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Abstract. Fog and low clouds (FLCs) are a typical feature
along the southwestern African coast, especially in the cen-
tral Namib, where fog constitutes a valuable resource of wa-
ter for many ecosystems. In this study, a novel algorithm is
presented to detect FLCs over land from geostationary satel-
lite data using only infrared observations. The algorithm is
the first of its kind as it is stationary in time and thus able
to reveal a detailed view of the diurnal and spatial patterns
of FLCs in the Namib region. A validation against net ra-
diation measurements from a station network in the central
Namib reveals a high overall accuracy with a probability of
detection of 94 %, a false-alarm rate of 12 % and an overall
correctness of classification of 97 %. The average timing and
persistence of FLCs seem to depend on the distance to the
coast, suggesting that the region is dominated by advection-
driven FLCs. While the algorithm is applied to study Namib-
region fog and low clouds, it is designed to be transferable to
other regions and can be used to retrieve long-term data sets.

1 Introduction

Fog is commonly perceived as a hazardous weather situa-
tion that can impact traffic systems as well as the economy
(Cermak and Knutti, 2009; Egli et al., 2018). In arid environ-
ments like the Namib desert, fog can act as a critical source
of water that enables life for diverse species and helps to
sustain ecosystems (e.g., Seely, 1979; Shanyengana, 2002;
Ebner et al., 2011; Azúa-Bustos et al., 2011; Roth-Nebelsick
et al., 2012; Eckardt et al., 2013; McHugh et al., 2015). As
such, knowledge on the exact occurrence and spatiotemporal
patterns of fog holds potential, ranging from socioeconomic

benefits to a better understanding of fog processes and fog-
driven ecosystems.

As previous studies (e.g., Cermak and Knutti, 2009; Lee
et al., 2011; Egli et al., 2016; Nilo et al., 2018) have shown,
geostationary satellites have the potential to draw a spa-
tiotemporally coherent picture of the occurrence of fog and
low clouds (FLCs). However, information on FLCs from
satellites is typically inferred using separate daytime (e.g.,
Bendix et al., 2006; Cermak and Bendix, 2008, 2011; Nilo
et al., 2018) and night-time (e.g., Ellrod, 1995; Cermak and
Bendix, 2007) algorithms, disrupting our view of fog devel-
opment at a critical time of its life cycle, as typically, short-
wave radiative heating starts the dissipation of fog shortly
after sunrise (Tardif and Rasmussen, 2007; Haeffelin et al.,
2010; Wærsted et al., 2017). This break in retrieval tech-
niques has thus limited the applicability of satellite-based
FLC observations for the analysis of entire fog life cycles.
Lee et al. (2011) have developed an approach to continuously
monitor fog from a geostationary satellite platform; however,
their algorithm essentially consisted of three different modes,
day, dusk/dawn and night, and cannot be described as sta-
tionary in time. While, for visualization purposes, 24 h false-
color image products may be used in case studies, these im-
ages are not well suited for quantitative analyses. The over-
arching goal of this study is thus to develop and validate a
single, diurnally stable satellite retrieval of FLCs over land
to enable the exploration of currently untapped potentials of
satellite-based analyses of FLCs.

Past satellite retrieval algorithms of FLCs have typically
consisted of a sequential application of a number of spec-
tral tests on the basis of individual pixels in the initial clas-
sification and a subsequent merging of FLC pixels to en-
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tities (e.g., Cermak and Bendix, 2008; Egli et al., 2016).
Using only spectral information, FLCs can be detected us-
ing a combination of brightness temperatures in the mid-
dle infrared (MIR) and thermal infrared (TIR) (Cermak and
Bendix, 2007, 2008). As during daytime, the MIR has a so-
lar component, separate daytime and night-time retrievals are
needed. A stable and fully diurnal retrieval of FLCs would
thus have to solely rely on observations in the TIR. However,
as Guls and Bendix (1996) state, a purely TIR-based detec-
tion of FLCs is not possible, as the brightness temperatures
of FLCs and land surfaces are too similar.

In the realm of image analysis and machine vision, the spa-
tial context of a pixel is often exploited for its classification
(Toussaint, 1978). In recent times, the utilization of contex-
tual information has become more frequent in environmental
remote-sensing techniques (e.g., Zhu and Woodcock, 2012;
Bian et al., 2016; Kim et al., 2018). For FLCs, distinct spa-
tial patterns that vary over time are to be expected due to the
inversion-limited homogeneous cloud top and the coherent
movement of FLC patches over the Earth surface. The guid-
ing hypothesis of this study is as follows.

By a combination of spectral tests and contextual infor-
mation, FLCs can be robustly detected using only satellite
observations in the thermal infrared and enable new insights
into the diurnal patterns of FLCs and their spatial variability.

In this study, FLCs are detected along the southwestern
African coast with a specific focus on the central Namib
desert, where fog is an important part of local ecosystems
(Seely, 1979; Shanyengana, 2002). Knowledge on the spa-
tiotemporal occurrence of Namib-region fog is incomplete
(Cermak, 2012), and while it is commonly tied to the quasi-
persistent stratiform clouds in the southeastern Atlantic (Lan-
caster et al., 1984; Henschel and Seely, 2008), the processes
that lead to the formation of fog are still controversially dis-
cussed, as recently, Kaseke et al. (2017b) found indications
of frequent water from freshwater sources in fog and related
this to radiatively driven fog formation.

The data used and the novel FLC detection technique are
described in Sect. 2, and a statistical evaluation of the algo-
rithm is given in Sect. 3. Spatiotemporal patterns of fog and
low clouds in the Namib are presented in Sect. 4, and con-
clusions and an outlook are given in Sect. 5.

2 Data and approach

2.1 Geostationary satellite observations

The main data basis for this study are observations from the
most recent Spinning Enhanced Visible and Infrared Imager
(SEVIRI) on board the Meteosat Second Generation (MSG,
in this case Meteosat 11) satellite platform. While the SE-
VIRI instrument’s measurements cover a spectral range from
0.6 to 13.4 µm with 11 channels (plus a high-resolution vis-
ible channel), here, only the calibrated brightness tempera-

Table 1. The thresholds used for different channels and channel
combinations in this study with the outcome of the initial classifica-
tion. Threshold values were determined by systematic visual analy-
sis of SEVIRI scenes and values found in literature (Cermak, 2012).

Channel/combination Criterion Determined class

12.0–8.7 µm < 0.5 K High cloud
12.0–8.7 µm < 1.0 K Surface
12.0–8.7 µm > 3.5 K Surface
10.8 µm < 276 K High cloud
10.8 µm > 293 K Surface
13.4–8.7 µm <−19 K Surface
13.4–8.7 µm >−11 K High cloud

tures from four channels in the TIR are used (8.7, 10.8, 12.0
and 13.4 µm). The SEVIRI instrument features a repeat rate
of 15 min (96 hemispheric scans per day), at a spatial resolu-
tion of 3 km at nadir (Schmetz et al., 2002). The data used in
this study cover the period from 2015 to 2017 in the region
from 13.5 to 35◦ S and from 10 to 20◦ E, considering only
regions over land.

2.2 Algorithm design

The FLC-detection algorithm has two parts: (1) an initial
classification and (2) a contextual plausibility control of de-
tected FLC pixels. The initial classification of a given scene
is designed as a decision tree, with sequential application of
(a) simple spectral thresholds as shown in Table 1 and, (b) if
none of the spectral tests are true, the application of a struc-
tural image test. Sequential spectral testing stops once a class
is determined, and the following tests are not carried out. The
additional contextual plausibility control is only tested for
FLC pixels. It should be noted that the algorithm presented
here does not differentiate between ground fog and low-level
clouds.

The discrimination of low-level liquid-water and higher-
level ice clouds with satellite observations is comparatively
easy, especially in the Namib region (Olivier, 1995). In this
study, high clouds are identified based on the brightness tem-
perature at 10.8 µm as a proxy for cloud-top temperature, and
the difference in 8.7 and 12.0 or 13.4 µm brightness tempera-
tures is an indication of ice clouds (Strabala et al., 1994). To
avoid subpixel effects of higher-level cloud edges that may
lead to false FLC retrievals, the surrounding pixels of de-
tected high clouds are also classified as difficult.

After the identification of high clouds, low clouds and land
surfaces need to be discriminated. As already indicated in
the introduction, the separation of FLCs and land surfaces
is much more difficult in the thermal infrared than in other
wavelength regions (Guls and Bendix, 1996). While land sur-
faces can be distinguished from FLCs with the described
spectral tests in some regions, frequently this is not the
case (cf. Fig. 1). In order to robustly separate land surfaces
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from FLCs, additional contextual information is needed. In
this case, the brightness temperature difference between 12.0
and 8.7 µm of each scene is compared to two composites.
The composites are constructed on the basis of long-term
12.0–8.7 µm observations and are intended to represent land-
surface structures in cloud-free conditions. The underlying
assumption for the construction of the composites is that
clouds typically have lower values in the channel difference
of 12.0–8.7 µm than land surfaces (Cermak, 2012). The two
composites are built as follows:

1. A monthly composite is created by using the monthly
maximum 12.0–8.7 µm value at each SEVIRI time slot.
Of these 96 monthly time-slot maxima, the median
value is used at each pixel. Monthly composites com-
prise seasonal variations in land surface properties but
may in some cases be prone to cloud contamination in
cloudy months at cloudy locations.

2. Thus, an annual composite is constructed by taking the
median of all monthly composites for each pixel. This
way, potential local, seasonally occurring cloud contam-
inations within the monthly composites can be elimi-
nated.

For the separation of land surfaces and FLCs, each scene
(Fig. 1a) is compared to these composites (e.g., Fig. 1b) by
computing a structural similarity index (SSIM Wang et al.,
2004, Python implementation of scikit-image van der Walt
et al., 2014) between the scene and the composites. The
SSIM consists of comparisons of luminance (averages), con-
trast (standard deviations of zero-centered anomalies) and
structure (correlation of normalized values) of two images.
In the context of this work, the SSIM compares a moving
window of 5× 5-pixel image sections of a given scene with
the corresponding image sections of each of the composites
(Fig. 1c). The moving window is optimized to be as small as
possible and still be useful for comparing local structures. A
high SSIM (in this case > 0.4) gives an indication that the
pixel is clear as illustrated in Fig. 1c. The size of the moving
window, as well as the threshold for the SSIM were opti-
mized empirically. The comparison of Fig. 1d and e shows
the effect of introducing the SSIM test in the algorithm. It
should be noted that the applicability of the SSIM is only
given if (a) the composite is indeed cloud-free and (b) the
composite exhibits sufficient spatial heterogeneity in the 5×5
pixel window. Consequently, this technique is only applica-
ble over land and not ocean surfaces (no clear, stable spatial
structures in the TIR). To ensure this, two quality flags are
empirically derived from the composites: pixels are flagged
when (a) the coefficient of variation of the 96 monthly time-
slot maxima exceeds 0.3, indicating cloud contamination,
and (b) when the standard deviation within a 5×5 pixel win-
dow of the monthly composite is lower than 0.1, indicating
insufficient spatial heterogeneity in the specific window of
the composite.

A situation in which this approach may fail is at higher-
level cloud edges. These pixels can be have a similar spectral
signature to FLCs and can pass the SSIM test, as the partly
overlying high cloud reduces the similarity with the compos-
ites. To avoid such misclassifications, a contextual plausibil-
ity control of the detected FLC pixels is conducted after the
initial classification. The plausibility of an accurate FLC de-
tection is estimated by analyzing neighboring pixels. Pixel
classifications are changed to “difficult”, if at least five of
their eight directly neighboring pixels are classified as either
high cloud or surface due to the SSIM test. As changing a
pixel classification to the class difficult affects the result of
the plausibility control in the direct pixel neighborhood, the
plausibility control is iteratively repeated for all FLC pixels
until no further changes are possible. After the first iteration,
the control mechanism is changed slightly, so that pixels are
classified as difficult if more than six (instead of five) directly
neighboring pixels are classified as either high cloud, sur-
face due to the SSIM test or difficult to account for potential
control-inherent classification changes.

The introduction of the SSIM test leads to relative inde-
pendence of the algorithm from strict thresholds for the sepa-
ration of FLCs and land surfaces. As the monthly and annual
composites used for the SSIM test are directly derived from
the satellite observations, the algorithm self-adjusts to the
specific characteristics of the data, likely leading to a weaker
sensitivity to sensor degradation or platform changes. The
technique might thus hold potential for the observation of
climatic changes in FLC occurrence. The conceptual design
of the algorithm is thought to be applicable to other regions,
as long as a valid composite can be constructed from satellite
infrared observations.

2.3 Validation approach

For the validation of the satellite-derived FLC product,
three years (2015–2017) of net radiation measurements from
FogNet stations in the central Namib are used. The FogNet
station network comprises 11 automated meteorological sta-
tions that are aligned in two transects (N–S from 22.97 to
23.92◦ S and W–E from 14.46 to 15.31◦ E) as illustrated in
Fig. 2a. The stations were installed as part of the South-
ern African Science Service Centre for Climate Change and
Adaptive Land Management (SASSCAL) initiative and offer
valuable meteorological measurements in this remote region
(Kaseke et al., 2017a). Of the 11 stations, 9 conduct net ra-
diation measurements every minute using the Kipp & Zonen
NR-Lite net radiometer. Station measurements are averaged
between the start of two SEVIRI time slots to fit its 15 min
temporal resolution. The temporal averaging is also intended
to mediate the effects of the different spatial resolutions, sim-
ilarly to the approach in Andersen et al. (2017), as borders of
advective FLCs may be better captured.

For validation purposes night-time (solar zenith angle >
95◦) measurements of net radiation are used to infer the
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Figure 1. (a) An exemplary scene (13 January 2016, 05:00 UTC) in the channel combination 12.0–8.7 µm is compared to (b) the monthly
composite of January 2016 resulting in (c) the structural similarity of the scene with the composite. (d) Illustration of the classification results
relying on spectral tests only and (e) including the SSIM test. Quality flags are not applied in this example.

Figure 2. (a) Locations of the FogNet stations; definitions of abbreviations (station names) are listed in the appendix. Red markers indicate
the stations used for validation in this study. (b) Exemplary time series of net radiation measurements at Vogelfederberg (VF). Highlighted
in red are situations for which the satellite algorithm has detected FLCs.

presence of low-level clouds at the stations. At night, up-
welling thermal radiation typically far exceeds downwelling
radiation in clear conditions, whereas fog or low clouds in-
crease downwelling radiation, leading to a nearly balanced
net radiation at ground level (only situations with negative
net radiation measurements are used). Figure 2b illustrates
an exemplary 5-day time series of net radiation measure-
ments at Vogelfederberg (VF) and the retrieved occurrence
of FLCs from co-located satellite observations. At night, the
time of the FLC occurrence coincides with an abrupt change
in net radiation at ground level, from the range of −100 to
−60 W m−2 to being nearly balanced out at 0 W m−2. As
such, the distribution of night-time net radiation measure-
ments is bound to be bimodal, which is also found in mea-
surements (cf. Fig. 3a). Due to the bimodal nature of the
net radiation measurements, a threshold can be defined at
the local minimum of its smoothed histogram (Prewitt and
Mendelsohn, 1966; Glasbey, 1993, Python implementation

of scikit-image van der Walt et al., 2014) of the aggregated
station measurements to separate clear and FLC situations
and create a ground truth data set. It should be noted that the
distributions of clear and FLC situations are not completely
separated, and that as such the validation cannot be expected
to be perfect.

The evaluation of the satellite-derived FLC product was
performed using a set of confusion matrix tests, as is typi-
cally done (e.g., Cermak, 2012; Egli et al., 2016). By com-
paring the binary (FLC yes or no) information from the satel-
lite product with the ground truth in a 2-by-2 contingency
table, each satellite observation can be identified as either a
hit, false alarm, miss or correct negative. The sum of the four
equals the sample size used for the validation. The follow-
ing statistical measures are computed to evaluate the FLC
product: probability of detection (POD – fraction of ground
truth FLCs that are correctly detected), percent correct (PC
– fraction of overall correct classifications), false-alarm rate
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(FAR – fraction of detected FLCs that are false alarms), bias
score (BS – measure of bias in the classification, overestima-
tion: BS> 1, underestimation: BS< 1), critical success in-
dex (CSI – overall measure of the correctness), and the Hei-
dke skill score (HSS – fractional improvement of the classi-
fication over a random classification). The equations for the
statistical evaluation measures are given in the appendix.

3 Validation of the algorithm

Figure 3a summarizes validation results qualitatively and
quantitatively. The red histogram line shows the bimodal
distribution of the aggregated night-time net radiation mea-
surements at the nine FogNet stations for the period of
2015–2017 (excluding high cloud and difficult observations),
whereas the blue line represents the same station measure-
ments, filtered for satellite-detected FLC situations. High
clouds and difficult situations (grey line) are excluded from
the validation as they cannot be clearly separated from clear
or FLC situations with surface net radiation measurements. It
is apparent that most of the ground-truth FLC situations are
captured by the satellite product (POD of 0.94), with only a
few false alarms (FAR of 0.12). The product features a high
accuracy (PC of 0.97) with only a marginal positive bias (BS
of 1.01). This leads to an overall high quality of the classifi-
cation as expressed by a CSI of 0.83 and a HSS of 0.89. All
in all, the validation is based on 325 836 co-located observa-
tions. As illustrated in Fig. 3b, there is relatively little vari-
ation in the validation results between the different FogNet
stations. The most inland station Garnet Koppie (GK) ac-
counts for all outliers in Fig. 3b and has the highest false-
alarm rate. Here, FLC occurrence frequency is thus overesti-
mated, leading to lower overall skill. This can be attributed to
the rarity of the FLC occurrence in this region (cf. Fig. 4a),
where a single, random misclassification has a higher rela-
tive impact. The overall accuracy of the product is consid-
erably higher than current state-of-the-art algorithms for Eu-
rope (e.g., Cermak and Knutti, 2009; Egli et al., 2016; Nilo
et al., 2018), probably in part due to the more complex and
diverse terrain and cloud structures that have to be discrimi-
nated there, and comparable to the SEVIRI-based FLC prod-
uct for this region by Cermak (2012). However, the algorithm
in Cermak (2012) is tailored to two specific times of the day
and includes satellite observations in the visible and near-
infrared spectrum. These comparisons with validation results
from other studies are of an indicative nature, as differences
could also be caused by the reference data used as ground
truth or different periods considered.

It should be noted that the comparison of station-level net
radiation measurements with a binary satellite product is cer-
tainly not perfect. Two potential sources of error may specif-
ically affect the validation results:

– A large difference in spatial resolution of the two obser-
vations exists. While station measurements are tempo-

rally averaged with the intent of approximating spatial
variation within the area covered by a SEVIRI pixel (as
in Andersen et al., 2017), the difference in field of view
cannot be neglected. The difference in spatial resolution
is expected to randomly lead to erroneous comparisons
in both ways and thus not markedly affect the valida-
tion results. This may explain the overestimation of the
FLC occurrence frequency at GK, as the effect of this
small random error on the validation measures scales
inversely with FLC occurrence.

– Net radiation measurements are binarized in order to
create a “ground truth”, even though the two modes of
the distribution are not perfectly separated. For mea-
surements close to the threshold value, an accurate dis-
crimination of “FLC” and “not FLC” is not possible.
This is likely to artificially impair validation results and
is manifested in a higher frequency of false alarms and
misses for situations for which net radiation measure-
ments are close to the threshold value.

In addition to the validation described here, considerable
effort has gone into the systematic evaluation of classifica-
tions of individual scenes as illustrated in Fig. 1. In light of
these arguments, the validation results give confidence in the
skill of the novel algorithm and the derived FLC product,
which is well suited for the purpose of characterizing the spa-
tial and temporal patterns of FLCs in the Namib desert.

4 Spatiotemporal patterns of fog and low clouds in the
Namib

Figure 4a shows the average FLC occurrence frequency in
the study area over the study period. FLCs most frequently
occur in the plane regions along the coastline (cf. Fig. 4c).
Three core regions of the FLC occurrence can be identified
in the Angolan parts of the Namib at around 16–17◦ S, in
a region stretching from Walvis Bay at 23◦ S northwards to
about 18◦ S and at Alexander Bay at around 28◦ S. The pat-
terns closely resemble those found by Olivier (1995) and
Cermak (2012) qualitatively and quantitatively. As illustrated
by Fig. 4b, in some regions a reliable retrieval of FLCs is of-
ten not possible. This can be related to frequent occurrences
of high clouds in the tropical northern parts of the study area,
too little spatial variance in the clear-sky composites, e.g., in
the region of the Etendeka flood basalts at 20◦ S and 14◦ E
(Bauer et al., 2000), or where the monthly composites were
not stationary in time in some northeastern parts of the study
area.

Figure 5 illustrates the average diurnal cycle of FLCs at
all FogNet stations as retrieved from the satellite. It is ap-
parent that at stations close to the coast (purple-blue lines),
FLCs occur much more frequently than further inland. The
general diurnal behavior of FLCs is similar at all stations,
with a distinct peak of the FLC occurrence at night between
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Figure 3. (a) The aggregated validation of the satellite-derived FLC product at all stations of the time period of 2015–2017, (b) the variability
of validation measures across the used FogNet stations. The median is represented in boxes by the red horizontal line; the boxes show the
interquartile range, the whiskers expand the boxes by up to 1.5 interquartile ranges. The station GK accounts for all outliers.

Figure 4. (a) Average relative frequency of occurrence of FLCs along the southwestern African coast during the period 2015–2017. (b) Num-
ber of observations where the retrieval of FLCs is possible (i.e., no high clouds and no composite-related quality flags). (c) Digital elevation
model of the study area.

03:30 UTC with 9 % relative occurrence frequency of FLCs
at Garnet Koppie (GK) and 06:15 UTC with 64 % at SW, and
typically a fairly fast dissipation shortly after sunrise. How-
ever, distinct features of the diurnal cycle of FLCs can be
identified at some stations. At the station Saltworks (SW), lo-
cated directly at the coastline (cf. Fig. 2), FLCs tend to start
to occur in the early afternoon, several hours before other sta-
tions are overcast. This could potentially be related to local
land–sea winds that transport FLCs from the ocean over land
during this time. In general, a time lag exists at the average
start of the diurnal cycle, as well as in the time of the diurnal
maximum occurrence frequency that seems to be dependent
on the longitudinal position of the stations, which approxi-
mates their distance to the coastline. This time lag is indica-
tive of a region that is generally dominated by FLCs that form
at the coast or over the ocean and is then advected inland,
as described by Olivier and Stockton (1989), Olivier (1995)
and Eckardt et al. (2013), contrasting more recent findings
by Kaseke et al. (2017b). As FLCs are advected inland, lo-

cations close to the coastline are overcast first. At the coast,
FLCs not only occur earlier in the day but typically also per-
sists longer than further inland, where FLCs tend to start dis-
sipating before sunrise. The dissipation rate (negative δ FLS
occurrence / δ time in the morning hours) at inland stations is
considerably lower than closer to the coast, which can proba-
bly be attributed to stronger solar irradiance later in the day. It
should be noted that the figure represents highly aggregated
information on the average diurnal cycle of FLCs and does
not preclude other formation or dissipation processes.

As a detailed statistical analysis of the full life cycle of
FLCs and their seasonal behavior is not within the scope of
this paper, this example is intended to illustrate the poten-
tial of the novel algorithm for the analysis of spatiotemporal
patterns of fog and low clouds over land.
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Figure 5. Average diurnal cycle of the FLC occurrence at FogNet
stations. Lines are colored by the longitudinal rank of each specific
station, with coastal stations in dark colors and stations further in-
land in brighter colors. Every other line is dashed with the only
purpose of helping their visual discrimination.

5 Conclusions and outlook

The central aim of this study was to develop the first thermal-
infrared-only and thereby diurnally stable satellite retrieval
of fog and low clouds. The algorithm design uses a com-
bination of spectral tests and contextual information in or-
der to retrieve FLCs. A structural similarity index (Wang
et al., 2004) is computed, comparing each satellite scene with
cloud-free composites to discriminate between land surfaces
and FLCs. The novel algorithm is thereby relatively inde-
pendent from exact spectral thresholds and thus has the po-
tential to be easily applied to other regions and to generate
climate data sets. An operational deployment is possible with
small adjustments in algorithm design and holds potential for
the prediction of FLC dissipation. In the future, the value of
the derived FLC product may be further enhanced with a re-
trieval of cloud-base altitudes for the separation of low-level
clouds from ground fog.

The algorithm was applied to detect spatial and tempo-
ral patterns of Namib-region FLCs and was validated against
net radiation measurements at the FogNet station network
located in the central Namib region. The algorithm shows
good overall detection accuracy, with a few false alarms and a
small positive bias, and relatively little station-to-station vari-
ation. FLCs most frequently occur close to the southwestern
African coastline, with Walvis Bay among the core regions,
confirming findings from Olivier (1995) and Cermak (2012).
The diurnal cycle of FLCs is described for the locations of the
FogNet stations. Marked differences in the timing of the FLC
occurrence and temporal persistence are found. The time lag
of the FLC occurrence from the coast to inland regions may

be attributed to the advection of FLCs from the coast inland,
a typical feature of the region (Henschel and Seely, 2008;
Olivier, 1995). FLCs persist longer in coastal regions than
further inland and but then dissipates more rapidly after sun-
rise.

The study shows the potential of the diurnal FLC algo-
rithm to study fog and low-cloud patterns, processes and
life cycles. Future research efforts should focus on coher-
ently mapping diurnal characteristics of FLCs; further un-
derstanding fog formation processes, specifically consider-
ing knowledge on the factors that drive low-level clouds in
the southeastern Atlantic (e.g., Adebiyi et al., 2018; Ander-
sen and Cermak, 2015; Fuchs et al., 2017, 2018), and poten-
tially detecting changes in FLC occurrence. This may best be
achieved by combining the satellite retrievals with numerical
modeling and ground-based observations, and will be under-
taken within the ongoing research project Namib Fog Life
Cycle Analysis (NaFoLiCA).

Code and data availability. Code and data are available on request.
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Appendix A: Equations of statistical validation
measures

POD=
a

a+ c

PC=
a+ d

a+ b+ c+ d

FAR=
b

a+ b

CSI=
a

a+ b+ c

BS=
a+ b

a+ c

HSS=
2(ad − bc)

(a+ c)(c+ d)+ (a+ b)(b+ d)

,

where a is the number of hits, b is the number of false alarms,
c is the number of misses and d is the number of correct neg-
atives.

Appendix B: Abbreviations of FogNet stations

Definition Abbreviation
Aussinanis AU
Coastal Met CM
Conception Water CW
Garnet Koppie GK
Gobabeb Met GB
Kleinberg KB
Marble Koppie MK
Saltworks SW
Sophies Hoogte SH
Station 8 S8
Vogelfederberg VF
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