
Atomic Information Disclosure of Off-Chained
Computations using Threshold Encryption?

Oliver StengeleB and Hannes Hartenstein

Institute of Telematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
{oliver.stengele,hannes.hartenstein}@kit.edu

Abstract Public Blockchains on their own are, by definition, incapable
of keeping data private and disclosing it at a later time. Control over
the eventual disclosure of private data must be maintained outside a
Blockchain by withholding and later publishing encryption keys, for
example. We propose the Atomic Information Disclosure (AID) pattern
based on threshold encryption that allows a set of key holders to govern the
release of data without having access to it. We motivate this pattern with
problems that require independently reproduced solutions. By keeping
submissions private until a deadline expires, participants are unable to
plagiarise and must therefore generate their own solutions which can
then be aggregated and analysed to determine a final answer. We outline
the importance of a game-theoretically sound incentive scheme, possible
attacks, and other future work.

Keywords: Consensus · Off-Chain Construction · Atomic Disclosure.

1 Introduction

Decentralised consensus systems like Bitcoin and Ethereum brought with them
the prospect of widespread disintermediation. However, it was soon realised that
not every interaction could feasibly be recorded on a Blockchain. By using off-
chain constructions, a Blockchain can still serve as coordinator and final arbiter,
thus maintaining all the security guarantees, while minimising the space and
effort required for permanent records.

Recently, off-chain mechanisms have been used to execute tasks that are too
complex for the Blockchain, or rather the Smart Contract execution environ-
ment [11]. A prominent example of this concept is TrueBit [15]. However, there
is a class of problems that are not well suited for systems like TrueBit. These
problems follow the concept of a seminal paper by Ken Thompson on trust [16],
namely that they are best approached through independent reproduction and
verification [17] rather than individual and sequential challenges.

To facilitate independence in producing and reproducing solutions to a given
task, the disclosure of said solutions is crucial. After all, if a solution is known,
? The final publication is available at link.springer.com: https://doi.org/10.1007/
978-3-030-00305-0_7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197488692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-00305-0_7
https://doi.org/10.1007/978-3-030-00305-0_7


2 O. Stengele, H. Hartenstein

then actually performing work to reproduce the same result or just copying it
without performing any work is indistinguishable for an outside observer. To
preempt this problem, we propose the use of threshold encryption to allow an
arbitrary number of submissions to be disclosed atomically. By that we mean that
participants can publicly commit to a solution, without revealing it to anyone, in
such a way that all submissions will be disclosed simultaneously.

The remainder of this position paper is structured as follows. The subsequent
Section 2 opens with motivating examples for the application for the proposed
pattern and follows with related work from various fields of research. In Section 3,
we outline the Atomic Information Disclosure (AID) pattern and discuss it in
Section 4, in which we also enumerate future work and conclude the paper.

2 Problem Motivation & Related Work

In this section, we describe three examples for the application of the AID pattern
and outline how previous works relate to our approach.

Compilation of Software As mentioned previously, Ken Thompson famously
described how compilers could be compromised to embed flaws into binaries
compiled with them, without leaving any indications for said compromise in the
source code of the compiler [16]. As a countermeasure, Wheeler presents the
concept of Diverse Double-Compiling [17], where the outputs of a potentially
compromised and a trustworthy compiler are compared against each other to
determine a correct build. In lieu of a single trusted compiler, we can use the AID
pattern to generalise the concept by Wheeler to an arbitrary number of compilers
in the hopes that the majority of them are not compromised. An interesting pitfall
specific to this example stems from the fact that benign and malicious versions of
the same binary can be very hard to distinguish. Making use of similarity metrics
when analysing the results of multiple independent compilations could therefore
cause more harm than good. We address this further in Section 4.

Verification of Software Similar to the first example, we can also look to-
wards the verification of software that has already been compiled for a possible
application of the AID pattern. Asking a single company to check a given piece
of software for certain (security) properties leaves one open to the possibility of
fraud. The company could simply certify that every property is fulfilled, without
actually performing any work. The AID pattern can be used to pit several
companies against each other, forcing them to perform their duties faithfully.

Experimental Science Lastly, we also note similarities between the func-
tionality of the AID pattern and the scientific process regarding experiments.
Reproducibility of results is one of the hallmarks of science. Contrary to the
current model of publishing results and expecting others to either reproduce or
refute them, which is open to plagiarism, a lack of reproduction, and other issues,



Atomic Information Disclosure using Threshold Encryption 3

a methodology based on atomic disclosure would preempt these problems by
enabling independent groups of scientists to perform experiments in parallel and
disclose their results simultaneously.

There are some similarities between these use cases that deserve explicit
mention. In all cases, the effort necessary to produce and reproduce results is
significant and comparable to each other. There is also an entire set of possible
results from which a final answer is to be selected. And lastly, the trustworthiness
or reliability of results grows with independent reproduction. As mentioned
previously, it is the independence of reproduced solutions that we aim to achieve
through the AID pattern.

Now, we will go over previous works from rather different areas of research
that our approach is related to.

With Bitcoin [12], the feasibility of a Blockchain-based consensus system was
first demonstrated. Ethereum [5] later generalised this concept to build a global
state machine complete with a programmatic method for interacting with it,
namely Smart Contracts [14].

Both in Bitcoin and in Ethereum, miners compete against each other to verify
transactions submitted by users and publish them in newly mined blocks that
are appended to the Blockchain. The miner that finds a new block is rewarded
by the system for providing an integral service1. The remaining miners are then
expected to check the newly published block for validity and to decide whether
to build upon this new block, thereby proclaiming their accordance with it, or
fork the Blockchain by building on top of the previous block in the event that
they disagree with the new block. This verification of published blocks is not
rewarded in any way, but is nevertheless a critical requirement to ensure the
security properties of the Blockchain.

In the case of Bitcoin, the verification of new blocks is negligible compared
to the process of mining. In Ethereum, however, this is not necessarily the case
considering that arbitrarily complex Smart Contracts have to be executed in
order to check the validity of any given block. Luu et al. [11] demonstrated that
honest miners can be presented with a verifier’s dilemma if the verification of
published blocks requires non-negligible effort: If the miners choose to perform
the verification, they put themselves at a disadvantage with regard to finding
new blocks; if they forgo the verification, they risk mining on an invalid branch
of the Blockchain. To combat this, Ethereum limits the amount of computation
that can be executed and that must be verified within a block.

In general, it would seem that Blockchain-based consensus systems with
mutual verification inevitably place an upper bound on the complexity of compu-
tations that can be executed and on whose results the system provides consensus.
To circumvent these limitations, several mechanisms have been proposed in the
past that allow processes to run off-chain while still relying on the Blockchain
as the coordinator and final arbiter in case of dispute. Eberhardt and Tai [9]

1 Note that this reward requires the agreement of other miners. If they fork the
Blockchain and the block in question becomes stale, then the miner in question will
not receive any reward.



4 O. Stengele, H. Hartenstein

present an overview of common off-chain patterns. While their list was compiled
from past experiences, we look towards a new set of problems with our approach
that has not been tackled yet.

Similar to off-chain patterns, in the sense that they enable the circumvention
of the previously mentioned complexity bound, but vastly larger in terms of
scale, are entire platforms like TrueBit [15]. In order to ensure the validity of
outsourced computations, TrueBit employs a verification game, where a solver
and a verifier narrow down the point of contention in the outsourced computation
until it can be executed by Ethereum miners who subsequently resolve the dispute.
While TrueBit would appear quite suitable for the problems at hand, we note
that problems with a set of valid solutions could be challenged ad infinitum.
Concurrently and independently generated solutions appear to be a valid approach
to overcome this problem.

As previously mentioned, we propose to use a threshold encryption scheme
to facilitate the submission of solutions in such a way that they become pub-
lic simultaneously, thus allowing each solver to work independently. Threshold
encryption was first introduced by Desmedt [7,8] and later improved by Ped-
ersen [13] and Boneh [4]. Broadly speaking, threshold encryption enables the
sharing of decryption capabilities among a group of parties such that t of them,
called a threshold, have to cooperate in order to perform the decryption. The
contribution by Pedersen [13] is especially noteworthy for demonstrating that a
threshold encryption scheme can be constructed without a trusted dealer who
would generate and distribute the individual key shares. Boneh [4] then improved
the efficiency of threshold encryption schemes without trusted dealers to the
point where an Ethereum Smart Contract could potentially verify the correctness
of the setup and later perform decryption operations if enough parties publish
their respective key share. The necessary operations fall within integer arithmetic
that should be practical within Smart Contracts.

Very recently, Kokoris-Kogias et al. [10] have also employed threshold en-
cryption to achieve distributed access control on a public ledger. While their
construction of One-Time Secrets appears functionally similar to the AID pattern,
their architecture requires the sender of a secret to be the trusted dealer in the
threshold encryption setup. Our approach, by contrast, requires a dealerless
threshold encryption scheme so that multiple senders can encrypt their secrets
into one atomically disclosable pile. Our more open use-case also necessitates an
incentive scheme and other security mechanisms.

In a way, the AID pattern could be classified as a form of pseudonymous voting
on a correct solution to a given task. Voting on Blockchains is a comparatively
young but quite fruitful area of research [1,2,18]. In a similar vein, but related to a
very different area of computer science, one could also draw parallels between our
pattern andMapReduce [6], with theMap phase being the off-chained computation
and the Reduce step as the election of a final solution by a Blockchain.



Atomic Information Disclosure using Threshold Encryption 5

Smart Contract Task Giver Key Holder Participants

Define Task

Established

Volunteer

Select

Setup TE

Verify Proof

Publish pk

Construct
Submissions

Store

Publish
Key Shares

Decrypt
Submissions

Select Solution

Task solved

Compute

Blockchain Off-Chain

create

prove success

Setup
Subm

it
F
inalise

Figure 1. Sequence diagram of our off-chain pattern. Threshold encryption is abbrevi-
ated as TE.

3 Atomic Information Disclosure Pattern

In this section, we describe an off-chain pattern to solve a resource-intensive
problem that requires parallel, independent reproduction of solutions through the
use of threshold encryption. An overview of this pattern is presented in figure 1.
The general idea of our pattern is to have an arbitrary number of participants
generate solutions to a given task which are then published to a Blockchain where
a final solution is elected from the candidates based on the number of times
it was reproduced independently. Threshold encryption keeps the submissions
private until the submission phase is over.

It is at this point important to note that we only discuss the general approach
in this position paper. Crucial components such as the incentive scheme or
implementation details are left as future work, see Section 4.

Setup Phase Initially, a task giver defines a Smart Contract that includes:

– The problem to be solved,
– A schedule for the subsequent phases,



6 O. Stengele, H. Hartenstein

– The logic for selecting a final solution from the submitted candidates.

This initial problem statement also includes integrity preserving references to
any required data. In order to facilitate the independent generation of solutions,
submissions need to be kept private until the stated submission deadline is
expired. Since a public Blockchain is, by definition, incapable of executing this
task, the privilege of revealing submissions has to be kept outside the respective
Blockchain system.

While individual commitments by the participants could be used in this
scenario, this would allow for a plethora of problems related to the opening of
said commitments. For example:

– Participants could fail to open their commitments entirely due to crashes or
human error, leading to ambiguity when it comes to electing the final result
or at least wasted effort.

– Due to the sequential opening of commitments, participants may choose to
not open theirs, erroneously assuming that they reached an incorrect solution
that would not affect the outcome.

We propose to utilise threshold encryption to delegate and decentralise the
privilege of disclosure without granting any party premature read access to
the submissions to circumvent these issues. After the aforementioned problem
statement is published on a Blockchain, a set of key holders is established
through voluntary application and random selection. Alternatively, trustworthy
key holders could also be vetted and hard-coded, similar to a permissioned
Blockchain. We elaborate on this further in Section 4. These key holders then
initialise a threshold encryption scheme among themselves, for instance the one
presented by Boneh and Franklin [4], and prove the success of this setup to the
Smart Contract by providing decryption shares to a predefined challenge, like the
address of the coordinating Smart Contract. The Smart Contract can then check
that all decryption shares are valid by attempting to combine them into a correct
decryption. Note that decryption shares are distinct from key shares. If t is the
threshold parameter of the underlying encryption scheme, any t decryption shares
can be combined to decrypt a particular message whereas any t key shares can be
combined to reconstruct the underlying private key which can subsequently be
used to decrypt any message encrypted with this scheme, both past and future.
We will employ the latter in the last phase of our pattern. Once the setup is
complete, the key holders generate and publish a public key on the Blockchain
that can be used to encrypt submissions. Note at this point that a threshold
encryption scheme without a trusted dealer is essential for this application, as
the dealer would otherwise be able to read all submissions and could therefore
subvert the entire process.

Submission Phase Once the key holders have successfully initialised the thresh-
old encryption scheme, participants can construct submissions by using the
corresponding public key to encrypt their individual results. Depending on the



Atomic Information Disclosure using Threshold Encryption 7

expected number of submissions, they can either be recorded on the Blockchain
itself or directed to off-chain storage like Ethereum Swarm or IPFS [3]. Keep in
mind that participants could have started the necessary computation immediately
after the task was published, parallel to the setup of the threshold encryption
scheme. The submission phase lasts as long as the task giver specified in the
beginning.

Finalisation Phase To begin the finalisation phase, the key holders are expected
to publish their respective key share. This also serves as an irrevocable termination
of the submission phase. If at least t key holders do this, all submissions will
become readable to the public simultaneously. It is worth pointing out that once
t− 1 key holders publish their key shares, the remaining key holders gain read
access to the submissions. While this is certainly an advantageous position, it
is very fleeting, since only one more key share suffices to extend read access
to the public, and it is not very exploitable, as no new submissions by the key
holders would be accepted at this point. The now public submissions can then
be analysed and a final result can be elected based on the logic defined in the
initial Smart Contract.

4 Discussion and Future Work

The purpose of this position paper is mainly to propose the use of threshold
encryption in conjunction with Blockchains, especially those supporting Smart
Contracts, to facilitate the concurrent and independent solving by multiple parties
of certain problems that benefit from it. This benefit lies mainly in the increased
certainty about the correctness of the solution. As such, several key aspects are
left for future work. In this section, we elaborate on these and highlight possible
pitfalls.

Probably the most crucial component after the functionally necessary primit-
ives is the incentive scheme. Without a reason to both participate and to produce
correct solutions, the whole scheme is futile. This issue becomes somewhat circu-
lar, given that we attempt to determine a correct solution through the process we
try to incentivise based on the correctness of submitted solutions. Furthermore,
the incentive scheme has to deal with possible collusions and bribery of task
givers, participants, and key holders. This is doubly relevant since we do not
enforce these roles to be disjoint. A task giver may also be a key holder and may
also provide a solution. We intend to construct and game-theoretically analyse
an incentive scheme in a future work.

Related to the incentive scheme but best viewed separate are possible attacks
against the AID pattern. In general terms, we expect attacks that pursue any
combination of these three goals:

– Influence the selection of the accepted solution
– Gain rewards disproportionate to the exerted effort
– Prevent the pattern from working entirely (Denial of Service)



8 O. Stengele, H. Hartenstein

Established off-chain mechanisms, like the Challenge-Response pattern mentioned
by Eberhardt [9], may prove useful in stifling some of these attacks. One technique
that deserves special mention at this point is sybil attacks. Without a widely
adopted identity scheme, it is up to the incentive scheme to discourage participants
from submitting the same solution multiple times though sybil accounts to either
sway the final election or reap greater rewards compared to only submitting once.
Similarly, a sybil attack on the threshold encryption scheme could enable the
attacker to gain premature read access on the submissions. A collusion between
sufficiently many key holders can accomplish the same goal without producing
evidence on-chain. Here, a mechanism for rewarding the betrayal of such a
collusion on-chain could be used as a countermeasure. The parametrisation of the
encryption scheme and the selection of key holders is therefore a crucial line of
defence. When deciding the parameters of the encryption scheme, availability and
collusion resistance have to be weighed against each other carefully since they
can be seen as opposing goals. The easier it is for the key holders to complete
the protocol (availability), the lower might be the resistance to collusion, and
vice versa.

The system used to store submissions is also a crucial component to mention
at this point. During the entire process, it has to be available in addition to
ensuring the integrity of submitted solutions. It would also be useful if the system
could employ size and rate limits to impede denial of service attacks.

Lastly, we plan to put our pattern into practice with a functional prototype.
Of primary interest in this regard are the costs for its execution and the strain
we put on the selected Blockchain system relative to the number of participants.

One interesting pitfall we have already identified is the use and abuse of
similarity metrics when electing final solutions. If the concrete application allows
for such a metric to be defined in the initial Smart Contract, one might be inclined
to use it to cluster submissions together in order to not require exact replication.
This way, a more robust and reliable selection process might be possible compared
to just looking for the number of reproductions. However, we must remark that
the opposite is also possible. Since the metric is part of the initial Smart Contract,
and therefore public, an attacker might construct malicious submissions that are
similar, in terms of the metric, to the likely majority solution but functionally
nefarious. The aforementioned clustering mechanism could then lend credence
to such a malicious solution and increase the chances of its election as the final
answer. This example serves to demonstrate how crucial the selection logic in
the coordinating Smart Contract is.

In conclusion, we believe that the combination of threshold encryption and
Blockchain-based consensus systems holds great potential for various applications
that have not been feasible before. The ability to delegate the disclosure of data
not to a singular third party but to a collective of key holders without granting
premature read access promises to find application in various contexts. The
off-chain pattern we outlined here is hopefully only a first step.



Atomic Information Disclosure using Threshold Encryption 9

Acknowledgements

This work was supported by the German Federal Ministry of Education and
Research within the framework of the project KASTEL_ISE in the Competence
Center for Applied Security Technology (KASTEL).

We would like to thank the anonymous reviewers for their feedback, especially
for bringing the work by Kokoris-Kogias et al. [10] to our attention.

References

1. Bartoletti, M., Pompianu, L.: An Empirical Analysis of Smart Contracts: Platforms,
Applications, and Design Patterns. Springer International Publishing, Cham (2017)

2. Bartolucci, S., Bernat, P., Joseph, D.: SHARVOT: secret SHARe-based VOTing on
the blockchain. arXiv.org (Mar 2018)

3. Benet, J.: IPFS - Content Addressed, Versioned, P2P File System. arXiv.org (Jul
2014)

4. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Advances
in Cryptology — CRYPTO ’97, pp. 425–439. Springer, Berlin, Heidelberg, Berlin,
Heidelberg (Aug 1997)

5. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. white paper (2014)

6. Dean, J., Ghemawat, S.: MapReduce - simplified data processing on large clusters.
Commun. ACM 51(1), 107 (2008)

7. Desmedt, Y.: Society and Group Oriented Cryptography: a New Concept. In:
Advances in Cryptology — CRYPTO ’87, pp. 120–127. Springer, Berlin, Heidelberg,
Berlin, Heidelberg (Aug 1987)

8. Desmedt, Y.: Threshold cryptosystems (1993)
9. Eberhardt, J., Tai, S.: On or Off the Blockchain? Insights on Off-Chaining Compu-

tation and Data. Springer International Publishing, Cham (2017)
10. Kokoris-Kogias, E., Alp, E.C., Siby, S.D., Gailly, N., Jovanovic, P., Gasser, L., Ford,

B.: Hidden in Plain Sight - Storing and Managing Secrets on a Public Ledger. IACR
Cryptology ePrint Archive (2018)

11. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying Incentives in the
Consensus Computer. In: the 22nd ACM SIGSAC Conference. pp. 706–719. ACM
Press, New York, New York, USA (2015)

12. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. bitcoin.org (2008)
13. Pedersen, T.P.: A Threshold Cryptosystem without a Trusted Party. In: Advances

in Cryptology — EUROCRYPT ’91, pp. 522–526. Springer, Berlin, Heidelberg,
Berlin, Heidelberg (Apr 1991)

14. Szabo, N.: Formalizing and Securing Relationships on Public Networks. First
Monday 2(9) (Sep 1997)

15. Teutsch, J., Reitweißner, C.: A scalable verification solution for blockchains.
people.cs.uchicago.edu (Mar 2017)

16. Thompson, K.: Reflections on trusting trust. Communications of the ACM 27(8),
761–763 (Aug 1984)

17. Wheeler, D.: Countering Trusting Trust through Diverse Double-Compiling. In:
21st Annual Computer Security Applications Conference (ACSAC’05). pp. 33–48.
IEEE (2005)

18. Z̄ıle, K., Strazdin, a, R.: Blockchain Use Cases and Their Feasibility. Applied Com-
puter Systems 23(1), 12–20 (2018)


	Atomic Information Disclosure of Off-Chained Computations using Threshold Encryption

