
RESEARCH ARTICLE

An automated screening method for

detecting compounds with goitrogenic activity

using transgenic zebrafish embryos

Sergio Jarque1, Eva Fetter2, Wouter J. Veneman3, Herman P. Spaink3, Ravindra Peravali4,

Uwe Strähle4, Stefan Scholz2*

1 RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic, 2 Department of Bioanalytical

Ecotoxicology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany, 3 Department of

Animal Sciences and Health, Institute of Biology, Leiden University, Leiden, The Netherlands, 4 Institute of

Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany

* stefan.scholz@ufz.de

Abstract

The knowledge on environmentally relevant chemicals that may interfere with thyroid signal-

ing is scarce. Here, we present a method for the screening of goitrogens, compounds that

disrupt the thyroid gland function, based on the automatic orientation of zebrafish in a glass

capillary and a subsequent imaging of reporter gene fluorescence in the thyroid gland of

embryos of the transgenic zebrafish line tg(tg:mCherry). The tg(tg:mCherry) reporter gene

indicates a compensatory upregulation of thyroglobulin, the thyroid hormone precursor, in

response to inhibition of thyroid hormone synthesis. Fish embryos were exposed to a nega-

tive control compound (3,4-dichloroaniline), or a concentration series of known goitrogenic

compounds (resorcinol, methimazole, potassium perchlorate, 6-propyl-2-thiouracil, ethyle-

nethiourea, phloroglucinol, pyrazole) with maximum exposure concentration selected based

on mortality and/or solubility. Exposure to 3,4-dichloroaniline decreased the fluorescence

signal. All goitrogenic compounds exhibited clear concentration-dependent inductions of

reporter fluorescence 1.4 to 2.6 fold above control levels. Concentration-response modelling

was used to calculate goitrogenic potencies based on EC50 values. The new automated

method offers an efficient screening approach for goitrogenic activity.

Introduction

Many environmental compounds have been reported to affect the endocrine system in animals

and humans. Compounds with estrogenic or androgenic activities are relatively well described

and various in vitro or in vivo screening assays have been developed for their identification [1].

However, less attention has been paid to substances that may disrupt thyroid signaling. Given

its crucial role in various metabolic, behavioral and developmental processes, alterations in the

thyroid pathway may lead to diverse adverse effects. For instance, in humans, thyroid metabo-

lism dysregulation has been associated to brain developmental, neurodevelopmental and

behavioral disorders, autoimmunity, hepatotoxicity or cancer progression [2–6]. In animals,
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developmental delay, inhibition of metamorphosis, liver dysfunction and alteration in the car-

diac function represent some of the effects described [7–9].

With the aim to provide an efficient screening tool for the detection of compounds with

thyroid disrupting activities, several in vitro assays targeting a specific mechanism of action

such as receptor competitive binding assays, enzymatic inhibition assays and serum proteins

binding assays (transthyretin and thyroxine binding globulin) have been developed [10–12].

Xenopus and zebrafish embryos have been suggested and used as a model to identify thyroid

disruptors, particularly goitrogenic compounds [13, 14]. Particularly, zebrafish embryos pro-

vide a small scale experimental system that is amendable to high-throughput screening testing

and is considered as an alternative to testing of (adult) animals [15]. Furthermore, the use of

zebrafish stages up to 120 hpf is not protected by current (European) animal welfare directives

and fish embryos are considered as alternatives to testing of (adult) animals [16]. In contrast to

genuine in vitro cellular systems, they represent a complex organism system where the hypo-

thalamus-pituitary-thyroid (HPT) feedback loop is already established and functional. Expres-

sion of the gene for thyroglobulin (tg), the thyroid hormone precursor, is observed in the

thyroid primordium at 32 hpf and detected in the thyroid follicles at 55 hpf. Thyroid hormone

(T4) immunostaining overlaps with the expression patterns of tg [17]. Additional genes encod-

ing for essential proteins involved in thyroid hormone (TH) synthesis such as NIS symporter,

the transporter that mediates iodide uptake into the follicle cells, are also expressed at 40 hpf.

Therefore, it is suggested that the thyroid gland in zebrafish is differentiated at 55 hpf. In situ

hybridisation experiments showed that physiological concentrations of T4 were able to

decrease the expression of thyroid-stimulating hormone β subunit (tshb) in the majority of

pituitary cells in zebrafish embryos at 4 dpf, providing evidence that the negative feedback reg-

ulation is already functional at this stage [18].

Available assays with zebrafish embryos target T4 hormone levels either directly [19], or

indirectly by measuring the corresponding gene expression of enzymes involved in the TH

synthesis [20]. The latter can also be demonstrated using the transgenic zebrafish line tg(tg:

mCherry)[21]. This line harbors a construct of the tg promotor and the gene for red fluores-

cent reporter protein mCherry. Given the negative feedback mechanism that regulates TH

synthesis, hyper- and hypothyroidism may be efficiently detected and measured by differences

of intensity in the tg:mCherry fluorescence. The fluorescence signal is correlated with the

expression of genes involved in the TH synthesis [22]. The transgenic strain allows detection

of thyroid disruption without any sample preparation by observation of fluorescence using a

microscope. In order to establish a medium to high-throughput analysis, we designed an auto-

matic procedure that uses the VAST BioImager platform to position the embryos [23], and

subsequent image analysis to measure the tg:mCherry signal in the thyroid gland. To our

knowledge, this is the first automated method for the screening of goitrogens using transgenic

zebrafish embryos.

Materials and methods

Chemicals

The following chemicals purchased from Sigma-Aldrich (Deisenhofen, Germany) were used

for the exposure of zebrafish embryos: 3,4-dichloroaniline (3,4-DCA, purity�98%), N, N’-
ethylenethiourea (purity�98%), methimazole (purity�99%), phloroglucinol (purity�99%),

potassium perchlorate (purity�99%), 6-propyl-2-thiouracil (PTU, analytical standard grade),

pyrazole (purity�98%), resorcinol (purity�99%). For CAS numbers see Table 1. Log D values

were obtained from chemspider (http://www.chemspider.com).
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Zebrafish maintenance and exposure

tg(tg:mCherry) zebrafish strain (F8) provided by the University of Brussels [21] crossed with

the UFZ-OBI strain (generation F12, established from a stock of a local breeder). In the subse-

quent generation individual homozygous transgenic fish were identified by crossing with wild-

type and used to establish a homozygous strain. Fish were cultured at 26±1˚C at a 14:10 h

light: dark cycle in a recirculating tank system similar as described by Westerfield [24]. Fish

were cultured and used according to German and European animal protection standards and

fish culture was approved by the Government of Saxony (Landesdirektion Leipzig, Aktenzei-

chen 75–9185.64).

In order to avoid interference of test chemicals with early thyroid gland development, zeb-

rafish embryos were cultured in exposure medium [25] until 48 hours post fertilization (hpf).

Subsequently, they were exposed to seven known thyroid endocrine disrupters for 3 days (48

to 120 hpf). The non-goitrogenic compound 3,4-dichloroaniline, that is used as reference com-

pound in the zebrafish acute embryo toxicity test [25] was used as negative control. Stock solu-

tions of ethylenethiourea, methimazole, potassium perchlorate, 6-propyl-2-thiouracil,

phloroglucinol, pyrazole and resorcinol were freshly prepared in exposure medium. No sol-

vents were used. The range of concentrations for each compound was selected by considering

their solubility, effect concentrations for survival (Table 1) and the thyroid disrupting concen-

trations reported in a previous study that analyzed T4 content (Thienpont et al., 2011). Five

concentrations and one control were tested per compound and replicate. In the second repli-

cate the range of concentration was adjusted to improve fitting of concentration-response

curves. Stability of the exposure solutions was confirmed (S1 Fig) by comparison of UV/VIS

spectra in the range of 200–400 nm, obtained with an EPOCH microplate reader with cuvette

slot (BIOTEK, Bad Friedrichshall, Germany). Given the lack of appropriate spectral properties

stability of exposure concentrations was not analysed for potassium perchlorate. Embryos

were kept in the incubator at 26˚C and a 14:10 hours light:dark cycle. The exposure was con-

ducted in crystallisation dishes covered with watchmaker glasses with 30 embryos in 30 ml

exposure medium (for exposure medium refer to [26]). Prior to analysis, embryos were

Table 1. Compound characteristics and estimated effect parameters for mortality and tg:mcherry induction in zebrafish embryos. Effect concentrations are given

in μM. The log D is given as an indicator of hydrophobicity including potential ionization of the compound). BMD20 = concentration at which a 20% increase of the

tgmcherry fluorescence was observed. TDI–thyroid disruption index = LC50/EC50tg:mCherry induction, 3,4-DCA– 3,4-dichloroaniline.

Compound CAS-RN Log D (pH

7.4)

LC50 (48–120

hpf)

EC50

(μM)

EC50 SE

(μM)

Slope Maximum fold

induction

BMD

20

(μM)

TDI EC50 T4 reductiona

(μM)

TDI

(T4)a

Ethylenethiourea 96-45-7 -0.52 78922 366 116 3.8 1.9 246 216 135 -

Methimazole 60-56-0 -0.11 28800b 279 104 3.3 2.1 186 103 290 75

Phloroglucinol 108-73-6 0.24 >1x105 1096 756 0.89 2.1 252 443c 2700 32

Potassium

perchlorate

7778-74-

7

n/a 33100 137 146 0.69 2.5 37.6 241 2.5 6030

Propylthiouracil 51-52-5 0.34 3500 334 115 1.7 2.1 163 11 137 20

Pyrazole 288-13-1 0.43 42428 637 67.8 5.7 1.3 399 67 -

Resorcinol 108-46-3 0.86 5197 3.4 1.6 0.78 2.1 0.663 1529 82 62

3,4-DCA 95-76-1 2.6 29.4 n/ad n/a n/a n/a n/a - - -

a Comparative data for reduction of thyroid hormone levels (immunostaining) were taken from Thienpont et al. [13]
b data obtained from Fetter et al. [22]
c The TDI was calculated using the predicted fish embryo baseline toxicity of 60590 μM, calculated using the log D and according to Klüver et al. [32].
d No induction but repression of tg:mCherry fluorescence

https://doi.org/10.1371/journal.pone.0203087.t001
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anesthetised by adding a 6 g/L stock solution of tricaine (Sigma-Aldrich, 10 μl per 400 μl expo-

sure medium) and 16 (methimazole, phloroglucinol, potassium perchlorate) or 24 (resorcinol,

propylthiouracil, 3,4-DCA, ethylenthiourea) embryos embryos were transferred to 96 well

plates with rectangular wells (GE Healthcare, Little Chalfont, UK) with one embryo per well.

The number of transferred embryos was increased from 16 to 24 in later experiments to ensure

that enough thyroid gland images would be available for image analysis.

Assessment of toxicity

Fish embryo acute toxicity tests were performed similar as described previously [27], using 10

or 25 embryos per concentration and replicate exposed in crystallization dishes from 48 to 120

hpf. No exchange of exposure media was performed. Lethality was identified by coagulation,

missing heartbeat, a non–detached tail and/or missing of somites [28]. Raw data for mortality

and phenotypic assessment are provided as S1 Table. Concentration-response curves for mor-

tality are shown in S2 Fig.

Screening of tg(tg:mCherry) embryos

Embryos at 120 hpf transferred to a 96well plate were analysed using the VAST (vertebrate

automated screening technology) BioImager platform (Union Biometrica, Geel, Belgium) in

combination with the LP sampler (Union Biometrica, settings are given in S2 Table) and a

Leica fluorescence microscope (Leica DM6B equipped with a Leica digital camera DFC

365FX, settings are given in S3 Table). The VAST platform allows the automatic loading and

positioning of embryos (Pardo-Martin et al., 2010) and automatic external imaging using a

microscope. Embryos were positioned ventrally toward the microscope objective. Per embryo

a bright field image, an autofocus fluorescence image and a Z-stack of 9 images were obtained.

The Z-stack was required in case of autofocus failure and manual selection of the focal plane.

Fluorescence images were obtained with 400 ms of fluorescent light exposure at maximal light

intensity and a gain of 1. Given that a few embryos were not detected or did not show expres-

sion of the reporter gene the number of finally obtained and analysed images was lower than

the number of embryos loaded onto the plate. However, care was taken, that at least 10 images

per concentration and replicates were assessed. To avoid a time bias during the analysis the

sequence of wells for analysis was arranged in order to obtain a uniform distribution over the

entire period of analysis.

Image analysis

The images were analysed using a KNIME workflow (Version 3.3.3., [29]) with the extension

“KNIME image processing”. In brief, images were loaded into the workflow and the back-

ground was removed automatically using the “rolling ball” procedure of the image J plugin

(rolling ball size set to 50 pixels). Subsequently the area containing the thyroid gland was man-

ually selected by drawing a rectangle around the appropriate region using the interactive anno-

tation node. This manual step was required to avoid interference with autofluorescence from

pigment cells that occasionally were found close to the thyroid gland area. If possible the auto-

focus images were used. In case that the thyroid gland was out of focus due to the presence of

autofluorescing pigment cells, an appropriate image from the Z-stack was selected. All subse-

quent steps were conducted without any user interaction. This included (1) identification of

thyroid follicles using a threshold value of 20, (2) converting the binary threshold image into a

label (3) extend the label and remove small spots outside the label and (4) overlay the label on

the original image with removed background. Finally the sum of pixel (reflecting area of the

thyroid gland and intensity of fluorescence) was calculated for the labeled area and used as a
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proxy of fluorescence intensity (see Fig 1 for an overview of the workflow). For each replicate

the sum was of pixels was normalized by setting controls to the value of one. For data of indi-

vidual embryos see S4 Table. The KNIME workflow used for image analysis is provided as sup-

plement file (S1 Workflow).

Statistical analysis

To characterize the potency of the investigated goitrogenic compounds, we calculated EC50

values of tg:mcherry fluorescence using the pixel sum obtained from image analysis. For each

replicate the fluorescence intensity was normalized by dividing the mean fluorescence inten-

sity of each concentration with the mean control fluorescence intensity. Concentration-

response curves of tgmcherry fluorescence were fitted to the data using the Hill-slope equation

(Eq 1) and used to estimate EC50 values.

y ¼ Min þ
Max � Min
1þ ð x

LC50
Þ
� p ð1Þ

The parameter Min was set to 1 and the slope (p) and the maximum fluorescence (Max)

were estimated. In case of resorcinol the highest test concentration was excluded from model-

ling due to decreasing tg:mCherry fluorescence. The software R and the package drc (R Core

Fig 1. Overview of the KNIME workflow that was applied to quantify tg:mcherry fluorescence in transgenic embryos. The region of the thyroid

gland (tg) was selected by manually drawing a rectangle on the appropriate autofocus or Z-stack images after background removal (A, corresponding

bright field image shown in B). The thyroid gland was automatically detected and converted to a label, (C) The label was overlaid onto the original image

(D) and used to calculate the sum of pixels. tg–area with thyroid follicles, ba–branchial arches, m–mouth.

https://doi.org/10.1371/journal.pone.0203087.g001
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Team, 2015) embedded into a KNIME workflow were used to model concentration-response

curves. The BMD20 (i.e. concentration with a 20% increase in fluorescence) was calculated

using Eq (1) with y set to a value of 1.2.

Results and discussion

Screening of goitrogenic potencies

Goitrogenic effects were quantified by comparing the fluorescence in the thyroid glands of

exposed embryos to controls and calculating the fold induction of mCherry fluorescence. Con-

sistent with the negative feedback regulation of the HPT axis, all of the selected goitrogens pro-

voked an induction of thyroglobulin expression after 3 days of exposure evident from the

concentration-dependent increase of the tg:mCherry fluorescence (Fig 2, Table 1). At higher

exposure concentrations, resorcinol showed a weaker induction or repression of fluorescence

indicating a potential interfering or secondary toxic effect. A Hill slope model was used to

derive EC50s and to compare the potency of compounds (Table 1). The Hill slope model may

not be ideal since induction did not approach a clear equilibrium at maximum concentrations

for some compounds. Therefore, a benchmark dose (BMD, [30]), i.e. a concentration at which

a certain level of effect is reached, was calculated as well. We selected a 20% increase for the

BMD calculation accounting for variability in the lower concentrations range (Table 1). The

BMD can principally be calculated with diverse models. However, since the Hill slope model

was describing the data appropriately in at the BMD20 level, no other model was considered.

The negative control compound 3,4-DCA did not induce tg:mCherry fluorescence but led to a

concentration dependent reduction in fluorescence. This may indicate a potential toxic inter-

ference with transcriptional activation of tg:mcherry. However, a specific interaction of

3,4-DCA cannot be excluded but need further research to understand the biological rationale

for the observed inhibition. Weak evidence for a specific interaction is provided by a study

with tadpoles that indicated elevated T3 level for exposure to 3,4-DCA and its parent com-

pound diuron under certain conditions and at high concentrations [31]. This elevated T3 lev-

els may result in a decreased expression of thyroglobulin via the HPT axis feedback loop. The

tg:mCherry EC50 level of methimazole was slightly lower if compared to a previously obtained

value (551 μM) obtained by a manual positioning and image analysis [22]. The potency based

on the EC50s for induction levels lead to the following ranking of compounds for tg:mCherry

induction: resorcinol < KClO4 < methimazole < 6-propyl-2-thiouracil < ethylenethiourea <

pyrazole< phloroglucinol (Table 1). With the BMD20 a similar ranking was obtained, except

that methimazole was slightly more potent than propylthiouracil and pyrazole was more

potent than phloroglucinol. Maximum observed levels for tgmcherry ranged from 1.3 (pyra-

zole) to 2.5 potassium perchlorate. These differences may reflect differences in the efficacy of

the modes of actions of the selected test compounds including thyroid cytotoxic compounds

(pyrazole), sodium iodine symporter inhibitors (potassium perchlorate), and thyroid peroxi-

dase inhibitors (ethylenthiourea, methimazole, propylthiourazile, phoroglucinol, resorcinol)

as the most dominant group [13] or steric interactions with different enzyme inhibition

efficacies.

Using the thyroid disrupting index (TDI = LC50 / EC50) as an indicator of potency a differ-

ent ranking with resorcinol > phloroglucinol > KClO4 > ethylenethiourea > methimazole >

pyrazole 6-propyl-2-thiouracil was obtained. Ranking based on effect concentrations was par-

tially in agreement with other zebrafish-based goitrogen screening studies [13]. I.e. in both

studies resorcinol and potassium perchlorate represented the compounds with the lowest

effect concentration and phloroglucinol was indicated as the goitrogenic compound with the

highest effect concentrations. Stronger differences were found when ranking was compared
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Fig 2. Concentration-response curves for induction of fluorescence in transgenic zebrafish embryos harboring a

copy of the reporter gene mCherry and the regulatory region of thyroglobulin. Zebrafish embryos were exposed to

known goitrogenic compounds and the negative control 3,4-dichloroaniline (3,4-DCA). The two different symbols

represent two different replicates. Each replicate value represents the mean of at least 10 embryos analysed per

concentration. The grey shaded zone represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0203087.g002
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using the TDI. Particularly potassium perchlorate and resorcinol were differentially ranked

(Table 1). These differences may have been caused as a result of different positions of the mea-

sured endpoint in the feedback loop of thyroid hormone regulation. While Thienpoint et al.

[13] measured the reduction in T4 level directly, tg:mCherry fluorescence is induced as a result

of a reduction in the T4 level via the feedback loop.

If compared to the sensitivity of in vitro assays, the zebrafish assays revealed goitrogenic

effects at concentration 100–1000 fold higher [12]. The different sensitivity could be related to

a higher metabolic capacity of fish embryo if compared to in vitro assays and/or compensation

of the effects by the HPT axis.

Relation of effect concentrations to hydrophobicity of test compounds

Given that goitrogenic effects are based on the interaction with specific proteins (e.g. sodium-

iodide symporter and thyroperoxidase), it can be anticipated that the effect concentrations for

goitrogenic effects are independent of hydrophobicity-driven baseline toxicity which is related

to internal membrane concentrations that cause acute toxicity (mortality) in aquatic organisms

(reviewed in e.g. [33]). Typically toxic ratios (ratio of calculated baseline versus observed

LC50) of<10 are considered as indicators of unspecific baseline toxicity. In order to verify

that the tg:mCherry induction was indeed not related to the hydrophobicity of a compound

we compared the effect concentrations to those of the mortality and the log D of the chemicals.

Fig 3. Effect concentrations for tg:mcherry induction and mortality in zebrafish embryo exposed from 48–120 hour post

fertilization to known goitrogenic compounds. Effect concentrations are compared to the logD and the baseline toxicity

(mortality) to indicate the specificity of the response. Note that the goitrogenic compound potassium perchlorate has not included

in this figure given that the use of the logD is not applicable to inorganic compounds. Dashed lines connect the corresponding

LC50 and EC50. No mortality was observed for phloroglucinol.

https://doi.org/10.1371/journal.pone.0203087.g003
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The log D was used instead of the log Kow in order to correct for the (partial) ionization of

some of the compounds at a given pH [34]. The LC50 values of most of the test compounds

were within a factor of 10 of the baseline toxicity indicating that mortality was probably related

to unspecific baseline toxicity (Fig 3). Only 6-propylthiouracil exhibited a slightly higher toxic-

ity ratio (14). The LC50s were declining with increasing hydrophobicity providing further evi-

dence that LC50 is driven to a large extent by baseline toxicity. In contrast no dependency on

hydrophobicity was observed for the EC50 except that the lowest EC50 was observed for the

most hydrophobic compound. However, the effect concentration were below 100fold of the

baseline toxicity and the observed LC50 supporting the specificity of the tg:mCherry response.

Conclusions

When using fluorescence imaging of transgenic fish embryos, a rate limiting step in the screen-

ing process is the manual orientation of fish embryos before the imaging. The latter can be

supported by using appropriate agarose molds that are prepared using templates manufactured

e.g. with a 3-D printer [35]. In contrast, the VAST BioImager platform used in this study pro-

vides an automated orientation based on pattern recognition algorithms [23]. The screening of

tg(tg:mCherry) embryos is relatively slow with approximately 2 minutes required to analyze

one embryo including loading, positioning, focusing and imaging. However, the imaging is

processed unsupervised and offers the advantage that it can be combined with other pheno-

typic assessments from different positions. Our study has demonstrated that the combination

of the VAST system, fluorescence imaging and concentration-response analysis represents an

efficient method for the screening of compounds with goitrogenic activity. The automated

method can easily be conducted by a user with little technical expertise. The method may not

only be applied to identify individual potentially goitrogenic compounds but also be applied

for the assessment of potential goitrogenic activities associated to environmental samples or

cell/tissue extracts.
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