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1 Introduction

One of the prominent problems of the Standard Model (SM) is the presence of large hierar-

chies in fermion masses and mixings. Even neglecting neutrino masses, which might have a

different origin, the Yukawa couplings span a range from 10−6 for the electron up to unity

for the top quark. Mixing angles in the quark sector are small and hierarchical, while all

mixing angles in the lepton sector are sizable. Explaining these hierarchies is referred to

as the “SM Flavor Puzzle” (see e.g. ref. [1] for a review).

A popular framework to address this problem is in terms of approximate flavor (or

horizontal) symmetries. The SM fermions are charged under this symmetry, so that most

of the Yukawa couplings are forbidden in the symmetry limit. The flavor symmetry is

spontaneously broken by vacuum expectation values of scalar fields (the so-called flavons),

which allows to estimate the Yukawa couplings using a spurion analysis. Within an effective

field theory approach, appropriate powers of flavon insertions are needed to make a given

Yukawa operator invariant under the flavor symmetry, suppressed by some large UV cutoff

scale. The flavon VEVs are assumed to be slightly below this cutoff scale, so that SM
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Yukawas arise from powers of these small order parameters. The effective operators have

coefficients that are not predicted by the model, but should not be too large or small, in

order to explain all hierarchies with the approximate flavor symmetry alone.

While a plethora of this kind of models have been constructed (see e.g. ref. [1] and

references therein), a particularly simple and interesting class of models is based on a U(2)

flavor symmetry [2, 3]. In the original model the flavor quantum numbers are compatible

with an SO(10) GUT structure, and therefore viable only in a supersymmetric (SUSY)

context (or more generally in models with at least one additional Higgs field, needed to

account for the mb/mt hierarchy). Holomorphy together with the U(2) breaking pattern

by two spurions then leads to three texture zeros in the quark mass matrices, which imply

certain relations between CKM mixing angles and quark masses, in particular Vub/Vcb =√
mu/mc. Unfortunately, this prediction is incompatible with the current experimental

precision of Vub and Vcb, and this simple and economic model was ruled out [4] with the

advent of B-factories.

Therefore modifications of the original model have been proposed in order to modify

the model predictions and comply with experimental data. In ref. [5] a SUSY SO(10) model

with a D3×U(1) flavor symmetry was studied, which mimicked the original U(2) structure

with three texture zeros, but is also in conflict with present values of CKM elements. A

more recent study has been performed in ref. [6], which has shown that the problematic

relation can be fixed by taking flavor quantum numbers compatible only with an SU(5)

GUT structure. This allows the presence of large rotations in the right-handed (RH) down

sector that correct the predictions, as suggested in ref. [4]. Relaxing the SO(10) structure

admits to consider also non-supersymmetric models, and in ref. [7] such a model was

constructed with a charged lepton sector designed to address the (still existing) anomalies

in semileptonic B-meson decays. This requires to give up also the SU(5) compatibility, but

the model can successfully explain the observed deviations in RK [8] and RK∗ [9] by the

tree-level exchange of a Z ′ boson in the TeV range. In contrast to many Z ′ models that

address the anomalies, the couplings to fermions are related to the flavor sector and thus

essentially predicted in terms of fermion masses and mixings.

In this work we build upon the previous studies in refs. [2, 6, 7] and propose a simple,

non-supersymmetric U(2) model of flavor that is compatible with an SU(5) GUT structure.

The problematic relations between CKM mixing angles and quark masses are modified due

to large mixing angles in the RH down sector, allowing for an excellent fit to CKM angles

and quark and charged lepton masses. All hierarchies arise from powers of two small

parameters (roughly of the same order) describing the U(2) breaking pattern. We also

include the neutrino sector, which in this framework can be straightforwardly reproduced

by adding three light SM singlets with suitable U(2) quantum numbers and Dirac masses.

The fit to the full SM fermion sector is excellent, and predicts the overall mass scale in

the neutrino sector below current cosmological bounds. We further discuss a variant of the

U(2) model where the SU(2) factor is replaced by the discrete group D6. The breaking

pattern and the resulting Yukawa matrices closely resemble the SU(2) case. The only

difference is a flipped sign in the 1–2 entry of the mass matrices, which has no effect in the

quark and charged lepton sector, but allows to obtain Majorana neutrinos masses from the
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Weinberg operator. In contrast to the Dirac case the parametric flavor suppression of the

neutrino mass matrix is fixed purely by charged lepton charges. Remarkably, this matrix

is automatically anarchical, and therefore allows for an excellent fit to neutrino data, again

predicting the overall neutrino mass scale in about the same range as in the Dirac case.

Finally we discuss the fate of the U(1) ⊂ U(2) Goldstone boson, which naturally

plays the role of the QCD axion and has (flavor-violating) couplings to fermions that are

predicted by the flavor model, in the spirit of refs. [10–12]. In contrast to single U(1) flavor

models, here the additional SU(2) flavor symmetry protects flavor-violating couplings to

light generations (much as in SUSY U(2) models [6, 7]), so that the resulting axion is mainly

constrained by astrophysics and not by precision flavor observables. It is well-known that

the axion can be an excellent Dark Matter (DM) candidate for large ranges of the U(1)

breaking scale, which here is directly connected to the UV cutoff of the flavor model. In

this way the model offers a natural solution for the strong CP problem and the origin

of DM.

This paper is organized as follows. In section 2 we define the U(2) flavor model and

discuss the structure of the quark and charged lepton sector before addressing the (Dirac)

neutrino sector. We then consider a D6 × U(1) model in section 3, which closely follows

the U(2) structure and allows to obtain Majorana neutrino masses from the Weinberg

operator. In section 4 we address the Strong CP Problem and Dark Matter within this

framework, interpreting the Goldstone boson of the U(1) factor as the QCD axion. We

finally conclude in section 5. In three appendices we provide more details on the group

theoretical structure of D3 and D6 ' D3 × Z2, include more details about the numerical

fit, and discuss an explicit example of the scalar potential generating the flavon VEVs in

the D6 ×U(1) model.

2 A realistic U(2) model of flavor

In this section we define our framework and show how hierarchies in the quark and charged

lepton sector arise from the U(2) flavor symmetry. After discussing the analytical relations

between CKM elements and quarks masses, we perform a numerical fit to masses and

mixings. We then address the neutrino sector in the context of Dirac neutrinos and include

it in the numerical fit. We conclude this section with a general discussion of the flavor

structure of neutrino masses, motivating the D6 ×U(1) flavor model in the next section.

2.1 Quark and charged lepton sector

We consider an extension of the SM with a global flavor symmetry group U(2)F . Locally

this group is isomorphic to SU(2)F × U(1)F , under which SM fermions are charged. This

symmetry group is assumed to be broken slightly below a UV scale Λ, which sets the

relevant mass scale for additional dynamics. We also assume that the scale Λ is large

enough to safely neglect the impact of these new degrees of freedom on phenomenology.

Thus, we simply work with an effective theory with cut-off scale Λ that only involves SM

fields and spurions that parametrize the breaking of SU(2)F ×U(1)F .
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10a 5a 103 53 H φa χ

SU(2)F 2 2 1 1 1 2 1

U(1)F 1 1 0 1 0 −1 −1

Table 1. The field content and U(2)F quantum numbers.

The SM fermions have U(2)F quantum numbers that are compatible with an SU(5)

GUT structure, i.e. they are specified by the quantum number of the two SU(5) repre-

sentations 10 = Q,U,E and 5 = L,E. The first two generations transform as a doublet

under SU(2)F , the third generation is an SU(2)F singlet and the Higgs field is a singlet

under both SU(2)F and U(1)F . Thus, the U(1)F quantum numbers of the SM fermions

are specified by four charges {X10a , X5a
, X103 , X53

} for {10a,5a,103,53} with a = 1, 2. It

turns out that a successful fit to the observed fermion masses and mixings can be achieved

for the following simple choice for U(1)F charges:

X103 = 0 , X10a = X5a
= X53

= 1 . (2.1)

The breaking of the flavor symmetry is described by two scalar spurions φ and χ, which

transform under U(2)F as φ = 2−1 and χ= 1−1. These fields acquire the following vacuum

expectation values (VEVs):

〈φ〉 =

(
εφΛ

0

)
, 〈χ〉 = εχΛ , (2.2)

where we will take εφ ∼ εχ ∼ O(0.01). In table 1 we summarize the field content and the

transformation properties under the flavor group. As the fermions are charged under U(2)F ,

Yukawa couplings require additional spurion insertions in order to be U(2)F -invariant.

This leads to non-renormalizable interactions suppressed by appropriate powers of Λ. For

example, the resulting Lagrangian in the up-sector, at leading order in εφ,χ, is given by

Lu =
λu11

Λ6
χ4(φ∗aQa)(φ

∗
bUb)H +

λu12

Λ2
χ2εabQaUbH +

λu13

Λ3
χ2(φ∗aQa)U3H

+
λu22

Λ2
(εabφaQb)(εcdφcUd)H +

λu23

Λ
(εabφaQb)U3H +

λu31

Λ3
χ2Q3(φ∗aUa)H

+
λu32

Λ
Q3(εabφaUb)H + λu33Q3U3H , (2.3)

and similar in the down and charged lepton sector. After inserting the spurion VEVs

the cutoff dependence drops out, and Yukawa hierarchies arise from powers of the small

parameters εφ,χ. In this way we get for the up-, down- and charged lepton Yukawa matrices

(defined as Lyuk = QTYuUH + · · · ) the result

Yu ≈


λu11ε

2
φε

4
χ λ

u
12ε

2
χ λ

u
13εφε

2
χ

−λu12ε
2
χ λu22ε

2
φ λu23εφ

λu31εφε
2
χ λ

u
32εφ λu33

 , Yd ≈


λd11ε

2
φε

4
χ λ

d
12ε

2
χ λ

d
13εφε

3
χ

−λd12ε
2
χ λd22ε

2
φ λ

d
23εφεχ

λd31εφε
2
χ λ

d
32εφ λd33εχ

 , (2.4)

Ye ≈


λe11ε

2
φε

4
χ λe12ε

2
χ λe13εφε

2
χ

−λe12ε
2
χ λe22ε

2
φ λe23εφ

λe31εφε
3
χ λ

e
32εφεχ λe33εχ

 ,
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where λfij are (in general complex) O(1) coefficients and we have kept only the leading

contributions in εφ,χ. Note that, in contrast to the supersymmetric U(2) model in ref. [6],

there are no holomorphy constraints, which leads to a more general Yukawa pattern.

One can show that the λ11, λ13, λ31 entries give only subleading corrections to quark

masses and mixings, which are relatively suppressed by at least ε2
φ. Thus, effectively, three

texture zeros appear in the Yukawa matrix, much as in the supersymmetric models [6], and

to good approximation we obtain the Yukawa couplings

Yu ≈


0 λu12ε

2
χ 0

−λu12ε
2
χ λ

u
22ε

2
φ λ

u
23εφ

0 λu32εφ λu33

 , Yd ≈


0 λd12ε

2
χ 0

−λd12ε
2
χ λ

d
22ε

2
φ λ

d
23εφεχ

0 λd32εφ λd33εχ

 ,

Ye ≈


0 λe12ε

2
χ 0

−λe12ε
2
χ λe22ε

2
φ λe23εφ

0 λe32εφεχ λ
e
33εχ

 . (2.5)

Because of the hierarchical structure and the presence of the texture zeros, it is possible

to analytically derive some approximate results for the singular values and the rotations

to the mass basis [7]. One can also perturbatively diagonalize the Yukawa matrices, and

obtain the following estimates for singular values and CKM matrix elements (neglecting

O(1) coefficients):

yu ∼ ε4
χ/ε

2
φ , yd ∼ ye ∼ ε4

χ/ε
2
φ , Vub ∼ ε2

χ/εφ ,

yc ∼ ε2
φ , ys ∼ yµ ∼ ε2

φεχ/
√
ε2
φ + ε2

χ , Vcb ∼ εφ ,

yt ∼ 1 , yb ∼ yτ ∼
√
ε2
φ + ε2

χ , Vus ∼ ε2
χ/ε

2
φ . (2.6)

These expressions can be compared to the (1σ) ranges for fermion mass ratios and CKM

elements, taken for definiteness at 10 TeV

mu

mt
≈ λ(7.1÷7.7) ,

md

mb
≈ λ(4.2÷4.4) ,

me

mτ
≈ λ5.1 , Vub ≈ λ3

mc

mt
≈ λ3.5 ,

ms

mb
≈ λ(2.4÷2.5) ,

mµ

mτ
≈ λ1.8 , Vcb ≈ λ2 , (2.7)

where λ = 0.2 ≈ Vus and yb(10 TeV) ≈ λ2.7, yτ (10 TeV) ≈ λ2.8. Within roughly a factor λ,

all hierarchies can be reproduced taking

εφ ∼ Vcb ∼ λ2 , εχ ∼ λ2÷3 , (2.8)

and therefore a good fit to masses and mixings can be expected with input parameters

λfij that are indeed O(1). Moreover, it is clear that there must be four relations in each

fermion sector between the 3 singular values and the 3+3 rotation angles. For real hfij it

is straightforward to work out these predictions exactly [7] and expand the result in ratios

– 5 –
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of the hierarchical eigenvalues. One can then relate the 1–2 and 1–3 rotations in the left-

and right-handed sectors to the 2–3 rotations and the eigenvalues. With the convention

Y = VLYdiagV
†
R , VL = V L

13V
L

12V
L

23 , VR = V R
13V

R
12V

R
23 , (2.9)

where Vij are orthogonal rotation matrices in the i–j plane that are parametrized by the

angles sij ≡ sin θij , one obtains up to percent corrections

sLu12 ≈ −sRu12 ≈
√
mu

mc
, sLu13 ≈ −sLu23 s

Lu
12 , sRu13 ≈ sRu23 s

Lu
12 ,

sLd12 ≈ −sRd12 ≈
√
md

ms

√
cRd23 , sLd13 ≈ −sLd23 s

Ld
12

(
1− sRd23

cRd23 s
Ld
23

ms

mb

)
, sRd13 ≈

sRd23

cRd23

sLd12 ,

sRe12 ≈ −sLe12 ≈
√
me

mµ

√
cLe23 , sRe13 ≈ −sRe23 s

Re
12

(
1− sLe23

cLe23 s
Re
23

mµ

mτ

)
, sLe13 ≈

sLe23

cLe23

sRe12 , (2.10)

where 2–3 rotations angles are large in the RH down and LH charged lepton sector, and

CKM-like in all other sectors

sRd23 ∼ sLe23 ∼ 1 , sLu23 ∼ sRu23 ∼ sLd23 ∼ sRe23 ∼ Vcb . (2.11)

One therefore obtains for the CKM elements (in our conventions VCKM = V uT
L V d∗

L ) the

predictions

|Vub| ≈
∣∣∣∣√mu

mc
|Vcb| − eiφ1

√
md

ms

√
cRd23

sRd23

cRd23

ms

mb

∣∣∣∣ , |Vtd| ≈
√
md

ms

√
cRd23

∣∣∣∣|Vcb| − eiφ2
sRd23

cRd23

ms

mb

∣∣∣∣ ,
|Vus| ≈ |sLd12 − sLu12 | ≈

∣∣∣∣√md

ms

√
cRd23 − ei(φ2−φ1)

√
mu

mc

∣∣∣∣ , |Vcb| ≈ |Vts| ≈ |sLd23 − sLu23 | , (2.12)

where we included also relative phases φ1,2, see ref. [6] for details. In the original U(2)

models in refs. [2, 3], the rotation angle in 2–3 RH down sector sRd23 was taken to be

of the order of the other 2–3 rotation angles, sRd23 ∼ Vcb. From the above equations,

this directly leads to the accurate prediction |Vub/Vcb| ≈
√
mu/mc which deviates from

experimental data by more than 3σ. This is the reason why here this angle is taken to be

large, sRd23 ∼ cRd23 ∼ 1/
√

2, which then allows to obtain an excellent fit to CKM angles as

we demonstrate in the next section (see also refs. [4, 6, 7]).

2.2 Fit to quark and charged lepton sector

We now perform a numerical fit to the model parameter set {λu,d,eij , εφ, εχ}. For simplicity,

we restrict to real λu,d,eij and demonstrate later on that the CKM phase can be obtained

by taking a complex parameter λu33. The experimental input parameters are therefore the

quark and charged lepton masses and the CKM mixing angles. For concreteness we take

them in the MS scheme at 10 TeV from ref. [13], with a symmetrized 1σ error taken to

be the larger one. All input parameters are summarized in table 2. The quality of the

fit with a given model parameter set {λu,d,eij , εφ, εχ} is measured by two functions χ2 and

χ2
O(1). The first quantity is the usual χ2 that indicates how well the experimental input

– 6 –
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Quantity Value

yu (5.7± 2.3)× 10−6

yd (1.223± 0.180)× 10−5

ys (2.42± 0.13)× 10−4

yc (2.776± 0.088)× 10−3

yb (1.224± 0.013)× 10−2

yt 0.7894± 0.0092

ye (2.8782± 0.0042)× 10−6

yµ (6.0761± 0.0088)× 10−4

yτ (1.0329± 0.0015)× 10−2

θ12 0.22736± 0.00072

θ23 (4.364± 0.067)× 10−2

θ13 (3.77± 0.14)× 10−3

Table 2. Input values of quark and charged lepton Yukawas and quark mixing angles at 10 TeV

taken from ref. [13].

values are reproduced by the fit. It is obtained by plugging the model parameters into

the Yukawa matrices in eq. (2.5) and calculating numerically the singular values yq,l and

the CKM mixing angles θij in the PDG parametrization. These values are used with the

experimental input above to obtain χ2 defined as

χ2 =
∑

q=u,d,s,c,b,t

(yq − yq,exp)2

(σyq,exp)2
+
∑

`=e,µ,τ

(y` − y`,exp)2

(σy`,exp)2
+

∑
(ij)=(12),(13),(23)

(θij − θij,exp)2

(σθij,exp)2
.

(2.13)

In order to explain Yukawa hierarchies solely by U(2)F breaking, the parameters λu,d,eij

should be O(1). The meaning of this requirement is somewhat fuzzy, and here we choose

to quantify it by introducing a measure χ2
O(1) defined as

χ2
O(1) =

∑
λpij

(
log(|λpij |)

)2

2 · 0.552
, (2.14)

where i, j = 1, 2, 3 and p = u, d, e. This corresponds to the assumption that the λu,d,eij are

distributed according to a log-normal distribution with mean 1 and standard deviation σ =

0.55, i.e. the absolute values λu,d,eij lie with a probability of 95 % within the interval [1/3, 3].

For example, the contribution to χ2
O(1) of a single parameter λ = {3, 5, 7, 10, 50, 100} (or

the inverse) is ∆χ2
O(1) = {2, 4, 6, 9, 25, 35}. We consider a fit satisfactory as long as χ2

O(1) ≤
#pars, and there are 5 parameters for each fermion sector. As the best fit we choose the

one that minimizes both χ2 and χ2
O(1).

In table 3 we show our fit results, where we display the values of the small parameters

εφ, εχ and indicate separately the two fit measures χ2, χ2
O(1) as defined above, along with the

– 7 –
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Fit εφ εχ min |λu,d,`ij | max |λu,d,`ij | χ2 χ2
O(1)

QL1R 0.019 0.008 1/3.1 2.7 1.7 7.8

QL2R 0.023 0.008 1/2.7 2.8 12 5.4

QL3R 0.065 0.011 1/9.1 6.9 0 35

Table 3. Best fits in the quark and charged lepton sector.

Fit εφ εχ min |λu,d,`ij | max |λu,d,`ij | χ2 χ2
O(1)

QL1 0.025 0.009 1/2.9 2.1 0.6 5.8

QL2 0.024 0.008 1/2.8 1.9 13 4.8

Table 4. Best fits in the quark and charged lepton sector including the CKM phase.

smallest and largest |λu,d,eij |. For the fit QL1R we have minimized χ2+χ2
O(1), while for QL2R

we have minimized χ2
O(1) while keeping χ2 ≤ #obs = 12. For illustrative purposes we also

show a fit that minimizes just χ2 (QL3R). Indeed there are enough free parameters to obtain

a perfect fit to observables, however one needs χ2
O(1) as large as 35 and O(1) parameters

as small as ≈ 1/9, so this fit should be discarded according to our quality requirement

χ2
O(1) < 15. The best fits are QL1R and QL2R with O(1) parameters between 1/3 and 3,

which feature values of εφ, εχ that are indeed of the naive size estimated in eq. (2.8).

Finally we demonstrate that the CKM phase δCP can be easily included. For simplicity

we restrict to the case where only the 33 entry in the up-quark Yukawa matrix is complex,

i.e. λu33 → λu33e
iδ33 . In a realistic setup where all Yukawas have phases, the fit can only get

better. In the χ2 measure in eq. (2.13) we now include the CP phase of the CKM matrix,

with the experimental value taken from ref. [13]

δCP,exp = 1.208± 0.054 .

Including δ33 leads to even better fits (QL1 and QL2), which we show in table 4. This

demonstrates that an excellent fit for quark and charged lepton sector, including the CKM

phase, can be obtained with all O(1) parameters lying between 1/2.8 and 2.1.

2.3 Neutrino sector

In the neutrino sector we have to distinguish whether neutrinos are Dirac or Majorana.

We begin with the discussion of the Dirac scenario, since the Majorana case in the U(2)F
model is strongly disfavored as we will discuss below. To this extent we introduce SM

singlets Na, N3 with U(1)F charges XN
a and XN

3 , where Na transforms as a doublet of

SU(2)F and N3 as a singlet. The Lagrangian then allows for a Yukawa coupling Lν =

LTYνNH (we assume that the Majorana mass term is forbidden, e.g. by exact lepton

number conservation). As in the charged lepton sector, one can obtain its structure from

– 8 –
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a spurion analysis as

Yν =


λν11ε

2
φε
|3+XN

a |
χ λν12ε

|1+XN
a |

χ λν13εφε
|2+XN

3 |
χ

−λν12ε
|1+XN

a |
χ λν22ε

2
φε
|XN

a −1|
χ λν23εφε

|XN
3 |

χ

λν31εφε
|2+XN

a |
χ λν32εφε

|XN
a |

χ λν33ε
|1+XN

3 |
χ

 . (2.15)

It is clear that in order to obtain sub-eV neutrinos one needs large U(1)F charges XN
a,3 > 1,

so that one can drop the absolute values in eq. (2.15). In this case the contributions from

the (11), (13), (31) entries to masses and mixings are again sub-leading, and we can drop

them as in the previous section and are left with the Dirac neutrino mass matrix

mD
ν ≈ v


0 λν12ε

1+XN
a

χ 0

−λν12ε
1+XN

a
χ λν22ε

2
φε
XN
a −1

χ λν23εφε
XN

3
χ

0 λν32εφε
XN
a

χ λν33ε
1+XN

3
χ

 . (2.16)

It is well-known that an anarchical neutrino mass matrix can give a good fit to neutrino

observables, which can be achieved taking XN
a = XN

3 (since εχ ∼ εφ), giving

mD
ν ≈ v εX

N
a −1

χ


0 λν12ε

2
χ 0

−λν12ε
2
χ λν22ε

2
φ λν23εφεχ

0 λν32εφεχ λν33ε
2
χ

 . (2.17)

In order to obtain an overall neutrino mass scale . 0.1 eV, one needs XN
3 & 5, so that tiny

neutrino masses arise from somewhat large U(1)F charges and the smallness of the U(2)F
breaking parameters, εχ,φ ∼ 0.01.

These considerations are confirmed by a numerical fit, for which we proceed as in the

previous section, now including the neutrino sector. For the input values for normal (NO)

and inverted mass ordering (IO), we use the neutrino mass differences and PMNS mixing

angles from the global NuFIT 3.2 (2018) in refs. [14, 15], which are summarized in table 5.

We then plug the neutrino model parameters λνij for fixed charges XN
a , X

N
3 into the Yukawa

matrices in eq. (2.17) and calculate numerically the singular values and the PMNS mixing

angles θij in the standard parametrization. To the χ2 defined in eq. (2.13) we add the

corresponding expression χ2
ν in the neutrino sector1

χ2
ν =

∑
(ij)=21,31/32

(∆m2
ij −∆m2

ij,exp)2

(σ∆m2
ij,exp)2

+
∑

(ij)=(12),(13),(23)

(sin2 θij − sin2 θij,exp)2

(σ sin2 θij,exp)2
, (2.18)

and similarly we include the coefficients λνij in the measure χ2
O(1) defined in eq. (2.14). We

then perform a simultaneous fit to quark, charged lepton and neutrino sector including a

phase in λu33 as discussed in the last section (for simplicity we omit phases in the neutrino

1For the angle sin2 θ23 we actually use the full χ2 function provided by the NuFIT collaboration instead

of assuming the Gaussian error in table 5.
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Normal Ordering (NO)

Quantity Value

∆m2
21 (7.40± 0.21)× 10−5

∆m2
31 (2.494± 0.033)× 10−3

sin2 θ12 0.307± 0.013

sin2 θ13 0.02206± 0.00075

sin2 θ23 0.538± 0.069

Inverted Ordering (IO)

Quantity Value

∆m2
21 (7.40± 0.21)× 10−5

∆m2
32 (−2.465± 0.032)× 10−3

sin2 θ12 0.307± 0.013

sin2 θ13 0.02227± 0.00074

sin2 θ23 0.5540± 0.0033

Table 5. Experimental values of neutrino mass differences and PMNS mixing angles for normal

(NO) and inverted hierarchy (IO), taken from NuFIT 3.2 (2018) [14, 15].

Fit XN
a XN

3 εφ εχ min |λu,d,e,νij | max |λu,d,e,νij | χ2 χ2
O(1)

QLνD-1 (NO) 6 6 0.026 0.012 1/2.9 2.6 0.5 10

QLνD-2 (NO) 6 6 0.024 0.013 1/2.6 2.2 18 9

QLνD-3 (NO) 5 5 0.022 0.006 1/3.1 3.8 1.0 13

QLνD-4 (NO) 5 5 0.021 0.006 1/2.5 2.4 18 9

QLνD (IO) 6 6 0.015 0.013 1/9.1 5.5 18 25

Table 6. Best fits of the combined quark and lepton sector including CKM phase and Dirac

neutrinos, with normal ordering (NO) or inverted ordering (IO). The complete set of parameters

can be found in table 15.

sector, including them would make the fit only better). The fit results are shown in

table 6, both for NO and IO. As expected, good fits are obtained only for equal charges

XN
a = XN

3 = 5 ÷ 6. There is clearly a strong preference for NO, as can be seen in both

quality parameters χ2 and χ2
O(1) (and the smallest/largest λij). According to our quality

requirement χ2
O(1) < 20, we should actually discard the IO possibility, since all fits with

inverted mass ordering violate this criterion, and we include it just for illustrative purposes.

Comparing to the fit of quark and charged lepton sector only (cf. table 4), one can

see that including neutrinos makes the fits slightly worse, but still with O(1) coefficients

between 1/3 and 3. The fits determine all neutrino parameters, and we obtain predictions

for the absolute mass scales and two important observables, the sum of masses Σmi as

probed by satellite telescopes, and the effective neutrino mass mβ =
√∑

im
2
i |Uei|2 as

measured in the β-decay spectrum close to the endpoint. All predictions are summarized

in table 7. Since in contrast to the quark sector there are predictions for observables that

are not yet measured, we also give a range for these predictions scanning over many fits

with XN
a = XN

3 = 5, 6 on which we only impose the (somewhat arbitrary) condition that

χ2 < 20 and the quality requirement χ2
O(1) < 20 (which excludes IO). In this way we

obtain predictions for the ranges of
∑
mi and mβ as shown in table 8, where we also

indicate the value preferred in most fits. We notice that the predicted range for mβ is an

order of magnitude below the expected future sensitivity of mβ . 0.2 eV by the KATRIN
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Fit m1 [meV] m2 [meV] m3 [meV]
∑
mi [meV] mβ [meV]

QLνD-1 0.5 8.6 50 59 9

QLνD-2 4.6 9.6 50 64 10

QLνD-3 0.4 8.6 50 59 9

QLνD-4 0.4 8.6 50 59 9

Table 7. Predictions for neutrino masses and observables for the NO fits in table 6.

Quantity Range [meV] Preferred values [meV]∑
mi 58–110 60–65

mβ 8–26 9–10

Table 8. Range of predictions for
∑
mi and mβ scanning over fits with Dirac Neutrino charges

XN
a = XN

3 = 5, 6 and χ2 < 20 and χ2
O(1) < 20. In brackets indicated are the values preferred by

most fits.

experiment [16]. The prediction for the neutrino mass sum is consistent with present

bound by PLANCK giving
∑
mi < 0.12 eV [17] and in the reach of the EUCLID satellite

that is expected to measure
∑
mi with an error of about 0.05 eV [18, 19]. Note that the

lower bound on the predicted range of
∑
mi essentially saturates the minimal value that

is obtained for a massless lightest neutrino, which (including 1σ errors) is given by 58 meV

for normal ordering.

Finally, we discuss the case of Majorana Neutrinos. In addition to the neutrino Yukawa

coupling, the Lagrangian contains a Majorana mass term, Lν = LTYνNH+1/2NTMνN+

h.c. The Yukawa matrix Yν is the same as in eq. (2.15), while the Majorana mass matrix

can be obtained as

Mν = M


κ11ε

2
φε
|2+2XN

a |
χ κ12ε

2
φε
|2XN

a |
χ κ13εφε

|1+XN
a +XN

3 |
χ

κ12ε
2
φε
|2XN

a |
χ κ22ε

2
φε
|2XN

a −2|
χ κ23εφε

|XN
a +XN

3 −1|
χ

κ13εφε
|1+XN

a +XN
3 |

χ κ23εφε
|XN

a +XN
3 −1|

χ κ33ε
|2XN

3 |
χ

 , (2.19)

where we factored out a single mass scale M that is taken of the order of the usual see-saw

scale, M ∼ 1014 GeV. One can therefore integrate out the heavy singlets and get light

neutrino masses from the Weinberg operator yij/M(LiH)(LjH), according to the type-I

seesaw formula

mM
ν = v2YνM

−1
ν Y T

ν . (2.20)

Notice that the 1–2 entry of Mν without any φ insertion vanishes because of the necessary

SU(2) anti-symmetrization, and therefore picks up an additional ε2
φ suppression. It turns

out that this extra suppression spoils the naive EFT spurion analysis of the Weinberg

operator using only the charges of La, L3 (since negative powers of φ appear in the UV

theory), and one has to use eq. (2.20) to calculate mM
ν . We first assume that XN

A ≥ 1 and

XN
3 ≥ 0, so that one can drop the absolute values and obtain for the parametric structure
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of the light neutrino mass matrix

mM
ν ∼

v2

M


ε4
χ/ε

2
φ ε2

χ/ε
2
φ ε

3
χ/εφ

ε2
χ/ε

2
φ 1/ε2

φ εχ/εφ

ε3
χ/εφ εχ/εφ ε2

χ

 ∼

ε2 1 ε2

1 1/ε2 1

ε2 1 ε2

 , (2.21)

where ε ∼ εφ ∼ εχ (notice that the charges XN
a,3 drop out). Such a structure is clearly

ruled out, since it gives singular values {ε2, ε2, 1/ε2}, which would imply normal hierarchy

along with a parametric prediction for the ratio of mass differences ∆m2
21/∆m

2
31 ∼ ε4× ε4

that is way too small. Moreover, one can check that also different charge assignments for

XN
a,3 do not allow to obtain a Majorana neutrino mass matrix that leads to a good fit,

besides losing predictivity. Indeed the main theoretical advantage of Majorana neutrinos

over Dirac neutrinos would be a scenario in which the effective Majorana mass matrix does

not depend on the details of the UV physics, i.e. the choice of XN
a,3.

We conclude this section with the observation that the Majorana scenario would work

perfectly if not for the vanishing of the leading 1–2 entry in the heavy mass matrix in

eq. (2.19). Indeed, if this entry would be given by κ12ε
|2XN

a |
χ , and XN

a ≥ 1, XN
3 ≥ 0, the

effective light neutrino mass matrix would be given by (the dependence on XN
a,3 drops out

again)

mM
ν ∼

v2

M


ε4
χε

2
φ ε2

χ ε3
χεφ

ε2
χ ε2

φ εχεφ

ε3
χεφ εχεφ ε2

χ

 ∼

ε6 ε2 ε4

ε2 ε2 ε2

ε4 ε2 ε2

 , (2.22)

which apart from the subleading 11, 13, 31 entries has only very mild εχ/εφ hierarchies and

suggests a very good fit to neutrino observables. Note this absence of hierarchies is actually

a prediction of the quark and charged lepton sector, which requires equal charges for the

left-handed doublets La and L3, and order parameters of similar size, εχ ∼ εφ. If therefore

the 1–2 elements were symmetric instead of anti-symmetric, all low-energy mass matrices

would follow the same hierarchical pattern, differing only in the U(1)F charge assignment

of the third generation, which is 0 for Q3, U3, E3 and 1 for D3, L3. Thus the light 2 × 2

sub-block would be the same in all fermion sectors, and only the third coloum/row would

differ by powers of εχ, giving

m{u,d,e,ν} ∼

 0 ε2 0

ε2 ε2 {ε, ε2, ε, ε2}
0 {ε, ε, ε2, ε2} {1, ε, ε, ε2}

 , (2.23)

where we neglected the mild εχ/εφ hierarchy that is responsible for e.g. the Cabibbo angle.

As we discuss in the following section, this simple pattern allows for an excellent fit to

all fermion observables, and the necessary 1–2 symmetric structure can be obtained when

considering the (discrete) dihedral group D6 instead of SU(2) as flavor symmetry, which

closely resembles the SU(2) structure apart from a sign flip in the 1–2 entries.
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3 A D6 × U(1) model of flavor

In this section we consider the same framework with a D6 × U(1) flavor symmetry, which

closely resembles the U(2) case. We first introduce some D6 ' D3 × Z2 group theory and

discuss the resulting flavor structure of quark and charged lepton masses, as well as the

Weinberg operator. After some brief analytical considerations for the resulting predictions

for neutrino observables, we perform a numerical fit to all fermion observables and conclude

with a discussion of the phenomenological implications.

3.1 Setup

As we have just discussed, we want to mimic the structure of U(2) within a discrete flavor

group that allows for a symmetric singlet contraction of two doublets. The simplest such

group is the dihedral group D3, the symmetry group of an equilateral triangle, which is

discussed in detail in appendix A. This group is actually a subgroup of SO(3) and not of

its double cover SU(2), and it is isomorphic to the permutation group S3. It features two

one-dimensional representations 1 and 1′ and one two-dimensional representation 2. The

contraction of two doublets ψ = (ψ1, ψ2) and φ = (φ1, φ2) into the singlet 1 is given by

(ψ ⊗ φ)1 = ψ1φ2 + ψ2φ1 . (3.1)

Therefore we could simply assign the SM and spurion fields to D3 representations that

follow the SU(2) ones, i.e. the doublets 10a,5a, φa are in a 2 of D3 and all other fields are

total singlets. However, in contrast to SU(2) the product of two doublets also containts a

doublet, so that three doublets can be contracted to a singlet as

(ψ ⊗ φ⊗ χ)1 = ψ1φ1χ1 + ψ2φ2χ2 . (3.2)

This implies that in contrast to the SU(2) model a large 1–1 entry is generated, for example

in the up-sector by the operator

L ⊃ 1

Λ2
(φ⊗Qa ⊗ Ua)1Hχ =

1

Λ2
(φ1Q1U1 + φ2Q2U2)Hχ = εφεχQ1U1H , (3.3)

which would be no longer negligible and thus would completely spoil the hierachical struc-

ture. In order to suppress this entry, we would like to mimic the SU(2) structure in which

such a contraction is forbidden by the Z2 center of SU(2), under which the doublets are

odd and the singlet is even. Therefore, we consider2 D3×Z2 which is isomorphic to D6, the

symmetry group of a regular hexagon (see appendix A for details), and finally make the

charge assignment as in table 9. The additional Z2 factor ensures that the contraction of

three 2− doublets does not contain the total singlet 1+, and in the quark and charged lep-

ton sector we obtain the very same spurion analysis as for U(2) in section 2 (see eq. (2.4)),

2Note we cannot use the double cover D̃3 (which is an actual subgroup of SU(2)) for this purpose, since

that doublet 2x that contains no singlet in its cubic contraction, contains the singlet in its antisymmetric

quadratic contraction.
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10a 5a 103 53 H φa χ

D3 × Z2 2− 2− 1+ 1+ 1+ 2− 1+

U(1)F 1 1 0 1 0 −1 −1

Table 9. The field content and (D6 ' D3 × Z2)×U(1)F quantum numbers.

except for the sign in the 1–2 entry:

Yu ≈


λu11ε

2
φε

4
χ λ

u
12ε

2
χ λ

u
13εφε

2
χ

λu12ε
2
χ λu22ε

2
φ λu23εφ

λu31εφε
2
χ λ

u
32εφ λu33

 , Yd ≈


λd11ε

2
φε

4
χ λ

d
12ε

2
χ λ

d
13εφε

3
χ

λd12ε
2
χ λd22ε

2
φ λ

d
23εφεχ

λd31εφε
2
χ λ

d
32εφ λd33εχ

 , (3.4)

Ye ≈


λe11ε

2
φε

4
χ λe12ε

2
χ λe13εφε

2
χ

λe12ε
2
χ λe22ε

2
φ λe23εφ

λe31εφε
3
χ λ

e
32εφεχ λe33εχ

 .

In the neutrino sector we work with the effective Weinberg operator yij/M(LiH)(LjH),

which can be induced by the type-I seesaw mechanism as discussed in the previous section.

Its parametric structure is predicted in terms of the D6 ×U(1)F quantum numbers of the

charged leptons, which gives for the light Majorana neutrino mass matrix

mν ≈
v2

M


λν11ε

4
χε

2
φ λν12ε

2
χ λν13εφε

3
χ

λν12ε
2
χ λν22ε

2
φ λν23εφεχ

λν13εφε
3
χ λ

ν
23εφεχ λν33ε

2
χ

 . (3.5)

Here we have used the same vacuum expectation values as before

〈φ〉 =

(
εφΛ

0

)
, 〈χ〉 = εχΛ , (3.6)

although in contrast to the SU(2)F case we cannot use D6 transformations in order to

assume this VEV for φ without loss of generality. Therefore, we provide an explicit scalar

potential in appendix C with only one additional scalar field that generates dynamically

the above VEVs.3 Altogether, we obtain to good approximation the mass matrices

mu ≈ v


0 λu12ε

2
χ 0

λu12ε
2
χ λ

u
22ε

2
φ λ

u
23εφ

0 λu32εφ λu33

 , md ≈ v


0 λd12ε

2
χ 0

λd12ε
2
χ λ

d
22ε

2
φ λ

d
23εφεχ

0 λd32εφ λd33εχ

 , (3.7)

me ≈ v


0 λe12ε

2
χ 0

λe12ε
2
χ λe22ε

2
φ λe23εφ

0 λe32εφεχ λ
e
33εχ

 , mν ≈
v2

M


0 λν12ε

2
χ 0

λν12ε
2
χ λν22ε

2
φ λν23εφεχ

0 λν23εφεχ λν33ε
2
χ

 .

3Also a tiny VEV along the lower component of φ is generated, which however is small enough to give

only negligible contributions to masses and mixings.
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As discussed in the previous section, this model has the remarkable feature that the hi-

erarchies in the quark and charged lepton sector require εφ ∼ εχ, and therefore naturally

gives rise to an approximately anarchic neutrino mass matrix with generically large mixing

angles.

Before we perform a numerical fit, we proceed with some analytical considerations. In

the quark and charged lepton sector the analysis of the previous section is unaltered, since

the flipped sign in the 1–2 entry does not play a role at leading order. In the neutrino sector

we have 4 real parameters, which will enter the PMNS matrix together with three charged

lepton rotations angles controlled by a single free real parameter sLe23 , see eq. (2.10). These

parameters correspond to 5 observables (3 PMNS angles + 2 squared mass differences),

so up to phases all parameters are fixed and one can predict the absolute neutrino mass

scales and related observables. There are 4 phases in the neutrino sector and 2 phases in

the left-handed charged lepton rotations, which combine to 3 physical phases, one Dirac

and two Majorana phases. To study the prediction of the overall neutrino mass scale, we

parametrize the neutrino mixing matrix Vν (defined by V T
ν mνV = mdiag

ν ) in the standard

CKM form multiplied with a phase matrix Pν = diag(eiα1 , eiα2 , 1) from the right and a

phase matrix P ′ from the left. Inverting the defining equation, we get from the vanishing

11 and 13 entries the two equations

c2
12,ν

m1

m3
e−2i(α1+δν) + s2

12,ν

m2

m3
e−2i(α2+δν) +

s2
13,ν

c2
13,ν

= 0 , (3.8)

m1

m3
e−i(2α1+δν) − m2

m3
e−i(2α2+δν) +

s13,νc23,ν

c2
13,νc12,νs12,νs23,ν

= 0 . (3.9)

This leads to the inequalities∣∣∣∣∣1− c2
12,ν

s2
12,ν

m1

m2

∣∣∣∣∣ ≤ s2
13,ν

s2
12,νc

2
13,ν

m3

m2
≤ 1 +

c2
12,ν

s2
12,ν

m1

m2
, (3.10)

1− m1

m2
≤ s13,νc23,ν

c2
13,νc12,νs12,νs23,ν

m3

m2
≤ 1 +

m1

m2
. (3.11)

The angles in the neutrino sector sij,ν are connected to the observed PMNS mixing angles

through VPMNS = (V e
L)TVν . Since the 1–2 rotation in the charged lepton sector is small,

∼
√
me/mµ ≈ 0.07, we have to good approximation s12,ν ≈ s12, but 2–3 rotations in the

charged lepton sector are large, so that both θ23 and θ13 generically receive large contri-

butions from the charged lepton sector. Nevertheless one can easily verify that eq. (3.10)

cannot be satisfied for inverted mass ordering, while for normal ordering one can obtain

an upper bound on the lightest neutrino mass m1, by maximizing the neutrino mixing

angles s12,ν and s13,ν with a suitable choice of phases. If one neglects the charged lepton

contribution to s12, one can show that m1 ≤ 11 meV, which in turn leads to upper bounds∑
mi ≤ 76 meV, mβ ≤ 14 meV and mββ ≤ 13 meV. This estimate is confirmed by the

numerical analysis in the next section.

3.2 Numerical fit

We now perform a simultaneous fit to quark, charged lepton and neutrino sector including

a phase in λu33 as in the last section (for simplicity we omit phases in the neutrino sector,
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Fit εφ εχ min |λu,d,`
ij | max |λu,d,`

ij | χ2 χ2
O(1) M [1011 GeV]

QLνM -1 0.025 0.009 1/2.8 2.1 0.7 7.9 4.1

QLνM -2 0.024 0.009 1/2.6 1.9 18 6.3 3.3

Table 10. Best fits for the D6 × U(1) model including CKM phase and Majorana neutrinos. The

complete set of parameters can be found in table 15.

Fit m1 [meV] m2 [meV] m3 [meV]
∑
mi [meV] mβ [meV] mmax

ββ [meV]

QLνM -1 1.0 8.7 50 60 8.8 4.4

QLνM -2 1.5 8.8 50 60 8.9 4.9

Table 11. Predictions for neutrino masses and observables for the fits in table 10. Since the

prediction for mββ strongly depends on possible phases in the PMNS matrix, here we display the

maximal possible value mmax
ββ .

Quantity Range [meV] Preferred values [meV]∑
mi 59–78 60, 70

mβ 8–15 9–10, 11–12

mmax
ββ 3–16 5, 9

Table 12. Range of predictions for
∑
mi, mβ and mββ scanning over fits with χ2 < 20 and

χ2
O(1) < 20. The last column indicates the values preferred by most fits.

including them would make the fit only better). The fit results are shown in table 10, and

include also the effective suppression scale M of Weinberg operator, which is of the order

of 1011 GeV. The fit is even better compared to Dirac Neutrinos (cf. table 6), with all O(1)

parameters roughly between 0.4 and 2.

The corresponding predictions for the neutrino masses mi, its sum
∑
mi, the neutrino

mass mβ and the “effective Majorana mass” mββ =
∣∣∑U2

eimi

∣∣ measured in neutrinoless

double-beta decay are shown in table 11. As expected from the analytical considerations,

only a normal hierarchy for the neutrino masses is viable. The predicted values for
∑
mi

and mβ are similar to the ones in the Dirac Neutrino case (cf. table 7), while the effective

Majorana mass is well below the expected sensitivities even in near future neutrinoless

double-beta decay experiments [20]. Finally, we also give a range for the observables

scanning over many fits on which we only impose that χ2 < 20 and χ2
O(1) < 20. In this

way we obtain predictions for
∑
mi, mβ and mββ lying in the ranges shown in table 12,

where we also indicate the value preferred in most fits. This result agrees well with our

estimate in the last section, where we have also included phases, so we expect the upper

bounds on the mass scales to be approximately valid even when including phases in the

numerical fit (the lower bounds again saturate the limit obtained from taking the lightest

neutrino massless).

We conclude this section with a discussion of the phenomenological implications of our

model. As we have seen, the flavor sector itself gives rise to quite narrow predictions for
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observables in the neutrino sector, which are however far below the present experimental

sensitivities. In order to obtain other experimental signals, we have to rely on new low-

energy dynamics besides the SM. The natural candidate for such new degrees of freedom

are the fields at the cut-off scale Λ, which we have not specified so far (in particular the

radial components of the flavons φ and χ naturally get a mass at that scale). However,

effects of these fields and other dynamics related to the UV completion are suppressed by

powers of 1/Λ, and there is no reason that Λ is sufficiently close to the electroweak scale

in order to give rise to sizable deviations from the SM. Still, it would be interesting to

consider an explicit UV completion of the present model to study the structure of these

effects in detail.

Another option for light dynamics, which is essentially model-independent and well-

motivated, is provided by the pseudo-scalars in the flavon fields. If there is no explicit

breaking of the U(2)F symmetry, the associated Goldstone bosons are exactly massless,

apart from a linear combination that can be identified with the QCD axion, which solves

the strong CP problem and gets a mass from non-perturbative effects. The easiest way to

get rid of the orthogonal massless Goldstones is replacing SU(2)F by a discrete subgroup,

which is another advantage of the D6 × U(1) model discussed in this section. In this case

there a single Goldstone boson associated with the U(1)F factor that can naturally serve

as the QCD axion, as we are going to discuss in the next section.

4 The U(2) axiflavon

As originally proposed in ref. [10], a Goldstone boson arising from the breaking of global

flavor symmetries could play the role of the QCD axion. Indeed any Goldstone of a U(1)

symmetry with a QCD anomaly will solve the strong CP problem, and one can demonstrate

(see ref. [11]) that there is a non-zero SU(3)c × SU(3)c × U(1)F anomaly in any flavor

model where the determinants of up-down and down-quark mass matrices are controlled

dominantly by the U(1)F symmetry factor. In the present model this is indeed the case as

detmu ∼ ε4
χ and detmd ∼ ε5

χ, due to the presence of the approximate texture zeros, see

eq. (3.8). Moreover, if also the determinant of the charged lepton mass matrix depends

only on the U(1)F breaking, the ratio of electromagnetic and color anomaly coefficients

E/N is expected to be a rational number close to 8/3 [11]. In the present model the U(1)F
charge assignment is actually compatible with SU(5), so it is clear that we get exactly

E/N = 8/3, as in minimal DFSZ [21, 22] and KSVZ models [23, 24], and thus the same

axion couplings to photons.

In this section we will calculate the axion couplings to photons and fermions, concen-

trating on the flavor-violating couplings to fermions, which follow from the hierarchical

structure of fermion masses and mixings. In particular, axion couplings to nucleons and

electrons are fixed in terms of the U(1)F charges, while flavor-violating couplings to quarks

and leptons are controlled by the unitary rotations that diagonalize the Yukawa matrices.

Their parametric suppression is determined by the U(2)F quantum numbers, and their

numerical value by the fit to fermion masses and mixings. We then study the phenomenol-

ogy of this axion, finding that the strongest constraints on the axion mass (or equivalently
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the U(1)F breaking scale) come from astrophysical constraints (as in the minimal DFSZ

and KSVZ models), since flavor-violating axion couplings to light quarks are strongly sup-

pressed by the approximate SU(2)F structure.

4.1 Axion couplings

We begin by identifying the axiflavon as the Goldstone boson arising from the spontaneous

breaking of U(1)F induced by the VEVs of φ and χ. In general, the Goldstone is a linear

combination of the phases ai of the scalar fields φi with charge Xi and (real) VEV Vi,

given by

a =
∑
i

XiViai√∑
X2
j V

2
j

. (4.1)

Thus, we find that χ and φ contain the Goldstone as (we ignore the radial mode)

χ = εχΛe−ia(x)/
√

2V , φ =

(
εφΛ

0

)
e−ia(x)/

√
2V , (4.2)

where we have defined the U(1)F breaking scale V ≡
√
ε2
χ + ε2

φ Λ.

The couplings of a to fermions can be obtained by inserting the above expressions for

χ and φ into the effective Yukawa Lagrangian given by eq. (2.3) for the up sector and the

analogous terms in the down- and charged lepton sector. It is then convenient to change

field basis by performing a U(1)F transformation of the fermion fields

f → feiXfa(x)/
√

2V , (4.3)

which will remove the a(x) dependence from the Yukawa sector, because of U(1)F invari-

ance. Since this transformation is anomalous, it will generate axion couplings to gauge

field strengths, and since it is local it will modify fermion kinetic terms. The resulting

couplings to gluon and photon fields strengths are given by

Lanom = N
a(x)√

2V

αs
4π
GµνG̃

µν + E
a(x)√

2V

αem

4π
FµνF̃

µν , (4.4)

with the dual field strength F̃µν = 1
2εµνρσF

ρσ and the anomaly coefficients

N =
1

2

(
4X10a + 2X103 + 2X10a +X103 + 2X5a

+X53

)
= 9/2 , (4.5)

E =
5

3
(2X10a +X103) +

4

3
(2X10a +X103) +

1

3

(
2X5a

+X53

)
+
(
2X5a

+X53

)
+ (2X10a +X103) = 12 . (4.6)

Thus, we obtain E/N = 8/3 exactly, which is just a consequence of the fact that the U(1)F
charge assignment is compatible with SU(5). The modification of fermion kinetic terms

leads to axion-fermion couplings in the flavor interaction basis

La = − ∂µa√
2V

∑
f

f †i σ
µXfifi . (4.7)
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In the mass basis, defined as mf = VfLm
diag
f (VfR)† we have

La = − ∂µa√
2V

∑
f=u,d,e

[
gLfifjf

†
i σ

µfj + gRfifjf
c†
i σ

µf ci

]
, (4.8)

with

gLfifj = (VfL)kiXfk(VfL)∗kj = Xfaδij + (Xf3 −Xfa)(VfL)3i(VfL)∗3j , (4.9)

gRfifj = (VfR)∗kiXfck
(VfR)kj = Xfcaδij + (Xfc3

−Xfca)(VfR)∗3i(VfR)3j . (4.10)

Finally we switch to Dirac spinor notation for the fermions and introduce fa ≡ V/(
√

2N)

to match to the standard normalization for the anomalous couplings. These are given by

Lanom =
a(x)

fa

αs
8π
GµνG̃

µν +
E

N

a(x)

fa

αem

8π
FµνF̃

µν , (4.11)

with E/N = 8/3 in this model (and domain wall number NDW = 2N = 9). The couplings

to fermions are given by

La =
∂µa

2fa
f iγ

µ
[
CVfifj + CAfifjγ5

]
fj , (4.12)

with

CVfifj =
−gLfifj + gRfjfi

2N
=
Xfca −Xfa

2N
δij +

Xfc3
−Xfca

2N
εfR,ij −

Xf3 −Xfa

2N
εfL,ij , (4.13)

CAfifj =
gLfifj + gRfjfi

2N
=
Xfca +Xfa

2N
δij +

Xfc3
−Xfca

2N
εfR,ij +

Xf3 −Xfa

2N
εfL,ij , (4.14)

and the shorthand notation

εfL,ij ≡ (V f
L )3i(V

f
L )∗3j , εfR,ij ≡ (V f

R )3i(V
f
R )∗3j . (4.15)

Note that the diagonal elements of these parameters satisfy

0 ≤ εfL/R,ii ≤ 1 ,
∑
i

εfL/R,ii = 1 . (4.16)

While the above expressions are valid for any axion model with PQ charges that are

universal for two fermion generations,4 in the present model these expressions simplify to

CVuiuj =
εuL,ij − εuR,ij

9
, CAuiuj =

2δij − εuL,ij − εuR,ij
9

, (4.17)

CVdidj =
εdL,ij

9
, CAdidj =

2δij − εdL,ij
9

, (4.18)

CVeiej = −
εeR,ij

9
, CAeiej =

2δij − εeR,ij
9

. (4.19)

4See ref. [25] for a recent example where this structure is realized within a generalized DFSZ model, and

can be used to suppress the axion couplings to nucleons and electrons.
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Using the approximate expressions in eq. (2.10), the rotations have the parametric structure

V u
L ∼ V u

R ∼

 1 λ λ7

λ 1 λ2

λ3 λ2 1

 , V d
L ∼ V e

R ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , V d
R ∼ V e

L ∼

1 λ λ5

λ 1 1

λ 1 1

 , (4.20)

so that all relevant V3i are CKM-like, and we have

εuL ∼ εuR ∼ εdL ∼ εeR ∼

λ6 λ5 λ3

λ5 λ4 λ2

λ3 λ2 1

 . (4.21)

Therefore, the diagonal axial couplings are to very good approxmation independent of the

rotations, and we get, denoting Cfi ≡ CAfifi ,

Cu = Cd = Ce = Cc = Cs = Cµ =
2

9
, Ct = 0 , Cb = Cτ =

1

9
. (4.22)

The flavor-violating axion couplings are controlled by εfij , whose numerical values, beyond

the parametric suppression given above, are known for a given fit to masses and mixings.

Besides there is an overall suppression factor 1/fa that is proportional to the axion mass

ma, with the usual conversion factor for QCD axions as obtained from Chiral Perturbation

Theory [26] and Lattice QCD [27]

ma = 5.7µeV

(
1012 GeV

fa

)
. (4.23)

4.2 Axion phenomenology

The most important constraints on fermion couplings of invisible (stable) axions (cf.

eq. 4.12) are summarized as an upper bound on the quantity (ma/coupling) in the first

column of table 13. These include flavor-violating b − s transitions as tested in B → Ka

decays [28], flavor-violating s − d transitions contributing to K → πa decays [29], lepton

flavor-violating µ− e transitions contributing to µ→ ea [30] and µ→ eaγ decays [31, 32],

(flavor-diagonal) axion-electron couplings bounded by the measurement of the WD lumi-

nosity function [33], and effective axion couplings to nucleons constrained from the burst

duration of the SN 1987A neutrino signal [34]. We did not include bounds from e.g. flavor-

violating tau decays [35], since they give much weaker constraints. We have further used

the predictions of the axion couplings in our model to obtain an upper bound on ma, or

equivalently a lower bound on fa, which is shown in table 13 for the fit QLνM -1 of the

complete D6 × U(1) model in table 10 (the result for the other fits are very similar). As

a result of the strong CKM protection of s − d transitions CVsd ∼ λ5, the main constraint

on the model comes from astrophysics, similar to flavor-universal axion models. Since the

bound from WD cooling and SN1987A are comparable, and the precise value of the latter is

debated in the literature (see e.g. the recent discussion in ref. [36] which finds a constraint

on ma/C roughly a factor 5 weaker than the PDG bound), we only take the constraint

from WD cooling, giving a upper bound on the axion mass ma < 14 meV. This translates
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Coupling mmax
a /C [eV] m

max,U(2)
a [eV] f

min,U(2)
a [GeV] Constraint

Cµe 2.1 · 10−3 78 7.3 · 104 µ→ ea [30]

CVbs 9.1 · 10−2 16 3.6 · 105 B+ → K+a [28]

CVsd 1.7 · 10−5 0.58 9.8 · 106 K+ → π+a [29]

CAee 3.1 · 10−3 0.014 4.1 · 108 WD Cooling [33]

CN 3.5 · 10−3 0.0092 6.2 · 108 SN1987A [34]

Table 13. Bounds on selected axion-fermion couplings; here Cµe ≡
√

(CVµe)
2 + (CAµe)

2 and CN ≡√
C2
p + C2

n denotes the effective couplings to nucleons, with axion couplings to protons and neutrons

Cp,n defined analogously to the axial vector couplings in eq. (4.12). The second column denotes the

model-independent upper bounds on the ratio of ma/C, where C denotes the respective coupling,

while the third and fourth columns contain the upper (lower) bound on ma (fa) in our model, using

the numerical results for the couplings of section 3.2, where for explicitness we took the fit QLνM -1

(other fits give similar constraints).

into a lower bound on the cutoff Λ > 1.9 · 1010 GeV. The predictions for the branching

ratio of K+ → π+a decays are given

BR(K+ → π+a) = 4.3 · 10−14
( ma

14 meV

)2
, (4.24)

which is far below the future sensitivity of NA62 [37, 38] given the constraint from WD

cooling. This is in sharp constrast to the U(1) Axiflavon proposed in ref. [11] (see also

ref. [12]), where the d−s transition is only Cabibbo-suppressed, CVsd ∼ λ, so that K+ → π+a

provides the strongest constraint on the axion mass.

The upper bound on ma < 14 meV implies that the axion is stable on cosmological

scales. It is a remarkable feature of the QCD axion that it can also explain the observed

Dark Matter (DM) abundance. One of the simplest scenarios is the misalignment mech-

anism [39–41], valid when U(1)F is broken before inflation.5 At this stage the axion is

essentially massless and takes a generic field value misaligned from the vacuum value by an

angle θ. Around the QCD phase transition the axion potential is generated, and the axion

begins to oscillate around the minimum. The energy density stored in these oscillations

can be approximately related to the present DM abundance as [42]

ΩDMh
2 ≈ 0.12

(
6µeV

ma

)1.165

θ2 , (4.25)

where θ ∈ [−π, π] is the initial misalignment angle. Thus for not too small values θ & 0.1π,

the natural window for axion DM is given by axion masses roughly between (1 ÷ 40)µeV,

which correspond to axion decay constants fa ∼ (1011 ÷ 1013) GeV and a cutoff in the

5Also cosmological scenarios with post-inflationary U(1)F breaking are viable, provided the presence of a

suitable explicit breaking term to solve the domain wall problem arising from NDW = 9. This is in contrast

to the U(1) Axiflavon in ref. [11], where the upper bound on the axion mass from K → πa prevents to

obtain the right amount of axion dark matter if U(1)F is broken after inflation.
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Figure 1. Prediction of the axion-photon coupling as a function of the axion mass ma. The yellow

band denotes the usual axion band of KSVZ models with a single pair of vector-like fermions,

taken from ref. [44]. The red line denotes the parameter space of the U(2) Axiflavon model, which

extend up to the • mark, denoting the bound from WD cooling, see table 13. Also shown are the

bounds from structure formation excluding hot DM (HDM) [45–47], the bound from the evolution

of Horizontal Branch (HB) stars in globular clusters [48], the expected sensitivity of the ALPS-II

experiment [49], the present and future bounds from Axion helioscopes provided by CAST [50] and

IAXO [51, 52], and from Axion Haloscopes like ADMX [53, 54], MADMAX [55] and the planned

ADMX upgrade [43].

range6 Λ ∼ (1013 ÷ 1015) GeV. This range of axion masses preferred by DM through the

misalignment mechanism will be probed by the ADMX upgrade in the near future [43].

Indeed the discovery prospects of the U(2) Axiflavon are mainly due to its coupling to

photons, and we summarize the status of the relevant experiments in the usual (ma, gaγγ)

plane in figure 1, where gaγγ = |8/3− 1.92|αem/(2πfa).

5 Summary and conclusions

In summary, we have a proposed a U(2)F model of flavor with horizontal quantum numbers

compatible with an SU(5) GUT structure. The flavor symmetry U(2)F
loc.' SU(2)F ×

U(1)F is spontaneously broken by two flavon fields φ and χ, which transform as a doublet

and singlet under SU(2)F , respectively. Similarly, the three generations of SM fermions

transform as 2 + 1 of SU(2)F , and there is a simple assignment of U(1)F quantum numbers

X103 = 0 , X10a = X5a
= X53

= −Xφ = −Xχ = 1 . (5.1)

6Repeating the numerical fit as in section 3.2 with SM input values at 1014 GeV, the χ2 and χ2
O(1) get

slightly worse (0.4/11 and 18/9.1 compared to 0.7/7.9 and 18/6.3 at 10 TeV, see table 10), while the overall

predictions change only marginally.
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The SM Yukawas arise from higher-dimensional operators made invariant under U(2)F by

appropriate insertions of flavons, suppressed by the cut-off scale Λ � v. In this way the

hierarchical structure of Yukawa matrices is explained by powers of two small parameters

that control the breaking of U(2)F , up to Wilson coefficients that are required to be O(1).

The resulting Yukawa matrices in the quark and charged lepton sector have a simple

structure with three texture zeros in the 1–1, 1–3 and 3–1 entries, while the 1–2 entry

is antisymmetric, see eq. (2.5). The presence of these textures leads to accurate relations

between CKM elements and masses, cf. eq. (2.12), which in contrast to the original U(2)

flavor models in refs. [2, 3] can be consistent with experimental data because of large

rotations in the right-handed down quark sector. Indeed we have obtained a very good fit

to fermion masses and mixings with coefficients that are O(1) (all between 0.4 and 2), see

table 4.

We have then included the neutrino sector, which gives a consistent fit to experimen-

tal data only with Dirac neutrinos. To this extent, we have introduced three right-handed

neutrinos (SM singlets), which also transform as 2 + 1 of SU(2)F and have equal charges

under U(1)F . The resulting structure of the Dirac mass matrix (cf. eq. (2.17)) has again

three texture zeros and only weak inter-generational hierarchies, thus predicting large mix-

ing angles. The U(1)F charge of the singlets enters only in the overall suppression factor

and can account for the smallness of neutrino Yukawas if taken to be 5÷ 6. The combined

fit to the complete fermion sector is viable only for neutrinos with normal mass hierarchy,

and still shows a good performance with O(1) coefficients between roughly 1/3 and 3 (cf.

table 6). This fit determines all parameters in the neutrino sector, and thus gives pre-

dictions for the absolute neutrino mass scale and the related observables. Scanning over

many good fits we have obtained a range for the sum of neutrino masses roughly given by

(58÷ 110) meV, while the prediction for the effective neutrino mass measured in β-decays

is far below future experimental sensitivities.

In order to have a consistent scenario with Majorana neutrinos, we have futhermore

discussed an D6×U(1) variant of the U(2)F model, where the SU(2)F factor is replaced by

a discrete D6 subgroup. The charge assignment of fermions and spurions closely resembles

the U(2)F structure, so that the effective Yukawa matrices in the quark and charged lepton

sector are exactly the same as in the U(2)F case, up to a sign flip in the 1–2 entry that

is largely irrelevant. This sign flip however allows for an unsuppressed 1–2 entry in the

Weinberg operator, whose hierarchical structure follows directly from charges of the SM

lepton doublets, and are to large extent independent of the charges of the heavy right-

handed neutrinos (cf. eq. (2.22)). Remarkably, the resulting structure automatically leads

to an anarchic neutrino mass matrix, so that the SU(5) structure connects large leptonic

mixing angles to small mixing angles in the quark sector. Indeed, the parametric flavor

suppression of up-, down-quark, charged lepton and neutrino masses follows the simple

pattern

m{u,d,e,ν} ∼

 0 ε2 0

ε2 ε2 {ε, ε2, ε, ε2}
0 {ε, ε, ε2, ε2} {1, ε, ε, ε2}

 , (5.2)
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where the mass scale is set by v in the quark and charged lepton sector and v2/M in the

neutrino sector. The difference between the fermion sectors just follows from the different

U(1) charge assignments for the third generation, see eq. (5.1). Although this model is

more predictive than the Dirac case, since two U(1) charges are replaced by a single mass

scale M , we obtain an excellent fit all SM observables with O(1) coefficients between 0.4

and 2, see table 10. From this fit we can again predict the overall neutrino mass scales, and

as in the previous case only neutrinos with normal mass hierarchy are viable. Scanning over

many good fits, we have obtained a slightly narrower range for the sum of neutrino masses

roughly given by (58÷ 78) meV, while again the predictions for the effective neutrino mass

entering beta decay and neutrinoless double beta decay are far below future experimental

sensitivities, see table 12.

Finally we have discussed the various possibilities to test our models apart from the

predictions in the neutrino sector. In general, sizable deviations in experimental observ-

ables from the SM require the existence of sufficiently light degrees of freedom. While

there is no particular reason why the cutoff and its associated dynamics should be light,

there is the natural possibility to solve the strong CP problem and account for DM through

the Goldstone boson of the global U(1)F symmetry, which we refer to as the U(2) Axi-

flavon. In contrast to the Axiflavon from a single Froggatt-Nielsen U(1)F symmetry [56]

as presented in refs. [11], here the flavor-violating couplings of the axion are protected by

the approximate U(2) symmetry. Therefore, the U(2) Axiflavon looks very much like a

usual DFSZ/KSVZ axion, with the strongest constraint from WD cooling, which requires

a sufficiently light axion ma < 14 meV. Particularly interesting is the axion mass range

where DM can be explained through the misalignment mechanism, implying axion masses

around (1÷40)µeV, which corresponds to a cutoff scale of roughly (1013÷1015) GeV. This

range will be tested by future axion haloscope searches.

The present model could be extended in several ways: 1) a more careful study of

the neutrino sector might allow to pin down the predictions analytically, and it could be

interesting to take a closer look to the type-I seesaw model, in particular its connection

with Leptogenesis. 2) One could embed the model into a supersymmetric framework to

address the hierarchy problem, possibly in connection with a full SU(5) GUT, trying to

relate GUT breaking scale, flavor breaking scale and the axion decay constant, similar to

ref. [57]. 3) Finally, it might be interesting to study possible UV completions and calculate

the low-energy constraints from flavor-violating obervables on the new dynamics.
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Representation R S

1 1 1

1′ 1 −1

2

(
e

2πi
3

e
−2πi

3

) (
0 1

1 0

)

Table 14. Representation matrices for D3.

A D3 and D6 group theory

In this appendix we provide some details about the structure of the dihedral groups D3

and D6 and fix the notation for constructing group invariants (see also refs. [5, 58, 59]).

The dihedral group D3 is the symmetry group of an equilateral triangle and is isomor-

phic to S3, the permutation group of three objects with order 6. The group is generated

by two elements R and S, where R is the rotation through 120◦ and S is the reflection

about one of the bisectors. Since R3 = S2 = 1 and SR = R2S, the six elements are

1, R,R2, S,RS, SR.

D3 has two one-dimensional representations 1, 1′ and one two-dimensional representation

2. The representation matrices for R and S can be chosen as in table 14. The tensor

products of two one-dimensional representations decompose as follows:

1⊗ 1 = 1 , 1⊗ 1′ = 1′ , 1′ ⊗ 1′ = 1 , (A.1)

while for the product of two 2’s one gets

2⊗ 2 = 1⊕ 1′ ⊕ 2 . (A.2)

For two doublets ψ =

(
ψ1

ψ2

)
and ϕ =

(
ϕ1

ϕ2

)
one finds

(ψ ⊗ ϕ)1 = ψ1ϕ2 + ψ2ϕ1 , (ψ ⊗ ϕ)1′ = ψ1ϕ2 − ψ2ϕ1 , (ψ ⊗ ϕ)2 =

(
ψ2ϕ2

ψ1ϕ1

)
. (A.3)

In the following we will use the simplified notation for singlet components (i.e. invariants)

(ψ · ϕ) ≡ (ψ ⊗ ϕ)1 = ψ1ϕ2 + ψ2ϕ1 . (A.4)

From a given doublet ϕ one can construct another doublet ϕ̃ = σ1ϕ∗ =

(
ϕ∗2
ϕ∗1

)
, with

invariant

(ϕ̃ · ϕ) = ϕ∗1ϕ1 + ϕ∗2ϕ2 . (A.5)

Note that because of eq. (A.2) any product of doublets contain at least one singlet. For

three doublets it is given by

(ψ · ϕ · χ) = ψ1ϕ1χ1 + ψ2ϕ2χ2 , (A.6)
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Parameter QLνD-1 QLνD-2 QLνD-3 QLνD-4 QLνM -1 QLνM -2

λu12 0.902 0.843 3.831 1.162 −1.633 −1.176

λu22 1.187 −1.047 1.859 1.148 1.339 1.112

λu23 2.222 −2.175 −2.138 −1.799 2.127 1.925

λu32 −1.103 −1.419 1.511 2.422 1.196 1.615

λu33 0.787 0.779 −0.787 0.786 0.787 0.785

δ33 −0.640 −0.720 −3.948 −1.097 −3.837 −3.988

λd12 0.479 −0.479 2.165 2.173 −0.888 0.976

λd22 −1.000 −1.156 −1.075 −0.972 −0.973 0.976

λd23 0.913 −0.786 −1.304 −1.155 1.073 0.985

λd32 −0.355 0.401 0.414 0.423 0.365 −0.394

λd33 0.665 0.651 1.394 1.497 −0.902 −0.948

λ`12 0.402 −0.376 −1.752 −1.758 −0.801 0.856

λ`22 0.987 −1.134 1.821 2.052 1.306 1.497

λ`23 0.343 0.381 0.393 −0.414 −0.368 0.391

λ`32 −0.992 −1.132 1.175 1.193 −1.198 1.294

λ`33 0.432 −0.399 −0.945 0.992 −0.503 −0.536

λν12 0.882 −1.416 0.938 1.006 2.130 −1.873

λν22 −0.994 −1.303 0.325 0.398 −0.844 −0.760

λν23 −2.588 −1.074 −1.505 1.681 1.137 −1.078

λν32 1.065 −0.704 0.601 0.680 q q
λν33 0.952 −1.572 −0.890 0.891 −0.489 −0.655

XN
a 6 6 5 5

XN
3 6 6 5 5

v/M × 109 −0.421 −0.520

εφ 0.026 0.024 0.022 0.021 0.025 0.024

εχ 0.012 0.013 0.006 0.006 0.009 0.009

Table 15. Fit parameters for Dirac (SU(2) × U(1) Model) and Majorana neutrinos (D6 × U(1)

Model). The parameters are defined in eqs. (2.5) and (2.17), and eq. (3.8), respectively.
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while there are three different singlets in the product of four doublets, which we define as

(ψ ⊗ ϕ⊗ χ⊗ η)1 =


ψ1ϕ2χ1η2 + ψ2ϕ1χ2η1

ψ1ϕ2χ2η1 + ψ2ϕ1χ1η2

ψ1ϕ1χ2η2 + ψ2ϕ2χ1η1

. (A.7)

For the case of ψ = ϕ and χ = η there are just two invariants for which we use the notation:

(ψ ⊗ ψ ⊗ χ⊗ χ)1 =

{
(ψ · ψ)(χ · χ) ≡ 4ψ1ψ2χ1χ2

(ψ · ψ · χ · χ) ≡ ψ2
1χ

2
2 + ψ2

2χ
2
1

(A.8)

Finally we turn to the dihedral group D6 which is the symmetry group of regular hexagon.

It is isomorphic to D3×Z2, and therefore inherits the group theoretical structure discussed

above, except that each representation carries an additional Z2 charge, which is conserved in

tensor decompositions. Thus, we have four one-dimensional representations 1+,1−,1
′
+,1

′
−

(where 1+ denotes the total singlet) and two two-dimensional representations 2+,2−. The

decompositions of these representations follow from the D3 ones, for example we have

2− ⊗ 2− = 1+ ⊕ 1′+ ⊕ 2+ , 2+ ⊗ 2− = 1− ⊕ 1′− ⊕ 2− . (A.9)

Therefore in D6 the tensor product (2− ⊗ 2− ⊗ 2−) does not contain a singlet.

B Fit results

Below we also provide the finetuning and pulls of the fit. For each observable Oi =

{yu, yd, . . .} we define the tuning ∆i and the pull Pi as

∆i = maxj

∣∣∣∣∂ logOi
∂ log pj

∣∣∣∣ , Pi =
Ofit
i −O

exp
i

σexp
i

, (B.1)

where pj = {λu,d,`,νij , εφ, εχ,M} are the fit parameters. For the sake of brevity, we restrict

to Fit 3 and 4 in the Dirac case, the other two fits give similar results. As can be seen from

tables 16 and 17, the tuning of the observables is quite low, at most 10% for the Dirac case

and about 20% in the Majorana case. As expected from the χ2 value, the pulls are small

and are dominated by the quark Yukawas (and in the Majorana case also by the PMNS

mixing angles).

C Scalar potential

In this section we consider an explicit scalar potential that generates the VEVs we have

assumed in section 3, serving merely as a proof of existence. In particular, this potential

should be reassessed in a UV complete setup, possibly in connection with a supersymmetric

SU(5) GUT.

In addition to the scalars φ and χ we need to introduce a new (SM singlet) scalar

ψ in order to break the U(1) symmetries in the scalar potential to a single continuous
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Observable ∆(QLνD-3) Pull(QLνD-3) ∆(QLνD-4) Pull(QLνD-4)

yu 4 0.0 4 −2.3

yc 2 −0.1 2 −1.2

yt 1 −0.0 1 −0.1

yd 3.8 0.9 3.8 2.1

ys 1.4 −0.2 1.3 −2.3

yb 0.6 −0.0 0.5 0.1

ye 4 −0.0 4 −0.0

yµ 1.3 0.0 1.3 −0.0

yτ 0.7 0.0 0.7 0.0

θCKM
13 1.2 −0.1 1.1 −0.1

θCKM
12 1.8 −0.1 1.7 −0.2

θCKM
23 3.8 −0.0 1.1 0.0

δCP 4.8 −0.0 0.8 0.6

∆m2
21 11.3 −0.0 11.4 −0.3

∆m2
31 9.3 0.0 9.3 0.3

θPMNS
13 1.3 0.1 1.3 0.6

θPMNS
12 1.1 0.0 1.1 −0.5

θPMNS
23 0.7 0.0 0.7 0.7

Table 16. Fine-tuning and pulls for the observables of fit QLνD-3 and fit QLνD-4.

global symmetry that can be identified with U(1)F . The transformation properties under

D6[U(1)F ] are

φ = 2−[−1] , χ = 1+[−1] , ψ = 1−[+1] , (C.1)

and the most general, renormalizable scalar potential for these fields is given by7

Vscal = m2
χ|χ|2 +

(
m2
φ + κχ|χ|2 + κψ|ψ|2

)
(φ̃ · φ) +m2

ψ|ψ|2

+
λ1

4
(φ̃ · φ̃)(φ · φ) +

λ2

2
(φ̃ · φ̃ · φ · φ) + λ3|χ2||ψ|2 +

λχ
2
|χ|4 + λψ|ψ|4

+

[
κ1

2
ψψ (φ · φ) +

κ2

2
χ∗χ∗ (φ · φ) +

1

2
λχψψψχχ+ ρψ(φ̃ · φ · φ) + h.c.

]
, (C.2)

where the D6 singlet contractions are explained in appendix A and we take κ1, κ2, λχψ and

ρ to be real. The ground state of this potential is most easily studied in the limit when

ρ� 1, κ2 � 1 , λχψ � 1 . (C.3)

7We do not include the SM Higgs, because its backreaction on the flavon potential is negligible as the

flavon VEVs are much larger than the electroweak scale. In turn, the flavons will generate a large mass

term for the Higgs, which is just the usual hierarchy problem that we do not address here.
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Observable ∆(QLνM -1) Pull(QLνM -1) ∆(QLνM -2) Pull(QLνM -2)

yu 4 0.1 4 −1.3

yc 2 −0.1 2 −1.4

yt 1 −0.0 1 −0.3

yd 3.8 0.7 3.8 1.6

ys 1.6 −0.1 1.5 −1.4

yb 0.6 −0.0 0.6 0.8

ye 4 −0.0 4 −0.0

yµ 1.2 −0.0 1.2 −0.0

yτ 0.8 0.0 0.8 0.1

θCKM
13 1.3 −0.1 1.2 0.4

θCKM
12 1.8 −0.0 1.7 −0.1

θCKM
23 4.5 −0.0 4 −0.1

δCP 5.1 −0.1 3.9 0.0

∆m2
21 4.7 0.1 4.7 0.5

∆m2
31 3.1 −0.0 3 −0.2

θPMNS
13 1.4 −0.1 1.4 −1.4

θPMNS
12 1.1 0.2 1.1 2.3

θPMNS
23 0.8 0.4 0.8 1.6

Table 17. Fine-tuning and pulls for the observables of fit QLνM -1 and fit QLνM -2.

For a suitable range of parameters (see below), one can easily show that the ground state

at leading order in ρ and κ2 is given by

v2
1 =

λχm
2
φ − κχm2

χ

κ2
χ − λ2λχ

, v2
χ =

λ2m
2
χ − κχm2

φ

κ2
χ − λ2λχ

. (C.4)

There is a symmetry exchanging φ1 ↔ φ2 in the potential, which are connected by a D6

transformation that we can use to assume the large VEV in the φ1 direction without loss

of generality. The VEVs of v2 and vψ only arise at O(κ) and O(κρ), respectively:

v2
2 =

κ2
2v

2
χ

(λ2 − λ1)2

v2
χ

v2
1

, v2
ψ =

κ2
2ρ

2v2
1

(λ2 − λ1)2

(
v2
χ(κ2

χ − λ2λχ)

m̃2

)2

, (C.5)

with the shorthand notation

m̃2 = κχ(κχm
2
ψ − κψm2

χ − λ3m
2
φ) + κψλχm

2
φ + λ2(λ3m

2
χ − λχm2

ψ) . (C.6)

In order to suppress the VEVs of φ2 and ψ sufficiently, i.e. to ensure the validity of e.g.

eq. (2.5), we need roughly v2/v1 ∼ v2/vχ ∼ κ2 . ε2
χ ∼ 10−4. Such a small coupling
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is technically natural, since in the limit of κ2 → 0, λχψ → 0 (or ρ → 0) the Lagrangian

acquires a larger symmetry. This can be seen from spelling out the third line of the potential

explicitly:

Vscal ⊃ κ1ψ
2φ1φ2 + κ2χ

∗χ∗φ1φ2 + λχψχ
2ψ2 + ρψ

(
φ2

1φ
∗
2 + φ2

2φ
∗
1

)
+ h.c. (C.7)

Indeed, this part only breaks the additional U(1)3 symmetry of the scalar kinetic terms

(besides the remaining U(1)F ) if ρ 6= 0 and κ 6= 0 or λχψ 6= 0.

This observation is also crucial to understand why the additional field ψ is needed: its

coupling ρ is the only parameter that breaks the U(1) symmetry under which χ is neutral

and φ1 and φ2 carry opposite charges. Moreover, it makes clear that we expect (in addition

to the massless U(1)F Goldstone) a very light pseudoscalar in the spectrum whose mass is

suppressed by the small couplings κ2, λχψ and ρ.

After these analytical considerations we finally provide a numerical example, taking

the following set of parameters:

m2
φ=−2m2, m2

χ=−3/10m2, m2
ψ=2m2, λ1 =1, λ2 =1/9, λχ=1, κχ=−1/8

λ3 =2/3, λχψ=−1/20, κ1 =−1/3, κψ=7/10, ρ=−1/20, λψ=9/10, κ2 =1/2000 .

(C.8)

The absolute minimum in the potential can be calculated numerically, and agrees very well

with the above approximate results in eq. (C.4) and eq. (C.5). The VEVs are given by

v1 = 4.6m, v2 = −3.6 · 10−4m, vχ = 1.7m, vψ = −2.1 · 10−5m, (C.9)

and therefore

εφ = 0.024

(
190m

Λ

)
, εχ = 0.009

(
190m

Λ

)
. (C.10)

Finally, the scalar mass spectrum is given by one massless Goldstone, 6 massive scalars

with masses {6.3, 6.3, 6.0, 6.0, 3.9, 2.6}m and a light scalar with mass 2.9 · 10−5m. Using

the lower bound on Λ from section 4.2 (corresponding to an axion mass ma . 14 meV), we

get a lower bound on m roughly given by m ∼ Λ/190 > 5 · 108 GeV, so the light scalar has

a mass & 15 TeV.

We finally comment on the small value of κ2 = 1/2000 used in the benchmark point.

As it is clear from eq. (C.5), small κ2 ensures the approximate alignment of the doublet

VEV along v1. This small value is technically natural within the benchmark point, since

the renormalization group equation for κ2 is of the form dκ2/dt ∼ λ∗χψκ1/16π2, so radiative

corrections to κ2 are under control. Within the context of a supersymmetric UV completion

there might be a more natural possibility to ensure the VEV alignment of φ.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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