E ⇒ i < j). Let Ck be the last
component in the topological ordering. Then, we know that no path from a node in Ck to
any node that is not in Ck exists, which means that the node Ck in G has outdegree 0.
We call ṼDDIR(C) the upper bound on VD restricted only to nodes that start in C

(but may end somewhere else). For Ck, ṼDDIR(Ck) is equal to ṼDSC(Ck). For the other
components, we can compute it in the following way: Starting from Ck, we process all the
components in reverse topological ordering and set

ṼDDIR(C) = max
(C,C′)∈E

ṼDDIR(C
′) + ṼDSC(C).

To get an upper bound on the whole graph, we can take the maximum over all upper
bounds ṼDDIR(C), i. e. we set ṼDDIR := maxC∈V ṼDDIR(C). In other words:

ṼDDIR = max
p∈P(G)

∑
Ci∈p

ṼDSC(Ci)

7.3 new upper bounds on the vertex diameter 67

l

...ṼDSC(C1)

C1 C2 Cl

ṼDSC(C2) ṼDSC(Cl)

Figure 22: Path (C1, ...,Cl) of the DAG G of SCCs. Each SCC Ci has its own upper bound
ṼDSC(Ci) and ṼDDIR is computed as

∑
i=1,..,l ṼDSC(Ci).

where P(G) is the set of paths in G.

Proposition 7.3.1. VD ≤ ṼDDIR < 2 ·VD2.

Proof. Let us prove the first inequality. Let p = (u1, . . . ,uVD) be a shortest path in G

whose number |p| of nodes is equal to VD. Say p traverses l SCCs (C1, ...,Cl). Then p can
be partitioned in l subpaths pi, i = 1, .., l, such that pi ⊆ Ci and pi is a shortest path
in Ci. By Lemma 7.3.1, |pi| ≤ ṼDSC(Ci), i = 1, ..., l. Therefore, |p| =

∑
i=1,...,l |pi| ≤∑

i=1,...,l ṼDSC(Ci) ≤ ṼDDIR (this last inequality holds by definition of ṼDDIR).
How “bad” can ṼDDIR be in the worst case? Let now (C1, ...,Cl) denote the path in G

such that ṼDDIR =
∑
i=1,..,l ṼDSC(Ci). Let l be the number of components in this path.

How large can l be? Since there is at least one node of G in each Ci, there must be at
least a shortest path of size l in G that goes through the components C1, ...,Cl. Therefore,
l ≤ VD. Also, let k = maxC∈V ṼDSC(C). By Lemma 7.3.1, k < 2 ·VD(Ck), where Ck
is the SCC whose upper bound is equal to k. Clearly, k < 2 · VD. Then, by definition,
ṼDDIR =

∑
i=1,..,l ṼDSC(Ci) ≤ l · k < 2 ·VD2.

The upper bound can be computed in O(n+m). Indeed, G can be computed in O(n+
m), by finding the SCCs of G and scanning the edges in E. Then, the topological sorting
and the accumulation of the ṼDDIR(C) of the different components can be done in O(|V|+
|E|) = O(n+m). Notice that our new upper bound is never larger than the size of the
largest weakly connected component, the previous bound used in RK. Also, although the
upper bound can be as bad as 2 ·VD2 in theory, our experimental results on real-world
complex networks show that it is within a factor 4 from the exact VD and several orders
of magnitude smaller than the size of the largest weakly connected components.

7.3.2 Undirected weighted graphs

Let G be an undirected graph. For simplicity, let G be connected for now. If it is not, we
compute an approximation for each connected component and take the maximum over all
the approximations. Let T ⊆ G be an SSSP tree from any source node s ∈ V . Let pxy
denote a shortest path between x and y in G and let pTxy denote a shortest path between
x and y in T . Let |pxy| be the number of nodes in pxy and d(x, y) be the distance between
x and y in G, and analogously for |pTxy| and dT (x, y). Let ω and ω be the maximum and
minimum edge weights in G, respectively. Let u and v be the nodes with maximum distance

68 fully-dynamic betweenness approximation

from s, i. e.d(s,u) ≥ d(s, v) ≥ d(s,x) ∀x ∈ V ,x 6= u. We define the VD approximation
ṼDW := 1 + d(s,u)+d(s,v)

ω . Then:

Proposition 7.3.2. VD ≤ ṼDW < 2 ·VD · ω/ω.

Proof. To prove the first inequality, we can notice that dT (x, y) ≥ d(x, y) for all x, y ∈ V ,
since all the edges of T are contained in those ofG. Also, since every edge has weight at least
ω, d(x, y) ≥ (|pxy| − 1) ·ω. Therefore, dT (x, y) ≥ (|pxy| − 1) ·ω, which can be rewritten as
|pxy| ≤ 1+ dT (x,y)

ω , for all x, y ∈ V . Thus, VD = maxx,y |pxy| ≤ 1+ (maxx,y d
T (x, y))/ω ≤

1 + dT (s,u)+dT (s,v)
ω = 1 + d(s,u)+d(s,v)

ω , where the last expression equals ṼDW by definition.
To prove the second inequality, we first notice that d(s,u) ≤ (|psu| − 1) · ω, and anal-

ogously d(s, v) ≤ (|psv| − 1) · ω. Consequently, ṼDW ≤ 1 + (|psu| + |psv| − 2) · ω/ω <

2 · |psu| · ω/ω, supposing that |psu| ≥ |psv| without loss of generality. By definition of VD,
|psu| ≤ VD. Therefore, ṼDW < 2 ·VD · ω/ω.

To obtain the upper bound ṼDW, we can simply compute an SSSP search from any
node s, find the two nodes with maximum distance and perform the remaining calculations.
Notice that ṼDW extends the upper bound proposed for RK [107] for unweighted graphs:
When the graph is unweighted and thus ω = ω, ṼDW becomes equal to the approximation
used by RK. Complex networks are often characterized by a small diameter and in networks
like coauthorship, friendship, communication networks, VD and ω/ω can be several order
of magnitude smaller than the size of the largest component, though. In this case the new
bound translates into a substantially improved VD approximation.

7.3.3 Directed weighted graphs.

The upper bound for directed weighted graphs can be easily derived from those described
in Sections 7.3.1 and 7.3.2. If G is strongly connected, we can define ṼDSCW := 1 +
d(s,u)+d(v,s)

ω , where s is any node, u is the node with maximum forward distance from s,
v is the node with maximum backward distance and ω is the minimum edge weight. It
can be easily proved that Proposition 7.3.2 holds also in this case, considering a forward
SSSP tree from s (where distances are bounded by d(s,u)) and a backward SSSP tree
(where distances are bounded by d(v, s)). For general directed weighted graphs, we can
use the algorithm described in Section 7.3.1 using ṼDSCW(C) := 1 + d(s,u)+d(v,s)

ωc
as an

upper bound for each SCC C (where ωc is the minimum edge weight in C). It is easy to
prove that the resulting bound is an upper bound on VD and that it is always smaller
than 2 ·maxC∈G ωC

ωC
·VD2, using Propositions 7.3.1 and 7.3.2. Since it requires to compute

an SSSP tree for each SCC, the complexity of computing the bound is O(m+n logn) (the
other operations can be done in linear time, as described in Section 7.3.1).

7.4 fully-dynamic approximation algorithms

7.4.1 Path subsitution.

Our algorithms for dynamic betweenness approximation are composed of two phases: an
initialization phase, which executes RK on the initial graph, and an update phase, which

7.4 fully-dynamic approximation algorithms 69

s s

t t

+1
r

+1
r

−1
r

−1
r

−1
r

−1
r

Figure 23: Updating shortest paths and betweenness scores

recomputes the approximated betweenness scores after a sequence of edge updates. Let
us consider a batch β = {e1, ..., ek} of edge updates ei = {ui, vi,ω(ui, vi)} applied to a
graph G. Also, let us assume for the moment that β is composed of edge insertions only
(or weight decreases) and β does not increase the vertex diameter of G and therefore
also the number r of samples required by RK for the maximum error guarantee. We will
discuss the general case in Section 7.4.2. Intuitively, our basic idea is to keep the old
sampled paths and update them only when necessary, instead of re-computing r shortest
paths from scratch. Figure 23 shows an example to illustrate this idea: Assume several
shortest paths between s and t exist, of which one has been sampled (with black nodes).
An edge insertion (represented in red) shortens the distance between s and t, creating a
new shorter path. Therefore, we simply subtract 1/r from each node in the old shortest
path and add 1/r to each node in the new one.
From this point on, we give a formal description and only consider edge insertions. We

suppose the graph is undirected, but in this restricted semi-dynamic setting our results
can be easily extended to weight decreases and directed graphs. Let G′ = (V ,E ∪ β) be
the new graph, let d′s(t) denote the new distance between any node pair (s, t) and let σ′st
be the new number of shortest paths between s and t. Let Sst and S ′st be the old and
the new set of shortest paths between s and t, respectively. A new set S′ = {p′(1), ..., p′(r)}
of shortest paths has to be sampled now in order to let Lemma 7.2.1 hold for the new
configuration; in particular, the probability Pr(p′(k) = p′st) of each shortest path p′st to be
sampled must be equal to πG′(p′st) =

1
n(n−1) ·

1
σ′

st
. Clearly, one could rerun RK on the new

graph, but we can be more efficient: We recall that we are assuming that the VD and
therefore also the number of samples for G′ is smaller than or equal to that of G. Given
any old sampled path pst, we can keep pst if the set of shortest paths between s and t

has not changed, and replace it with a new path between s and t otherwise. Then, the
following lemma holds:

Lemma 7.4.1. Let S be a set of shortest paths of G sampled according to πG. Let P be
the procedure that creates S′ by substituting each path pst ∈ S with a path p′st according to
the following rules: 1. p′st = pst if d′s(t) = ds(t) and σ′st = σst. 2. p′st selected uniformly at
random among S ′st otherwise. Then, p′st is a shortest path of G′ and the probability of any
shortest path p′xy of G′ to be sampled at each iteration is πG′(p′xy), i.e. Pr(p′(k) = p′xy) =

1
n(n−1) ·

1
σ′

xy
, k = 1, ..., r.

70 fully-dynamic betweenness approximation

Proof. To see that p′st is a shortest path of G′, it is sufficient to notice that, if d′s(t) = ds(t)

and σ′s(t) = σs(t), then all the shortest paths between s and t in G are shortest paths also
in G′.
Let p′xy be a shortest path of G′ between nodes x and y. Basically, there are two possi-

bilities for p′xy to be the k-th sample. Naming e1 the event {Sxy = S ′xy} (the set of shortest
paths between x and y does not change after the edge insertion) and e2 the complementary
event of e1, we can write Pr(p′(k) = p′xy) as Pr(p′(k) = p′xy ∩ e1) + Pr(p′(k) = p′xy ∩ e2).
Using conditional probability, the first addend can be rewritten as Pr(p′(k) = p′xy ∩

e1) = Pr(p′(k) = p′xy|e1)Pr(e1). As the procedure P keeps the old shortest path when e1

occurs, then Pr(p′(k) = p′xy|e1) = Pr(p(k) = p′xy|e1) =
1

n(n−1)
1

σx(y)
, which is also equal to

1
n(n−1)

1
σ′

x(y)
, since σx(y) = σ′x(y) when we condition on e1. Therefore, Pr(p′(k) = p′xy ∩

e1) =
1

n(n−1)
1

σ′
x(y)
·Pr(e1).

Analogously, Pr(p′(k) = p′xy ∩ e2) = Pr(p′(k) = p′xy|e2)Pr(e2). In this case, Pr(p′(k) =

p′xy|e2) =
1

n(n−1) ·
1

σ′
x(y)

, since this is the probability of the node pair (x, y) to be the k-th
sample in the initial sampling and of p′xy to be selected among other paths in S ′xy. Then,
Pr(p′(k) = p′xy ∩ e2) =

1
n(n−1) ·

1
σ′

x(y)
·Pr(e2) =

1
n(n−1) ·

1
σ′

x(y)
· (1−Pr(e1)). The probability

Pr(p′(k) = p′xy) can therefore be rewritten as:

Pr(p′(k) = p′xy) =
1

n(n−1)
1

σ′
x(y)
·Pr(e1)+ 1

n(n−1)
1

σ′
x(y)
·(1-Pr(e1)) =

1
n(n− 1)

1
σ′x(y)

.

Since the set of paths is constructed according to πG′ , Theorem 7.4.1 follows directly
from Lemma 7.2.1.

Theorem 7.4.1. Let G = (V ,E) be a graph and let G′ = (V ,E ∪ β) be the modified
graph after the the batch β. Let V D(G) ≥ V D(G′). Let S be a set of r shortest paths of G
sampled according to πG and r = c

ε2

(
blog2 (VD(G)− 2)c+ 1 + ln 1

δ

)
for some constants

ε, δ ∈ (0, 1). Then, if a new set S′ of shortest paths of G′ is built according to procedure P
and the approximated values of betweenness centrality c̃′B(v) of each node v are computed
as the fraction of paths of S′ that v is internal to, then

Pr(∃v ∈ V s.t. |c′B(v)− c̃′B(v)| > ε) < δ,

where c′B(v) is the new exact value of betweenness centrality of v after the edge insertion.

Notice that our guarantee is only probabilistic and it is possible (although with prob-
ability smaller than δ) that at some time step the approximated betweenness of a node
diverges from the exact one for more than ε. Since there is dependency between the ap-
proximated values at different time steps, it is possible that this error propagates over the
following time steps. However, it is also possible that the error decreases as a consequence
of some modifications in the graph. Theorem 7.4.1 tells us that, at each single time step,
the absolute error on the betweenness of each node is smaller than ε, with probability
at least 1− δ. We would also like to point out that, although cases where the maximum
error exceeds ε are theoretically possible, this actually never happened in our experiments,
where the measured errors were often orders of magnitude smaller than ε (see Section 7.5).
Algorithm 8 shows the update procedure based on Theorem 7.4.1. For each sampled node

7.4 fully-dynamic approximation algorithms 71

pair (si, ti), i = 1, ..., r, we first update the SSSP from si, a step which will be discussed in
Sections 7.4.3 and 7.4.4. In case the distance or the number of shortest paths between si
and ti has changed, a new shortest path is sampled uniformly as in RK. This means that
1
r is subtracted from the score of each node in the old shortest path and the same quantity
is added to the nodes in the new shortest path. On the other hand, if both distances and
number of shortest paths between si and ti have not changed, nothing needs to be updated.
Considering edges in a batch allows us to recompute the betweenness scores only once in-
stead of doing it after each single edge update. Moreover, this gives us the possibility to
use specific batch algorithms for the update of the SSSP DAGs, which process the nodes
affected by multiple edges of β only once, instead of for each single edge.
Differently from RK, in our dynamic algorithm we scan the neighbors every time we need

the predecessors instead of storing them (Line 11). This allows us to use Θ(n) memory
per sample (i. e., Θ(r · n) in total) instead of Θ(m) per sample, while our experiments
show that the running time is hardly influenced. The number of samples depends on ε, so
in theory this can be as large as |V |. However, our experiments show that relatively large
values of ε (e. g. ε = 0.05) lead to a good ranking of nodes with high betweenness and for
such values the number of samples is typically much smaller than |V |, making the memory
requirements of our algorithms significantly less demanding than those of the dynamic
exact algorithms (Ω(n2)) for many applications.

Algorithm 8: BC update after a batch β of edge insertions/weight decreases
Input : Graph G = (V ,E), source node s, number of iterations r, batch β of edge insertions/weight

decreases
Output : New approximated betweenness values ∀v ∈ V

1 for i← 1 to r do
2 doldi ← dsi (ti);
3 σoldi ← σsi (ti);
4 (dsi ,σsi)←UpdateSSSP(G, dsi ,σsi ,β);
5 if dsi (ti) < doldi or σsi (ti) 6= σoldi then
6 foreach w ∈ p(i) do
7 c̃B (w) ← c̃B(w)− 1/r;
8 end
9 v ← ti;

10 p(i) ← empty list;
11 Psi (v)← {u ∈ V |(u, v) ∈ E ∧ dsi (u) + ω(u, v) = dsi (v)};
12 while Psi (v) 6= {si} do
13 sample z ∈ Psi (v) with Pr = σsi (z)/σsi (v);
14 c̃B(z)← c̃B(z) + 1/r;
15 add z to p(i);
16 v ← z;
17 end
18 end
19 end
20 return {(v, c̃B(v)), v ∈ V }

7.4.2 Sampling new paths.

In the previous section, we assumed that VD(G) ≥ VD(G′). Although many real-world
networks exhibit a shrinking-diameter behavior [80], it is clearly possible that VD increases
as a consequence of edge insertions/deletions or weight updates. If this happens, we can

72 fully-dynamic betweenness approximation

still update the old paths as described in Section 7.4.1, but we also need to sample new
additional paths, according to the probability distribution π′G. The general algorithm to
update the betweenness scores after a batch β could be described as follows: First, we
update the old shortest paths as described in Section 7.4.1. Then, we recompute an upper
bound on VD(G′) in linear time, using the algorithms described in Section 7.3. Using
VD(G′), we compute the number of samples r(G′) defined in Eq. (19). If r(G′) > r(G),
we sample new r(G′)− r(G) additional paths using RK. For undirected graphs, we also
propose two fully-dynamic algorithms (one for weighted and one for unweighted graphs)
to keep track of an upper bound on VD over time (Section 7.4.5). This saves additional
time, allowing for a quick recomputation of the upper bound after the batch instead of
recomputing it from scratch.
Notice that, if edge deletions are allowed, it is not sufficient to check whether the distance

and the number of shortest paths between two nodes s and t has not changed (Line 5 of
Algorithm 8), since they might remain unchanged even if the set of shortest paths is
actually different. In this case, we always replace the old shortest path with a new one (we
basically remove the if statement in Line 5).
In the following, we present the fully-dynamic algorithms (for weighted and unweighted

graphs) needed to update the shortest paths (updateSSSP in Algorithm 8) and the fully-
dynamic algorithm that recomputes an upper bound on VD for undirected graphs. Finally,
we show how these algorithms can be combined to obtain an even faster algorithm (than
the one described in this section) for dynamic betweenness approximation in undirected
graphs (Section 7.4.6).

7.4.3 SSSP update in weighted graphs.

Our SSSP update is based on T-SWSF [10], which recomputes distances from a source
node s after a batch β of weight updates (or edge insertions/deletions). For our purposes,
we need two extensions of T-SWSF: an algorithm that also recomputes the number of
shortest paths between s and the other nodes (updateSSSP-W) and one that also updates
a VD approximation for the connected component of s (updateApprVD-W) (the latter
is used in the fully-dynamic VD approximation for undirected graphs, described in Sec-
tion 7.4.5). The VD approximation is computed as described in Sections 7.2 and 7.3.2.
Thus, updateApprVD-W keeps track of the two maximum distances d′ and d′′ from s and
the minimum edge weight ω.
We call affected nodes the nodes whose distance (or also whose number of shortest paths,

in updateSSSP-W) from s has changed as a consequence of β. Basically, the idea is to put
the set A of affected nodes w into a priority queue Q with priority p(w) equal to the
candidate distance of w. When w is extracted, if there is actually a path of length p(w)
from s to w, the new distance of w is set to p(w), otherwise w is reinserted into Q with a
higher candidate distance. In both cases, the affected neighbors of w are inserted into Q.
Algorithm 9 describes the SSSP update for weighted undirected graphs. The extension

to directed graphs is trivial. The pseudocode updates both the VD approximation for the
connected component of s and the number of shortest paths from s, so it basically includes
both updateSSSP-W and updateApprVD-W. Initially, we scan the edges e = {u, v} in β

and, for each e, we insert the endpoint with greater distance from s into Q (w.l.o.g., let
v be such endpoint). The priority p(v) of v represents the candidate new distance of v.
This is the minimum between the d(v) and d(u) plus the weight of the edge {u, v}. Notice

7.4 fully-dynamic approximation algorithms 73

that we use the expression “insert v into Q” for simplicity, but this can also mean update
p(v) if v is already in Q and the new priority is smaller than p(v). When we extract a
node w from Q, we have two possibilities: (i) there is a path of length p(w) and p(w) is
actually the new distance or (ii) there is no path of length p(w) and the new distance
is greater than p(w). In the first case (Lines 9 - 23), we set d(w) to p(w) and insert the
neighbors z of w such that d(z) > d(w) + ω({w, z}) into Q (to check if new shorter paths
to z that go through w exist). In the second case (Lines 24 - 40), there is no shortest
path between s and w known anymore, so that we set d(w) to ∞. We compute p(w) as
min{v,w}∈E d(v) + ω(v,w) (the new candidate distance for w) and insert w into Q. Also
its neighbors could have lost one (or all of) their old shortest paths, so we insert them into
Q as well. The update of ω can be done while scanning the batch and of d′ and d′′ when
we update d(w).

The pseudocode also updates a global variable vis(w) that keeps track, for each node
w, of the number of source nodes from which w is reachable. This is necessary for the
fully-dynamic VD approximation and will be explained in Section 7.4.5. In particular, we
decrease vis(w) when updating d(w) in case the old d(w) was equal to ∞ (i. e.w has
become reachable) and we decrease vis(w) when we set d(w) to ∞ (i. e.w has become
unreachable). We update the number of shortest paths after updating d(w), as the sum of
the shortest paths of the predecessors of w (Lines 16 - 18). In updateApprVD-W, d′ and d′′
are recomputed while updating the distances (Line 10) and ω is updated while scanning β
(Line 5). Let |β| represent the cardinality of β and let ||A|| represent the sum of the nodes
in A and of the edges that have at least one endpoint in A. Then, the following complexity
derives from feeding Q with the batch and inserting into/extracting from Q the affected
nodes and their neighbors.

Lemma 7.4.2. The time required by updateApprVD-W (updateSSSP-W) to update the
distances and ṼD (the number of shortest paths) is O(|β| log |β|+ ||A|| log ||A||).

Proof. In the initial scan of the batch (Lines 2-4), we scan the nodes of the batch and
insert the affected nodes into Q (or update their value). This requires at most one heap
operation (insert or decrease-key) for each element of β, therefore O(|β| log |β|) time. When
we extract a node w from Q, we have two possibilities: (i) con(w) = p(w) (Lines 9 - 23) or
(ii) con(w) > p(w) (Lines 24 - 40). In the first case, we scan the neighbors of w and perform
at most one heap operation for each of them (Lines 19 - 21). In the second case, we scan
only if d(w) 6=∞. Therefore, we can perform up to one heap operation per incident edge of
w, for each extraction of w in which d(w) 6=∞ or con(w) = p(w). How many times can an
affected node w be extracted from Q with d(w) 6=∞ or con(w) = p(w)? If the first time
we extract w, con(w) is equal to p(w) (case (i)), then the final value of d(w) is reached and
w is not inserted into Q anymore. If the first time we extract w, con(w) is greater than
p(w) (case (ii)), then w can be inserted into the queue again. However, its distance is set to
∞ and therefore no additional operations are performed, until d(w) becomes less than ∞.
But this can happen only in case (i), after which d(w) reaches its final value. To summarize,
each affected node w can be extracted from Q with d(w) 6=∞ or con(w) = p(w) at most
twice and, every time this happens, at most one heap operation per incident edge of w is
performed. The complexity is therefore O(|β| log |β|+ ||A|| log ||A||).

74 fully-dynamic betweenness approximation

Algorithm 9: SSSP update for weighted graphs (updateSSSP-W)
Input : Graph G = (V ,E), vector d of distances from s, vector σ of number of shortest paths from

s, batch β
Output : New values of d(v) and σ(v) ∀v ∈ V

1 Q← empty priority queue;
2 foreach e = {u, v} ∈ β, d(u) < d(v) do
3 Q← insertOrDecreaseKey(v, p(v) = min{d(u) + ω({u, v}), d(w)});
4 end
5 ω ← min{ω, ω(e) : e ∈ β};
6 while there are nodes in Q do
7 {w, p(w)} ← extractMin(Q);
8 con(w)← minz:(z,w)∈E d(z) + ω(z,w);
9 if con(w) = p(w) then

10 update d′ and d′′;
11 if d(w) =∞ then
12 vis(w)← vis(w) + 1;
13 end
14 d(w)← p(w); σ(w)← 0;
15 foreach incident edge (z,w) do
16 if d(w) = d(z) + ω(z,w) then
17 σ(w)← σ(w) + σ(z);
18 end
19 if d(z) ≥ d(w) + ω(z,w) then
20 Q← insertOrDecreaseKey(z, p(z) = d(w) + ω(z,w));
21 end
22 end
23 end
24 else
25 if d(w) 6=∞ then
26 vis(w)← vis(w)− 1;
27 if vis(w)=0 then
28 insert w into U ;
29 end
30 if con(w) 6=∞ then
31 Q←insertOrDecreaseKey(w, p(w) = con(w));
32 foreach incident edge (z,w) do
33 if d(z) = d(w) + ω(w, z) then
34 Q←insertOrDecreaseKey(z, p(z) = d(w) + ω(z,w));
35 end
36 end
37 d(w)←∞;
38 end
39 end
40 end
41 end

7.4 fully-dynamic approximation algorithms 75

7.4.4 SSSP update in unweighted graphs.

For unweighted graphs, we basically replace the priority queue Q of updateApprVD-W
and updateSSSP-W with a list of queues. Each queue represents a level (distance from
s) from 0 (which only the source belongs to) to the maximum distance d′. The levels
replace the priorities and also in this case represent the candidate distances for the nodes.
Algorithm 10 describes the pseudocode for unweighted graphs. As in Algorithm 9, we first
scan the batch (Lines 3 - 5) and insert the nodes in the queues. Then (Lines 6 - 44), we
scan the queues in order of increasing distance from s, in a fashion similar to that of a
priority queue. In order not to insert a node in the queues multiple times, we use colors:
Initially we set all the nodes to white and then we set a node w to black only when we find
the final distance of w (i. e.when we set d(w) to k) (Line 15). Black nodes extracted from a
queue are then skipped (Line 10). At the end we reset all nodes to white. The replacement
of the priority queue with the list of queues decreases the complexity of the SSSP update
algorithms for unweighted graphs, which we call updateApprVD-U and updateSSSP-U, in
analogy with the ones for weighted graphs.

Lemma 7.4.3. The time required by updateApprVD-U (updateSSSP-U) to update the dis-
tances and ṼD (the number of shortest paths) is O(|β|+ ||A||+ dmax), where dmax is the
maximum distance from s reached during the update.

Proof. The complexity of the initialization (Lines 3 - 5) of Algorithm 10 is O(|β|), as we
have to scan the batch. In the main loop (Lines 6 - 44), we scan all the list of queues,
whose final size is dmax. Every time we extract a node w whose color is not black, we scan
all the incident edges, therefore this operation is linear in the number of neighbors of w.
If the first time we extract w (say at level k) con(w) is equal to k, then w will be set to
black and will not be scanned anymore. If the first time we extract w, con(w) is instead
greater than k, w will be inserted into the queue at level con(w) (if con(w) < ∞). Also,
other inconsistent neighbors of w might insert w in one of the queues. However, after the
first time w is extracted, its distance is set to ∞, so its neighbors will not be scanned
unless con(w) = k, in which case they will be scanned again, but for the last time, since
w will be set to black. To summarize, each affected node and its neighbors can be scanned
at most twice. The complexity of the algorithm is therefore O(|β|+ ‖A‖+ dmax).

7.4.5 Fully-dynamic VD approximation.

The algorithm keeps track of a VD approximation for an undirected graph G, i. e.for each
connected component of G. It is composed of two phases. In the initialization, we compute
an SSSP from a source node si for each connected component Ci. During the SSSP search
from si, we also compute a VD approximation ˜VDi for Ci, as described in Sections 7.2
and 7.3.2. In the update, we recompute the SSSPs and the VD approximations with
updateApprVD-W (or updateApprVD-U). Since components might split or merge, we might
need to compute new approximations, in addition to update the old ones. To do this, for
each node, we keep track of the number vis(v) of times it has been visited. This way we
discard source nodes that have already been visited and compute a new approximation
for components that have become unvisited. Algorithm 11 describes the initialization.
Initially, we put all the nodes in a queue and compute an SSSP from the nodes we extract
(Line 18). During the SSSP search, we increase the number of visits vis(v) for all the nodes

76 fully-dynamic betweenness approximation

Algorithm 10: SSSP update for unweighted graphs (updateSSSP-U)
Input : Graph G = (V ,E), vector d of distances from s, vector σ of number of shortest paths from

s, batch β
Output : New values of d(v) and σ(v) ∀v ∈ V

1 Assumption: color(w) = white ∀w ∈ V ;
2 Q[]← array of empty queues;
3 foreach e = {u, v} ∈ β, d(u) < d(v) do
4 k ← d(v) + 1; enqueue v → Q[k];
5 end
6 k ← 1;
7 while there are nodes in Q[j], j ≥ k do
8 while Q[k] 6= ∅ do
9 dequeue w ← Q[k];

10 if color(w) = black then continue;
11 con(w)← minz:(z,w)∈E d(z) + 1;
12 if con(w) = k then
13 update d′ and d′′;
14 if d(w) =∞ then vis(w)← vis(w) + 1;
15 d(w)← k; σ(w)← 0; color(w)← black;
16 foreach incident edge (z,w) do
17 if d(w) = d(z) + 1 then
18 σ(w)← σ(w) + σ(z);
19 end
20 if d(z) > k then
21 enqueue z → Q[k+ 1];
22 end
23 end
24 end
25 else
26 if d(w) 6=∞ then
27 d(w)←∞;
28 vis(w)← vis(w)− 1;
29 if vis(w)=0 then
30 insert w into U ;
31 end
32 if con(w) 6=∞ then
33 enqueue w → Q[con(w)];
34 foreach incident edge (z,w) do
35 if d(z) > k then
36 enqueue z → Q[k+ 1];
37 end
38 end
39 end
40 end
41 end
42 end
43 k ← k+ 1;
44 end
45 Set to white all the nodes that have been in Q;

7.4 fully-dynamic approximation algorithms 77

we traverse (Line 24). When extracting the nodes, we skip those that have already been
visited (Line 8): this avoids computing multiple approximations for the same component.

In the update (Algorithm 12), we recompute the SSSPs and the VD approximations with
updateApprVD-W (or updateApprVD-U) (Line 7). Since components might split, we might
need to add VD approximations for some new subcomponents, in addition to recomputing
the old ones. Also, if components merge, we can discard the superfluous approximations.
To do this, we update vis(v) for each node within updateApprVD-W (or updateApprVD-U).
Before the update, all the nodes are visited exactly once. While updating an SSSP from si,
we increase (decrease) by one vis(v) of the nodes v that become reachable (unreachable)
from si. This way we can skip the update of the SSSPs from nodes that have already been
visited (Line 8). After the update, for all nodes v that have become unvisited (vis(v) = 0),
we compute a new VD approximation from scratch (Lines 11 - 18). The complexity of the
update of the VD approximation derives from the ṼD update in the single components,
using updateApprVD-W and updateApprVD-U.
Theorem 7.4.2. The time required to update the VD approximation is O(nc · |β| log |β|+∑nc
i=1 ||A(i)|| log ||A(i)||) in weighted graphs and O(nc · |β| +

∑nc
i=1 ||A(i)|| + d

(i)
max) in un-

weighted graphs, where nc is the number of components in G before the update and A(i) is
the sum of affected nodes in Ci and their incident edges.
Proof. In the first part (Lines 2 - 9 of Algorithm 12), we update an SSSP with updateApprVD-
W or updateApprVD-U for each source node si such that vis(si) is not greater than 1.
Therefore the complexity of the first part is O(nc · |β| log |β|+

∑nc
i=1 ||A(i)|| log ||A(i)||) in

weighted graphs and O(nc · |β|+
∑nc
i=1 ||A(i)||+ d

(i)
max) in unweighted, by Lemmas 7.4.2

and 7.4.3. Only some of the affected nodes (those whose distance from a source node be-
comes∞) are inserted into the queue U . Therefore the cost of scanning U in Lines 11 - 18
is O(

∑nc
i=1 ||A(i)||). New SSSP searches are computed for new components that are not

covered by the existing source nodes anymore. However, also such searches involve only
the affected nodes and each affected node (and its incident edges) is scanned at most once
during the search. Therefore, the total cost is O(nc · |β| log |β|+

∑nc
i=1 ||A(i)|| log ||A(i)||)

for weighted graphs and O(nc · |β|+
∑nc
i=1 ||A(i)||+ d

(i)
max) for unweighted graphs.

Lemma 7.4.4. At the end of Algorithm 11, vis(v) = 1 for all v ∈ V , and exactly one
VD approximation is computed for each connected component of G.
Proof. Let v be any node. Then v must be scanned by at least one source node si in the
while loop (Lines 6 - 13): In fact, either v is visited by some si before v is extracted from
U , or vis(v) = 0 at the moment of the extraction and v becomes a source node itself. This
implies that vis(v) ≥ 1, ∀v ∈ V . On the other hand, vis(v) cannot be greater than 1. In
fact, let us assume by contradiction that vis(v) > 1. This means that there are at least
two source nodes si and sj (i < j, w.l.o.g.) that are in the same connected component as
v. Then also si and sj are in the same connected component and sj is visited during the
SSSP search from si. Then vis(sj) = 1 before sj is extracted from U and sj cannot be
a source node. Therefore, vis(v) is exactly equal to 1 for each v ∈ V , which means that
exactly one VD approximation is computed for each connected component of G.

Proposition 7.4.1. Let C′ = {C ′1, ...,C ′n′
c
} be the set of connected components of G after

the update. Algorithm 12 updates or computes exactly one VD approximation for each
C ′i ∈ C′.

78 fully-dynamic betweenness approximation

Proof. Let C = {C1, ...,Cnc} be the set of connected components before the update. Let
us consider three basic cases (then it is straightforward to see that the proof holds also
for combinations of these cases): (i) Ci ∈ C is also a component of C′, (ii) Ci ∈ C and
Cj ∈ C merge into one component C ′k of C′, (iii) Ci ∈ C splits into two components C ′j
and C ′k of C′. In case (i), the VD approximation of Ci is updated exactly once in the for
loop (Lines 2 - 9). In case (ii), (assuming i < j, w.l.o.g.) the VD approximation of C ′k is
updated in the for loop from the source node si ∈ Ci. In its SSSP search, si visits also
sj ∈ Cj , increasing vis(sj). Therefore, sj is skipped and exactly one VD approximation is
computed for C ′k. In case (iii), the source node si ∈ Ci belongs to one of the components
(say C ′j) after the update. During the for loop, the VD approximation is computed for C ′j
via si. Also, for all the nodes v in C ′k, vis(v) is set to 0 and v is inserted into U . Then
some source node s′k ∈ C ′k must be extracted from U in Line 12 and a VD approximation
is computed for C ′k. Since all the nodes in C ′k are set to visited during the search, no other
VD approximations are computed for C ′k.

Algorithm 11: Dynamic VD approximation (initialization)
Input : Graph G = (V ,E)
Output : Upper bound on VD

1 U ← [];
2 foreach node v ∈ V do
3 vis(v)← 0; insert v into U ;
4 end
5 i← 1;
6 while U 6= ∅ do
7 extract s from U ;
8 if vis(s) = 0 then
9 si ← s;

10 ṼDi ← initApprVD(G, si);
11 i← i+ 1;
12 end
13 end
14 nC ← i− 1;
15 ṼD ← maxi=1,...,nC

ṼDi;
16 return ṼD;

// initApprVD computes ṼD and adds 1 to vis(v) of the nodes it visits
17 Function initApprVD(G, s)
18 SSSP(G, s);
19 d′ ← max{d(s,u)|u ∈ V , d(u, v) 6=∞};
20 d′′ ← max{d(s, v)|v ∈ V , v 6= u, d(s, v) 6=∞};
21 ω ← min{ω(x, y)|(x, y) ∈ E};
22 ṼD ← 1 + d′+d′′

ω ;
23 foreach node w ∈ V s.t. d(s,w) 6=∞ do
24 vis(w)← vis(w) + 1;
25 end
26 return ṼD;

7.4.6 Combined dynamic betweenness approximation.

LetG be an undirected graph with nc connected components. In Section 7.4.2, we described
an algorithm to update the betweenness approximations in fully-dynamic graphs. If the

7.4 fully-dynamic approximation algorithms 79

Algorithm 12: Dynamic VD approximation (updateApprVD)
Input : Graph G = (V ,E), vector vis
Output : New VD approximation

1 U ← [];
2 foreach si do
3 if vis(si) > 1 then
4 remove si and ṼDi; decrease nC ;
5 end
6 else

// updateApprVD updates vis, inserts all v for which vis(v) = 0 into U and
recomputes a VD approximation ṼDi

7 ṼDi ← updateApprVD(G, si) ;
8 end
9 end

10 i← nC ;
11 while U 6= ∅ do
12 extract s′ from U ;
13 if vis(s′) = 0 then
14 s′i ← s′;
15 ṼDi ← initApprVD(G, s′i);
16 i← i+ 1; nC ← nC + 1;
17 end
18 end
19 reset vis(v) to 1 for nodes v such that vis(v) > 1;
20 ṼD ← maxi=1,...,nC

ṼDi;
21 return ṼD

graph is undirected, we can use the fully dynamic VD approximation to recompute ṼD
after a batch, instead of recomputing it from scratch. Then, we could update the r sampled
paths with updateSSSP and, if ṼD (and therefore r) increases, we could sample new
paths. However, since updateSSSP and updateApprVD share most of the operations, we can
“merge” them and update at the same time the shortest paths from a source node s and the
VD approximation for the component of s. We call this hybrid function updateSSSPVD.
Instead of storing and updating nc SSSPs for the VD approximation and r SSSPs for
the betweenness scores, we recompute a VD approximation for each of the r samples
while recomputing the shortest paths with updateSSSPVD. This way we do not need to
compute an additional SSSP for the components covered by the r sampled paths (i. e.the
components in which the paths lie), saving time and memory. Only for components that
are not covered by any of them (if they exist), we compute and store a separate VD
approximation. We refer to such components as R′ (and to |R′| as r′).
In the initialization (Algorithm 13), we first compute the r SSSP, like in RK (Lines 4 -

18). However, we also check which nodes have been visited, as in Algorithm 11. While we
compute the r SSSPs, in addition to the distances and number of shortest paths, we also
compute a VD approximation for each of the r source nodes and increase vis(v) of all
the nodes we visit during the sources with initApprVD (Line 8). Since it is possible that
the r shortest paths do not cover all the components of G, we compute an additional VD
approximation for nodes in the unvisited components, like in Algorithm 11 (Lines 21 - 28).
Basically we can divide the SSSPs into two sets: the set R of SSSPs used to compute the
r shortest paths and the set R′ of SSSPs used for a VD approximation in the components
that were not scanned by the initial R SSSPs. We call r′ the number of the SSSPs in R′.

80 fully-dynamic betweenness approximation

The betweenness update after a batch is described in Algorithm 14. First (Lines 2 - 19),
we recompute the shortest paths like in Algorithm 8: we update the SSSPs from each
source node s in R and we replace the old shortest path with a new one (subtracting 1/r
from the nodes in the old shortest path and adding 1/r to those in the new shortest path).
To update the SSSPs, we use the fully-dynamic updateSSSPVD that updates also the VD
approximation and keeps track of the nodes that become unvisited. Then (Lines 24 - 31),
we add a new SSSP to R′ for each component that has become unvisited (by both R and
R′). After this, we have at least a VD approximation for each component of G. We take the
maximum over all these approximations and recompute the number of samples r (Lines 32
- 33). If r has increased, we need to sample new paths and therefore new SSSPs to add to
R. Finally, we normalize the betweenness scores, i. e.we multiply them by the old value of
r divided by the new value of r (Line 37). We refer to the algorithm for unweighted graphs
as DA and the one for weighted as DAW. The difference between DA and DAW is the way
the SSSPs and the VD approximation are updated: in DA we use updateApprVD-U and in
DAW updateApprVD-W.

Theorem 7.4.3. Algorithm 14 preserves the guarantee on the maximum absolute error,
i. e.naming c′B(v) and c̃′B(v) the new exact and approximated betweenness values, respec-
tively, Pr(∃v ∈ V s.t. |c′B(v)− c̃′B(v)| > ε) < δ.

Proof. Let G be the old graph and G′ the modified graph after the batch of edge updates.
Let p′xy be a shortest path of G′ between nodes x and y. To prove the theoretical guarantee,
we need to prove that the probability of any sampled path p′(i) is equal to p′xy (i. e.that
the algorithms adds 1/r′ to the nodes in p′xy) is 1

n(n−1)
1

σ′
x(y)

. Algorithm 14 replaces the
first r shortest paths with other shortest paths p′(1), ..., p′(r) between the same node pairs
(Lines 12 - 18) using Algorithm 8, for which we already proved that Pr(p′(k) = p′xy) =

1
n(n−1)

1
σ′

x(y)
(Lemma 7.4.1). The additional ∆r shortest paths (Line 35) are recomputed

from scratch with RK, therefore also in this case Pr(p′(k) = p′xy) =
1

n(n−1)
1

σ′
x(y)

by Lemma
7 of [107].

7.4.7 Complexity of the dynamic betweenness algorithms.

In this section we presented different algorithms for updating betweenness approximations
after batches of edge updates. Algorithm 8 can be used on graphs for which we can be
sure that the vertex diameter cannot increase after a batch of edge updates. This includes,
for example, unweighted connected graphs on which only edge insertions are allowed. We
refer to the unweighted version of this algorithm as IA (incremental approximation) and to
the weighted version as IAW (incremental approximation weighted). On general directed
graphs, we can use the algorithms described in Section 7.4.2. We name the unweighted
version DAD (dynamic approximation directed) and the weighted one DADW. Finally,
for undirected graphs, we can use the optimized algorithms presented in Section 7.4.6
(Algorithm 14), to which we refer as DA and DAW. Theorem 7.4.4 presents the complexities
of all the betweenness update algorithms. In the following, we name ||A(i)|| the sum of
affected nodes and their incident edges in the i-th sampled SSSP. We also name r the
number of samples. In case we need to sample new additional paths after the update (in

7.4 fully-dynamic approximation algorithms 81

Algorithm 13: BC initialization
Input : Graph G = (V ,E), source node s, number of iterations r, batch β
Output : Approximated betweenness values ∀v ∈ V

1 foreach node v ∈ V do
2 c̃B (v)← 0; vis(v)← 0;
3 end
4 ṼD ←getApproxVertexDiameter(G);
5 r ← (c/ε2)(blog2(ṼD − 2)c+ ln(1/δ));
6 for i← 1 to r do
7 (si, ti)← sampleUniformNodePair(V);
8 ṼDi ← initApprVD(G, si,);
9 v ← ti;

10 p(i) ← empty list;
11 Psi (v)← {z : {z, v} ∈ E ∩ dsi (v) = dsi (z) + ω({z, v})};
12 while Psi (v) 6= {si} do
13 sample z ∈ Psi (v) with probability σsi (z)/σsi (v);
14 c̃B(z)← c̃B(z) + 1/r;
15 add z → p(i); v ← z;
16 Psi (v)← {z : {z, v} ∈ E ∩ dsi (v) = dsi (z) + ω({z, v})};
17 end
18 end
19 U ← V ;
20 i← r+ 1;
21 while U 6= ∅ do
22 extract s′ from U ;
23 if vis(s′) = 0 then
24 s′i ← s′;
25 ṼDi ← initApprVD(G, s′i);
26 i← i+ 1;
27 end
28 end
29 r′ ← r− i− 1;
30 return {(v, c̃B(v)) : v ∈ V }

82 fully-dynamic betweenness approximation

Algorithm 14: Dynamic update of betweenness approximation (DA)
Input : Graph G = (V ,E), source node s, number of iterations r, batch β
Output : New approximated betweenness values ∀v ∈ V

1 U ← [];
2 for i← 1 to r do
3 doldi ← dsi (ti);
4 σoldi ← σsi (ti);

// updateSSSPVD updates vis, inserts all v : vis(v) = 0 into U and updates the VD
approximation

5 ṼDi ← updateSSSPVD(G, si,β);
// we replace the shortest path between si and ti

6 foreach w ∈ p(i) do
7 c̃B (w) ← c̃B(w)− 1/r;
8 end
9 v ← ti;

10 p(i) ← empty list;
11 Psi (v)← {z : {z, v} ∈ E ∩ dsi (v) = dsi (z) + ω({z, v})};
12 while Psi (v) 6= {si} do
13 sample z ∈ Psi (v) with probability = σsi (z)/σsi (v);
14 c̃B(z)← c̃B(z) + 1/r;
15 add z to p(i);
16 v ← z;
17 Psi (v)← {z : {z, v} ∈ E ∩ dsi (v) = dsi (z) + ω({z, v})};
18 end
19 end
20 for i← r+ 1 to r+ r′ do
21 ṼDi ← updateApprVD(G, si,β);
22 end
23 i← r+ r′ + 1;
24 while U 6= ∅ do
25 extract s′ from U ;
26 if vis(s′) = 0 then
27 s′i ← s′;
28 ṼDi ← initApprVD(G, s′i);
29 i← i+ 1; r′ ← r′ + 1;
30 end
31 end

// compute the maximum over all the VDi computed by updateApprVD
32 ṼD ← maxi=1,...,r+r′ ṼDi;
33 rnew ← (c/ε2)(blog2(ṼD − 2)c+ ln(1/δ));
34 if rnew > r then
35 sample new paths;
36 foreach v ∈ V do
37 c̃B(v)← c̃B(v) · r/rnew
38 end
39 r ← rnew;
40 end
41 return {(v, c̃B(v)) : v ∈ V }

7.4 fully-dynamic approximation algorithms 83

DAD, DADW, DA and DAW), we refer to the difference between the value of r before
and after the batch as ∆r. In DA and DAW, we call r′ the number of additional samples
necessary for the VD approximation.

Theorem 7.4.4. Given a graph G = (V ,E) with n nodes and m edges, the time required
by the different algorithms to update the betweenness approximations after a batch β are
the following:

(i) IA: O(r · |β|+
∑r
i=1(||A(i)||+ d

(i)
max)

(ii) IAW: O(r · |β| log |β|+
∑r
i=1 ||A(i)|| log ||A(i)||)

(iii) DAD: O(r · |β|+
∑r
i=1(||A(i)||+ d

(i)
max) + (∆r+ 1)(n+m))

(iv) DADW: O((r · |β| log |β|+
∑r
i=1 ||A(i)|| log ||A(i)||+ (∆r+ 1)(n logn+m))

(v) DA: O((r+ r′)|β|+
∑r+r′

i=1 (||A(i)||+ d
(i)
max) + ∆r(n+m))

(vi) DAW: O((r+ r′)|β| log |β|+
∑r+r′

i=1 ||A(i)|| log ||A(i)||+ ∆r(n logn+m))

Proof. We prove each case separately.

(i) IA updates each sampled path with updateSSSP-U. Therefore, the total complex-
ity is the sum of the times required to update each of the r paths, i. e.O(r · |β|+∑r
i=1(||A(i)||+ d

(i)
max).

(ii) Same as (i), with the only difference that we use updateSSSP-W for weighted graphs.

(iii) In DAD, we need to update the existing r samples, exactly as in IA. In addition
to that, we might need to sample new ∆r additional paths using a BFS, whose
complexity is O(n+m). Also, we need to recompute the upper bound on VD, whose
complexity is also O(n+m) (see Section 7.3.1). Therefore, in this case we have to
add an additional O((∆r+ 1)(n+m)) term to the complexity of IA.

(iv) Similarly to (iii), we need to sample ∆r additional paths, but in weighted graphs
the cost of a SSSP is O(n logn+m). Also the VD approximation described in Sec-
tion 7.3.3 requires O(n logn+m) time.

(v) Let ∆r′ be the difference between the values of r′ before and after the batch. After
processing β, we might need to sample new paths for the betweenness approximation
(∆r > 0) and/or sample paths in new components that are not covered by any of the
sampled paths (∆r′ > 0). Then, the complexity for the betweenness approximation
update is O(r · |β|+

∑r
i=1(||A(i)||+ d

(i)
max))+O(∆r(n+m)). The VD update requires

O(r′ · |β|+
∑r′
i=1(||A(i)||+ d

(i)
max)) to update the VD approximation in the already

covered components and
∑∆r
i=1(|Vi|+ |Ei|) for the new ones, where Vi and Ei are

nodes and edges of the ith component, respectively. From this derives the total
complexity.

(vi) Same as (v), using updateSSSP-W, approxVD-W.

84 fully-dynamic betweenness approximation

Graph Type Nodes Edges Type
ca-GrQc coauthorship 5 242 14 496 Unweighted, Undirected
p2p-Gnutella09 file sharing 8 114 26 013 Unweighted, Directed
ca-HepTh coauthorship 9 877 25 998 Unweighted, Undirected
PGPgiantcompo social / web of trust 10 680 24 316 Unweighted, Undirected
as-22july06 internet 22 963 48 436 Unweighted, Undirected

Table 13: Overview of small real-world networks used in the experiments.

Notice that, if ṼD does not increase, ∆r = 0 and the complexities of DA and DAD
(DAW and DADW, respectively) are the same as the only-incremental algorithm IA (IAW,
respectively). This case includes, for example, connected graphs subject to a batch of
only edge insertions, or any batch that neither splits the graph into more components
nor increases VD. Also, notice that in the worst case the complexity can be as bad as
recomputing from scratch, or even slightly worse. Indeed, ||A(i)|| can be as large as m, for
i = 1, ..., r, and d(i)max can be as large as n. Assuming β = Θ(m) as a worst-case batch size,
the running times of IA and IAW are then O(r · (m+n)) and O(r · (m logm)), respectively.
Analogously, the complexities of DAD and DADW are O((r+ ∆r) · (n+m)) and O((r+
∆r) · (m logm)), where we recall that (r+ ∆r) is the number of samples required after the
batch. In the optimized versions DA and DAW, the worst-case running time is even larger:
O((r + ∆r + nc) · (n +m)) and O((r + ∆r + nc) · (m logm)), where nc is the number
of connected components of the graph. However, these worst-case running times are not
observed in our experiments. Indeed, in the next section, we will show that our dynamic
algorithms perform very well in practice. Also, notice that no dynamic SSSP (and so
probably also no betweenness approximation) algorithm exists that is asymptotically faster
than recomputation on all graphs.

7.5 experiments

implementation and settings. For an experimental comparison, we implemented
our six approaches IA, IAW, DAD, DADW, DA, DAW, as well as the static approximation
RK [107]. In the implementation of RK, we used the optimization proposed in [107], stop-
ping all the SSSP searches once the target node has been found. Also, we computed the
number of samples using our new bounds on VD presented in Section 7.3. We implemented
all algorithms in C++, building on the open-source NetworKit framework [119]. We also
used the NetworKit implementation of Brandes’s algorithm BA as a reference in experi-
ments regarding the accuracy. In all experiments we fix δ to 0.1 while the error bound
ε varies. The machine we employ is used for its 256 GB RAM. Of the machine’s 2 x 8
Intel(R) Xeon(R) E5-2680 cores running at 2.7 GHz we use only one; all computations are
sequential to make the comparison to previous work more meaningful.

data sets. We use both real-world and synthetic networks. For our experiments
on the accuracy, we use relatively small networks, on which also BA can be executed.
These networks are summarized in Table 13 and are publicly available from the collection
compiled for the 10th DIMACS Challenge [9] (http://www.cc.gatech.edu/dimacs10/
downloads.shtml) and from the SNAP collection (http://snap.stanford.edu). Due to

http://www.cc.gatech.edu/dimacs10/downloads.shtml
http://www.cc.gatech.edu/dimacs10/downloads.shtml
http://snap.stanford.edu

7.5 experiments 85

Graph Type Nodes Edges Type
digg communication 30,398 85,155 Weighted
slashdot communication 51,083 116,573 Weighted
linux communication 63,399 159,996 Weighted
facebook communication 46,952 183,412 Weighted
enron communication 87,273 297,456 Weighted
facebookFriends friendship 63,731 817,035 Unweighted
ca-HepPh coauthorship 28,093 3,148,447 Unweighted
wikipedia hyperlink 1,870,709 36,532,531 Unweighted

Table 14: Overview of real dynamic graphs used in the experiments, taken from http://konect.
uni-koblenz.de/.

a shortage of actual dynamic networks in this size range, we simulate dynamics by re-
moving a small fraction of random edges and adding them back in batches, as described
in Section 3.2.2. We also use synthetic networks obtained with the Dorogovtsev-Mendes
generator, a simple model for networks with power-law degree distribution [46].
To compare the running times of the scalable algorithms (RK and our dynamic al-

gorithms), we use real dynamic networks, taken from The Koblenz Network Collection
(KONECT) [76] and summarized in Table 14 (for more information about the properties
of these networks, see Chapter 3.2). All the edges of the KONECT graphs are characterized
by a time of arrival. In case of multiple edges between two nodes, we extract two versions
of the graph: one unweighted, where we ignore additional edges, and one weighted, where
we replace the set Est of edges between two nodes with an edge of weight 1/|Est| (more
tightly coupled nodes receive a smaller distance). In our experiments, we let the batch
size vary from 1 to 1024 and for each batch size, we average the running times over 10
runs. Since the networks do not include edge deletions, we implement additional simulated
dynamics. In particular, we consider the following experiments. (i) Real dynamics. We re-
move the x edges with the highest timestamp from the network and we insert them back
in batches, in the order of timestamps. (ii) Random insertions and deletions. We remove x
edges from the graph, chosen uniformly at random. To create batches of both edge inser-
tions and deletions, we add back the deleted edges with probability 1/2 and delete other
random edges with probability 1/2. (iii) Random weight changes. In weighted networks,
we choose x edges uniformly at random and we multiply their weight by a random value
in the interval (0, 2).
To study the scalability of the methods, we also use synthetic graphs obtained with

a generator based on a unit-disk graph model in hyperbolic geometry [85], where edge
insertions and deletions are obtained by moving the nodes in the hyperbolic plane. The
networks produced by the model were shown to have many properties of real complex
networks, like small diameter and power-law degree distribution (for details and references
the interested reader is referred to von Looz et al. [85]). We generate seven networks, with
|E| ranging from about 2 · 104 to about 2 · 107 and |V | approximately equal to |E|/10.
We also compare our new upper bound on VD for directed graphs presented in Sec-

tion 7.3.1 with the one used in RK. For this, we use directed real-world graphs of different
sizes taken from the SNAP collection.

http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/

86 fully-dynamic betweenness approximation

7.5.1 Accuracy.

0 2000 4000 6000 8000 10000

Node rank

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

R
e
la

ti
v
e
 r

a
n
k

e
rr

o
r

ε=0.01

ε=0.05

ε=0.1

0 20 40 60 80 100

Node rank

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
e
la

ti
v
e
 r

a
n
k

e
rr

o
r

ε=0.01

ε=0.05

ε=0.1

Figure 24: Relative rank error on PGPgiantcompo for nodes ordered by rank. Left: relative errors
of all nodes. Right: relative errors of the 100 nodes with highest betweenness.

Graph ca-GrQc ca-HepTh PGPgiantcompo as-22july06 p2p-Gnutella09

max. error (ε = 0.1) 1.70e-02 1.69e-02 3.10e-02 3.22e-02 1.56e-02
max. error (ε = 0.05) 9.12e-03 7.62e-03 1.38e-02 1.60e-02 6.55e-03
max. error (ε = 0.01) 1.67e-03 1.41e-03 2.99e-03 3.45e-03 1.23e-03
avg. error (ε = 0.1) 4.55e-04 3.87e-04 4.56e-04 8.55e-05 5.92e-04
avg. error (ε = 0.05) 2.42e-04 2.10e-04 2.54e-04 5.35e-05 3.15e-04
avg. error (ε = 0.01) 4.63e-05 4.29e-05 5.10e-05 1.33e-05 6.55e-05

Table 15: Maximum and average absolute errors on real networks for different values of ε (δ = 0.1).
The values are averaged over 10 runs.

We consider the accuracy of the approximated centrality scores both in terms of absolute
error and, more importantly, the preservation of the ranking order of nodes. Since we only
replace the samples without changing their number, our dynamic algorithm has exactly the
same accuracy as RK. The authors of [107] study the behavior of RK also experimentally,
considering the average and maximum estimation error on a small set of real graphs. We
study the experimental errors on additional graphs. For our tests we use the networks
summarized in Table 13 and Dorogovtsev-Mendes graphs of several sizes. Our results
confirm those of [107] in the sense that the measured absolute errors are always below the
guaranteed maximum error ε and the measured average error is often orders of magnitude
smaller than ε. Table 15 shows the measured errors for the real networks. We also study
the relative rank error introduced by Geisberger et al. [56] (i. e. max{ρ, 1/ρ}, denoting
ρ the ratio between the estimated rank and the true rank), which we consider the most
relevant measure of the quality of the approximations. Figure 24 shows the results for
PGPgiantcompo, a similar trend can be observed on our other test instances as well. On
the left, we see the errors for the whole set of nodes (ordered by exact rank) and, on the
right, we focus on the top 100 nodes. The straight lines in the plot on the left correspond
to nodes with betweenness 0, which are therefore undistinguishable. The plots show that
for a small value of ε (0.01), the ranking is very well preserved over all the positions. With
higher values of ε, the rank error of the nodes with low betweenness increases, as they
are harder to approximate. However, the error remains small for the nodes with highest
betweenness, the most important ones for many applications.

7.5 experiments 87

7.5.2 New upper bound on VD for directed graphs.

We compute the new upper bound on VD for directed graphs presented in Section 7.3.1
and compare it with the upper bound used in RK [107], i. e.the size of the largest weakly
connected component. All the networks used in the experiment are real directed graphs.
Since finding VD exactly would be expensive in most of the graphs we used, we also com-
pute a lower bound on VD, by sampling nodes in the graph, computing their eccentricity
(i. e., the maximum distance reachable from the node), and adding 1 to it. In Table 16,
we report this lower bound (VD?), our new upper bound (ṼD) and the one used in RK
(ṼDRK). The results show that ṼD is always several orders of magnitude smaller than
ṼDRK and never more than a factor 4 from the lower bound VD? (and therefore also from
VD). This difference is mitigated by the logarithm in the number of samples required for
the approximation (see Eq. (19)). However, Table 16 shows that ṼD is almost always more
than 210 times smaller than ṼDRK, resulting in at least 10 times less samples required for
the theoretical guarantee.

Graph Nodes Edges VD? ṼD ṼDRK

p2p-Gnutella24 26 518 65 369 20 47 26 498
soc-Epinions1 75 879 508 837 13 41 75 877
slashdot081106 77 356 516 575 14 39 77 349
twitter-comb 81 306 1 768 149 9 34 81 306
slashdot090216 81 870 545 671 14 40 81 866
amazon0302 262 111 1 234 877 71 183 262 111
email-EuAll 265 214 420 045 9 23 224 832

Table 16: Lower bound on VD (VD?) and upper bounds (our new bound ṼD and the one proposed
in RK, ṼDRK) on real-world networks.

7.5.3 Running times.

In this section, we discuss the running times of the dynamic algorithms we propose and
their speedups on RK. (Note that the term speedup is used to compare different algorithms,
not sequential vs parallel execution.)
Figure 25 (left) reports the speedups of DA on RK in real graphs using real dynamics.

Although some fluctuations can be noticed, the speedups tend to decrease as the batch
size increases. We can attribute fluctuations to two main factors: First, different batches
can affect areas of G of varying sizes, influencing also the time required to update the
SSSPs. Second, changes in the VD approximation can require to sample new paths and
therefore increase the running time of DA (and DAW). Nevertheless, DA is significantly
faster than recomputation on all networks and for every tested batch size. Analogous
results are reported in Figure 26 (left) for random dynamics. Table 17 summarizes the
running times of DA and its speedups on RK with batches of size 1 and 1024 in unweighted
graphs, under both real and random dynamics. Even on the larger graphs (ca-HepPh and
wikipedia) and on large batches, DA requires at most a few seconds to recompute the
betweenness scores, whereas RK requires about one hour for wikipedia. The results on
weighted graphs are shown in Table 18. In both real dynamics and random updates, the

88 fully-dynamic betweenness approximation

Real Random
Time [s] Speedups Time [s] Speedups

Graph |β| = 1 |β| = 1024 |β| = 1 |β| = 1024 |β| = 1 |β| = 1024 |β| = 1 |β| = 1024
digg 0.078 1.028 76.11 5.42 0.008 0.832 94.00 4.76
slashdot 0.043 1.055 219.02 9.91 0.038 1.151 263.89 28.81
linux 0.049 1.412 108.28 3.59 0.051 2.144 72.73 1.33
facebook 0.023 1.416 527.04 9.86 0.015 1.520 745.86 8.21
enron 0.368 1.279 83.59 13.66 0.203 1.640 99.45 9.39
facebookFriends 0.447 1.946 94.23 18.70 0.448 2.184 95.91 18.24
ca-HepPh 0.038 0.186 2287.84 400.45 0.025 1.520 2188.70 28.81
wikipedia 1.078 6.735 3226.11 617.47 0.877 5.937 2833.57 703.18

Table 17: Times and speedups of DA on RK in unweighted real graphs under real dynamics and
random updates, for batch sizes of 1 and 1024.

speedups vary between ≈ 50 and ≈ 6 · 103 for single-edge updates and between ≈ 5 and
≈ 75 for batches of size 1024.
On hyperbolic graphs (Figure 25, right), the speedups of DA on RK increase with the

size of the graph. Table 19 contains the precise running times and speedups on batches of
1 and 1024 edges. The speedups vary between ≈ 100 and ≈ 3 · 105 for single-edge updates
and between ≈ 3 and ≈ 5 · 103 for batches of 1024 edges.
Some graphs of Table 14 can also be interpreted as directed (i. e., digg, slashdot,

linux, facebook, enron, ca-HepPh). We therefore test DAD on the directed version of
the networks, using real dynamics. Also on directed networks, using DAD is always faster
than recomputation with RK, by orders of magnitude on small batches. Figure 26 (right)
shows the speedups of DAD on RK on the facebook graph.

21 22 23 24 25 26 27 28 29 210

Batch size

0

100

101

102

103

104

S
p
e
e
d
u
p

repliesDigg

emailSlashdot

emailLinux

facebookPosts

emailEnron

facebookFriends

arXivCitations

englishWikipedia

21 22 23 24 25 26 27 28 29 210

Batch size

0
100

101

102

103

104

105

106

S
p
e
e
d
u
p

m = 20000

m = 50000

m = 200000

m = 500000

m = 2000000

m = 5000000

m = 20000000

Figure 25: Speedups of DA on RK, with ε = 0.05 and with batches of different sizes. Left: real
unweighted networks using real dynamics. Right: hyperbolic unit-disk graphs of different
sizes.

To summarize, our results show that our dynamic algorithms are faster than recomputa-
tion with RK in all the tested instances, even when large batches of 1024 edges are applied
to the graph. With small batches, the algorithms are always orders of magnitude faster
than RK, often with running times of fraction of seconds or seconds compared to minutes
or hours. Such high speedups are made possible by the efficient update of the sampled
shortest paths, which limits the recomputation to the nodes that are actually affected by
the batch. Also, processing the edges in batches, we avoid to update multiple times nodes
that are affected by several edges of the batch.

7.5 experiments 89

21 22 23 24 25 26 27 28 29 210

Batch size

0

100

101

102

103

104

S
p
e
e
d
u
p

repliesDigg

emailSlashdot

emailLinux

facebookPosts

emailEnron

facebookFriends

arXivCitations

englishWikipedia

1 2 4 8 16 32 64 128 256 512 1024

Batch size

0

100

101

102

103

S
p
e
e
d
-u

p

Figure 26: Left: speedups of DA on RK in real unweighted graphs under random updates. Right:
Speedups of DAD on RK on the facebook directed graph using real dynamics.

Real Random
Time [s] Speedups Time [s] Speedups

Graph |β| = 1 |β| = 1024 |β| = 1 |β| = 1024 |β| = 1 |β| = 1024 |β| = 1 |β| = 1024
digg 0.053 3.032 605.18 14.24 0.049 3.046 658.19 14.17
slashdot 0.790 5.387 50.81 16.12 0.716 5.866 56.00 14.81
linux 0.324 24.816 5780.49 75.40 0.344 24.857 5454.10 75.28
facebook 0.029 6.672 2863.83 11.42 0.029 6.534 2910.33 11.66
enron 0.050 9.926 3486.99 24.91 0.046 50.425 3762.09 4.90

Table 18: Times and speedups of DAW on RK in weighted real graphs under real dynamics and
random updates, for batch sizes of 1 and 1024.

Hyperbolic
Time [s] Speedups

Number of edges |β| = 1 |β| = 1024 |β| = 1 |β| = 1024
m = 20000 0.005 0.195 99.83 2.79
m = 50000 0.002 0.152 611.17 10.21
m = 200000 0.015 0.288 422.81 22.64
m = 500000 0.012 0.339 1565.12 51.97
m = 2000000 0.049 0.498 2419.81 241.17
m = 5000000 0.083 0.660 4716.84 601.85
m = 20000000 0.006 0.401 304338.86 5296.78

Table 19: Times and speedups of DA on RK in hyperbolic unit-disk graphs, for batch sizes of 1 and
1024.

90 fully-dynamic betweenness approximation

bibliographic notes

Results reguarding the incremental case in (strongly) connected graphs have ben published
as “Approximating betweenness centrality in large evolving networks” (coauthored with
Henning Meyerhenke and Christian Staudt) at the Seventeenth Workshop on Algorithm
Engineering and Experiments (ALENEX 2015).

Results related to the decremental case in general undirected graphs have been published
as “Fully-dynamic approximation of betweenness centrality” (coauthored with Henning
Meyerhenke) at the Twenty-third Annual European Symposium on Algorithms (ESA 2015).
The methods have been unified and extended to directed graphs in “Approximating

betweenness centrality in fully dynamic networks” (coauthored with Henning Meyerhenke),
published in the journal Internet Mathematics.

CONCLUS IONS OF PART I I

In this part we have presented several algorithms for updating betweenness centrality (or
its approximation) in evolving networks. Betweenness is a shortest-path based centrality
measure, and thus its computation, as well as its update, requires up-to-date informa-
tion about shortest paths between pairs of nodes. Our experimental results in Chapter 3
already showed that most edge updates affect only a small fraction of node pairs in real-
world complex networks. This phenomenon is reflected in the performance of the dynamic
algorithms presented in this part, whose empirical running time is mostly several orders
of magnitude faster than static recomputation. The much faster running time is achieved
by storing information on the initial graph and pruning computations based on properties
of the newly-created shortest paths. This, however, implies a higher memory footprint,
which is in fact the primary limitation to the scalability of our dynamic algorithms. This
limitation can be partially mitigated using approximation, as in the algorithm proposed in
Chapter 7. Differently from the exact approaches presented in Chapters 5 and 6, and other
existing dynamic approaches (which require Θ(n2) memory), the algorithm in Chapter 7
requires Θ(n) memory for each sampled path, but the number of samples grows quadrat-
ically as the error bound ε is tightened. This leaves practitioners with a tradeoff between
running time and memory consumption on the one hand and betweenness score error on
the other hand. An interesting direction for future research is the development of algo-
rithms with similarly good performance as the ones presented in this part, but smaller
memory footprint.
Our results in Chapter 6 also highlight that updating betweenness centrality of a single

node can be done much more efficiently than updating it for all nodes. Although this
may sound intuitive, the same cannot be said for the static case, where no algorithm has
been devised that computes betweenness of a single node faster than for all nodes, neither
in theory (i.e., faster asymptotic running time), nor in practice (i.e. significantly better
empirical performance). On the contrary, the incremental algorithm presented in Chapter 6
updates betweenness of a node in O(n2) time in the worst case, which – for dense graphs
– is asymptotically faster than existing incremental algorithms for all nodes (requiring
O(nm) time in the worst case). Also in practice, our experiments show significantly better
running times compared to the dynamic algorithm for all nodes presented in Chapter 5.
Preliminary results show that the speedups are even higher when compared against other
existing dynamic algorithms – between two and three orders of magnitude on average.
Our results from Chapter 7 also suggest that processing updates in batches can lead

to significant speedups compared to processing them one by one. As an example, our
dynamic approximation algorithm has an average speedup on recomputation of about
3200 for single-edge updates on the wikipedia graph, whereas the average speedup for
batches of 1024 edges is above 600.
The algorithms presented in Chapter 5 and Chapter 7 have been made available to

researchers and practitioners as part of the NetworKit tool suite [119]. The algorithm in
Chapter 6 will be part of a future release.

91

Part III

E F F I C I E N T C O M P U TAT I O N O F N O D E S W I T H H I G H E S T
C L O S E N E S S C E N T R A L I T Y

8
OVERVIEW OF ALGORITHMS FOR CLOSENESS CENTRAL ITY

8.1 introduction

Closeness centrality is a very intuitive measure: given a node, it indicates the inverse
average shortest-path distance to the other nodes of the network. The idea behind this
definition is that a node is central if it is efficient in spreading information to the other
nodes. The identification of the nodes with highest closeness finds application in a variety
of research areas. Examples include facility location [71], marketing strategies [70] and
identification of key infrastructure nodes as well as disease propagation control and crime
prevention [13]. In fact, closeness is one of the oldest and one of the most widely-used
centrality measures [12]: almost all books dealing with network analysis discuss it (for
example, [95]), and almost all existing network analysis libraries implement algorithms to
compute it.
Unfortunately, computing the closeness centrality of all nodes in a graph can be very

expensive. The currently best algorithm solves an all-pairs shortest path (APSP) problem
to compute the distance between each pair of nodes. For an unweighted graph G = (V ,E)
with n nodes and m edges, this can be done in time O(n2.373 logn) using fast matrix mul-
tiplication [123] or in O(nm) running a BFS from each node (or, on weighted graphs, in
O(nm+n2 logn) running Dijkstra’s algorithm from each node). Since real-world networks
are often sparse and since the first approach contains large hidden constants, BFS-based ap-
proaches are predominant in practice. Nevertheless, this running time becomes prohibitive
already for networks with a few million nodes, restricting the exact computation of close-
ness to a small fraction of real applications. For this reason, several methods have been
proposed to scale up the computation of closeness centrality, using different techniques. In
the following, we discuss existing results on the computation of closeness centrality and
related problems.

8.2 related work

Closeness is a “traditional” definition of centrality, and consequently it was not “designed
with scalability in mind”, as stated in [65]. Also in [38], it is said that closeness centrality
can “identify influential nodes”, but it is “incapable to be applied in large-scale networks
due to the computational complexity”. The simplest solution considered was to define
different measures that might be related to closeness centrality [65].

hardness results. A different line of research has tried to develop more efficient
algorithms, or lower bounds for the complexity of this problem. In particular, in [28] it
is proved that finding the least closeness-central vertex is not subquadratic-time solvable,
unless SETH is false. In the same line, it is proved in [3] that finding the most central
vertex is not solvable in O(m2−ε), assuming the Hitting Set conjecture. This conjecture is
very recent, and there are not strong evidences that it holds, apart from its similarity to
the Orthogonal Vector conjecture. Conversely, the Orthogonal Vector conjecture is more

95

96 overview of algorithms for closeness centrality

established: it is implied both by the Hitting Set conjecture [3], and by SETH [122], a
widely used assumption in the context of polynomial-time reductions [1–4, 27, 28, 63, 103,
109, 122, 124]. In [21], the authors prove that this result holds also if we assume SETH
and the input graph is sparse and directed.

approximation algorithms. In order to deal with the above hardness results,
it is possible to design approximation algorithms: the simplest approach samples the dis-
tance between a node v and l other nodes w, and returns the average of all values d(v,w)
found [50]. The time complexity is O(lm), to obtain an approximation c̃C(v) of the cen-
trality of each node v such that P

(∣∣∣ 1
c̃C (v) −

1
cC (v)

∣∣∣ ≥ ε diam
)
≤ 2e−Ω(lε2), where diam is

the diameter of the graph (we recall the diameter is the maximum distance between any
two connected nodes). A more refined approximation algorithm is provided in [41], which
combines the sampling approach with a 3-approximation algorithm: this algorithm has
running time O(lm), and it provides an estimate c̃C(v) of the centrality of each node v
such that P

(∣∣∣ 1
c̃C (v) −

1
cC (v)

∣∣∣ ≥ ε
cC (v)

)
≤ 2e−Ω(lε3) (note that, differently from the previous

algorithm, this algorithm provides a guarantee on the relative error). The recent result by
Chechik et al. [35] allows to approximate closeness centrality with a coefficient of variation
of ε using O(ε−2) single-source shortest path (SSSP) computations. Alternatively, one can
make the probability that the maximum relative error exceeds ε polynomially small by
using O(ε−2 logn) SSSP computations.
However, these approximation algorithms have not been specifically designed for ranking

nodes according to their closeness centrality, and turning them into a trustable top-k
algorithm can be a challenging problem. Indeed, observe that, in many real-world cases,
we work with so-called small-world networks, having a low diameter. Hence, in a typical
graph, the average distance between v and a random node w is between 1 and 10. This
implies that most of the n values 1

cC (v) lie in this range, and that, in order to obtain a
reliable ranking, we need the error to be close to ε = 10

n , which might be very small in the
vast majority of real-word networks. As an example, performing O(ε−2) SSSPs as in [35]
would then require O(m

ε2) = O(mn2) time in the unweighted case, which is impractical for
large graphs.
Finally, an approximation algorithm was proposed in [96], where the sampling technique

developed in [50] was used to actually compute the top k vertices: the result is not exact,
but it is exact with high probability. The authors proved that the time complexity of their
algorithm is O(mn

2
3 logn), under the rather strong assumption that closeness centralities

are uniformly distributed between 0 and the diameter diam (in the worst case, the time
complexity of this algorithm is O(mn)).

heuristics. Some works have tried to exploit properties of real-world networks in
order to find more efficient algorithms. In [78], the authors develop a heuristic to compute
the k most central vertices according to different measures. The basic idea is to identify
central nodes according to a simple centrality measure (for instance, degree of nodes), and
then to inspect a small set of central nodes according to this measure, hoping it contains
the top k vertices according to the “complex” measure. The last approach [97], proposed by
Olsen et al., tries to exploit the properties of real-world networks in order to develop exact
algorithms with worst case complexity O(mn), but performing much better in practice.
As far as we know, this is the only exact algorithm that is able to efficiently compute the

8.2 related work 97

k most central vertices in networks with up to 1 million nodes, before the work presented
in Chapter 9.

dynamic algorithms. Dynamic algorithms try to update some properties of the
graph by limiting the computations to a subset of the nodes and edges. For updating the
closeness of all nodes, a simple algorithm has been proposed by Kas et al. [66]. The authors
use a dynamic algorithm by Ramalingam and Reps [104] for updating pairwise distances
and either increase or decrease the closeness of nodes whose distance has changed.
For unweighted graphs, Sariyüce et al. [112] present optimizations that make the dy-

namic algorithm more efficient on complex networks. In particular, they show that the
recomputation of closeness can be skipped for nodes s such that |d(s,u) − d(s, v)| = 1
(where u and v are the endpoints of the newly inserted or deleted edge). Also, they di-
vide the graph into biconnected components and show that nodes outside the biconnected
component of (u, v) can also be skipped. Finally, they notice that nodes with the same
neighborhood have the same closeness, and therefore (re)computing it for only one of the
nodes is sufficient. Differently from the algorithm by Kas et al. [66], the one by Sariyüce
et al. [112] does not store pairwise distances, resulting in a memory requirement of Θ(n).
Nevertheless, both algorithms require to compute exact closeness centrality at least once
on the initial graph.

software libraries. Despite this huge amount of research, graph libraries still
use the textbook algorithm: among them, Boost Graph Library [59], igraph [120] and
NetworkX [115]. This is due to the fact that efficient available exact algorithms for top-k
closeness centrality, like [97], are relatively recent and make use of several other non-
trivial routines. We provide an implementation of the algorithm presented in Chapter 9
for NetworKit [119].

9
COMPUTING TOP -K CLOSENESS CENTRAL ITY

9.1 introduction

In this chapter, we present a new algorithm for computing the k nodes with highest
closeness in a real-world unweighted network. In fact, many research areas are interested
in the most central nodes of the network, rather than in the closeness value of each single
node. For example, somebody willing to open a store might be interested in knowing one
or a few locations that are close, on average, to many potential customers and not in
the closeness of each possible location. We provide a new exact algorithm that is much
faster than computing closeness for all nodes in real-world networks, making it possible to
compute the k most central vertices in networks with millions of nodes and hundreds of
millions of edges. The new approach combines the BFS-based algorithm with a pruning
technique: during the algorithm, we compute and update upper bounds on the closeness of
all the nodes, and we exclude a node v from the computation as soon as its upper bound
is “small enough”, that is, we are sure that v does not belong to the top k nodes. We
propose two different strategies to set the initial bounds, and two different strategies to
update the bounds during the computation: this means that our algorithm comes in four
different variants. The experimental results show that different variants perform well on
different kinds of networks, and the best variant of our algorithm drastically outperforms
both a probabilistic approach [96], and the best exact algorithm available until now [97].
We can now compute for the first time the 10 most central nodes in networks with millions
of nodes and hundreds of millions of edges, and do so in very little time. Moreover, our
approach is not only very efficient, but it is also very easy to code, making it a very good
candidate to be implemented in existing graph libraries. We sketch the main ideas of the
algorithm in Section 9.3, and we provide all details in Section 9.4-9.7. We experimentally
evaluate the efficiency of the new algorithm in Section 9.8.
In case of disconnected graph, our results are described in terms of Lin’s index (see

Section 9.2), a well-known generalization of closeness centrality. However, they can be
easily extended to any centrality measure in the form c(v) =

∑
w 6=v f(d(v,w)), where f is

a decreasing function. The most popular among these measures is harmonic centrality [89],
defined as h(v) =

∑
w 6=v

1
d(v,w) . For the sake of completeness, in Section 9.8 we show that

our algorithm performs well also for this measure.
In the last part of the chapter (Section 9.9, 9.10), we consider two case studies: the

actor collaboration network (≈ 2M vertices and ≈ 73M edges) and the Wikipedia citation
network (≈ 4M vertices and ≈ 102M edges). In the actor collaboration network, we analyze
the evolution of the 10 most central vertices, considering snapshots taken every 5 years
between 1940 and 2014. The computation was performed in little more than 45 minutes. In
the Wikipedia case study, we consider both the standard citation network, that contains
a directed edge (p, q) if p contains a link to q, and the reversed network, that contains
a directed edge (p, q) if q contains a link to p. For most of these graphs, we are able to
compute the 10 most central pages in a few minutes, making them available for further
analyses.

99

100 computing top-k closeness centrality

Symbol Definition

Reachability set function
R(v) Set of nodes reachable from v (by definition, v ∈ R(v))
r(v) |R(v)|
α(v) Lower bound on r(v), that is, α(v) ≤ r(v) (see Sec-

tion 9.7.4)
ω(v) Upper bound on r(v), that is, r(v) ≤ ω(v) (see Sec-

tion 9.7.4)

Neighborhood functions
Nd(v) Set of nodes at distance d from v: {w ∈ V : d(v,w) = d}
N(v) Set of neighbors of v, that is N1(v)

nd(v) Number of nodes at distance d from v, that is, |Nd(v)|
ñd(v) Upper bound on nd(v) computed using the

neighborhood-based lower bound (see Section 9.4)
ñd+1(v) Upper bound on nd+1(v), defined as∑

u∈Nd(v)
degree(u) − 1 if the graph is undirected,∑

u∈Nd(v)
outdegree(u) otherwise

Bd(v) Set of nodes at distance at most d from v, that is, {w ∈
V : d(v,w) ≤ d}

bd(v) Number of nodes at distance at most d from v, that is,
|Bd(v)|

Closeness functions
cC (v) Closeness of node v, that is, (r(v)−1)2

(n−1)
∑

w∈R(v)
d(v,w)

Distance sum functions
S(v) Total distance of node v, that is

∑
w∈R(v) d(v,w)

SNB(v, r) Lower bound on S(v) if r(v) = r, used in the
computeBoundsNB function (see Prop. 9.4.1)

SCUT
d (v, r) Lower bound on S(v) if r(v) = r, used in the

updateBoundsBFSCut function (see Lemma 9.5.1)
SLB
s (v, r) Lower bound on S(v) if r(v) = r, used in the

updateBoundsLB function (see Eq. 23, 24)

Farness functions
f(v) Farness of node v, that is, (n−1)S(v)

(|R(v)|−1)2

L(v, r) Generic lower bound on f(v), if r(v) = r

LNB(v, r) Lower bound on f(v), if r(v) = r, defined as (n −
1)S

NB(v,r)
(r−1)2

LCUT
d (v, r) Lower bound on f(v), if r(v) = r, defined as (n −

1)S
CUT
d (v,r)
(r−1)2

LLB
s (v, r) Lower bound on f(v), if r(v) = r, defined as (n −

1)S
LB
s (v,r)
(r−1)2

Table 20: Notations used.

9.2 preliminaries

Our algorithmic results apply both to undirected and directed graphs. We will make clear
in the respective context where results apply to only one of the two. All the notations and

9.3 overview of the algorithm 101

definitions used throughout this chapter are summarized in Table 20, but all notations are
also defined in the text. Let us first define precisely the closeness centrality of a vertex v.
In a connected graph, the farness of a node v in a graph G = (V ,E) is f(v) =

∑
w∈V

d(v,w)
n−1 ,

and the closeness centrality of v is 1
f (v) . In the disconnected case, two are the most-common

generalizations. One quite established generalization is Lin’s index [83], defined as:

f(v) =

∑
w∈R(v) d(v,w)
r(v)− 1 · n− 1

r(v)− 1 cC(v) =
1

f(v)
(20)

where R(v) is the set of vertices reachable from v, and r(v) = |R(v)|. If a vertex v has
(out)degree 0, the previous fraction becomes 0

0 : in this case, the closeness of v is set to 0.
Another possibility is to consider a slightly different definition:

cC(v) =
∑
w∈V

f(d(v,w)),

for some decreasing function f . Usually, it is also assumed without loss of generality that
f(+∞) = 0, that is, we consider only reachable vertices: if this is not the case, it is enough
to use a new function defined by g(d) = f(d)− f(+∞). One of the most common choices
of f is f(d) = 1

d : this way, we obtain harmonic centrality [89].
The work presented in this chapter will be described based on Lin’s index, mostly

because the best existing top-k closeness centrality algorithm uses this definition [97], and
this allows for a simpler comparison. However, all our algorithms can be easily adapted
to any centrality measure of the form c(v) =

∑
w∈V f(d(v,w)): indeed, in Section 9.8, we

show that our algorithm performs very well also with harmonic centrality.
For simplicity, from now on, we will use the term closeness to indicate Lin’s index and

the term farness for the inverse of Lin’s index, that is 1
cC (v) :=

(n−1)
∑

w∈R(v)
d(v,w)

(r(v)−1)2 .

9.3 overview of the algorithm

In this section, we describe our new approach for computing the k nodes with maximum
closeness (equivalently, the k nodes with minimum farness). If we have more than one
node with the same score, we output all nodes having a centrality bigger than or equal
to the centrality of the k-th node. The basic idea of our approach is to keep track of a
lower bound on the farness of each node, and to skip the analysis of a vertex v if this lower
bound implies that v is not among the top-k nodes.
More formally, let us assume that we know the farness of some vertices v1, . . . , vl, and

a lower bound L(w) on the farness of any other vertex w. Furthermore, assume that
there are k vertices among v1, . . . , vl verifying f(vi) < L(w) ∀w ∈ V \ {v1, . . . , vl}, and
hence f(w) ≥ L(w) > f(vi) ∀w ∈ V \ {v1, . . . , vl}. Then, we can safely skip the exact
computation of f(w) for all remaining nodes w, because the k vertices with smallest
farness are among v1, . . . , vl.
This idea is implemented in Algorithm 15: we use a list Top containing all “analysed”

vertices v1, . . . , vl in increasing order of farness, and a priority queue Q containing all
vertices “not analysed, yet”, in increasing order of lower bound L (this way, the head of
Q always has the smallest value of L among all vertices in Q). At the beginning, using

102 computing top-k closeness centrality

the function computeBounds(), we compute a first bound L(v) for each vertex v, and we
fill the queue Q according to this bound. Then, at each step, we extract the first element
v of Q: if L(v) is larger than the k-th biggest farness computed until now (that is, the
farness of the k-th vertex in variable Top), we can safely stop, because for each x ∈ Q,
f(x) ≥ L(x) ≥ L(v) > f(Top[k]), and x is not in the top k. Otherwise, we run the
function updateBounds(v), which performs a BFS from v, returns the farness of v, and
improves the bounds L of all other vertices. Finally, we insert v into Top in the right
position, and we update Q if the lower bounds have changed.

Algorithm 15: Pseudocode of our algorithm for top-k closeness centralities.
Input : A graph G = (V ,E)
Output : Top k nodes with highest closeness

1 global L,Q← computeBounds(G);
2 global Top← [];
3 global Farn;
4 for v ∈ V do Farn[v] = +∞;
5 while Q is not empty do
6 v ← Q.extractMin();
7 if |Top| ≥ k and L[v] > Farn[Top[k]] then return Top;
8 Farn[v]← updateBounds(v,L); // This function might also modify L
9 add v to Top, and sort Top according to Farn;

10 update Q according to the new bounds;
11 end

The crucial point of the algorithm is the definition of the lower bounds, that is, the def-
inition of the functions computeBounds and updateBounds. We propose two alternative
strategies for each of these these two functions: in both cases, one strategy is conservative,
that is, it tries to perform as few operations as possible, while the other strategy is ag-
gressive, that is, it needs many operations, but at the same time it improves many lower
bounds.
Let us analyze the possible choices of the function computeBounds. The conservative

strategy computeBoundsDeg needs time O(n): it simply sets L(v) = 0 for each v, and it
fills Q by inserting nodes in decreasing order of degree (the idea is that vertices with high
degree have small farness, and they should be analysed as early as possible, so that the
values in Top are correct as soon as possible). Note that the vertices can be sorted in time
O(n) using counting sort.
The aggressive strategy computeBoundsNB needs time O(m diam), where diam is the

diameter of the graph: it computes the neighborhood-based lower bound LNB(v) for each
vertex v (we will explain shortly afterwards how it works), it sets L(v) = LNB(v), and it
fills Q by adding vertices in decreasing order of L. The idea behind the neighborhood-based
lower bound is to count the number of paths of length l starting from a given vertex v,
which is also an upper bound Ul on the number of vertices at distance l from v. From Ul,
it is possible to define a lower bound on

∑
x∈V d(v,x) by “summing Ul times the distance

l”, until we have summed n distances: this bound yields the desired lower bound on the
farness of v. The detailed explanation of this function is provided in Section 9.4.
For the function updateBounds(w), the conservative strategy updateBoundsBFSCut(w)

does not improve L, and it cuts the BFS as soon as it is sure that the farness of w is larger
than the k-th biggest farness found until now, that is, Farn[Top[k]]. If the BFS is cut, the
function returns +∞, otherwise, at the end of the BFS we have computed the farness of
v, and we can return it. The running time of this procedure is O(m) in the worst case,

9.4 neighborhood-based lower bound 103

but it can be much better in practice. It remains to define how the procedure can be sure
that the farness of v is at least x: to this purpose, during the BFS, we update a lower
bound on the farness of v. The idea behind this bound is that, if we have already visited
all nodes up to distance d, we can upper bound the closeness centrality of v by setting
distance d+ 1 to a number of vertices equal to the number of edges “leaving” level d, and
distance d+ 2 to all the remaining vertices. The details of this procedure are provided in
Section 9.5.
The aggressive strategy updateBoundsLB(v) performs a complete BFS from v, and

it bounds the farness of each node w using the level-based lower bound. The running
time is O(m) for the BFS, and O(n) to compute the bounds. The idea behind the level-
based lower bound is that d(w,x) ≥ |d(v,w)− d(v,x)|, and consequently

∑
x∈V d(w,x) ≥∑

x∈V |d(v,w)− d(v,x)|. The latter sum can be computed in time O(n) for each w, be-
cause it depends only on the level d of w in the BFS tree, and because it is possible to
compute in O(1) the sum for a vertex at level d+ 1, if we know the sum for a vertex at
level d. The details are provided in Section 9.6.
Finally, in order to transform these lower bounds on

∑
x∈V d(v,x) into bounds on f(v),

we need to know the number of vertices reachable from a given vertex v. In Section 9.4,
9.5, 9.6, we assume that these values are known: this assumption is true in undirected
graphs, where we can compute the number of reachable vertices in linear time at the
beginning of the algorithm, and in strongly connected directed graphs, where the number
of reachable vertices is n. The only remaining case is when the graph is directed and not
strongly connected: in this case, we need some additional machinery, which are presented
in Section 9.7.

9.4 neighborhood-based lower bound

In this section, we propose a lower bound SNB(v, r(v)) on the total sum of distances
S(v) =

∑
w∈R(v) d(v,w) of an undirected or strongly-connected graph. If we know the

number r(v) of vertices reachable from v, this bound translates into a lower bound on the
farness of v, simply multiplying by (n− 1)/(r(v)− 1)2. The basic idea is to find an upper
bound ñi(v) on the number of nodes ni(v) at distance i from v. Then, intuitively, if we
assume that the number of nodes at distance i is greater than its actual value and “stop
counting” when we have r(v) nodes, we get something that is smaller than the actual total
distance. This is because we are assuming that the distances of some nodes are smaller
than their actual values. This argument is formalized in Proposition 9.4.1.

Proposition 9.4.1. If ñi(v) is an upper bound on ni(v), for i = 0, ..., diam(G) and
ecc(v) := maxw∈r(v) d(v,w), then

SNB(v, r(v)) :=
ecc(v)∑
k=1

k ·min
{
ñk(v), max

{
r(v)−

k−1∑
i=0

ñi(v), 0
}}

is a lower bound on S(v).

Proof. First, we notice that S(v) =
∑ecc(v)
k=0 k · nk(v) and r(v) =

∑ecc(v)
k=0 nk(v).

Let us assume that ñ0(v) < r(v). In fact, if ñ0(v) ≥ r(v), the statement is trivially
satisfied. Then, there must be a number ecc′ > 0 such that for k < ecc′ the quantity
min

{
ñk(v), max

{
r(v)−

∑k−1
i=0 ñi(v), 0

}}
is equal to ñk(v), for k = ecc′, the quantity is

104 computing top-k closeness centrality

w1 w2 w3 w1 w2 w3 w1 w2 w3

Levels

0

1

2

3

4

s s s

Figure 27: Relation between nodes at distance 4 for s and the neighbors of s. The red nodes
represent the nodes at distance 3 for w1 (left), for w2 (center) and for w3 (right).

equal to α := r(v)−
∑ecc′−1
k=0 ñk(v) > 0 and, for k > ecc′, it is equal to 0. Therefore we

can write SNB(v, r(v)) as
∑ecc′−1
k=1 k · ñk(v) + ecc′ ·α.

We show that ecc′ ≤ ecc(v). In fact, we know that
∑ecc′−1
k=0 ñk(v) < r(v) =

∑ecc(v)
k=0 nk(v) ≤∑ecc(v)

k=0 ñk(v). Therefore ecc′−1 < ecc(v), which implies ecc′ ≤ ecc(v).
For each i, we can write ñi(v) = ni(v) + εi, εi ≥ 0. Therefore, we can write

∑ecc′−1
k=0 εi+

α = r(v) −
∑ecc′−1
k=0 nk(v) =

∑ecc(v)
k=ecc′ nk(v). Then, SNB(v, r(v)) =

∑ecc′−1
k=0 k · nk(v) +∑ecc′−1

k=0 k · εi + ecc′ ·α ≤
∑ecc′−1
k=0 k · nk(v) + ecc′(α +

∑ecc′−1
k=0 εi) =

∑ecc′−1
k=0 k · nk(v) +

ecc′(
∑ecc(v)
k=ecc′ nk(v)) ≤

∑ecc(v)
k=0 k · nk(v) = S(v).

In the following paragraphs, we propose upper bounds ñi(v) for trees, undirected graphs
and directed strongly-connected graphs. In case of trees, the bound ñi(v) is actually equal
to ni(v), which means that the algorithm can be used to compute closeness of all nodes
in a tree exactly.

computing closeness on trees. Let us consider a node s for which we want
to compute the total distance S(s) (notice that in a tree cC(s) = (n− 1)/S(s)). The
number of nodes at distance 1 in the BFS tree from s is clearly the degree of s. What
about distance 2? Since there are no cycles, all the neighbors of the nodes in N1(s) are
nodes at distance 2 from s, with the only exception of s itself. Therefore, naming Nk(s)

the set of nodes at distance k from s and nk(s) the number of these nodes, we can write
n2(s) =

∑
w∈N1(s) n1(w)− degree(s). In general, we can always relate the number of nodes

at each distance k of s to the number of nodes at distance k − 1 in the BFS trees of the
neighbors of s. Let us now consider nk(s), for k > 2. Figure 27 shows an example where s
has three neighbors w1, w2 and w3. Suppose we want to compute N4(s) using information
from w1, w2 and w3. Clearly, N4(s) ⊂ N3(w1)∪N3(w2)∪N3(w3); however, there are also
other nodes in the union that are not in N4(s). Furthermore, the nodes in N3(w1) (red
nodes in the leftmost tree) are of two types: nodes in N4(s) (the ones in the subtree of w1)
and nodes in N2(s) (the ones in the subtrees of w2 and w3). An analogous behavior can
be observed for w2 and w3 (central and rightmost trees). If we simply sum all the nodes

9.4 neighborhood-based lower bound 105

in n3(w1), n3(w2) and n3(w3), we would be counting each node at level 2 twice, i. e.once
for each node in N1(s) minus one. Hence, for each k > 2, we can write

nk(s) =
∑

w∈N1(s)

nk−1(w)− nk−2(s) · (degree(s)− 1). (21)

Algorithm 16: Closeness centrality in trees
Input : A tree T = (V ,E)
Output : Closeness centralities cC (v) of each node v ∈ V

1 k← 2;
2 foreach s ∈ V do
3 nk−1(s)← degree(s);
4 S(s)← degree(s);
5 end
6 nFinished← 0;
7 while nFinished < n do
8 foreach s ∈ V do
9 if k = 2 then

10 nk(s)←
∑
w∈N(s) nk−1(w)− degree(s);

11 end
12 else
13 nk(s)←

∑
w∈N(s) nk−1(w)− nk−2(s)(degree(s)− 1);

14 end
15 end
16 foreach s ∈ V do
17 nk−2(s)← nk−1(s);
18 nk−1(s)← nk(s);
19 if nk−1(s) > 0 then
20 S(s)← S(s) + k · nk−1(s);
21 end
22 else
23 nFinished← nFinished+ 1;
24 end
25 end
26 k← k+ 1;
27 end
28 foreach s ∈ V do
29 cC (v)← (n− 1)/S(v);
30 end
31 return c

From this observation, we define a new method to compute the total distance of all nodes,
described in Algorithm 16. Instead of computing the BFS tree of each node one by one, at
each step we compute the number nk(v) of nodes at level k for all nodes v. First (Lines 2 -
4), we compute n1(v) for each node (and add that to S(v)). Then (Lines 7 - 26), we consider
all the other levels k one by one. For each k, we use nk−1(w) of the neighbors w of v and
nk−2(v) to compute nk(v) (Line 10 and 13). If, for some k, nk(v) = 0, all the nodes have
been added to S(v). Therefore, we can stop the algorithm when nk(v) = 0 ∀v ∈ V .

Proposition 9.4.2. Algorithm 16 requires O(diam ·n) operations to compute the closeness
centrality of all nodes in a tree T .

Proof. The for loop in Lines 2 - 4 of Algorithm 16 clearly takes O(n) time. For each level
of the while loop of Lines 7 - 26, each node scans its neighbors in Line 10 or Line 13. In

106 computing top-k closeness centrality

total, this leads to O(n) operations per level since m = O(n). Since the maximum number
of levels that a node can have is equal to the diameter of the tree, the algorithm requires
O(diam ·n) operations.

Note that closeness centrality on trees could even be computed in time O(n) with a
bottom-up followed by a top-down traversal (see [33] for more details). We choose to
include Algorithm 16 here nonetheless since it paves the way for an algorithm computing
a lower bound in general undirected graphs, described next.

lower bound for undirected graphs. For general undirected graphs, Eq. (21)
is not true anymore – but a related upper bound ñk(·) on nk(·) is still useful. Let ñk(s)
be defined recursively as in Eq. (21): in a tree, ñk(s) = nk(s), while in this case we prove
that ñk(s) is an upper bound on Nk(s). Indeed, there could be nodes x for which there are
multiple paths between s and x and that are therefore contained in the subtrees of more
than one neighbor of s. This means that we would count x multiple times when considering
ñk(s), overestimating the number of nodes at distance k. However, we know for sure that
at level k there cannot be more nodes than in Eq. (21). If, for each node v, we assume
that the number ñk(v) of nodes at distance k is that of Eq. (21), we can apply Proposi-
tion 9.4.1 and get a lower bound SNB(v, r(v)) on the total sum for undirected graphs. The
procedure is described in Algorithm 17. The computation of SNB(v, r(v)) works basically
like Algorithm 16, with the difference that here we keep track of the number of the nodes
found in all the levels up to k (nVisited) and stop the computation when nVisited becomes
equal to r(v) (if it becomes larger, in the last level we consider only r(v)− nVisited nodes,
as in Proposition 9.4.1 (Lines 28 - 31).

Proposition 9.4.3. For an undirected graph G, computing the lower bound SNB(v, r(v))
described in Algorithm 17 takes O(diam ·m) time.

Proof. Like in Algorithm 16, the number of operations performed by Algorithm 17 at each
level of the while loop is O(m). At each level i, all the nodes at distance i are accounted for
(possibly multiple times) in Lines 12 and 15. Therefore, at each level, the variable nVisited
is always greater than or equal to the the number of nodes v at distance d(v) ≤ i. Since
d(v) ≤ diam for all nodes v, the maximum number of levels scanned in the while loop
cannot be larger than diam, therefore the total complexity is O(diam ·m).

lower bound on directed graphs. In directed graphs, we can simply consider
the out-neighbors, without subtracting the number of nodes discovered in the subtrees of
the other neighbors in Eq. (21). The lower bound (which we still refer to as SNB(v, r(v)))
is obtained by replacing Eq. (21) with the following in Lines 12 and 15 of Algorithm 17:

ñk(s) =
∑

w∈N(s)

ñk−1(w) (22)

9.4 neighborhood-based lower bound 107

Algorithm 17: Neighborhood-based lower bound for undirected graphs
Input : A graph G = (V ,E)
Output : Lower bounds LNB(v, r(v)) of each node v ∈ V

1 k ← 2;
2 foreach s ∈ V do
3 nk−1(s)← degree(s);
4 S̃(un)(s)← degree(s);
5 nVisited[s]← degree(s) + 1;
6 finished[s]← false;
7 end
8 nFinished← 0;
9 while nFinished < n do

10 foreach s ∈ V do
11 if k = 2 then
12 nk(s)←

∑
w∈N(s) nk−1(w)− degree(s);

13 end
14 else
15 nk(s)←

∑
w∈N(s) nk−1(w)− nk−2(s)(degree(s)− 1);

16 end
17 end
18 foreach s ∈ V do
19 if finished[v] then
20 continue;
21 end
22 nk−2(s)← nk−1(s);
23 nk−1(s)← nk(s);
24 nVisited[s]← nVisited[s] + nk−1(s);
25 if nVisited[s] < r(v) then
26 S̃(un)(s)← S̃(un)(s) + k · nk−1(s);
27 end
28 else
29 S̃(un)(s)← S̃(un)(s) + k(r(v)− (nVisited[s]− nk−1(s)));
30 nFinished← nFinished+ 1;
31 finished[s]← true;
32 end
33 end
34 k ← k+ 1;
35 end
36 foreach v ∈ v do
37 LNB(v, r(v))← (n−1)S̃(un)

(r(v)−1)2 ;
38 end
39 return LNB(·, r(·))

108 computing top-k closeness centrality

9.5 the updateboundsbfscut function

The updateBoundsBFSCut function is based on a simple idea: if the k-th biggest farness
found until now is x, and if we are performing a BFS from vertex v to compute its farness
f(v), we can stop as soon as we can guarantee that f(v) ≥ x.
Informally, assume that we have already visited all nodes up to distance d: we can lower

bound S(v) =
∑
w∈V d(v,w) by setting distance d+ 1 to a number of vertices equal to

the number of edges “leaving” level d, and distance d+ 2 to all the remaining reachable
vertices. Then, this bound yields a lower bound on the farness of v. As soon as this lower
bound is bigger than x, the updateBoundsBFSCut function may stop; if this condition
never occurs, at the end of the BFS we have exactly computed the farness of x.
More formally, the following lemma defines a lower bound SCUT

d (v, r(v)) on S(v), which
is computable after we have performed a BFS from v up to level d, assuming we know the
number r(v) of vertices reachable from v (this assumption is lifted in Section 9.7).

Lemma 9.5.1. Given a graph G = (V ,E), a vertex v ∈ V , and an integer d ≥ 0, let
Bd(v) be the set of vertices at distance at most d from v, bd(v) = |Bd(v)|, and let ñd+1(v)

be an upper bound on the number of vertices at distance d+ 1 from v (see Table 20). Then,

S(v) ≥ SCUT
d (v, r(v)) :=

∑
w∈Bd(v)

d(v,w)− ñd+1(v) + (d+ 2)(r(v)− bd(v)).

Proof. The sum of all the distances from v is lower bounded by setting the correct distance
to all vertices at distance at most d from v, by setting distance d+ 1 to all vertices at
distance d + 1 (there are nd+1(v) such vertices), and by setting distance d + 2 to all
other vertices (there are r(v)− bd+1(v) such vertices, where r(v) is the number of vertices
reachable from v and bd+1(v) is the number of vertices at distance at most d+ 1). More
formally, f(v) ≥

∑
w∈Bd(v)

d(v,w) + (d+ 1)nd+1(v) + (d+ 2)(r(v)− bd+1(v)).
Since bd+1(v) = nd+1(v) + bd(v), we obtain that f(v) ≥

∑
w∈Bd(v)

d(v,w)− nd+1(v) +

(d+ 2)(r(v)− bd(v)). We conclude because, by assumption, ñd+1(v) is an upper bound
on nd+1(v).

Corollary 9.5.1. For each vertex v and for each d ≥ 0,

f(v) ≥ LCUT
d (v, r(v)) :=

(n− 1)SCUT
d (v, r(v))

(r(v)− 1)2 .

It remains to define the upper bound ñd+1(v): in the directed case, this bound is simply
the sum of the out-degrees of vertices at distance d from v. In the undirected case, since
at least an edge from each vertex v ∈ Nd(v) is directed towards Nd−1(v), we may define
ñd+1(v) =

∑
w∈Nd(v)

deg(w)−1 (the only exception is d = 0: in this case, ñ1(v) = n1(v) =

deg(v)).

Remark 9.5.1. When we are processing vertices at level d, if we process an edge (x, y)
where y is already in the BFS tree, we can decrease ñd+1(v) by one, obtaining a better
bound.

Assuming we know r(v), all quantities necessary to compute LCUT
d (v, r(v)) are available

as soon as all vertices in Bd(v) are visited by a BFS. This function performs a BFS starting

9.6 the updateboundlb function 109

Algorithm 18: The updateBoundsBFSCut(v) function in the case of directed graphs,
if r(v) is known for each v.

1 x← Farn(Top[k]); // Farn and Top are global variables, as in Algorithm 15.
2 Create queue Q;
3 Q.enqueue(v);
4 Mark v as visited;
5 d← 0; S ← 0; ñ← outdeg(v); nd← 1;
6 while Q is not empty do
7 u← Q.dequeue();
8 if d(v,u) > d then
9 d← d+ 1;

10 LCUT
d (v, r(v))← (n−1)(S−ñ+(d+2)(r(v)−nd))

(r(v)−1)2 ;
11 if LCUT

d (v, r(v)) ≥ x then return +∞;
12 ñ← 0
13 end
14 for w in adjacency list of u do
15 if w is not visited then
16 S ← S + d(v,w);
17 ñ← ñ+ outdegree(w);
18 nd← nd+ 1;
19 Q.enqueue(w);
20 Mark w as visited
21 end
22 else
23 // we use Remark 9.5.1
24 LCUT

d (v, r(v))← LCUT
d (v, r(v)) + (n−1)

(r(v)−1)2 ;
25 if LCUT

d (v, r(v)) ≥ x then return x;
26 end
27 end
28 end
29 return S(n−1)

(r(v)−1)2 ;

from v, continuously updating the upper bound LCUT
d (v, r(v)) ≤ f(v) (the update is done

whenever all nodes in Nd(v) have been reached, or Remark 9.5.1 can be used). As soon as
LCUT
d (v, r(v)) ≥ x, we know that f(v) ≥ LCUT

d (v, r(v)) ≥ x, and we return +∞.
Algorithm 18 is the pseudocode of the function updateBoundsBFSCut when implemented

for directed graphs, assuming we know the number r(v) of vertices reachable from each v
(for example, if the graph is strongly connected). This code can be easily adapted to all
the other cases.

9.6 the updateboundlb function

Differently from updateBoundsBFSCut function, updateBoundsLB computes a complete
BFS traversal, but uses information acquired during the traversal to update the bounds
on the other nodes. Let us first consider an undirected graph G and let s be the source
node from which we are computing the BFS. We can see the distances d(s, v) between
s and all the nodes v reachable from s as levels: node v is at level i if and only if the
distance between s and v is i, and we write v ∈ Ni(s) (or simply v ∈ Ni if s is clear from
the context). Let i and j be two levels, i ≤ j. Then, the distance between any two nodes v
at level i and w at level j must be at least j − i. Indeed, if d(v,w) was smaller than j − i,

110 computing top-k closeness centrality

w would be at level i+ d(v,w) < j, which contradicts our assumption. It follows directly
that

∑
w∈V |d(s,w)− d(s, v)| is a lower bound on S(v), for all v ∈ R(s):

Lemma 9.6.1.
∑
w∈R(s) |d(s,w)− d(s, v)| ≤ S(v) ∀v ∈ R(s).

To improve the approximation, we notice that the number of nodes at distance 1 from v

is exactly the degree of v. Therefore, all the other nodes w such that |d(s, v)− d(s,w)| ≤ 1
must be at least at distance 2 (with the only exception of v itself, whose distance is of
course 0). This way we can define the following lower bound on S(v):

2(#{w ∈ R(s) : |d(s,w)− d(s, v)| ≤ 1} − degree(v)− 1)+

+ degree(v) +
∑

w∈R(s)
|d(s,w)−d(s,v)|>1

|d(s,w)− d(s, v)|,

that is:

2 ·
∑

|j−d(s,v)|≤1
nj +

∑
|j−d(s,v)|>1

nj · |j − d(s, v)| − degree(v)− 2, (23)

where nj = |Nj |.
Multiplying the bound of Eq. (23) by (n−1)

(r(v)−1)2 , we obtain a lower bound on the farness
f(v) of node v, named LLB

s (v, r(v)). A straightforward way to compute LLB
s (v, r(v)) would

be to first run the BFS from s and then, for each node v, to consider the level difference
between v and all the other nodes. This would require O(n2) operations, which is clearly
too expensive. However, we can notice two things: First, the bounds of two nodes at
the same level differ only by their degree. Therefore, for each level i, we can compute
2 ·
∑
|j−i|≤1 nj +

∑
|j−i|>1 nj · |j − i| − 2 only once and then subtract degree(v) for each

node at level i. We call the quantity 2 ·
∑
|j−i|≤1 nj +

∑
|j−i|>1 nj · |j − i| − 2 the level-

bound L(i) of level i. Second, we can prove that L(i) can actually be written as a function
of L(i− 1).

Lemma 9.6.2. Let L(i) := 2 ·
∑
|j−i|≤1 nj +

∑
|j−i|>1 nj · |j − i| − 2. Also, let nj = 0

for j ≤ 0 and j > maxD, where maxD = maxv∈R(s) d(s, v). Then L(i) − L(i − 1) =∑
j<i−2 nj −

∑
j>i+1 nj, ∀i ∈ {1, ..., maxD}.

Proof. Since nj = 0 for j ≤ 0 and j > maxD, we can write L(i) as 2 · (ni−1 + ni + ni+1) +∑
|j−i|>1 nj · |j − i| − 2, ∀i ∈ {1, ..., maxD}. The difference between L(i) and L(i− 1) is:

2 · (ni−1 + ni + ni+1) +
∑
|j−i|>1 |j − i| · nj − 2 · (ni−2 + ni−1 + ni) +

∑
|j−i+1|>1 |j − i +

1| · nj = 2 · (ni+1 − ni−2) + 2 · ni−2 − 2 · ni+1 +
∑
j<i−2∪j>i+1(|j − i| − |j − i+ 1|) · nj =∑

j<i−2 nj −
∑
j>i+1 nj .

Algorithm 19 describes the computation of LLB
s (v, r(v)). First, we compute all the

distances between s and the nodes in R(s) with a BFS, storing the number of nodes in
each level and the number of nodes in levels j ≤ i and j > i respectively (Lines 1 - 9).
Then we compute the level bound L(1) of level 1 according to its definition (Line 10) and
those of the other level according to Lemma 9.6.2 (Line 12). The lower bound LLB

s (v, r(v))
is then computed for each node v by subtracting its degree to L(d(s, v)) and normalizing
(Line 16). The complexity of Lines 1 - 9 is that of running a BFS, i. e.O(n+m). Line 12 is

9.7 the directed disconnected case 111

Algorithm 19: The updateBoundsLB function for undirected graphs
Input : A graph G = (V ,E), a source node s
Output : Lower bounds LLB

s (v, r(v)) of each node v ∈ R(s)
1 d← BFSfrom(s);
2 maxD← maxv∈V d(s, v);
3 sumN≤0 ← 0; sumN≤−1 ← 0; sumN>maxD+1 ← 0;
4 for i = 1, 2, ...,maxD do
5 Ni ← {w ∈ V : d(s,w) = i};
6 ni ← #Ni;
7 sumN≤i ← sumN≤i−1 + ni;
8 sumN>i ← |V | − sumN≤i;
9 end

10 L(1)← n1 + n2 + sumN>2 − 2;
11 for i = 2, ...,maxD do
12 L(i)← L(i− 1) + sumN≤i−3 − sumN>i+1;
13 end
14 for i = 1, ...,maxD do
15 foreach v ∈ Ni do
16 LLB

s (v, r(v))← (L(i)− degree(v)) · (n−1)
(r(v)−1)2 ;

17 end
18 end
19 return LLB

s (v, r(v)) ∀v ∈ V

repeated once for each level (which cannot be more than n) and Line 16 is repeated once
for each node in R(s). Therefore, the following proposition holds.

Proposition 9.6.1. Computing the lower bound LLB
s (v, r(v)) takes O(n+m) time.

For directed strongly-connected graphs, the result does not hold for nodes w whose level
is smaller than l(v), since there might be a directed edge or a shortcut from v to w. Yet,
for nodes w such that d(s,w) > d(s, v), it is still true that d(v,w) ≥ d(s,w) − d(s, v).
For the remaining nodes (apart from the outgoing neighbors of v), we can only say that
the distance must be at least 2. The upper bound LLB

s (v, r(v)) for directed graphs can
therefore be defined as:

2 ·#{w ∈ R(s) : d(s,w)− d(s, v) ≤ 1}

+
∑

w∈R(s)
d(s,w)−d(s,v)>1

(d(s,w)− d(s, v))− degree(v)− 2. (24)

The computation of LLB
s (v, r(v)) for directed strongly-connected graphs is analogous to

the one described in Algorithm 19.

9.7 the directed disconnected case

In the directed disconnected case, even if the time complexity of computing strongly con-
nected components is linear in the input size, the time complexity of computing the number
of reachable vertices is much bigger (assuming SETH, it cannot be O(m2−ε) [27]). For this
reason, when computing our upper bounds, we cannot rely on the exact value of r(v):
for now, let us assume that we know a lower bound α(v) ≤ r(v) and an upper bound
ω(v) ≥ r(v). The definition of these bounds is postponed to Section 9.7.4.

112 computing top-k closeness centrality

Furthermore, let us assume that we have a lower bound L(v, r(v)) on the farness of v,
depending on the number r(v) of vertices reachable from v: in order to obtain a bound not
depending on r(v), the simplest approach is f(v) ≥ L(v, r(v)) ≥ minα(v)≤r≤ω(v) L(v, r).
However, during the algorithm, computing the minimum among all these values might
be quite expensive, if ω(v)− α(v) is big. In order to solve this issue, we find a small set
X ⊆ [α(v),ω(v)] such that minα(v)≤r≤ω(v) L(v, r) = minr∈X L(v, r).
More specifically, we find a condition that is verified by “many” values of r, and that

implies L(v, r) ≥ min (L(v, r− 1),L(v, r+ 1)): this way, we may define X as the set of
values of r that either do not verify this condition, or that are extremal points of the interval
[α(v),ω(v)] (indeed, all other values cannot be minima of L(v, r)). Since all our bounds
are of the form L(v, r) = (n−1)S(v,r)

(r−1)2 , where S(v, r) is a lower bound on
∑
w∈R(v) d(v,w),

we state our condition in terms of the function S(v, r). For instance, in the case of the
updateBoundsBFSCut function, SCUT

d (v, r) =
∑
w∈Bd(v)

d(v,w) − ñd+1(v) + (d+ 2)(r −
bd(v)), as in Lemma 9.5.1.

Lemma 9.7.1. Let v be a vertex, and let S(v, r) be a positive function such that S(v, r(v))) ≤∑
w∈R(v) d(v,w) (where r(v) is the number of vertices reachable from v). Assume that

S(v, r + 1)− S(v, r) ≤ S(v, r)− S(v, r − 1). Then, if L(v, r) := (n−1)S(v,r)
(r−1)2 is the corre-

sponding bound on the farness of v, min (L(v, r+ 1),L(v, r− 1)) ≤ L(v, r).

Proof. Let us define d = S(v, r + 1)− S(v, r). Then, L(v, r + 1) ≤ L(v, r) if and only if
(n−1)S(v,r+1)

r2 ≤ (n−1)S(v,r)
(r−1)2 if and only if S(v,r)+d

r2 ≤ S(v,r)
(r−1)2 if and only if (r− 1)2(S(v, r) +

d) ≤ r2S(v, r) if and only if S(v, r)(r2 − (r− 1)2) ≥ (r− 1)2d if and only if S(v, r)(2r−
1) ≥ (r− 1)2d.

Similarly, if d′ = S(v, r)−S(v, r− 1), L(v, r− 1) ≤ L(v, r) if and only if (n−1)S(v,r−1)
(r−2)2 ≤

(n−1)S(v,r)
(r−1)2 if and only if S(v,r)−d′

(r−2)2 ≤ S(v,r)
(r−1)2 if and only if (r − 1)2(S(v, r) − d′) ≤ (r −

2)2S(v, r) if and only if S(v, r)((r− 1)2− (r− 2)2) ≤ (r− 1)2d′ if and only if S(v, r)(2r−
3) ≤ (r− 1)2d′ if and only if S(v, r)(2r− 1) ≤ (r− 1)2d′ + 2S(v, r).

We conclude that, assuming d ≤ d′, (r− 1)2d ≤ (r− 1)2d′ ≤ (r− 1)2d+ 2S(v, r), and
one of the two previous conditions is always satisfied.

9.7.1 The Neighborhood-Based Lower Bound

In the neighborhood-based lower bound, we computed upper bounds ñk(v) on nk(v), and
we defined the lower bound SNB(v, r(v)) ≤

∑
w∈R(v) d(v,w), by

SNB(v, r(v)) :=
diam(G)∑
k=1

k ·min
{
ñk(v), max

{
r(v)−

k−1∑
i=0

ñi(v), 0
}}

.

The corresponding bound on f(v) is LNB(v, r(v)) := (n−1)SNB(v,r(v))
(r(v)−1)2 : let us apply

Lemma 9.7.1 with S(v, r) = SNB(v, r) and L(v, r) = LNB(v, r). We obtain that the local
minima of LNB(v, r(v)) are obtained on values r such that SNB(v, r + 1)− SNB(v, r) >
SNB(v, r)−SNB(v, r− 1), that is, when r =

∑l
i=0 ñi(v) for some l. Hence, our final bound

LNB(v) becomes:

min
(
LNB(v,α(v)),LNB(v,ω(v)), min

{
LNB(v, r) : α(v) < r < ω(v), r =

l∑
i=0

ñi(v)

})
. (25)

9.7 the directed disconnected case 113

This bound can be computed with no overhead, by modifying Lines 25 - 31 in Algorithm 17.
Indeed, when r(v) is known, we have two cases: either nVisited[s] < r(v), and we
continue, or nVisited[s] ≥ r(v), and SNB(v, r(v)) is computed. In the disconnected
case, we need to distinguish three cases:

• if nVisited[v] < α(v), we simply continue the computation;

• if α(v) ≤ nVisited[v] < ω(v), we compute LNB(v, nVisited[v]), and we update
the minimum in Eq. 25 (if this is the first occurrence of this situation, we also have
to compute LNB(v,α(v)));

• if nVisited[v] ≥ ω(v), we compute LNB(v,ω(v)), and we update the minimum in
Eq. 25.

Since this procedure needs time O(1), it has no impact on the running time of the
computation of the neighborhood-based lower bound.

9.7.2 The updateBoundsBFSCut Function

Let us apply Lemma 9.7.1 to the bound used in the updateBoundsBFSCut function. In this
case, by Lemma 9.5.1, SCUT

d (v, r) =
∑
w∈Bd(v)

d(v,w)− ñd+1(v) + (d+ 2)(r− bd(v)), and
SCUT
d (v, r+ 1)−SCUT

d (v, r) = d+ 2, which does not depend on r. Hence, the condition in
Lemma 9.7.1 is always verified, and the only values we have to analyze are α(v) and ω(v).
Hence, the lower bound becomes f(v) ≥ LCUT

d (v, r(v)) ≥ minα(v)≤r≤ω(v) LCUT
d (v, r) =

min(LCUT
d (v,α(v)),LCUT

d (v,ω(v))) (which does not depend on r(v)).
This means that, in order to adapt the updateBoundsBFSCut function (Algorithm 18), it

is enough to replace Lines 10, 24 in order to compute both LCUT
d (v,α(v)) and LCUT

d (v,ω(v))),
and to replace Lines 11, 25 in order to stop if min(LCUT

d (v,α(v)),LCUT
d (v,ω(v))) ≥ x.

9.7.3 The updateBoundsLB Function

In this case, we do not apply Lemma 9.7.1 to obtain simpler bounds. Indeed, the function
updateBoundsLB improves the bounds of vertices that are quite close to the source of the
BFS, and hence are likely to be in the same component as this vertex. Consequently, if
we perform a BFS from a vertex s, we can simply compute LLB

s (v, r(v)) for all vertices
in the same strongly connected component as s, and for these vertices we know the value
r(v) = r(s). The computation of better bounds for other vertices is left as an open
problem.

9.7.4 Computing α(v) and ω(v)

It now remains to compute α(v) and ω(v). This can be done during the preprocessing
phase of our algorithm, in linear time. To this purpose, let us precisely define the node-
weighted directed acyclic graph G = (V, E) of strongly connected components (in short,
SCCs) corresponding to a directed graph G = (V ,E). In this graph, V is the set of SCCs
of G, and, for any two SCCs C,D ∈ V, (C,D) ∈ E if and only if there is an arc in E from
a node in C to the a node in D. For each SCC C ∈ V, the weight w(C) of C is equal to

114 computing top-k closeness centrality

Algorithm 20: Estimating the number of reachable vertices in directed disconnected
graphs.
Input : A graph G = (V ,E)
Output : Lower and upper bounds α(v),ω(v) on the number of vertices reachable from v

1 (V, E ,w)← computeSCCGraph(G);
2 C̃ ← the biggest SCC;
3 αSCC (C̃),ωSCC (C̃)← the number of vertices reachable from C̃;
4 for X ∈ V in reverse topological order do
5 if X == C̃ then continue;
6 αSCC (X),ωSCC (X),ω′SCC (X)← 0 for Y neighbor of X in G do
7 αSCC (X)← max(αSCC (X),αSCC (Y));
8 ωSCC (X)← ωSCC (X) + ωSCC (Y);
9 if W not reachable from C̃ then ω′SCC (X)← ω′SCC (X) + ωSCC (Y);

10 end
11 if X reaches C̃ then ωSCC (X)← ω′SCC (X) + ωSCC (C̃);
12 αSCC (X)← αSCC (X) +w(X);
13 ωSCC (X)← ωSCC (X) +w(X);
14 end
15 for v ∈ V do
16 α(v) = αSCC (the component of v);
17 ω(v) = ωSCC (the component of v);
18 end
19 return α,ω

|C|, that is, the number of nodes in the SCC C. Note that the graph G is computable in
linear time.
For each node v ∈ C, r(v) =

∑
D∈R(C) w(D), where R(C) denotes the set of SCCs

that are reachable from C in G. This means that we simply need to compute a lower
(respectively, upper) bound αSCC(C) (respectively, ωSCC(C)) on

∑
D∈R(C) w(D), for every

SCC C. To this aim, we first compute a topological sort {C1, . . . ,Cl} of V (that is, if
(Ci,Cj) ∈ E , then i < j). Successively, we use a dynamic programming approach, and, by
starting from Cl, we process the SCCs in reverse topological order, and we set:

αSCC(C) = w(C) + max
(C,D)∈E

αSCC(D) ωSCC(C) = w(C) +
∑

(C,D)∈E
ωSCC(D).

Note that processing the SCCs in reverse topological ordering ensures that the values α(D)

and ω(D) on the right hand side of these equalities are available when we process the SCC
C. Clearly, the complexity of computing α(C) and ω(C), for each SCC C, is linear in the
size of G, which in turn is smaller than G.
Observe that the bounds obtained through this simple approach can be improved by

using some “tricks”. First of all, when the biggest SCC C̃ is processed, we do not use the
dynamic programming approach and we exactly compute

∑
D∈R(C̃) w(D) by performing

a BFS starting from any node in C̃. This way, not only α(C̃) and ω(C̃) are exact, but also
αSCC(C) and ωSCC(C) are improved for each SCC C from which it is possible to reach C̃.
Finally, in order to compute the upper bounds for the SCCs that are able to reach C̃, we
can run the dynamic programming algorithm on the graph obtained from G by removing
all components reachable from C̃, and we can then add

∑
D∈R(C̃) w(D).

The pseudocode is available in Algorithm 20.

9.8 experimental results 115

9.8 experimental results

In this section, we test the four variants of our algorithm on several real-world networks, in
order to evaluate their performances. All the networks used in our experiments come from
the datasets SNAP (http://snap.stanford.edu/), LASAGNE (http://lasagne-unifi.
sourceforge.net/), KONECT (http://konect.uni-koblenz.de/networks/), and IMDB
(http://www.imdb.com). The platform for our tests is a shared-memory server with 256
GB RAM and 2x8 Intel(R) Xeon(R) E5-2680 cores (32 threads due to hyperthreading) at
2.7 GHz. The algorithms are implemented in C++, building on the open-source NetworKit
framework [119].

9.8.1 Comparison with the State of the Art

In order to compare the performance of our algorithm with state-of-the-art approaches,
we select 19 directed complex networks, 17 undirected complex networks, 6 directed street
networks, and 6 undirected street networks (the undirected versions of the previous ones).
The number of nodes of most of these networks ranges between 5 000 and 100 000. We test
four different variants of our algorithm, that provide different implementations of the func-
tions computeBounds and updateBounds (for more information, we refer to Section 9.3):

• DegCut uses the conservative strategies computeBoundsDeg and updateBoundsBFSCut;

• DegBound uses the conservative strategy computeBoundsDeg and the aggressive
strategy updateBoundsLB;

• NBCut uses the aggressive strategy computeBoundsNB and the conservative strategy
updateBoundsBFSCut;

• NBBound uses the aggressive strategies computeBoundsNB and updateBoundsLB.

We compare these algorithms with our implementations of the best existing algorithms
for top-k closeness centrality (note that the source code of our competitors is not avail-
able). The first one [97] is based on a pruning technique and on ∆-BFS, a method to reuse
information collected during a BFS from a node to speed up the computation for one of
its in-neighbors; we denote this algorithm as Olh. The second one, Ocl, provides top-k
closeness centralities with high probability [96]. It performs some BFSes from a random
sample of nodes to estimate the closeness centrality of all the other nodes, then it com-
putes the exact centrality of all the nodes whose estimate is big enough. Note that this
algorithm requires the input graph to be (strongly) connected: for this reason, differently
from the other algorithms, we have run this algorithm on the largest (strongly) connected
component of the input graph. Furthermore, this algorithm offers different tradeoffs be-
tween the time needed by the sampling phase and the second phase: in our tests, we try
all possible tradeoffs, and we choose the best alternative in each input graph (hence, our
results are upper bounds on the real performance of the Ocl algorithm).
In order to perform a fair comparison, we consider the edge traversal ratio, which is

defined as mn
mvis

in directed graphs, 2mn
mvis

in undirected graphs, where mvis is the number of
arcs visited during the algorithm, and mn (resp., 2mn) is an estimate of the number of
arcs visited by the textbook algorithm in directed (resp., undirected) graphs (this estimate
is correct whenever the graph is connected). Note that the edge traversal ratio does not

http://snap.stanford.edu/
http://lasagne-unifi.sourceforge.net/
http://lasagne-unifi.sourceforge.net/
http://konect.uni-koblenz.de/networks/
http://www.imdb.com

116 computing top-k closeness centrality

Directed Undirected Both
k Algorithm GMean GStdDev GMean GStdDev GMean GStdDev
1 Olh 21.24 5.68 11.11 2.91 15.64 4.46

Ocl 1.71 1.54 2.71 1.50 2.12 1.61
DegCut 104.20 6.36 171.77 6.17 131.94 6.38
DegBound 3.61 3.50 5.83 8.09 4.53 5.57
NBCut 123.46 7.94 257.81 8.54 174.79 8.49
NBBound 17.95 10.73 56.16 9.39 30.76 10.81

10 Olh 21.06 5.65 11.11 2.90 15.57 4.44
Ocl 1.31 1.31 1.47 1.11 1.38 1.24
DegCut 56.47 5.10 60.25 4.88 58.22 5.00
DegBound 2.87 3.45 2.04 1.45 2.44 2.59
NBCut 58.81 5.65 62.93 5.01 60.72 5.34
NBBound 9.28 6.29 10.95 3.76 10.03 5.05

100 Olh 20.94 5.63 11.11 2.90 15.52 4.43
Ocl 1.30 1.31 1.46 1.11 1.37 1.24
DegCut 22.88 4.70 15.13 3.74 18.82 4.30
DegBound 2.56 3.44 1.67 1.36 2.09 2.57
NBCut 23.93 4.83 15.98 3.89 19.78 4.44
NBBound 4.87 4.01 4.18 2.46 4.53 3.28

Table 21: Complex networks: geometric mean and standard deviation of the edge traversal ratios
of the algorithm in [97] (Olh), the algorithm in [96] (Ocl), and the four variants of the
new algorithm (DegCut, DegBound, NBCut, NBBound).

depend on the implementation, nor on the machine used for the algorithm, and it does
not consider parts of the code that need subquadratic time in the worst case. These parts
are negligible in our algorithm, because their worst case running time is O(n logn) or
O(m diam) where diam is the diameter of the graph, but they can be significant when
considering the competitors. For instance, in the particular case of Olh, we have just
counted the arcs visited in BFS and ∆-BFS, ignoring all the operations done in the pruning
phases (see [97]).
We consider the geometric mean of the edge traversal ratios over all graphs in the dataset.

In our opinion, this quantity is more informative than the arithmetic mean, which is highly
influenced by the maximum value: for instance, in a dataset of 20 networks, if all edge
traversal ratios are 1 apart from one, which is 10 000, the arithmetic mean is more than
500, which makes little sense, while the geometric mean is about 1.58. Our choice is further
confirmed by the geometric standard deviation, which is always quite small.
The results are summarised in Table 21 for complex networks and Table 22 for street

networks. For the edge traversal ratios of each graph, we refer to Table 27, Table 28 and
Table 29.

On complex networks, the best algorithm is NBCut: when k = 1, the edge traversal
ratios are always bigger than 100 and up to 258. When k = 10 they are close to 60, and
when k = 100 they are close to 20. Another good option is DegCut, which achieves results
slightly worse than NBCut, but it has almost no overhead at the beginning (while NBCut
needs a preprocessing phase with cost O(m diam)). Furthermore, DegCut is very easy to
implement, becoming a very good candidate for state-of-the-art graph libraries. The edge
traversal ratios of the competitors are smaller: Olh has edge traversal ratios between 10
and 20, and Ocl provides almost no improvement with respect to the textbook algorithm.

9.8 experimental results 117

Directed Undirected Both
k Algorithm GMean GStdDev GMean GStdDev GMean GStdDev
1 Olh 4.11 1.83 4.36 2.18 4.23 2.01

Ocl 3.39 1.28 3.23 1.28 3.31 1.28
DegCut 4.14 2.07 4.06 2.06 4.10 2.07
DegBound 187.10 1.65 272.22 1.67 225.69 1.72
NBCut 4.12 2.07 4.00 2.07 4.06 2.07
NBBound 250.66 1.71 382.47 1.63 309.63 1.74

10 Olh 4.04 1.83 4.28 2.18 4.16 2.01
Ocl 2.93 1.24 2.81 1.24 2.87 1.24
DegCut 4.09 2.07 4.01 2.06 4.05 2.07
DegBound 172.06 1.65 245.96 1.68 205.72 1.72
NBCut 4.08 2.07 3.96 2.07 4.02 2.07
NBBound 225.26 1.71 336.47 1.68 275.31 1.76

100 Olh 4.03 1.82 4.27 2.18 4.15 2.01
Ocl 2.90 1.24 2.79 1.24 2.85 1.24
DegCut 3.91 2.07 3.84 2.07 3.87 2.07
DegBound 123.91 1.56 164.65 1.67 142.84 1.65
NBCut 3.92 2.08 3.80 2.09 3.86 2.08
NBBound 149.02 1.59 201.42 1.69 173.25 1.67

Table 22: Street networks: geometric mean and standard deviation of the edge traversal ratios of
the algorithm in [97] (Olh), the algorithm in [96] (Ocl), and the four variants of the
new algorithm (DegCut, DegBound, NBCut, NBBound).

On street networks, the best option is NBBound: for k = 1, the average improvement
is about 250 in the directed case and about 382 in the undirected case, and it always
remains bigger than 150, even for k = 100. It is worth noting that also the performance
of DegBound are quite good, being at least 70% of NBBound. Even in this case, the
DegBound algorithm offers some advantages: it is very easy to be implemented, and there
is no overhead in the first part of the computation. All the competitors perform relatively
poorly on street networks, since their improvement is always smaller than 5.
Overall, we conclude that the preprocessing function computeBoundsNB always leads to

better results (in terms of visited edges) than computeBoundsDeg, but the difference is
quite small: hence, in some cases, computeBoundsDeg could be even preferred, because of
its simplicity. Conversely, the performance of updateBoundsBFSCut is very different from
the performance of updateBoundsLB: the former works much better on complex networks,
while the latter works much better on street networks. Currently, these two approaches
exclude each other: an open problem left by this work is the design of a “combination”
of the two, that works both in complex networks and in street networks. Finally, the
experiments show that the best variant of our algorithm outperforms all competitors in
all frameworks considered: both in complex and in street networks, both in directed and
undirected graphs.

harmonic centrality. As mentioned in the introduction, all our methods can be
easily generalized to any centrality measure in the form c(v) =

∑
w 6=v f(d(v,w)), where

f is a decreasing function such that f(+∞) = 0. We also implemented a version of
DegCut, DegBound, NBCut and NBBound for harmonic centrality, which is defined
as h(v) =

∑
w 6=v

1
d(v,w) . Also for harmonic centrality, we compute the edge traversal ratios

on the textbook algorithm.

118 computing top-k closeness centrality

Directed Undirected Both
Input k GMean GStdDev GMean GStdDev GMean GStdDev

1 742.42 2.60 1681.93 2.88 1117.46 2.97
Street 10 724.72 2.67 1673.41 2.92 1101.25 3.03

100 686.32 2.76 1566.72 3.04 1036.95 3.13
1 247.65 11.92 551.51 10.68 339.70 11.78

Complex 10 117.45 9.72 115.30 4.87 116.59 7.62
100 59.96 8.13 49.01 2.93 55.37 5.86

Table 23: Big networks: geometric mean and standard deviation of the edge traversal ratios of the
best variant of the new algorithm (NBCut in complex networks, NBBound in street
networks).

For the complex networks used in our experiments, finding the k nodes with highest
harmonic centrality is always faster than finding the k nodes with highest closeness, for
all four methods and k values in {1, 10, 100}. For example, for NBCut and k = 1, the
geometric mean (over both directed and undirected networks) of the edge traversal ratios
is 486.07, whereas for closeness it is 174.79 (as reported in Table 21).
For street networks, the version of harmonic centrality is faster than the version for

closeness for DegCut and NBCut, but it is slower for DegBound and NBBound. In
particular, the average (geometric mean) edge traversal ratio of NBBound for harmonic
centrality is 103.58 for k = 1, 93.49 for k = 10 and 62.22 for k = 100, which is about a
factor 3 smaller than the edge traversal ratio of NBBound for closeness (see Table 22).
Nevertheless, this is significantly faster than the textbook algorithm.

9.8.2 Real-World Large Networks

In this section, we run our algorithm on bigger inputs, by considering a dataset containing
23 directed networks, 15 undirected networks, and 5 street networks, with up to ≈ 4M
nodes and ≈ 117M edges. On this dataset, we run the fastest variant of our algorithm
(DegBound in complex networks, NBBound in street networks), using 64 threads (how-
ever, the server used has only 16 cores and runs 32 threads with hyperthreading; we
account for memory latency in graph computations by oversubscribing slightly).
Once again, we consider the edge traversal ratio, which is defined as mn

mvis
in directed

graphs, 2mn
mvis

in undirected graphs. It is worth observing that we are able to compute for
the first time the k most central nodes of networks with millions of nodes and hundreds
of millions of arcs, with k = 1, k = 10, and k = 100. The detailed results are shown in
Table 30, where for each network we report the running time and the edge traversal ratio.
A summary of these results is available in Table 23, which contains the geometric means
of the edge traversal ratios, with the corresponding standard deviations.
For k = 1, the geometric mean of the edge traversal ratios is always above 200 in complex

networks, and above 700 in street networks. In undirected graphs, the edge traversal ratios
are even bigger: close to 500 in complex networks and close to 1 600 in street networks. For
bigger values of k, the performance does not decrease significantly: on complex networks,
the edge traversal ratios are bigger than or very close to 50, even for k = 100. In street
networks, the performance loss is even smaller, always below 10% for k = 100.
Regarding the robustness of the algorithm, we outline that the algorithm always achieves

performance improvements bigger than
√
n in street networks, and that in complex net-

9.9 imdb case study 119

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1 000

2 000

3 000

Millions of nodes

Ed
ge

tr
av
er
sa
lr

at
io

Figure 28: Growth of performance ratio with respect to the number of nodes (k = 1).

works, with k = 1, 64% of the networks have edge traversal ratios above 100, and 33%
of the networks above 1 000. In some cases, the edge traversal ratio is even bigger: in
the com-Orkut network, our algorithm for k = 1 is almost 35 000 times faster than the
textbook algorithm.
In our experiments, we also report the running time of our algorithm. Even for k = 100,

a few minutes are sufficient to conclude the computation on most networks, and, in all
but two cases, the total time is smaller than 3 hours. For k = 1, the computation always
terminates in at most 1 hour and a half, apart from two street networks where it needs
less than 2 hours and a half. Overall, the total time needed to compute the most central
vertex in all the networks is smaller than 1 day. In contrast to this, if we extrapolate the
results in Tables 21 and 22, it seems plausible that the fastest competitor OLH would
require a month or so.

9.9 imdb case study

In this section, we apply the new algorithm NBBound to analyze the IMDB graph, where
nodes are actors, and two actors are connected if they played together in a movie (TV-
series are ignored). The data collected comes from the website http://www.imdb.com.
In line with http://oracleofbacon.org, we decide to exclude some genres from our
database: awards-shows, documentaries, game-shows, news, realities and talk-shows. We
analyse snapshots of the actor graph, taken every 5 years from 1940 to 2010, and 2014.
The results are reported in Table 24 and Table 25.

running times. Thanks to this experiment, we can evaluate the performance of our
algorithm on increasing snapshots of the same graph. This way, we can have an informal
idea on the asymptotic behavior of its complexity. In Figure 28, we have plotted the
edge traversal ratio with respect to the number of nodes: if the edge traversal ratio is I,
the running time is O(mnI). Hence, assuming that I = cn for some constant c (which is
approximately verified in the actor graph, as shown by Figure 28), the running time is
linear in the input size. The total time needed to perform the computation on all snapshots
is little more than 30 minutes for k = 1, and little more than 45 minutes for k = 10.

results. In 2014, the most central actor is Michael Madsen, whose career spans 25
years and more than 170 films. Among his most famous appearances, he played as Jimmy
Lennox in Thelma & Louise (Ridley Scott, 1991), as Glen Greenwood in Free Willy (Simon
Wincer, 1993), as Bob in Sin City (Frank Miller, Robert Rodriguez, Quentin Tarantino),

http://www.imdb.com
http://oracleofbacon.org

120 computing top-k closeness centrality

1940 1945 1950 1955
1 Semels, Harry (I) Corrado, Gino Flowers, Bess Flowers, Bess
2 Corrado, Gino Steers, Larry Steers, Larry Harris, Sam (II)
3 Steers, Larry Flowers, Bess Corrado, Gino Steers, Larry
4 Bracey, Sidney Semels, Harry (I) Harris, Sam (II) Corrado, Gino
5 Lucas, Wilfred White, Leo (I) Semels, Harry (I) Miller, Harold (I)
6 White, Leo (I) Mortimer, Edmund Davis, George (I) Farnum, Franklyn
7 Martell, Alphonse Boteler, Wade Magrill, George Magrill, George
8 Conti, Albert (I) Phelps, Lee (I) Phelps, Lee (I) Conaty, James
9 Flowers, Bess Ring, Cyril Ring, Cyril Davis, George (I)
10 Sedan, Rolfe Bracey, Sidney Moorhouse, Bert Cording, Harry

1960 1965 1970 1975
1 Flowers, Bess Flowers, Bess Flowers, Bess Flowers, Bess
2 Harris, Sam (II) Harris, Sam (II) Harris, Sam (II) Harris, Sam (II)
3 Farnum, Franklyn Farnum, Franklyn Tamiroff, Akim Tamiroff, Akim
4 Miller, Harold (I) Miller, Harold (I) Farnum, Franklyn Welles, Orson
5 Chefe, Jack Holmes, Stuart Miller, Harold (I) Sayre, Jeffrey
6 Holmes, Stuart Sayre, Jeffrey Sayre, Jeffrey Miller, Harold (I)
7 Steers, Larry Chefe, Jack Quinn, Anthony (I) Farnum, Franklyn
8 Parìs, Manuel Parìs, Manuel O’Brien, William H. Kemp, Kenner G.
9 O’Brien, William H. O’Brien, William H. Holmes, Stuart Quinn, Anthony (I)
10 Sayre, Jeffrey Stevens, Bert (I) Stevens, Bert (I) O’Brien, William H.

1980 1985 1990 1995
1 Flowers, Bess Welles, Orson Welles, Orson Lee, Christopher (I)
2 Harris, Sam (II) Flowers, Bess Carradine, John Welles, Orson
3 Welles, Orson Harris, Sam (II) Flowers, Bess Quinn, Anthony (I)
4 Sayre, Jeffrey Quinn, Anthony (I) Lee, Christopher (I) Pleasence, Donald
5 Quinn, Anthony (I) Sayre, Jeffrey Harris, Sam (II) Hitler, Adolf
6 Tamiroff, Akim Carradine, John Quinn, Anthony (I) Carradine, John
7 Miller, Harold (I) Kemp, Kenner G. Pleasence, Donald Flowers, Bess
8 Kemp, Kenner G. Miller, Harold (I) Sayre, Jeffrey Mitchum, Robert
9 Farnum, Franklyn Niven, David (I) Tovey, Arthur Harris, Sam (II)
10 Niven, David (I) Tamiroff, Akim Hitler, Adolf Sayre, Jeffrey

2000 2005 2010 2014
1 Lee, Christopher (I) Hitler, Adolf Hitler, Adolf Madsen, Michael (I)
2 Hitler, Adolf Lee, Christopher (I) Lee, Christopher (I) Trejo, Danny
3 Pleasence, Donald Steiger, Rod Hopper, Dennis Hitler, Adolf
4 Welles, Orson Sutherland, Donald (I) Keitel, Harvey (I) Roberts, Eric (I)
5 Quinn, Anthony (I) Pleasence, Donald Carradine, David De Niro, Robert
6 Steiger, Rod Hopper, Dennis Sutherland, Donald (I) Dafoe, Willem
7 Carradine, John Keitel, Harvey (I) Dafoe, Willem Jackson, Samuel L.
8 Sutherland, Donald (I) von Sydow, Max (I) Caine, Michael (I) Keitel, Harvey (I)
9 Mitchum, Robert Caine, Michael (I) Sheen, Martin Carradine, David
10 Connery, Sean Sheen, Martin Kier, Udo Lee, Christopher (I)

Table 24: Detailed ranking of the IMDB actor graph.

and as Deadly Viper Budd in Kill Bill (Quentin Tarantino, 2003-2004). The second is
Danny Trejo, whose most famous movies are Heat (Michael Mann, 1995), where he played
as Trejo, Machete (Ethan Maniquis, Robert Rodriguez, 2010) and Machete Kills (Robert
Rodriguez, 2013), where he played as Machete. The third “actor” is not really an actor: he

9.10 wikipedia case study 121

Year 1940 1945 1950 1955
Nodes 69 011 83 068 97 824 120 430
Edges 3 417 144 5 160 584 6 793 184 8 674 159
Impr (k = 1) 51.74 61.46 67.50 91.46
Impr (k = 10) 32.95 40.73 44.72 61.52

Year 1960 1965 1970 1975
Nodes 146 253 174 826 210 527 257 896
Edges 11 197 509 12 649 114 14 209 908 16 080 065
Impr (k = 1) 122.63 162.06 211.05 285.57
Impr (k = 10) 80.50 111.51 159.32 221.07

Year 1980 1985 1990 1995
Nodes 310 278 375 322 463 078 557 373
Edges 18 252 462 20 970 510 24 573 288 28 542 684
Impr (k = 1) 380.52 513.40 719.21 971.11
Impr (k = 10) 296.24 416.27 546.77 694.72

Year 2000 2005 2010 2014
Nodes 681 358 880 032 1 237 879 1 797 446
Edges 33 564 142 41 079 259 53 625 608 72 880 156
Impr (k = 1) 1326.53 1897.31 2869.14 2601.52
Impr (k = 10) 838.53 991.89 976.63 1390.32

Table 25: Detailed edge traversal ratios on the IMDB actor graph.

is the German dictator Adolf Hitler: he was also the most central actor in 2005 and 2010,
and he was in the top 10 since 1990. This a consequence of his appearances in several
archive footages, that were re-used in several movies (he counts 775 credits, even if most
of them are in documentaries or TV shows, which were eliminated). Among the movies
where Adolf Hitler is credited, we find Zelig (Woody Allen, 1983), and The Imitation
Game (Morten Tyldum, 2014). Among the other most central actors, we find many people
who played a lot of movies, and most of them are quite important actors. However, this
ranking does not discriminate between important roles and marginal roles: for instance,
the actress Bess Flowers is not widely known, because she rarely played significant roles,
but she appeared in over 700 movies in her 41 years career, and for this reason she was
the most central for 30 years, between 1950 and 1980. Finally, it is worth noting that we
never find Kevin Bacon in the top 10, even if he became famous for the “Six Degrees of
Kevin Bacon” game (http://oracleofbacon.org). In this game the player receives an
actor x and has to find a path of length at most 6 from x to Kevin Bacon in the actor
graph. Kevin Bacon was chosen as the goal because he played in several movies, and he
was thought to be one of the most central actors: this work shows that, actually, he is quite
far from the top. Indeed, his closeness centrality is 0.336, while the most central actor has
centrality 0.354, the 10th actor has centrality 0.350, and the 100th actor has centrality
0.341.

9.10 wikipedia case study

In this section, we apply the new algorithm NBBound to analyze the Wikipedia graph,
where nodes are pages, and there is a directed edge from page p to page q if p contains a
link to q. The data collected comes from DBPedia 3.7 (http://wiki.dbpedia.org/). We

http://oracleofbacon.org
http://wiki.dbpedia.org/

122 computing top-k closeness centrality

analyse both the standard graph and the reverse graph, which contains an edge from page
p to page q if q contains a link to p. The 10 most central pages are available in Table 26.

Position Standard Graph Reversed Graph
1st 1989 United States
2nd 1967 World War II
3rd 1979 United Kingdom
4th 1990 France
5th 1970 Germany
6th 1991 English language
7th 1971 Association football
8th 1976 China
9th 1945 World War I

10th 1965 Latin

Table 26: Top 10 pages in Wikipedia directed graph, both in the standard graph and in the reversed
graph.

running times. In the standard graph, the edge traversal ratio is 1 784 for k = 1,
1 509 for k = 10, and 870 for k = 100. The total running time is about 39 minutes for
k = 1, 45 minutes for k = 10, and less than 1 hour and 20 minutes for k = 100. In the
reversed graph, the algorithm performs even better: the edge traversal ratio is 87 918 for
k = 1, 71 923 for k = 10, and 21 989 for k = 100. The total running times are less than 3
minutes for both k = 1 and k = 10, and less than 10 minutes for k = 100.

results. If we consider the standard graph, the results are quite unexpected: indeed,
all the most central pages are years (the first is 1989). However, this is less surprising if we
consider that these pages contain a lot of links to events that happened in that year: for
instance, the out-degree of 1989 is 1 560, and the links contain pages from very different
topics: historical events, like the fall of Berlin wall, days of the year, different countries
where particular events happened, and so on. A similar argument also works for other
years: indeed, the second page is 1967 (with out-degree 1 438), and the third is 1979 (with
out-degree 1 452). Furthermore, all the 10 most central pages have out-degree at least 1 269.
Overall, we conclude that the central page in the Wikipedia standard graph are not the
“intuitively important” pages, but they are the pages that have a biggest number of links
to pages with different topics, and this maximum is achieved by pages related to years.
Conversely, if we consider the reversed graph, the most central page is United States,

confirming a common conjecture. Indeed, in http://wikirank.di.unimi.it/, it is shown
that the United States are the center according to harmonic centrality, and many other
measures (however, in that work, the ranking is only approximated). A further evidence
for this conjecture comes from the Six Degree of Wikipedia game (http://thewikigame.
com/6-degrees-of-wikipedia), where a player is asked to go from one page to the other
following the smallest possible number of link: a hard variant of this game forces the
player not to pass the United States page, which is considered to be central. In this work,
we show that this conjecture is true. The second page is World War II, and the third
is United Kingdom, in line with the results obtained by other centrality measures (see
http://wikirank.di.unimi.it/), especially for the first two pages.

http://wikirank.di.unimi.it/
http://thewikigame.com/6-degrees-of-wikipedia
http://thewikigame.com/6-degrees-of-wikipedia
http://wikirank.di.unimi.it/

9.10 wikipedia case study 123

Overall, we conclude that most of the central pages in the reversed graph are nations, and
that the results capture our intuitive notion of “important” pages in Wikipedia. Thanks to
this new algorithm, we can compute these pages in a bit more than 1 hour for the original
graph, and less than 10 minutes for the reversed one.

bibliographic notes

The method updateBoundsBFSCut, as well as the computation of α(v) and ω(v) in Sec-
tion 9.7.4 were presented as a technical report in [29], authored by Michele Borassi, Pier-
luigi Crescenzi and Andrea Marino.
The methods updateBoundsLB and computeBoundsNB were presented as a technical re-

port in [15] (coauthored with Henning Meyerhenke) and subsequently published as “Com-
puting top-k Closeness Centrality Faster in Unweighted Graphs” (coauthored with Michele
Borassi, Pierluigi Crescenzi, Andrea Marino, and Henning Meyerhenke) at the Eighteenth
Workshop on Algorithm Engineering and Experiments (ALENEX 2016).

The unified framework presented in this chapter, as well as the extension to disconnected
graphs, has been presented as a technical report in [21], and is currently in revision for
international journal publication. In [21], we also prove that the problem of selecting the k
most central vertices is not solvable in time O(|E|2−ε) on directed graphs, for any constant
ε > 0, if we assume the Strong Exponential Time Hypothesis (SETH).

124 computing top-k closeness centrality

Network Olh Ocl DegCut DegBound NBCut NBBound
Directed Street

faroe-islands 4.080 3.742 4.125 338.011 4.086 437.986
liechtenstein 2.318 2.075 2.114 130.575 2.115 137.087
isle-of-man 2.623 3.740 2.781 224.566 2.769 314.856
malta 5.332 4.351 4.147 73.836 4.141 110.665
belize 2.691 3.969 2.606 253.866 2.595 444.849
azores 13.559 3.038 19.183 230.939 19.164 266.488

Undirected Street
faroe-islands 4.126 3.276 4.118 361.593 3.918 444.243
liechtenstein 2.318 2.027 2.107 171.252 2.122 183.240
isle-of-man 2.613 3.661 2.767 266.734 2.676 370.194
malta 4.770 4.164 3.977 122.729 3.958 232.622
belize 2.565 3.945 2.510 340.270 2.481 613.778
azores 22.406 2.824 18.654 589.985 18.810 727.528

Directed Complex
polblogs 3.201 1.131 31.776 1.852 31.974 5.165
out.opsahl-openflights 13.739 1.431 73.190 2.660 73.888 18.255
ca-GrQc 9.863 1.792 36.673 3.630 38.544 6.307
out.subelj_jung-j_jung-j 125.219 1.203 79.559 1.024 79.882 1.897
p2p-Gnutella08 5.696 1.121 66.011 4.583 81.731 6.849
out.subelj_jdk_jdk 116.601 1.167 74.300 1.023 74.527 1.740
wiki-Vote 9.817 2.760 261.242 1.479 749.428 395.278
p2p-Gnutella09 5.534 1.135 41.214 4.650 43.236 6.101
ca-HepTh 7.772 2.121 40.068 3.349 42.988 5.217
freeassoc 33.616 1.099 12.638 2.237 12.700 2.199
ca-HepPh 7.682 2.836 10.497 3.331 10.516 4.387
out.lasagne-spanishbook 13.065 2.553 1871.296 7.598 6786.506 3160.750
out.cfinder-google 16.725 1.782 38.321 2.665 25.856 3.020
ca-CondMat 7.382 3.526 409.772 5.448 517.836 29.282
out.subelj_cora_cora 14.118 1.700 14.098 1.345 14.226 2.299
out.ego-twitter 2824.713 1.000 1870.601 28.995 3269.183 278.214
out.ego-gplus 722.024 1.020 3481.943 236.280 3381.029 875.111
as-caida20071105 20.974 3.211 2615.115 1.737 2837.853 802.273
cit-HepTh 4.294 3.045 16.259 1.514 16.398 3.290

Undirected Complex
HC-BIOGRID 5.528 1.581 15.954 3.821 14.908 3.925
facebook_combined 10.456 3.726 56.284 18.786 56.517 98.512
Mus_musculus 18.246 1.743 70.301 3.253 104.008 7.935
Caenorhabditis_elegans 11.446 2.258 86.577 2.140 110.677 9.171
ca-GrQc 6.567 1.904 38.279 3.551 41.046 6.824
as20000102 19.185 2.402 1550.351 3.213 1925.916 498.000
advogato 8.520 2.018 315.024 18.181 323.163 142.654
p2p-Gnutella09 3.744 2.336 90.252 1.708 100.427 13.846
hprd_pp 6.543 2.397 392.853 2.091 407.261 63.953
ca-HepTh 7.655 2.075 42.267 3.308 46.326 5.593
Drosophila_melanogaster 5.573 2.346 69.457 1.822 75.456 6.904
oregon1_010526 20.474 3.723 1603.739 2.703 1798.822 399.071
oregon2_010526 17.330 4.748 1138.475 2.646 1227.105 520.955
Homo_sapiens 6.689 2.700 1475.113 1.898 1696.909 130.381
GoogleNw 15.591 8.389 107.902 15763.000 15763.000 15763.000
dip20090126_MAX 2.883 3.826 5.833 6.590 5.708 7.392
com-amazon.all.cmty 415.286 2.499 5471.982 3.297 8224.693 373.294

Table 27: Detailed comparison of the edge traversal ratios, with k = 1.

9.10 wikipedia case study 125

Network Olh Ocl DegCut DegBound NBCut NBBound
Directed Street

faroe-islands 3.713 2.884 4.037 290.626 4.025 361.593
liechtenstein 2.318 2.002 2.104 111.959 2.106 116.713
isle-of-man 2.623 2.933 2.711 209.904 2.720 288.123
malta 5.325 3.861 4.094 70.037 4.086 101.546
belize 2.690 3.638 2.592 244.275 2.580 416.210
azores 13.436 2.644 19.043 222.073 19.045 254.206

Undirected Street
faroe-islands 3.702 2.594 4.046 320.588 3.848 388.713
liechtenstein 2.316 1.965 2.097 142.047 2.114 150.608
isle-of-man 2.612 2.889 2.695 241.431 2.636 323.185
malta 4.768 3.615 3.920 115.574 3.910 208.192
belize 2.564 3.634 2.496 323.257 2.469 563.820
azores 22.392 2.559 18.541 539.032 18.712 653.372

Directed Complex
polblogs 3.199 1.039 13.518 1.496 13.544 2.928
out.opsahl-openflights 13.739 1.130 32.297 1.984 32.405 6.867
ca-GrQc 9.863 1.356 25.238 3.096 25.786 4.565
out.subelj_jung-j_jung-j 124.575 1.000 79.284 1.024 79.657 1.884
p2p-Gnutella08 5.684 1.064 12.670 3.241 12.763 3.599
out.subelj_jdk_jdk 116.228 1.000 74.106 1.023 74.363 1.730
wiki-Vote 9.812 1.205 166.941 1.453 174.775 25.411
p2p-Gnutella09 5.532 1.084 16.293 3.624 16.265 4.213
ca-HepTh 7.772 1.586 31.314 3.013 32.604 4.356
freeassoc 33.414 1.034 10.612 2.210 10.704 2.178
ca-HepPh 7.682 2.077 10.322 3.042 10.340 4.010
out.lasagne-spanishbook 13.063 1.483 303.044 1.067 351.262 94.351
out.cfinder-google 16.725 1.413 36.364 2.665 24.765 3.017
ca-CondMat 7.382 2.318 91.209 3.507 93.548 7.027
out.subelj_cora_cora 13.699 1.287 12.763 1.334 12.909 2.072
out.ego-twitter 2689.884 1.000 1817.032 28.157 2872.213 218.411
out.ego-gplus 722.024 1.000 951.983 201.949 1085.361 482.204
as-caida20071105 20.974 1.615 997.996 1.371 1266.443 448.729
cit-HepTh 4.030 2.179 11.361 1.486 11.423 2.832

Undirected Complex
HC-BIOGRID 5.528 1.240 10.714 3.102 10.036 3.058
facebook_combined 10.456 1.292 9.103 2.236 9.371 2.694
Mus_musculus 18.246 1.316 18.630 2.279 20.720 3.288
Caenorhabditis_elegans 11.445 1.405 58.729 1.904 68.905 7.605
ca-GrQc 6.567 1.340 26.050 3.052 26.769 5.011
as20000102 19.185 1.529 196.538 1.314 209.674 52.210
advogato 8.520 1.405 131.173 2.043 132.207 11.155
p2p-Gnutella09 3.744 1.632 79.093 1.623 87.357 12.941
hprd_pp 6.543 1.436 47.945 1.837 47.866 8.620
ca-HepTh 7.655 1.546 32.612 2.961 34.407 4.677
Drosophila_melanogaster 5.573 1.672 50.840 1.646 54.637 5.743
oregon1_010526 20.474 1.451 418.099 1.282 429.161 109.549
oregon2_010526 17.330 1.560 364.277 1.302 371.929 71.186
Homo_sapiens 6.689 1.599 81.496 1.620 82.250 15.228
GoogleNw 15.591 1.320 23.486 1.252 23.053 2.420
dip20090126_MAX 2.881 1.836 4.055 4.556 4.065 4.498
com-amazon.all.cmty 414.765 1.618 3407.016 3.279 3952.370 199.386

Table 28: Detailed comparison of the edge traversal ratios, with k = 10.

126 computing top-k closeness centrality

Network Olh Ocl DegCut DegBound NBCut NBBound
Directed Street

faroe-islands 3.713 2.823 3.694 150.956 3.691 168.092
liechtenstein 2.318 1.998 2.078 84.184 2.086 86.028
isle-of-man 2.620 2.902 2.551 139.139 2.567 167.808
malta 5.282 3.850 3.933 56.921 3.942 76.372
belize 2.688 3.617 2.526 184.718 2.516 268.634
azores 13.334 2.628 18.380 194.724 18.605 220.013

Undirected Street
faroe-islands 3.702 2.548 3.693 159.472 3.523 171.807
liechtenstein 2.311 1.959 2.072 96.782 2.095 99.768
isle-of-man 2.607 2.847 2.533 153.859 2.468 183.982
malta 4.758 3.605 3.745 89.929 3.730 137.538
belize 2.562 3.629 2.428 226.582 2.406 323.257
azores 22.345 2.548 18.092 411.760 18.384 476.253

Directed Complex
polblogs 3.198 1.037 3.951 1.245 3.961 1.731
out.opsahl-openflights 13.739 1.124 5.524 1.456 5.553 1.740
ca-GrQc 9.863 1.339 11.147 2.353 10.407 2.926
out.subelj_jung-j_jung-j 123.393 1.000 78.473 1.021 78.798 1.787
p2p-Gnutella08 5.684 1.063 6.611 2.935 7.750 3.278
out.subelj_jdk_jdk 114.210 1.000 73.522 1.020 73.755 1.669
wiki-Vote 9.812 1.186 61.375 1.236 60.475 9.436
p2p-Gnutella09 5.531 1.083 6.370 3.109 7.650 3.508
ca-HepTh 7.772 1.570 16.135 2.477 16.747 3.135
freeassoc 33.266 1.032 6.314 2.154 6.428 2.138
ca-HepPh 7.682 2.032 9.605 2.549 9.619 3.340
out.lasagne-spanishbook 13.063 1.467 56.689 1.043 80.069 33.271
out.cfinder-google 16.725 1.392 13.521 2.655 12.298 2.722
ca-CondMat 7.382 2.288 16.884 2.602 16.950 2.824
out.subelj_cora_cora 13.231 1.280 11.171 1.315 11.350 1.870
out.ego-twitter 2621.659 1.000 1574.836 26.893 1908.731 110.236
out.ego-gplus 722.024 1.000 522.333 181.754 522.576 236.280
as-caida20071105 20.974 1.606 17.971 1.216 18.694 5.479
cit-HepTh 3.969 2.143 8.867 1.466 9.068 2.662

Undirected Complex
HC-BIOGRID 5.528 1.236 4.452 2.154 4.345 1.999
facebook_combined 10.456 1.292 3.083 1.470 3.074 1.472
Mus_musculus 18.245 1.305 7.940 1.944 9.518 2.631
Caenorhabditis_elegans 11.445 1.391 11.643 1.463 12.296 3.766
ca-GrQc 6.567 1.331 11.311 2.346 10.389 3.105
as20000102 19.185 1.512 7.318 1.174 7.956 3.593
advogato 8.520 1.398 32.629 1.706 33.166 7.784
p2p-Gnutella09 3.744 1.625 11.378 1.374 11.867 3.695
hprd_pp 6.543 1.422 21.053 1.547 22.191 3.468
ca-HepTh 7.655 1.539 16.406 2.454 17.030 3.301
Drosophila_melanogaster 5.573 1.655 29.115 1.487 30.979 4.614
oregon1_010526 20.474 1.443 13.300 1.163 14.611 6.569
oregon2_010526 17.330 1.530 18.203 1.173 21.758 7.258
Homo_sapiens 6.689 1.577 19.350 1.445 20.182 3.080
GoogleNw 15.591 1.320 16.224 1.172 16.506 2.010
dip20090126_MAX 2.880 1.815 2.789 2.602 2.784 2.546
com-amazon.all.cmty 414.765 1.605 1368.675 3.236 1654.150 97.735

Table 29: Detailed comparison of the edge traversal ratios, with k = 100.

9.10 wikipedia case study 127

k = 1 k = 10 k = 100
Input Nodes Edges Impr. Time Impr. Time Impr. Time

Directed Street
egypt 1054242 2123036 144.91 0:03:55 132.86 0:04:25 116.74 0:04:48
new_zealand 2759124 5562944 447.55 0:02:34 443.95 0:02:35 427.31 0:02:38
india 16230072 33355834 1370.32 0:43:42 1369.05 0:44:17 1326.31 0:45:05
california 16905319 34303746 1273.66 0:54:56 1258.12 0:56:00 1225.73 0:56:02
north_am 35236615 70979433 1992.68 2:25:58 1967.87 2:29:25 1877.78 2:37:14

Undirected Street
egypt 1054242 1159808 344.86 0:01:54 340.30 0:01:54 291.71 0:02:11
new_zealand 2759124 2822257 811.75 0:02:47 786.52 0:03:02 734.20 0:03:02
india 16230072 17004400 2455.38 0:44:21 2484.70 0:44:38 2422.40 0:44:21
california 16905319 17600566 2648.08 0:39:15 2620.17 0:42:04 2504.86 0:44:19
north_am 35236615 36611653 7394.88 1:13:37 7530.80 1:15:01 7263.78 1:10:28

Directed Complex
cit-HepTh 27769 352768 16.34 0:00:01 11.41 0:00:01 9.06 0:00:02
cit-HepPh 34546 421534 23.68 0:00:01 19.88 0:00:01 14.41 0:00:02
p2p-Gnut31 62586 147892 194.19 0:00:01 44.24 0:00:01 19.34 0:00:04
soc-Eps1 75879 508837 243.14 0:00:01 43.75 0:00:01 33.60 0:00:05
soc-Slash0811 77360 828161 1007.70 0:00:00 187.46 0:00:00 21.09 0:00:18
twitter_comb 81306 2684592 1024.32 0:00:01 692.96 0:00:01 145.68 0:00:05
Slash090221 82140 549202 177.82 0:00:02 162.30 0:00:02 108.53 0:00:03
gplus_comb 107614 24476570 1500.35 0:00:04 235.17 0:00:04 62.54 0:02:19
soc-sign-eps 131828 840799 225.91 0:00:03 161.58 0:00:03 39.26 0:00:16
email-EuAll 265009 418956 4724.80 0:00:00 3699.48 0:00:00 1320.22 0:00:01
web-Stanford 281903 2312497 13.59 0:04:00 8.70 0:04:00 7.47 0:07:15
web-NotreD 325729 1469679 1690.08 0:00:02 132.83 0:00:02 66.88 0:00:49
amazon0601 403394 3387388 10.81 0:14:54 8.87 0:14:54 6.84 0:22:04
web-BerkStan 685230 7600595 3.95 1:36:21 3.67 1:36:21 3.47 1:49:12
web-Google 875713 5105039 228.61 0:01:51 96.63 0:01:51 38.69 0:10:29
youtube-links 1138494 4942297 662.78 0:01:33 200.68 0:01:33 125.72 0:07:02
in-2004 1382870 16539643 43.68 0:41:45 29.89 0:41:45 16.68 1:48:42
trec-wt10g 1601787 8063026 33.86 0:36:01 20.39 0:36:01 16.73 1:10:54
soc-pokec 1632803 22301964 21956.64 0:00:17 2580.43 0:06:14 1106.90 0:12:35
zhishi-hudong 1984484 14682258 30.37 1:25:38 27.71 1:25:38 24.95 1:53:27
zhishi-baidu 2141300 17632190 44.05 1:17:52 38.61 1:17:52 23.17 3:08:05
wiki-Talk 2394385 5021410 34863.42 0:00:08 28905.76 0:00:08 9887.18 0:00:18
cit-Patents 3774768 16518947 9454.04 0:02:07 8756.77 0:02:07 8340.18 0:02:13

Undirected Complex
ca-HepPh 12008 118489 10.37 0:00:00 10.20 0:00:00 9.57 0:00:01
CA-AstroPh 18772 198050 62.47 0:00:00 28.87 0:00:01 14.54 0:00:01
CA-CondMat 23133 93439 247.35 0:00:00 84.48 0:00:00 17.06 0:00:01
email-Enron 36692 183831 365.92 0:00:00 269.80 0:00:00 41.95 0:00:01
loc-brightkite 58228 214078 308.03 0:00:00 93.85 0:00:01 53.49 0:00:02
flickrEdges 105938 2316948 39.61 0:00:23 17.89 0:00:55 15.39 0:01:16
gowalla 196591 950327 2412.26 0:00:01 33.40 0:01:18 28.13 0:01:33
com-dblp 317080 1049866 500.83 0:00:10 300.61 0:00:17 99.64 0:00:52
com-amazon 334863 925872 37.76 0:02:21 31.33 0:02:43 18.68 0:04:34
com-lj.all 477998 530872 849.57 0:00:07 430.72 0:00:13 135.14 0:00:45
com-youtube 1134890 2987624 2025.32 0:00:32 167.45 0:06:44 110.39 0:09:16
soc-pokec 1632803 30622564 46725.71 0:00:18 8664.33 0:02:16 581.52 0:18:12
as-skitter 1696415 11095298 185.91 0:19:06 164.24 0:21:53 132.38 0:27:06
com-orkut 3072441 117185083 23736.30 0:02:32 255.17 2:54:58 69.23 15:02:06
youtube-u-g 3223585 9375374 11473.14 0:01:07 91.17 2:07:23 66.23 2:54:12

Table 30: Detailed comparison of the edge traversal ratios on big networks. For street networks,
the results refer to NBBound, whereas for complex networks they refer to NBCut.

10
COMPUTING TOP -K CLOSENESS CENTRAL ITY IN
FULLY -DYNAMIC GRAPHS

10.1 introduction

As already mentioned in Chapter 1 and Chapter 3, many real-world networks evolve over
time at a quick pace. For applications that require to keep track of the top-k nodes
with highest closeness in a dynamic network, even rerunning the fast algorithms proposed
in Chapter 9 after each edge modification might be too expensive. In this chapter we
present dynamic algorithms for top-k closeness centrality that handle both edge insertions
and edge deletions. Our new algorithms are based on the static algorithms presented in
Chapter 9 and reuse information obtained during the initial run to skip the recomputation
of closeness centralities for nodes that are unaffected by the edge modification. In contrast
to other dynamic algorithms for closeness centrality, it is not required to compute the
exact closeness centralities of all nodes in the initial graph, making it possible to target
networks with tens of millions of edges. Moreover, we specifically design our algorithms
to use only a linear amount of additional memory, since a quadratic memory footprint
(typical of most existing dynamic algorithms for problems based on shortest paths, see
also Chapter 8) would be impractical for large instances.
In experiments we obtain significant speedups compared to static recomputation. For

example, for k = 10, our average speedup (geometric mean over the tested instances) is
about 76 for insertions in undirected complex networks. For deletions in directed street
networks, we reach an average speedup of 743. Also, our experiments show some interesting
results: deletions are mostly faster than insertions and speedups increase with k for complex
networks, whereas they decrease as k increases in street networks.
We recall from Section 9.2 that traditional closeness does not apply to disconnected

graphs. For comparison with previous work, in Chapter 9, the proposed algorithms for
top-k closeness have been generalized to disconnected graphs using Lin’s index. Since
this allows for a simpler description (while still applying to disconnected graphs), in this
chapter we present all algorithms based on harmonic closeness. In addition to extending
to disconnected graphs in a very natural way, harmonic closeness has been shown in [25] to
satisfy all axioms presented in the same paper (i.e., size, density and score monotonicity).
However, our algorithms can be easily adapted to Lin’s index as well.
Before moving on to the description of the dynamic algorithms, we first introduce some

notation in Section 10.2.1 and briefly describe the variant of the static top-k closeness
algorithms based on harmonic centrality in Section 10.2.2 (see Chapter 9 for exhaustive
description based on Lin’s index).

129

130 computing top-k closeness centrality in fully-dynamic graphs

10.2 preliminaries

10.2.1 Notation and Problem Definition

Let G be an unweighted graph (either directed or undirected) with n nodes and m edges.
We use d(u, v) to denote the shortest-path distance between two nodes u and v. We recall
from Chapter 9 that the set of nodes at distance i from u is denoted by Ni(u) := {v :
d(u, v) = i} and its cardinality by ni(u). The reachable nodes R(u) := {v : d(u, v) < +∞}
are the nodes with finite distance from u (we denote their cardinality by r(u)). We consider
a variant of closeness called harmonic closeness centrality [25], defined as follows (see also
Chapter 2):

c(u) :=
∑

v∈V , v 6=u

1
d(u, v) .

Throughout this chapter, we will use the term “closeness centrality” to indicate the har-
monic variant. When talking about dynamic graphs, we refer to G as the graph before the
edge update, and to G′ as the modified graph. Similarly, d is the distance on G and d′ the
distance on G′.

10.2.2 Static Top-k Closeness

The top-k closeness algorithm proposed in Chapter 9 (Algorithm 15) tries to reduce the
running time of the textbook algorithm (i.e., running a BFS from each node) by exploit-
ing upper bounds on the closeness values. If k nodes are found, whose exact closeness is
higher than the upper bounds of all other nodes, than the algorithm can stop. In particular,
we recall that we proposed two approaches for each of computeBounds (Line 1 of Algo-
rithm 15) and updateBounds (Line 8). For computeBounds, our experiments show that the
computeBoundsNB approach in Section 9.4 (which computes bounds based on the number
of walks starting from each node) always leads to better results than computeBoundsDeg
(which simply orders nodes by degree). As for updateBounds, we proposed two strategies.
The conservative strategy updateBoundsBFSCut does not improve existing bounds, but
tries to interrupt the BFS traversal as soon as possible. On the contrary, the aggressive
strategy updateBoundsLB runs a complete BFS, but tries to improve the bounds on the
other nodes. Our experiments in Section 9.8 show that the strategy updateBoundsBFSCut
leads to better results on complex networks and updateBoundsLB works better for street
networks. As a result, NBCut (combining computeBoundsNB with updateBoundsBFSCut)
is the best-performing approach for complex networks, whereas NBBound (combining
computeBoundsNB with updateBoundsLB) works best for street networks.
Since both algorithms were proposed using Lin’s index, in the following we briefly recall

them using harmonic closeness.

nbcut algorithm for complex networks. Assume we are performing a
BFS from a node y, and we have visited all nodes up to distance i. We know that all
remaining nodes have at least distance i + 1, otherwise they would have been visited
already. Also, we know that at most ñi+1(y) :=

∑
w∈Ni(y) degree(w) can be at distance

i+ 1, since all nodes at distance i+ 1 must have at least one neighbor at distance i from y.

10.2 preliminaries 131

Exact

i+ 1

i+ 2

∑

z:d(y,z)≤i

1

d(y, z)

ñi+1(y)

i+ 1

r(y)−∑i
j=1 ni(y)− ñi+1(y)

i+ 2

y

Figure 29: Upper bound on c(y) computed by the NBCut algorithm. For nodes up to distance
dcut(y) we know the exact distance. Then, ñdcut(y)+1 nodes are assumed to be at distance
dcut(y) + 1 and the remaining at distance dcut(y) + 2.

Thus, all remaining nodes have to be at distance at least i+ 2. Based on this observation,
we can define the following upper bound on c(y):

c̃(y) :=
∑

z:d(y,z)≤i

1
d(y, z) +

ñi+1(y)

i+ 1 +
r(y)−

∑i
j=1 nj(y)− ñi+1(y)

i+ 2 , (26)

where the first term in the sum accounts for the nodes for which we computed the exact
distance, the second term assumes that exactly ñi+1(y) nodes are at distance i+ 1, and the
third term assumes that all remaining nodes are at distance d+ 2 (see Figure 29). Notice
that the more nodes are visited during the BFS, the tighter the bound is (if all nodes
are visited, c̃(y) = c(y)). Thus, the NBCut algorithm works as follows: assume that we
already computed the exact closeness for at least k nodes, and let xk be the k-th highest
closeness value found so far. While running a BFS from node y, updateBoundsBFSCut
computes the bound of Eq. (26). If at some point c̃(y) < xk, we can interrupt the search
from y, since y cannot be one of the top-k nodes. We call the distance i at which we
interrupt the BFS the cutoff distance, and we refer to it as dcut(y). If the exact closeness
c(y) is actually larger than xk, updateBoundsBFSCut runs a complete BFS and stores y
as one of the top-k nodes.
Notice that Eq. (26) requires the number r(y) of nodes reachable from y. In undirected

graphs, this is the size of the connected component of y, which can be easily computed
in a preprocessing step. In directed graphs, we proposed in Chapter 9 (Section 9.7.4) an
upper bound based on a topological sorting of the strongly-connected-components DAG
(SCC DAG).

For simplicity, from now on we will write BFSCut to indicate updateBoundsBFSCut. Here
we assume that, in addition to the computed bound c̃(y), BFSCut returns also the cutoff
distance dcut(y) and isExact(y) (which is true if and only if c̃(y) is the exact closeness, i.e.
if a whole BFS has been performed) for each node y.

nbbound algorithm for street networks. NBBound initially computes
an upper bound c̃ on the closeness of each node and enters the nodes into a priority
queue Q, sorted by their value of c̃. Then, the node v with highest c̃ is extracted and
its actual closeness c(v) is computed using the updateBoundsLB function. In addition to

132 computing top-k closeness centrality in fully-dynamic graphs

computing the exact closeness of v, this function also modifies the upper bounds c̃ of the
other nodes. In particular, let w and y be any two nodes visited during the BFS from
v. Then, we can prove (see Chapter 9) that d(w, y) ≥ |d(v,w) − d(v, y)|. By assuming
that d(w, y) = |d(v,w) − d(v, y)|, ∀w, y ∈ V , we get an upper bound on the closeness
of all nodes (see Chapter 9 for more details). If, for some node w, this upper bound is
tighter than the current c̃, then c̃ and the priority of w in Q are updated. The algorithm
terminates when k nodes are found such that their exact closeness is higher than the upper
bound on the closeness of the other nodes.

10.3 dynamic top-k closeness centrality

Let us assume an edge (u, v) has been inserted into or deleted from the graph. Our goal
is to update the list of the top-k nodes and their closeness values faster than comput-
ing it from scratch with NBCut or NBBound. In the following, we first show how we
update the number of reachable nodes (Section 10.3.1) and compute the set of affected
nodes (Section 10.3.2), which is a preprocessing necessary for both edge insertions and
deletions. Then, we consider edge insertions and deletions separately in Section 10.3.3 and
Section 10.3.4.

10.3.1 Updating the Number of Reachable Nodes

The upper bound in Eq. (26) requires the number of reachable nodes r(u) (or an upper
bound on r(u)). For undirected graphs, this is simply the number of nodes in the con-
nected component of u. Instead of recomputing connected components from scratch after
each update, we use a simple dynamic algorithm similar to the one presented in [49]. Ini-
tially, we build a spanning forest of G. When an edge (u, v) is inserted, we check whether
u and v belong to the same component and if not, we merge the components and (u, v)
becomes part of the forest. If we delete an edge (u, v) that is part of the forest, we then
run a pruned BFS from u and interrupt it as soon as we hit v (and, if we do not hit v,
we split the components). If, in turn, we delete an edge (u, v) that is not part of the
spanning forest, we know there has to be another path between u and v and we are done.
For directed graphs, we proposed in Chapter 9 (Section 9.7.4) an upper bound based

on a topological sorting of the SCC DAG. Since preliminary experiments showed that
recomputing this after each update was a bottleneck for the dynamic algorithm, we replace
this bound with the number of nodes in the weakly-connected component. This does not
affect the correctness of the algorithm and can be updated much more efficiently using
basically the same algorithm we use for updating the connected components in undirected
graphs (we simply need to ignore the direction of the edges).

10.3.2 Finding Affected Nodes

When an edge (u, v) is inserted or deleted from G, some nodes might increase or decrease
their closeness centrality. We call such nodes affected. More precisely, the set A of affected
nodes is defined as A := {y ∈ V : ∃w ∈ V such that d ′ (y , w) 6= d(y , w)}. It is easy to
see that, if d ′ (y , w) 6= d(y , w), then either d ′ (y , u) 6= d(y , u) or d ′ (y , v) 6= d(y , v).
Indeed, if the distances from y to both u and v stay the same, it means that the insertion

10.3 dynamic top-k closeness centrality 133

or deletion of (u, v) does not move any node up or down the BFS DAG rooted in y. Thus,
the set of affected nodes can be easily identified by running two BFSs from u (one on G

and one on G ′) and two BFSs from v (one on G and one on G ′). If the graph is directed,
the BFSs have to be run on G and G ′ transposed, since we are interested in the nodes
that change their distance to u or v. Once we know all the distances to u and v in G and
G ′, we can simply compare them and mark all nodes y such that d ′ (y , u) 6= d(y , u) or
d ′ (y , v) 6= d(y , v) as affected.
We know that the closeness of all unaffected nodes v does not change. Therefore, the

previously computed upper bound c̃ and, if it was computed, the previous exact closeness
value c(v) are still valid.

Algorithm 21: Recomputation of the top-k nodes after an edge insertion (based on
NBCut).
Data: G = (V ,E), (u, v) /∈ E
Result: Top-k nodes with the highest closeness in G′ := (V ,E ∪ {u, v})

1 Compute r′(y) ∀y ∈ V ;
2 Compute the set A of affected nodes, d(·,u), d′(·,u);
3 xk ← TopK.getMin();
4 forall the w ∈ A do
5 if w ∈ TopK then
6 TopK.remove(w);
7 end
8 end
9 foreach y ∈ A do

10 if dcut(y) < d(y,u) ∧ not isExact(y) then
/* y is a far-away node */

11 c̃′(y)← c̃(y)− r(y)
dcut(y)+2 + r′(y)

dcut(y)+2 ;
12 else if dcut(y) == d(y,u) ∧ not isExact(y) then

/* y is a boundary node */

13 c̃′(y)← c̃(y)− r(y)−r′(y)+1
dcut(y)+2 + 1

dcut(y)+1 ;
14 else

/* we compute the distance-based bounds */

15 c̃′(y)← c̃(y) +
∑diam
i=1

1
i+d(y,u)

(
n′i(u)− ni(u)

)
;

16 dcut(y)← diam;
17 if c̃′(y) ≥ xk then

/* we have to run a new BFSCut */
18 (c̃′(y), isExact(y), dcut(y))← BFScut(y,xk);
19 if isExact(y) ∧ c̃′(y) > xk then
20 TopK.insert(c̃′(y), y);
21 if TopK.size() > k then
22 TopK.removeMin();
23 end
24 if TopK.size() = k then
25 xk ← TopK.getMin();
26 end
27 end
28 end
29 end
30 Set c̃, r, ni to c̃′, r′, n′i;

134 computing top-k closeness centrality in fully-dynamic graphs

10.3.3 Update after an edge insertion

We first focus on updating the NBCut top-k closeness algorithm. Before the insertion,
we assume that, for each node y, we know c̃(y), dcut(y) and isExact(y) computed by the
function BFSCut. Also, we assume the nodes are sorted by their c̃ value in a priority queue
Q. After an insertion, affected nodes increase their closeness. One first simple strategy
would be to run BFSCut from each affected node, using as xk the current node with
the k-th highest closeness. This would already save some time compared to the static
algorithm, since no work is performed for unaffected nodes. In the following, we propose
some further improvements. Algorithm 21 shows the pseudocode of the dynamic algorithm.
Initially, Line 1 and Line 2 update the number of reachable nodes and compute the set
A of affected nodes, as described in Section 10.3.1 and Section 10.3.2, respectively. Then
(Lines 3-8), the affected nodes that are among the top k are removed from TopK. For each
affected node y, Lines 10-16 try to efficiently update c̃, in order to avoid a new BFSCut (as
we will see in the following). If this is not possible, Lines 17-28 run BFSCut and update
TopK as in the static algorithm.

skipping far-away nodes. Let y be an affected node such that isExact(y) is false,
i.e., a node for which BFSCut has been interrupted at some cutoff level dcut(y). W.l.o.g.,
let us assume that d(y,u) < d(y, v) if G is undirected. We recall that we know d(·,u) from
the identification of the affected nodes described in Section 10.3.2.
If d(y,u) > dcut(y) and r′(y) = r(y), the upper bound c̃(y) is still valid. Figure 30 (left)

shows this case. The reason for this is that u has not been visited by BFSCut and therefore
the existence of edge (u, v) does not affect the bound in Eq. (26). If d(y,u) > dcut(y) but
r′(y) 6= r(y) (i.e., the insertion has increased the number of nodes reachable from y), we
can simply replace r(y) with r′(y) in Eq. (26), obtaining c̃′(y) = c̃(y)− r(y)

dcut(y)+2 +
r′(y)

dcut(y)+2 .
If c̃(y) < xk, y can therefore be skipped and no BFSCut on G′ has to be run from it. We
call such nodes far-away nodes (Line 11 of Algorithm 21).

skipping boundary nodes. If d(y,u) is equal to dcut(y) (Figure 30, right), then
the bound in Eq. (26) is affected, since the degree of u changes (we recall that ñi+1(y) :=∑
w∈Ni(y) degree(w)). In particular, ñ′dcut(y)+1(y) after the insertion is equal to ñdcut(y)+1(y)+

1, since the degree of u has increased by one. Thus, we can easily compute the new bound
from the old one without running a new BFSCut from y as follows (we use ñi instead of
ñi(y) and dcut instead of dcut(y) for simplicity):

c̃′(y)− c̃(y) = ñdcut+1 + 1
dcut + 1 +

r′(u)−
∑dcut
j=1 nj − ñdcut+1 − 1
dcut + 2 − ñdcut+1

dcut + 1 −
r(u)−

∑dcut
j=1 nj − ñdcut+1

dcut + 2

=
1

dcut + 1 −
r(y)− r′(y) + 1

dcut + 2 .

Boundary nodes are handled in Line 13 of Algorithm 21.

distance-based bounds. The improvements described in the previous two para-
graphs do not apply to affected nodes y for which d(y,u) < dcut(y). Let z be any node
such that d′(y, z) < d(y, z) (if y is affected, there has to exist such a node). Since all
new shortest paths have to go through (u, v) (and thus through u), we can write d′(y, z)
as d′(y,u) + d′(u, z) = d(y,u) + d′(u, z), since the distance from y to u cannot change

10.3 dynamic top-k closeness centrality 135

as a consequence of the insertion of (u, v). As for d(y, z), there are two options: either
u was part of a shortest path from y to z also before the insertion – and thus d(y, z) =
d(y,u) + d(u, z), or there was a shorter path from y to z not going through u – and there-
fore d(y, z) < d(y,u) + d(u, z). In both cases, we can say that d(y, z) ≤ d(y,u) + d(u, z).
Putting this together, we get 1

d′(y,z) −
1

d(y,z) ≤
1

d(y,u)+d′(u,z) −
1

d(y,u)+d(u,z) . Thus:

c′(y)− c(y) =
∑
z∈V

(1
d′(y, z) −

1
d(y, z)

)

≤
∑
z∈V

(1
d(y,u) + d′(u, z) −

1
d(y,u) + d(u, z)

)

≤
diam∑
i=1

1
i+ d(y,u) (n

′
i(u)− ni(u))

(27)

where diam is the diameter of G. Notice that Eq. (27) implies that, if c̃(y) is an upper
bound on c(y), then c̃′(y) := c̃(y) +

∑diam
i=1

1
i+d(y,u) (n

′
i(u)− ni(u)) is an upper bound on

c′(y). The values (n′i(u)− ni(u)) can be easily computed with one BFS from u in G and
G′ (this can also be combined with the BFSs we run to identify the affected node, see
Section 10.3.2). Then, for each affected node that is neither a boundary node nor a far-
away node, we compute a new upper bound as in Eq. (27). If this is still smaller than
xk, no BFSCut has to be performed from the node. Notice that the computation of the
new bound requires Θ(diam) operations. Since the diameter in complex networks is very
small (often assumed to be constant), this is much faster than running a BFSCut, which
can take up to Θ(n+m) time. The distance-based bounds are computed in Line 15 of
Algorithm 21. In Line 16, we set dcut(y) to diam to indicate that the current bound is not
a result of a BFSCut and should not be used in the future to skip far-away or boundary
nodes.

updating nbbound. So far we described how to update top-k closeness assuming
that NBCut has been run on the initial graph. We recall that NBBound only runs
complete BFSs, until we find k nodes whose closeness is higher than the upper bounds on
the remaining nodes. Thus, there is no cutoff threshold that we can use to skip far-away or
boundary nodes. However, we can still make some considerations. First, also in this case
c(y) and c̃(y) of unaffected nodes are still valid and do not need to be changed. Also, the
distance-based bounds described in the previous paragraph can be applied to NBBound
as well. If there are nodes y whose new bound is higher than the k-th highest closeness
value, we run a BFS from y. We stop when there is no affected node left whose c̃ is higher
than TopK[k], similarly to the static algorithm. Algorithm 22 shows the pseudocode.

10.3.4 Update After an Edge Deletion

In some sense, edge deletions are easier to handle than edge insertions. Indeed, since
closeness can only decrease as a consequence of a deletion, nothing needs to be done in
case none of the top-k nodes is affected (whereas for insertions there could be nodes that
increase their closeness and “overtake” the previous top k). Also, notice that for affected
nodes the previous upper bounds are still valid (although they might be less tight). If for

136 computing top-k closeness centrality in fully-dynamic graphs

Exact

dcut

y

u v

Exact

dcut
u

v

y

Figure 30: Left: u and v are far-away nodes for y. Right: u is a boundary node.

some affected node y we know the exact closeness c(y) before the insertion, this becomes
now an upper bound on the closeness of y in the new graph (thus, we set isExact(y) to
true).
Once this is done, the algorithm goes through the nodes in Q ordered by c̃. If we find

some node y for which isExact(y) = false, then we compute its new c′(y) and update its
priority in Q. We stop when isExact is true for the first k nodes in Q. Notice that this
approach works for both NBCut and NBBound. Algorithm 23 shows the pseudocode for
deletions, based in NBCut. The one based on NBBound is basically the same, with the
difference that in Line 14 we do not run a BFSCut, but a BFSbound.

Algorithm 22: Recomputation of the top-k nodes after an edge insertion (based on
NBBound).
Data: G = (V ,E), (u, v) /∈ E
Result: Top-k nodes with the highest closeness in G′ := (V ,E ∪ {u, v})

1 Compute the set A of affected nodes, d(·,u), d′(·,u);
2 forall the w ∈ A do
3 if w ∈ TopK then
4 TopK.remove(w);
5 end
6 end
7 Q← ∅;
8 foreach y ∈ A do

/* we update the bounds on the affected nodes */

9 c̃′(y)← c̃(y) +
∑diam
i=1

1
i+d(y,u)

(
n′i(u)− ni(u)

)
;

10 insert y into Q with priority c̃′(y);
11 end
12 while Q is not empty do
13 y ← Q.extractMax();
14 if |TopK| ≥ k and c̃(y) > TopK[k] then return TopK;
15 c(y)← updateBoundsLB(v); // This function might also modify c̃
16 add y to TopK, and sort TopK according to c;
17 update Q according to the new bounds;
18 end

10.3.5 Running Times and Memory Requirements

The update of the number of reachable nodes described in Section 10.3.1 takes O(n+m)

in the worst case – the time to run a BFS from scratch. Computing the set of affected

10.3 dynamic top-k closeness centrality 137

Algorithm 23: Recomputation of the top-k nodes after an edge deletion (based on
NBCut).
Data: G = (V ,E), (u, v) /∈ E
Result: Top-k nodes with the highest closeness in G′ := (V ,E ∪ {u, v})
Assume :Q = priority queue with nodes sorted by c̃;

1 Compute r′(y) ∀y ∈ V ;
2 Compute the set A of affected nodes, d(·,u), d′(·,u);
3 forall the w ∈ A do
4 if w ∈ TopK then
5 TopK.remove(w);
6 end
7 isExact(w)← false;
8 end
9 xk ← 0;

10 while Q is not empty do
11 y ← Q.extractMax();
12 if |TopK| ≥ k and c̃(y) > TopK[k] then return TopK;
13 if not isExact(y) then

/* We run a new BFSCut */
14 (c̃′(y), isExact(y), dcut(y))← BFScut(y,xk);
15 end
16 if isExact(y) ∧ c̃′(y) > xk then
17 TopK.insert(c̃′(y), y);
18 if TopK.size() > k then
19 TopK.removeMin();
20 end
21 if TopK.size() = k then
22 xk ← TopK.getMin();
23 end
24 end
25 end
26 Set c̃, r, ni to c̃′, r′, n′i;

nodes takes Θ(n +m) time, since we need to run a BFS from u in G and G′ (in the
graph is undirected, also from v). Then, the algorithms described in Section 10.3.3 and
Section 10.3.4 have to run, in the worst case, a BFSCut (or BFSbound, if we are considering
the algorithm based on NBBound) for each affected node. Since the worst-case running
time of both BFSCut and BFSbound is O(n+m) (see Chapter 9), in the worst case the
running time of the dynamic algorithms is O(|A|(n+m)), where |A| is the number of
affected nodes. However, we will see in Section 10.4 that the number of calls to BFSCut
is usually a small fraction of the total number of affected nodes (which is, in turn, often
only a small fraction of the total number of nodes).
Concerning memory, our algorithms need to store the bound c̃(y), isExact(y), the number

r(y) of reachable nodes and the cutoff distance dcut(y), for each v ∈ V (as well as the list
TopK with the k nodes with maximum closeness). This requires only Θ(n) memory, which
is asymptotically the same as the static top-k algorithms.

138 computing top-k closeness centrality in fully-dynamic graphs

10.4 experiments

10.4.1 Experimental Setup

data sets. We test our algorithms on numerous directed and undirected real-world
complex networks (e. g., social networks or web graphs) and street networks. All of them
can be retrieved from the public repositories SNAP (snap.stanford.edu), LASAGNE
(lasagne-unifi.sourceforge.net), KONECT (konect.uni-koblenz.de/networks) and
GEOFABRIC (download.geofabrik.de); the graphs are listed in Tables 31, 32 and 33.
Since the street networks in Table 33 are all directed, we also consider an undirected
version of them, by ignoring the direction of edges (multiple edges between nodes are ig-
nored). For each tested graph, we either add or remove 100 edges one at a time and run
the dynamic algorithm after each update. Due to time constraints, we only run the static
algorithm once every 10 updates (this does not affect results considerably, since the run-
ning time of the static algorithm is always approximately the same). For edge insertions
we remove 100 random edges from the original graph before running the algorithms, and
then add them one-by-one (a motivation for this technique can be found in Section 3.2.2),
whereas for deletions we just delete 100 random edges.

Graph Nodes Edges

polblogs 1224 19025
p2p-Gnutella08 6301 20777
wiki-Vote 7115 103689
p2p-Gnutella09 8114 26013
p2p-Gnutella06 8717 31525
p2p-Gnutella04 10876 39994
freeassoc 14213 72176
as-caida20071105 26475 106762
p2p-Gnutella31 62586 147892
soc-Epinions1 75879 508837
web-Stanford 281903 2312497
web-NotreDame 325729 1469679
wiki-Talk 2394385 5021410
cit-Patents 3774768 16518948

Table 31: Overview of directed complex net-
works used in the experiments.

Graph Nodes Edges

HC-BIOGRID 4039 10321
Mus_musculus 4610 5747
Caenorhabditis_elegans 4723 9842
ca-GrQc 5241 14484
advogato 7418 48037
hprd_pp 9465 37039
ca-HepTh 9877 25998
Drosophila_melanogaster 10625 40781
oregon1_010526 11174 23409
oregon2_010526 11461 32730
Homo_sapiens 13690 61130
GoogleNw 15763 148585
dip20090126_MAX 19928 41202
ca-HepPh 12008 118521
CA-AstroPh 18772 198110
CA-CondMat 23133 93497
email-Enron 36692 183831
loc-brightkite 58228 214078
gowalla 196591 950327
com-dblp 317080 1049866
com-amazon 334863 925872
com-youtube 1134890 2987624

Table 32: Overview of undirected complex net-
works used in the experiments.

implementation and settings. Since NBCut outperforms NBBound on com-
plex networks, we only use NBCut and the new dynamic algorithm based on it (Al-
gorithms 21 and 23) for our experiments on complex networks. Similarly, we only use

snap.stanford.edu
lasagne-unifi.sourceforge.net
konect.uni-koblenz.de/networks
download.geofabrik.de

10.4 experiments 139

Graph Nodes Edges

maldives 22591 27088
faroe-islands 31097 31974
liechtenstein 54972 56616
isle-of-man 61082 63793
equatorial-guinea 80262 82245
malta 91188 101437
belize 96977 103198
azores 237174 243185

Table 33: Overview of street networks used in the experiments.

NBBound and the dynamic algorithm based on it for our experiments on street networks.
We recall that our dynamic algorithm for directed graphs uses the number of nodes in
the weakly connected components instead of the bound originally proposed in Chapter 9.
However, for the static case, we use the original bound, in order to make a fair comparison.
We recall that all algorithms are exact, i.e., they find the k nodes with highest closeness
and their exact scores, so they only differ in their running time and not in the results they
find.
The machine we used for our experiments is a shared-memory server equipped with 256

GB RAM and 2 x 8 Intel(R) Xeon(R) E5-2680 cores at 2.7 GHz of which we use only one
since we executed our algorithms sequentially (i. e., using a single thread). The code has
been written in C++ and uses the open-source NetworKit framework [119]. We plan to
publish our code in future releases of the package.

10.4.2 Speedups on Recomputation

dynamic complex networks. First, we study the effect of the optimizations
proposed in Section 10.3.3. Table 35 in Section 10.4.2 contains the average number of
affected nodes over the tested edge insertions and the percentage of nodes skipped due to
each of the optimizations in undirected graphs (results for k = 10). The average number of
affected nodes is never higher than 34% of the total number of nodes. Also, in all graphs,
skipping far-away nodes allows us to ignore the vast majority of affected nodes after an
update. Combined with the cheap updates for boundary nodes and applying the distance-
based bounds, we need to run a new BFSCut for less than 1% of the affected nodes on
most graphs. Notice that the column BFScuts contains the percentage of affected nodes
for which we run a new BFSCut. The percentage of the total number of nodes is therefore
much smaller. Table 34 shows the results for the directed case. Compared to undirected
graphs, insertions typically affect smaller portions of the graph (average values at most
≈ 7%). Among them, usually a smaller percentage (compared to undirected graphs) are
far-away nodes, probably because mostly nodes that are very close to the inserted edge
are affected. However, several nodes are skipped because of the distance-based bounds,
resulting in a very small number of BFSs. The highest numbers are for p2p-Gnutella08,
for which the BFScuts are ≈ 31% of the affected nodes and ≈ 1.5% of the total.
The speedups (ratio between the running times) of our dynamic algorithm on the static

one for complex networks are summarized in the lower part of Figure 31. Table 36 and
Table 37 report the detailed values for insertions in directed and undirected graphs, re-

140 computing top-k closeness centrality in fully-dynamic graphs

spectively. For undirected networks, the geometric mean of the speedups (over the 100
edge insertions) are always at least in the double-digit range (with the only exception of
Mus_musculus, where the average speedup for k = 1 is 8.4). Also, the speedups grow for
bigger values of k, reaching an average speedup (over all tested undirected networks) of
123 for k = 100. Although for directed graphs the average speedups vary a lot (from ≈ 10
for as-caida20071105 to ≈ 3368 for web-Stanford, for k = 1), the results are mostly
even better than for the undirected case: the average speedups over all tested networks
are 62 for k = 1, 93 for k = 10 and 174 for k = 100. This can be explained by the smaller
number of affected nodes in directed networks (see Tables 35 and 34).
Tables 38 and 39 show the results for edge deletions (on directed and undirected graphs,

respectively). Interestingly, deletions are mostly faster than insertions for directed graphs,
whereas they are usually slower in the undirected case. For most shortest-path based prob-
lems insertions are easier than deletions: for example, pairwise distances can be updated
in time O(n2) after an edge insertion, but not after an edge deletion [44]. In our case,
we know deletions can only decrease centrality. Thus, all previous upper bounds on the
centralities are still valid and, if none of the top-k nodes is affected, nothing needs to be
updated. In insertions, on the contrary, any affected node could increase its centrality and
become one of the top-k. If the number of affected nodes is small (as it is usually the
case for directed graphs, see Table 34), it is quite unlikely that a top-k node is among the
affected ones. This happens much more often in undirected graphs, where a larger number
of nodes is often affected. As for insertions, the speedups increase with k: for directed
graphs, the geometric mean of the speedups is 74 for k = 1, 160 for k = 10 and 314 for
k = 100, whereas for undirected graphs it is 12.5 for k = 1, 25.8 for k = 10 and 50.2
for k = 100. All detailed running times for both insertions and deletions can be found in
Tables 40, 41, 42 and 43.

dynamic street networks. Tables 44, 45, 46 and 47 show the speedups for street
networks, for both edge insertions and deletions, on directed and undirected graphs. Fig-
ure 31 summarizes all results for both complex and street networks (the results for street
networks are in the upper part of the figure). As for complex networks, speedups in street
networks are considerably higher in the directed case. However, differently from complex
networks, speedups generally decrease as k increases. In this respect, notice that the run-
ning times of the static algorithm (Tables 48, 49, 50 and 51) do not change considerably for
different values of k (at least, compared to most complex networks). On the other hand, if
k is larger, it is also more likely that some of the affected nodes is either among the top-k
or overtakes one of the top-k, slowing down the dynamic algorithm. Nevertheless, even for
k = 100, the dynamic algorithm is on average ≈ 49 times faster than recomputation for
insertions in undirected street networks and ≈ 242 times in directed street networks. The
results for deletions are even better: ≈ 67 in the undirected case and ≈ 519 in the directed
one. The results are significantly better for k = 1, reaching an average speedup of ≈ 848
for edge deletions in directed graphs, and ≈ 187 in undirected graphs.

bibliographic notes

The results presented in this chapter are joint work with Patrick Bisenius, Eugenio Ang-
riman and Henning Meyerhenke and have been accepted for publication at the Twentieth
Workshop on Algorithm Engineering and Experiments (ALENEX 2018). Preliminary re-

10.4 experiments 141

0 100 200 300 400 500 600 700 800 900

Geometric mean of the speedups

Additions
Directed

Additions
Undirected

Deletions
Directed

Deletions
Undirected

Additions
Directed

Additions
Undirected

Deletions
Directed

Deletions
Undirected

C
o
m

p
le

x
S
tr

e
e
t

k = 1

k = 10

k = 100

Figure 31: Geometric mean of the average speedups over all tested networks, for different values
of k. The upper part of the plot shows the results for street networks, whereas the
lower part shows the results for complex networks. Detailed numbers can be found in
Table 36, 37, 38 and 39 for complex networks, and Tables 44, 45, 46 and 47 for street
networks.

sults are part of Patrick Bisenius’s Master Thesis, entitled “Computing Top-k Closeness
Centrality in Fully-dynamic Graphs”.

142 computing top-k closeness centrality in fully-dynamic graphs

Graph affected % affected far-away boundary dist. bound BFScuts

polblogs 39 3.166% 41.084% 13.265% 36.310% 9.342%
p2p-Gnutella08 311 4.942% 42.941% 19.577% 6.102% 31.380%
wiki-Vote 31 0.440% 0.287% 0.255% 79.355% 20.102%
p2p-Gnutella09 426 5.245% 50.895% 17.709% 12.175% 19.220%
p2p-Gnutella06 589 6.752% 60.853% 20.203% 7.343% 11.601%
p2p-Gnutella04 773 7.108% 67.576% 17.189% 6.639% 8.597%
freeassoc 323 2.273% 0.000% 0.000% 95.220% 4.780%
as-caida20071105 2076 7.843% 87.803% 11.912% 0.247% 0.038%
p2p-Gnutella31 2895 4.625% 71.353% 13.087% 10.360% 5.200%
soc-Epinions1 659 0.868% 13.611% 38.786% 20.705% 26.898%
wiki-Talk 3411 0.142% 96.579% 3.306% 0.106% 0.009%
web-Stanford 10968 3.891% 66.812% 12.232% 14.690% 6.265%
web-NotreDame 3896 1.196% 94.599% 2.200% 3.112% 0.090%
cit-Patents 161 0.004% 0.000% 0.000% 99.901% 0.099%

Table 34: Impact of optimizations in directed networks for k = 10, averaged over 100 insertions.
The column “affected” contains the average number of affected nodes and “% affected” its
percentage of the total number of nodes. The next three columns report the percentage
of affected nodes that can be skipped for each optimization and the last column the
percentage of affected nodes for which a BFSCut has been run.

Graph affected % affected far-away boundary dist. bound BFScuts

HC-BIOGRID 598 14.812% 61.555% 8.876% 27.527% 2.043%
Mus_musculus 1556 33.762% 62.127% 7.547% 29.682% 0.644%
Caenorhabditis_elegans 508 10.758% 70.768% 6.794% 21.452% 0.986%
ca-GrQc 690 13.170% 81.017% 7.090% 10.792% 1.101%
advogato 281 3.784% 58.696% 18.037% 21.496% 1.771%
hprd_pp 731 7.728% 92.468% 5.731% 1.471% 0.329%
ca-HepTh 1362 13.795% 89.968% 5.780% 2.641% 1.611%
Drosophila_melanogaster 836 7.872% 85.411% 10.178% 2.483% 1.927%
oregon1_010526 1932 17.288% 76.625% 22.486% 0.805% 0.084%
oregon2_010526 1470 12.824% 76.226% 22.781% 0.774% 0.220%
Homo_sapiens 692 5.054% 93.008% 5.686% 1.003% 0.304%
GoogleNw 838 5.316% 39.976% 59.204% 0.717% 0.103%
dip20090126_MAX 3082 15.467% 44.315% 11.963% 35.153% 8.569%
ca-HepPh 745 6.204% 77.089% 3.473% 18.230% 1.208%
CA-AstroPh 795 4.233% 93.756% 4.596% 1.506% 0.142%
CA-CondMat 3026 13.081% 93.658% 5.090% 1.050% 0.202%
email-Enron 2097 5.716% 93.122% 6.144% 0.665% 0.069%
loc-brightkite 5973 10.259% 72.360% 7.362% 19.820% 0.459%
gowalla 16581 8.434% 74.731% 1.456% 23.786% 0.026%
com-dblp 67781 21.377% 92.218% 2.708% 5.044% 0.029%
com-amazon 71059 21.220% 88.512% 3.888% 7.057% 0.543%
com-youtube 101963 8.984% 86.257% 12.424% 0.908% 0.411%

Table 35: Impact of optimizations in undirected complex networks for k = 10, averaged over 100
insertions. The column “affected” contains the average number of affected nodes and “%
affected” its percentage of the total number of nodes. The next three columns report
the percentage of affected nodes that can be skipped for each optimization and the last
column the percentage of affected nodes for which a BFSCut has been run.

10.4 experiments 143

Graph k = 1 k = 10 k = 100
gmean min max gmean min max gmean min max

polblogs 41.6 11.3 67.5 78.5 1.9 149.2 146.8 3.5 252.4
p2p-Gnutella08 18.9 1.7 34.1 32.6 0.7 268.6 53.7 1.2 503.1
wiki-Vote 52.6 2.0 85.1 53.1 1.2 156.0 191.4 7.2 298.2
p2p-Gnutella09 37.8 5.8 75.5 24.7 1.0 189.3 45.7 1.3 707.7
p2p-Gnutella06 21.4 9.4 34.7 26.0 1.4 210.2 45.8 1.8 689.9
p2p-Gnutella04 23.9 9.0 35.3 30.6 2.2 277.6 34.4 2.4 804.3
freeassoc 433.8 91.2 685.8 347.4 1.6 766.1 403.1 11.8 831.6
as-caida20071105 9.6 2.7 12.7 14.1 2.1 19.5 99.3 3.9 221.2
p2p-Gnutella31 76.1 16.4 194.2 48.0 3.1 491.8 21.2 1.1 1084.7
soc-Epinions1 11.1 0.1 73.8 35.1 0.1 386.7 84.7 0.3 1284.7
web-Stanford 3367.6 0.4 21500.8 3364.7 0.6 28577.8 5270.0 0.9 41562.7
web-NotreDame 50.7 12.5 72.3 569.7 6.0 901.6 1363.2 15.2 2560.3
wiki-Talk 14.5 11.1 15.7 43.6 6.0 51.2 174.3 11.1 235.0
cit-Patents 1699.1 1127.4 1897.9 2237.3 823.2 2636.3 2513.0 365.6 3393.6

(geometric) mean 61.9 6.8 118.2 93.9 2.3 362.7 174.7 3.8 922.6

Table 36: Speedups on recomputation over 100 edge insertions in directed complex networks, for
k ∈ {1, 10, 100}. The column “gmean” contains the geometric mean of the achieved
speedups, “min” and “max” the minimum and the maximum speedup.

Graph k = 1 k = 10 k = 100
gmean min max gmean min max gmean min max

HC-BIOGRID 37.8 6.1 65.3 42.0 6.2 97.0 79.0 4.9 332.4
Mus_musculus 8.4 3.6 39.6 14.0 3.7 101.8 20.5 2.6 358.4
Caenorhabditis_elegans 12.1 3.7 17.5 18.9 3.7 35.9 35.7 2.9 162.6
ca-GrQc 25.9 8.5 84.3 39.7 7.2 159.7 53.4 3.4 420.9
advogato 37.5 11.8 42.6 62.1 2.6 108.2 107.4 3.2 268.3
hprd_pp 18.1 4.4 26.5 31.8 3.6 55.2 51.8 3.6 323.1
ca-HepTh 30.8 3.6 205.9 36.8 4.7 385.0 54.7 4.4 957.5
Drosophila_melanogaster 19.3 5.3 27.0 59.6 9.5 156.1 60.2 3.5 272.6
oregon1_010526 12.2 2.9 19.4 15.1 2.4 29.5 50.8 2.6 225.4
oregon2_010526 16.7 3.8 24.1 22.4 2.9 44.8 80.8 3.4 258.8
ca-HepPh 365.4 15.6 704.1 397.6 3.7 3352.4 487.0 7.1 972.2
Homo_sapiens 20.6 5.5 26.6 34.8 6.2 64.2 59.1 4.8 424.8
GoogleNw 31.3 8.8 36.9 798.4 78.8 1045.3 886.6 11.4 1452.1
CA-AstroPh 133.1 6.8 288.1 280.1 28.5 414.5 418.4 11.3 6602.3
dip20090126_MAX 53.1 6.5 645.1 54.1 6.2 1096.5 57.1 9.3 1878.0
CA-CondMat 35.8 9.3 183.8 50.1 5.0 417.8 94.7 3.3 1458.5
email-Enron 56.0 2.0 267.2 105.9 11.0 442.8 222.6 5.2 446.8
loc-brightkite 23.2 4.3 33.1 133.2 2.9 1200.6 132.9 5.0 2028.6
gowalla 15.9 3.8 22.1 142.1 8.4 257.3 936.0 6.7 3463.2
com-dblp 140.1 17.6 282.7 130.4 15.1 357.3 108.7 4.7 766.4
com-amazon 445.1 19.6 1389.8 304.6 8.8 1853.6 518.3 9.0 5538.1
com-youtube 11.6 2.8 17.0 505.9 4.1 2122.3 479.2 2.0 3669.0

(geometric) mean 34.6 5.9 77.3 75.7 6.3 265.9 123.3 4.6 790.7

Table 37: Speedups on recomputation over 100 edge insertions in undirected complex networks,
for k ∈ {1, 10, 100}. The column “gmean” contains the geometric mean of the achieved
speedups, “min” and “max” the minimum and the maximum speedup.

144 computing top-k closeness centrality in fully-dynamic graphs

Graph k = 1 k = 10 k = 100
gmean min max gmean min max gmean min max

polblogs 43.0 29.7 47.7 94.7 78.4 102.5 106.6 61.2 151.3
p2p-Gnutella08 16.6 2.0 31.6 59.2 0.8 229.6 114.2 2.5 523.9
wiki-Vote 32.1 28.6 33.9 61.2 59.1 63.3 98.2 32.4 116.7
p2p-Gnutella09 36.6 8.4 75.2 36.1 1.1 182.4 35.7 4.3 155.7
p2p-Gnutella06 45.0 13.4 53.4 33.4 1.6 148.9 145.0 4.8 614.4
p2p-Gnutella04 23.5 8.9 27.4 63.7 5.2 236.2 89.7 7.7 794.0
freeassoc 373.5 305.6 1412.8 397.8 331.3 1398.6 332.1 72.2 1683.0
as-caida20071105 8.6 8.1 8.8 14.0 12.1 14.5 154.2 124.5 161.9
p2p-Gnutella31 68.8 10.3 220.0 132.5 2.9 652.2 190.4 7.5 1585.5
soc-Epinions1 41.1 37.0 43.4 138.6 108.7 165.0 629.3 266.8 754.6
web-Stanford 3796.1 3711.1 3887.1 6019.9 4281.5 55778.7 9471.6 6989.9 104810.2
web-NotreDame 58.7 49.6 69.6 859.7 781.9 896.5 2353.9 2166.3 2486.6
wiki-Talk 21.6 20.1 22.8 81.1 75.8 84.8 348.4 335.9 366.2
cit-Patents 3717.3 2923.6 4394.9 6357.6 3543.7 7096.1 3472.4 180.5 7523.4

(geometric) mean 73.9 38.8 104.3 159.9 40.9 360.5 314.3 62.2 879.0

Table 38: Speedups on recomputation over 100 edge deletions in directed complex networks, for
k ∈ {1, 10, 100}. The column “gmean” contains the geometric mean of the achieved
speedups, “min” and “max” the minimum and the maximum speedup.

Graph k = 1 k = 10 k = 100
gmean min max gmean min max gmean min max

HC-BIOGRID 8.8 1.8 15.2 11.3 1.3 24.6 24.2 2.4 86.8
Mus_musculus 6.0 2.9 104.8 9.6 2.8 350.2 13.9 2.2 679.9
Caenorhabditis_elegans 4.2 1.6 6.3 6.1 1.5 13.2 12.9 1.8 58.8
ca-GrQc 17.1 1.7 339.4 22.6 2.2 576.8 39.8 2.4 1679.5
advogato 11.1 2.4 407.8 20.7 1.1 1207.4 35.9 1.4 3046.0
hprd_pp 5.6 1.6 6.9 8.2 1.4 14.4 22.9 1.3 86.3
ca-HepTh 12.7 1.3 478.3 17.2 1.2 937.3 27.3 2.0 2436.8
Drosophila_melanogaster 5.6 1.6 6.8 21.3 1.4 39.2 20.3 1.7 69.7
oregon1_010526 3.9 2.0 5.1 4.5 1.7 7.9 14.9 1.6 63.1
oregon2_010526 4.6 2.0 5.9 6.1 1.5 11.3 20.2 2.4 66.0
ca-HepPh 116.8 1.0 8902.1 109.4 1.0 9336.2 129.7 1.0 12759.1
Homo_sapiens 5.5 1.9 6.5 9.1 1.2 15.8 31.5 1.5 106.9
GoogleNw 9.1 2.3 13.0 149.5 1.0 354.1 164.7 1.1 507.9
CA-AstroPh 65.6 1.1 4020.2 88.4 1.1 5886.6 207.8 1.1 18076.6
dip20090126_MAX 89.4 1.7 182.4 81.2 1.4 264.5 102.9 1.8 487.4
CA-CondMat 13.5 2.2 470.7 21.4 1.3 996.5 47.2 1.8 3807.3
email-Enron 17.1 1.3 780.5 30.1 7.6 1204.6 63.5 4.8 3607.3
loc-brightkite 6.0 1.6 230.0 40.2 1.1 2566.3 45.6 1.4 4319.3
gowalla 4.6 2.2 5.4 36.2 1.2 60.0 336.8 1.3 836.0
com-dblp 37.3 2.7 81.6 39.3 2.3 101.9 50.3 1.9 219.3
com-amazon 155.9 8.1 461.2 99.4 3.0 539.6 211.3 9.5 1595.0
com-youtube 3.4 1.9 4.4 117.4 1.0 585.6 156.9 1.1 1029.9

(geometric) mean 12.5 1.9 70.0 25.8 1.5 213.6 50.2 1.8 662.9

Table 39: Speedups on recomputation over 100 edge deletions in undirected complex networks,
for k ∈ {1, 10, 100}. The column “gmean” contains the geometric mean of the achieved
speedups, “min” and “max” the minimum and the maximum speedup.

10.4 experiments 145

Graph k = 1 k = 10 k = 100
static [s] dynamic [s] static[s] dynamic [s] static [s] dynamic [s]

polblogs 0.0121 0.0003 0.0298 0.0004 0.0586 0.0004
p2p-Gnutella08 0.0148 0.0008 0.1026 0.0031 0.2636 0.0049
wiki-Vote 0.0536 0.0010 0.0969 0.0018 0.1857 0.0010
p2p-Gnutella09 0.0446 0.0012 0.1072 0.0043 0.3640 0.0080
p2p-Gnutella06 0.0242 0.0011 0.1293 0.0050 0.4541 0.0099
p2p-Gnutella04 0.0323 0.0013 0.2238 0.0073 0.8322 0.0242
freeassoc 0.2658 0.0006 0.2977 0.0009 0.3493 0.0009
as-caida20071105 0.0416 0.0043 0.0702 0.0050 0.7898 0.0079
p2p-Gnutella31 0.8200 0.0108 2.4506 0.0511 6.0270 0.2841
soc-Epinions1 0.8373 0.0752 2.9520 0.0840 12.7048 0.1500
web-Stanford 207.7361 0.0617 288.4620 0.0857 406.5858 0.0772
web-NotreDame 1.1105 0.0219 13.9541 0.0245 40.1074 0.0294
wiki-Talk 2.9550 0.2035 9.6525 0.2212 43.4118 0.2491
cit-Patents 351.6200 0.2069 371.7316 0.1662 428.1452 0.1704

Table 40: Update times for 100 random edge insertions with k ∈ {1, 10, 100} in directed complex
networks. The columns “static” and “dynamic” contain the average time for the static
and dynamic algorithm, respectively.

Graph k = 1 k = 10 k = 100
static [s] dynamic [s] static [s] dynamic [s] static [s] dynamic [s]

HC-BIOGRID 0.0317 0.0008 0.0527 0.0013 0.1791 0.0023
Mus_musculus 0.0083 0.0010 0.0260 0.0019 0.0976 0.0048
Caenorhabditis_elegans 0.0106 0.0009 0.0217 0.0011 0.0980 0.0027
ca-GrQc 0.0270 0.0010 0.0469 0.0012 0.1324 0.0025
advogato 0.0491 0.0013 0.1289 0.0021 0.3229 0.0030
hprd_pp 0.0339 0.0019 0.0708 0.0022 0.4217 0.0081
ca-HepTh 0.0705 0.0023 0.1328 0.0036 0.3514 0.0064
Drosophila_melanogaster 0.0385 0.0020 0.2217 0.0037 0.3956 0.0066
oregon1_010526 0.0173 0.0014 0.0263 0.0017 0.2057 0.0040
oregon2_010526 0.0233 0.0014 0.0441 0.0020 0.2568 0.0032
ca-HepPh 1.4801 0.0041 1.5431 0.0039 2.0807 0.0043
Homo_sapiens 0.0506 0.0025 0.1228 0.0035 0.8286 0.0140
GoogleNw 0.0810 0.0026 2.3284 0.0029 3.3147 0.0037
CA-AstroPh 1.0297 0.0077 1.4850 0.0053 4.5794 0.0109
dip20090126_MAX 1.6690 0.0314 2.4519 0.0453 4.5685 0.0800
CA-CondMat 0.1445 0.0040 0.3113 0.0062 1.1810 0.0125
email-Enron 0.3866 0.0069 0.6290 0.0059 1.9659 0.0088
loc-brightkite 0.2249 0.0097 2.3622 0.0177 4.3341 0.0326
gowalla 0.8203 0.0515 9.0723 0.0638 127.8335 0.1366
com-dblp 16.8464 0.1202 20.9283 0.1605 44.7540 0.4117
com-amazon 102.1518 0.2295 118.0336 0.3875 345.3928 0.6663
com-youtube 3.5802 0.3074 427.8860 0.8458 759.7169 1.5854

Table 41: Update times for 100 random edge insertions with k ∈ {1, 10, 100} in undirected complex
networks. The columns “static” and “dynamic” contain the average time for the static
and dynamic algorithm, respectively.

146 computing top-k closeness centrality in fully-dynamic graphs

Graph k = 1 k = 10 k = 100
static [s] dynamic [s] static [s] dynamic [s] static [s] dynamic [s]

polblogs 0.0188 0.0004 0.0401 0.0004 0.0580 0.0005
p2p-Gnutella08 0.0163 0.0010 0.1189 0.0020 0.2669 0.0023
wiki-Vote 0.0527 0.0016 0.0995 0.0016 0.1859 0.0019
p2p-Gnutella09 0.0448 0.0012 0.1087 0.0030 0.3623 0.0101
p2p-Gnutella06 0.0444 0.0010 0.1245 0.0037 0.5147 0.0035
p2p-Gnutella04 0.0307 0.0013 0.2646 0.0042 0.8984 0.0100
freeassoc 0.2904 0.0008 0.3084 0.0008 0.3455 0.0010
as-caida20071105 0.0422 0.0049 0.0713 0.0051 0.7937 0.0051
p2p-Gnutella31 0.8146 0.0118 2.5231 0.0190 6.1104 0.0321
soc-Epinions1 0.8558 0.0208 2.9626 0.0214 12.7745 0.0203
web-Stanford 207.5102 0.0547 276.8251 0.0460 406.2662 0.0429
web-NotreDame 1.1191 0.0191 13.9595 0.0162 40.1689 0.0171
wiki-Talk 2.8892 0.1339 9.8011 0.1208 43.7422 0.1256
cit-Patents 337.1497 0.0907 375.2206 0.0590 396.8926 0.1143

Table 42: Update times for 100 random edge deletions with k ∈ {1, 10, 100} in directed complex
networks. The columns “static” and “dynamic” contain the average time for the static
and dynamic algorithm, respectively.

Graph k = 1 k = 10 k = 100
static [s] dynamic [s] static [s] dynamic [s] static [s] dynamic [s]

HC-BIOGRID 0.0317 0.0036 0.0496 0.0044 0.1720 0.0071
Mus_musculus 0.0086 0.0014 0.0261 0.0027 0.0989 0.0071
Caenorhabditis_elegans 0.0101 0.0024 0.0209 0.0035 0.0950 0.0073
ca-GrQc 0.0260 0.0015 0.0443 0.0020 0.1297 0.0033
advogato 0.0492 0.0044 0.1272 0.0062 0.3217 0.0090
hprd_pp 0.0339 0.0061 0.0692 0.0084 0.4139 0.0180
ca-HepTh 0.0656 0.0051 0.1278 0.0074 0.3346 0.0122
Drosophila_melanogaster 0.0410 0.0074 0.2310 0.0109 0.4046 0.0199
oregon1_010526 0.0163 0.0042 0.0250 0.0056 0.2009 0.0135
oregon2_010526 0.0235 0.0051 0.0445 0.0073 0.2601 0.0129
ca-HepPh 1.4666 0.0126 1.5403 0.0141 2.1020 0.0162
Homo_sapiens 0.0497 0.0091 0.1217 0.0133 0.8283 0.0263
GoogleNw 0.0875 0.0096 2.3516 0.0157 3.3499 0.0203
CA-AstroPh 1.0323 0.0157 1.4989 0.0170 4.6072 0.0222
dip20090126_MAX 1.6675 0.0187 2.4406 0.0301 4.5202 0.0439
CA-CondMat 0.1444 0.0107 0.3036 0.0142 1.1564 0.0245
email-Enron 0.3726 0.0217 0.6040 0.0201 1.9093 0.0300
loc-brightkite 0.2105 0.0352 2.3587 0.0586 4.3993 0.0964
gowalla 0.8376 0.1825 9.4024 0.2595 131.2249 0.3896
com-dblp 16.0662 0.4307 20.3018 0.5169 43.8383 0.8710
com-amazon 98.1340 0.6294 116.4843 1.1724 349.3862 1.6538
com-youtube 3.6342 1.0569 427.4117 3.6402 751.0728 4.7879

Table 43: Update times for 100 random edge deletions with k ∈ {1, 10, 100} in undirected complex
networks. The columns “static” and “dynamic” contain the average time for the static
and dynamic algorithm, respectively.

10.4 experiments 147

Graph k = 1 k = 10 k = 100
gmean min max gmean min max gmean min max

maldives 485.9 9.3 734.5 482.7 3.7 883.5 584.8 10.9 980.4
faroe-islands 431.5 2.8 13250.3 276.5 1.7 11531.9 148.1 3.2 15783.5
liechtenstein 162.8 6.7 12125.3 159.5 2.2 15470.6 93.2 1.3 27578.6
isle-of-man 193.9 9.4 6855.9 117.3 1.2 7589.3 70.2 3.2 971.1
equatorial-guinea 455.2 8.2 6440.1 453.2 37.1 16065.3 405.8 23.7 21588.5
malta 438.7 20.7 6884.2 519.3 11.0 14307.0 283.3 4.9 13639.7
belize 534.3 70.7 14497.9 502.0 19.2 25484.5 153.7 7.3 28820.4
azores 1181.4 86.6 4154.8 1257.0 63.2 6980.3 1167.9 33.3 5929.5

(geometric) mean 412.3 14.2 6191.9 372.5 7.3 9144.8 241.8 6.7 8220.6

Table 44: Speedups on recomputation over 100 edge insertions in directed street networks, for
k ∈ {1, 10, 100}. The column “gmean” contains the geometric mean of the achieved
speedups, “min” and “max” the minimum and the maximum speedup.

Graph k = 1 k = 10 k = 100
gmean min max gmean min max gmean min max

maldives 285.3 26.0 481.6 311.2 17.1 564.5 308.0 7.6 663.7
faroe-islands 110.2 1.1 4115.4 61.6 1.7 4473.0 36.8 1.2 6374.2
liechtenstein 69.1 7.0 5274.2 37.9 4.6 8756.1 11.2 2.4 13198.3
isle-of-man 49.9 2.4 4410.2 36.2 4.0 4264.1 14.3 2.3 5294.5
equatorial-guinea 86.8 16.8 4434.3 71.6 8.2 6111.2 55.1 4.1 7957.4
malta 107.1 3.9 2902.7 130.7 2.9 4338.3 62.3 2.9 8218.3
belize 86.2 5.3 5135.8 68.1 20.9 9255.8 23.6 4.0 10407.4
azores 220.9 9.1 1318.3 272.3 8.5 2563.5 218.0 8.7 1631.4

(geometric) mean 108.5 5.9 2821.6 90.7 6.2 3950.4 48.8 3.5 4892.4

Table 45: Speedups on recomputation over 100 edge insertions in undirected street networks, for
k ∈ {1, 10, 100}. The column “gmean” contains the geometric mean of the achieved
speedups, “min” and “max” the minimum and the maximum speedup.

Graph k = 1 k = 10 k = 100
gmean min max gmean min max gmean min max

maldives 740.9 29.9 1227.1 795.1 25.8 1338.0 857.4 10.3 1655.0
faroe-islands 809.5 0.8 12583.8 697.2 0.7 13509.7 518.8 0.6 18936.6
liechtenstein 609.7 39.4 11082.1 382.0 27.4 24102.8 214.1 9.2 35979.0
isle-of-man 332.6 10.3 758.7 237.9 7.6 803.2 116.0 5.1 988.9
equatorial-guinea 2018.3 165.4 14889.7 2333.4 78.0 28155.3 2098.5 25.1 35160.2
malta 688.6 169.2 8015.5 613.3 111.1 14959.3 392.5 32.7 17787.7
belize 769.2 11.8 14131.3 556.2 7.3 34348.3 292.8 4.2 46801.4
azores 2049.9 288.8 8574.0 2326.7 150.5 11610.8 1986.6 39.3 13917.1

(geometric) mean 847.7 31.1 6084.0 743.4 20.7 9357.4 519.3 9.0 12082.7

Table 46: Speedups on recomputation over 100 edge deletions in directed street networks, for k ∈
{1, 10, 100}. The column “gmean” contains the geometric mean of the achieved speedups,
“min” and “max” the minimum and the maximum speedup.

148 computing top-k closeness centrality in fully-dynamic graphs

Graph k = 1 k = 10 k = 100
gmean min max gmean min max gmean min max

maldives 328.9 24.5 539.9 389.2 23.1 658.6 404.1 8.9 806.0
faroe-islands 123.6 0.2 1795.7 93.7 0.2 4421.8 55.5 0.3 6637.0
liechtenstein 170.5 16.3 4666.8 57.9 15.7 6926.5 13.8 6.0 11481.9
isle-of-man 94.2 2.4 4243.1 53.2 3.2 4610.9 11.7 2.4 5920.1
equatorial-guinea 399.3 26.6 2919.2 406.2 28.4 4518.0 347.9 8.8 5519.6
malta 182.1 64.0 1306.5 144.3 54.9 1521.2 63.0 18.6 2144.7
belize 95.0 0.1 4535.5 54.0 0.1 6283.8 21.4 0.1 7672.6
azores 334.8 36.4 1314.7 326.8 28.8 1995.2 244.1 11.1 2319.9

(geometric) mean 187.2 5.2 2138.0 135.9 5.2 3076.0 67.2 2.9 4078.9

Table 47: Speedups on recomputation over 100 edge deletions in undirected street networks, for
k ∈ {1, 10, 100}. The column “gmean” contains the geometric mean of the achieved
speedups, “min” and “max” the minimum and the maximum speedup.

Graph k = 1 k = 10 k = 100
static [s] dynamic [s] static [s] dynamic [s] static [s] dynamic [s]

maldives 0.1959 0.0004 0.2038 0.0004 0.2897 0.0005
faroe-islands 4.0750 0.0094 4.2421 0.0153 4.0176 0.0271
liechtenstein 10.2787 0.0631 12.5527 0.0787 18.3544 0.1969
isle-of-man 6.4567 0.0333 7.0189 0.0598 8.3399 0.1188
equatorial-guinea 15.7533 0.0346 15.8417 0.0350 19.8871 0.0490
malta 16.3053 0.0372 17.8396 0.0344 20.9484 0.0739
belize 32.5222 0.0609 34.8647 0.0695 47.5453 0.3092
azores 46.1730 0.0391 52.2209 0.0415 54.7890 0.0469

Table 48: Update times for 100 random edge insertions with k ∈ {1, 10, 100} in directed street
networks. The columns “static” and “dynamic” contain the average time for the static
and dynamic algorithm, respectively.

Graph k = 1 k = 10 k = 100
static [s] dynamic [s] static [s] dynamic [s] static [s] dynamic [s]

maldives 0.1691 0.0006 0.2071 0.0007 0.2508 0.0008
faroe-islands 2.7337 0.0248 1.8672 0.0303 2.8906 0.0786
liechtenstein 9.5222 0.1377 11.2397 0.2963 21.6126 1.9293
isle-of-man 5.4850 0.1100 5.5143 0.1524 7.0543 0.4931
equatorial-guinea 7.5368 0.0868 9.2345 0.1290 10.2358 0.1858
malta 9.0850 0.0849 10.0963 0.0772 13.6970 0.2198
belize 21.6908 0.2517 23.7571 0.3488 38.5866 1.6374
azores 17.4890 0.0792 19.3370 0.0710 25.3668 0.1163

Table 49: Update times for 100 random edge insertions with k ∈ {1, 10, 100} in undirected street
networks. The columns “static” and “dynamic” contain the average time for the static
and dynamic algorithm, respectively.

10.4 experiments 149

Graph k = 1 k = 10 k = 100
static [s] dynamic [s] static [s] dynamic [s] static [s] dynamic [s]

maldives 0.2083 0.0003 0.2424 0.0003 0.2888 0.0003
faroe-islands 3.4412 0.0043 3.6236 0.0052 4.8986 0.0094
liechtenstein 11.2583 0.0185 12.0275 0.0315 17.9281 0.0838
isle-of-man 5.8541 0.0176 6.2707 0.0264 7.6060 0.0656
equatorial-guinea 19.8018 0.0098 19.9973 0.0086 23.3713 0.0111
malta 15.1507 0.0220 14.7942 0.0241 18.3038 0.0466
belize 29.0321 0.0377 31.2502 0.0562 42.3123 0.1445
azores 43.8422 0.0214 45.3105 0.0195 51.5531 0.0260

Table 50: Update times for 100 random edge deletions with k ∈ {1, 10, 100} in directed street
networks. The columns “static” and “dynamic” contain the average time for the static
and dynamic algorithm, respectively.

Graph k = 1 k = 10 k = 100
static [s] dynamic [s] static [s] dynamic [s] static [s] dynamic [s]

maldives 0.1689 0.0005 0.2073 0.0005 0.2535 0.0006
faroe-islands 1.8495 0.0150 2.0199 0.0216 3.0493 0.0549
liechtenstein 9.2484 0.0542 10.2024 0.1761 17.7007 1.2800
isle-of-man 4.7809 0.0508 5.1547 0.0968 6.6677 0.5684
equatorial-guinea 9.2114 0.0231 10.0027 0.0246 12.8164 0.0368
malta 8.6663 0.0476 9.1300 0.0633 12.4407 0.1975
belize 16.8559 0.1775 18.9041 0.3498 30.4396 1.4236
azores 16.5104 0.0493 17.9961 0.0551 23.8098 0.0975

Table 51: Update times for 100 random edge deletions with k ∈ {1, 10, 100} in undirected street
networks. The columns “static” and “dynamic” contain the average time for the static
and dynamic algorithm, respectively.

11
SCAL ING UP GROUP CLOSENESS MAXIMIZAT ION

11.1 introduction

In Chapter 9 and Chapter 10 we presented algorithms for computing the k nodes that
individually have highest closeness. In their seminal work, Borgatti and Everett [52] ex-
tended the concept of centrality to groups of nodes. For a node v and a group S of other
nodes, the distance between v and S is defined as the minimum distance between v and
the elements of S. Then, a group of nodes has high closeness when its average distance to
the other nodes is small. Finding central groups of nodes is an important task for many
applications. For example, in social networks, retailers might want to select a group of
nodes as promoters of their product, in order to maximize the spread among users [69].
In this context, picking the k most central nodes might lead to a large overlap in the set
of influenced nodes, whereas there might be k nodes that are not among the most central
when considered individually, but that influence different areas of the graph.

Closely related to finding the group with highest closeness is p-median, a fundamental
facility location problem in operations research [60]. One can see Group Closeness Max-
imization (GCM) as a special case of p-median: the standard GCM formulation applies
only to graphs without vertex weights, whereas p-median also applies to geometric inputs
and weighted objects (to name only few of the possible generalizations [47]). For p-median,
several (meta)heuristics and approximation algorithms have been proposed over the years
(see [106] for an annotated bibliograohy). Yet, these methods are mostly applicable to
relatively small networks only. In [105], the authors compare state-of-the-art methods on
a street network of Sweden (≈ 190K nodes) and show that existing methods either fail
due to their memory requirements (>32 GB) or take more than 14 hours to find an ap-
proximation. Other recent methods have been shown to scale to inputs with up to 90000
points/nodes [6, 64].
Specifically for GCM, an (1− 1/e)-approximation algorithm has been proposed recently

by Chen et al. [37]. Unfortunately, the algorithm does not scale easily to graphs with more
than about 104 vertices, since it requires to compute pairwise distances. Thus, Chen et
al. proposed in the same paper also a more scalable heuristic without guarantees on the
solution quality.
In this chapter, we present techniques that can reduce considerably the memory and the

number of operations required by the greedy algorithm presented in [37] (in both directed
and undirected networks), without losing its theoretical guarantee on the quality of the
approximation. First, instead of computing and storing all pairwise distances, we use the
algorithm presented in Chapter 9 to find the node with maximum closeness. Then, we
reduce the subsequent computations using pruned SSSPs (Section 11.4.1) and exploiting
the submodularity of the objective function (Section 11.4.2). We also propose an approach
based on bit vectors (Section 11.4.3) which is faster than pruned SSSPs but requires more
memory. In our experiments in Section 11.6, we compare our algorithm (Greedy++) with
the greedy approach presented in [37] and show that Greedy++ is orders of magnitude
faster. Also, we compare Greedy++ with the heuristic proposed in [37] and show that

151

152 scaling up group closeness maximization

Greedy++ is often faster (or has a comparable running time) and that it always finds a
better solution in all our experiments. We also provide an Integer Linear Programming
(ILP) formulation of the GCM problem in Section 11.5 and compare the quality of our
solution with the optimum. Our results show that the solution found by Greedy++ is
actually much better than the theoretical guarantee and the empirical approximation ratio
is never lower than 0.97. Finally, we study the overlap between the group with maximum
closeness and the k nodes with highest closeness and highest degree in real-world networks,
showing that in most cases this is relatively small (between 30% and 60% of the group
size). This confirms the intuition that a central group of nodes is not necessarily composed
of nodes that are individually central.

11.2 preliminaries

We model a network as a graph G = (V ,E) with |V | =: n nodes and |E| =: m edges.
Unless stated explicitly, we assume the graph to be connected (or, if directed, strongly
connected) and unweighted. Let d(u, v) represent the shortest-path distance between node
u and node v. We define the distance between u ∈ V and a set S ⊆ V of nodes as
d(u,S) := mins∈S d(u, s) . Then, the closeness centrality of a set S is:

c(S) :=
n− |S|∑
v/∈S d(S, v) .

The Group Closeness Maximization (GCM) problem is defined as finding a set S? ⊆ V of
a given size k, with maximum group closeness: S? = arg maxS⊆V {c(S) : |S| = k}.

11.3 related work

GCM has been very recently considered in [37], where the authors show that finding
the group with maximum closeness is an NP-hard problem. Also, they propose a greedy
algorithm and prove that the solution found by the algorithm is at most a factor (1− 1/e)
away from the optimum. Since the greedy algorithm is still expensive (its complexity is
Θ(kn2) plus the cost of an APSP, for a group of size k), the authors propose an alternative
heuristic based on sampling. In particular, they first propose a baseline heuristic (BSA),
which basically samples a set of nodes and then selects iteratively the node that minimizes
the distance of the current solution to the samples. Then, they show that the running time
of BSA can be improved by dividing the set of samples in partitions (and they call this
second heuristic Order-based Sampling Algorithm, OSA). However, the two heuristics do
not have the theoretical guarantee of the greedy algorithm, so we do not know how well
they approximate the optimum. Since the algorithm proposed in this chapter builds on
the greedy algorithm of [37], we describe it in more detail in Section 11.3.1.
In [126], an algorithm for computing and maximizing group closeness on disk-resident

graphs has been proposed. The basic idea is to estimate the closeness of a group using the
nodes at distance at most H from the group (where H can be any integer value greater
than 0). Although they show that their approach can scale quite well for small values of H,
there is no guarantee on how close their estimation is to the real centrality of the group.
The problem of finding a central group of nodes has also been considered for betweenness

11.4 a scalable greedy algorithm 153

centrality, for which sampling-based approximation algorithms have been proposed [87,
125].

11.3.1 Greedy approximation algorithm

Chen et al. [37] proposed a greedy approximation algorithm (Greedy) for group closeness.
We recall that the objective is to find a set S? such that S? = arg maxS⊆V {c(S) : |S| = k}.
Greedy runs k iterations, after which it returns a set S. Within each iteration, Greedy adds
to the set S the node u with the largest marginal gain c(S ∪ {u}) − c(S). Since the
objective function c is monotone and submodular (as proven in [37]), Greedy provides a
(1− 1/e)-approximation for the GCM problem, i. e.c(S) ≥ (1− 1/e)c(S?). Algorithm 24
shows the pseudocode of Greedy. In Line 2 the pairwise distances are computed and stored
in the n×n matrices d and M . In each iteration, d always contains the pairwise distances,
whereasM contains, for each node pair (u,w), the distance d(S ∪{u},w). Initially d =M ,
since S = ∅. Then, every time a node s is added to S, M is updated in Line 10. Score
contains c(S ∪ {u}) for each node u, which is computed in Line 13 by summing over
M(u,w), ∀w ∈ V .
Since it needs to store two n× n matrices, the memory requirement of Greedy is Θ(n2).

The running time is Θ(n(m+ n logn)) for the initial APSP computation (when running
a SSSP from each node in a weighted graph) and then Θ(kn2) for the remaining part.

Algorithm 24: Greedy algorithm for GCM [37].
Input : A graph G = (V ,E), a number k
Output : A set S of nodes of size k such that c(S) ≥ (1− 1/e)c(S?)

1 d← APSP(G);
2 M ← APSP(G);
3 Score← {c(u)|u ∈ V };
4 s← arg maxu∈V \SScore[u];
5 S ← {s};
6 while |S| < k do
7 foreach u ∈ V \ S do
8 foreach w ∈ V do
9 if d[u,w] > d[s,w] then

10 M [u,w]← d[s,w];
11 end
12 end

/* Score[u] is set to c(S ∪ {u}) */
13 Score[u]← (n− |S| − 1)/

∑
w∈V \SM [u,w];

14 s← arg maxw∈V \SScore[w];
15 S ← S ∪ {s};
16 end
17 end
18 return S;

11.4 a scalable greedy algorithm

First of all, we notice that we can reduce the memory requirement of Greedy by not
storing the matrices d and S. In fact, to find the first element s0 of S (i. e.the node
with maximum closeness) we can simply use the algorithm NBCut presented in Chapter 9.

154 scaling up group closeness maximization

Algorithm 25: Memory-efficient greedy algorithm.
Input : A graph G = (V ,E), a number k
Output : A set S of nodes of size k such that c(S) ≥ (1− 1/e)c(S?)

1 s0 ← NBCut(G, 1);
2 S ← {s0};
3 SSSP(s0);
4 dS [u]← d(s0,u) ∀u ∈ V ;
5 while |S| < k do
6 foreach u ∈ V \ S do
7 SSSP(u);

/* Score[u] is set to c(S ∪ {u}) */
8 t←

∑
w∈V \S min{d(u,w), dS [w]};

9 Score[u]← (n− |S| − 1)/t;
10 end
11 s← arg maxw∈V \SScore[w];
12 S ← S ∪ {s};
13 SSSP(s);
14 foreach u ∈ V do
15 dS [u]← min{dS [u], d(s,u)};
16 end
17 end
18 return S;

Then, we can use a vector dS containing, for each node v, the distance between S and
v (i.e. dS [v] := d(S, v)). Since initially S is composed of only one element s0, dS simply
contains the distances between s0 and the other nodes, which can be computed with a
SSSP rooted in s0. Then, for each node u ∈ V \S, Lines 8-10 can be replaced with a SSSP
rooted in u where we sum, over each node w visited in the SSSP, the minimum between
dS(w) and d(u,w). This sum is exactly the same as

∑
w∈V \SM [u,w] and can therefore be

used in Line 13 to update Score[u]. The memory-efficient version of Greedy is described
in Algorithm 25. In the pseudocode we report explicitly every time we need to run a SSSP.
In Line 3 and Line 13, the SSSP is needed to compute dS , whereas in Line 7 we need it
to compute Score[u].
Since we have to re-run a SSSP for each node u and for each element of S other than

s0, the running time complexity of the while loop of Algorithm 25 is O(kn(m+ n logn))
(for weighted graphs). The worst-case complexity of finding s0 with NBCut is the same
as that of an APSP (i. e.n(m+ n logn)), although in practice it is basically linear in the
size of the graph (see Chapter 9). For unweighted graphs, the complexity of Algorithm 25
is O(knm), since we can use BFS instead of Dijkstra to compute the SSSPs. Although
the memory requirement is now only Θ(n) (in addition to the memory required to store
the graph), the time complexity is too high to target large networks. For this reason, in
the following we propose improvements that, as we will see in Section 11.6, increase the
scalability of Greedy considerably.

11.4.1 Pruned SSSP

In Line 7 of Algorithm 25, we need to run a SSSP rooted in u to recompute Score[u].
However, the only nodes w for which we need to compute d(u,w) are those for which
d(u,w) < dS [w], i. e.the ones that are closer to u than to S. Indeed, for all the other
nodes, the distance from u does not contribute to the sum in Line 8 and therefore to

11.4 a scalable greedy algorithm 155

Score[u]. Thus, if we know that d(u,w) is larger than or equal to dS [w], we do not need
to visit w in the SSSP. It is not hard to see that, if d(u,w) ≥ dS [w], then the same holds
for all the nodes in the SSSP subtree rooted in w. In fact, let t be a node in the SSSP
subtree of w, i. e.d(u, t) = d(u,w) + d(w, t). There is a path between a node in S and
t going through w of length dS [w] + d(w, t). Therefore dS [t] ≤ dS [w] + d(w, t) ≤ d(u, t).
Figure 32 illustrates this concept. This allows us to prune the SSSP when we find a node
whose distance from u is not smaller than its distance from S. When we visit a new node
w, we compare d(u,w) with dS [w]. If the first is not strictly smaller than the second, we
do not enqueue its neighbors into the SSSP (priority) queue. Notice that, since only nodes
u for which dS [u] ≤ d(s,u) are pruned, the value of dS [u] in Line 15 is not affected, for
any u ∈ V . This means that the solution returned by the improved algorithm is exactly
the same as the solution returned by Algorithm 25.

11.4.2 Submodularity improvement

A function f is submodular whenever f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T), for S ⊆ T .
It is not hard to see that the closeness c of a set is a submodular function [37]. We can use
this property to reduce the number of evaluations of Score (and SSSP computations) in
Lines 7-9. Let us name Si the set S computed by Algorithm 25 in the i-th iteration of the
while loop (Si is the set composed of i elements). Since Si ⊆ Si+1, because of submodularity
c(Si ∪ {u})− c(Si) ≥ c(Si+1 ∪ {u})− c(Si+1). The difference c(Si ∪ {u})− c(Si) is then
the marginal gain ∆(u,Si) (∆i(u), in short) of u with respect to Si.
In other words, we can say that at each iteration of the while loop in Algorithm 25, the

marginal gain of each node can only decrease. Now, let us assume that there is a node s
whose marginal gain ∆i(s) with respect to Si is larger than the marginal gain ∆i−1(u) of
a node u in the previous iteration. This means that the marginal gain of u at iteration
i cannot be larger than ∆i(s) (since ∆i(u) ≤ ∆i−1(u) ≤ ∆i(s)). This allows us to skip
the computation of the score of u in Lines 7 - 9. All we need to do is keep track of the
marginal gain of each node in the previous iteration and compare it with the maximum
marginal gain found in the current iteration. Notice that this improvement is compatible
with the pruned SSSP improvement proposed in the previous section. For the nodes that
cannot be skipped because of what was described in this section, we compute their score
with a pruned SSSP. We name our version of Algorithm 25 using pruned SSSPs and
the submodularity improvement Greedy++. As explained in Section 11.4.1, using pruned
SSSPs does not affect the solution found by the algorithm. The improvement described in
this section might return a different solution only in case there are nodes with the same
marginal gain. Indeed, if there are two nodes u and v with the same marginal gain ∆? and

u

w1

w2
w3s0 s1

Figure 32: Pruned SSSP. If a node w is such that dS [w] ≤ d(u,w), the same holds for the whole
SSSP subtree rooted in w. In the figure, black nodes represent elements of S.

156 scaling up group closeness maximization

such that ∆? ≥ ∆(w) ∀w ∈ V , whether we choose u or v depends on which comes first
in the ordering of the nodes. Nevertheless, this does not influence the guarantee on the
quality of the approximation.
Consequently, the following theorem holds.

Theorem 11.4.1. Let S ⊆ V , |S| = k, be the solution returned by Greedy++. Then, it
holds that c(S) ≥ (1− 1/e)c(S?), where S? = arg maxS⊆V {c(S) : |S| = k}.

11.4.3 Bit-parallel group closeness

To further speed up Greedy++, we propose an optimization for unweighted graphs exploit-
ing bit-level parallelism. Bit-parallel methods try to exploit the fact that computers can
perform bitwise operations on a word at once. Let Bi(u) be a bit vector with the j-th bit
set to 1 if d(u, j) ≤ i and set to 0 otherwise. It is easy to see that Bi(u) =

⊕
v∈N(u)Bi−1(v),

for i ≥ 1, where ⊕ represents a bitwise-OR operation and N(u) are the neighbors of u.
Then, if we indicate the number of ones in a bit vector B as |B|, the closeness c(u) of u can
be expressed as (n− 1)/

∑diam
i=1 i(|Bi(u)| − |Bi−1(u)|), where diam is the diameter of G. A

simple algorithm for computing the closeness of all nodes could therefore work as follows:
Initialize B0(u) as a bit vector with a 1 in position u and 0 everywhere else, for each u ∈ V .
Then, for i = 1, . . . , diam, compute Bi(u) as

⊕
v∈N(u)Bi−1(v). Although the complexity

of this algorithm (O(diam · nm)) is higher than that of running a BFS from each node
(O(nm)), diam is usually very small in complex networks, and bitwise operations are very
fast (see for example [113]).
We can use bitwise operations also to compute group closeness. Similarly to Bi(u), we

can define Bi(S) of a set S as a bit vector where the j-th bit set to 1 if d(S, j) ≤ i. Then,
using ⊗ to indicate a bitwise-AND, and ¬ for a bitwise-NOT, we can prove the following.

Theorem 11.4.2. The node u? with the highest marginal gain with respect to set S is

u? = arg max
u∈V \S

maxD(u)∑
i=0

|Bi(u)⊗¬Bi(S)|

where maxD(u) := max{i ≥ 0 : |Bi(u)⊗¬Bi(S)| > 0}.

Proof. We recall that the marginal gain ∆(u,S) of node u with respect to set S is
c(S ∪ {u}) − c(S). Clearly, ∆(u,S) > ∆(v,S) ⇐⇒

∑
w∈V (d(S,w) − d(S ∪ {u},w)) >∑

w∈V (d(S,w)− d(S ∪ {v},w)), for any two nodes u and v. Now, naming V (u) the set
of nodes w such that d(S,w) > d(u,w), we can write

∑
w∈V (d(S,w)− d(S ∪ {u},w)) as∑

w∈V (u)(d(S,w)− d(u,w)). Thus, the node u? with maximum marginal gain is

arg max
u∈V \S

∑
w∈V (u)

(d(S,w)− d(u,w)) .

For i ≥ 0, |Bi(u)⊗¬Bi(S)| is the number of nodes w such that d(u,w) ≤ i (as they are
in Bi(u)) and d(S,w) > i (as they are not in Bi(S)). Let w be any node in V (u). For each
i such that d(u,w) ≤ i < d(S,w), the bit corresponding to w in Bi(u)⊗¬Bi(S) is set to
1. This means that, for each w ∈ V (u),

∑maxD(u)
i=0 |Bi(u)⊗¬Bi(S)| adds one to the sum a

number of times equal to d(S,w)− d(u,w). This means that
∑maxD(u)
i=0 |Bi(u)⊗¬Bi(S)| =∑

w∈V (u)(d(S,w)− d(u,w)), which proves the theorem.

11.5 ilp formulation of group closeness 157

Theorem 11.4.2 gives us a simple algorithm for finding the node with maximum marginal
gain: First, we compute Bi(S), for i ≤ diam. Then, for each distance i starting from 1 and
for each node u, we compute Bi(u) as

⊕
v∈N(u)Bi−1(v). Notice that, if |Bi(u)⊗¬Bi(S)| =

0 for some value of i, this will also be true for any j > i, so the search from u can be
interrupted at distance i. This is in some sense equivalent to the pruned SSSP described
in Section 11.4.1, but using bit vectors. Also, notice that the algorithm can be combined
with the submodularity improvement in Section 11.4.2. Although using bit vectors can
speed up the algorithm (up to a factor 4, in our experiments in Section 11.6.5), a major
limitation of this approach is its memory requirement: for each node, we need to store a
bit vector of length n, leading to a total of Θ(n2) memory. This yields a tradeoff between
memory and speed.

11.5 ilp formulation of group closeness

To evaluate the quality of the solution found by Greedy++, we want to know how far it
is from the optimum. Computing the closeness centrality of all possible subsets of size k
would clearly be prohibitive even for tiny networks. Hence, we formulate GCM as an ILP
problem. This will be used in the experiments in Section 11.6.1.
For each node vj ∈ V , we define a binary variable yj , which is 1 if node vj is part of

the group with maximum closeness S?, and is equal to 0 otherwise. We say a node vi is
assigned to a node vj ∈ S? if d(vi,S?) = d(vi, vj). If there are multiple nodes vj ∈ S? that
satisfy this property, vi can be arbitrarily assigned to one of them. Thus, we also define a
variable xij that, for each node pair (vi, vj) is equal to 1 if vj ∈ S? and vi is assigned to
vj , and 0 otherwise. We can rewrite our problem in the following form:

max n− k∑n
i=1

∑n
j=1 d(vi, vj)xij

(28)

s.t.: (i)
∑n
j=1 xij = 1, ∀i ∈ {1, ...,n}; (ii)

∑n
j=1 yj = k; (iii) xij ≤ yj , ∀i, j ∈ {1, ...,n}.

Condition (i) indicates that each node in vi ∈ V is assigned to exactly one node in
vj ∈ S?, (ii) indicates that |S?| = k and (iii) indicates that nodes vi are only assigned
to nodes vj that are in S?, i. e.nodes for which yj = 1. Since the numerator in Eq. (28) is
constant, we can rewrite Eq. (28) as:

min
n∑
i=1

n∑
j=1

d(vi, vj)xij , (29)

which gives us an ILP formulation.

11.6 experiments

In the following, we present experimental results concerning several aspects of our new
algorithm Greedy++. Apart from Section 11.6.5 (where we compare the two versions), we
always refer to the version using pruned SSSPs described in Section 11.4.1 and not to the
one using bit vectors described in Section 11.4.3. In Section 11.6.1 we study the accuracy
of Greedy++ in comparison with the optimum. In Section 11.6.2, we show the speedup
of Greedy++ on the greedy algorithm proposed in [37] (which we call Greedy). Then, in

158 scaling up group closeness maximization

Section 11.6.3, we compare Greedy++ with OSA, the heuristic based on sampling proposed
in [37] (we did not implement the other heuristic BSA, since the authors of [37] show that
OSA always finds a solution with a similar accuracy as BSA in a smaller running time).
In Section 11.6.4, we study the running time of Greedy++ on additional larger networks,
both for a sequential and a parallel implementation (the other algorithms are either too
slow or would require too much memory for these networks). Finally, in Section 11.6.6,
we study the correlation between the group with maximum closeness and the top-k nodes
with highest closeness in real-world networks.

All algorithms are implemented in C++, building on the open-source network analysis
tool NetworKit [119]. All experiments were done on a machine equipped with 256 GB RAM
and a 2.7 GHz Intel Xeon CPU E5-2680 having 2 sockets with 8 cores each. The machine
runs 64 bit SUSE Linux and we compiled our code with g++-4.8.1 and OpenMP 3.1.
For comparability with previous work, unless stated explicitly, running times refer to a
sequential implementation.
The graphs used in the experiments are taken from the SNAP [81], KONECT [76] and

LASAGNE(piluc.dsi.unifi.it/lasagne) data sets. The easyjet graph in Table 52
was taken from [42]. All graphs are connected, undirected and unweighted.

11.6.1 Accuracy

The quality comparison between the quality of the solution found by Greedy++ and the
optimum is performed on several small real-world networks; the optimum is computed
using the ILP formulation described in Section 11.5. The ILP model is implemented us-
ing the Java optimization modeling library and interface ILOG Concert Technology. The
problems are solved with ILOG CPLEX 12.6 (www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/). The results for k = 10 are reported in Table 52.
Among all networks, the empirical approximation ratio (ratio between the objective func-
tion of the optimum and that of the solution found by Greedy++) is always higher than
0.97. This is much higher than the theoretical guarantee of (1 − 1/e) ≈ 0.63. Similar
results can be observed for k = 2 and k = 20, reported in Table 53 and Table 54. For
k = 10, the geometric mean of the approximation ratios is 0.994, for k = 2 it is 0.998
and for k = 20 it is 0.995. Notice that Greedy++ never takes more than one second on
the tested networks, whereas finding the optimum with CPLEX takes hours for the larger
instances of Table 52.

11.6.2 Speedup on Greedy

Recall that the solution found by the two algorithms Greedy++ and Greedy is the same,
thus we only compare running times between the two. Due to the time and space complex-
ity of Greedy, we compare the two approaches on two relatively small networks (ca-HepTh:
8638 nodes and 24806 edges and oregon_1_010526: 11174 nodes and 23409 edges). Fig-
ure 33 shows the running times of the two algorithms for different values of group size k
between 10 and 1000. For both graphs, Greedy++ outperforms Greedy by orders of mag-
nitude. For all tested group sizes, Greedy++ finds the solution in less than one second,
whereas for k = 1000 Greedy requires 25 minutes on the ca-HepTh graph and 34 minutes
on the oregon_1_010526 graph. The speedups of Greedy++ on Greedy ranges between 93

piluc.dsi.unifi.it/lasagne
www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

11.6 experiments 159

Graph Nodes Edges Category Optimum Greedy++ Approx. ratio
karate 35 78 friendship 25 25 1.0
contiguous-usa 49 107 transport. 40 41 0.976
easyjet 136 755 transport. 126 126 1.0
jazz 198 2742 collaboration 191 192 0.995
coli1-1Inter 328 456 metabolic 475 482 0.985
pro-pro 1458 1993 metabolic 4213 4217 0.999
hamster-friend 1788 12476 social 2871 2871 1.0
dnc-temporal 1833 4366 communicat. 2398 2407 0.996
caenorhab-eleg 4428 9659 metabolic 10003 10075 0.993

Table 52: Comparison with optimum on small real-world networks, for k = 10. The fifth and the
sixth columns show the objective function of Eq. (29) for the optimum and Greedy++,
respectively.

Graph Nodes Edges Category Optimum Greedy++ Approx. ratio
karate 35 78 friendship 37 37 1.0
contiguous-usa 49 107 transport. 99 99 1.0
easyjet 136 755 transport. 143 143 1.0
jazz 198 2742 collaboration 259 261 0.992
coli1-1Inter 328 456 metabolic 780 780 1.0
pro-pro 1458 1993 metabolic 5573 5573 1.0
hamster-friend 1788 12476 social 3596 3596 1.0
dnc-temporal 1833 4366 communicat. 3236 3236 1.0
caenorhab-eleg 4428 9659 metabolic 12535 12631 0.992

Table 53: Comparison with optimum on small real-world networks, for k = 2. The fifth and the
sixth columns show the objective function of Eq. (29) for the optimum and Greedy++,
respectively.

Graph Nodes Edges Category Optimum Greedy++ Approx. ratio
karate 35 78 friendship 15 15 1.0
contiguous-usa 49 107 transport. 29 29 1.0
easyjet 136 755 transport. 116 116 1.0
jazz 198 2742 collaboration 178 178 1.0
coli1-1Inter 328 456 metabolic 367 373 0.984
pro-pro 1458 1993 metabolic 3488 3518 0.991
hamster-friend 1788 12476 social 2556 2573 0.993
dnc-temporal 1833 4366 communicat. 2066 2082 0.992

Table 54: Comparison with optimum on small real-world networks, for k = 20. The fifth and the
sixth columns show the objective function of Eq. (29) for the optimum and Greedy++,
respectively. The results for caenorhab-eleg are not included, because the CPLEX solver
did not find the optimum within 13 hours.

(k = 10) and 1765 (k = 1000) for ca-HepTh and between 581 (k = 10) and 6125 (k = 1000)
for oregon_1_010526.

160 scaling up group closeness maximization

101 102 103

Group size k

100

101

102

103

104

T
im

e
[s

]

ca-HepTh, n = 8638, m = 24806

Greedy

Greedy++

101 102 103

Group size k

100

101

102

103

104

T
im

e
[s

]

oregon1_010526, n = 11174, m = 23409

Greedy

Greedy++

Figure 33: Running times of Greedy and Greedy++ for different group sizes (log-log scale). left:
running times for ca-HepTh; right: running times for oregon_1_010526.

Figure 34: Closeness centrality of the solution found by the methods for different group sizes and
different graphs. The plot shows the results of Greedy++, OSA with sample sizes of
1000 and 2000, and the group consisting of the k nodes with highest degree.

11.6.3 Comparison with OSA

Since OSA is a sampling-based algorithm, the number h of samples influences its perfor-
mance, both in terms of accuracy and running time. In [37], the authors suggest h = 1000
samples as a good tradeoff for group sizes up to 50. Since we are also testing the algo-
rithms on groups with up to 100 nodes, we run OSA both with h = 1000 and with a larger
sample size of h = 2000. We test OSA and Greedy++ on all the networks of Table 55 with
m < 107 (11 networks). We did not run experiments on larger networks because of the
high memory requirements of OSA. Since OSA is a sampling-based approach, we repeat
each experiment 10 times and report the average running time and accuracy.
Figure 34 shows the group closeness of the solutions found by OSA and Greedy++ on

four of the tested graphs (email-Enron, loc-brightkit, flickr, and gowalla), for group
sizes ranging between 5 and 100. As a baseline, we also report the closeness of the group
composed of the k nodes with maximum degree (Degree).
In addition to having a theoretical guarantee (whereas OSA has none), the results show

that Greedy++ always finds the best solution, for all graphs and group sizes. Interestingly,
for all the four graphs but flickr, the set of nodes with maximum degree has a higher

11.6 experiments 161

em
ai
l-E

nr
on

lo
c-

br
ig

ht
ki
t

fli
ck

r

go
w
al
la

0

20

40

60

80

100

120

140

160

180

T
im

e
[s

]

Greedy++

OSA (h=1000)

OSA (h=2000)

em
ai
l-E

nr
on

lo
c-

br
ig

ht
ki
t

fli
ck

r

go
w
al
la

0

50

100

150

200

250

300

350

400

T
im

e
[s

]

Greedy++

OSA (h=1000)

OSA (h=2000)

Figure 35: Running times of Greedy++ and OSA with sample sizes of 1000 and 2000 for k = 20
(left) and k = 100 (right).

closeness than the solution found by OSA with h = 1000 samples. For the gowalla graph,
Degree finds a better solution than OSA even with h = 2000 samples.
Figure 35 shows the running times of Greedy++ and OSA on the four graphs, for group

size k = 20 (left) and k = 100 (right). On all graphs but flickr, Greedy++ is significantly
faster than OSA (both with h = 1000 and h = 2000 samples). On the flickr graph, for
group size k = 20, Greedy++ takes 85 seconds, whereas OSA with h = 2000 takes 77
seconds. However, when the group size increases (k = 100), Greedy++ becomes faster
(102 seconds versus 182 seconds required by OSA with h = 2000).

Also, notice that the memory requirement of Greedy++ is significantly lower than that
of OSA. In fact, Greedy++ only needs Θ(n) memory for its data structures, whereas OSA
requires Θ(hn) to store the distances between the sampled nodes and the other nodes.
This means that, using OSA with the number of samples suggested in [37], it needs about
one thousand times more memory than Greedy++, which might be problematic for large
graphs.
On average (geometric mean) over the 11 tested networks, Greedy++ is faster than OSA

with h = 1000 by a factor of 1.1 and than OSA with h = 2000 by a factor of 1.7. Although
our average running times are not very different from those of OSA with h = 1000, our
accuracy is better on all tested networks (the same is true also for OSA with h = 2000).
Also, on 7 out of the 11 tested networks, OSA with h = 1000 returns a result with a worse
accuracy than choosing the k nodes with maximum degree, suggesting that OSA should be
run using a larger number of samples. With h = 2000, the solution of OSA is worse than
picking the k nodes with maximum degree on 4 out of 11 networks (the solution returned
by Greedy++ is better on all tested networks).

11.6.4 Running time evaluation

To test the scalability of Greedy++, we now run it on all networks from Table 55 (for
the comparison with OSA, only the first 11 networks could be used). The networks be-
long to different domains, including friendship, collaboration, communication and internet
topology graphs. To further speed up the running time of Greedy++, we also implement a
parallel version of it. The first element of |S| is computed using the parallel top-k closeness
implementation of NBCut (see Chapter 9). Then, in each iteration of Greedy++, Line 6 of
Algorithm 25 is executed in parallel, i.e. each thread runs a pruned SSSP from the nodes
assigned to it. Table 55 reports the running times of Greedy++ for k = 10, for both the

162 scaling up group closeness maximization

sequential and the parallel implementation (using 16 threads). On all networks with less
than 105 nodes, our parallel implementation takes less than 1 second. On all remaining
graphs, it always takes less than 1 hour, apart from the com-orkut graph (> 3M nodes and
> 100M edges), where it takes a bit more than one and a half hours. The parallel speedup
varies significantly among the tested networks, ranging from 5.4 (com-youtube) to 13.8
(flickr). These values should be appreciated in the context of complex networks, for which
it is often difficult to obtain even higher speedups (see for example [91] and [118]). Low
speedup values are in our case also due to the fact that, in some networks, the work done
by the pruned SSSPs is extremely imbalanced (some nodes can be pruned early, whereas
others need almost a full SSSP). Load balancing mechanisms beyond what OpenMP offers
are outside the scope of this work, as they would require very fine-grained and inexpensive
context switches between threads. Also, as expected, the parallel speedup decreases as k
increases. Indeed, whereas the geometric mean of the speedups is 9.1 for k = 10, it is 8.7
for k = 20 and 5.6 for k = 100. This results from the fact that, for higher k values, more
and more pruned SSSPs can be skipped because of submodularity. Since less work is done
in each iteration, the overhead due to parallelism and imbalance becomes more significant.
The fact that less and less work is done in each iteration as k increases is also confirmed
by the fact that the running times do not increase linearly as k increases. For k = 20,
the running times are only about 10% higher (on average) that they are for k = 10 and,
for k = 100, they are about 50% higher than for k = 10 (running times for k = 20 and
k = 100 can be found in Table 56.

Graph Nodes Edges Time seq. [s] Time par. [s] Speedup
ca-HepPh 11204 117649 7.70 0.58 13.4
email-Enron 33696 180811 1.94 0.20 9.9
CA-AstroPh 17903 197031 3.78 0.32 12.0
loc-brightkite 56739 212945 5.74 0.55 10.5
com-lj 303526 427701 127.35 17.00 7.5
com-amazon 334863 925872 808.70 88.37 9.2
gowalla 196591 950327 60.14 8.74 6.9
com-dblp 317080 1049866 232.51 30.99 7.5
flickr 105722 2316668 314.11 22.76 13.8
com-youtube 1134890 2987624 1323.31 245.50 5.4
youtube-u-growth 3216075 9369874 22298.52 2196.42 10.2
as-skitter 1694616 11094209 12014.09 1611.09 7.5
soc-pokec-relationships 1632803 22301964 11912.29 1104.82 10.8
com-orkut 3072441 117185083 60252.10 5792.81 10.4

Table 55: Networks used in the experiments and performance of Greedy++ for k = 10. The fourth
and fifth columns report the sequential and parallel running times with 16 threads, re-
spectively. The last column reports the speedup of the parallel implementation on the
sequential one.

11.6.5 Greedy++ using bit vectors

We now test the performance of the version of Greedy++ using bit vectors described in
Section 11.4.3. Our implementation of bit vectors is based on the C++ std::bitset and

11.6 experiments 163

Graph Nodes Edges Time k = 20 [s] Time k = 100 [s]
ca-HepPh 11204 117649 0.61 0.7
email-Enron 33696 180811 0.26 0.6
CA-AstroPh 17903 197031 0.34 0.5
loc-brightkite 56739 212945 0.67 1.2
com-lj 303526 427701 18.16 24.2
com-amazon 334863 925872 94.56 116.2
gowalla 196591 950327 9.09 11.2
com-dblp 317080 1049866 34.26 49.5
flickr 105722 2316668 23.04 24.6
com-youtube 1134890 2987624 263.17 473.9
youtube-u-growth 3216075 9369874 2412.60 2901.9
as-skitter 1694616 11094209 1620.43 2024.6
soc-pokec-relationships 1632803 22301964 1179.33 1288.1
com-orkut 3072441 117185083 6233.67 8387.0

Table 56: Performance of Greedy++ for k = 20 and k = 100, using 16 threads.

we test both versions sequentially. Table 57 shows the ratio between the running times of
Greedy++ using pruned SSSPs and Greedy++ using bit vectors, for k = 10, k = 100 and
k = 1000 (we call the version using bit vectors bitGreedy++). The ratio is never smaller
than 0.9 and bitGreedy++ is up to a factor 4 faster than Greedy++. The geometric means
of the ratios are 1.1 for k = 10, 1.6 for k = 100 and 2.8 for k = 1000. On the other hand,
the memory required by bitGreedy++ is usually much higher. On com-amazon, Greedy++
requires only about 312 MB, whereas bitGreedy++ needs 226 GB. For this reason, we
were not able to test bitGreedy++ on the 5 largest networks of Table 55. To summarize,
bitGreedy++ is mostly faster than Greedy++, and the improvement is more apparent for
larger values of k. Thus, using bitGreedy++ is recommended if enough memory is available
and k is relatively large (e.g. k ≥ 100).

Speedup of bitGreedy++ on Greedy++
Graph k = 10 k = 100 k = 1000 Mem. Greedy++ Mem. bitGreedy++
ca-HepPh 0.95 1.59 3.90 ≈ 136 MB ≈ 210 MB
email-Enron 1.16 1.74 4.09 ≈ 151 MB ≈ 603 MB
CA-AstroPh 0.90 1.48 3.08 ≈ 164 MB ≈ 367 MB
loc-brightkite 0.97 1.39 3.00 ≈ 273 MB ≈ 1 GB
com-lj 0.96 1.24 2.10 ≈ 318 MB ≈ 78 GB
com-amazon 0.97 1.46 2.12 ≈ 312 MB ≈ 226 GB
gowalla-edges 1.35 1.52 2.45 ≈ 279 MB ≈ 17 GB
com-dblp 1.13 1.70 2.57 ≈ 310 MB ≈ 94 GB
flickrEdges 1.60 2.04 2.73 ≈ 339 MB ≈ 5 GB

Table 57: Performance of the new algorithm for group closeness using pruned SSSPs (Greedy++)
and using bit vectors (bitGreedy++). The first three columns represent the speedup of
bitGreedy++ on Greedy++ (i.e. the ratio between their running times). The last two
columns report the memory requirements.

164 scaling up group closeness maximization

11.6.6 Group closeness versus top-k closeness

A natural question is how many elements of the group of nodes with highest closeness
have high closeness or high degree individually. We investigate this on the networks of
Table 55. In particular, for a given group size k, we compute the overlap (i. e.the size
of the intersection) between the group returned by Greedy++ and the set of the top-
k nodes with highest closeness (computed using the algorithm described in Chapter 9)
and highest degree. The percentage overlap is then the overlap divided by k and multi-
plied by 100. Figure 36 shows the results. The plot on the bottom right corner shows
the average over all networks of Table 55, whereas the other three plots refer to the
com-youtube graph, to soc-pokec-relationships and to com-orkut, respectively. As
it appears from the plots, the overlap changes significantly among the graphs. For the
com-youtube graph, the percentage overlap decreases as the group size increases, and the
overlap with Degree is always larger than the one with Top-k. Partially similar are the
results for soc-pokec-relationships, although there is more fluctuation in the overlap
of Degree and the initial overlap of Top-k is higher than it is for com-youtube (≈ 80%
vs. ≈ 60%). On the other hand, the results for com-orkut are quite different: The overlap
with Degree increases with the group size, and is lower than the one with Top-k. On aver-
age, the overlap with both Degree and Top-k tends to decrease as the group size increases
(as expected), with Degree having a higher overlap than Top-k (except for k = 5). Also,
on average the overlap ranges between 30% and 60%. This clearly indicates that there is
a dependence between the group with maximum closeness and the degrees of nodes and
their centralities. However, the strength of this dependence varies significantly among the
tested networks and suggests that picking the k nodes with highest closeness or highest
degree is not always a good heuristic for finding the group with maximum closeness.

Figure 36: Percentage overlap between the group found by Greedy++ and the k nodes with highest
closeness (Top-k) and between the group found by Greedy++ and the k nodes with
highest degree (Degree).

11.6 experiments 165

bibliographic notes

The results presented in this chapter are joint work with Tanya Gonser and Henning Mey-
erhenke and have been accepted for publication at the Twentieth Workshop on Algorithm
Engineering and Experiments (ALENEX 2018).

CONCLUS IONS OF PART I I I

Closeness centrality indicates the inverse average shortest-path distance between one node
and the other nodes of the network. Although computing it for all nodes requires all pair-
wise distances, the closeness centrality of a single node can be obtained in linear time
(in the number of edges) by running a Breadth-First Search (or Dijkstra’s algorithm in
weighted graphs). This is in contrast with betweenness centrality, for which the computa-
tion of a single nodes requires all shortest paths between existing pairs of nodes. In this
part, we exploited this property of closeness centrality to quickly identify (and update)
the most-central nodes or groups of nodes of a network.
In Chapter 9, we proposed upper bounds on the closeness values that efficiently allow

us to skip the computation of closeness for the majority of nodes, allowing us to find
the most-central nodes in a fraction of the time needed by the textbook algorithm. As
an example, using our new approach we are able to find the top-10 nodes with highest
closeness in the whole street network of north America (with 36 millions edges) in about
one hour, where exhaustive computation would take years. Compared with the state of
the art, our approach is always faster than the currently best algorithms for closeness
centrality, both exact and approximate.
In Chapter 10, we presented fully-dynamic algorithms for top-k closeness centrality.

Using properties of the modified graph, we are able to significantly reduce the number of
operations required to update the most central nodes. As a result, we achieve high speedups
on static recomputation, in line with those obtained by other dynamic algorithms for
related problems (e.g. [58, 66] and the dynamic algorithms presented in Part II), confirming
the fact that efforts in developing dynamic algorithms are well spent. Differently from most
existing algorithms updating shortest-paths-based centralities, the techniques we propose
use a linear (in the number of nodes) amount of additional memory. Although storing
more information (e.g., the distances computed during BFScut on the initial graph) might
lead to even higher speedups, a quadratic memory footprint would not allow us to target
networks with millions of nodes.
Future work includes extension to batch updates, where several edge updates occur at the

same time, and for which the results presented in Chapter 7 are particularly encouraging.
Also, finding methods for keeping track of the nodes with highest betweenness centrality (as
well as other centrality measures) would be a very interesting research direction. Whereas
computing betweenness of a single node cannot be done (much) more efficiently than
computing it for all nodes, our results in Chapter 6 show that this is not true in the
incremental case. Thus, it might be possible to devise dynamic algorithms that keep track
of the k nodes with highest betweenness faster than updating betweenness of all nodes.
Finally, Chapter 11 presents a method for finding the group with maximum closeness

in large complex networks. Our algorithm is the first that scales to networks with tens or
hundreds of millions of edges and delivers a guaranteed approximation ratio of (1− 1/e)
at the same time. Pruning the SSSP searches and exploiting the submodularity of the
objective function allows us to reduce the amount of work done by the greedy algorithm
proposed in [37] by orders of magnitude.

167

168 scaling up group closeness maximization

The algorithm presented in Chapter 9 has been made available to researchers and prac-
titioners as part of the NetworKit tool suite [119]. The algorithms in Chapter 10 and
Chapter 11 will be part of a future release.

Part IV

E S T I M AT I O N O F E L E C T R I C A L C L O S E N E S S

12
EST IMATION OF ELECTRICAL CLOSENESS

12.1 introduction

In this chapter, we present two approximation algorithms for electrical closeness, a variant
of closeness centrality based on resistance distance [33]. Differently from shortest-path
distance, resistance distance takes all paths of the network into account, weighted by
their length. Both our approximation algorithms are based on solving Laplacian linear
systems. One algorithm uses sampling, whereas the other one builds on the Johnson-
Lindenstrauss transform. According to our experimental study, our approximations are
extremely accurate and are reasonably fast in scenarios where the centrality of a single
node or a subset of nodes has to be computed. An exact computation of electrical closeness
requires to invert the Laplacian of the graph, which takes Ω(n2) time, being the inverse of
the Laplacian in general a dense matrix. This would be prohibitive for networks millions
of nodes and edges, even when the closeness of only a single node or of a subset of nodes
is required. With this approach, in fact, computing the closeness of one node is just as
expensive as computing it for all nodes. On the contrary, our approach can estimate the
closeness of a single node very quickly: For example, it requires less than 2 minutes on a
network with 50 millions edges.
Thanks to our approach, we can study for the first time the properties of electrical close-

ness in large networks with tens of millions of nodes. We compare electrical closeness with
traditional shortest-path closeness and show that the former succeeds in differentiating
nodes significantly better than the latter, and is also more resilient to noise. In addition,
we study the correlation between centrality measures and degrees in real-world networks,
in relation to a recent theoretical result for random geometric graphs [86]. Our experiments
show that there is a strong correlation between degrees and electrical closeness in complex
networks, whereas there is basically no correlation in street networks.

12.2 preliminaries: graphs as electrical networks.

Throughout this chapter we consider connected undirected graphs G = (V ,E,w) having
n = |V | nodes and m = |E| edges (disconnected graphs can be handled by treating each
connected component separately). We recall that the Laplacian matrix L = L(G) of G is
defined as L := D −A, where A = A(G) is the (weighted) adjacency matrix of G and
D = D(G) the diagonal matrix storing the (weighted) node degrees: Dii =

∑n
j=1 ωij .

One can regard a graph as an electrical network where each edge {u, v} corresponds to
a resistor with conductance ωuv (the edge weight) or resistance 1/ωuv. We can interpret
the conductance as the ease with which an electrical current can flow through the edge.
We can associate a supply b : V → R with the electrical network, representing the nodes
where current enters and leaves the network. A positive supply b(v) means that current is
entering the network from node v and a negative supply means that current is leaving the
network. In the following, we will always assume that

∑
v∈V b(v) = 0 and that b(s) = +1

and b(t) = −1 for two nodes s and t, and that b(w) = 0 ∀w 6= s, t. In the following, we will

171

172 estimation of electrical closeness

refer to such a supply as vector bst ∈ Rn×1. We could interpret this as s and t being the
two poles of a battery: this generates a current est : ~E → R flowing through the network.
To each node v we can associate a potential pst(v) such that the vector pst ∈ Rn×1 satisfies
the following linear system:

Lpst = bst (30)

Then, the current flowing through edge (u, v) is defined as (pst(u)− pst(v))/ωst. Notice
that, since G is connected, the rank of the Laplacian is n − 1 and there are infinitely
many vectors pst satisfying Eq. (30), each of them differing from the other by an additive
constant. However, the current is well defined, since it depends on the difference between
two potentials.
The difference ρ(s, t) of potential between s and t is called resistance distance and, as

the name indicates, it can be interpreted as an alternative distance measure between s

and t. Notice that ρ(s, t) is equal to the commute-time distance between s and t divided
by the volume of G (i.e. the sum of the weights of the edges in G). The commute time
between nodes u and v is defined as H(u, v) +H(v,u), where the hitting time H(x, y) is
the expected time step in which a random walk in the graph starting in x reaches y for
the first time. Thus, the commute time can be seen as the expected time a random walk
needs for going from u to v and back again. Since the commute time is based on random
walks, it depends on all the paths between two nodes (weighted by their length), and so
does resistance distance.

12.3 related work

12.3.1 Solving Laplacian linear systems.

We focus our description on iterative solvers due to their better time complexity on sparse
graphs compared to direct solvers. Most iterative solvers reduce the norm of the residual
r = ‖b−Ax‖ iteratively by altering the current preliminary solution vector x in every
iteration. One usually stops when the (relative) residual is below a certain tolerance τ ,
which yields a vector x′ that is a good enough approximation to the actual solution x. While
there are recent advances in theory to solve special linear systems including Laplacians
in nearly-linear time [68, 117], those algorithms are not competitive in practice yet [26,
62]. In fact, the Conjugate Gradient (CG) algorithm outperforms the nearly-linear time
algorithms in practice even though its asymptotic running time is typically higher.
A popular class of iterative algorithms to solve linear equations quickly in practice

is called Algebraic Multigrid (AMG) [110]. The basic idea is to solve the actual linear
system by iteratively solving coarser (i.e. smaller) yet similar systems and projecting the
solutions of those back to the original system. AMG algorithms can be distinguished by
the class of matrices they can handle and the way they construct the coarser systems. Two
fast algorithms that are specifically designed for solving Laplacian systems are CMG by
Koutis et al. [75] and LAMG by Livne and Brandt [84].
We decided to use LAMG as linear solver due to its particular design for complex

networks. To this end, LAMG alternates between two stages called elimination and ag-
gregation to construct the coarser systems. The former eliminates low degree nodes in the
corresponding graph, the latter partitions nodes into aggregates based on a special affinity

12.4 electrical closeness centrality 173

measure [84]. Both stages reduce the number of nodes and thus define a coarsening mech-
anism. Based on an extensive evaluation, Livne and Brandt state that running times of
LAMG and CMG are comparable but LAMG tends to be more robust in the sense that
CMG has large outliers on a small set of systems [84].

12.3.2 Laplacian linear systems for network analysis.

The connection between the graph Laplacian and electrical networks (see Section 12.2) has
allowed for the solution of several graph algorithmic problems in terms of Laplacian sys-
tems. One of them is a centrality measure called spanning edge centrality, which indicates
whether an edge is vital for the connectedness of a network [90]. The notion of importance
for connectedness is also helpful for graph sparsification. A sparsification algorithm takes a
dense graph and wants to find a sparser representation (= with fewer edges) with the same
vertex set and similar properties [116], e. g. approximately the same cut sizes or eigenval-
ues. Since processes described by Laplacian linear systems can distinguish sparse from
dense graph regions, edges in dense areas are, intuitively speaking, redundant and can be
“sparsified” without doing much harm to the cut sizes when the weights of retained edges
are properly scaled. This idiosyncrasy allows the use of processes described by Laplacian
linear systems also for graph partitioning [92], approximate maximum network flow [40],
and graph drawing [55, 93]. Moreover, the connection to electrical flow makes the use in
dynamic load balancing of divisible tokens by diffusion [45] possible.
The interpretation of a graph as an electrical network has also led to the definition

of two centrality measures based on current flow, electrical closeness and electrical be-
tweenness [33]. Compared to traditional closeness and betweenness centrality, these two
measures take all paths between two nodes into account and not only shortest paths.

12.4 electrical closeness centrality

Closeness centrality measures the efficiency of a node in spreading information to the other
nodes of the network. Formally, let d(u, v) be the shortest-path distance between u and v
(i.e. the length of the shortest path(s) between u and v). Then, the closeness centrality of
node v is defined as the inverse of the expected shortest-path distance between v and and
a random node w:

cC(v) :=
n− 1∑

w 6=v d(v,w) . (31)

The smaller the average distance between v and the other nodes, the higher is the closeness
of v. To better understand the meaning of closeness, let us consider the two graphs in
Figure 37. Since closeness takes only shortest-path distances into account, the closeness of
node x1 in the graph on the left and the score of node x2 in the graph on the right will
be exactly the same. However, there is only one path connecting x1 to each of the other
nodes. This means that if just a single edge is removed from the graph, x1 will become
disconnected from part of the other nodes. For example, let us assume the edges represent
streets and x1 is the location of an ambulance. If a congestion occurs, the ambulance in x1
will not be able to reach part of the nodes (or it will take a very long time to reach them).

174 estimation of electrical closeness

x1 x2

Figure 37: Shortest-path closeness centrality cannot distinguish between node x1 and node x2.

On the other hand, if the ambulance was in x2, a congestion would limit only partially (or
not at all) the ability of the ambulance to reach the nodes of the network.
The example above illustrates that traditional closeness is unable to model scenarios

where the distance between two nodes does not only depend on the length of the shortest
path between them, but also on the number of shortest or relatively short paths between
the nodes. For this reason, a variant of closeness named electrical closeness centrality has
been introduced [33]. If we see the graph as an electrical network, we can use resistance
distance ρ(u, v) := puv(u)− puv(v) as an alternative to shortest-path distance and define
a slightly-modified version of closeness centrality [33]:

cEC(v) :=
n− 1∑

w 6=v
ρ(v,w)

=
n− 1∑

w 6=v
pvw(v)− pvw(w)

. (32)

By convention, we define ρ(v, v) := 0 ∀v ∈ V . To compute cEC(v) of a node v, we can solve
n− 1 linear systems. Alternatively, we could invert the Laplacian matrix L of G (after
omitting the row and column corresponding to a node, in order to get a regular matrix
L̃), using the property that pvw(v)− pvw(w) = L̃−1

vv − 2L̃−1
vw + L̃−1

ww [33].

12.5 approximating electrical closeness

As outlined in [90], fast Laplacian linear solvers with a theoretical time complexity guar-
antee run in O(m logn log (1/τ)) time, where τ is the tolerance of the solver. Multigrid
methods such as CMG and LAMG are much faster in practice and have an empirical
running time of O(m log (1/τ)).
Computing electrical closeness for only one node to the desired tolerance would already

require the solution of n− 1 linear systems, yielding O(n2 log (1/τ)) time in practice as-
suming a sparse graph. This is infeasible for large networks with millions of nodes and
edges. For this reason, we propose two approximation techniques for computing electrical
closeness for a subset of the nodes in large graphs, and we compare them in our exper-
imental evaluation. The first one is based on a simple sampling approach, which recalls
the one used for classical closeness [50]. The second one uses the Johnson-Lindenstrauss
transform (JLT), which allows to project the system into a lower-dimensional space by
using O(logn) random vectors. The two approximations are different in nature and we
were able to prove a theoretical guarantee on the quality of the approximation only for the
second one. However, our experiments in Section 12.6 show that both approaches work
very well in practice.

12.5 approximating electrical closeness 175

12.5.1 Sampling-based approximation.

The idea is to sample uniformly at random a set S ⊆ V of nodes S = {s1, ..., sk}, which
we call pivots. To approximate the electrical closeness of a node v, we compute the re-
sistance distance ρ(s, v) between all nodes s ∈ S and v. Then, the closeness of v can be
approximated as

c̃EC(v) :=
k

n
· n− 1∑k

i=1 ρ(v, si)
.

Proposition 12.5.1. c̃EC(v) is un unbiased estimator for cEC(v) (i.e. E[c̃EC(v)] =

cEC(v)).

Proof. We show that Y := n
k

∑
si∈S ρ(v, si) is an unbiased estimator for s(v) =

∑
w∈V ρ(v,w),

then the theorem follows directly from the properties of expected value. In the following,
we denote the set of k-combinations of V with Vk.

E(Y) =
∑

S={s1,...,sk}∈Vk

1
(nk)

n

k

∑
si∈S

ρ(v, si) =

=
1
(nk)

n

k

∑
w∈V

(
n− 1
k− 1

)
ρ(v,w)

=
∑
w∈V

ρ(v,w). �

With k pivots, the empirical complexity of our approach is O(km log(1/τ)) with a
multigrid solver. Our experiments in Section 12.6.1 show that a very small k (e.g., k = 10)
is already enough to get a very good approximation.

12.5.2 Projection-based approximation.

Spielman and Srivastava [116] show how to compute an approximation of resistance dis-
tance based on the JLT. Let B be the m×n incidence matrix where each row corresponds
to an edge of G and each node corresponds to a node such that, for edge e = {u, v},
B(e,u) = +1, B(e, v) = −1 and B(e,w) = 0 ∀w 6= u, v (since G is undirected, the di-
rection of edge e can be chosen arbitrarily). Then, they show that the resistance distance
between node u and node v can be re-written as ρ(u, v) = ||W 1/2BL†(eu − ev)||22, where
W is the diagonal m×m matrix such that W (e, e) = ω(e), L† is the Moore-Penrose pseu-
doinverse [57] of L and eu is the n× 1 vector such that e(u) = 1 and equal to 0 everywhere
else. The resistance distances can therefore be seen as pairwise distances between vectors
in {W 1/2BL†eu}u∈V , which allows to apply the JLT: If we project the vectors into a lower-
dimensional space spanned by k = O(logn) random vectors, the pairwise distances are
approximately preserved. In other words, we can consider the pairwise distances between
vectors in {QW 1/2BL†eu}u∈V , where Q is a random projection matrix of size k×m with
elements in {0,+ 1√

k
,− 1√

k
}.

Since we do not want to compute QW 1/2BL† directly (it would require to compute the
pseudoinverse L† of L), we approximate it by solving k linear systems: for i = 1, ..., k, the

176 estimation of electrical closeness

i-th row zTi of QW 1/2BL† can be computed by solving the system Lzi = {QW 1/2B}·,i,
see Algorithm 26 (which we reuse from [116]). Note that the multiplication in Line 2
requires only O(2m logn) operations, since B is sparse (with 2m non-zero entries) and W
is diagonal. When choosing k in Algorithm 26 equal to O(logn/ε2) for any ε > 0, it was

Algorithm 26: Resistance distance approximation [116]
Input :G = (V ,E)
Output : Approx. ρ̃(u, v) ∀(u, v) ∈ V × V

1 Construct random matrix Q;
2 Compute Y = QW 1/2B;
3 Z ← empty k× n matrix;
4 for i = 1, ..., k do
5 solve the system Lzi = Y·,i;
6 Zi,· ← zTi ;
7 end
8 foreach (u, v) ∈ V × V do
9 ρ̃(u, v)← ||Z·,u −Z·,v||22;

10 end
11 return ρ̃

shown [116] that, with probability ≥ 1− 1/n,

(1− ε)ρ(v,w) ≤ ρ̃(v,w) ≤ (1 + ε)ρ(v,w)

for all (v,w) ∈ V × V . An approximation of electrical closeness for node v can therefore
be computed as c̃EC(v) := (n− 1)/

∑
w 6=v ρ̃(v,w). This requires O(2m logn) for Line 2

and O(km log(1/τ)) empirical time for Lines 4 - 7. Then we need to compute ρ̃(v,w) for
all w 6= w, which requires O(nk) operations. Assuming n = O(m), the total (empirical)
running time is O(m(k log(1/τ) + log(n))).
If (1− ε)ρ(v,w) ≤ ρ̃(v,w) ≤ (1 + ε)ρ(v,w) for each w 6= v, then also (1− ε)cEC(v) ≤

c̃EC(v) ≤ (1+ ε)cEC(v). This is provably true only with probability (1−1/n)n−1. However,
our experimental results show that the approximation works well in practice: on all tested
instances, c̃EC is always within a (1 + ε)-factor from cEC (see Section 12.6.1).

12.6 experimental evaluation

In this section we evaluate the performance of the two approximation algorithms described
in Section 12.5. First, we want to give some more details on the implementation, the
benchmarking setup and the graph instances we used, before elaborating on the results of
our evaluation.

implementation. We implemented both approximation algorithms in NetworKit [119],
the open-source tool for fast exploratory analysis of massive networks. For solving Lapla-
cian systems, we rely on the NetworKit implementation of the Laplacian solver LAMG
by Livne and Brandt [84]. When solving linear systems, in all our experiments we set the
relative residual error τ to 10−5.

12.6 experimental evaluation 177

Graph Nodes Edges Description Reference
PGP 10680 24316 PGP trust network [9]
advogato 5272 42816 Advocato trust network [77]
Drosophila_melanogaster 10424 40660 Interactome [77]
Caenorhabditis_elegans 4428 9659 Metabolic network [77]
CA-HepTh 8638 24806 Collaboration Network [81]
HC-BIOGRID 4039 10321 Genetic interaction [77]
hprd_pp 9219 36900 Human proteine interaction [77]
Mus_musculus 3745 5170 Interactome [77]
GoogleNw 15763 148585 Hyperlinks between web pages [77]
Homo_sapiens 13478 61006 Metabolic network [77]
oregon2_010526 11461 32730 AS peering network [81]
as-caida20071105 26475 53381 CAIDA AS relationships [81]

Table 58: Properties of smaller benchmark instances used.

benchmarking setup. All experiments were done on a machine equipped with 256
GB RAM and a 2.7 GHz Intel Xeon CPU E5-2680 having 2 sockets with 8 cores each and
hyperthreading enabled. The machine runs 64 bit SUSE Linux and we compiled our code
with g++-4.8.1 and OpenMP 3.1.

instances. Tables 58 and 59 show the set of instances we use for our experiments.
While Table 58 includes rather small complex networks with up to about 150 000 edges,
Table 59 includes larger networks with up to 56 million edges. If a network has more
than one connected component, we used the largest connected component (LCC). We
ignore self-loops and the direction of edges in case a graph is directed. All the graphs are
unweighted.

12.6.1 Approximation algorithms.

In this section we compare the two approximation algorithms described in Section 12.5.1
and Section 12.5.2, respectively. We refer to the first one as Sampling and to the second
one as Projection. Sampling depends on the number |S| of samples, whereas Projec-
tion depends on the dimension k of the k × n random projection matrix. For simplicity,
we call exact the approach computing cEC as in equation 32, solving n− 1 linear systems
to the desired tolerance τ .
For our experiments, we select 100 nodes for each of the networks shown in Table 58. For

each of these nodes, we compute electrical closeness exactly (to the desired tolerance τ) and
the two approximations with different parameters. In particular, we set the number |S| of
samples of Sampling to 10, 20, 50, 100, 200, 500, and 1000. When running Projection,
we fix k to dlogn/ε2e and set ε equal to 0.5, 0.2, 0.1, and 0.05. To measure the accuracy
of the algorithms, we use the well-known Spearmann rank correlation coefficient, which
measures how close the ranking of nodes determined by the approximation algorithm is
close to that of the exact algorithm. We recall that the closer the Spearmann coefficient
is to 1, the more correlated are the two rankings, with 0 meaning no correlation and 1
meaning the two ranks are identical.

178 estimation of electrical closeness

Graph Nodes Edges Description Reference
cit-Patents 3764117 16511740 Citation Network [81]
com-Amazon 334863 925872 Amazon Product Network [81]
com-DBLP 317080 1049866 Collaboration Network [81]
com-Youtube 1134890 2987624 Youtube Social Network [81]
hollywood-2009 1069126 56306653 Collaboration Network [43]
com-LiveJournal 3997962 34681189 LiveJournal Social Network [81]
Slashdot0902 82168 504230 Slashdot Zoo Social Network [81]
soc-Epinions1 75877 405739 Epinions Social Network [81]
roadNet-TX 1351137 1879201 Road Network of Texas [81]
luxembourg.osm 114599 119666 Road Network of Luxembourg [9]
belgium.osm 1441295 1549970 Road Network of Belgium [9]
netherlands.osm 2216688 2441238 Road Network of the Netherlands [9]
italy.osm 6686493 7013978 Road Network of Italy [9]
great_britain.osm 7733822 8156517 Road Network of Great Britain [9]
europe.osm 50912018 54054660 Road Network of Europe [9]

Table 59: Properties of large benchmark instances used.

Figure 38 reports the accuracy (Spearmann coefficient) and the running times in seconds
for each approximation algorithm and for each parameter. We do not report explicitly to
which parameter each point in the plot corresponds to, but this can be easily deduced
from the running times: a smaller sample size corresponds to a smaller running time for
Sampling and a larger ε corresponds to a smaller running time for Projection. Figure 38
reports, for each approximation algorithm and for each parameter, the average over all
networks of Table 58 of time and Spearmann coefficient.
The results are quite self-explanatory: the Sampling approach clearly outperforms Pro-

jection and its accuracy is extremely high already with only 10 samples. We also compute
for each algorithm and parameter the number of rank inversions, i.e. the number of node
pairs {u, v} for which the approximated closeness of u is smaller than the approximated
closeness of v, but the exact closeness of u is larger than or equal to the exact one of v (or
vice versa). With ten pivots, the average number of rank inversions of Sampling is 12.5;
it is always below 10 for higher number of samples. This means that, out of (100

2) = 4950
pairs, less than 10 are inverted, corresponding to 0.2%.
In addition to accuracy in terms of ranks, we also evaluate the maximum relative error.

We define the relative error for a node v as e(v) = max{r(v), 1/r(v)}, where r(v) is
the ratio between the exact electrical closeness of v and its approximation. The maximum
relative error is then defined as maxv∈V e(v). Figure 39 reports the results. It is interesting
to notice that, with respect to this measure, the two algorithms behave quite similarly. Also,
notice that the maximum relative error for Projection is always smaller than ε (we recall
the values of ε used are 0.05, 0.1, 0.2 and 0.5), although we can only prove that this is
true with probability at least (1− 1/n)n−1.
To summarize, our results show that both algorithms lead to very good accuracy in

terms of maximum relative error, whereas the sampling approach better preserves the
ranking of nodes, even when the number of samples is very small. For this reason, in our
experiments on large graphs, we make use of the sampling approach. On average (over the

12.6 experimental evaluation 179

0.970 0.975 0.980 0.985 0.990 0.995 1.000

Accuracy (Spearmann coefficient)

100

101

102

103

T
im

e
 [

s]

SAMPLING

PROJECTING

Figure 38: Time vs. Spearmann coefficient for the two approximation algorithms, using different
parameters. The points represent the average among the networks of Table 58.

1.00 1.05 1.10 1.15 1.20 1.25 1.30

Accuracy (max. rel. error)

100

101

102

103

T
im

e
 [

s]

SAMPLING

PROJECTING

Figure 39: Time vs. maximum relative error for the two approximation algorithms, using different
parameters. The points represent the average among the networks of Table 58.

instances of Table 58), computing cEC on 100 nodes takes more than 20 minutes, whereas
using Sampling with 20 pivots takes only 2.87 seconds. Table 60 in the Appedix shows
the detailed running times.

12.6.2 Comparison with shortest-path closeness.

As explained in Section 12.4, our intuition is that electrical closeness should represent
the efficiency of a node reaching the other nodes of the network better than shortest-
path closeness. To verify this assumption, we first compare the two measures in terms
of their capability to discriminate between different nodes. In this experiments, we use
the networks of Table 58 and compute (exactly) electrical and shortest-path closeness on
100 randomly chosen nodes. Figure 40 shows the relative standard deviation for shortest-
path and electrical closeness. The relative standard deviation is defined as the standard
deviation divided by the average. It is always significantly higher for electrical closeness
than it is for shortest-path closeness, meaning that there is much more variation in the
scores computed by the former.
Also, similarly to what has been done in [90] for spanning edge centrality and edge be-

tweenness centrality, we measure the resilience to noise, in this case for electrical closeness
and shortest-path closeness. The idea is to add edges to the graph and see how well the

180 estimation of electrical closeness

PG
P

ad
vo

ga
to

Dro
so

_m
el

Cae
no

r_
el

ca
-H

ep
Th

HC-B
IO

GRID

hp
rd

_p
p

M
us

_m
us

c

Goo
gl

eN
w

Hom
o_

sa
p

or
eg

on

as
-c

ai
da

0.0

0.1

0.2

0.3

0.4

0.5

R
e
la

ti
v
e
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n current-flow clos.

shortest-path clos.

Figure 40: Relative standard deviation for shortest-path and electrical closeness.

initial rankings are preserved. Our intuition is that, if we add some edge that creates a
shortcut between a node v and some other nodes, the shortest-path closeness of v will
be more affected than its electrical closeness, since the former takes only shortest paths
into account. This is confirmed by our experiments, summarized in Figure 41. For each
network in Table 58, we insert a percentage of the total number of edges varying from
1% to 10%. To have a high number of shortcuts involving the sampled nodes, we always
add edges between one of the sampled nodes and other nodes of the graph. Figure 41
shows, for each percentage of inserted edges, the average among all tested networks of the
Spearmann correlation coefficient between the initial ranking and the ranking after the
insertions. Figure 41 shows that electrical closeness is more resilient to edge insertions and
the difference between the resilience of the two measures increases the more the graph
changes.

1 2 3 4 5 6 7 8 9 10

Percentage inserted edges

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
p
e
a
rm

a
n
n
 c

o
e
ff

ic
ie

n
t

current-flow clos.

shortest-path clos.

Figure 41: Resilience to noise for different percentages of inserted edges. The points represent the
average among the networks of Table 58.

12.6.3 Correlation with degree.

In certain random geometric graph models, such as ε-graphs, kNN graphs, and Gaussian
similarity graphs, it was recently shown [86] that the resistance distance between two nodes
u and v converges to 1/ deg (u) + 1/ deg (v) when the number of nodes goes to infinity.

12.6 experimental evaluation 181

ci
t-P

at
en

ts

co
m

-y
ou

tu
be

so
c-

Ep
in

io
ns

1

co
m

-a
m

az
on

ho
lly

w
oo

d2
00

9

co
m

-d
bl

p

Li
ve

Jo
ur

na
l

Sl
as

hd
ot

09
02

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
p
e
a
rm

a
n
n
 c

o
e
ff

ic
ie

n
t

current-flow clos.

shortest-path clos.

betweenness

Figure 42: Correlation with cA for complex networks.

This result also has implications on electrical closeness: when the number of nodes goes to
infinity in such graphs, cEC(v) goes to cA(v) := (n− 1)/

∑
w 6=v(1/ deg (v) + 1/ deg (w)).

However, the structure of real-world networks (e.g. complex or street networks) is signifi-
cantly different from random graphs and it is not clear how close electrical closeness is to
this asymptotic value in reality. In this section we therefore study the correlation between
electrical closeness, as well as shortest-path closeness and betweenness, with cA. In our
experiments, we consider large networks with up to 56 millions nodes and edges and we
use the sampling approach to approximate electrical closeness (with 20 pivots). Table 61
shows the running times of our approximation when computing the closeness of a single
node. We approximate betweenness using the approach presented in [56], which is already
implemented in NetworKit. Since the results are very different for street and complex
networks, we study them separately.
Figure 42 shows the Spearmann coefficient computed between the three centrality mea-

sures and cA on the complex networks of Table 59. The results show that there is in fact
a strong positive correlation. This is weaker for shortest-path closeness, with an average
Spearmann coefficient of 0.63 and stronger for betweenness and electrical closeness, with
an average of 0.81 and 0.89, respectively. We obtain similar results on the smaller instances
of Table 58, where the averages are 0.63, 0.85 and 0.89 for shortest-path closeness, between-
ness and electrical closeness, respectively. The results are very different for street networks
(Figure 43). Here the correlation with the degrees is generally very low and sometimes
even negative, with an average of -0.02 for closeness, 0.35 for betweenness and 0.07 for
electrical closeness.
While cA and cEC are unrelated on street networks, our results show that there is

actually a strong correlation between them in complex networks. This behavior is likely
due to the different type of degree distributions in the two network classes. While complex
networks usually feature a skewed degree distribution with many small, but also some
high-degree nodes, the degrees in street networks are closely concentrated. Consequently,
in some applications where a very good accuracy is not needed, cA might be used as an
approximation of cEC in complex networks. The same thing can be said for betweenness,
which is only slightly less correlated with cA than cEC. This is very convenient, since
cA can be computed in O(m) time. However, our results in Section 12.6.1 show that
our sampling-based approach can compute an extremely accurate approximation in time

182 estimation of electrical closeness

ro
ad

Net
-T

X

lu
xe

m
bo

ur
g

be
lg

iu
m

ne
th

er
la
nd

s
ita

ly

gr
ea

t-b
rit

ai
n

eu
ro

pe
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

S
p
e
a
rm

a
n
n
 c

o
e
ff

ic
ie

n
t

current-flow clos.

shortest-path clos.

betweenness

Figure 43: Correlation with cA for street networks.

Graph Time exact [s] Time Samp. 20 [s] Spearmann coeff. Rank Inver.
PGP 558.97 1.68 0.99990 0.14%
advogato 383.42 2.39 0.99986 0.16%
Drosophila_melanogaster 1077.78 3.50 0.99986 0.12%
Caenorhabditis_elegans 68.50 0.64 0.99975 0.28%
CA-HepTh 800.65 2.87 0.99989 0.14%
HC-BIOGRID 186.47 1.92 0.99975 0.28%
hprd_pp 988.58 4.01 0.99990 0.10%
Mus_musculus 33.66 0.33 0.99958 0.44%
GoogleNw 4612.19 8.16 0.99987 0.14%
Homo_sapiens 1913.06 4.90 0.99999 0.02%
oregon2_010526 640.97 1.49 0.99988 0.14%
as-caida20071105 3354.62 2.62 0.99990 0.12%

Table 60: Comparison between exact (= within desired tolerance τ) and Sampling approach, with
20 pivots. The first two columns report the running times of the two approaches, when
computing electrical closeness on 100 nodes. The third column reports the Spearmann
rank correlation coefficient between the approaches and the fourth the percentage of rank
inversions.

O(km log(1/ε)) even when the number k of samples is very small. For this reason, we
believe the sampling approach is probably the best option for most applications.

12.7 conclusions

In this chapter, we provided two algorithms Sampling and Projection for electrical
closeness, both based on solving Laplacian linear systems. Thanks to them and to the fast
NetworKit implementation of the LAMG solver, we have computed electrical closeness
centrality and provided the first published results on its behavior on large real-world
networks. Our algorithms lead to very accurate results and using them we are now able to
compute an estimation of electrical closeness of a subset of nodes on networks with tens
of millions of nodes and edges within a few seconds or minutes.

12.7 conclusions 183

Graph Time approximation [s]
cit-Patents 125.99
com-youtube 5.06
soc-Epinions1 0.28
com-amazon 2.56
hollywood2009 107.52
com-dblp 1.90
LiveJournal 287.27
Slashdot0902 0.41
roadNet-TX 6.28
luxembourg 0.13
belgium 2.39
netherlands 5.33
italy 10.91
great-britain 12.72
europe 103.34

Table 61: Running time of Sampling with 20 pivots when computing cEC of a single node.

In our experiments electrical closeness alleviates two known problems of shortest-path
closeness and can thus be seen as a viable alternative in many scenarios. We have also
shown empirically that there is a strong correlation between degrees and both electrical
closeness and betweenness centrality in complex networks, whereas the degree and electri-
cal closeness are basically unrelated in street networks.
Our approach based on Sampling or Projection is very fast in scenarios where one

only needs to compute the electrical closeness for a subset of nodes. However, it might
become too expensive if closeness has to be computed for all nodes. In these scenarios
an interesting aspect of future work is whether our approximation would still be the best
approach or whether inverting the Laplacian of the matrix would be faster in this case.

bibliographic notes

The results presented in this chapter have been published as “Estimating current-flow
closeness centrality with a multigrid laplacian solver” (coauthored with Michael Wegner,
Dimitar Lukarski, and Henning Meyerhenke) at the Seventh SIAM Workshop on Combi-
natorial Scientific Computing (CSC 2016).

Part V

C O N C L U S I O N

CONCLUS ION

Finding the most central nodes is a major task in network analysis. In this work, we
presented several algorithms for computing centrality efficiently, both on static networks
and on networks that evolve over time.
In Chapters 5, 6, 7 and 10, we presented dynamic algorithms that update betweenness

centrality and the k nodes with highest closeness after a change occurs to the graph. As
suggested from our experiments in Chapter 3, most edge updates only affect (i.e., increase
or decrease the distance between) a small fraction of node pairs in complex networks. Thus,
a simple idea common to all our dynamic algorithms is to first identify the affected pairs
and limit the SSSP searches on the new graph to them. Another common general idea
is that of identifying properties of the SSSP subtree (or sub-DAG) of a given node and
prune the search based on these properties.
To this aim, storing information on the graph before the update has turned out to

be extremely beneficial, since it allows to skip unnecessary work. On the other hand, the
choice of which information should be stored has to be made carefully, based on the specific
problem and targeted applications. Indeed, a large memory footprint can be a major
limitation for the scalability of a dynamic algorithm. For example, storing all pairwise
distances requires a quadratic amount of additional memory, meaning that networks with
millions of edges would be out of reach on most workstations, regardless of how fast the
dynamic algorithm is.
This leaves the algorithm developer with a tradeoff between running time and memory

consumption. In contexts where the running time of the static algorithm on the initial
graph is already a bottleneck for scalability, it might be reasonable to allocate additional
memory to speedup the running time of the updates. This was the case for the exact
betweenness algorithms in Chapter 5 and Chapter 6, where networks with millions of
edges would be out of reach in any case, due to the quadratic running time of the static
algorithm. On the contrary, the static top-k closeness algorithms proposed in Chapter 9
can target networks with hundreds of millions of edges, meaning that a dynamic algorithm
with quadratic memory footprint in this context would be a major limitation for scalability.
For this reason the dynamic top-k closeness algorithms presented in Chapter 10 were
designed to use only a linear (in the number of nodes) amount of additional memory.
Although storing additional information would probably lead to even higher speedups, the
algorithms are orders of magnitude faster than recomputation on many instances.
The approaches in Chapter 9 and Chapter 11 target static networks, but scale up existing

algorithms by pruning unnecessary work (without changing the returned results). In both
cases, computing fast and accurate upper bounds on quantities of interest (i.e., closeness in
the first case, and marginal gain of a node with respect to a set in the second case) is crucial.
Also, we point out once again that the top-k closeness algorithm proposed in Chapter 9
builds on the fact that the closeness centrality of a single node can be computed quickly (in
linear time in the size of the graph) by running a SSSP from the node. This is not the case
for other centrality measures, such as betweenness, for which at the moment no algorithm
for a single node exists that is significantly faster than computing all pairwise distances.
Although achieving a better worst-case complexity for this problem seems unlikely, it

187

188 estimation of electrical closeness

might be possible to devise algorithms that perform better on real-world instances. Such a
result would not only be interesting per se (there might be applications which require the
betweenness of a single node, see for example the MBI problem described in Chapter 6),
but also because it might allow to develop fast algorithms for computing the k nodes with
highest betweenness. As for electrical closeness, the approximation algorithms proposed in
Chapter 12 make it possible to compute an approximation for a single node on networks
with tens of millions of nodes and edges in a matter of seconds or at most minutes. Although
this is an approximation, our experimental results show that the returned ranking is very
close to the exact one. Thus, the methods in Chapter 12 could be used as a building block
to devise an algorithm for finding (an approximation of) the k nodes with highest electrical
closeness. The techniques used for top-k closeness in Chapter 9 would not directly apply to
this context, as they all rely on properties of shortest paths. However, it might be possible
to devise upper bounds on electrical closeness based on properties of resistance distance.

BIBL IOGRAPHY

[1] Amir Abboud, Fabrizio Grandoni, and Virginia V. Williams. “Subcubic equiva-
lences between graph centrality problems, APSP and diameter.” In: Proceedings of
the 26th ACM/SIAM Symposium on Discrete Algorithms (SODA). 2015, pp. 1681–
1697.

[2] Amir Abboud and Virginia V. Williams. “Popular conjectures imply strong lower
bounds for dynamic problems.” In: Proceedings of the 55th Annual Symposium on
Foundations of Computer Science (FOCS). 2014, pp. 434–443.

[3] Amir Abboud, Virginia V. Williams, and Joshua Wang. “Approximation and Fixed
Parameter Subquadratic Algorithms for Radius and Diameter.” In: Proceedings of
the 27th ACM/SIAM Symposium on Discrete Algorithms (SODA). 2016, pp. 377–
391.

[4] Amir Abboud, Virginia V. Williams, and Oren Weimann. “Consequences of Faster
Alignment of Sequences.” In: Proceedings of the 41st International Colloquium on
Automata, Languages and Programming (ICALP). 2014, pp. 39–51.

[5] Guilherme Ferraz de Arruda, André Luiz Barbieri, Pablo Martín Rodriguez, Yamir
Moreno, Luciano da Fontoura Costa, and Francisco Aparecido Rodrigues. “The role
of centrality for the identification of influential spreaders in complex networks.” In:
CoRR abs/1404.4528 (2014).

[6] Pasquale Avella, Maurizio Boccia, Saverio Salerno, and Igor Vasilyev. “An aggrega-
tion heuristic for large scale p-median problem.” In: Computers & OR 39.7 (2012),
pp. 1625–1632.

[7] Lars Backstrom and Jon M. Kleinberg. “Romantic partnerships and the dispersion
of social ties: a network analysis of relationship status on facebook.” In: Proceedings
of the 17th ACM conference on Computer Supported Cooperative Work (CSCW).
2014, pp. 831–841.

[8] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. “Approximat-
ing Betweenness Centrality.” In: Proceedings of the Workshop on Algorithms and
Models for the Web Graph (WAW). 2007, pp. 124–137.

[9] David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea
Kappes, and Dorothea Wagner. “Benchmarking for Graph Clustering and Parti-
tioning.” In: Encyclopedia of Social Network Analysis and Mining. Springer, 2014,
pp. 73–82.

[10] Reinhard Bauer and Dorothea Wagner. “Batch Dynamic Single-Source Shortest-
Path Algorithms: An Experimental Study.” In: Proceedings of the 8th International
Symposium on Experimental Algorithms (SEA). 2009, pp. 51–62.

[11] Alex Bavelas. “A mathematical model of Group Structure.” In: Human Organiza-
tions 7 (1948), pp. 16–30.

[12] Alex Bavelas. “Communication patterns in task-oriented groups.” In: Journal of
the Acoustical Society of America 22 (1950), pp. 725–730.

189

190 Bibliography

[13] David C. Bell, John S. Atkinson, and Jerry W. Carlson. “Centrality measures for
disease transmission networks.” In: Social Networks 21.1 (1999), pp. 1–21.

[14] Elisabetta Bergamini, Tanya Gonser, and Henning Meyerhenke. “Scaling up Group
Closeness Maximization.” In: Accepted at the 20th Workshop on Algorithm Engi-
neering and Experiments (ALENEX). To appear. 2018.

[15] Elisabetta Bergamini and Henning Meyerhenke. “Computing Top-k Closeness Cen-
trality Faster in Unweighted Graphs.” In: Karlsruhe Reports in Informatics (2015).

[16] Elisabetta Bergamini and Henning Meyerhenke. “Fully-Dynamic Approximation of
Betweenness Centrality.” In: Proceedings of the 23rd Annual European Symposium
on Algorithms, (ESA). 2015, pp. 155–166.

[17] Elisabetta Bergamini and Henning Meyerhenke. “Approximating Betweenness Cen-
trality in Fully Dynamic Networks.” In: Internet Mathematics 12.5 (2016), pp. 281–
314.

[18] Elisabetta Bergamini, Henning Meyerhenke, and Christian Staudt. “Approximating
Betweenness Centrality in Large Evolving Networks.” In: Proceedings of the 17th
Workshop on Algorithm Engineering and Experiments, (ALENEX). 2015, pp. 133–
146.

[19] Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, and
Henning Meyerhenke. “Computing Top-k Closeness Centrality Faster in Unweighted
Graphs.” In: Proceedings of the 18th Workshop on Algorithm Engineering and Ex-
periments, (ALENEX). 2016, pp. 68–80.

[20] Elisabetta Bergamini, Michael Wegner, Dimitar Lukarski, and Henning Meyer-
henke. “Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian
Solver.” In: Proceedings of the 7th SIAM Workshop on Combinatorial Scientific
Computing, (CSC). 2016, pp. 1–12.

[21] Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, and
Henning Meyerhenke. “Computing top-k Closeness Centrality Faster in Unweighted
Graphs.” In: CoRR abs/1704.01077 (2017).

[22] Elisabetta Bergamini, Henning Meyerhenke, Mark Ortmann, and Arie Slobbe. “Faster
Betweenness Centrality Updates in Evolving Networks.” In: Proceedings of the 16th
International Symposium on Experimental Algorithms, (SEA). 2017, 23:1–23:16.

[23] Elisabetta Bergamini, Pierluigi Crescenzi, Gianlorenzo D’Angelo, Henning Meyer-
henke, Lorenzo Severini, and Yllka Velaj. “Improving the betweenness centrality of
a node by adding links.” In: CoRR abs/1702.05284 (2017).

[24] Patrick Bisenius, Elisabetta Bergamini, Eugenio Angriman, and Henning Meyer-
henke. “Computing Top-k Closeness Centrality in Fully-dynamic Graphs.” In: Ac-
cepted at the 20th Workshop on Algorithm Engineering and Experiments (ALENEX).
To appear. 2018.

[25] Paolo Boldi and Sebastiano Vigna. “Axioms for Centrality.” In: Internet Mathemat-
ics 10.3-4 (2014), pp. 222–262.

[26] Erik G. Boman, Kevin Deweese, and John R. Gilbert. “Evaluating the Dual Ran-
domized Kaczmarz Laplacian Linear Solver.” In: Informatica 40 (2016), pp. 95–
107.

Bibliography 191

[27] Michele Borassi. “A Note on the Complexity of Computing the Number of Reach-
able Vertices in a Digraph.” In: CoRR abs/1602.02129 (2016). arXiv: 1602.02129.

[28] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. “Into the square - On the
complexity of some quadratic-time solvable problems.” In: Proceedings of the 16th
Italian Conference on Theoretical Computer Science (ICTCS). 2015, pp. 1–17.

[29] Michele Borassi, Pierluigi Crescenzi, and Andrea Marino. Fast and Simple Com-
putation of Top-k Closeness Centralities. http://arxiv.org/abs/1507.01490.
2015.

[30] Michele Borassi and Emanuele Natale. “KADABRA is an ADaptive Algorithm
for Betweenness via Random Approximation.” In: Proceedings of the 24th Annual
European Symposium on Algorithms, (ESA). 2016, 20:1–20:18.

[31] Ulrik Brandes. “A faster algorithm for betweenness centrality.” In: Journal of Math-
ematical Sociology 25 (2001), pp. 163–177.

[32] Ulrik Brandes and Thomas Erlebach. Network Analysis: Methodological Founda-
tions (Lecture Notes in Computer Science). Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2005.

[33] Ulrik Brandes and Daniel Fleischer. “Centrality Measures Based on Current Flow.”
In: Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer
Science (STACS). 2005, pp. 533–544.

[34] Ulrik Brandes and Christian Pich. “Centrality Estimation in Large Networks.” In:
International Journal on Bifurcation and Chaos 17.7 (2007), pp. 2303–2318.

[35] Shiri Chechik, Edith Cohen, and Haim Kaplan. “Average Distance Queries through
Weighted Samples in Graphs and Metric Spaces: High Scalability with Tight Sta-
tistical Guarantees.” In: Proceedings of the 2015 International Workshop on Ap-
proximation, Randomization, and Combinatorial Optimization (APPROX) and In-
ternational Workshop on Algorithms and Techniques (RANDOM). Vol. 40. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 659–679.

[36] Mostafa Haghir Chehreghani. “An Efficient Algorithm for Approximate Between-
ness Centrality Computation.” In: The Computer Journal 57.9 (2014), pp. 1371–
1382.

[37] Chen Chen, Wei Wang, and Xiaoyang Wang. “Efficient Maximum Closeness Cen-
trality Group Identification.” In: Proceedings of the 27th Australasian Database
Conference (ADC). 2016, pp. 43–55.

[38] Duanbing Chen, Linyuan Lu, Ming-Sheng Shang, Yi-Cheng Zhang, and Tao Zhou.
“Identifying influential nodes in complex networks.” In: Physica A: Statistical Me-
chanics and its Applications 391.4 (2012), pp. 1777–1787.

[39] Nicholas A. Christakis and James H. Fowler. “The spread of obesity in a large
social network over 32 years.” In: The New England Journal of Medicine 357.4
(2007), pp. 370–379.

[40] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and
Shang-Hua Teng. “Electrical flows, laplacian systems, and faster approximation of
maximum flow in undirected graphs.” In: Proceedings of the 43rd ACM Symposium
on Theory of Computing (STOC). 2011, pp. 273–282.

http://arxiv.org/abs/1602.02129
http://arxiv.org/abs/1507.01490

192 Bibliography

[41] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. “Computing
classic closeness centrality, at scale.” In: Proceedings of the 2nd ACM conference on
Online social networks (COSN). 2014, pp. 37–50.

[42] Pierluigi Crescenzi, Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. “Greed-
ily Improving Our Own Centrality in A Network.” In: Proceedings of the 14th In-
ternational Symposium on Experimental Algorithms (SEA). 2015, pp. 43–55.

[43] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix Collec-
tion.” In: ACM Transactions on Mathematical Software 38.1 (2011), 1:1–1:25.

[44] Camil Demetrescu and Giuseppe F. Italiano. “A new approach to dynamic all pairs
shortest paths.” In: Journal of the ACM 51.6 (2004), pp. 968–992.

[45] R. Diekmann, A. Frommer, and B. Monien. “Efficient schemes for nearest neighbor
load balancing.” In: Parallel Computing 25.7 (1999), pp. 789–812.

[46] Sergei N Dorogovtsev and José FF Mendes. Evolution of networks: From biological
nets to the Internet and WWW. Oxford University Press, 2003.

[47] Zvi Drezner. Facility Location. Springer, 1995.
[48] Jean-Guillaume Dumas and Victor Pan. “Fast Matrix Multiplication and Symbolic

Computation.” In: CoRR abs/1612.05766 (2016).
[49] David Ediger, Jason Riedy, David A. Bader, and Henning Meyerhenke. “Compu-

tational Graph Analytics for Massive Streaming Data.” In: Large Scale Network-
Centric Distributed Systems. John Wiley & Sons, Inc., 2013, pp. 619–648.

[50] David Eppstein and Joseph Wang. “Fast Approximation of Centrality.” In: Journal
of Graph Algorithms and Applications (2004), pp. 39–45.

[51] Dóra Erdös, Vatche Ishakian, Azer Bestavros, and Evimaria Terzi. “A Divide-and-
Conquer Algorithm for Betweenness Centrality.” In: Proceedings of the 2015 SIAM
International Conference on Data Mining (SDM). 2015, pp. 433–441.

[52] Martin G. Everett and Stephen P. Borgatti. “The centrality of groups and classes.”
In: The Journal of Mathematical Sociology 23.3 (1999), pp. 181–201.

[53] Linton C. Freeman. “Centrality in social networks: Conceptual clarification.” In:
Social Networks 1.3 (1979), pp. 215–239.

[54] François Le Gall. “Powers of tensors and fast matrix multiplication.” In: Proceed-
ings of the 2014 International Symposium on Symbolic and Algebraic Computation
(ISSAC). 2014, pp. 296–303.

[55] Emden R. Gansner, Yifan Hu, and Stephen C. North. “A Maxent-Stress Model for
Graph Layout.” In: IEEE Transactions on Visualization and Computer Graphics
19.6 (2013), pp. 927–940.

[56] Robert Geisberger, Peter Sanders, and Dominik Schultes. “Better Approximation
of Betweenness Centrality.” In: Proceedings of the 10th Workshop on Algorithm
Engineering and Experiments (ALENEX). 2008, pp. 90–100.

[57] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins
University Press, 1996.

Bibliography 193

[58] Oded Green, Robert McColl, and David A. Bader. “A Fast Algorithm for Streaming
Betweenness Centrality.” In: Proceedings of the 2012 International Conference on
Privacy, Security, Risk and Trust (PASSAT) and 2012 International Conference
on Social Computing (SocialCom). 2012, pp. 11–20.

[59] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring network struc-
ture, dynamics, and function using NetworkX.” In: Proceedings of the 7th Python
in Science Conference (SCIPY). 2008, pp. 11–15.

[60] S. Louis Hakimi. “Optimum distribution of switching centers in a communication
network and some related graph theoretic problems.” In: Operations Research 13.3
(1965), pp. 462–475.

[61] Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. “Fully Dynamic Betweenness
Centrality Maintenance on Massive Networks.” In: Proceedings of the 41st Interna-
tional Conference on Very Large Data Bases (PVLDB). Vol. 9. 2. 2015, pp. 48–
59.

[62] Daniel Hoske, Dimitar Lukarski, Henning Meyerhenke, and Michael Wegner. “Is
Nearly-linear the Same in Theory and Practice? A Case Study with a Combinato-
rial Laplacian Solver.” In: Proceedings of 14th International Symposium on Experi-
mental Algorithms (SEA). Vol. 9125. Springer. 2015, p. 205.

[63] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which Problems Have
Strongly Exponential Complexity?” In: Journal of Computer and System Sciences
63.4 (Dec. 2001), pp. 512–530.

[64] Chandra Ade Irawan and Saïd Salhi. “Solving large p-median problems by a mul-
tistage hybrid approach using demand points aggregation and variable neighbour-
hood search.” In: Journal of Global Optimization 63.3 (2015), pp. 537–554.

[65] U Kang, Spiros Papadimitriou, Jimeng Sun, and Tong Hanghang. “Centralities in
large networks: Algorithms and observations.” In: Proceedings of the SIAM Inter-
national Conference on Data Mining (SDM). 2011, pp. 119–130.

[66] Miray Kas, Kathleen M. Carley, and L. Richard Carley. “Incremental closeness
centrality for dynamically changing social networks.” In: Proceedings of the 5th
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). 2013, pp. 1250–1258.

[67] Miray Kas, Matthew Wachs, Kathleen M. Carley, and L. Richard Carley. “Incre-
mental algorithm for updating betweenness centrality in dynamically growing net-
works.” In: Proceedings of the 5th International Conference on Advances in Social
Networks Analysis and Mining (ASONAM). 2013, pp. 33–40.

[68] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. “A
Simple, Combinatorial Algorithm for Solving SDD Systems in Nearly-linear Time.”
In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC). Palo Alto, California, USA, 2013, pp. 911–920.

[69] David Kempe, Jon M. Kleinberg, and Éva Tardos. “Maximizing the spread of in-
fluence through a social network.” In: Proceedings of the 9thACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. 2003, pp. 137–146.

194 Bibliography

[70] Christine Kiss and Martin Bichler. “Identification of influencers – Measuring in-
fluence in customer networks.” In: Decision Support Systems 46.1 (2008), pp. 233
–253.

[71] Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters, Stefan Richter, Dagmar
Tenfelde-Podehl, and Oliver Zlotowski. “Centrality Indices.” English. In: Network
Analysis. Vol. 3418. LNCS. Springer Berlin Heidelberg, 2005, pp. 16–61.

[72] Nicolas Kourtellis, Gianmarco De Francisci Morales, and Francesco Bonchi. “Scal-
able Online Betweenness Centrality in Evolving Graphs.” In: IEEE Transactions
on Knowledge and Data Engineering PP.99 (2015), pp. 1–1.

[73] Ioannis Koutis, Gary L. Miller, and Richard Peng. “Approaching Optimality for
Solving SDD Linear Systems.” In: Proceedings of the 51th Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 2010, pp. 235–244.

[74] Ioannis Koutis, Gary L. Miller, and Richard Peng. “A Nearly-m log n Time Solver
for SDD Linear Systems.” In: Proceedings of the 52nd IEEE Annual Symposium on
Foundations of Computer Science (FOCS). 2011, pp. 590–598.

[75] Ioannis Koutis, Gary L. Miller, and David Tolliver. “Combinatorial Preconditioners
and Multilevel Solvers for Problems in Computer Vision and Image Processing.” In:
Computer Vision and Image Understanding 115.12 (2011), pp. 1638–1646.

[76] Jérôme Kunegis. “KONECT: the Koblenz network collection.” In: Proceedings of
the 22nd International World Wide Web Conference (WWW). 2013, pp. 1343–1350.

[77] LASAGNE Network Dataset. http://lasagne-unifi.sourceforge.net.
[78] Erwan Le Merrer, Nicolas Le Scouarnec, and Gilles Trédan. “Heuristical Top-k:

Fast Estimation of Centralities in Complex Networks.” In: Information Processing
Letters 114 (2014), pp. 432–436.

[79] Min-Joong Lee, Sunghee Choi, and Chin-Wan Chung. “Efficient algorithms for
updating betweenness centrality in fully dynamic graphs.” In: Information Sciences
326 (2016), pp. 278–296.

[80] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. “Graph evolution: Den-
sification and shrinking diameters.” In: TKDD 1.1 (2007), p. 2.

[81] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset
Collection. http://snap.stanford.edu/data. 2014.

[82] Chih-Chung Lin and Ruei-Chuan Chang. “On the Dynamic Shortest Path Prob-
lem.” In: Journal of Information Processing 13.4 (1991), pp. 470–476.

[83] Nan Lin. Foundations of social research. McGraw-Hill, 1976.
[84] Oren E. Livne and Achi Brandt. “Lean algebraic multigrid (LAMG): Fast Graph

Laplacian Linear Solver.” In: SIAM Journal on Scientific Computing 34.4 (2012),
B499–B522.

[85] Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. “Generating Ran-
dom Hyperbolic Graphs in Subquadratic Time.” In: Proceedings of the 26th Inter-
national Symposium on Algorithms and Computation (ISAAC). LNCS. Springer,
2015, pp. 467–478.

http://lasagne-unifi.sourceforge.net
http://snap.stanford.edu/data

Bibliography 195

[86] Ulrike von Luxburg, Agnes Radl, and Matthias Hein. “Hitting and commute times
in large random neighborhood graphs.” In: Journal of Machine Learning Research
15.1 (2014), pp. 1751–1798.

[87] Ahmad Mahmoody, Charalampos E. Tsourakakis, and Eli Upfal. “Scalable Be-
tweenness Centrality Maximization via Sampling.” In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD). 2016, pp. 1765–1773.

[88] Paolo Malighetti, Gianmaria Martini, Stefano Paleari, and Renato Redondi. The
Impacts of Airport Centrality in the EU Network and Inter-Airport Competition on
Airport Efficiency. Tech. rep. MPRA-7673. 2009.

[89] Massimo Marchiori and Vito Latora. “Harmony in the small-world.” In: Physica A:
Statistical Mechanics and its Applications 285.3-4 (2000), pp. 539–546.

[90] Charalampos Mavroforakis, Richard Garcia-Lebron, Ioannis Koutis, and Evimaria
Terzi. “Spanning Edge Centrality: Large-scale Computation and Applications.” In:
Proceedings of the 24th International Conference on World Wide Web (WWW).
2015, pp. 732–742.

[91] Robert McColl, Oded Green, and David A. Bader. “A new parallel algorithm for
connected components in dynamic graphs.” In: Proceedings of the 20th Annual In-
ternational Conference on High Performance Computing (HiPC). 2013, pp. 246–
255.

[92] Henning Meyerhenke, Burkhard Monien, and Stefan Schamberger. “Graph parti-
tioning and disturbed diffusion.” In: Parallel Computing 35.10-11 (2009), pp. 544–
569.

[93] Henning Meyerhenke, Martin Nöllenburg, and Christian Schulz. “Drawing Large
Graphs by Multilevel Maxent-Stress Optimization.” In: Proceedings of the 23rd
International Symposium on Graph Drawing and Network Visualization (GD). 2015,
pp. 30–43.

[94] Meghana Nasre, Matteo Pontecorvi, and Vijaya Ramachandran. “Betweenness Cen-
trality - Incremental and Faster.” In: Proceedings of the 39th International Sympo-
sium on Mathematical Foundations of Computer Science(MFCS). 2014, pp. 577–
588.

[95] Mark E. J. Newman. Networks: An Introduction. OUP Oxford, 2010.
[96] Kazuya Okamoto, Wei Chen, and Xy Li. “Ranking of closeness centrality for large-

scale social networks.” In: Frontiers in Algorithmics 5059 (2008), pp. 186–195.
[97] Paul W. Olsen, Alan G. Labouseur, and Jeong-Hyon Hwang. “Efficient top-k close-

ness centrality search.” In: Proceedings of the 30th IEEE International Conference
on Data Engineering (ICDE). 2014, pp. 196–207.

[98] John F. Padgett and Christofer K. Ansell. Robust Action and the Rise of the Medici,
1400-1434. University of Chicago, 1993.

[99] Romualdo Pastor-Satorras and Alessandro Vespignani. “Epidemic Spreading in
Scale-Free Networks.” In: Physical Review Letters 86.14 (2001), pp. 3200–3203.

[100] Forrest R. Pitts. “A graph theoretic approach to historical geography.” In: The
Professional Geographer 17 (1965), pp. 15–20.

196 Bibliography

[101] Matteo Pontecorvi and Vijaya Ramachandran. “Fully Dynamic Betweenness Cen-
trality.” In: Proceedings of the 26th International Symposium on Algorithms and
Computation (ISAAC). 2015, pp. 331–342.

[102] Rami Puzis, Polina Zilberman, Yuval Elovici, Shlomi Dolev, and Ulrik Brandes.
“Heuristics for Speeding Up Betweenness Centrality Computation.” In: Proceedings
of the 2012 International Conference on Privacy, Security, Risk and Trust (PAS-
SAT) and 2012 International Conference on Social Computing (SocialCom). 2012,
pp. 302–311.

[103] Mihai Pǎtraşcu and Ryan Williams. “On the possibility of faster SAT algorithms.”
In: Proceedings of the 21st ACM/SIAM Symposium on Discrete Algorithms (SODA).
2010.

[104] G. Ramalingam and Thomas W. Reps. “On the Computational Complexity of Dy-
namic Graph Problems.” In: Theoretical Computer Science 158.1&2 (1996), pp. 233–
277.

[105] Pascal Rebreyend, Laurent Lemarchand, and Reinhardt Euler. “A Computational
Comparison of Different Algorithms for Very Large p -median Problems.” In: Pro-
ceedings of the 15th European Conference on Evolutionary Computation in Combi-
natorial Optimization (EvoCOP). 2015, pp. 13–24.

[106] J. Reese. “Solution methods for the p-median problem: An annotated bibliography.”
In: Networks 48.3 (2006), pp. 125–142.

[107] Matteo Riondato and Evgenios M. Kornaropoulos. “Fast approximation of between-
ness centrality through sampling.” In: Data Mining and Knowledge Discovery 30.2
(2016), pp. 438–475.

[108] Matteo Riondato and Eli Upfal. “ABRA: Approximating Betweenness Centrality
in Static and Dynamic Graphs with Rademacher Averages.” In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). 2016, pp. 1145–1154.

[109] Liam Roditty and Virginia V. Williams. “Fast approximation algorithms for the
diameter and radius of sparse graphs.” In: Proceedings of the 45th annual ACM
Symposium on Theory of Computing (STOC). 2013, pp. 515–524.

[110] Jurgen Ruge and Klaus Stüben. “Algebraic multigrid.” In: Multigrid methods 3
(1987), pp. 73–130.

[111] Peter Sanders. “Algorithm Engineering - An Attempt at a Definition.” In: Effi-
cient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th
Birthday. 2009, pp. 321–340.

[112] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek. “Incre-
mental algorithms for closeness centrality.” In: Proceedings of the 1st IEEE Inter-
national Conference on Big Data. 2013, pp. 487–492.

[113] Ahmet Erdem Sariyüce, Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. “Hard-
ware/Software Vectorization for Closeness Centrality on Multi-/Many-Core Archi-
tectures.” In: Proceedings of the IEEE International Parallel & Distributed Process-
ing Symposium Workshops. 2014, pp. 1386–1395.

Bibliography 197

[114] Avi Shoshan and Uri Zwick. “All Pairs Shortest Paths in Undirected Graphs with
Integer Weights.” In: Proceedings of the 40th Annual Symposium on Foundations
of Computer Science, (FOCS). 1999, pp. 605–615.

[115] Jeremy G. Siek, Lie Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Pearson Education, 2001.

[116] Daniel A. Spielman and Nikhil Srivastava. “Graph Sparsification by Effective Re-
sistances.” In: SIAM Journal on Computing 40.6 (2011), pp. 1913–1926.

[117] Daniel A. Spielman and Shang-Hua Teng. “Nearly-linear Time Algorithms for
Graph Partitioning, Graph Sparsification, and Solving Linear Systems.” In: Proceed-
ings of the 36th ACM Symposium on Theory of Computing (STOC). 2004, pp. 81–
90.

[118] Christian L. Staudt and Henning Meyerhenke. “Engineering Parallel Algorithms
for Community Detection in Massive Networks.” In: IEEE Transactions on Parallel
and Distributed Systems (TPDS) 27.1 (2016), pp. 171–184.

[119] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. “NetworKit: A
Tool Suite for High-Performance Network Analysis.” In: Network Science 4.4 (2016),
pp. 508–530.

[120] William Stein and David Joyner. “Sage: System for algebra and geometry experi-
mentation.” In: SIGSAM Bulletin 39.2 (2005), pp. 61–64.

[121] Andreia S. Teixeira, Francisco C. Santos, and Alexandre P. Francisco. “Spanning
Edge Betweenness in Practice.” In: Proceedings of the 7th Workshop on Complex
Networks (CompleNet). 2016, pp. 3–10.

[122] Ryan Williams. “A new algorithm for optimal 2-constraint satisfaction and its im-
plications.” In: Theoretical Computer Science 348.2-3 (2005), pp. 357–365.

[123] Virginia V. Williams. “Multiplying matrices faster than Coppersmith-Winograd.”
In: Proceedings of the 44th Symposium on Theory of Computing, (STOC). 2012,
pp. 887–898.

[124] Virginia V. Williams and Ryan Williams. “Subcubic Equivalences between Path,
Matrix and Triangle Problems.” In: Proceedings of the 51st IEEE Annual Sympo-
sium on Foundations of Computer Science (FOCS). 2010, pp. 645–654.

[125] Yuichi Yoshida. “Almost linear-time algorithms for adaptive betweenness central-
ity using hypergraph sketches.” In: Proceedings of the 20th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD). 2014,
pp. 1416–1425.

[126] Junzhou Zhao, John C. S. Lui, Don Towsley, and Xiaohong Guan. “Measuring and
maximizing group closeness centrality over disk-resident graphs.” In: Proceedings of
the 23rd International World Wide Web Conference (WWW). 2014, pp. 689–694.

[127] Uri Zwick. “All Pairs Shortest Paths in Weighted Directed Graphs ¾ Exact and
Almost Exact Algorithms.” In: Proceedings of the 39th Annual Symposium on Foun-
dations of Computer Science (FOCS). 1998, pp. 310–319.

[128] Jon delEtoile and Hojjat Adeli. “Graph Theory and Brain Connectivity in Alzheimer’s
Disease.” In: The Neuroscientist (2017).

A P P E N D I C E S

199

PUBL ICAT IONS

Some of the research leading to this thesis has appeared previously in the following publi-
cations.

Journal Articles

• Elisabetta Bergamini, Henning Meyerhenke: Approximating betweenness cen-
trality in fully dynamic networks. – Internet Mathematics, 2016

Conference Papers

• Elisabetta Bergamini, Tanya Gonser, Henning Meyerhenke: Scaling up Group
Closeness Maximization. – Accepted at SIAM Workshop on Algorithm Engineer-
ing and Experiments (ALENEX 2018), January 2018, New Orleans, USA

• Patrick Bisenius, Elisabetta Bergamini, Eugenio Angriman, Henning Meyerhenke:
Computing Top-k Closeness Centrality in Fully-dynamic Graphs. – Ac-
cepted at SIAM Workshop on Algorithm Engineering and Experiments (ALENEX
2018), January 2018, New Orleans, USA

• Elisabetta Bergamini, Henning Meyerhenke, Mark Ortmann, Arie Slobbe: Faster
betweenness centrality updates in evolving networks. – International Sym-
posium on Experimental Algorithms (SEA 2017), June 2017, London, UK

• Elisabetta Bergamini, Henning Meyerhenke, Christian Staudt:Estimating current-
flow closeness centrality with a multigrid laplacian solver. – SIAM Workshop
on Combinatorial Scientific Computing (CSC 2016), October 2016, Albuquerque,
USA

• Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, Henning
Meyerhenke: Computing top-k Closeness Centrality Faster in Unweighted
Graphs. – SIAM Workshop on Algorithm Engineering and Experiments (ALENEX
2016), January 2016, Arlington, USA

• Elisabetta Bergamini, Henning Meyerhenke: Fully-dynamic approximation of
betweenness centrality. – European Symposium on Algorithms (ESA 2015), Septem-
ber 2015, Patras, Greece

• Elisabetta Bergamini, Henning Meyerhenke, Christian Staudt:Approximating Be-
tweenness Centrality in Large Evolving Networks. – SIAM Workshop on Al-
gorithm Engineering and Experiments (ALENEX 2015), January 2015, San Diego,
USA

201

202 Bibliography

Journal Articles in Revision Process

• Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, Henning
Meyerhenke: Computing top-k Closeness Centrality Faster in Unweighted
Graphs. – preprint available at https://arxiv.org/abs/1704.01077

• Elisabetta Bergamini, Pierluigi Crescenzi, Gianlorenzo D’Angelo, Henning Meyer-
henke, Lorenzo Severini, Yllka Velaj: Improving the betweenness centrality of
a node by adding links. – preprint available at https://arxiv.org/abs/1702.
05284

https://arxiv.org/abs/1704.01077
https://arxiv.org/abs/1702.05284
https://arxiv.org/abs/1702.05284

	Erklärung
	Contents
	List of Figures
	List of Tables

	Introduction
	1 Motivation and contribution
	1.1 Network Analysis and Centrality Measures
	1.2 Objectives and Methodology
	1.3 Outline and contribution

	2 Shortest paths and centrality measures
	2.1 Graph basics
	2.2 Distances in graphs
	2.2.1 Shortest-path distance
	2.2.2 Resistance distance

	2.3 Centrality Measures
	2.3.1 Node Centrality Measures
	2.3.2 Edge Centrality Measures

	3 Dynamic Shortest-Path Algorithms
	3.1 Preliminaries
	3.2 Dynamic Algorithms: A Data-driven Motivation
	3.2.1 Affected Nodes
	3.2.2 Real Edge Dynamics vs Random Updates

	Dynamic Algorithms for Betweenness Centrality
	4 Overview of Algorithms for Betweenness Centrality
	4.1 Introduction
	4.2 Brandes's algorithm (BA)
	4.3 Static Approximation Algorithms
	4.4 Dynamic Algorithms

	5 Faster Incremental Betweenness Centrality
	5.1 Introduction
	5.2 Dynamic augmented APSP
	5.2.1 Algorithm by Kourtellis et al. (KDB)
	5.2.2 Algorithm by Kas et al. (KWCC)
	5.2.3 Faster augmented APSP update

	5.3 Dynamic dependency accumulation
	5.3.1 Algorithm by Kourtellis et al. (KDB)
	5.3.2 Algorithm by Kas et al. (KWCC)
	5.3.3 Faster betweenness update

	5.4 Time complexity
	5.5 Experimental Results

	6 Dynamic Single-Node Betweenness Centrality
	6.1 Introduction
	6.2 Dynamic Betweenness for a Single Node
	6.2.1 Initialization
	6.2.2 Update
	6.2.3 Time complexities

	6.3 Experimental evaluation
	6.3.1 Running times of the dynamic algorithm for the betweenness of one node
	6.3.2 Running times of the greedy algorithm for betweenness maximization

	7 Fully-dynamic Betweenness Approximation
	7.1 Introduction
	7.2 RK algorithm
	7.3 New upper bounds on the vertex diameter
	7.3.1 Directed unweighted graphs.
	7.3.2 Undirected weighted graphs
	7.3.3 Directed weighted graphs.

	7.4 Fully-dynamic approximation algorithms
	7.4.1 Path subsitution.
	7.4.2 Sampling new paths.
	7.4.3 SSSP update in weighted graphs.
	7.4.4 SSSP update in unweighted graphs.
	7.4.5 Fully-dynamic VD approximation.
	7.4.6 Combined dynamic betweenness approximation.
	7.4.7 Complexity of the dynamic betweenness algorithms.

	7.5 Experiments
	7.5.1 Accuracy.
	7.5.2 New upper bound on VD for directed graphs.
	7.5.3 Running times.

	Efficient Computation of Nodes with Highest Closeness Centrality
	8 Overview of Algorithms for Closeness Centrality
	8.1 Introduction
	8.2 Related Work

	9 Computing Top-k Closeness Centrality
	9.1 Introduction
	9.2 Preliminaries
	9.3 Overview of the Algorithm
	9.4 Neighborhood-Based Lower Bound
	9.5 The updateBoundsBFSCut Function
	9.6 The updateBoundLB Function
	9.7 The Directed Disconnected Case
	9.7.1 The Neighborhood-Based Lower Bound
	9.7.2 The updateBoundsBFSCut Function
	9.7.3 The updateBoundsLB Function
	9.7.4 Computing (v) and (v)

	9.8 Experimental Results
	9.8.1 Comparison with the State of the Art
	9.8.2 Real-World Large Networks

	9.9 IMDB Case Study
	9.10 Wikipedia Case Study

	10 Computing Top-k Closeness Centrality in Fully-dynamic Graphs
	10.1 Introduction
	10.2 Preliminaries
	10.2.1 Notation and Problem Definition
	10.2.2 Static Top-k Closeness

	10.3 Dynamic Top-k Closeness Centrality
	10.3.1 Updating the Number of Reachable Nodes
	10.3.2 Finding Affected Nodes
	10.3.3 Update after an edge insertion
	10.3.4 Update After an Edge Deletion
	10.3.5 Running Times and Memory Requirements

	10.4 Experiments
	10.4.1 Experimental Setup
	10.4.2 Speedups on Recomputation

	11 Scaling up Group Closeness Maximization
	11.1 Introduction
	11.2 Preliminaries
	11.3 Related work
	11.3.1 Greedy approximation algorithm

	11.4 A scalable greedy algorithm
	11.4.1 Pruned SSSP
	11.4.2 Submodularity improvement
	11.4.3 Bit-parallel group closeness

	11.5 ILP formulation of group closeness
	11.6 Experiments
	11.6.1 Accuracy
	11.6.2 Speedup on Greedy
	11.6.3 Comparison with OSA
	11.6.4 Running time evaluation
	11.6.5 Greedy++ using bit vectors
	11.6.6 Group closeness versus top-k closeness

	Estimation of Electrical Closeness
	12 Estimation of Electrical Closeness
	12.1 Introduction
	12.2 Preliminaries: Graphs as electrical networks.
	12.3 Related Work
	12.3.1 Solving Laplacian linear systems.
	12.3.2 Laplacian linear systems for network analysis.

	12.4 Electrical closeness centrality
	12.5 Approximating electrical closeness
	12.5.1 Sampling-based approximation.
	12.5.2 Projection-based approximation.

	12.6 Experimental Evaluation
	12.6.1 Approximation algorithms.
	12.6.2 Comparison with shortest-path closeness.
	12.6.3 Correlation with degree.

	12.7 Conclusions

	Conclusion
	Bibliography

	Appendices
	Publications
	Curriculum Vitae

